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CHAPTER I
INTRODUCTION

The effect of a nuclear electric guadrupole moment cn the spectrum
of an atom has been treated in detail by Casimir (1), and the hyperfine
structure in the rotational spectrum of a molecule containing a single
quadrupolar nucleus can be treated in an almcst identical manner (2).

The case of a molecule containing two guadrupolar nuclel was treated by
Bardeen and Townes (3). The cccurrence of three identical nuclei coupled
to a molecule by electric quadrupole interaction is uncommon except in
symmetric tops contalning *three halogens such as CHBr-3 or CHClan Previous
attvempts at analyzirg the quadrupole splitting in the rotgtional spectra
of such molecules have led to contradictory results.

Bersohn (4)(5) derived expressions for the splitting due to two or
more guadrupolar nucleil in a molecule by using the algebra of irreducible
tenscr operators developed by Racah (6){7)(8) for treating atomic spectra.
Mizushima and Ito (9) used Bersohn's work to calculate the effect of the
gquadrupole interaction cn the J= 0 =1 rctational transition in CHiBraa
Kojima et al. (10) attempted to measure this transition, but the spectrum
they reported was later shown to be of spurious origin (11). P. N. Wolfe
(12){13) compared the J= 2 — 3 rotational spectrum in CHCl3 with Ber-
sohn’s theory and obtained the value -80.39 Mc/sec for the guadrupole

coupling constant of the chlcrine puclei. By improving the resolution and

sensitivity of the converticnal Stark modulated spectrometer, Lorg (14)(15)



was able to measure the J= 1 =2 transition in CHCl3ﬂ He obtalned

-102.5 Mc/sec for the quadrupole coupling constant.. Long also cbtained
the value -110.8 Mc/sec for the gquadrupocle coupling constant in CFC].3°
From measurements conducted in the solid state, Livingston (16) had ob-
tained absolute values of T6.98 Mc/sec and 79.63 Mc/sec respectively for
these constants. One would expect bebtver agreement than this between the
values obtained in the gaseous and solid states (17}.

In addition tc the discrepancy in the gquadrupole coupling constants
Long found that in the case of both CHCl.3 and CFCl3 it wag necessary to
assign valueg to the centrifugal distortion coefficients which were much
larger than the theoretical values 1n order to acccunt for the observed
gspectra. He found that the centrifugal disscrtion coefficient DJ was
negative and changed with J. Previcus investigaticrs had yielded only
positive, corstant valueszs for DJ in molecules of this type. Leong suggested
that either the assumption that the electrornic charge was symmetric abou*
the C - Cl bond was erroneous or the quadrupcle interaciion theory was
incorrect. Subsequently Joknson (18) examined the centrifugal distortion
in symmetric top molecules, including those havirng C - Cl bonds. He
found good agreemenrt between the theoretical and measured centrifugal dis-

tortion coefficients with only two exceptions, CHC]_q ard CFCl These

3"

were the only mclecules examined having three quadrupolar nuclei.

Favero and Mirri {19) then inves®igated the spectra of CHCl, and

3

CFCl3 in various iransiticns from J = 1% to J = 29 (at these freguenciec
the splittirg due to the guadrupole interacticn is guite small and can

Te neglected)u They obtained values for the centrifugal distortion coeffi-

clente which were in good agreement with the theoretical values. These



authors concluded that the ancmalous behavior reported bty Long was due o
the very complicated hyperfine pattern which cccurs for low values of J.

Weatherly (20} calculated the guadrupole hyperfine splitiing for
CFCIR uging a method which differed from Berschn's. His calculation
yielded -81.5 Mc/sec for the guadrupole coupling constant. The calenlatior
also indicated that the centrifugal distorilon coefficilents would be near
the theoretical values. Weatherly's approzch dees net utilize the per-
mutation symmetry of the furcticn representing the resultant spin of the
three identical nuclei and requires the diggonalizaticn of matrices which
in some cases are twernty by twenty in gize. In this study no calculaticon
of the relative intenzity of the varicus typerfine lines was made. Weatherly
was able to conclude that Rersohn's theovy did nct nake iwne account all of
the effects of the Paull exclusion prirciple.

Svidzirskii (2! has discussed the prcblem of calculating the hyper-
fine struevure in the roiational sgpectra of molecules due to multipele
interactions of various types and has shown how 1c use iLhe symmetry proper-
tiese of the molecule to maximum advantage in simplifying the resulilng ma-
trices. Svidzinekii's work is an extension of Bewsohn's, although Svidzin-
skii deoes ineclude a discussion of the approprigfte state functions to use
when identical nuclei are invelved. Unfortunately Svidzinskii's paper con-
tains a host of typographical errcors. PRFurthermore an errvoneougly defined

permutation operator leads no a mistake which is compounded through the

*
pApET.

Jn this study the method suggested by Svidzingkli is corrected and

# i 4 + & “
A letter communicating these rezults fo Dr. Svidzinskiil in the
USSR was returred marked "Addressee Unknown."
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used to compute the complete rotatlonal hyperfine structure pattern in
symmetric top molecules containing three identical quadrupclar nuclei of
spin 3/2. The matrix elements derived by Bersohn are shown to be incom-
plete, and the calculation of relative intensities as derived by Wolfe
and used by Wolfe and Long is shown to be erroneous. A comparison of
the computed spectra with the observed spectra for_CFCl3 and CH.Cl3 leads
to values of the quadrupole ccupling constants of -79.9 + .6 Mc/sec and
=77.9 £ .5 Mc/sec recpectively. The centrifugal distorticn coefficlents
off Faverc and Mirri are found to be sufficilent =o account for the ob-
gerved epectra when combined with the predicted guadrupcle splitting.

Chapter II contains a summary of those aspects of the guantum
theory of angular momentum which are needed 1n order to ccmpute the gqua-
drupclie spectrum. The derivation of the guadrupcle Hamiltonian is also
included in this chapter. While all of this material may be found iz
various references, there are so many different conventions concerning
choices of phase and normalization that 1t seemed advisable to include
this summary in order fc establish a consilstent nctation and to make
the thecis self contained.

Chapter III deagls with the construction of the proper state
function for a molecule containing three identical nuclei. Part of the
material on nuclear spin functions duplicates Bersohn's results, buit the
use of projection cperators (suggested by Svidezinskii) is a more general
appreach and will be easier vo extend to cases invelving nuclear spine
other than 3/?. Using *“he results from Chapter II, the matrix elements

for the guadrupole interacticn are computed. The chapter concludes with

a discueslon of the relative intersities cf the hyperfine lines.



For the J= 1 =2, |K|l = 1 case the matrices of Chapter ITI yield
194 lines spread over a frequency range of 96 megacycles/sec. In some
cases the separation between lines is about one tenth of z megacycle/sec.
The effects of pressure broadening, finive spectromefer resclution, ard
the rapid decrease of line strengths with decreasing frequency make it
Impossible to compare individual lines in the cobserved gpectrum with the
computed linec except In the cage of a few of the strongest lines. An
estimate of the combined effects ¢f pressure broadening and poor resolu-
tion was made by ascuming a Van Vlieck - Weisskopf line shape and summing
intensities with the aid of a compuster program developed by Nave (22) for
this purpoze. The computed line spectra, pressure brosdened spectra, and
the experimentslly observed spectra are presented in Chaphter IV. The
quadrupole coupling constants were computed by comparing the observed and
thecretical separaticrn of the strongest lines in the J= 1 =2 spectra.

After quadrupcle splitting ard centrifugal distertion effects have
been taken intc account it is then possible ©to compute the rctational

constant B. The rotaticonal constant for CFCl, was found to be 24£5.82 = .02

3
Mc/sec. The rotational constant for CHCl, was found tc be 3302.07 £ .03

3
Mc/sec° These values are for the most abundant symmetric top species and
are believed to be more accurate than any previously reported values. No
attempt was made to measure the spectra of various isctoplic species of
these molecules and thereby correct the reported values (23)(2L4) of ihe
bond distances and angles. It ig suggested that ihis be done since the

guadrupole splitting can now be assigned correctly. Other suggestlons and

a summary of the resgulis obftained are presented in Chapier V.



The matrix elements for the cases J = 1, 2, and 3 are tabulated in
an Appendix. The gquadrupole hyperfine structure of any symmetric top
molecule containing three identical gquadrupolar nuclel of spin 3/2 may

he computed by substituting the proper bond angle into these matrices and

diagonalizing.



CHAPTER II
ANGULAR MOMENTUM ALGEERA

The theory of rotation groups in gquantum mechanics has been
developed mainly by Wigner (25) and Racah (6)(7)(8). This theory,
concerned with the applications of irreducible tensor operators and
Wigner 3-nj symbols, has become an integral part of modern atomic and
nuclear physics. Bersohn (4) was one of the first to utilize the theory
in a problem involving the rotational motion of molecules. Those paris
of the theory which are needed for the present problem are summarized

in this chapter; details may be found in the book by Edmonds (26).

The Rotation Operator

In quentum mechanice the commutation relations (cyclic in xyz)

for the angular mementum operators,
(7, 3. 1=4J
x ¥ z
give rise to sets of 2j + 1 eigenvectors u(jm) which satisfy the equatiocns
2 2 2 oy LAl .
(T + Jo+ ) ulgm) = 309 + 1) u(gm)

and

J, u(jm) = m u{jm) .

In these equations J is a positive Integer or half-integer and m ranges



from -j to +J in integral steps. An eigenvector u{jm) describes a
physical system having a sguared angular momentum of j(j + 1). The com-
ponent of the angular momentum along the z axis is given by m. For inte-
gral values of J the angular momentum operators may be represented by
differential operators and the elgenvectors may be represented by spherical
harmonic functions. For half-integral values of J no such single-valued
and continuous representation is possible. Since the exact form of the
eigenvectors is seldom needed we shall continue to use the symbols u(jm)
for integral or half-integral values of J.
The behavior of the angular momentum eigenvectors under a rotagticn
of the coordinate axes is of interest. Consider the coordinate system
x 'y 'z which is obtained from the coordinate system x y z by performing
the following rotaftions in the order given:
(1) a rotation by ¢ (0 = ¢ < 360°) about the z axis which carries
the system x y z into the system x,v,2q,
(2) a rotaticn by ¢ (0 = ¢ < 180°) about the y; axis which carries
the system X,y 2z, into the system xzy=z2a,
(3) e rotation by y (0 s y < 360°) about the z, axis which carries
the system xzyszs into the system x 'y 'z’
All rotations are to be carried out in a right-handed sense. We will re-
gard the initial x y z system as being fixed in space and the x 'y 'z’ system
as being oriented sco that the z  axis coincides with the symmetry axis of
a symmetric top molecule. For a molecule such as CHCl? we number the
identical nuclei 1, 2, and 3 and specify that the y  axis passes through
nucleus 1. We further specify that the positive direction of the z~

axis 1s the direction of moticon of a right-handed screw in a rcta-



tion that would carry rnucleus 1 into nucleus 2. The angles ¢ and & are the
usual polar coordinates of the z  axis and 7 measures the rotation about
this axis.

Observe that rotations (2) and {3) are defined with respect to
rotated axes. When calculating the matrix elements of the rotation opera-
ter 1t is more convenient to define all rotations with respect to a set
of axes which remains fixed iIn space. This may be done by carrying out
the above rotations in reverse order (27), thus:

(1") rotate about the z axis by 7,

(27) rotate about the y axis by 6,

(37) rotate about the z axis by ¢.

The rotations (1), (27), and (3) preduce the same relative orientation
between the x y z coordinate system and the x 'y 'z’ coordinate system as
the rotations {1}, {2), and {3). The first description does have the
advantage that it makes the meaning of the angle 7 easler to see.

The operator corresponding to the rotations (17), (27), and (37)

is (28)
D(e, 6, )= exp(i¢JZ)exp(iBJy)exp(iyJZ).

The effect of this operator on an eigenvector u(jm) may be expressed by a

linear unitary transformation,

Do, 6 7) u(m) - £ ol (s, 6 5) u(gm?) (1)
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where

mn)l(% 8, )= (u(jm’), D{¢, & ) uljm)).

ptd
The notaticn (a,b) ic used to represent the scalar product of the vectors
a and b. Analytic expressions for the matrix elements of the rotation
operator are given by Edmonds (29). Since the vectors u(jm) are eigen-
vectors of Jz it is easy to see that the matrix elements will be functions

of the form

(8) ™7 (2)

where déqm is some function of 8.

When j is an integer and m is zerc the functions in equation 2 are
gpherical harmonics. When dealing with irreducible tensor operators cer-
tain annoying factors may be eliminated by defining the spherical harmonic

funetions by

Since there are so many conventions in use for the phase and normalization
of spherical harmonic functions, the functions in equation 3 will be listed

here for the case £ = 2:

cég) (¢,0) = _JEE_ eT2® 5in2g , {4a)
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C£2) (¢,0) :i%gi e1? sin 6 cos 8 , {bb)

cc()z) (¢,8) = % {3cos®g - 1) . (ke)

The functions for negative values of m may be obtalned from the identity

¥

el (o,0) = (1) el (o0)

If j is an integer and both m and m~ are zero the functions in equa-
tion 2 are Legendre polynomials Pﬂ(cos @). These polynomials are related
to the spherical harmonics in the following way. Consider two vectors Eﬁ
and ?E which have pelar coordinates ©,, 6; and ¢5, 65 respectively, and

let the angle between the two vectors be 8. Then we have

£
o) (0,0) = » (cos )= B ()" ol2)

-£

(01,00) ¢ (oz,82) . (5)

Tf the magnitude of T% is less than the magnitude of F& then the quantity
g

1 may be expanded as
E& - Iz

_ ; (rq)—(£+l)(

£
- N r>)” P (cos 8) . (6)
7| o :

This result will be needed when deriving the Hamilteonian for the electric



1z

gquadrupole interaction of a nucleus.

One final property of the matrix elements of the rotation operator
which we shall need subsequently may be derived by the successive appli-
cation of eguations (4.2.4), (4.2.5), and (4.2.6) in Edmonds' book (26).

This relationship is

ald) (1800 - 0) = (-1)I ™ ald) (a). (7)

The angular momentum of a symmetric top molecule.can be described
by a function which is proporticonal to the matrix elements of the rota-

ticn operator,

2
wam) = | 222 ol 0, 6, 7). (8)

J(J + 1) is the sguare of the total angular momentum, M is its projection
on the fixed z axis, and K is its projection on the z~ axis fixed in the
molecule. J is an integer and K ranges from -J to +J as does M. The ro-

tational energy of the molecule is (30)

= J(J + 1)Bh + K¥(C - B)h
B = (I + 1) (c - B)

where C is the rotational constant about the z  axis, B is the rotational
constant about any axis through the center of mass perpendicular to the z~

axis, and h is Planck's constant. The energy is seen to be degenerate with
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respect to the sign of K. When constructing the state function of a
symmetric top molecule having rotational energy EJK one must use the

functions ia eguaticn 8 with both pogitive and negative values of K, as

will be seen in Chapter III,

Vector Coupling Ccefficients

Interactions which couple two or more angular momenta are frequenily
encountered; for example, the coupling of the nuclear spins to the angular
momentum of the molecular frzmework by the electric quadrupole interaciilon.
In such cases m is no longer a good guantum number for the individual sys-
tems. However, the total angular momentum cf the system will be conserved
and it is desirable to have a representation in terms of the total angular
momentum. Consider two interacting systems having angular momenta j; and
Jo- An eigenvector which describes the total angular momentum may be

written in the form

u(d, Jor dm) = Z 0 (Jamidamp!daidodm) u(iim) u(iame). (9)
Ly, m2

The quantities (j1m132m2|jljgjm) are called vector coupling coefficients
(31). They are functions of the quantum numbers displayed in them and
vanish unless m = m; + my and unless J lies in the range from |jl - Jo

to j1 + Jz- The order in which the vectors are coupled is important. If
we let u(Jjz, Jis Jm) be the vector obtained by coupling in the reverse
order from equation 9 (i.e. the roles of j, and js are interchanged), then

these two vectors are related by



1k

(_1)31+32-J

u(dg, Ji, Jm) = u(ji, Jey Jm) (10}

The Wigner 3-3 Symbols

Certain symmetries of the vector coupling coefficients may be ex-

hibited in a clearer fashion by defining a 3-j symbol (32):

Ji de  ds (_l)jl‘jE'mS . ‘ o
= = (JamyJzmgz J1J2J3'm3) .

1
mpy mp Mg (2ja + 1)°

In particular the 3-j symbol is unchanged under an even permutation of

its columns and changes by (-l)Jl+J2+J3 under an odd permutation. The
same fTactor 1g obtained if cne replaces each m by -m. For typographical
convenience we shall use the equivalent notation X(jljejs;mlmems) for the

3-J symbol. The orthogonality of the 3-J symbols is expressed by {33)

L. L. . s . indn fams
5 X{J1dedasmamemg) X{(J1J2Js smymomg ) = J3e2 -, (11)
My, Mg (232 + 1)

Now let us consider the coupling of three angular momentum eigen-
vectors u(Jjimy ), u(Jomz), and u{jgis) to obtain an eigenvector u{jm).
Here are two of the possible alternative coupling schemes:

(1) Couple u{jimy) to u(Jjszms) to obtain a vector u(j,-m;z).

Couple this vector to u(jams) to obtain u(jm). Denote

this result by u{jizs Ja Jm).
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(2) Couple u{jzmz) to u(jams) to obtain a vector u{jszmss ).
Couple u(jim;) to this vector to obtain u{jm). Denote

this result by u(ji, Jezs» Jm).

In both cases there are several possible values of the intermediate
momenta Jis, Or Josz which lead to the same final value of j. The vectors
with the same j obtained from different intermediate momenta are ortho-

ncrmal. The twc coupling schemes are connected by a unitary transformation

uljay Joss Jm) = L (J1, Jea|dizs Ja)(J) u(Jizs Jar Jm).

Jiz
The coefficients in this expansion are related o Wigner's 6-j symbols,

)

NG
_ J1o J23iJ‘EJAJS) . (12)
Ja Joa [(2jz2 + 1)(2Jas + 1)]°

Ji Jz Jaz {_l)Jl+J2+Js+J (

In modern usage the 6-j symbol is distinguished from the 3-j symbol Dby

the use of curly brackets in place of parentheses. For typcgraphical
convenience we shall resort to an older notation and write W(jiJjziio:dsd Joa)
for the 6-3 symbol. The reader is cauticned that this usage of the W sym-
bol differs by a phase factor from some of the W symbols used in earlier
literature. As defined ir equation 12 the 6-j symbol is invariant under

any permutation of its columns and under the interchange of upper and

lower entries in any two columns (34%). Recoupling transformations betweer
four, five, or six angular momentum eigenvectors invelve 9-3, 12-]J, or 15-]

symbols. These will not be needed.
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Values of the 3-j and 6-j symbols have been tabulated by Rotenberg
et al. (35) and expressed as powers of prime numbers. This tabulation not
anly eliminates the tedlous numerical calculations which usually accompany
problems of the type treated here but alsc makes possible a substantial
simplification in expressions involving more than one 3-j or 6-3 symbol

by allowing one to cancel prime factore,

Irreducible Tensor Operators

It is frequently the case that even though the complete state
function of a system is not known, that part which describes the angular
momentum of the system is known and appears as an angular momentum eigen-
vector multiplying the remainder of the state function. When we have an
operator whose angular dependence 1s known it is then pessible to separate
the evaluation of matrix elements of the operator into two parts, one in-
volving the angular momentum and the other involving the other coordinates
which describe the system. That part of the matrix element involving the
angular momentum is preportional to a 3-nj symbol. This is the basis of
Racah's algebra of 1lrreducible tensor operahors.

An irreducible tensor operator of rank k (where k is an integer) is
defined as a set of 2k + 1 operators which transform under rotations like
the elgenvectors of the angular momentum operators. The spherical harmonic
functions are examples of such quantities. If Aék) is a component of an
irreducible tensor operator then the matrix elements of this component

between states of sharp angular momentum are

(a(a’s A a(mam) = (1)) x(3 e ) (n 3 Alns) (23)
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where n represents all cther gquantum numbers which describe the state.
The guantity (n'j’HAHnj) is called the reduced matrix element. It repre-
sents that part of the matrix element which 1s independent of spatial
orientation, that is, independent of the quantum numbers m’, g, and m.
The reduced matrix element has the same value for all components of the
irreducible tensor operator (36).

The scalar produc* of wwe irreducible tenscr operators is defined

by

Given two 1rreducible tensor operators of the same rank k which act on
the angular momentum eigenvectors u(jim;) and u(joms,) respectively, the
matrix element of the scalar product of these two operators in a repre-

sentation in which j; is coupled to jJjs to obtain an angular momentum Jj is

(u(nl ’jl ’: o ,32 ,J ejm); A-B U—(nljls n2j,‘25 Jm)) = (lh)

('l)Jl+J2 " W{idz "d1 tkizdz)(ny 31 JAlr1da){(ne d2 ||B|nzdz) -

Another relationship which will prove useful concerns the reduced matrix
element of an operator B acting on an eigenvector u(jim;) in a scheme in
which u(j.m;) is coupled to u{Jjsms). This relationship is

peo . .o . . . Ji +istitk
(ny "d1 7 nades d |Bllogds, nads, 5) = (-1)9% 7427 (15)

-l_ ’
L(23 + 1)(23" + 1)12 W(31 3 dz:dd2k){ny 31 (|Bl|ln1da)
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In our problem A will represent some derivative of a molecular electric

field and B the corresponding nuclear electric multipole moment (37).

The Quadrupole Interacticn Hamiltonian

The potential V(?U at a point ¥ external to a charge distributicn

whose density is p(;h) can be expressed by means of the spherical har-

monics in a series of the form

R O (:6)

The coefficients Qé ) are called multipole moments of the charge distri-

bution and are given by

= [e@e oM (0567 av

Similarly if we consider the potential V(¥’) at some point inside a region

of space due to a charge distribution p(?ﬁ external to this region we have

@)=z oY Cn(lﬂ)* (07,07 (x")* (17)

where

L0 [o@ ol (00 0

The coefficients qéﬂ) are proportional to various derivatives of the

potential (38).
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In view of the above relations the multipole moment operators in

guantum mechanics are defined by

where e 1s the electronie or protonic charge as reguired. A similar
definition applies for the operator which gives the derivatives of the
potential. These coperators are obviously irreducibtle tensor operators
since they transform under rotations like the spherical harmonics.

The electrostatic potential energy of a nucleus due to the sur-

rounding electrons in g molecule is given by

- 1
W= - U U e & —— U U dv_ av_ .
m Il . . - b d m n m n
i, | -r .‘
el pd

Um and Un are the state functicns of the molecular electrons and the
nucleus respectively, ?;i is the position vector of the ith electron in a
space fixed frame, ?;j ies the position vector of the jth proton in a space
fixed frame, and the integral is evaluated over the coordinates of all

electrons and protons. Upon applying equations 5 and 6 this becomes

-(g+1) £ m
DRI CLREY

W= - u[‘ U T e2 £ Z [(r

L3 Lm

e e e Tu U av av .
ei’ “-m pi’ i m n m n
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The term with £ = © is isotropic and hence makes no contribution to the
rotational energy. This would be the only non-vanishing term if the
nuclear charge were cspherically symmetric. The ferm with £= 1 is zero
since nuclei are presumed not to have electric dipole moments (39). We
are interested here in the effect on the rectational moticn of a molecule
produced by the terms with £ = 2. Thus we see that the Hamiltonian opera-
tor for the quadrupole interaction energy is a scalar precduct of two irre-

ducible tensor operators,

H= AB= % (-1)" An(f) BE;)

The operator

K ez e o)

,6 ) (18)

el” el

gives the derivatives of the potential due to the electrons, and the

operator

gives the components of the quadrupole moment of the nucleus.

Matrix BElements of the Hamiltconian

Svidzinskii has shown that when identical nuclei are located in
equivalent positions in a molecule the total interacticn energy of the
identical nuclei can be expressed in terms of the interaction energy of

one of them (4C). We shall use nucleus 1 for cbiaining the interaction
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energy. Consider a coupling scheme in which the spins of the three quadru-

polar nuclei are coupled to obtain a resultant spin T according to

The resultant nuclegr spin will be coupled to the angular momentum of the

molecular fremework according to
T+ 7=

The matrix elements of the quadrupole intergction Hamiltonlan of nucleus

1 are given by equation 1lh:

J+I+F
) W(

(u(vJK'I'F), A'B u(vJKIF)) = (-1 F1°J:2J1) (20)

(vIK'||A||vIK){I"||B||1).

The guantum number v represents the vibrational state of the molecule
(see Chapter III). Our notation indicates that we assume that the quad-
rupole interaction energy 1s diagonal in J. This 18 reascnable because
the quadrupole interacticn energy is small ccompared to the rotational
energy of the molecule.

The reduced matrix element (vJK'|A|vJK) can be related to the
derivatives of the electirostatic potential in the coordinate frame attached
to the melecule. This may be seen by considering the matrix element of

2 .
Ag ) between the molecular wave functions. According te eguation 13 this


http://el.em.ent
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matrix element is

(a(vamx?), al® wvam)) = (-1)7 M

X(J2J;-M M) (vJK |[A|[vIK).  (21)
This same matrix element may be evaluated in a different fashion by the usge
of the spherical harmonic addition theorem. Using equations 18, bc, and 5

we have

Aéz) = -el (I‘ei)-:3 %(30052661 - 1)
i

= =g ; (rei)-a M (-l)m Céa) (¢a;9a) CE;) ($éi’6éi)

where ¢a and Ba are the polar coordinates of the fixed z axis with respech
o the moleculsr reference Fframe and ¢;i and S;i are the polar coordinates
of the ith electron in this same frame. Now the molecular wave function
may be written as a product of a function Ue describing the distribution
of the electrons with respect to the molecular axes and a function u(JMK)

describing the rotational motion of the mclecule as a whole. Thus equa-

tion 21 may be written in the equivalent form
= (2) - =1 , s -5 m
fUm U, dv, = - [ T u(MK’) e >i (rei) i [{-1) (22)

0(2) (@ s 8 ) 0(2)(¢’.

,8°.31 U uw(IMK) dv_ dy sin 6 46 a¢%.
m a a -m el el e a

Consideration of the definition of ¢a and ea as glven above and the defini-
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tion of the angles 7, 6, and ¢ as given on page 8 shows that

Il
@

b = ° -
o 180 %s 6

Hence we may write equation 22 as

[ 88 gy v, - = 16 [aana) " o) asor - 500 w0 (@)
m

m

dy sin 6 4@ d¢]
where
(2) I -3 (2) . .
= - % ¢ .
q U ex(r.)2c ( ei’eei) U, dv,

e . el =
1

The rotational functicns in the integral on the right hand side of equa-
tion 23 are the symmetric top functions in equation 8. The value of the

integral is (41)

KM o1 4 1) x(927;-M70M) X(J2T;-K "-nK).

(-1)

A comparison of equations 21 and 23 ncw gives

(-l)J'M X(J2J ;-M OM) (vJK °|| Al vIK) = (-1)K M (27 + 1) X(J2J;-M"0M)

2 ’,
z qu) X(J2J;-K "-mK).
m

Thus the reduced matrix element (vJK'||Al|vJK) is given by
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J+K°
(

(vIK“||allvIK) = (-1) 27 + 1) & qE;) X(J2d;-K -mK).

m

The summation on m is superflucus since from the properties of the 3-)
symbol. only the term with -K~ - m + K= 0 does not vanish. Replacing -m

by K - K then gives

T (o5 4 1) X(J273-K (K °-K)K) o' . (24)

(vIK’||a|vIK) = (-1) K ‘-K

)

Next we consider the meaning of the quantities qég . Bubstituting
the spherical harmonic functions k4a, Ub, and 4c into equation 17 gives,

for the £ = 2 terms,

(2) N6 i¢”

+ = si ’ cos
1.’ &5 e in 8 cos &

’

L2 [q(e)gggeiz¢ .

R O I A CO R [ICEL

a 3 N 5 € sin 67 cos &°~
(2) N6 -i=z0” }
+ a3 T € sin=8 ’

where ¢ and 6  are measured with respect to the molecular axes. Now the
potential at a nucleus may also be expanded in a Taylor's series about

the nucleus as an origin. The second-order Lerms in this expansion are

x 2% oy Eofv 2% .. OFV
7 - -~ =7
2 dx'° 2 ¥y 2 2 Jz 2 Y dy

+ x'z’ __’__’52\7 + v 2’ —-—r—raev
dx Oz s dy oz "
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By uslng identities such as x = r” sin 87 ces ¢ we may compare the coef-
ficients of similar terms in the two expansicns for the potential. This

leads to the identities

and

z) (=) N6 (2?2 32
qé ) _ (2) _NE v y

T T TR |3 e

A1l other terms are zero for reasons to be mentioned in the next paragraph.
For the particular case of a molecule such as CHCl3 we assume that
the electrostatic potential at a Cl nucleus is symmetric about the C - Cl
bond axis. We also assume that the potential satisfies Laplace’s equation
at the nucleus, that is, that none of the electrons penetrate the region
where the nucleus is located. In the case of nucleus 1 the C - Cl bond
lies in the y 'z plane (see page 9). Let the angle between the bond axis
and the z axis be B (B = 90°). Call the second derivative of the poten-

2
tial with respect to the bond axis %y . Under the above assumptions the

dc®
only non-zero derivatives of the potential in the molecular coordinate

frame are found to be

32V  3cos®p - 1 3%V
dz 2 2 dc=

and

32V 3%V -3sin®p %Y

ox @ Qdy’'® 2 Jc?
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More complicated expressions are obtained in the case of nuclel 2 and 3 but
fortunately these are not needed.

The angle @ between two C - CL bond axes is called the bond angle.
Since this 1s the angle customarily used in speclifying the shape of the
molecule the qég)'s will be expressed in terms of this angle. The geometry

of the molecule yields the relation

3cosR - 1
BN Rl

ccs O =

°

2
It is also customary 1o represent o7V by the symbol g with no super-

dec?

scripts. Adopting this notarion gives firally

and

{cos o - 1).

o) g3 Ye

91z

Referring to equaticn 24k we see that the reduced matrix elements of the

cperator A have the values

(27 + 1) X(JaJ;-Kek) 1288 ¢

)J+K
2 3

(vJK[ Al|vIK) = (-1

Jé

{(vI-1|lAlvIL) = (-l)J'l (2J + 1) X(JaJ;1-21) ql2 (cos & - 1},

and

. J+1
(val||aljva-1) = (-1) (27 + 1) X(J2J;-12-1) q‘g (coe @ - 1),
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The last twc of the above expressions are equal Lo one another by the
symmetry properties of the 3-j symbol. Using explicit formulas for the

3-J symbol we obtain finally

2
(VJKHA”VJK) _ (2J + l) [3K - J(J + l)] g cos , (253.)
J(23+3) (23+2) (23+1) (27) (27-1)
and
(va1l|alva-1) = (27 + 1)J(J + 1) g (cos a -~ 1) (250)

J{27+3)(27+2) (27+1) (27} (27-1)
= (vJ-lHAHle).

These expressions are valid only for nucleus 1 since the derivatives of
the potential in the molecular frame were evaluated only for that case.

In equations 25a and 25b we have considered only the reduced matrix
elements of the operator A between states with the same value of K or
between states of K= 1 with states of K’ = -1. From eguation 24 and the
remarks preceding it we see that there could be matrix elements between

(2)

5/ 1s not zero) or X - K = -2

any two states for which K - X" = 2 (since g

2
ge) is not zerc). We do not need to consider these more general

{since g
cases Since in Chapter III it will be scen that the wave functicns corres-
ponding to a particular value of the rotational energy contain K and -K.
The only values for which K - (-K) = 2 or K - {-K) = -2 occur when |K| = 1.
It is not necessary to consider the matrix elements of the quadrupcle in-

teractlon between states corresponding to different rofational cnergies

because the energy gap between these states is large compared to the quad-
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rupcle inferacticn energy.

The reduced matrix element (I°||B||I) is evaluated by the use of

equation 15 which gives

N

. . . J1+L+I1+2 .
(Jur L, I7B|jy, L, I)= (-1)92 [(21 + 1)(21" + 1)]

W(Jr I L:1312) (J1liBllJs) -

The reduced matrix element (jlﬂBHjl) 1s proportional to the nuclear guad-
rupole moment. The nucleus is presumed to be in rapid rotation about the
spin axis. On the average there will be cylindrical symmetry of the nu-
clear charge about this axis so that not all components of the quadrupole
moment tensor are independent. of one ancother. The term conventicnally

referred to as "the quadrupole moment" (42) iz defined by

eQ= 1T % (328, - r2.) U av
. b/ﬁ n © ; (3255 - ¥pg) Uy @y

when the nucleus is in a shabe having the maximum projection of its angu-

lar momentum along the z axis. From equations Yc and 19 we see that

= 2 - v2 )Yz 2e s (r )2 C(E) ¢ .,6 .)=2B (2)
" (3255 - 7oy) ; (pg) G077 (550 Opy) o

Using eguation 13 gives

(2)

eQ = (u(dzdi)y 2 B u(drda)) = 2 X(322d13-J:002) (Jal[Bl[42)
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or
eq
2X(Jj12J13-J10d1)

(32l 310 =

For j; = 3/2 this result becomes

(3/2l|B)3/2) = V5 =g . (26)

Combining equations 20, 25, and 26 it now appears that we could
compute the matrix elements of the quadrupole interactlon energy of
nucleus 1 in the prescribed coupling scheme. However, the correct state
function for the symmetric top molecule involves linear combinations of
angular momentum eligenvectors with different values ¢f K. Hence the
metrix elements used in the first order perturbaticn theory will contain
more than one term of the type in equation 20. The construction of the
proper state function is the subject of Chapter IIT.

At this point we see that the dependence of the rotaticnal erergy
of a molecule on the electrostatic quadrupole ccupling of the nucleus
will be expressed as a multiple of eQq where eq 1s the quadrupcle moment
of the nucleus and q is the second derivative of the electrostatic po-
tential alcng the bond axis. No attempt will be made to evaluate e@ or g

separately which is a complex and independent problem.
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CHAPTER ITY

THE STATE FUNCTION

In order to calculate the correction 10 the rotational energy of a
molecule due to the nuclear electric quadrupcle interaction by means of
first order perturbation theory we must know the rotaticnal dependence
cf the state function of the system. According to the Paull exclusion
principle the state function must change sign under the exchange of two
identical nuclei with half-integral spins. If the nuclei have integral
spins the state function must remain unchanged. The restriction iImposed
by the Paulil exclusion principle affects the choice of the angular momentum
elgenvectors used 1in constructing the state furnction. Since the permuta-
ticn symmetry of the total angular momentum eilgenvector depends upon the
behavior of the nuclear spin eigenvector, the eigenvector representing the

resultant nuclear spin will be considered first.

The Regultant Nuclear Spin Eigenvector

For mclecules such as CHCl3 which contain identical nuclei at
equivalent positions, the quadrupcle interaction Hamiltonian does not
change when identical nuclei are permuted. If we use, as basis vectors
for this problem, linear combinaticns of the resultant spin eigenvectors
which are also the basis vectors for an irreducible representation of
the group of permutations ¢f three objects, then there will be no matrix

elements cof the Hamiltonian between basis vectors of different represen-

tations (L43}.
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The matrices representing the elements of the group of permutations

of three objects are shown in Table 1 (4&¢). This group has three irredu-

: 1 2
cible representations: totally symmetric, A( )3 antisymmetric, A( ); and

the twe dimensional representation E. Using these matrices we can construct
a projection operator which, when applied to an angular momentum eigenvector
representing the coupled spins of three identical nuclei, glves an eigen-

h row (if there is more than one row) of one

vector that belongs to the kt

of the irreducible representations. In order to construct this operator

we shall review the manner in which a matrix representation is constructed.
Generally one starts from any set of linearly independent functions

Ui and applies to each function all of the operators 0, corresponding to

R

the elements of the group. The resulting function can be expressed as a

linear combinaticn of these same functions,

n
0. U. = X R., U, . (27)

R i 3=1 Ji
The quantities R,i form the elements of a matrix representation of the
operator OR where J numbers the row of the matrix and 1 numbers the
column (45). It may be possible to construct more than one irreducible

representation by using different functions as the basis vectors. 1In

this case the above equation is written as (L6)

v) _ 2 o{v) (v)
Op U7 = ,jfl Ri;" U3 (28)



TABLE 1. The Permutation Group on Three Objects
GROUP ELEMENTS
REPRESENTATION

{0) {123) (132) (23) {31) (12)

all) 1 ] 1 1 1 1

al2) 1 1 1 -1 1 -1
0 1 -\3 a0 Vi -1 1 V3 1 TVv3
7 2 7 2 7 2 7 2

£

Vi3 o /3 0 V3o -3
1 2 7 . 2 7 \ 2 7 \ ¢ 7

ct
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Now multiply equation 28 by R

and sum over all elements of the group:

* >
2 0 o s g o) g ) ()
R kk R 71 ] J R kk Ji

(v)

The coefficients Rj satiefy the following equation (U47):

z RN R £

L 6., B
R kk Ji

Jk Tik Twvw’
W

. ; . . . Tt
where g is the order of the group and n1s the dimension of the w h

representation. Therefore we have

/ ¥
{w) (v) _ g (v)
E Bt g YL T n_ Ug " By Byy e

The operator

W n w}*
Pl(; /- _g,E ; Rl({k % (29)

is called a projection operator (48). Consider any function which can be

expressed in terms of the basis functions

(v)

where the ay are constants. Applying the projection operator to U gives



*
pi¥) y o)z g o Ugv) = o) ) (30)

K =

that 1s, it gives a function which belongs to the kﬁh row of the wth irredu-
cible representaticn.

Recall that the eigenvector representing the resultant nuclear spin I
is to be obtained by coupling the spin of nucleus 2 to nucleus 3 to obtaln
an intermediate momentum L, then coupling the spin of nucleus 1 to L 1o ob-
tain I. Let us sbbreviate the resultant vector by the symbol u(LI). We
seek a projection operator which can be applied to this vector o give &
vector which belongs to the kth rcw of one of the irreducible represents-
tione of the permutation group of three objects. Generally the vector ob-

tained is not of unit norm, hence we write

1

Piw) u(LI) = N2 u(w I)

where u(wkI) is a vector normalized to one. The symbol w represents either

(1) (2) s . .
E, A 7, or A - This equation may be written

1

P07 w(rr) - 9 u(w,D) = 2 (@D, w@n) wen). (31)

The normalizing factor is obtained by realizing that a second application
of the projection operator does not lead to a new result. This may be

(V) o the funcoion ul¥

X N in eguation 30. A second appli-

seen by applying P

(w)

cation of Pk in eguation 31 gives
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P utnI) = 2 (u@ 1), w@ ) (@), e w(n) w1 (32)

Equating the summations on the right hand sides of eguations 31 and 32

and taking the scalar product with u(LI) gives

(u(LI),Péw) u(L1)) = 5% (u(LI),PéW) u(L’I))(u(L’I),Piw) u(LI)).

1
Taking the scalar product of N° u(wkI) with itself in equation 31 gives

- 5 (aen), P wm ) (), P wen).
L

Upon ccmparing these last two results we see that the normalization factor

is

N = (u(LI),P}(iw) W(LI)).

The normalized eigenvectors we seek are therefore given by

(D), 27 w(u1))
u(wkI) = ;{ (WT' T
L [(u(LI)_,Pk u(LI))]12

u(L'I) . (33)

Thus we need to know the matrix elements of the projection operator. From

equation 29 we see that these matrix elements will be given in terms of
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the matrix elements of the operator OR by

n *
(a1, 2 wen)) = 2 2 el

(uw(L1),0_ u(LI)).
R
R
In cur case OR is an operator which permutes the spin coordinates among
the identical nuclei. In order to understand this statement we shall
write the vectors u(LI) in an expanded form. For the sake of clarity
assign nucleus 1 a spin of A, nucleus 2 a spin of B, and nucleus 3 a spin

of C. Write the vector u(LI) as
u(la x (2B x 3C)L, I) . (34)

Now define a permutation operator S(123) which assigns the spin of nucleus
1 to nucleus 2, the spin of nucleus 2 to nucleus 3, and the spin of nu-
cleus 3 to nucleus 1. The effect of the operator S(123) on the vector in

egquation 34 is given by
8(123) u(1a x (2B x 3C)L, I} = u(2A x (3B x 1C)L,I) . (35)

This operator rotates the spin coordinates of the nuclei by 120° counter-
clockwise as seen from the positive z’ exis (see page G) while the nuclei
are considered to remain fixed in space. Later cn we shall have occasion
to deal with operators which permute the spatial cocrdinates of the nuclei,
carrying the spins with them. The combined cperation of rotating the nu-

clei by 120° clockwise and permuting the spins 120° counterclockwise is
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seen t0 leave the configuration of the system unchanged except for permuting
the numbers on the identical nuclei.
Making use of the 6-j symbol as defined by equation 12, we may ex-

pand the right hand side of equation 35 as

)A+B+C+I [ (

u(2a x (3B x 1C)L,I) = £ (-1 oL + 1)(2L 7 + 1)]%

L

W(ABL ":CIL) u((24 x 3B)L " x 1C,I) .

Using eqguation 10 we can rearrange the coupling in the vectors under the

summation sign. We ncw have

§(123) w(lA x (2B x 3¢)L, I) = & (~L)MB*2L [ on 4 yen v 1)]2
>

W(ABL “:CIL) u(lC x (2a x 3B)L', 1) .

However the letters A, B, and C were used only for clarity. In fact all
of the nuclear spins are identical and equal to 3/2 for the nuclei of
interest here. Recalling that vectors obtalned with different values of

L are orthonormal gives, for the matrix elements of the permutation

cperator,

’

L [{(aL + 1){aL" + l)]% W “:2 IL). {36)

rolus

POl
-

roles

(u(L 1), 3(123)u(L1)) = {(-1)

Matrix elements of the cther permutation operatcrs are cbtalined in a

similar fashion. They are given by
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rd

(w(L 1), 8(132)u(r1)) = (-1)FF (u(x 1), s(123)n(L1)),

(u(L 1), 8{23)}u(LI))

i

(-1

’

(w(L 1), s(30)u(1I)) = -(-1)F (u(L 1), 8(123)u(LL)),

(u(® T),5(12)u(xD)) = -(-1)"% (4(L D), s(123)u(LD)),

1
cn

(u(L 1), 8(0)u(LI)) - LT, ?
where S(0) represents the identity {(no permutation). The expression in
equation 36 differs from the corresponding matrix element given by Svid-
zinskii (49) by a factor which, in the notation used here, amounts to

replacing (—l)L by (—l)L

Thus matrix elements of the projection operator are given by

. {w) - EE (W)* 0 \
(u(L70), Py " w(in)) = — 2 Ry, * (u(L 1), 8(R)u(L1)) (37)
R

where R represents (123), (132), etc. We now have all of the information
necessary to calculate the expansion coefficients in equation 32. These
coefficients are called genealogical coefficients (50) and are listed in
Table 2. The notation in equation 33 indicates that these coefficients
depend upon the choice of an initial intermediate momentum L. When the
genealogical coefficients are computed one discovers that only the phases
of the coefficients depend upon the choice of L. For the one dimensional
representations A(l) and A(E) the choice of phases is immaterial. TFor the

two dimensionzl representation E one must choose either both upper signs
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1 2
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or both lower signs for the E; and Ep coefficients under a given value of I.
This dees not affect the cholce of signs under any other value of I.

As a gimple illustration of this last remark consider the effect
of the operator 5(123) on the vectors with L= 2, I = 7/2, and L = 3,

I= 7/2, Using equation 36 to calculate the matrix elements we have

=

5(123) u(2 7/2) = -5 u(2 7/2) - F u(3 7/2)

-
2 u(2 7/2) - 5 w(3 7/2)

s(123) u(3 7/2) =
Now let the basis vector for E; be u(2 7/2) and the basis vector for Es
be -u(3 7/2). Referring to the definition of a matrix representation

given in equation 27 we see that this chcice of basis vectors gives

-l -3
5 >

v3 -1
5 2

for the matrix representation of the cperator 5(123) which correspcnds

to the matrix listed under (123) in Table 1. Choosing -u(2 7/2) and

+u(3 7/2) for the basis vectors for E; and Es leads to the same result.
In the table of geneglogical ccefficients published by Svidzinskii

(51) the phases have been cmitted and the representations E, and E. have

been erronecusly assigned. Using the procedure described in the preced-

ing paragraph it was found that no choice of phases would lead to the
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correct matrix representation for each operator when the matrix elements
were computed using Svidzinskii's equation (2.13). This may be the source
cf the error in Svidzinskii's table.

When the nuclear spin vectors in equaticn 33 are used, equation 20
becomes

J+I+F

(u(vJIK w, IF), AB u(vJKwkIF)) = (-1) W{FI J:2J1)}

k

(vJK”’

AllvaK) (w, I Bllw, I) .

We shall abbreviate the genealogical coefficients by G(WR,L',I). Then

the reduced matrix element for B may be written

(w, L7)|B]|w, 1) = . i” G{w, LI WL T’

2

BHL”I)G(WR,L”,I) .

The reduced matrix element (L 'I'||B||L"'I) is evaluated by the use of equa-

tion 15. Since B refers only tc nueleus 1 this element vanishes unless

P

L = 1L . We then have for the inferaction energy of nucleus 1

J+I +F

(u(vJKw, I'F), A-B u(vJKw IF)) = (-1) W(FIL J:2J1) (38)

(vak‘||AllvIK) [(2I + 1)(e1” + 1)]% CallBilay z‘[G(wk,Lﬁ,I’)
L

(-0 Tyt niTge) alw L1 1) .

k}

Since the nuclel are identical and are located in equivalent posi-
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tions in the molecule, the matrix elements of the total electric guadrupcle
interaction energy are obtained by multiplying egquation 38 by three (52).
When this 1s done we collect those terms which involve only nuclear spin

quantum numvers and define a nuclear reduction coefficient by

, s ,
w151y = 3 (-1)7 T (er + 1)(e1” + 1)1 = [(-)" (39)
L
G(w,, L'T") W(IT 'L :132) 6{w,,L1)) .

Note that the reduction coefficient is symmetric in I and I~ by the symmetry
properties of the 6-j symbol. These coefficients will depend upon +he
choice of phases in the genealcgical coefficients. If one useg all of the
upper signe or gll of the lower signs in Table 2 cne obtains the reduction
coefficlents chown in Table 3. The reverse choice of signs under some
value of I in the table of genealogical coefficlents changes the sign cof
the reduction coefficient wherever that value of I appears. When the guad-
rupole interaction matrix is computed this would change the sign of all
matrix elements in a row and column corresponding Lo that value of I (ex-
cept for the diagonal element) and hence would make no change in the
eigenvalues of the matrix. Thus the relative phase of the genealogical
coefficients must be observed but the choice of an absclute phase is unim-
portant.

The reducticn coefficients in Table 3 differ by a sign at several
points from those published by Svidzinskii {53). The coefficients for the
B, and Ep; representations are reversed. The exact expressions given here

give rise to a simplification in the matrix elements which iz not possible
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Takle 2. The Reduction Ccefficients
C(A(U-’ .723_’ 7251) B % C(Ey, %: %) = 3\2?—1
ca™, 3 2 - %‘g C(E:, 3 L) = 3?);]?
o), 3 3= =2 (s, 4 D= 292
™, 3 37 oteer 3 2= 35
oa, § §) - =52 (e 3 3) = 2
e, 3 -2 e 3 ) - Jli?
ClEy, ;QL" %) = %? C(Ez, %: -Z‘) = -5—9
on 3D - F otoe, 3 B - &5
L (B 3 2) - -125(7'
oy 3 B) - 3%5 OB 5 £) = “F




hly

when Svidzingkii's decimal fractions are used.

The Total Angular Momentum Figenvector

The total angular momentum eigenvector is constructed by coupling
the angular momentum J of the molecular framework toc the vector represent-
ing the resultant nuclear spin I which was obtained in the previous section.
We know in detail how the nueclear spin functior behaves when the spin cc-
crdinates are permuted. In order that the total angular momentum eigen-
vector have the preper symmetry we must know what operaticns on the function
u(JMK) of equation 8 correspond to interchanging the spatial coordinabes of
the nuclei.

First consider the operation which intexchanges the posgitions of
nuclei 2 and 2 (see page 8). This interchange can be accomplished by wctat-
ing the molecule about the v axis (whick passes through nucleus 1) by 180°
and then reflecting all of the nuclei in the x 'y  plane. However, we must.
describe this process in terms of rotations carried out in the space fixed
frame gince none of the angles ¢, 8, or y which appear in equation 8 describe
a rotation about the molecular y° axis. In terme of rotations about space
fixed axes the rotations:

(1) rotate about the z axis by 180° - y,

(2) rotate about the y axis by 180° - 6,

(3) rotate about the z axis by 180° + ¢ ,
produce an orientation of the molecule which differs from the orientaticn
descrived by the rotations (17), {27), and (37) in Chapter II by an amount
correspording to a rotation by 180° about the vy  axis. The effect of re-

flection in the x 'y’ plane oun the rotational function can be taken into



account by realizing that reflection 1s equivalent to an inversion of
coordinates about the origin followed by a rotation by 180° about the z°
axis. This rotation mus% be expressed in step (1) above. With these
comments in mind we ncw have, for the operatlon which interchanges nuclel
2 and 3:

(17) rotate about the z axis by 3607 - 7,

(2°) rotate about the y axis by 180° - 8,

(37) rotate about the z axis by 180° + 9,

(k") invert +the coordinates about the origin.
Actually the process of inversicn could be performed at any point since
rotations and inversions commute. The process of interchanging the spatial
coordinates of nuclei 2 and 3 will be represented by an operator R(23) and
itg effect on the symmetric top angular momentum eigenvectors is given by

eiM(lBO°+¢) (J) (180° - 8) eiK(36o°-7)

s

r(23) Dt (o, 8, y) =

o ()M IM )M d&{% (6) o K7

= (‘1)J D(JI){ (¢: 8, 7)

where we have used equation 7.

The complete state function of the molecule also contains a term
which describes the vibraticnal motion of the molecule and this vibrational
function is affected by the inversion operation. In order to understand
the meaning of this vibrational term consider fivst a planar symmetric top

csuch as BF.. The borcn atom can execute vibranicns perpendicular to the

3



L6

plane of the three fluorine atoms which would be along the directicn of
the z” axis as we have defined it. The functions describing this motion
are characterized by a vibraticnal quantum number v. The lowest vibra-
tional energy corresponds to v = 0 with higher integrzl values of v = 1,
g, ... corresponding o successively higher energy levels. The potential
energy for this vibraticonal metion is approximately parsbolic with the
minimum occurring at z = C. If this potential is distorted bty adding a
"hill" about z = C then the vibrational function still has the same sym-
metry with respect to Ilnvewrsion about the origin as in the undistorted
cage, but as the height of the hill is increased the energy levels apprcach
each other in pairs. The best illustration cf this effect is found in NH3
for which the energy difference between two vibrational modes corresponds
t¢ a Trequency lying in the microwave region. In a molecule such as \,HCII_3
the hill 1s sc high trar the two lowest wibrational levels have the same
energy even though they are described by different functicns. This degen-
eracy must glso be taken into account when obuaining the guadrupcle hyper-
fine levels., The effect of the inversion of ccordinates on the vibrational
function is to multiply this funcition by (-l}V where v 1s O or 1 for the
ground state which is the only state that will be considered here (5i).
Thus when the spatial cocordinates of nuclel 2 and 3 are exchanged
the effect of this exchange on the rotational - vibrational state of the
molecule iz given by

R(22) u(vIMK) = (-1)"7Y u(vaM-K) .

-7

Nuclei 1 and 3 cr 1 and 2 may be exchanged by the same process as described
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sbove with an additional rotation of 120° or 240° added to step {1°). This
additional rotation multiplies the state function by eiK 120° or eiK 2ho®
regpectively.

We can now congtruct a state function which exhibits the proper be-
havior when the spatial and spin coordinates of ruclei 2 and 3 are exchanged.
Nuclear spin functions of species A(l) remaln unchanged when the sping of

nuclei 2 and 3 are exchanged. Hence a normalized fumction which exhibits

the proper behavior is

JEVH2 ]

u(EJKA(lJIF)‘: i} lu(vJKA(l)IF) + {-1) u(vJ-KA(l)IF)]

o

The factor (—1)23 where j 15 the nuclear epin makes this function change
sign when nuclel 2 and 3 are exchanged 1f j ig half-integral and remain
unchanged if J is integral.

)

{2
The nuclear spin functions of speciss A' change sign when the
spins of nuclei 2 and 3 are exchanged. A wave function having the proper

symmetry in this case is given by

=

el ) .

2 . 2
u(EJKA( )IF) = = |u(vJKA( )IF) - (-1)
J2
The case of nuclear spin functions ¢f speecies B is only slightly
more difficuli. Observe frcm Table 1 that functions belonging to the
gecend row of B remain unchanged under the operation of permuting the

1)
csping of ruclei 2 and 3 (i.e. they behave like A' ‘ functions in this



48

case) while functions belonging to the first row change sign (behave like

A(g) functions). Then it will be seen that the proper wave function in this

case is of the form

[u(vIKERTF) + (-1)°FV+2d

M| =

u(vJI-KEoIF)] +

u(EJKEIF) =

J+vr2]

[u{vJKB,I¥) - {-1) u(vJ-KE, IF)] .

ol

Now let us consider whether or not these functions behave properly
when any other two nuclei are exchanged, say 1 and 3. This 1s best done
by considering the Iintegral or half-integral spin cases separately although
the outcome is the same. For the A(l) cage let us assume that j is half-
integral and try a functicn of the same form as before but with the addi-

tion of unknown phase factors X and Y as follows:

u(EJKA(l)IF) - Loy u(VJKA(l)IF) f (-1 g u(vJ—KA(l)IF)] .

Sl

Applying S(13) and R(13) gives

K120 I g vaeka ey ¢ v uvaa™ e

L
7z

Requirirg that this funetion be minus the origiral function leads to the

equaticns:
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R0 v i yo o,

elK 120 Y- 0.

X+
These egquations have non-trivial solutions for the phase factors X and
Y if and only 1f the determinant of the coefficients ig zerc. This leads

0 the condition

iK 2h0°

Thus 1t is seen tha= wave funchions exhibiting <he proper symmetry are
poesible only if K is zero or a multiple of three. When this is the case

we have

For the case of integral gpins we require that the result of applying the

operators 5(13) and R(13) be egual to the criginasl function. This leads

to the result

with the same restrictiors orn K as before. Letiting X= 1 we obtain the
same phage factors ag are already given by the factor (—l)zJ. Identical

results are cobtained in the case of nuclear spin eigenvectors of species

at®),
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The nuclear spin states of specles E present g more complicated
problem which can nevertheless be solved by the same approach. We shall
try a function of the form used before. Assume that j is half-integral,
and uge an abbreviated notation for the rotaticnal-vibrational eigenvectors:

X [ulkEy) - (-1)7Y w(-kma)] +

M} =

u(EJKEIF) =

v lu(kE) + (-1 ul-Kkmy )i .

rof

Applying S{13) and R({13) gives

¥ oK 120° (—l)J+v DCE u{-KE;) - % u(~KBz )]

ol

- 2 Q

- —;* X elK 120 IIN/T—B U(KE_‘L) - lé U.(KEE,I,I

+ iEL- y K 120 (-.1.)JJrv !_% u{ -KBE, ) + “/; u(-KE.) |
i 20° 1 B

+ % y % 120 (5 u(KB) + = u(KEz)) .

Requiring that this funciion be equal to minus the original function gives
the equations:
1K 120 J3 ik 120°

+ 1 X+—2"

rol
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-J3 1K 120°
2= X+ \3

The requirement that the determinant of the coefficients vanish leads to

the equation

. o ) ~0o
elK 240 +61K 120 f 10

which 18 satisfied for any Integral value of K nct equal to zero or a

multiple of three. The solution for the phase factors is

Letwing X = 1 gives Y= 1. An identical resulu is cobtained for the case

of integral j.
Summarizing, we see that for K egqual %o zero or a multiple of three

the state functions are

u(EJKA(l’g)I_F) - j-; [u(vJKA(J’E)IF) £ (-1)dFvHEd u(vJ—KA(l’2)IF)] . (40)
>

where the upper sign is chosen for A(l) and the lower for A(E). For K

not zero or g multiple of three the state funciions are

[u(vJKELIF) + (-1)J+V+2‘j u(vJI-KE-IF )] (41)

ol

u(EJKEIF} =

+

i 5 Lu(vakm, 1F) - (-1, g(voke, IF))
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We have seen in Chapter II that the reduced matrix elements of the
cperator A link either states with the same value of K or states of K= 1
with states of K= -1. Therefore when K is gzero or a multiple of three

the matrix elements of the quadrupcle interaction are

(u(EJKA(l’E)I’F), A'B u(EJKA(l’E)IF)) = (LI y(rrora) (22)

23 ,
’ ’JI)I)J

(v A v (5B 3) c(at?

since (vJ-K||Al|lvI-K) = (vJK|A|vJK) from the symmetry properties of the 3-j
symbol. 'There will be matrix elements of this type for both v = O and
v=1l. When K is a multiple of three the matrix elements are the same in
both cases. When K is zero equation 42 must be used with caution since
u(JMK) = u(JM-K) in this case and some of the wave functions in equation
40 vanish for particular values of J and v. 1In fact, if j is half-
integral the wave functions containing nuclear spin functions of species
A(l) vanish whenever J + v 1= even and wav¢ functions containing nuclear
spiln functions of specles A(E) vanish whenever J + v is odd.

When K is nct a multiple of three the matrix elements cf the quad-

rupole interaction are

(u(EFLF), A*B u(E3IF)) - (-1)7 N uirrgi201)

1 JHV+2 ]

7 L(vJIK (vJK(|A

vI-K)(E2L”

|AlvIK) (B2 7||B[|B2T) + (-1) B|E21)

Jivi2] ( B||B2I) + (vJ-K||A|vI-K}{(E=1"||

B||E2I)

+ (-1) wJ-X||A||vIK ) (BT
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+ (vaK]|8llvaK) (By T Bl E.T) - (-1)T7*2 (voka|va-k) (BT B B2 T)

- (-1)TF) (k)| AlvaK) (BT B ELT) + (vd-K|AllAvIK) (B T |B|E.I)].

The matrix elements linking K and ~K are non-zerc only when |K| = 1. We

have also seen that (vJ-1||Al|vJl) = (vJi||AlvJ-1). Using the appropriate

reduction coefficient 4o evaluate the reduced matrix elements of B we have

(W(E BT F), A'B u(E  ETF)) - (-1)7 Y werr g i201) ()17( ) (43)

Lo+, T7, T)(vaK|Alvak) + (-1)77V3 ¢(o, 17, 1) (va-K|a|lvaK] ,

where

pol =

c(+,I°,1) FC{EzI7,TI) + C(E,, I, T)] (biz)
and

c(-,1,1) [¢(Es, I,I) - C(E4,TI,1I)] . (44)

ol -

Since the last reduced matrix element in equatiocn 43 is non-zero only when
|K| = 1, the appearance of the factor (-l)V gives different matrix elements
for v= 0 and v= 1 in this case.

The process of classifying the nueclear spin functions according to
their permutation symmetry allcows a congiderable simplification of the
gquadrupcle interaction masrix elements by permitting only certain values
cf I to occur for a given K. Bersohn (4) realized that this would be the
case but he did not evaluate the reduced matrix elements {vJK'||A||vJK) in

terms of the derivatives of the potential as we have done and therefore
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seems not to have considered the possibility of these matrix elements link-
ing states of K= 1 with states of K= -1. Neither did he consider the
overall permutation symmetry of the system as Svidzinskii has done. There-
fore he computned separate expresgsions for the luteraction energy of each
nucleus instead of multiplying the interaction energy of one nucleus by
three. For every case except |K| = 1 Bersohn's expressions for the guad-
rupole interaction energy reduce to the cnes given here. The term
(vI-1||AljvIl) missirg from his matrix elements is the source of the errors
made by Wolfe (12) and Long (14%) in computing the hyperfine pattern and

assigning the lines.

Relative Intensities of the Hyperfine Lines

The relatlive intensity of a reotational transition in a molecule 1s
propertional to the sguare ¢f the matrix element of the dipole moment
operator between the initial and final states (55). When the matrices of
the quadrupcle interaction are diagonalized the state functicon corresponding

to a hyperfine level is given by

Y =
u(EJKT, ? Bry u(EJKwIFMF)

where the guantities B, are the matrix elements of the diagonalizing trans-

TI
formation. The index T is used to distinguish states corresponding to dif-
ferent eigenvalues. The vectors u(EIKWI ) are those given in equations
4O and 41. The quantum number MF was omitted there since the quadrupole

interaction is independent of the orientation of the molecule. The total

intensity of & line is obtained by summing over all possible values of MF,
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thus,
v- = Lk, ol uela” (45)
i f '
Mp Mp
S . S N S
= iz [; Brr Bpp u(E wIF MF), al? EJKWIF MF))]

(1)

where 1 and T refer to initial and final sta*es. The operator dm is a

component of the dipcle moment coperator in a space fixed coordinate frame.

For polarized electric fields such as are used in microwave spectroscopy

we choose the z axis to be the direction of polarization. Then we need
()

only evaluate the component dg *. The first sftep in evaluating equaticn

45 is te use equation 13 to obtain

E i IF MF) dO u(EJKwIF MF (-1)Jj M x(FiIFf;-M;omi)

T £
(EJKWIF HdHEJKwIF ).

Now according to the orthegeonality properties of the 3-j symbels given in

equation 11 we have

5 X(F 1t oM-)2 = £ X FfFil;- iz = 4
i ) = i f ( P 3
Mp My My My

where we have used the symmetry properties of the 3-j symbol. The relative

intensity now becomes
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i i it 12
[i By Bpop (BEpmIF |dE wIF)]Z .

Since we are computing the relative intensities the constant factor of
1/3 will be omitted hereafter.
The reduced matrix element ¢f the dipole moment operator is evalu-

ated by the use of equation 15 which gives

: : i f “ 1
LI B ET) = (-1)7 T et v 1) (ert + 1))

(EJK

W FTE ot ) (v gy R T

This last reduced matrix element is evaluated by a procedure identical 1o
that used in Chapter II fo evaluate (vJK'||A|vJK). Instead of equation 2k

we Obtain in this case

(AT < (0T [art + 1) e« 1)1 (46)

x(at1s’ -k ek qél)

(+)

where a represents a compeonent of the dipole moment in the molecular

reference frame. For a symmetric top molecule such as CHCL, this dipole

3

moment lies exclusively along the z” axis. Hence the only non-vanishing

(1)

component is gg”‘ and this component will be designated by the symbol d.

Setting m = ¢ in eguation 46 makes this expression vanish unless Kl = Kf
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which is a well known selection rule. 1In this case the 3-j symbol also
vanishes unless Jf = Ji, Jf = Ji -1, or Jf = Ji + 1. We shall be interested
only in the absorption process Jf = Ji + 1. When these resultis are used tc
compute the matrix elements of the dipole moment operator between the state
functions given in equations 40 and 41 it is found +hat these matrix ele-
ments vanish unless v differs by one in the initial and final states.

b

Letting gt = J, J = J+ 1, and substituting an explicit formulsa

for the 3-J symbol in equation 46 we have

L e J 1)2 - g2
(viIK|dllv: J+1K)2 = (k 3?J 2 1) =

e relative intensities are n i
The relat tens s ar oW ven b

(T + 1)2 - K°

- 2 (ot Tz ) L7
N SRS a2 (2F + 1)(2F + 1) [I Boy Bpoq (47)
Ti+I+Ff+l i i .z
(«1) T WIFIFJL)®
Ji+I+Ff+l
The factor {-1) does not appear in a gimilar expression derived

by Wolfe (56). This has an appreciable effect on the computed intensities
of the hyperfine lines arising from levels associated with more than one
value of I.

For the casze J = 3, rK‘ = 2 the reduced matrix element (vJK||Al|vJK)

vanishes so that all of the quadrupcle hyperfine levels are degenerate.
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The intensitvies of the lineg involving these levels were computed by using
BTI = 1 for each value of I, calculating the intensities corresponding to
different values c¢f I separately, and adding all ¢f the inftensitles corres-
ponding to the same frequency.

On the basis of the calculation leading :ic equation 47 one would
expect that the mest intemnse lines in a given hyperfine transition would
be those assoclated with the smallest values cf K. This conclusion is
false for the following reasons: (1) Ir the conventional Stark modulated
spectrometer lineg corresponding tc K= 0 may nct be observed under normal
cperating conditions since these levels have a weak Stark effect. (2) For
the non-zero values of K the quantum numbers v = 0 and v = 1 give rise ic
exactly the same matrix elemente in every case except !KI = 1. The ex-
presgion for the intensizies must be multiplied by 2 %o account for <he
degeneracy in v in these cases. Thus the most intense line in a rotatiomal
tranciticn will be associated with iKi = 2 (except of course for the J = 0
-1 and 1 52 transivions). Since Wolfe was not aware thal the degeneracy
in v was removed in the |K| = 1 case the intensities he assigned to these
levele are too strong by a factor of 2. Long used Wolfe's formula for
the velative intensities and therefore he assumed thai the strongest
lines he observed in each transition were |K| = 1 lines. This assigmment,
coupled with errconeous values for the guadrupole coupling constants, 1s

the source of the apparent arcmaly in the cenirifugal distortion coeffi-

cients.
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CHAPTER IV

QUADRUPOLE HYPERFINE STRUCTURE IN CFCl3 AND CHCl3

When the matwrix elements of equation 43 are computed and the
elgenvalues obtained, they yield one hundred ninety-four hyperfine lines
for the J= 1 2, jK] = 1 %transition. For a guadrupole coupling con-
cstant of -80 Mc/sec the separation between some lines is less than 0.1
Mc/sec° For higher J trangitions the number of hyperfine lines increases
while the separation tetween scme of the strongest lines decreases. In
spite of the improvemernts made by Long (14) the spectrometer used to
investigate these lines does not have the sensitivity and resolution
necegeary to detect all of the lines. The effect of pressure broadening
makes 1%t unlikely that complete resolution can ever be cbtained with the
conventional microwave spectrometer. The effect of poor resolution is
to cause g shift in the apparent absorption freguency of a line due %o
the presence of one or mere nearby lines. This effect can be minimized
oy working at low pressures, but then the relative absorption becomes so
weak that only the strongest lines can be detected. Maximum effort was
devoted o measuring the fregquency of the strongest lines in several
trancitions at low pressure rather than to measuring numerous lines in
g gingle transiticn at high pressure, since 1t was found that pressure
proadening effects made a detailed comparison of observed and computed

lines impossible.
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The Calculated Spectra

Examination of equation 43 and the reduction coefficients in Table 3
shows that when F= J + 7/2, iK] = 1, we have but two matrix elements, one
for v = O and *the other fer v = 1. B8ince these levels are associated with
the largest posgsible values of F they give rise to the strongest |K| = 1
lines. When F= J + 5/2 we have a two by two matrix for each of the cases
v= 0and v= 1. One of the eigenvalues of each matrix is identical *to
the single matrix element for F= J + 7/2, which increases the intensity
cf the lines arising from these levels. The next most intense [KI = 1
lines arise from transiticns between the second eigenvalue of one of these
matrices and the second eigenvalue of the corresponding matrix for the ro-
tational state J + 1 for which F= (J + 1) + 5/2. For other values of K
which are not zero or multiples of three there is a similar result. The
matrix obtained for F= J + 7/2 is one by one. The matrix cbtained for
F=J+ 5/2 is two by two and one of the eigenvalues is identical to the
J o+ 7/2 eigenvalue. There does not seem to be any obvious symmetry rela-
tion of the #-j symbols which would lead one o expect this result but it
was observed to cccur for values of J from 1 through 5 and probably occurs
in all cases.

In the case |K| = 1 the coefficients C(+,I°,I) and C{-,1°, 1) defined
in equaticns 44a and 4Lb are such that C(~,I17°,I) = -2C(+,I1°,I) when I = I°
= 7/2, I=-1"-= 5/2, and 1 = 7/2, 1°= 5/2. This makes the dependence on
cos & the same for all of these matrix elemenzs. The angular dependence
can be factored out and the eigenvalues and eigenvectors obtained for an

arbitrary value of cos ¢. These values of I give rise to the strongest

hyperfine lines. Exact ex¥pressions for the frequency and relative intensiuy
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of the strongest lines in the J= 1 =2, J= 2 =3, and J = 3 - I transitions
are chown in Tsble 4. The freguency of the three most intense lines in the
J= 4 95 spectrum are zlso shown, but the relative in%tensities were not
computed since the 6-3 symbols of Rotenberg eu al. (35) do not extend beyond
entries greater than 8, and the F values involved in these cases ave l?/2=
All matrix elements for |K! = land 2, J= 1, 2, and 3 are given in the
Appendix. The complete hyperfine structure pattern for the J= 1 =2 and

2 = 3 transitions may e found by substitubting the proper bond angle into
these matrices and diagonsalizing. There seems to be little point in com-
puting the detailed spectrum for higher J values since there are so many
hyperfine lines that adequate resclution appears hopeless af present. It

1s posgsible to obtain an expression for the sirongest (|K| = 2) hyperfine
ccmpenent in g glver twancsition. This ccmpenent corresponds to a frequency

chift of

3 (1% + 19J + 30) eQq cos (48)
J o+ 2){27 + 3)(27 + )(2a7 + 5)

Pot i

(

for a transition from J o J + 1. This formula must be applied with some
caution since the actual pezsk in an absorption may not correspond to *this
frequency shift for reacops to be discussed below.

Townes and Schawlow (57) have discussed the shapes and widths of

Q‘j

spectral lines. Their resulis may be summarized by saying that over
sufficiently narrow frequency range the shape of most lines observed in

microwave spectroscopy can be represented by the formula
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Table 4. Splittings and Relative Intensities of the Strongest Hyperfine

Lines
Transition Splitting Relative Intensity
‘if_‘é:i’ k| = 1 %(6-23@5@) '15':L
" g%% (6 + U7 cos a) %
" %%% (32 - 41 cos «) %
gzi:g, k| =1 %%(6+1l cos «) '152
,, 5 (5 e - 4
" %%% (32 - 23 cos a) f%
_\{Zg:%, k| = 1 ;%%(u+5cosa) %(?
" E%% (% cos a - 1) E%
-‘;jf:c; k| =1 g_gg(u_li%cosd) %
) eaq 6l

=L (2 cos O + ].)
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Table 4, Splittings and Relative Intensities of the Strongest Hyperfine
Lines {Contirnued)

Transition Splitting Relative Intensity
J=2=3 IK| - :‘%%—qcoscx -lg&
J=2=3 [kl = %6 eQq cos & %9
vy - S5 (20 - 59 = ) 2

" g%%ﬁ (20 + 7 cos o) l’%—i—g
:\{ i : g" x| = —‘%%%6 (20 + 19 cos ) %i

) %2%6 (47 zce @ - 20) %2—%
J= 3=k |K|: —2%065@ l—;i?l

" 7 f{% cos & %
J= 3k [K = -31%003& %

" -31 E% cor L%
‘\‘:: g : i’ ‘K' - grQrgO (23 cos o - 30)
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Table 4. Splittings and Relative Intensities of the Strongest Hyperfine

Lines {Concluded)

Relative Intensity

Transition Splitting
J=b=5 |K =1 edg
o 10 =20 (30 - 83 cos &)
J=4 =5, K] =2 -61 eQq

~5Bg0 . °°8 ¢
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N ie the intensity at the frequency f of a line whose unperturbed frequency

is £, D is a constant which contains the sguare of the dipole moment ma-
trix element, and k is a constant related to the mean time between ccllisions
of the molecules. The pressure of the gas is given by p.

A bond angle of 111° and a quadrupole ccupling constant of -80 Mc/sec

(approximately the values for CFCL, or CHCL were substituted into the ma-

3 3)

trix elements listed in rthe Appendix and the elgenvalues and intensities
were obtained with the aid of a computer. These lntensities were substi-
tuted for D in eguation 49 and the total intencity was computed for a
presgure of 25 microns an invervals of 0.2 Mc/sec. The value 12.3 was
choser for k since this gave a line width at half maximum of abkout 0.5
Mc/se: for the strongest linec in the J= 1 =2 spectrum, and this is approxi-
mately the width cbserved. The line spectra and computed pressure brcadened
spectra are shown in Figures 1 and 2 for a frequercy range of 20 Mc/sec,

Examinaticon of these figures suggests thatb even though there are
several lines near the strorngest lines In the J = 1 o 2 spectrum, these
two lines are so much sironger than any of thelr neighbors that the peak
in the gbsorption cught to occur at the actual freguency of these lines,
Fach of the pair of second strongest lines (whose separation is equal to
the separation of the strongest pair of lines) has a very weak neighbor
which does not shift +the abscrption peak very much. Scme other lines are
relatively isolated but may not be strong enough Lo be observed. Other
stronger peaks can not be precisely identified with any single line. For
example the large peak near -7 Mc/sec is actually due to three separsbe
lines.

In the J= 2 - 3 spectrum one of the strongest |K| = 1 lines and
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Figure 1. J =1+ 2, K = 1 Theoretical Hyperfine Spectrum.
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Figure 2. J =2 + 3, K = 1 and 2 Theoretical Hyperfine Spectrum.
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the strongest |K| = 2 line nearly overlep (-2.06 Mc/sec and -2.05 Mc/sec
respectively). On the basis of a relative intensity calculation alone
this should give a line nearly three %times as strong as the next strongest
line. When broadening is taken into account we see that three other
moderately strong lines combine to give a peak nearly as intense. At higher
pressures the breoadening is sufficient to make the peak intensity due to
the three moderate lines greater than the intensity due to the two strong
lines near -2 Mc/sec, A% low pressures the peak at approximately 0.5
Mc/sec might coincide with the line there, and there appears to be some
hope c¢f detecting the line near -0.2% Mc/secu The third most prominent
feature is composed of two lines near +2.5 Mc/sec. The lines near -9,

+5, and +8 Mc/sec are relatively Isclated but are perhaps too weak to be

measured accurately.

The Observed Spectra

The spectrometer used to obtain the spectra of CFCl3 and CHCl3 was
the one described in detail by Long (lh). The phase sensitive detector
used in this type of specirometer causes the deflectlon due to a Stark
component of an absorpticn line to be in the opposite direction from the
deflection due to the absorption line itself. Thus when a Stark component
of cne line ccincides with the absorption frequency cf another both will
be lost. With so many hyperfine lines present the Stark pattern 1s ex-
pected to be complicated. Considerable variation in the recorded spectra
was observed when the Stark field was varied. Mosn measurements were made
at Stark fields of 200 volts/cm or less since this is sufficient to remcve

most Suark components from the center of the pattern without producing
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appreciable second order Stark effects (58). The highest frequency lline
in the pair of second most intense IK! = 1 lines in the J = 1 -2 transi-
ticn was not observed unless the Stark field was less than 40 volts/cm.
When centrifugal distortion effects are included the frequency of a
rotational tvransition from J to J + 1 is given in terms of the centrifugal

distortion coefficients D and D, as (59)

f=2(J+1)B-D_K°)-LWp (g+21)%3+r , (50)
gkt J q

where fq is the freguency shift produced by the quadrupole interaction.
The splitting between any twe lines having the same value of K in the

same transition will be independent of centrifugal distortion effects and
may be used o determine The quadrupcle coupling constant. The spiitting
between the two mcst intense iKl = 1 lines in the J = 1 = 2 fransition was
used Tor this purpose. From Table 4 it may be seen that the splitting

between these two lines 1t given by

_ - 3899 4 _
quf 7 (1 - cos a). (51)

The measured spectra are shown In Figures 3 through 10. The errors
assigned %o the measured frequencies are probable errors obtained by di-
viding the mean deviation by the square root of the number of independent
measurements {60}, Because of the long time constants associated with tShe
detection circult the peak in an abscrption does not occur in the same

pogiticn when the klystron is swept upward in frequency as it does when the



klystron is swept downward. Egqual numbers of runs were made sweeping in
both directions, and one upward and dowvnward run together were counted as
a single independent measurement in determing the probable error. Since
the splitting between the two most intense lines in the J = 1 =2 spectrum
is independent of the sweep direction each run was counted as an Iindepen-
dent measurement in determing the probable error 1In this number.

The J = 1 =2 transition in C¥Cl, is shown in Figure 3. Note the

3
generzl qualitative agreement between Figure 3 and the predicted spectrum
in Figure 1. ©Some cf the deflectlons in Figure 3 are caused by noise
rather than by absorphticn lines. The presence of noise glso causes a
random variation in the peak of a true absorption. The frequencies shown
in Figure 3 and the other Tigures represent averages of a large number of
runs cver the absorpiicn lires. It is nct possible to make s reliable
comparison of the r=sults of a single run with the predicted spectrum.

The separation betiween the two strong lines labelled A and B in
Figure 3 was found 1o be L.65 = .02 Mc/sec° The 1 - € ~ Cl bond angle
ir this molecule is 111 2z .3% (23), and therefore cos & is -0.358 + .005,
Using equation 51 and combining the maximum prohable errors in qu and
cos 0 gives -79.9 = .6 Me/sec for the guadrupole coupling constant. The
probable error of t .6 Mc/sec is somewhat conservative. There 1s g pro-
cedure for computing the probable error which allows for the possibility
that independent errors may cancel one another {61) but the improvement
over the range given here is slight.

From Table 4 we see thal one of the strongest EKJ = 1 lines

corresponds to a frequency shift of
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il

9859.26 & .03 Mc/sec
9863.91 + .03 Mc/sec
9865.01 + .09 Mc/sec
9866.47 £+ .05 Mc/sec
9869.82 + .09 Mc/sec
9871.12 + .05 Mc/sec

Figure 3. J = 1 » 2 Transition in CFCl3 at -T8 °C, 50u Hg, 20v/em.

.
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fq: %g% {6 - 23 cos ) . (52)

Using the probable errcr in eQg and cos & giveg a frequency shift of
-4.06 + .06 Mc/sec. The probable error in this number is too large gince
the error in cos & has been weighted too heavily. A better estimate of
the error is obtained by substituting eguaticn 51 into equation 52 1o

cbtain

(6 - 23 cos )
fq'— h qu 120 {1 - cos )

(53)

Using the maximum and minimum possible values for qu and cos @ gives
-4,06 = .03 Mc/sec. This is the predicted splitting of the line lgbelled A
in Figure 3. Therefore ir the absence of guadrupole splitting we would

observe the J = 1 = 2 absorption in CFCl. at 9863.32 + .06 Mc/sec.

3

The pair of second strongest lines in the J = 1 =2 transition

corresponds tc freguency shifts of

fq-= %%% (6 + L7 cos @) (5h)
and
£, = Zg%% (6 - 59 cos a) . (55)

These correspond to freguencies of 3.C9 £ .07 Mc/sec and T.74 £ .09 Mc/sec
respectively. Therefore we would expect lines at 9866.41 + .13 Mc/sec and

9871.06 + .15 Mc/sec and these correspond to the lines labellied D and F
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Figure 3. The lines labelled C and E correspond to two lines having a
relative intensity of about 0.6 arising from an F = 5/2 ~$7/2 trangition
for which an exact expression cannot be given. For a bond angle of 111°
the computer gave -0.0833 eQq and -0.0222 eQq for the frequency shift of
these lines. These would ccrrespond to frequency shifts of 6.66 + .05 Mc/sec
and 1.77 + .02 Mc/sec, or frequencies of 9865.09 + .08 Mc/sec and 9870.0 = .1
Mc/sec which overlap the observed frequencies.

Faverc and Mirri (19) obtained 0.46 ke/sec for D, which gives s fre-
quency shift of -0.01 Mc/eec for the J= 1 =2 transition. DJK was not
given by Favero and Mirri but theoretically it is about -.5 ke/sec (62).
Using an observed frequency of 9859.26 + .03 Mc/sec, a freqguency shift of

-4.06 £ .03 Mc/sec due to the guadrupole interaction, and a frequency shifi

ct -0.01 Mc/sec due to centrifugal distortion, egquation 50 gives

B - Dy = 2465.825 + ,015 Mc/sec

for the J = 1 =2, ’K| = 1 transiticn. Due to the assumed smallness of
DJK this value must be nearly equal to the rotational constant. Using
this value for B we could now calculate the freduencies of the higher J
lines in the spectrum. Since the probable error would be multiplied by
2(J + 1) this calculation does not afford a very meaningful check on the
consistency of the thecry., Instead we shall compute the value of B separ-
ately from each trancition and compare the results.

In the J = 2 = 3 transition we have Seen that the strongest [K|-= 2

line overlaps one of the pair of strong |K| = 1 lines. From Table & the

frequency shift of the |K|-= 2 line 1is
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fq - ;§%3 cos ¥ (56)

which gives -2.04 + ,03 Mc/sec. Assuming that line A in Figure 4 corres-
ponds to this transition we have 14, 794.86 + .06 Mc/sec as the frequency
in the absence of quadrupcle coupling. The second member of the pair of

strong |K| = 1 lines is shifted by
_ ~eQg
fq —=3% (b + 5 cos @) (57)

or +0.525 + .005 Mc/sec. The predicted line at 14, 795.38 + .06 Mc/sec
agrees with the cbserved line within the limits of the probable error.
The prominence labelled B in Figure 4 corresponds to a similar prominence
in Figure 2 which arises from a |K| = 1, F= 9/2 »11/2 transition nearly
superimposed on a |K|‘: 2, F= 7/2 transition (recall the degeneracy in
the upper state). An average of these two shifts is -0.25 Mc/sec which
gives a predicted frequency of 1k, 794.61 + .08 Mc/sec.

The J= 3 —» 4% and 4 =5 transitions in CFCl., are shown in Figures

3
5 and 6 along with the measured freguency of the strongest line in each
transition. These frequencies differ somewhat from those reported by

Long (63). The spectra shown here were obtained at lower pressures than

Long used in order to obtain better resclution.

Equation 50 can be written in the form

ETE‘I‘%T:‘ B~ D, K2 - 2D (J + 1)° (58)



= 14792.82 + .03 Mc/sec
= 14794.72 + .05 Mc/sec
= 14795.44 + .05 Mc/sec C
A B
Figure 4. J = 2 » 3 Transition in CFCl. at -78 °C, 15u Hg, 200v/cm.
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A = 19725.32 + .04 Mc/sec

Figure 5. J = 3 »+ 4 Transition in CFC1L

3

at =78 °C, 10u Hg, 150v/cm.
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A = 24657.44 + ,02 Mc/sec

Figure 6. J = 4 » 5 Transition in CFCl

3

at =78 °C, 10w Hg, 300v/cm.
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where f is the measured frequency of a line and fq is the theoretical
quadrupole frequency shift of this line. Long pointed out (64) that if
centrifugal distortion effects were small the gquantity (f - fq)/E(J + 1)
ought tc be nearly constant for various transitions. This guantity has
been computed and tabulated in Table 5 and compared with the values ob-
tained by Long. The effect of the coeffTicient DJ (which was not available
to Long) has also been included in the table. The variation in the gquan-
tity B - Do K% - 2DJ(J + 1)% obtained by Long led him to conclude that

D, was large, negative, and changed with fregquency. From Table 5 it is

J

seen that the effect of centrifugal distortion is actually guite small.

Table 5. Rotaticnal Constant of CPFClL, from Various Transiticns

3

‘s 2 2 2 - 2
Transition B - D K° - 2DJ(J + 1) 2DJ(J + 1) B-D K
Long (64) Present
Investigation

J=192 2465.39 + .01 2465.83 + ,015 .00k 2465.83 + .01
J=2 =3 265,63 + .01 2465.81 & .01 .008 oh65.82 + .01
J= 3 =4 2h65.72 + .00 2465.79 + 006 .015 2465.81 + 006
J=4 o5 2465,76 + .00 2465.80 £ .003 .023 2h65.82 £ ,003

A1l units are megacycles/sec.

The cause of the variation obtained by Long 18 due to the erronecus compu-
tation of the hyperfine structure and the subsequent errcneous assignment

of the lines.
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The variation in the guantity B - K2 shown in the last column

DJK
of Table 5 may be due to the shifting in the peak of an absorption line

due to the presence of a nearby line. On the basis of these data a con-

servative estimate of the rotaticnal constant of CFCL, is 2465.82 + .02

3

Mc/sec if we assume that the magnitude of D_, is less than .5 kc/sec.

JK

The J= 1 —~ 2 transition in CHCl, is shown in Figure 7. Again note

3
the general agreement with Figure 1. The splitting between the two strong
lines is 4.55 # .02 Mc/sec. The Cl - € - Cl bond angle is 111.3 + .2° (24)
and therefore cos & is -0.363 + .003. These values give -77.9 £ .5 Mc/sec
for the quadrupole coupling constant. Equation 53 then gives the shift of
the lew frequency line as -3.99 £ .03 Mc/sec. Hence the unperturbed line
would occur at 13,208.29 + .08 Mc/sec. Equations 54 and 55 predict the
gecond strongest pair of lines to fall at 13,211.37 + .12 Mc/sec and
13,215.92 £ .13 Mc/sec which 1is within the allowed error. Note that the
lines arising from the F = 5/2 - 7/2 transiticn do not appear as they did
in the case of CFCl_. This may be due to interfering Stark components.

3

The J= 2 =3 transition in CHCLl, I1s shown in Figure 8. Using

3
equation 56 we predict thet the unperturbed line would fall at 19,812.23

* .07 Mc/sec. Equation 57 predicts a strong line at 19,812.73 + .07 Mc/sec
which is observed. The J= 3 ~ k4 and 4 =5 transitions are shown in
Figures 9 and 10. When these data are combined with the centrifugal dis-
tertion coeffiecients of Favero and Mirri we obtain the values for the ro-
tational constant shown in Table 6. On the basis of this table a conser-

vative estimate of the rotational constant of CHCLl. is 3302.07 + .03 Mc/sec.

3
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13204.30 = .05 Mc/sec
13208.85 + .05 Mc/sec
13211.50 + .07 Mc/sec B
13216.00 + .07 Mc/sec

Figure 7. J = 1 > 2 Transition in CHCl3 at -78 °C, 10w Hg, 20v/cm.
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19810.21 £ .04 Mc/sec
19812.24 + .08 Mc/sec A
19812.66 + .08 Mc/sec

+

Figure 8.

J =2 -+ 3 Transition in CHC1

3

at =78 °C, 5u Heg, 300v/cm.

13



A = 26415.26 + .07 Mc/sec

Figure 9. J = 3 » 4 Transition in CHC1

3

at -78 °C, 3u Hg, 200v/cm.

A



A = 33019.26 + .03 Mc/sec

Figure 10. J = L4 - 5 Transition in CHC1

3

at -78 °C, 15u Hg, 160v/cm.

£g
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Table 6. Rotaticnal Constant of CHCl3 from Various Transitions
g _ 2 _ 2 2 2

Transition B-D.,K 2DJ(J + 1) EDJ(J + 1) Dy K B
J=122 3302.07 £ .02 .01 .00  3302.08 * .02
K} =1
J=2 =3 3302.0L + .02 .03 .01 3302.06 + .02
[kl = 2
J= 3k 3302.04 £ .02 .05 -.01 3302.08 + .02
K| = 2
J= k4 ~5 3301.99 + .01 .08 -.01 3302.06 £ .01
k| = 2

A1l units are megacycles/sec.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATTIONS

Bersohn (4) was among the first to realize that Racah's algebra of
irreducible tensor operators (6)(7)(8) could readily be extended to prob-
lems involving the rotational moticn of molecules. In the course of this
work Bersohn derived general expressions for the matrix elements of the
quadrupole interaction energy in a molecule containing three identical
quadrupolar nuclei. P. N. Wolfe (12)(13) succeeded in resolving the guad-

rupole hyperfine structure in the J = 2 = 3 transition of CHCLl, and attempted

3
to evaluate the quadrupcle coupling constant by using Berschn's theory.
This attempt was complicated by the fact that it was not possible tc assign
the |K| = 1 and [K| = 2 lines unambiguously in the absence of any know-
ledge of the magnitude of the centrifugal distortion coefficients. Long
(14)(15) was able to observe the J = 1 5 2 transition in CHCl3 and CFC]_3
as well and was thereby zble to make a better comparison with Bersochn's
theory. These results indicated that either the theory was in error or
there was an anomaly in the centrifugal distortion coefficients. By
measuring higher J transitions Faveroc and Mirri (19) showed that the cen-
trifugal distorticn coefficients were in good agreeﬁent with the theore-
tical values.

In this study the terms in the electric quadrupole interaction

Hamiltonian which involve the electric field gradient operator have been

evaluated in detail. Bersochn did not do this. When the reguirements of



86

the Pauli exclusion principle are imposed on the state function ¢f the
molecule and this state function is used to calculgte the electric field
gradient, terms are obtained which were not included in the calculations
used by Wolfe and Long. These additional terms arise only in the |K| = 1
case. Some gimplification over Bersohn's results has been obtained by
making greater use of the symmetry properties of the molecule as suggested
by Svidzinskii {21).

For the case (K| = 1, J = 1 =2 the calculation predicts that the
two strongest lines are of equal intensity and are shifted from the ur-

perturbed frequency by

%%% (6 - 23 cos )
and

:%%% (6 + 11 cos «)

respectively. The guadrupole coupling constant eQg mgy be evaluated by

measuring the splitting between these two lines. This splitting is given

by
eqq
Af = -3 22 (1 - cos Q) .
For higher J transitions the most intense line is a |K| = 2 line. The

freguency shift produced by the quadrupole interaction in a rotational

transiticon from J to J + 1 is given by
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-3 (J% + 197 + 30) eQqg cos &
g (27 + 2)(2T + 3)(aT + W(&T + 5)

t

It may be the case however that other lines in the hyperfine pattern over-
lap one another +to such an extent that they produce absorptions which are
more intense than this line.

A detailed comparison of the theoretical spectrum with the observed
spectrum has not been possible due to the limited resolution of the spec-
trometer. Nevertheless there is a sound basis for believing that the cal-
culation of the guadrupole hyperfine structure presented here is correct.
The magnitude of the gquadrupole coupling energy cobtained for CFCl3 and CHCl3
is very close to that obftained in solid state measurements. Of course the
same thing might be said for the value obtained by Wolfe (12) for CECL,.
However Long (lh) used the same theory that Wolfe used and obtalned a
different value for the quadrupcle coupling constant by measuring a dif-
ferent transition. The overall qualitative agreement between the predicted
and observed J= 1 -2 and 2 —» 3 spectra is encouraging. While many of the
predicted lines were too weak to be observed, at least there were no lines
observed where none was predicted. Finally, when the theoretical frequency
shifts are combined with the measured frequencies of the various transitions
they give rise tc¢ values of the rotational constant B which are more consis-
tent with one ancother than the values obtained using Bersohn's calculations.

When the predicted and observed spectra are compared they give -79.9 %
.6 Mc/sec for the guadrupole coupling constant in CFCl§5 and the quantity
B - D, K® is found to be 2465.82 + .02 Mc/sec. If Dy is less than .5

JK

kc/sec as centrifugal distortion theory predicts then this number must be
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very close to the value of the rotaticnal constant.

For CHCl35 the quadrupole coupling constant is found to be

3

-77.9 £ .5 Mc/sec and the rotational constant B is 3302.07 + ,03 Mc/sec.

The size of the guadrupole coupling constant depends upon the value
of the bond angle . The values used in this investigation are those given
by Loubser (23) and Jen and Lide (24). These values may not be correct
since these investigators did not resolve the quadrupole hyperfine struc-
ture. The calculation presented here should be extended to the asymmetric
top case and used in connection with the spectra cf various isotopic
species of these molecules in order to obtain the bond distances and
angles more precisely.

It is possible to use the wave functions presented in this thesis
to obtain simultanecusly the effects of quadrupole interactions and exter-
nal appiied electric fields. This allows one to treat the Stark effect in

the presence of hyperfine structure. Such a program has already been under-

taken (22).



89

APPENDIX

The matrix elements of the quadrupole interaction Hamiltonian for a
molecule containing three identical quadrupolar nuclei of spin 3/2 are given
here for the cases J = 1, 2, and 3; |K| = 1 and 2. A detailed spectrum for
the =1 52 and 2 - 3 transitions in such a molecule may be obtained by
subgtituting the appropriate bond angle & into these matrix elements and
diagonalizing over the resultant nuclear spin I. The matrix elements BTI
of the diagonalizing transformation may then be substituted intc equaticon

47 to obtain the intensities of the transitions. A factor of eQg has been

omitted from every element shown here.
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J=1, |K| = 1 {continued)
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J=2, |K| = 1 (continued)
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J=2, K| = 1 (continued)
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J=2, X[ =2
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J= 3 |K =1
e 1 1
13/2 1/2 1/2
/2 /2 7/2
5/2  5/2
/2 s5/2
9/ 1/ T/2
5/2  5/2
3/2  3/e

/2 5/2

/2 3/2
5/2  3/2

/2 1/2 /2
5/2  5/2
3/2 3/2
1/2  1/2

T/2 /2 s5/2
/e 3/2

v = O

(cos a - 4)

oL

v=1

(b - 7 cos @)
43

(7 cos @ - k)
56

{7 cos @ - 4)
336

N26 (b - 7 cos &)
168

Y1(7 cos o - &}
1680

(b - 7 cos @)
280

(8 - 29 cos a)
240

'\/—3—(# - 7 cos &)
420

-~NLh62 (1 + 2 cos )

Lzo

_-J_l_5ﬂ(]_+2cosa)

(4 - cos @)
>
(4 - cos @)
336
26 {cos @ - It)
168
L1(k - cos @)
1630
(cos o - k)
280
-(8 + 13 cos @)
240
«./? (cos o - k)
nz0
NU62 {1 - 4 cos a)
Lo
N15h (2 - L cos @)
280

(4 - cos a)

(cos @ - 4)
280
(8 + 13 cos a)
120
0
NE5 (U - cos a)
L20

Nh62 (1 - & cos @)

420

280

(7 cos @ - )
8k

(4 - 7 cos a)
280

(29 cos & - 8)
120

0
NE6 (7 cos o - )
120

_@l+2cosa)

420
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J=3, |K| = 1 (continued)

¥

5/2

3/2

I

7/2
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5/2
5/2
3/2
/2

5/2

o
1/2
3/2
1/2
1/2
7/2
5/2
3/2

1/2

3/2
1/2
3/2
1/2
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7/2

5/2

0
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e

29\/‘?(4 - cos Q)
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3~/70__(l— L cos a)

700

0

1714 (4 cos a - 1)

1400

N210 (cos a - L)

600

V15 (1 - 4 cos @)

100

5 (cos a - 1)
168

11 (4 - cos @
2800
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0

\/_’(—(l+2cosa)
250

-J?(lé - T cos &)
80

(L + 2 cos )
Lo

(b - 7 cos @)
112

(4 - 7 cos @)
L200

(29 cos o - 8)
L0C

0

2045 (7 cos a - 4)
21.00

-3NTO (2 cos @ + 1)

700
Q

17N1H (1 + 2 cos )
1400

N210 (4 - 7 cos o)
600

-N15 (L + 2 cos @)
100

5 (4 - 7 cos a)
168

11 (7 cos o - 4)
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J=3, |Kl = 1 (continued)
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F I T’ v=20 v=1

3/2 3/ - (8 1033 cos a) (8 io§9 cos a)
/2 /e 13410 (oo a) 13410 (Zgoca- 1)
7je 3/2 V35 (1 ;52 cos o) -V35 (1 §5§ cos o)
5/2 3/ 91k (k cos @ - 1) 9Tk (1 -2 cos )

/2 7/2  7/2 5 (COilCEX - 4) 5 (k il;( cos @)
5/2  5/2 (& - cos ) (Tcos o - b)
7/2  s5/2 Vo (4 iugos a) Ve (7 :CLES o - )

J=3, |K| =2 A1l matrix elements are zero.
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