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I. INTRODUCTION 

The components of electricity networks are ageing. It is 
expected that within a horizon of 15 years, the performance 
will deteriorate significantly, while the costs for operating the 
networks will increase enormously. The main problem is that 
a significant part of the population of the assets is installed in 
the same period, resulting in a highly concentrated number of 
failures in a short time. The currently applied replacement 
strategy has to be revisited, in order to accommodate the 
effects of ageing assets: higher maintenance costs, high 
failure rates, and a steep increase of capital expenditure 
(CAPEX). 

Methods like long-term simulation, multi-criteria decision-
making under uncertainty, critical asset identification, 
condition assessment, and advanced statistics for the 
extrapolation of condition assessments of representative 
samples of assets should be applied. By using these 
methodologies in a smart and integrated way, costs and 
performance can be kept at an acceptable level. 

The problem of resource management has long been 
recognized as one of the burning issues in electric utilities.  
Knowing how much to invest in creating a reliable and 
successfully performing resource pool (i.e. distribution cable 
network), when to repair or replace, and what human and 
financial resources are needed from year to year in order for 
such a network to operate successfully, the answers to those 
questions may represent substantial savings for the utility.  
Among the most acute problems that utilities are facing is the 
problem of accurate logging of system past performance and 
failure rate.  As far as cables go, very little or no information 
is available to support such an activity. 

Prior work by one of cable reliability researchers (Bill 
Forrest, [8]) is used here as a basis to extract the parameters 
of the Weibull distribution, which is assumed to describe the 
failure rate performance of the entire cable population.  We 
have expanded and modified that approach to include 
multiple parameters identification and nonlinear models, and 
tested it using field data which was obtained from an actual 
cable population. 

In addition, the have expanded the methodology to include 
Monte Carlo simulations of the failure rates in order to 
produce the estimates of distributions of failures rather than 
the most likely estimates.  By doing so, we have developed a 
capability to associate confidence ranges with estimates of 
failure and replacement rates that are forecasted in the short 

time horizon of one to three years into the future.  By doing 
so, planning can be associated with the desired level of 
confidence, which provides better quality information for a 
cost-conscious utility planner. It should be noted that the 
accuracy of the proposed methodology strongly depends on 
the quality and quantity of the input data, and it is envisioned 
that it could be enhanced in the future by combining 
chronological failure rate information with some form of 
condition monitoring, which can be coupled with the failure 
model that may sharpen the accuracy of the failure forecasts 
needed for a precise planning. 
 

 
Fig. 1. Illustration of replacement scheduling events based on desired 

failure performance [9]. 

II. IMPROVING THE PREDICTIONS 

There are two types of information which can be obtained 
and combined with the historical failure data. They are: (1) 
updated and complete historical failure data and (2) condition 
monitoring (if it can be associated with failure model and 
utilized to produce more accurate forecasts) The first item is 
simple to understand. If a statistical distribution of a random 
variable (a component’s time to failure) is as shown in Figure 
3 (original PDF), then by knowing a component has survived 
up until time t1, the estimate becomes more accurate as more 
time is passing and we acquire the additional information that 
the failure did not occur until a given time instant. The 
change in distribution of failure estimate, which is treated 
here as Bayesian probability model, is shown in Figure 3 
(updated PDF). 
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Fig. 2. Updated PDF of the next failure considering component 

survives to t = t1. 

As the time passes, the shape of the distribution will be 
modified. As the component approaches its expected time to 
failure, the distribution of time to failure becomes narrower 
and so do the confidence intervals (on either side of the 
maximum likelihood value). It must be kept in mind that the 
component can still fail at anytime; however, it is most likely 
to fail at the expected value of the PDF.  

Suppose now data is available that is obtained through 
condition monitoring of some device parameter such as 
temperature, current, etc. The question is how to integrate this 
data into the failure prediction algorithm. This can be done 
using Bayes’ Theorem. This theorem shows how additional 
information made be combined with an assumed PDF to yield 
a more accurate PDF. This can be stated in equation form  
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where 
x - a random variable whose value depends on event θ 
θ - a variable  
g(θ) - Prior distribution (i.e. the assumed initial PDF, in this 
case a Weibull PDF)  
f(x|θ) - Conditional distribution relating x to θ  

g(θ|x) - Posterior distribution (i.e. updated PDF) 

The difficult aspect of this approach is how to relate the 
condition monitoring to a failure distribution since it is 
necessary to know precisely what the measurements mean to 
the life expectancy of the component. In some cases this 
information is known and in others it is not.  

The greatest difficulty in utilizing condition monitoring 
data is defining how that data affects the lifetime of the 
component in question. For a given component there may be 
numerous parameters which may be monitored and 
understanding how all of them affect the device could be 
virtually impossible. Fortunately, it may only be necessary to 
understand the one or two most influential or critical of these 
parameters as the others may only produce very slight 
changes in the posterior. 

It is clear that, in any failure forecasting procedure, a 
single number failure prediction (x number of failures in 

future year y) is virtually meaningless as there is no 
confidence attached to it. Therefore, stochastic simulation 
techniques have been employed to extract some level of 
confidence. By performing thousands of simulations, the 
algorithm yields a distribution for each of the parameters of 
interest and from these; the confidence intervals may be 
extracted. The confidence intervals then indicate how likely 
the forecasted parameter is to fall within a certain range.  

This algorithm may be extended to include data obtained 
through condition monitoring to increase the accuracy of 
results. It may also be modified to take advantage of more 
complete historical data, thereby eliminating one of the 
necessary assumptions. A final modification would be to 
dispose of the assumed Weibull distribution and use non-
parametric methods to generate the predictions. 

III. METHODOLOGY 

Suppose that p(t) is the probability density function  (PDF) 
of the time to failure t of a single component. The probability 
of that component failing before time t is given by 

0
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If we have a system of N such components connected in 
series, the probability that the system will fail is 

0 ( ) 1 (1 ( ))NP t P t= − −    (2) 
where P0(t) is cumulative distribution function (CDF) of the 
time to failure, and the corresponding PDF is 
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If the times to failure T are distributed as Weibull Wei(α,β), 
with parameters α - scale parameter and β - shape parameter, 
the PDF of time to failure of the overall system is   
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Depending on the values of its parameters, the Weibull 
distribution can model a range of different reliability 
behaviors. For example, the value of the shape parameter β 
dictates the behavior of failure rate function. If β>1 (β<1), the 
failure rate is increasing (decreasing) with time, while for 
β=1 the Weibull distribution coincides with the exponential 
distribution and, as it is well known, the failure rate is 
constant in time in such a case. 
 

It is interesting to observe that p0(t) can be rewritten as 
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which means that is also a Weibull density. The 
expected value of T (the time to failure of a single 
component) is 
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and the expected value of the time to failure of a system 
consisting of N identical units is 
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We therefore begin with the assumption that the expected 
number of failures that occur in a population of X 
components of the same type at time t years after the 
installation is given by  
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where a is a scaling constant, b is a constant which is related 
to time dependency, and g is a quiet period (without failures) 
following the initial deployment of the component. If a 
component is installed in year i following the first installation 
and consists of Xi units, then the expected number of failures 
at t years after the initial population installation will be: 
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Under the assumptions used in the above derivation (Weibull 
distribution), the failure rate possesses a linear relationship 
with the number of components. Finally, if we combine 
component populations installed in years 1, 2,…,i, i+1, …, n, 
the cumulative estimated (in some sense, most likely) number 
of failures of such a population will be [8] 
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That is a four-parameter function of time. Our earlier work 
[9] shows how to identify the three unknown parameters 
(a,b,g) from the knowledge of the observed number of 
failures over a finite (often quite short) period of time, by 
extracting the needed parameters from the observations by 
fitting the model to the observations in the least squares 
sense.  

As we know the elements of X up to the time when all 
installations and replacements are known, the solution of the 
equations yields the parameter set {a,b}. With knowledge of 
the parameters, a set of equations can be solved for any 
desired time horizon {n+1, …, n+k} in order to determine: i) 
the estimated number of failures when a replacement 
schedule is planned for and known in that period; or ii) the 
estimated necessary replacement schedule, which should 
maintain the estimated number of failures at the desired 
(planned) rate within the time horizon of interest. In practical 
terms, the time horizon should be as short as reasonably 
possible in order to avoid the accumulation of uncertainty 
that would invalidate the results. Figures 3-5 show the 
confidence ranges for failure estimates calculated from 

chronological failure performance records up to the moment 
of estimation (we call it evolving time window). The results 
were obtained using stochastic simulations. Each estimate is 
the result of repetitive simulations, which is producing the 
estmate of the PDF of estimated failures in any given year.  
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Fig. 3. Failure estimates for 50% confidence interval from evolving 

window simulation. 
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Fig. 4. Failure estimates for 75% confidence interval from evolving 

window simulation. 
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Fig. 5. Failure estimates for 95% confidence interval from evolving 

window simulation. 



Naturally, as the confidence grows (larger fraction of 
simulation outcomes are contained in the confidence range), 
the range grows ever wider. In some cases, when insufficient 
information is available, confidence ranges can grow 
impractically wide (yield completely uncertain estimates). 
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Fig. 6. Three year failure projection histograms for 2500 Monte Carlo 

simulations. 

 
Similar effect can be observed as simulations are applied 

to estimate failure distributions in a growing time horizon. 
Replacements are calculated based on failure forecasts and 
objective to keep the future failure rates constant. The 
distributions appear to spread as we attempt to forecast 
failures farther into the future. The reason for that effect is the 
accumulation of uncertainty from years 1 through k in 
estimation of failure rate for the year k+1. 

IV. COST OF DIAGNOSTICS 

When forecasted number of failures exceeds the capacity 
of the O&M budgets, it is reasonable to consider deployment 
of certain diagnostic procedures in order to reduce the cost of 
replacement by avoiding the cost of replacement on failures 
and targeting the most vulnerable parts of the system. 
Depending on several factors, such as the percentage of bad 
components in the tested population, cost and accuracy of the 
diagnostic tests, as well as time between the tests on the same 
components, it is possible to estimate how effective the 
diagnostic tests would be. In the following example, the 
numbers used are selected to illustrate various effects 
(primarily the dependence of annual maintenance budgets on 
diagnostic accuracy and the rate of failures inherent to the 
system). 

In order to introduce the subject through a simple 
example, let us assume that we have a diagnostic area 
consisting of 100 miles of distribution cables of the same type 
and different ages. The population consists of segments 

which are 500 ft long at median, but are distributed 
approximately as Weibull distribution with minimum length 
of 400 ft, and scale and shape parameters of 120 and 2.0 
respectively, making 95-th percentile length of segment equal 
to 608 ft.. Let us also make a reasonable assumption that such 
an area is possible to be completely tested using certain 
diagnostic procedure which costs $6,000 per tested mile, and 
that the diagnostic cycle is 6 years long (which requires a 
diagnostic budget of $100,000 pa when spread over the 
diagnostic cycle). 

Based on the chronological failure data (presented in the 
previous section) the forecasted failures are estimated as 
Weibull distribution with location, scale and shape 
parameters of 8.96, 24.0 and 2.37, respectively, which 
corresponds to 5-th, 50-th and 95-th percentile failure rates of 
15.82, 29.53 and 47.08 failures/100 miles/year (median 
failure rate of  ~30 failures/100 miles/year).  

We also assume that the initial cost of replacement on 
failure is uniformly distributed between $5,000-
$10,000/failure, and that the per unit length cost of the cable 
replacement is uniformly distributed ±10 percent around 
$30/ft. In addition, the accuracy with which a prescribed 
diagnostic is able to identify both a good and a bad section is 
arbitrarily selected to be uniformly distributed between 80% 
and 100%. 

Under such circumstances, we choose to perform the 
stochastic simulation, by running a Monte Carlo test with 105 
simulations consistent with the above assumptions. 

With the use of diagnostics, the total cost (which amounts 
to the cumulative cost of diagnostic tests, diagnostic directed 
replacements and the cost of non-diagnosed bad segments 
due to diagnostic inaccuracy amounts to the distribution 
shown in Figure 7, which has a mean of $493.8K/yr, with 10-
th and 90-th percentiles at $238.4K/yr and $750.0K/yr, 
respectively. 
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Fig.7. Distribution of the total cost of failures (in $/yr) if diagnostic 
tests are used, as per example in the text. 

It is interesting to look into the cost of imperfect 
diagnostic testing (assumed here to have accuracy  uniformly 
distributed between 80 an 100 percent). With a diagnostic 
accuracy of 100% every “bad” circuit diagnosed will in fact 
be bad. However we know that there will be some “diagnosed 
as bad” circuits that, if they were left alone would not fail in 



the diagnostic cycle; thus they would be viewed as “good” it 
is this discrepancy between diagnosed condition and actual 
condition that drives the cost of accuracies below 100%. The 
cost of the “in perfect accuracy is spread between $0 and 
$189.2K/yr, with mean value of $68.5K/yr and 10-th, 50-th 
and 90-th percentiles at $12.3K/yr, $61.0K/yr and 
$134.9K/yr, respectively. 
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Fig. 8. Total cost of failures occurring from incorrect diagnostic testing 
(assumed 90% accurate on average). 
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Fig. 9. Total cost of replacements based on recommendation after 
diagnostic testing (assumed uniformly likely to be accurate between 

80% and 100%). 

Total cost of replacements done upon diagnostic test 
recommendation is distributed as shown in Figure 9. It is 
almost uniformly spread between $30k/yr and $650K/yr, 
having a mean of $325.3K/yr and median of $324.0K/yr.  

When the cost of running diagnostic tests is added to the 
costs of replacements and costs incurred from undiagnosed 
failures (Figures 8 and 9), the total cost (shown in Figure 7) is 
obtained. As the numbers presented in this example are used 
just as an example, it is of interest to evaluate their 
dependency on changing some of the important parameters of 
the experiment, primarily the failure rate in the system under 
testing and diagnostic accuracy.  

For example, if diagnostic test accuracy is increased to a 
uniform distribution [90%,100%], the resultant total cost of 
diagnostics and replacement (both due to diagnostic 
recommendations and undiagnosed failures) would be as in 
Figure 10. The mean cost is reduced to $335K/yr (a reduction 
of 32 percent compared to the previous scenario) with 10-th 
and 90-th percentiles at $204.4K/yr and $467.3K/yr, 
respectively. 
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Fig. 10. Distribution of the total cost of diagnostics and replacement 
(in $/yr). Diagnostic accuracy is assumed to be uniformly distributed 

between 90 and 100 percent. 

As seen in Figure 11, the situation can be quite different if 
the diagnostic accuracy is increased to an average of 97.5% 
(uniformly spread between 95 and 100 percent). In that case, 
the total cost would be $255.96K/yr (10-th, 50-th and 90-th 
percentiles are -%184.0K/yr, $254.0K/yr and $330.3K/yr, 
which represents another significant reduction of the cost. 

 

Frequency Chart

 $/yr

Mean = 255,962.43
.000

.025

.050

.075

.100

0

10033

100,000.00 200,000.00 300,000.00 400,000.00 500,000.00

100,000 Trials    100,000 Displayed

Forecast: Total Cost {$/yr]

 

Fig. 11. Distribution of the total cost of diagnostics and replacement. 
Diagnostic accuracy is assumed to be uniformly distributed between 

95 and 100 percent. 

Finally, when the diagnostic accuracy is assumed to be 
perfect (100%), the total cost reaches a minimum distribution, 
shown in Figure 12. Mean yearly expenditures are 
$176.6K/yr, and 10-th and 90-th percentiles are $145.0K/yr 
and $211.6K/yr, respectively. 
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Fig. 12. Distribution of the total cost of diagnostics and replacement. 
Diagnostic accuracy is assumed to be perfect. 



DISTRIBUTION OF TOTAL COST

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

[80%,100%] [90%,100%] [95%,100%] [100%,100%]

DIAGNOSTIC ACCURACY DISTRIBUTION

$/
YE

A
R

0% 10% 25% 50% 75% 90% 100%  
Fig. 13. Percentile distribution of the total cost (seven percentiles 
shown from 0-100%) of diagnostics and replacement (in $/yr) for 

various values of diagnostic accuracy and assumed failure rate of 30 
failures/100 miles/year. 

Figure 13 shows the distribution of costs (through 
representative percentiles) for various levels of diagnostic 
accuracy. The benefits of diagnostic accuracy are significant 
(worst case expenditures reduction from almost $1.2M/yr to 
$320K/yr.) 

As system failure rate is one of the dominant factors in the 
calculation of the diagnostic benefit, it would be interesting to 
calculate the diagnostic benefits in a system whose estimated 
failure rates are lower than those assumed so far. Figure 14 
shows the diagnostic benefit distribution in the system where 
the average failure rates are Weibull-distributed with mean 
number of failures of 20 failures/100 miles/yr. The mean total 
cost is $449.6K/yr, and 10-th, 50-th and 90-th percentiles are 
$210.0K/yr, $447.3K/yr and $687.4K/yr, respectively. 

If the calculations of total cost were repeated on such a 
system, but with an assumed use of the procedure with 
various diagnostic accuracies (as in the previous examples) 
the total cost distribution becomes even more obviously 
attractive, as shown in Figure 15.  
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Fig. 14. Total distribution of cost with the use of diagnostic testing in 
the example when mean failure rates are 20 failures/100 miles/year. 
Diagnostic accuracy is assumed to be uniformly distributed between 

80 and 100 percent. 
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Fig. 15. Total cost distribution (seven percentiles shown from 0-100%) 

in the example when mean failure rates are 20 failures/100 
miles/year. Diagnostic accuracy is assumed to be uniformly 

distributed from [80,100] % to 100%. 

V. CONCLUSIONS 

The failure forecasting procedure relies solely on basic 
historical data to forecast the number of failures. As a 
consequence of the available data, assumptions are made to 
make the analysis possible: 
• The components have a lifetime consistent with a three-

parameter Weibull distribution.  
• The actual component that failed is unknown so it is 

assumed that the oldest components are always replaced 
first.  

 
In addition, the algorithm allows for repeated calculation 

of failures assuming the component population has been 
altered. This allows for the calculation of replacement 
components needed to achieve desired changes in the failure 
curve. In effect, the algorithm can predict how actions in the 
present will impact the overall failure trend.   

On the other hand, a single prediction is virtually 
meaningless as there is no confidence level attached to it. 
Monte Carlo simulation techniques have been employed to 
extract the information on the level of uncertainty. By 
performing multiple simulations, the algorithm yields a 
distribution for each of the parameters of interest and from 
these confidence intervals may be extracted. These tell how 
likely the forecasted parameter is to fall within a certain 
range.  

The accuracy in forecasting failures, as well as the 
accuracy of diagnostic testing play a major role in evaluation 
of the total cost of replacement when diagnostic testing is 
used. The results depend very strongly on system conditions 
(forecasted failure rate, diagnostic accuracy, average length 
of the segments, etc.) The examples shown in the text 
demonstrate how the capabilities of the diagnostic tests can 
reduce the total system replacement costs. 
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