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CHAPTER I 
INTRODUCTION The effect of a nuclear electric quadrupole moment on the spectrum of an atom has "been treated in detail, by Casimir (l), and the hyperfine structure in the rotational spectrum of a molecule containing a single quadrupolar nucleus can be treated in an almost identical manner (2). The case of a molecule containing two quadrupolar nuclei was treated by Bardeen and Townes (3)° The occurrence of three identical nuclei coupled, to a molecule by electric quadrupole interaction is uncommon except in symmetric tops containing three halogens such as CHBr̂  or CHC1̂° Previous attempts at analyzing the quadrupole splitting in the rotational spectra of such molecules have led to contradictory results. Bersohn (4)(5) derived expressions for the splitting due to two or more quadrupolar nuclei in a molecule by using the algebra of irreducible tensor operators developed by Racah (6)(7)(8) for treating atomic spectra. Mizushima and Ito (9) used Bersohn's work to calculate the effect of the quadrupole interaction on the J = 0 -4 1 rotational transition in CHBr̂. Kojima et al. (10) attempted to measure this transition, but the spectrum they reported was later shown to be of spurious origin (ll). P. N» Wolfe (12)(13) compared the J = 2 3 rotational spectrum in CHCl̂  with Ber­sohn '• s theory and obtained the value -80-39 Mc/sec for the quadrupole coupling constant of the chlorine nuclei. By improving the resolution and sensitivity of the conventional Stark modulated spectrometer, Long (l4)(.15) 
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w a s a b l e t o m e a s u r e t h e J = 1 - » 2 t r a n s i t i o n i n C H C l ^ - H e o b t a i n e d 
- 1 0 2 . 5 M c / s e c f o r t h e q u a d r u p o l e c o u p l i n g c o n s t a n t . L o n g a l s o o b t a i n e d 
t h e v a l u e - 1 1 0 . 8 M c / s e c f o r t h e q u a d r u p o l e c o u p l i n g c o n s t a n t i n C F C l y 
F r o m m e a s u r e m e n t s c o n d u c t e d i n t h e s o l i d s t a t e , L i v i n g s t o n ( l 6 ) h a d o b ­
t a i n e d a b s o l u t e v a l u e s o f 7 6 ° 9 8 M c / s e c a n d 7 9 ° 6 3 M c / s e c r e s p e c t i v e l y f o r 
t h e s e c o n s t a n t s . O n e w o u l d e x p e c t b e t t e r a g r e e m e n t t h a n t h i s b e t w e e n t h e 
v a l u e s o b t a i n e d i n t h e g a s e o u s a n d s o l i d s t a t e s ( . 1 7 ) ° 

I n a d d i t i o n t o t h e d i s c r e p a n c y i n t h e q u a d r u p o l e c o u p l i n g c o n s t a n t s 
L o n g f o u n d t h a t i n t h e c a s e o f b o t h C H C l ^ a n d C F C l ^ i t w a s n e c e s s a r y t o 
a s s i g n v a l u e s t o t h e c e n t r i f u g a l d i s t o r t i o n c o e f f i c i e n t s w h i c h w e r e m u c h 
l a r g e r t h a n t h e t h e o r e t i c a l v a l u e s i n o r d e r t o a c c o u n t f o r t h e o b s e r v e d . 
s p e c t r a . H e f o u n d t h a t t h e c e n t r i f u g a l d i s t o r t i o n c o e f f i c i e n t D w a s 

J 
n e g a t i v e a n d c h a n g e d w i t h J . P r e v i o u s i n v e s t i g a t i o n s h a d y i e l d e d o n l y 
p o s i t i v e , c o n s t a n t v a l u e s f o r D i n m o l e c u l e s o f t h i s t y p e . L o n g s u g g e s t e d 
t h a t e i t h e r t h e a s s u m p t i o n t h a t t h e e l e c t r o n i c c h a r g e w a s s y m m e t r i c a b o u t 
t h e C - C I b o n d w a s e r r o n e o u s o r t h e q u a d r u p o l e i n t e r a c t i o n t h e o r y w a s 
i n c o r r e c t . S u b s e q u e n t l y J o h n s o n ( 1 8 ) e x a m i n e d t h e c e n t r i f u g a l d i s t o r t i o n 
i n s y m m e t r i c t o p m o l e c u l e s , i n c l u d i n g t h o s e h a v i n g C - C l b o n d s . H e 
f o u n d g o o d a g r e e m e n t b e t w e e n t h e t h e o r e t i c a l a n d m e a s u r e d c e n t r i f u g a l d i s ­
t o r t i o n c o e f f i c i e n t s w i t h o n l y t w o e x c e p t i o n s , C H C l ^ a n d C F C l y T h e s e 
w e r e t h e o n l y m o l e c u l e s e x a m i n e d h a v i n g t h r e e q u a d r u p o l a r n u c l e i . 

F a v e r o a n d M i r r i ( 1 9 ) t h e n i n v e s t i g a t e d t h e s p e c t r a o f C H C l ^ a n d 
C F C l ^ i n v a r i o u s t r a n s i t i o n s f r o m J - 1 5 t o J = 2 9 ( a t t h e s e f r e q u e n c i e s 
t h e s p l i t t i n g d u e t o t h e q u a d r u p o l e i n t e r a c t i o n i s q u i t e s m a l l a n d c a n 
b e n e g l e c t e d ) . T h e y o b t a i n e d v a l u e s f o r t h e c e n t r i f u g a l d i s t o r t i o n c o e f f i ­
c i e n t s w h i c h w e r e i n g o o d a g r e e m e n t w i t h t h e t h e o r e t i c a l v a l u e s . T h e s e 



.3 authors concluded, that the anomalous behavior reported by Long was due to the very complicated hyperfine pattern which occurs for low values of J. Weatherly (20) calculated the quadrupole hyperfine splitting for 
CFC1„ using a method which differed from Bersohn5s. His calculation yielded -81.5 Mc/sec for the quadrupole coupling constant. The calculation also indicated that the centrifugal distortion coefficients would, be near the theoretical values. Weatherly'' s approach does not utilize the per­mutation symmetry of the function representing the resultant spin of the three identical nuclei and requires the diagonalizati.cn of matrices which, in some cases are twenty by twenty in size. In this study no calculation of the relative in tensity of the various hyperfine lines was made. Weather, was able to conclude that: Bersohn's theory did not take into account all of the effects of the Paul 1 exclusion principle<> Svidzinskii (2.1.) has discussed the problem of calculating the hyper­fine structure in the rotational spectra of molecules due to multipole interactions of various types and has shown how to use the symmetry proper­ties of the molecule to maximum advantage in simplifying the resulting ma­trices. Svidzinskii5s work is an extension of Bersohn's, although Svidzin­skii does include a discussion of the appropriate state functions to use when identical nuclei are involved. Unfortunately Svidzinskii1s paper con­tains a host of typographical errors. Furthermore an erroneously defined permutation operator leads to a mistake which is compounded through the paper. In this study the method suggested by Svidzinskii is corrected and 

A letter communicating these results to Dr. Svidzinskii in the USSR was returned marked "Addressee Unknown." 

http://diagonalizati.cn
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used to compute the complete rotational hyperfine structure pattern in symmetric top molecules containing three identical quadrupolar nuclei of spin 3/2. The matrix elements derived by Bersohn are shown to be incom­plete, and the calculation of relative intensities as derived by Wolfe and used by Wolfe and Long is shown to be erroneous. A comparison of the computed spectra with the observed spectra for CFCl̂  and CHCl̂  leads to values of the quadrupole coupling constants of -79'9 - •6 Mc/sec and -77.9 ± „5 Mc/sec respectively. The centrifugal distortion coefficients of Favero and Mirri are found to be sufficient to account for the ob­served spectra when combined with the predicted quadrupole splitting. Chapter II contains a summary of those aspects of the quantum theory of angular momentum which are needed in order to compute the qua­drupole spectrum. The derivation of the quadrupole Hamiltonian is also included in this chapter. While all of this material may be found in various references, there are so many different conventions concerning choices of phase and normalization that it seemed advisable to include this summary in order to establish a consistent notation and to make the thesis self contained. Chapter III deals with the construction of the proper state function for a molecule containing three identical nuclei. Part of the material on nuclear spin functions duplicates Bersohn's results, but the use of projection operators (suggested by Svidzinskii) is a more general approach and will be easier to extend to cases involving nuclear spins other than 3/2. Using the results from Chapter II, the matrix elements for the quadrupole interaction are computed. The chapter concludes with a discussion of the relative intensities of the hyperfine lines. 
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For the J = 1 2, |K| = 1 case the matrices of Chapter III yield 19̂  lines spread over a frequency range of 96 megacycles/sec. In some cases the separation between lines is about one tenth of a megacycle/sec. The effects of pressure broadening, finite spectrometer resolution, and the rapid decrease of line strengths with decreasing frequency make it impossible to compare individual lines in the observed spectrum with the computed lines except in the case of a few of the strongest lines. An estimate of the combined effects of pressure broadening and poor resolu­tion was made by assuming a Van Vleck - Weisskopf line shape and summing intensities with the aid of a computer program developed by Nave (22) for this purpose. The computed line spectra, pressure broadened spectra, and the experimentally observed spectra are presented in Chapter IV. The quadrupole coupling constants were computed by comparing the observed and theoretical separation of the strongest lines in the J = 1 2 spectra. After quadrupole splitting and centrifugal distortion effects have been taken into account it is then possible to compute the rotational constant B. The rotational constant for CFCl̂  was found to be 2̂65.82 ± .02 Mc/sec. The rotational constant for CHCl.̂  was found to be 3302.07 ± .03 Mc/sec. These values are for the most abundant symmetric top species and are believed to be more accurate than any previously reported values. No attempt was made to measure the spectra of various isotopic species of these molecules and thereby correct the reported values (23)(2k) of the bond distances and angles. It is suggested that this be done since the quadrupole splitting can now be assigned correctly. Other suggestions and a summary of the results obtained are presented in Chapter V. 
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The matrix elements for the cases J = 1, 2, and 3 are tabulated in 

an Appendix. The quadrupole hyperfine structure of any symmetric top 

molecule containing three identical quadrupolar nuclei of spin 3/2 may 

be computed by substituting the proper bond angle into these matrices and 

diagonalizing. 
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CHAPTER II 

ANGULAR MOMENTUM ALGEBRA 

The theory of rotation groups in quantum mechanics has been 

developed mainly by Wigner (25) and Racah. (6)(7)(8). This theory, 

concerned with the applications of irreducible tensor operators and 

Wigner 3-nj symbols, has become an integral part of modern atomic and 

nuclear physics. Bersohn (k) was one of the first to utilize the theory 

in a problem involving the rotational motion of molecules. Those parts 

of the theory which are needed for the present problem are summarized 

in this chapter; details may be found in the book by Edmonds (26). 

The Rotation Operator 

In quantum, mechanics the commutation relations (cyclic in xyz) 

for the angular momentum operators, 

give rise to sets of 2j + 1 eigenvectors u(jm) which satisfy the equations 

[J J ] = iJ x z 

(J* + j2 + j2) u(jm) = j(j + 1) u(jm) and 

Jz u(jm) = m u(jm) . 

In these equations j is a positive integer or half-integer and m ranges 
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from -j to +j in integral steps. An eigenvector u(jm) describes a 

physical system having a squared angular momentum of j(j + l). The com­

ponent of the angular momentum along the z axis is given by m. For inte­

gral values of j the angular momentum operators may be represented by 

differential operators and the eigenvectors may be represented by spherical 

harmonic functions. For half-integral values of j no such single-valued 

and continuous representation is possible. Since the exact form, of the 

eigenvectors is seldom needed we shall continue to use the symbols u(jm) 

for integral or half-integral values of j. 

The behavior of the angular momentum eigenvectors under a rotation 

of the coordinate axes is of interest. Consider the coordinate system 

x'y V which is obtained from the coordinate system x y z by performing 

the following rotations in the order given: 

(1) a rotation by $ (0 ^ <t> < 3̂ 0°) about the z axis which carries 

the system x y z into the system x 1y 1z 1, (2) a rotation by <t> (0 ^ <t> < l80°) about the yx axis which carries 

the system x 1y 1zi into the system x 2y 2z 2, 

(3) a rotation by 7 (0 g 7 < 3̂ 0°) about the z 2 axis which carries 

the system x 2 y 2 z 2 into the system x 'y 'z '. 

All rotations are to be carried out in a right-handed sense. We will re­

gard the initial x y z system as being fixed in space and the x 'y 'z ' system 

as being oriented so that the z ' axis coincides with the symmetry axis of 

a symmetric top molecule. For a molecule such as CHCl^ we number the 

identical nuclei 1, 2, and 3 and specify that the y ' axis passes through 

nucleus 1 . We further specify that the positive direction of the z ' 

axis is the direction of motion of a right-handed screw in a rota-
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tion that would carry nucleus 1 into nucleus 2. The angles $ and 6 are the 

usual polar coordinates of the z ' axis and 7 measures the rotation about 

this axis. 

Observe that rotations (2) and (3) are defined with respect to 

rotated axes. When calculating the matrix elements of the rotation opera­

tor it is more convenient to define all rotations with respect to a set 

of axes which remains fixed in space. This may be done by carrying out 

the above rotations in reverse order (2"j), thus: 

(l') rotate about the z axis by 7, 

(2 ') rotate about the y axis by 0, 

(3') rotate about the z axis by <t>. 

The rotations (.1 '), (2'), and (3') produce the same relative orientation 

between the x y z coordinate system and the x 'y 'z ' coordinate system as 

the rotations (l), (2), and (3)« The first description does have the 

advantage that it makes the meaning of the angle 7 easier to see. 

The operator corresponding to the rotations (l'), (2'), and (3') 

is (28) 
D(4>, G, 7) = exp(i<J)J )exp(i0J )exp(i7J ). 

^ j 
The effect of this operator on an eigenvector u(jm) may be expressed by a 

linear unitary transformation, 

D(*, 6, 7) u(jm) = Z (*, Q, 7) u(jm') (l) 
m '=-j 
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where 

The notation (a, b) is used to represent the scalar product of the vectors 

a and b. Analytic expressions for the matrix elements of the rotation 

operator are given by Edmonds (29). Since the vectors u(jm) are eigen­

vectors of J it is easy to see that the matrix elements will be functions 

of the form 

D ( J .> ( • , 6, 7) = e l m'* d(4> ( 6 ) (2) 
m m m m K 

where d̂ 4̂  is some function of 0. m m 

When j is an integer and m is zero the functions in equation 2 are 

spherical harmonics. When dealing with irreducible tensor operators cer­

tain annoying factors may be eliminated by defining the spherical harmonic 

functions by 

c ( i ) (*,e) = (-i) m' D( iP (0, e, 7) . (3) 
m K m o v 7 

Since there are so many conventions in use for the phase and normalization 

of spherical harmonic functions, the functions in equation 3 will be listed 

here for the case £ - 2: 

d2) (•, 6) = f e 1 2 * sin 2 9 , (4a) 
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c ( 2 ) (<D,e) ^ - ^ e 1 * sin 0 cos 0 , (1+b) 

C 0
2 ) (<M) = | (3cos 20 - 1) . (kc) 

The functions for negative values of m may be obtained from the identity 

( * , e ) = (-if c(£)* (»,e) . -m m 

If j is an integer and both m and m ' are zero the functions in equa­

tion 2 are Legendre polynomials P (cos 0). These polynomials are related 

to the spherical harmonics in the following way. Consider two vectors r\ 

and r 2 which have polar coordinates ^ 6± and <fc2, 0 2 respectively, and 

let the angle between the two vectors be 0. Then we have 

d£) ( o , e ) = P (COB e) = (-i)m
 C W ( . 1 > e i ) c^J ( * 2 , e 2 ) . ( 5 ) 

m= -i 

If the magnitude of r 2 is less than the magnitude of r : then the quantity 

may be expanded as 
ii - r 2 

- r; 

= Z ( r i ) - ^ + 1 ) ( r 2 ) ^ P (cos S) . ( 6 ) 
&=0 

This result will be needed when deriving the Hamiltonian for the electric 
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quadrupole interaction of a nucleus. 

One final property of the matrix elements of the rotation operator 

which we shall need subsequently may be derived by the successive appli­

cation of equations (4.2.4), (4.2.5), and (4.2.6) in Edmonds' book (26). 
This relationship is 

d ( 4 } (i8o° - e) = (-i)^"m' d ( 4 ) ( e ) . (7) 
m m m -m v ' v ' 

The angular momentum of a symmetric top molecule.can be described 

by a function which is proportional to the matrix elements of the rota­

tion operator, 

u(JMK) = ' 2 J + i^ 
6 V 2 

( • , E, 7) • (8) 
j(j + l) is the square of the total angular momentum, M is its projection 

on the fixed z axis, and K is its projection on the z ' axis fixed in the 

molecule. J is an integer and K ranges from -J to +J as does M. The ro­

tational energy of the molecule is (30) 

E__ = J(J + l)Bh + K 2(C - B)h JK 

where C is the rotational constant about the z ' axis, B is the rotational 

constant about any axis through the center of mass perpendicular to the z ' 

axis, and h is Planck's constant. The energy is seen to be degenerate with 
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respect to the sign of K. When constructing the state function of a 

symmetric top molecule having rotational energy ~E one must use the 
JK 

functions in equation 8 with both positive and negative values of K, as 

will be seen in Chapter III. 

Vector Coupling Coefficients 

Interactions which couple two or more angular momenta are frequently 

encountered; for example, the coupling of the nuclear spins to the angular 

momentum of the molecular framework by the electric quadrupole interaction. 

In such cases m is no longer a good quantum number for the individual sys­

tems. However, the total angular momentum of the system will be conserved 

and it is desirable to have a representation in terms of the total angular 

momentum. Consider two interacting systems having angular momenta j 2 and 

j 2 . An eigenvector which describes the total angular momentum may be 

written in the form 

J2> J m) = z (jim.iJ2m2| Jij2jm) uf^m].) U(J^N2), (9) 
The quantities ( J I H I - LJ2m 2 | JiJ2<J m) a r e called vector coupling coefficients 

(3l)» They are functions of the quantum numbers displayed in them and 

vanish unless m = mj_ + m 2 and unless j lies in the range from | J ± - J2I 

"to Ji + J2* The order in which the vectors are coupled is important. If 

we let u(j 2, j 1 ; jm) be the vector obtained by coupling in the reverse 

order from equation 9 (i«e. the roles of j x and j 2 are interchanged), then 

these two vectors are related by 
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u(j 2, ji, jm) = (-1) 

J1+J2-J 
(10) 

The Wigner 3~j Symbols 

Certain symmetries of the vector coupling coefficients may be ex­

hibited in a clearer fashion by defining a 3-j symbol (32): 

In particular the 3-J symbol is unchanged under an even permutation of 

its columns and changes by ( - l ) J l + , j 2 + j 3 under an odd permutation. The 

same factor is obtained if one replaces each m by -m. For typographical 

convenience we shall use the equivalent notation X(Jij2J3;m1m2m3) for the 
3-j symbol. The orthogonality of the 3-J symbols is expressed by (33) 

Now let us consider the coupling of three angular momentum eigen­

vectors u(j 1m 1), u(j 2m 2), and u(j 3m 3) to obtain an eigenvector u(jm). 

Here are two of the possible alternative coupling schemes: 

(l) Couple u(j 1m 1) to u(j 2m 2) to obtain a vector u ( j 1 2 m 1 2 ) . 

Couple this vector to u(j 3m 3) to obtain u(jm). Denote 

this result by u(j 1 2, j 3, jm). 

2 X( j 1j 2j 3;m 1m 2m 3) X( j x j 2 j 3 ';m^m^3 ') -
m1} m 2 

5 . . 

j3 m3m3 

( i d 

(2J3 + 1 ) 
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(2) Couple u(j 2m 2) to u(j 3m 3) to obtain a vector u ( j 2 3 m 2 3 ) . 

Couple u(j 1m 1) to this vector to obtain u(jm). Denote 

this result by u(j 1, j 2 3 , Jm)» 

In both cases there are several possible values of the intermediate 

momenta j 1 2 or j 2 3 which lead to the same final value of j. The vectors 

with the same j obtained from different intermediate momenta are ortho-

normal. The two coupling schemes are connected by a unitary transformation 

J23; Jm) = Z (Jl> J23|J12̂  J3) U(J12> J3.> Jm) • J12 

The coefficients in this expansion are related to Wigner's 6-j symbols, 

Ji J2 J12 J3 J J23 
[(2j 1 2 + 1)(2J 2 3 + l)] 2 

(j) 
(12) 

In modern usage the 6-j symbol is distinguished from the 3-j symbol by 

the use of curly brackets in place of parentheses. For typographical 

convenience we shall resort to an older notation and write W(j±J2J12•J3J J23) 
for the 6-j symbol. The reader is cautioned that this usage of the W sym­

bol differs by a phase factor from some of the W symbols used in earlier 

literature. As defined in equation 12 the 6-j symbol is invariant under 

any permutation of its columns and under the interchange of upper and 

lower entries in any two columns (3̂ )« Recoupling transformations between 

four, five, or six angular momentum eigenvectors involve 9-<L 12-°^ 15-j 

symbols. These will not be needed. 
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Values of the 3-j and 6-j symbols have been tabulated by Rotenberg 

et al. (35) and expressed as powers of prime numbers. This tabulation not 

only eliminates the tedious numerical calculations which usually accompany 

problems of the type treated here but also makes possible a substantial 

simplification in expressions involving more than one 3-j o r 6-«3 symbol 

by allowing one to cancel prime factors. 

Irreducible Tensor Operators 

It is frequently the case that even though the complete state 

function of a system is not known, that part which describes the angular 

momentum of the system is known and appears as an angular momentum eigen­

vector multiplying the remainder of the state function. When we have an 

operator whose angular dependence is known it is then possible to separate 

the evaluation of matrix elements of the operator into two parts, one in­

volving the angular momentum and the other involving the other coordinates 

which describe the system. That part of the matrix element involving the 

angular momentum is proportional to a 3-nj symbol. This is the basis of 

Racah's algebra of Irreducible tensor operators. 

An irreducible tensor operator of rank k (where k is an integer) is 

defined as a set of 2k + 1 operators which transform under rotations like 

the eigenvectors of the angular momentum operators. The spherical harmonic 
(k) 

functions are examples of such quantities. If A^ is a component of an 

irreducible tensor operator then the matrix elements of this component 

between states of sharp angular momentum are 

(u(n'j m'U^utnjm)) = (-l) J'" m X( j 'kj ,;-m » (n 'j '||A||nj ) (13) 
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where n represents all other quantum numbers which describe the state. 

The quantity (n'j'||A||nj) is called the reduced matrix element. It repre­

sents that part of the matrix element which is independent of spatial 

orientation, that is, independent of the quantum numbers m q , and m. 

The reduced matrix element has the same value for all components of the 

irreducible tensor operator (36). 

The scalar product of two irreducible tensor operators is defined 

A-B= Z A ( k ) B W . 
q * " q 

Given two irreducible tensor operators of the same rank k which act on 

the angular momentum eigenvectors u(j 1m 1) and u(j 2m 2) respectively, the 

matrix element of the scalar product of these two operators in a repre­

sentation in which j 2 is coupled to j 2 to obtain an angular momentum j is 

(u(ni'jo.n 2 'j 2 jm), A-B u(n 1j 1, n 2j 2, jm)) = (ik) 

( - l ) J l + j 2 + J W(jj 2 'J! ':kj 1j 2)(n 1 'j! '||A||n1j1)(n2 'j2 '||B||n2j2). 

Another relationship which will prove useful concerns the reduced matrix 

element of an operator B acting on an eigenvector u(j 1m 1) in a scheme in 

which ujj^mx) is coupled to u ( j 2m 2). This relationship is 

(n.i'jr, n 2 j 2 , j'lJBlKj;,, n 2 j 2 , j) = (-l) J l + ^ + ^ (15) 
1 

[(2j + l)(2j'+ l)] 2 W(ji'j'j2:jj1k)(n1'j1'||B||n1J1) 
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In our problem A will represent some derivative of a molecular electric 

field and B the corresponding nuclear electric multipole moment (37)• 

The Quadrupole Interaction Hamiltonian 

The potential V(r*) at a point ~r external to a charge distribution 

whose density is p(r*') can be expressed by means of the spherical har­

monics in a series of the form 

v(*)- * il) e)(r)-^ + 1>. ( 1 6 ) 

The coefficients Q^ ' are called multipole moments of the charge distri­

bution and are given by 

Similarly if we consider the potential V(r*') at some point inside a region 

of space due to a charge distribution p(?) external to this region we have 

v ( ? ' ) = z ^ c^* (*;e')(r')£ ( 1 7 ) 

where 

^=fP&C^ (., e)(r)-< i + 1>dv. 

The coefficients are proportional to various derivatives of the 

potential (38) . 
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In view of the above relations the multipole moment operators in 

quantum mechanics are defined by 

where e is the electronic or protonic charge as required. A similar 

definition applies for the operator which gives the derivatives of the 

potential. These operators are obviously irreducible tensor operators 

since they transform under rotations like the spherical harmonics. 

The electrostatic potential energy of a nucleus due to the sur­

rounding electrons in a molecule is given by 

W = - / U U e 2 Z — U U dv dv ,/ m n -» i m n m n ^ i; j r „ - r . 

1 ei PJ 
U and U are the state functions of the molecular electrons and the m n 

" t h . 
nucleus respectively, r g i is the position vector of the i electron in a 

space fixed frame, is the position vector of the j^*1 proton in a space 

fixed frame, and the integral is evaluated over the coordinates of all 

electrons and protons. Upon applying equations 5 and 6 this becomes 

W= - [ U U e 2 Z Z [(r .)" ( i + l )(r . ) i (-l) 
J m n i,J i,m 6 1 PJ 

(<J> ., 6 .) (4> .,6 .)] U U dv dv 
m ei ei -m N pj 7 pj' m n m n 

m 
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The term with I = 0 is isotropic and hence makes no contribution to the 

rotational energy. This would he the only non-vanishing term if the 

nuclear charge were spherically symmetric. The term with i = 1 is zero 

since nuclei are presumed not to have electric dipole moments (39)« We 

are interested here in the effect on the rotational motion of a molecule 

produced by the terms with I = 2. Thus we see that the Hamiltonian opera­

tor for the quadrupole interaction energy is a scalar product of two irre­

ducible tensor operators, 

The operator 

H = A-B= Z (-l) m
A( 2 ) B < 2 ) 

v m -m m 

A ( 2 ) = -e Z (r . ) " 3 C ( 2 ) (0 .,6 .) (.18) m . ei' m v e.r ei' K ' I 

gives the derivatives of the potential due to the electrons, and the 

operator 

gives the components of the quadrupole moment of the nucleus. 

Matrix Elements of the Hamiltonian 

Svidzinskii has shown that when identical nuclei are located in 

equivalent positions in a molecule the total interaction energy of the 

identical nuclei can be expressed in terms of the interaction energy of 

one of them (4o). We shall use nucleus 1 for obtaining the interaction 
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energy. Consider a coupling scheme in which the spins of the three quadru­

polar nuclei are coupled to obtain a resultant spin I according to 

j 2 + j 3 = l > ji + l = r. 
The resultant nuclear spin will be coupled to the angular momentum of the 

molecular framework according to 

The matrix elements of the quadrupole interaction Hamiltonian of nucleus 

1 are given by equation ik: 

(u(vJK'l'F), A-B u(vJKIF)) = (-l) J + I + F W(FI 'j:2Jl) (20) 
( v j k ' | | a | | v j k ) ( i ' | | b | | i ) . 

The quantum number v represents the vibrational state of the molecule 

(see Chapter III). Our notation indicates that we assume that the quad­

rupole interaction energy is diagonal in J. This is reasonable because 

the quadrupole interaction energy is small compared to the rotational 

energy of the molecule. 

The reduced matrix element (vJK'||A||vJK) can be related to the 

derivatives of the electrostatic potential in the coordinate frame attached 

to the molecule. This may be seen by considering the matrix el.em.ent of 
(2) ' ' 

A q between the molecular wave functions. According to equation 13 this 

http://el.em.ent
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matrix element is 

( U ( V J M ' K ' ) , A < ^ U (VJMK) ) = (-1) J _ M X(j2J;-M'0M)(vJK'|JA||vJK). (21) 

This same matrix element may "be evaluated in a different fashion by the use 

of the spherical harmonic addition theorem. Using equations ±Q, kc? and 5 

we have 

A ^ 2 ) = -e Z (r e.)" 3 |(3cos 20 e i - l) 
i 

where 4> and 9 are the polar coordinates of the fixed z axis with respect a a 
to the molecular reference frame and 4>'„ and 9\ are the polar coordinates 

e i e i 
t h 

of the i ' electron in this same frame. Now the molecular wave function 

may be written as a product of a function U^ describing the distribution, 

of the electrons with respect to the molecular axes and a function u(JMK) 

describing the rotational motion of the molecule as a whole. Thus equa­

tion 21. may be written in the equivalent form [ U A ^ 2 ) U d v = - T U u(JM'K') e Z ( r . ) ~ 3 Z [ ( - l ) m
 (22) J m u m m / e v ' . ei' x v ' u u l m 

C ^ (4> , 9 ) c(2\<$> ' 9'. )] U u(JMK) dv d? sin 0 d0 d<J>. m v a: a -m x er ei/ e e 

Consideration of the definition of <fr and 9 as given above and the defini-
a a 
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tion of the angles Y, 6, and <t> as given on page 8 shows that 

< t > = 1 8 0 ° - Y, 6 = 6 . a a 

Hence we may write equation 2 2 as 

f u m A ^ 2 ) U M a v = L = ) f u ( j M ' K ' ) ( - l ) m
 C ( £ )

 (180° - 7 , 8 ) U ( J M K ) (2 3 ) 
J m J 

DY sin 0 d0 d<t>] 
where 

q ( 2 ) = - j U e 2 (r . ) " 3 C ( 2 ) (4> '.,©'.) U dv . -m / e . ei' -m v er ei y e e J l 

The rotational functions in the integral on the right hand side of equa­

tion 2 3 are the symmetric top functions in equation 8 . The value of the 

integral is (hi) 

(_l)K " M ( 2 J + 1 ) X ( J 2 J ; - M ' 0 M ) X ( J 2 J ; - K '-mK). 

A comparison of equations 2 1 and 2 3 now gives 

(-l) J _ M X(j2J;-M'0M)(vJK ' | | A||vJK) = (-l)K " M ( 2 J + l) X ( j 2 J ; - M ' 0 M ) 

Z X ( j 2 J ; - K ' - m K ) . 
m 

Thus the reduced matrix element (vJK '||A||VJK) is given by 
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(vJK'||A||vJK) = (-1)J+K^ (2J + l) Z q ^ X( J2J;-K '-mK). 
m 

The summation on m is superfluous since from the properties of the 3-J 

symbol only the term with -K' - m + K = 0 does not vanish. Replacing -m 

by K' - K then gives 

(vJK'||A||vJK) = (-1)J+K (2J + 1) X(J2J;-K'(K'-K)K) v . 

, ( 2 ) 

(24) 
Next we consider the meaning of the quantities q^ . Substituting 

the spherical harmonic functions 4a, 4b, and 4c into equation 17 gives, 

for the i = 2 terms, 

(2) SF6 ±2$ ' 
. (2) \T6 l<t> . qv ' -r— e sin 0 + q ' e sin 0 cos 0 - 2 4 ^--±2 

+ I (3cos20' - 1 
x (2) V6" -i* 

sin 0 cos 0 

(2) s[G -ia*' . . 
+ q̂  ; ^- e sin 20 where <t> ' and 6' are measured with respect to the molecular axes. Now the 

potential at a nucleus may also be expanded in a Taylor's series about 

the nucleus as an origin. The second-order terms in this expansion are 

x ' 2 d 2V y ^ b2V . z ' 2 £ 2V , , £ 2V 
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By using identities such as x ' = r ' sin 6 ' cos * ' we may compare the coef­

ficients of similar terms in the two expansions for the potential. This 

leads to the identities 

and (2) 1 a f v _ 
q° 2 dz ' 2 

( 2 ) _ ( 2 ) _ J% 

= <T ' = To - 2 12 ^x 

' 2 ' 2 
All other terms are zero for reasons to be mentioned in the next paragraph. 

For the particular case of a molecule such as CHCl^ we assume that 

the electrostatic potential at a CI nucleus is symmetric about the C - C l 

bond axis. We also assume that the potential satisfies Laplace's equation 

at the nucleus, that is, that none of the electrons penetrate the region 

where the nucleus is located. In the case of nucleus 1 the C - C l bond 

lies in the y 'z ' plane (see page 9)« Let the angle between the bond axis 

and the z ' axis be p (p ^ 90°)• Call the second derivative of the poten-

d 2 V 
tial with respect to the bond axis —•= . Under the above assumptions the 

d c ^ 
only non-zero derivatives of the potential in the molecular coordinate 

frame are found to be d 2 V _ 3cos2p - 1 d 2 V d z '2 " 2 d c 2 

and d 2 V d 2 V = -3sin2ft d 2 V d x ' 2 " d y ' 2 " 2 d c 2 * 
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More complicated expressions are obtained in the case of nuclei 2 and 3 but fortunately these are not needed. The angle a between two C-Cl bond axes is called the bond angle. Since this is the angle customarily used in specifying the shape of the (2) molecule the q̂  /!s will be expressed in terms of this angle. The geometry of the molecule yields the relation 3cos2p - 1 cos a = — — T T - — • — • 

d 2V It is also customary to represent —̂~ by the symbol q with no super-
scripts. Adopting this notation gives finally 

(2) _ q cos a 

and ( 2 ) ( 2 ) , ,\ 

£ = <i-P = q 12 (cos a - l) Referring to equation 2k we see that the reduced matrix elements of the operator A have the values 
(vJK||A||vJK) = (-1)J+K (2J + 1) X(J2J;-K0K) q C ° S a , 

(vJ-l||A||vJl) = (-1)J_1 (2J + 1) X(J2Jj1-21) (cos a - l), 
and (vJl||A||vJ-l) = (-l)J+1 (2J + 1) X(J2J;-12-1.) q̂ j" (cos a - 1 
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The last two of the above expressions are equal to one another by the 

symmetry properties of the 3-j symbol. Using explicit formulas for the 

3-j symbol we obtain finally 

and 

(vJK||A||vJK) = [3K 2- J ( J + 1 ) ] q c o s a ^ ^ 
N/(2J+3)(2J+2)(2J+1)(2J)(2J-1) 

(vJl||A||vJ-l) = (2J + 1)J(J + 1) q (cos a - 1.) ^ 
N/ (2 J+ 3 ) (2 J+ 2) (2J+1) (2 J) (2 J -1) 

= (VJ- I | |A | |VJI) . 

These expressions are valid only for nucleus 1 since the derivatives of 

the potential in the molecular frame were evaluated only for that case. 

In equations 2^a and 2^b we have considered only the reduced matrix 

elements of the operator A between states with the same value of K or 

between states of K = 1 with states of K ' = -1. From equation 24 and the 

remarks preceding it we see that there could be matrix elements between 

any two states for which K - K = 2 (since q^ J is not zero) or K - K = -2 
(2) N 

(since q-2 is not zero]. We do not need to consider these more general 

cases since in Chapter III it will be seen that the wave functions corres­

ponding to a particular value of the rotational energy contain K and - K . 

The only values for which K - ( - K ) = 2 or K - ( - K ) = -2 occur when |K[ = 1. 

It is not necessary to consider the matrix elements of the quadrupole in­

teraction between states corresponding to different rotational energies 

because the energy gap between these states is large compared to the quad-
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rupole interaction energy-

The reduced matrix element (l'||B||l) is evaluated "by the use of 

equation 15 which gives 

The reduced matrix element (ji||B||ji) is proportional to the nuclear quad­

rupole moment. The nucleus is presumed to "be in rapid rotation about the 

spin axis. On the average there will be cylindrical symmetry of the nu­

clear charge about this axis so that not all components of the quadrupole 

moment tensor are independent of one another. The term conventionally 

referred to as "the quadrupole moment" (42) is defined by 

when the nucleus is in a state having the maximum projection of its angu­

lar momentum along the z axis. From equations 4c and 19 we see that 

Ji+L+I+2 

(j x, L, I'M,]!, L, I) = (-1) [(21 + 1)(2I' + l)] 2 

W(j1I/L:Ij12)(j1||B||j1). 

o 
( a ) 

Using equation 13 gives 

eQ = (u(J!J!), 2 B, 

( 2 ) 

u(jiji)) = 2 X(j12j1;-j10j1)(j1||B||j1) 
o 
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o r 

/ . I I i i . % _ e Q 
2 X ( J 1 2 J 1 ; - J 1 0 J 1 ) 

F o r j i = 3 / 2 t h i s r e s u l t b e c o m e s 
( 3 / 2 | | B | | 3 / 2 ) = N / ~ 5 e Q . ( 2 6 ) 

C o m b i n i n g e q u a t i o n s 2 0 , 2 5 , a n d 2 6 i t n o w a p p e a r s t h a t w e c o u l d 
c o m p u t e t h e m a t r i x e l e m e n t s o f t h e q u a d r u p o l e i n t e r a c t i o n e n e r g y o f 
n u c l e u s 1 i n t h e p r e s c r i b e d c o u p l i n g s c h e m e . H o w e v e r , t h e c o r r e c t s t a t e 
f u n c t i o n f o r t h e s y m m e t r i c t o p m o l e c u l e i n v o l v e s l i n e a r c o m b i n a t i o n s o f 
a n g u l a r m o m e n t u m e i g e n v e c t o r s w i t h d i f f e r e n t v a l u e s o f K. H e n c e t h e 
m a t r i x e l e m e n t s u s e d i n t h e f i r s t o r d e r p e r t u r b a t i o n t h e o r y w i l l c o n t a i n 
m o r e t h a n o n e t e r m o f t h e t y p e i n e q u a t i o n 2 0 . T h e c o n s t r u c t i o n o f t h e 
p r o p e r s t a t e f u n c t i o n i s t h e s u b j e c t o f C h a p t e r I I I . 

A t t h i s p o i n t w e s e e t h a t t h e d e p e n d e n c e o f t h e r o t a t i o n a l e n e r g y 
o f a m o l e c u l e o n t h e e l e c t r o s t a t i c q u a d r u p o l e c o u p l i n g o f t h e n u c l e u s 
w i l l b e e x p r e s s e d a s a m u l t i p l e o f e Q q w h e r e e Q i s t h e q u a d r u p o l e m o m e n t 
o f t h e n u c l e u s a n d q i s t h e s e c o n d d e r i v a t i v e o f t h e e l e c t r o s t a t i c p o ­
t e n t i a l a l o n g t h e b o n d a x i s . N o a t t e m p t w i l l b e m a d e t o e v a l u a t e e Q o r q 
s e p a r a t e l y w h i c h i s a c o m p l e x a n d i n d e p e n d e n t p r o b l e m . 
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CHAPTER III 

THE STATE FUNCTION 

In order to calculate the correction to the rotational energy of a 

molecule due to the nuclear electric quadrupole interaction by means of 

first order perturbation theory we must know the rotational dependence 

of the state function of the system. According to the Pauli exclusion 

principle the state function must change sign under the exchange of two 

identical, nuclei with half-integral spins. If the nuclei have integral 

spins the state function must remain unchanged. The restriction .imposed 

by the Pauli exclusion principle affects the choice of the angular momentum 

eigenvectors used in constructing the state function. Since the permuta­

tion symmetry of the total angular momentum eigenvector depends upon the 

behavior of the nuclear spin eigenvector, the eigenvector representing the 

resultant nuclear spin will be considered first. 

The Resultant Nuclear Spin Eigenvector 

For molecules such as CHCl^ which contain identical nuclei at 

equivalent positions, the quadrupole interaction Hamiltonian does not 

change when identical nuclei are permuted. If we use, as basis vectors 

for this problem, linear combinations of the resultant spin eigenvectors 

which are also the basis vectors for an irreducible representation of 

the group of permutations of three objects, then there will be no matrix 

elements of the Hamiltonian between basis vectors of different represen­

tations •> 
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The matrices representing the elements of the group of permutations 

of three objects are shown in Table 1 (44). This group has three irredu-
i1) (2) cible representations: totally symmetric, A ; antisymmetric, A ; and 

the two dimensional representation E. Using these matrices we can construct 

a projection operator which, when applied to an angular momentum eigenvector 

representing the coupled spins of three identical nuclei, gives an eigen­

vector that belongs to the k^*1 row (if there is more than one row) of one 

of the irreducible representations. In order to construct this operator 

we shall review the manner in which a matrix representation is constructed. 

Generally one starts from any set of linearly independent functions 
U. and applies to each function all of the operators 0 corresponding to i K 
the elements of the group. The resulting function can be expressed as a 

linear combination of these same functions, 

The quantities R form the elements of a matrix representation of the 

operator 0_ where j numbers the row of the matrix and i numbers the R 
column (45). It may be possible to construct more than one irreducible 

representation by using different functions as the basis vectors. In 

n 
(27) 

this case the above equation is written as (46) 

(28) 



T A B L E 1 . T h e P e r m u t a t i o n G r o u p o n T h r e e O b j e c t s 
R E P R E S E N T A T I O N G R O U P E L E M E N T S R E P R E S E N T A T I O N ( 0 ) ( 1 2 3 ) ( 1 3 2 ) ( 2 3 ) ( 3 1 ) ( 1 2 ) 

1 1 1 1 1 1 
A < 2 > 1 1 1 - 1 - 1 - 1 

LU 

/, A 

V 7 ( • ' ) 
(\ t\ 
WT _ i , 

(\ 't\ \VT J J 

LU 

/, A 

V 7 \ 2 V ( • ' ) V V V V 

ro 
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Now multiply equation 28 by R) ' and. sum over all elements of the group: 
kk Z > > * 0R U W = Z U ( . V ) Z > ) * R ( T } . 

R kk R i . j R kk ji 

The coefficients R̂.T̂  satisfy the following equation (KJ) 
Z R M * R < V ) = ^ 6 . V 6., 6 , kk ji n jk lk wr R w 

where g is the order of the group and n is the dimension of the ŵ1 

w 
representation. Therefore we have 

Z R J > > * 0 B u ( v ) = A 5 . T 6 . kk R i n k ik vw R w 

The operator 4W) • f I oR (29) 

is called a projection operator (48). Consider any function which can be expressed in terms of the basis functions 
U - Z z ' a W u W 

V 1=1 

where the are constants. Applying the projection operator to U gives 
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(w) ^ z % ( v ) 2 R ( w ) * (v ) = fw) (w) ( } k g . n 1 ̂  kk R 1 kk 7 v / v i=l R 

th th 
that is, it gives a function which belongs to the k row of the w irredu­cible representation. Recall that the eigenvector representing the resultant nuclear spin I is to be obtained by coupling the spin of nucleus 2 to nucleus 3 "to obtain an intermediate momentum L, then coupling the spin of nucleus 1 to L to ob­tain I. Let us abbreviate the resultant vector by the symbol u(Ll). We seek a projection operator which can be applied to this vector to give a vector which belongs to the k̂1 row of one of the irreducible representa­tions of the permutation group of three objects. Generally the vector ob­tained is not of unit norm, hence we write p[w) u(Ll) = N2 u(wkl) 
where u(ŵl) is a vector normalized to one. The symbol w represents either 

( ! ) (2) 

E, A , or A . This equation may be written 
P^ W ) u(Ll) = u(wkl) = Z (u(L'l).,p[w) u(Ll)) u(L'l). (31) 

L The normalizing factor is obtained by realizing that a second application 
of the projection operator does not lead to a new result. This may be (w) (w) seen by applying Pv to the function tr in equation 30. A second appli-k k 

(w) 

cation of P£ in equation 31 gives 
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N 2 u(w kl) = Z _ (u(L^l),P k

w ) u(L'l))(u(L'l),p[w) u(Ll)) u(L"l). (32) 
L ) L 

Equating the summations on the right hand sides of equations 31 and 32 

and taking the scalar product with u(Ll) gives 

( U ( L I ) . , P [ w ) u(Ll))= Z (u(Ll),p£w) u (L'l))(u (L'l),p£ w ) u(Ll)). 
IJ 

Taking the scalar product of N 2 u(w I) with itself in equation 31 gives 

N = Z ^ (u(Ll),P k
w ) u(L'l))(u(L'l),p[w) u(Ll)) 

L 

Upon comparing these last two results we see that the normalization factor 

is 

N = (u(Ll),P k
w ) u(Ll)). 

The normalized eigenvectors we seek are therefore given by 

(u(l/l),P k
w ) u(Ll)) 

u(w I) = Z A x u(l/l) . (33) 
k L' [(u(Ll),P k

W J u(Ll))] 2 

Thus we need to know the matrix elements of the projection operator. From 

equation 29 we see that these matrix elements will be given in terms of 
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the matrix elements of the operator 0 "by 

(w) n (w) (u(L'l), P. u(Ll)) = -f Z R 

(u(L'l), 0R u(Ll)). 

R 

In our case 0 is an operator which permutes the spin coordinates among R 
the identical nuclei. In order to understand this statement we shall 

write the vectors u(Ll) in an expanded form. For the sake of clarity 

assign nucleus 1 a spin of A, nucleus 2 a spin of B, and nucleus 3 a spin 

of C. Write the vector u(Ll) as 

Now define a permutation operator S(l23) which assigns the spin of nucleus 
1. to nucleus 2, the spin of nucleus 2 to nucleus 3.» and the spin of nu­

cleus 3 to nucleus 1. The effect of the operator S(l23) on the vector in 
equation 34 is given by 

This operator rotates the spin coordinates of the nuclei by 120° counter­

clockwise as seen from the positive z' axis (see page 9) while the nuclei 

are considered to remain fixed in space. Later on we shall have occasion 

to deal with operators which permute the spatial coordinates of the nuclei, 

carrying the spins with them. The combined operation of rotating the nu­

clei by 120° clockwise and permuting the spins 120° counterclockwise is 

u(lA X (2B X 3C)L, I) . 

(34) 

S(123) u(lA X (2B X 3C)L, I) = u(2A X (3B X 1C)L, i) . (35) 
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seen to leave the configuration of the system unchanged except for permuting 

the numbers on the identical nuclei. 

Making use of the 6-j symbol as defined by equation 12, we may ex­

pand the right hand side of equation 35 as 

u(2A X (3B X lC)L,l) = L ( . 1 ) K + B + C + 1 [(2L + l)(2l/ + l)]2" 
L ' 

W ( A B L ' : C T L ) U((2AX 3B)l/ X 1C, i) . 

Using equation 10 we can rearrange the coupling in the vectors under the 

summation sign. We now have 

S(123) u(.LA X (2B X 3 C ) L , I ) = 2 ( _ L ) A + B+2C+L ' [ ( 2 L + + 

L' 

W ( A B L ' : C I L ) U(1C X (2A X 3B)L', i) . 
However the letters A , B ; and C were used only for clarity. In fact all 

of the nuclear spins are identical and equal to 3/2 for the nuclei of 

interest here. Recalling that vectors obtained with different values of 

L are orthonormal gives, for the matrix elements of the permutation 

operator, 

(u(L'l),S(l23)u(Ll)) = (-1) L' [(2L + 1)(2L' + l)]* w ( | | L':| IL). (36) 

Matrix elements of the other permutation operators are obtained in a 

similar fashion. They are given by 
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(u(L'l),S(l32)u(Ll)) = (-1)L_L' (u(l/l),S(l23)u(Ll)), 

(u(L'l),S(23)u(Ll)) = (-l) 3" L 5L,L } 

(u(L'l),S(3l)u(Ll)) = -(-l) L' (u(l/l),S(l23)u(Ll)), 

(u(L'l),S(l2)u(Ll)) = - ( - D L " 2 L ' ( u ( l 1 ) , S ( 1 2 3 ) u ( L I ) ) , 

(u(L'l),S(0)u(Ll)) ' = 5 L . L , 

where S(0) represents the identity (no permutation). The expression in 

equation 36 differs from the corresponding matrix element given by Svid­

zinskii (̂ 9) by a factor which, in the notation used here, amounts to 

replacing (-1)̂  by (-l)L. 

Thus matrix elements of the projection operator are given by 

(u(L'l),?£ t f ) u(Ll)) - ^ 2 ( u ( L ' I ) , S ( R ) u ( L I ) ) (37) 
where R represents (123), (132), etc. We now have all of the information 

necessary to calculate the expansion coefficients in equation 33• These 

coefficients are called genealogical coefficients (50) and are listed in 

Table 2. The notation in equation 33 indicates that these coefficients 

depend upon the choice of an initial intermediate momentum L. When the 

genealogical coefficients are computed one discovers that only the phases 
of the coefficients depend upon the choice of L. For the one dimensional ( 1 ) (2) 

representations A and A v the choice of phases is immaterial. For the 

two dimensional representation E one must choose either both upper signs 



TABLE 2. The Genealogical Coefficients w A*1' A(2) El E2 
L I I I I L 3/2 5/2 9/2 3/2 1/2 3/2 5/2 7/2 1/2 3/2 5/2 7/2 
0 -"Vf 

1 tl 
2 ±1 +1 ±1 
3 IT V 10 1 +1 
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or both lower signs for the E ± and E 2 coefficients under a given value of I, 

This does not affect the choice of signs under any other value of I. 

As a simple illustration of this last remark consider the effect 

of the operator S(l23) on the vectors with L = 2, I = 7/2, and L = 3̂  
I = 7/2. Using equation 36 to calculate the matrix elements we have 

S(123) u(2 7/2) = ~| u(2 7/2) - ̂ u(3 7/2) , 
S(123) u(3 7/2) = ̂  u(2 7/2) - \ u(3 7/2) . 

Now let the basis vector for E 2 be u(2 7/2) and the basis vector for E 2 

be -u(3 7/2). Referring to the definition of a matrix representation 

given in equation 27 we see that this choice of basis vectors gives 

(« ^] 
2 2 

N/J -1 i 
V 2 2 J 

for the matrix representation of the operator S(l23) which corresponds 
to the matrix listed under (123) in Table 1. Choosing -u(2 7/2) and 

+u(3 7/2) for the basis vectors for E 2 and E 2 leads to the same result. 

In the table of genealogical coefficients published by Svidzinskii 

(5l) the phases have been omitted and the representations E 2 and E 2 have 

been erroneously assigned. Using the procedure described in the preced­

ing paragraph it was found that no choice of phases would lead to the 
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correct matrix representation for each operator when the matrix elements 

were computed using Svidzinskii's equation (2.13). This may be the source 

of the error in Svidzinskii's table. 

When the nuclear spin vectors in equation 33 are used, equation 20 

becomes 

Ti T ̂  i "p 
(u(vJKvl'F), A O B u(vJKwkIF)) = (-l) W(Fl'J:2Jl) (vJK'||A||vJK)(wkI 1|B||wkl) 

We shall abbreviate the genealogical coefficients by G(wk, L I ) . Then 

the reduced matrix element for B may be written 

(wkl'||B||vkl) = ^ Z _ G(wK,L,l')(L,.I,||B||L"l)G(wK,L,',l) . 
L , L 

The reduced matrix element (L'I'||B||L "i) is evaluated by the use of equa­

tion 15. Since B refers only to nucleus 1 this element vanishes unless 

L ' = L ". We then have for the interaction energy of nucleus 1 

(u(vJK'w I'F); A«B u(vJKwkIF)) = (-l) J + I + F W(FI'J:2Jl) ( 3 8 ) 

JL 
(vJKllAllvJK) [(21+ 1)(2I'+ l)] 2 (j||B||j) 2 [g(W,,L', I') 

L ' K 

( - 1 ) J + L ' + I
 W(jl 'L':IJ2) G(wV,L',l)] . 

Since the nuclei are identical and are located in equivalent posi-
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tions In the molecule, the matrix elements of the total electric quadrupole interaction energy are obtained by multiplying equation 38 "by three (52). When this is done we collect those terms which involve only nuclear spin quantum numbers and define a nuclear reduction coefficient by 
C(w,,l',l) = 3 (- l ) l V l

 [(21 + 1)(2I' + 1)P Z [(-l)L" (39) k L' " 
G(wk,L'l') W(jl V :Ij2) G(vfcfL'l)] . 

Note that the reduction coefficient is symmetric in I and l" by the symmetry properties of the 6-j symbol. These coefficients will depend upon the choice of phases in the genealogical coefficients. If one uses all of the upper signs or all of the lower signs in Table 2 one obtains the reduction coefficients shown in Table 3- The reverse choice of signs under some value of I in the table of genealogical, coefficients changes the sign of the reduction coefficient wherever that value of I appears. When the quad­rupole interaction matrix is computed this would change the sign of all matrix elements in a row and column corresponding to that value of I (ex­cept for the diagonal element) and hence would make no change in the eigenvalues of the matrix. Thus the relative phase of the genealogical coefficients must be observed but the choice of an absolute phase is unim­portant. The reduction coefficients in Table 3 differ by a sign at several points from those published by Svidzinskii (53)» The coefficients for the Ei and E2 representations are reversed. The exact expressions given here give rise to a simplification in the matrix elements which is not possible 



Table 3° The Reduction Coefficients 

ÛA , 2 , 2 ) - 1 Q 

C(A^ \, 2) ~ 2 

C ( E 1^ 2' 2~̂  

3 V21 
35 

36j/y 
35 

3NT42 
7 

-3^3 

C ( A ( I ) 2 2) _ ^ 3 3 C(E2, |, | ) - I 

G(E2, 2' 2̂  _ 10 

TJ> 2̂  z2 
5 

11 
5 

5 

C(E2, 2̂  

C ( \ > 2) 

6JJ 

5 

- N/21 
35 

-12 SIR 

35 

- SFK2 

7 
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when Svidzinskii's decimal fractions are used. 

The Total Angular Momentum Eigenvector 

The total angular momentum eigenvector is constructed by coupling 

the angular momentum J of the molecular framework to the vector represent­

ing the resultant nuclear spin I which was obtained in the previous section. 

We know in detail how the nuclear spin function behaves when the spin co­

ordinates are permuted. In order that the total angular momentum eigen­

vector have the proper symmetry we must know what operations on the function 

U ( J M K ) of equation 8 correspond to interchanging the spatial coordinates of 

the nuclei. 

First consider the operation which interchanges the positions of 

nuclei 2 and 3 (see page 8). This interchange can be accomplished by rotat­

ing the molecule about the y"" axis (which passes through nucleus l) by l80° 
and then reflecting all of the nuclei in the x 'y ' plane. However, we must 

describe this process in terms of rotations carried out in the space fixed 

frame since none of the angles 0, or y which appear in equation 8 describe 

a rotation about the molecular y" axis. In terms of rotations about space 

fixed axes the rotations: (1) rotate about the z axis by l80° - y , (2) rotate about the y axis by l80° - 9 , (3) rotate about the z axis by l80° + <t> , 
produce an orientation of the molecule which differs from the orientation 

described by the rotations (l'), (2'), and (3') in Chapter II by an amount 

corresponding to a rotation by l80° about the y' axis. The effect of re­

flection in the x 'y ' plane on the rotational function can be taken into 
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account by realizing that reflection is equivalent to an inversion of coordinates about the origin followed by a rotation by l80° about the z ' axis. This rotation must be expressed in step (l) above. With these comments in mind we now have, for the operation which interchanges nuclei 2 and 3° (l') rotate about the z axis by 3600
 - y} (2 ') rotate about the y axis by l80° - 6, (3") rotate about the z axis by l80° + (4") invert the coordinates about the origin. Actually the process of inversion could be performed at any point since rotations and inversions commute. The process of interchanging the spatial coordinates of nuclei 2 and 3 will be represented by an operator R(23) and its effect on the symmetric top angular momentum eigenvectors is given by 

R(23) ̂  (., e, y) = e*W+*) c&> (l80° - 6) e1K(36°°-7) 

(-1)M e » (-1) J- M d£> (S) e " ^ 

where we have used equation 7° The complete state function of the molecule also contains a term which describes the vibrational motion of the molecule and this vibrational function is affected by the inversion operation. In order to understand the meaning of this vibrational term consider first a planar symmetric top such as BF̂. The boron atom can. execute vibrations perpendicular to the 
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plane of the three fluorine atoms which would be along the direction of the z ' axis as we have defined it. The functions describing this motion are characterized by a vibrational quantum number v. The lowest vibra­tional energy corresponds to v = 0 with higher integral values of v = 1, 2, .corresponding to successively higher energy levels. The potential energy for this vibrational motion is approximately parabolic with the minimum occurring at z ' = 0. If this potential is distorted by adding a "hill" about z ' = 0 then the vibrational function still has the same sym­metry with respect to inversion about the origin as in the undistorted case, but as the height of the hill is increased the energy levels approach each other in pairs. The best illustration of this effect is found in NĤ  for which the energy difference between two vibrational modes corresponds tc a frequency lying in the microwave region. In a molecule such as CHCl̂  the hill is so high that the two lowest vibrational levels have the same energy even though they are described, by different functions. This degen­eracy must also be taken into account when obtaining the quadrupole hyper­
f i n e l e v e l s . The effect of the i n v e r s i o n of coordinates on the v i b r a t i o n a l 

/ % v 
function is to multiply this function by (-1) where v is 0 or 1 for the ground state which is the only state that will be considered here (5̂ 0 • Thus when the spatial coordinates of nuclei 2 and 3 are exchanged the effect of this exchange on the rotational - vibrational state of the molecule is given by 

R(23) u(vJMK) = (-l)J+V u(vJM-K) . Nuclei. .1 and 3 or ,1 and 2 may be exchanged by the same process as described 
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a b o v e w i t h a n a d d i t i o n a l r o t a t i o n o f 1 2 0 ° o r 2 ^ 0 ° a d d e d t o s t e p ( l ' ) ° T h i s 

^ • 4 . - -. 4- • -, • n • ^ ± * i K 1 2 0 ° ±K 2k0° a d d i t i o n a l r o t a t i o n m u l t i p l i e s t h e s t a t e f u n c t i o n b y e o r e 
r e s p e c t i v e l y o 

W e c a n n o w c o n s t r u c t a s t a t e f u n c t i o n w h i c h e x h i b i t s t h e p r o p e r b e ­
h a v i o r w h e n t h e s p a t i a l a n d s p i n c o o r d i n a t e s o f n u c l e i 2 a n d 3 a r e e x c h a n g e d . 
N u c l e a r s p i n f u n c t i o n s o f s p e c i e s A ^ 1 ^ r e m a i n u n c h a n g e d w h e n t h e s p i n s o f 
n u c l e i 2 a n d 3 a r e e x c h a n g e d < > H e n c e a n o r m a l i z e d , f u n c t i o n w h i c h e x h i b i t s 
t h e p r o p e r b e h a v i o r i s 

i ( E T V A ( l ) . I F ) = — L n f v J K A ( l ) I F ) + (-.l) J + v + 2 J u(vJ-KA ( l )IF)] 

• 2 i 
T h e f a c t o r ( - 1 ) w h e r e j i s t h e n u c l e a r s p i n m a k e s t h i s f u n c t i o n c h a n g e 
s i g n w h e n n u c l e i 2 a n d 3 a r e e x c h a n g e d i f j i s h a l f - i n t e g r a l a n d r e m a i n 
u n c h a n g e d i f j i s i n t e g r a l . 

( 2 ) 
T h e n u c l e a r s p i n f u n c t i o n s o f s p e c i e s A c h a n g e s i g n w h e n t h e 

s p i n s o f n u c l e i 2 a n d 3 a r e e x c h a n g e d . A w a v e f u n c t i o n h a v i n g t h e p r o p e r 
s y m m e t r y i n t h i s c a s e i s g i v e n b y u ( E J K A ( 2 ) I F ) = — [ u ( v J K A ( 2 ) . I F ) - ( - l ) J + v + 2 J u ( v J - K A ( 2 ) I F ) ] n / ~ 2 

T h e c a s e o f n u c l e a r s p i n f u n c t i o n s o f s p e c i e s E i s o n l y s l i g h t l y 
m o r e d i f f i c u l t . O b s e r v e f r o m T a b l e 1 t h a t f u n c t i o n s b e l o n g i n g t o t h e 
s e c o n d r o w o f E r e m a i n u n c h a n g e d u n d e r t h e o p e r a t i o n o f p e r m u t i n g t h e 
s p i n s o f n u c l e i 2 a n d 3 ( i . e . t h e y b e h a v e l i k e A " ' f u n c t i o n s i n t h i s 
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c a s e ) w h i l e f u n c t i o n s b e l o n g i n g t o t h e f i r s t r o w c h a n g e s i g n ( b e h a v e l i k e 
A v f u n c t i o n s ) . T h e n i t w i l l b e s e e n t h a t t h e p r o p e r w a v e f u n c t i o n i n t h i s 
c a s e i s o f t h e f o r m 

u ^ E ^ E I F ) = -| [ u ( v J K E 2 I F ) + ( - l ) J f V + 2 J u ( v J - K E 2 I F ) ] + 
\ [ u ( v J K E 1 T F ) - ( - 1 ) J + V + 2 J u ( v J - K E 1 I F ) ] 

N o w l e t u s c o n s i d e r w h e t h e r o r n o t t h e s e f u n c t i o n s b e h a v e p r o p e r l y 
w h e n a n y o t h e r t w o n u c l e i a r e e x c h a n g e d , s a y 1 a n d 3 ° T h i s i s b e s t d o n e 
b y c o n s i d e r i n g t h e i n t e g r a l o r h a l f - i n t e g r a l s p i n c a s e s s e p a r a t e l y a l t h o u g h 

( 1 ) 
t h e o u t c o m e i s t h e s a m e . F o r t h e A c a s e l e t u s a s s u m e t h a t j i s h a l f -
i n t e g r a l a n d t r y a f u n c t i o n o f t h e s a m e f o r m a s b e f o r e b u t w i t h t h e a d d i ­
t i o n o f u n k n o w n p h a s e f a c t o r s X a n d Y a s f o l l o w s : u ( E . w A ^ 1 ^ I F ) = — [ X u C v J K A ^ I F ) + ( - l ) J + V Y u f v J - K A ^ 1 ^ I F ) ] 

A p p l y i n g S ( l 3 ) a n d R ( l 3 ) g i v e s 
— e 1 K 1 2 ° ° [ ( - . 1 ) J + V X u ( v J - K A ( I ) I F ) + Y u ( v J K A ( 1 ) I F ) : 

•J2 

R e q u i r i n g t h a t t h i s f u n c t i o n b e m i n u s t h e o r i g i n a l f u n c t i o n l e a d s t o t h e 
e q u a t i o n s : 
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eiK 120° x + X = 0 , 
X + e 1 K 1 2 0 ° Y = 0 

These equations have non-trivial solutions for the phase factors X and Y if and only if the determinant of the coefficients is zero. This leads to the condition 
iK 240° e = .1 

Thus it is seen that wave functions exhibiting the proper symmetry are possible only if K is zero or a multiple of three. When this is the case we have 

X = -Y For the case of integral spins we require that the result of applying the operators S(l3) and R(l3) be equal to the original function. This leads to the result 

X = Y 
with the same restrictions on K as before. Letting X = 1 we obtain the 
same phase factors as are already given by the factor (-l)2< .̂ Identical results are obtained, in the case of nuclear spin eigenvectors of species (2) 
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T h e n u c l e a r s p i n s t a t e s o f s p e c i e s E p r e s e n t a m o r e c o m p l i c a t e d 
p r o b l e m w h i c h c a n n e v e r t h e l e s s b e s o l v e d b y t h e s a m e a p p r o a c h . W e s h a l l 
t r y a f u n c t i o n o f t h e f o r m u s e d b e f o r e . A s s u m e t h a t j i s half-integral, 
a n d u s e a n a b b r e v i a t e d n o t a t i o n f o r t h e r o t a t i o n a l - v i b r a t i o n a l e i g e n v e c t o r s 

i ( E J K E I F ) = \ X [ u ( K E 2 ) - ( - 1 ) J + V u ( - K E 2 ) ' J + 
i Y [u(KEx) + ( - 1 ) J + V uf-KE,)] . 

A p p l y i n g S ( l 3 ) a n d R ( l 3 ) g i v e s 
l X e i K 1 2 0 ° ( _ l ) J + v c q u ( . m i ) . 1 ^ ) ] 

. I x e 1 K 1 2 0 ° 4 U ( K E : L ) - | u ( K E 2 ) j 
^ 1 IK 120° f N N J + V r l ( N ^ J3 l ire \ 1 

+ 2 Y e ( - 1 ) I 7 5 u ^ - K E x ) + ~ u ( - K E 2 ) . J 

R e q u i r i n g t h a t t h i s f u n c t i o n b e e q u a l t o m i n u s t h e o r i g i n a l f u n c t i o n g i v e s 
t h e e q u a t i o n s : 
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- i K 1 2 0 ° v , ( e i K 120 

2- - x + ^ i + i y Y = o . 
T h e r e q u i r e m e n t t h a t t h e d e t e r m i n a n t o f t h e c o e f f i c i e n t s v a n i s h l e a d s t o 
t h e e q u a t i o n 

i K 2h0° i K 1 2 0 ° e + e + 1 = 0 

w h i c h i s s a t i s f i e d f o r a n y i n t e g r a l v a l u e o f K n o t e q u a l t o z e r o o r a 
m u l t i p l e o f t h r e e . T h e s o l u t i o n f o r t h e p h a s e f a c t o r s i s 

Y = e 1 9 ° ° X . 

L e t t i n g X = 1 g i v e s Y = i . A n i d e n t i c a l r e s u l t i s o b t a i n e d f o r t h e c a s e 
o f i n t e g r a l j . 

S u m m a r i z i n g , w e s e e t h a t f o r K e q u a l t o z e r o o r a m u l t i p l e o f t h r e e 
t h e s t a t e f u n c t i o n s a r e 

u ( E T A ( ^ 2 ) I F ) = - L [ u ( v J K A ( ^ 2 ) I F ) ± ( - l . ) J + V + 2 J u ( v J - K A ( ^ 2 ) I F ) ] , (ho) 

w h e r e t h e u p p e r s i g n i s c h o s e n f o r A ^ 1 ^ a n d t h e l o w e r f o r A ^ 2 ^ . F o r K 
n o t z e r o o r a m u l t i p l e o f t h r e e t h e s t a t e f u n c t i o n s a r e 

u ( E J K E I F ) = - i [ u ( v J K E 2 I F ) + ( - l ) J + V + 2 j ' u ( v J - K E 2 I F ) ] (hi.) 
+ i | C u ( v J K E ! l F ) - ( _ l ) J + v + 2 J u ( v J - K E i I F ) ] . 
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W e h a v e s e e n i n C h a p t e r I I t h a t t h e r e d u c e d m a t r i x e l e m e n t s o f t h e 
o p e r a t o r A l i n k e i t h e r s t a t e s w i t h t h e s a m e v a l u e o f K o r s t a t e s o f K = 1 
w i t h s t a t e s o f K = - 1 . T h e r e f o r e w h e n K i s z e r o o r a m u l t i p l e o f t h r e e 
t h e m a t r i x e l e m e n t s o f t h e q u a d r u p o l e i n t e r a c t i o n a r e 

( u ( E T A ( 1 ' 2 V F ) , A-B U ( E T A ( L ' 2 ) I F ) ) = ( - l ) J + F + j
 W ( F I ' J : 2 J I ) ( 4 2 ) 

J : 

(vJK||A||vJK)(j||B|| j) C ( A ^ 2 ^ I ' , I ) , 
s i n c e ( v J - K | | A | | V J - K ) = ( v J K | | A | | V J K ) f r o m t h e s y m m e t r y p r o p e r t i e s o f t h e 3 - j 
s y m b o l . T h e r e w i l l b e m a t r i x e l e m e n t s o f t h i s t y p e f o r b o t h v = 0 a n d 
v = 1 . W h e n K i s a m u l t i p l e o f t h r e e t h e m a t r i x e l e m e n t s a r e t h e s a m e i n 
b o t h c a s e s . W h e n K i s z e r o e q u a t i o n 4 2 m u s t b e u s e d w i t h c a u t i o n s i n c e 
u ( J M K ) = u ( J M - K ) i n t h i s c a s e a n d s o m e o f t h e w a v e f u n c t i o n s i n e q u a t i o n 
4 0 v a n i s h f o r p a r t i c u l a r v a l u e s o f J a n d v . I n f a c t , i f j i s h a l f -
i n t e g r a l t h e w a v e f u n c t i o n s c o n t a i n i n g n u c l e a r s p i n f u n c t i o n s o f s p e c i e s 
A N v a n i s h , w h e n e v e r J + v i s e v e n a n d w a v e f u n c t i o n s c o n t a i n i n g n u c l e a r 

(2) 

s p i n f u n c t i o n s o f s p e c i e s A v a n i s h w h e n e v e r J + v i s o d d . 
W h e n K i s n o t a m u l t i p l e o f t h r e e t h e m a t r i x e l e m e n t s o f t h e q u a d ­

r u p o l e i n t e r a c t i o n a r e 
( u ( E T K E l " F ) , A - B u ( E J K E I F ) ) = ( - . 1 ) J + F + J " W ( F I ' J : 2 J T ) 

^ [ ( V J K | | A | | V J K ) ( E 2 I ' ] | B | | E 2 I ) +• ( . _ i ) J 4 V + 2 J ( V J K | | A | | V J - K ) ( E 2 I ' | | B | | E 2 I ) 

+ (~i)J+v+2J ( Y J ~ K ! | A | | V J K ) ( E 2 I ' | | B | | E 2 I ) + ( V J - K | | A | | V J - K ) ( E 2 I ' | | B | | E 2 I ) 



53 

+ ( V J K | | A | | V J K ) ( E 1 I ' | | B | | E I I ) - ( - i ) J + v + 2 J ( V J K | | A | | V J - K ) ( E 1 I ' | | B | | E I I ) 

- (-i) J + v + 2 j* ( V J - K | | A | | V J K ) ( E 1 I ' | | B | | E T . I ) + ( Y J - K | | A | | A V J K ) ( E 1 I 'IJBUE!!)] . 

The matrix elements linking K and - K are non-zero only when |K | = 1. We 

have also seen that (vJ-l||A||vJl) = (vJl||A||vJ-l). Using the appropriate 

reduction coefficient to evaluate the reduced matrix elements of B we have 

(u(E J KEl'F), A - B u(E J KEIF)) = ( - l ) J + F + J W(FI 'j:2Jl) (j||.B|| j ) (43) 

[c(+,l',l)(vJK||A||vJX) + ( - 1 ) J + V + 2 J C(-,l',l)(vJ-K||A||vJK] , 
where 

and 

C(+,I',I) = \ [C(E2,l',l) + C(Ei,l',l)] (hka) 

C(-,I',I) = | [C(E2,I',I) - C(E!,I',I)] . (44b) 

Since the last reduced matrix element in equation 43 is non-zero only when 
I I / \ V 

|K| = 1, the appearance of the factor (-1) gives different matrix elements 

for v = 0 and v = 1 in this case. 

The process of classifying the nuclear spin functions according to 

their permutation symm.etry allows a considerable simplification of the 

quadrupole interaction matrix elements by permitting only certain values 

of I to occur for a given K. Bersohn (4) realized that this would be the 

case but he did not evaluate the reduced, matrix elements (vJK '||A||VJK) in 

terms of the derivatives of the potential as we have done and therefore 
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seems not to have considered the possibility of these matrix elements link­ing states of K = 1 with states of K = -1. Neither did he consider the overall permutation symmetry of the system as Svidzinskii has done. There­fore he computed separate expressions for the interaction energy of each nucleus instead of multiplying the interaction energy of one nucleus by three. For every case except |K| = 1 Bersohn's expressions for the quad­rupole interaction energy reduce to the ones given here. The term (vJ-l||A||vJl) missing from his matrix elements is the source of the errors made by Wolfe (12) and Long (ik) in computing the hyperfine pattern and assigning the lines. Relative Intensities of the Hyperfine Lines The relative intensity of a rotational transition in a molecule is proportional to the square of the matrix element of the dipole moment operator between the initial and final states (55)« When the matrices of the quadrupole interaction are diagonalized the state function corresponding to a hyperfine level is given by 
U ( E J K T ) = I B T I

 U ( E J K W I F V 

where the quantities B̂  are the matrix elements of the diagonalizing trans­formation. The index T is used to distinguish states corresponding to dif­ferent eigenvalues. The vectors u(ÊwIFMp) are those given in equations kO and klo The quantum number M̂, was omitted there since the quadrupole interaction is independent of the orientation of the molecule. The total intensity of a line is obtained by summing over all possible values of 
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thus, 

N = s [ ( U ( E J K T ) , a t 1 } U ( E J K T ' ) ) ] 2 ( 4 5 ) 

4^ 
Z [ Z BTI BTI ^ ^ J K ^ ^ ^ ' d ( l ) ^(Ej KwIF fM^))] 2 

where i and f refer to initial and final states. The operator d is a 
* m 

component of the dipole moment operator in a space fixed coordinate frame 

For polarized electric fields such as are used in microwave spectroscopy 

we choose the z axis to be the direction of polarization. Then we need 

only evaluate the component do"1"̂ . The first step in evaluating equation 

4 5 is to use equation 1 3 to obtain 

(u(E^KwIF1iM^), 4±} u(Ej KwIF fM^)) = ( - 1 ) T X(F1IFf;-iVL^OM^) 

(E^wIF 1 |d||E^wIFf). 

Now according to the orthogonality properties of the 3 - j symbols given in 

equation 1 1 we have 

Z X(F 1IF f;-MpOM^) 2 = Z X ( F V I ; - M ^ O ) 2 = ± 

44 44 

where we have used the symmetry properties of the 3 - j symbol. The relative 

intensity now becomes 
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N = - [Z B 1 B f • (E 1 vIFi||dllEf wIF f)] 2 . 3 ^ TI T I ^ JK 11 11 JK ; 

Since we are computing the relative intensities the constant factor of 

l / 3 will he omitted hereafter. 

The reduced matrix element of the dipole moment operator is evalu­

ated by the use of equation 1 5 which gives 

(E* v ^ l l ^ E * wIF f) = ( - l ) j l + I + F f + 1 [(2F1 + l)(2Ff + l)P 

W(j iF iI:F fJ fl)(v iJ iK i||d||v fJ fK f) . 

This last reduced matrix element is evaluated by a procedure identical, to 

that used in Chapter II to evaluate (vJK '|| A|| vJK). Instead of equation 24 

we obtain in this case 

( v V V l l d H v ^ V ) = ( - l ) j l + K l [(2J1 + l)(2Jf + 1)]2 (46) 

where q^ represents a component of the dipole moment in the molecular 

reference frame. For a symmetric top molecule such as CHCl^ this dipole 

moment lies exclusively along the z' axis. Hence the only non-vanishing 
( ) 

component is q̂  and this component will be designated by the symbol d. 

Setting m = 0 in equation 46 makes this expression vanish unless K"*" = K^ 
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which is a well known selection rule. In this case the 3-j symbol also 

vanishes unless J"̂  = Ĵ~, J"̂  = - 1, or / = Ĵ " + 1, We shall be interested 

only in the absorption process Ĵ " = J"5" + 1. When these results are used to 

compute the matrix elements of the dipole moment operator between the state 

functions given in equations K-0 and H-1 it is found that these matrix ele­

ments vanish unless v differs by one in the initial and final states. 

Letting J"*" = J, = J + 1, and substituting an explicit formula 

for the 3-j symbol in equation K-6 we have 

The relative intensities are now given by 

W = ( (J3(jTl) R g
 )

 d 2 (2F± +
 W2** + [ * BTI BT'I ( 4 7 ) 

i f 

(~1)J +I+F +1 W(jVliFfJfl)]2 

The factor (-1) does not appear in a similar expression derived 

by Wolfe (5&). This has an appreciable effect on the computed intensities 

of THE hyperfine lines arising from levels associated with more than one 

value of I. 

For the case J = 3.? | K | = 2 the reduced matrix element (vJK||A||VJK) 

vanishes so that all of the quadrupole hyperfine levels are degenerate. 
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The intensities of the lines involving these levels were computed by using = 1 for each value of I, calculating the intensities corresponding to different values of I separately, and adding all of the intensities corres­ponding to the same frequency. On the basis of the calculation leading to equation 7̂ one would expect that the most intense lines in a given hyperfine transition would be those associated, with the smallest values cf K. This conclusion is false for the following reasons: (l) In the conventional Stark modulated spectrometer lines corresponding to K = 0 may not be observed under normal operating conditions since these levels have a weak Stark effect. (2) For the non-zero values of K the quantum numbers v = 0 and v = 1 give rise tc exactly the same matrix elements in every case except |K| = 1. The ex­pression for the intensities must be multiplied by 2 to account for the degeneracy in v in these cases. Thus the most intense line in a rotational transition will be associated with JKJ = 2 (except of course for the J = 0 -> 1 and 1 -» 2 transitions). Since Wolfe was not aware that the degeneracy in v was removed in the [K| = 1 case the intensities he assigned to these levels are too strong by a factor of 2. Long used Wolfe's formula for the relative intensities and therefore he assumed that the strongest lines he observed in each transition were |K| = 1 lines. This assignment, coupled with erroneous values for the quadrupole coupling constants, is the source of the apparent anomaly in the centrifugal distortion coeffi­cients. 
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CHAPTER IV 

QUADRUPOLE HYPERFINE STRUCTURE IN CFCl^ AND CHC1 

When the matrix elements of equation 43 are computed and the 

eigenvalues obtained, they yield one hundred ninety-four hyperfine lines 

for the J = 1 -» 2 , JKJ =• 1 transition. For a quadrupole coupling con­

stant of -80 Mc/sec the separation between some lines is less than 0.1 

Mc/sec. For higher J transitions the number of hyperfine lines increases 

while the separation between some of the strongest lines decreases. In 

spite of the improvements made by Long (l4) the spectrometer used to 

investigate these lines does not have the sensitivity and resolution 

necessary to detect all of the lines. The effect of pressure broadening 

makes it unlikely that complete resolution can ever be obtained with the 

conventional microwave spectrometer. The effect of poor resolution is 

to cause a shift in the apparent absorption frequency of a line due to 

the presence of one or more nearby lines. This effect can be minimized 

by working at low pressures, but then the relative absorption becomes so 

weak that only the strongest lines can be detected. Maximum effort was 

devoted to measuring the frequency of the strongest lines in several 

transitions at low pressure rather than to measuring numerous lines in 

a single transition at high pressure, since it was found that pressure 

broadening effects made a detailed comparison of observed and computed 

lines impossible. 
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The Calculated Spectra Examination of equation 43 and the reduction coefficients in Table 3 shows that when F = J + JK| = 1, we have but two matrix elements, one for v = 0 and the other for v = 1. Since these levels are associated with the largest possible values of F they give rise to the strongest |K| = 1 lines. When F = J + 5/2 we have a two by two matrix for each of the cases v = 0 and v = 1. One of the eigenvalues of each matrix is identical to the single matrix element for F = J + 7/2, which increases the intensity of the lines arising from these levels. The next most intense JKJ = 1 lines arise from transitions between the second eigenvalue of one of these matrices and the second eigenvalue of the corresponding matrix for the ro­tational state J + l for which F = (j + l) + 5/2« For other values of K which are not zero or multiples of three there is a similar result. The matrix obtained for F = J + 7/2 is one by one. The matrix obtained for F = J + 5/2 is two by two and one of the eigenvalues is identical to the J + 7/2 eigenvalue. There does not seem to be any obvious symmetry rela­tion of the 6-j symbols which would lead one to expect this result but it was observed to occur for values of J from 1 through 5 and probably occurs in all cases. In the case |K| = 1 the coefficients C(+, I', l) and C(-, Ii) defined in equations 44a and 44b are such that C(-, I i ) = -2C(+, I', l) when I = i' = 7/2, 1=1'= 5/2, and I = 7/2, I' = 5/2. This makes the dependence on cos a the same for all of these matrix elements. The angular dependence can be factored out and the eigenvalues and eigenvectors obtained for an arbitrary value of cos a. These values of I give rise to the strongest hyperfine lines. Exact expressions for the frequency and relative Intensity 



6.1 of the strongest lines in the J = 1 -> 2, J = 2 3.> and J = 3 -* 4 transitions are shown in Table 4. The frequency of the three most intense lines in the J = h -=» 5 spectrum are also shown, but the relative intensities were not computed since the 6-j symbols of Rotenberg et al. (35) do not extend beyond entries greater than 8, and the F values involved in these cases are 17/2. All matrix elements for j.KJ = 1 and 2, J = 1, 2, and 3 are given in the Appendix. The complete hyperfine structure pattern for the J = 1 ~> 2 and 2 3 transitions may be found by substituting the proper bond angle into these matrices and. diagonalizing. There seems to be little point in com­puting the detailed spectrum for higher J values since there are so many hyperfine lines that adequate resolution appears hopeless at present. It is possible to obtain an expression for the strongest (|K| = 2) hyperfine component in a given transition. This component corresponds to a frequency shift of 
-3 ( J 2 + !9J + 30) eQq cos q "(2J + 2)(2J + 3)(2J + k)(2J + 5) 

for a transition from J to J + 1. This formula must be applied with some caution since the actual peak in an absorption may not correspond to this frequency shift for reasons to be discussed below. Townes and Schawlow (57) have discussed the shapes and widths of spectral lines. Their results may be summarized by saying that over a sufficiently narrow frequency range the shape of most lines observed in microwave spectroscopy can be represented by the formula 
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Table 4. Splittings and Relative Intensities of the Strongest Hyperfine Lines 

Transition Splitting Relative Intensity 
J = l->2, | K | = 1 eQq , 11 

v = 0 - 1 2H0 (b " 23 008 Qj T 

F§* (6 + 47 cos A) I 

ĜG (32 - 41 COS A) JL 

J = 1 -> 2, | K | = 1 -eQq 11 

v = i - , o 1 1 < 6 + 11 c o s a ) T 
I§§ (59 COS a - 6) -L 

I§§ ( 3 2 " 2 3 C O S A) To 

J = 2 ->3, LKL = 1 ^ (4 + 5 cos A) 208 v = O -41 3̂3̂  K J 

eQq / ] -, \ 64 

- ^ 3 , | K | . l f ^ - i s c a ) FF 

^ (2 COS a + 1) g 



63 Table k. Splittings and Relative Intensities of the Strongest Hyperfine Lines (Continued) 

Transition Splitting Relative Intensity J = 2 -> 3, |k| = 2 -eQq _ 44 I 1 -TTT COS — 
J = 2 H> 3? IK •= 2 35 n ™ 20 

- 1 1 e ^ c o s a — J= 3 ->4, iKl = 1 ŜL (20 - S9 cos a) |5 

(20 + 7 cos a) ^ 
J = 3 -* ̂  |K| = 1 -eQq ,p v 25 

q̂. . n,v „ on\ H55 2640 (,4? cos a " 20) 
J= 3 -.4, |K| = 2 „ 2 ^ c o s a 1I3| 

7 oos „ 903 110 23̂  
J- 3-^ |K| = 3 -31^ cos a \ eQq 7 -31 -m

 cos a ife 
J = 4 5, |K| = 1 eQq_ , v v = 0 -> l 5720 1 J " ; 
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Table k. Splittings and Relative Intensities of the Strongest Hyperfine Lines (Concluded) 
Transition Splitting Relative Intensity 

lllZo |K| = 1 f^o (30 - 83 =oS a) 

J = k -> 5., |K| = 2 -6.1 eQq 
2860 " COS a 
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N is the intensity at the frequency f of a line whose unperturbed frequency is f . D is a constant which contains the square of the dipole moment ma­trix element, and k is a constant related to the mean time between collisions of the molecules. The pressure of the gas is given by p. A bond angle of 1.11° and a quadrupole coupling constant of -80 Mc/sec (approximately the values for CFCl̂  or CHCl̂) were substituted into the ma­trix elements listed in the Appendix and the eigenvalues and intensities were obtained with the aid of a computer. These intensities were substi­tuted for D in equation k$ and the total intensity was computed for a pressure of 25 microns at intervals of 0.2 Mc/sec. The value .12.3 was chosen for k since this gave a line width at half maximum, of about 0.5 Mc/sec for the strongest lines in the J = 1 -* 2 spectrum, and this is approxi­mately the width, observed. The line spectra and computed pressure broadened spectra are shown in Figures 1 and 2 for a frequency range of 20 Mc/sec. Examination of these figures suggests that even though there are several lines near the strongest lines in the J = 1. -> 2 spectrum, these two lines are so much stronger than any of their neighbors that the peak in the absorption ought to occur at the actual frequency of these lines. Each of the pair of second strongest lines (whose separation is equal to the separation of the strongest pair of lines) has a very weak neighbor which does not shift the absorption peak very much. Some other lines are relatively isolated but may not be strong enough, to be observed. Other stronger peaks can not be precisely identified with any single line. For example the large peak near -7 Mc/sec is actually due to three separate lines. In the J = 2 -» 3 spectrum one of the strongest |K| = 1 lines and 
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the strongest JKJ = 2 line nearly overlap ( - 2 . 0 6 Mc/sec and - 2 . 0 5 Mc/sec 

respectively). On the basis of a relative intensity calculation alone 

this should give a line nearly three times as strong as the next strongest 

line. When broadening is taken into account we see that three other 

moderately strong lines combine to give a peak nearly as intense. At higher 

pressures the broadening is sufficient to make the peak intensity due to 

the three moderate lines greater than the intensity due to the two strong 

lines near - 2 Mc/sec. At low pressures the peak at approximately 0 .5 

Mc/sec might coincide with the line there, and there appears to be some 

hope of detecting the line near - 0 . 2 5 Mc/sec. The third most prominent 

feature is composed of two lines near +2-5 Mc/sec. The lines near - 9 , 

+5j and +8 Mc/sec are relatively isolated but are perhaps too weak to be 

measured accurately. 

The Observed Spectra 

The spectrometer used to obtain the spectra of CFC1 0 and CHC1„ was 

the one described in detail by Long (l4). The phase sensitive detector 

used in this type of spectrometer causes the deflection due to a Stark 

component of an absorption line to be in the opposite direction from the 

deflection due to the absorption line itself. Thus when a Stark, component 

of one line coincides with the absorption frequency of another both will 

be lost. With so many hyperfine lines present the Stark pattern is ex­

pected to be complicated. Considerable variation in the recorded spectra 

was observed when the Stark field was varied. Most measurements were made 

at Stark fields of 200 volts/cm or less since this is sufficient to remove 

most Stark components from the center of the pattern without producing 



69 appreciable second, order Stark effects (58)• The highest frequency line in the pair of second most intense JKJ = 1 lines in the J = 1 2 transi­tion was not observed, unless the Stark field was less than 40 volts/cm. When centrifugal distortion effects are included the frequency of a rotational transition from J to J +• 1 is given in terms of the centrifugal distortion coefficients and D.T as (59) 
f = 2(J + 1)(B - D J K K 2 ) - 4DJ(J + I ) 3 + fq , (50) 

where f is the frequency shift produced by the quadrupole interaction. The splitting between any two lines having the same value of K in the same transition will be independent of centrifugal distortion effects and may be used to determine the quadrupole coupling constant. The splitting between the two most intense JKJ = .1 lines in the J - 1 2 transition was used for this purpose. From Table 4 it may be seen that the splitting between these two lines is given by 
A V " 3 ^ ( 1 " C C S A ) < ( 5 1 ) 

The measured spectra are shown in Figures 3 through 10. The errors assigned to the measured frequencies are probable errors obtained by di­viding the mean deviation by the square root of the number of independent measurements (60). Because of the long time constants associated with the detection circuit the peak in an absorption does not occur in the same position when the klystron is swept upward in frequency as it does when the 
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klystron is swept downward. Equal numbers of runs were made sweeping in both directions, and one upward and downward run together were counted as a single independent measurement in determing the probable error. Since the splitting between the two most intense lines in the J = 1 2 spectrum is independent of the sweep direction each run was counted as an indepen­dent measurement in determing the probable error in this number. The J = 1 -> 2 transition in CFCl̂  is shown, in Figure 3« Note the general qualitative agreement between Figure 3 and the predicted spectrum in Figure 1. Some of the deflections in Figure 3 are caused by noise rather than by absorption lines. The presence of noise also causes a random variation in the peak of a true absorption. The frequencies shown in Figure 3 and. the other figures represent averages of a large number of runs ever the absorption lines. Iz is not possible to make a reliable comparison of the results of a single run with the predicted spectrum.. The separation between the two strong lines labelled A and B in Figure 3 was found to be 4.65 ± .02 Mc/sec. The CI - C - CI bond angle in this molecule is 1 1 1 ± . 3 ° ( 2 3 ) , and therefore cos a is - 0 . 3 5 8 ± - 0 0 5 . Using equation 51 and combining the maximum probable errors in Af̂  and cos a gives -79*9 ± Mc/sec for the quadrupole coupling constant. The probable error of ± .6 Mc/sec is somewhat conservative. There is a pro­cedure for computing the probable error which allows for the possibility that independent errors may cancel one another (6l) but the improvement over the range given here is slight. From Table 4 we see that one of the strongest |K| = 1 lines corresponds to a frequency shift of 



A = 9859.26 ± .03 Mc/sec B = 9863.91 ± .03 Mc/sec C = 9865.01 ± .09 Mc/sec D = 9866.47 ± .05 Mc/sec E = 9869.82 ± .09 Mc/sec F = 9871.12 ± .05 Mc/sec 

Figure 3. J = 1 + 2 Transition in CFC1 at -78 °C, 50y Hg, 20v/cm. 
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fq = fcl (6 " 23 008 a) " (52) 

Using the probable error in eQq and cos a gives a frequency shift of 

-4.06 ± .06 Mc/sec. The probable error in this number is too large since 

the error in cos a has been weighted too heavily. A better estimate of 

the error is obtained by substituting equation 51 into equation 52 to 

obtain 

•F - Af (6
 - 2 3 COS OQ /c-oN 

fq ~ " ̂ q .120 (1 - cos a) ' ( 5 3 j 

Using the maximum and minimum, possible values for Af and cos a gives 

-4.06 ± .03 Mc/sec. This is the predicted splitting of the line labelled A 

in Figure 3» Therefore in the absence of quadrupole splitting we would 

observe the J = .1 =» 2 absorption in CFCl^ at 9863.32 ± .06 Mc/sec. 

The pair of second strongest lines in the J = 1 2 transition 

corresponds to frequency shifts of 

f q = |j§ (6 + Vr cos a) ( 54 ) 

and 

These correspond to frequencies of 3»09 ± -07 Mc/sec and 7»74 ± »09 Mc/sec 

respectively. Therefore we would expect lines at 9866.41 ± .13 Mc/sec and 9871*06 ± .15 Mc/sec and these correspond to the lines labelled D and F 



73 Figure 3° The lines labelled C and E correspond to two lines having a relative intensity of about 0.6 arising from an F = 5/2 ~> 7/2 transition for which an exact expression cannot be given. For a bond angle of 1.11° the computer gave -0.0833 eQq and -0,0222 eQq for the frequency shift of these lines. These would correspond to frequency shifts of 6.66 ± .05 Mc/sec and 1.77 ± .02 Mc/sec, or frequencies of 9865.09 ± .08 Mc/sec and 987O.O ± .1 Mc/sec which overlap the observed frequencies. Favero and Mirri (19) obtained 0,46 kc/sec for D -which gives a fre-quency shift of -0.01 Mc/sec for the J = 1 2 transition. D was not given by Favero and Mirri but theoretically it is about -.5 kc/sec (62). Using an observed frequency of 9859-26 ± ,03 Mc/sec, a frequency shift of -4.06 ± .03 Mc/sec due to the quadrupole interaction, and a frequency shift of -0.01 Mc/sec due to centrifugal, distortion, equation 50 gives 
B - BJV = 2465.825 ± .015 Mc/sec 

for the J = 1 2, |K| = 1 transition. Due to the assumed smallness of Dĵ  this value must be nearly equal to the rotational constant. Using this value for B we could now calculate the frequencies of the higher J lines in the spectrum.. Since the probable error would be multiplied by 2(j + l) this calculation does not afford a very meaningful check on the consistency of the theory. Instead we shall compute the value of B separ­ately from each transition and compare the results. In the J = 2 3 transition we have seen that the strongest |K| = 2 line overlaps one of the pair of strong |K| = 1 lines. From Table 4 the frequency shift of the |K| = 2 line is 



tn =^-qcosa (56) 
which gives -2.0k ± .03 Mc/sec. Assuming that line A in Figure k corres­

ponds to this transition we have lk, 79̂»86 ± .06 Mc/sec as the frequency 

in the absence of quadrupole coupling. The second member of the pair of 

strong |K | = 1 lines is shifted by 

or +O.525 ± .005 Mc/sec. The predicted line at l4, 795.38 ± .06 Mc/sec 

agrees with the observed line within the limits of the probable error. 

The prominence labelled B in Figure k corresponds to a similar prominence 

in Figure 2 which arises from a |K | = 1, F = 9/2-* ll/2 transition nearly 

superimposed on a [K| = 2, F = 7/2 transition (recall the degeneracy in 

the upper state). An average of these two shifts is -0.25 Mc/sec which gives a predicted frequency of ±k, 79̂ .6l + .08 Mc/sec. 
The J = 3 -* 4 and k 5 transitions in CFCl^ are shown in Figures 

5 and 6 along with the measured frequency of the strongest line in each 

transition. These frequencies differ somewhat from those reported by 

Long (63). The spectra shown here were obtained at lower pressures than 

Long used in order to obtain better resolution. 

Equation 50 can be written in the form 



A = 14792.82 ± .03 Mc/sec B = 14794.72 ± .05 Mc/sec C = 14795.44 ± .05 Mc/sec 

Figure k. J = 2 -> 3 Transition in CFCl^ at -78 °C, 15y Hg, 200v/cm. 
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where f is the measured frequency of a line and f is the theoretical 

quadrupole frequency shift of this line. Long pointed out (64) that if 

centrifugal distortion effects were small the quantity (f - f )/2(j + l) 

ought to be nearly constant for various transitions. This quantity has 

been computed and tabulated in Table 5 and compared with the values ob­

tained by Long. The effect of the coefficient D (which was not available 

to Long) has also been included in the table. The variation in the quan­

tity B - D ^ K 2 - 2D T(j + l ) 2 obtained by Long led him to conclude that 

D was large, negative, and changed with frequency. From Table 5 it is 
(J 

seen that the effect of centrifugal distortion is actually quite small. 

Table 5 . Rotational Constant of CFCl^ from Various Transitions 

Transition B - VTyr K 2 - 2D T(J + l ) 2 2D T(J + l ) 2 B - K 2 

Long (64) Present 
Investigation 

j = l -*2 2 4 6 ^ . 3 9 ± . 0 1 2 4 6 5 - 8 3 ± . 0 1 5 . 0 0 4 2 4 6 5 . 8 3 ± . 0 1 

j = 2 - * 3 2 4 6 5 . 6 3 ± . 0 1 2 4 6 5 . 8 1 ± . 0 1 . 0 0 8 2 4 6 5 . 8 2 ± . 0 1 

j = 3 4 2 4 6 5 . 7 2 ± . 0 0 2 4 6 5 . 7 9 ± . 0 0 6 . 0 1 5 2 4 6 5 . 8 1 ± . 0 0 6 

j = 4 - > 5 2 4 6 5 . 7 6 ± . 0 0 2 4 6 5 . 8 0 ± . 0 0 3 . 0 2 3 2 4 6 5 . 8 2 ± . 0 0 3 

All units are megacycles/sec 

The cause of the variation obtained by Long is due to the erroneous compu­

tation of the hyperfine structure and the subsequent erroneous assignment 

of the lines. 
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The variation in the quantity B - D K 2 shown in the last column 

J K 
of Table 5 m&y "be due to the shifting in the peak of an absorption line 

due to the presence of a nearby line. On the basis of these data a con­

servative estimate of the rotational constant of CFCl^ is 246.5.82 ± .02 
Mc/sec if we assume that the magnitude of D ^ is less than .5 kc/sec. 

The J = 1 -* 2 transition in CHCl^ is shown in Figure 7« Again note 

the general agreement with Figure 1. The splitting between the two strong 

lines is 4-55 ± .02 Mc/sec. The C l - C - C l bond angle is 111.3 ± .2° (24) 

and therefore cos a is -O.363 ± «003. These values give -77*9 ± «5 Mc/sec 

for the quadrupole coupling constant. Equation 53 then gives the shift of 

the low frequency line as -3«99 ± «03 Mc/sec. Hence the unperturbed line 

would occur at 13,208.29 ± .08 Mc/sec. Equations 54 and 55 predict the 

second strongest pair of lines to fall at 13,211.37 ± «12 Mc/sec and 13; 215.92 ± .13 Mc/sec which is within the allowed error. Note that the 

lines arising from the F = 5/2-* 7/2 transition do not appear as they did 

in the case of CFCl^. This may be due to interfering Stark components. 

The J = 2 —• 3 transition in CHCl^ is shown in Figure 8. Using 

equation 56 we predict that the unperturbed line would fall at 19; 812.23 ± .07 Mc/sec. Equation 57 predicts a strong line at 19; 812.73 ± »07 Mc/sec 

which is observed. The J = 3 -» 4 and 4 -» 5 transitions are shown in 

Figures 9 and 10. When these data are combined with the centrifugal dis­

tortion coefficients of Favero and Mirri we obtain the values for the ro­

tational constant shown in Table 6. On the basis of this table a conser­

vative estimate of the rotational constant of CHC1- is 3302.07 ± .03 Mc/sec. 



Figure 7 . J = 1 2 Transition in CHC1 at -78 °C, lOy Hg, 20v/cm. 

0 0 o 



A = 19810.21 ± .04 Mc/sec 

Figure 8. J = 2 -> 3 Transition in CHC1 at -78 °C, 5y Hg, 300v/cm. 
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Table 6. Rotational Constant of CHCl^ from Various Transitions Transition B - D T T_ K 2 - 2D T(J + l ) 2 2D T(J + l ) 2 D T V. K 2 B 

J = l-»2 
| K | = 1 
J = 2 3 
| K | = 2 
J = 3 -> 4 
( K | = 2 
J = 4 -» 5 
IKI = 2 

3302.07 ± .02 
3302.04 ± .02 
3302.04 ± .02 
3301.99 ± -01 

.01 
•03 
05 
08 

.00 3302.08 ± .02 
-.01 3302.06 ± .02 
-.01 3302.08 ± .02 
-.01 3302.06 ± .01 

All units are megacycles/sec, 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Bersohn (k) was among the first to realize that Racah's algebra of 

irreducible tensor operators (6)(7)(8) could readily be extended to prob­
lems involving the rotational motion of molecules. In the course of this 

work Bersohn derived general expressions for the matrix elements of the 

quadrupole interaction energy in a molecule containing three identical 

quadrupolar nuclei. P. N. Wolfe (12)(13) succeeded in resolving the quad­
rupole hyperfine structure in the J = 2 -» 3 transition of CHCl^ and attempted 

to evaluate the quadrupole coupling constant by using Bersohn's theory. 

This attempt was complicated by the fact that it was not possible to assign 

the |K | = 1 and [K| = 2 lines unambiguously in the absence of any know­

ledge of the magnitude of the centrifugal distortion coefficients. Long (l4)(l5) was able to observe the J = 1 ->2 transition in CHCl^ and CFCl^ 

as well and was thereby able to make a better comparison with Bersohn's 

theory. These results indicated that either the theory was in error or 

there was an anomaly in the centrifugal distortion coefficients. By 

measuring higher J transitions Favero and Mirri (19) showed that the cen-

trifugal distortion coefficients were in good agreement with the theore­

tical values. 

In this study the terms in the electric quadrupole interaction 

Hamiltonian which involve the electric field gradient operator have been 

evaluated in detail. Bersohn did not do this. When the requirements of 
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the Pauli exclusion principle are imposed on the state function of the molecule and this state function is used to calculate the electric field gradient, terms are obtained which were not included in the calculations used by Wolfe and Long. These additional terms arise only in the |K| =• .1 case. Some simplification over Bersohn's results has been obtained by making greater use of the symmetry properties of the molecule as suggested by Svidzinskii (21). For the case |K| = 1, J= 1 -» 2 the calculation predicts that the two strongest lines are of equal intensity and are shifted from the un­perturbed frequency by 

respectively. The quadrupole coupling constant eQq may be evaluated by measuring the splitting between these two lines. This splitting is given 

eQq 2H0 (6 - 23 cos A) 

and. 
=2$ (6 + .11 cos A) 

by 

A f q = -3 

eQq 70 (l - cos A) . 

For higher J transitions the most intense line is a JK| = 2 line. The frequency shift produced by the quadrupole interaction in a rotational transition from J to J + 1 is given by 



87 -3 (J 2 + 19J +30) eQq cos g 
q (2J + 2)(2J + 3)(2J + 4)(2J + 5) * 

It may be the case however that other lines in the hyperfine pattern over­

lap one another to such an extent that they produce absorptions which are 

more intense than this line. 

A detailed comparison of the theoretical spectrum with the observed 

spectrum has not been possible due to the limited resolution of the spec­

trometer. Nevertheless there is a sound basis for believing that the cal­

culation of the quadrupole hyperfine structure presented here is correct. 

The magnitude of the quadrupole coupling energy obtained for CFCl^ and CHCl^ 

is very close to that obtained in solid state measurements. Of course the 

same thing might be said for the value obtained by Wolfe (12) for CHCl^. 

However Long (lk) used the same theory that Wolfe used and obtained a 

different value for the quadrupole coupling constant by measuring a dif­

ferent transition. The overall qualitative agreement between the predicted 

and observed J = 1 -> 2 and 2 -> 3 spectra is encouraging. While many of the 

predicted lines were too weak to be observed, at least there were no lines 

observed where none was predicted. Finally, when the theoretical frequency 

shifts are combined with the measured frequencies of the various transitions 

they give rise to values of the rotational constant B which are more consis­

tent with one another than the values obtained using Bersohn's calculations. 

When the predicted and observed spectra are compared they give -79*9 ± 

.6 Mc/sec for the quadrupole coupling constant in CFCl^ and the quantity 

B - D T T_ K 2 is found to be 2465.82 ± .02 Mc/sec. If D is less than .5 JK JK 
kc/sec as centrifugal distortion theory predicts then this number must be 
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very close to the value of the rotational constant. 35 
For CHCl^ the quadrupole coupling constant is found to he -77.9 ± .5 Mc/sec and the rotational constant B is 3302.07 ± .03 Mc/sec. 

The size of the quadrupole coupling constant depends upon the value 

of the bond angle a. The values used in this investigation are those given 

by Loubser (23) and Jen and Lide (24). These values may not be correct 

since these investigators did not resolve the quadrupole hyperfine struc­

ture. The calculation presented here should be extended to the asymmetric 

top case and used in connection with the spectra of various isotopic 

species of these molecules in order to obtain the bond distances and 

angles more precisely. 

It is possible to use the "wave functions presented in this thesis 

to obtain simultaneously the effects of quadrupole interactions and exter­

nal applied electric fields. This allows one to treat the Stark effect in 

the presence of hyperfine structure. Such a program has already been under­

taken (22). 
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APPENDIX 

The matrix elements of the quadrupole interaction Hamiltonian for a 

molecule containing three identical quadrupolar nuclei of spin 3/2 are given 

here for the cases J = 1, 1, and 3; | K | = 1 and 2. A detailed spectrum for 

the J = 1 -> 2 and 2 -» 3 transitions in such a molecule may he obtained by 

substituting the appropriate bond angle a into these matrix elements and 

diagonalizing over the resultant nuclear spin I. The matrix elements B ^ 

of the diagonalizing transformation may then be substituted into equation 

47 to obtain the intensities of the transitions. A factor of eQq has been 

omitted from every element shown here. 

J = 1, |K| = 1 F I I' 

v = 0 v = 1 
9/2 7/2 7/2 (3 cos a -

4o 
2) (2 - cos a) 

40 7/2 7/2 7/2 (2 - 3 cos a) (cos a-2) 7/2 7/2 7/2 14 14 5/2 5/2 (2-3 cos (cos a-2) 5/2 5/2 280 280 7/2 5/2 3 \f6 (3 cos a -140 2) 3 \f6 (2 - cos a) 140 
5/2 7/2 7/2 3(3 cos a - 2) 3(2 - cos a) 5/2 7/2 7/2 56 56 5/2 5/2 2(3 cos a -

175 
2) 2(2 - cos a) 175 

3/2 3/2 (11 cos a -- V (4+3 cos c 3/2 3/2 200 200 
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J = 1, K| = 1 ( C O N T I N U E D ) 

5/2 3/2 
3/2 5/2 5/2 

3/2 3/2 

350 
350 

>/l5 (1 + COS a). (3 
COS A - i) 

50 50 3^ ( L 

+ COS a) 3-T6 (3 COS A - i) 

200 200 (2-3 COS A ) ( C O S A - 2) 100 100 
(k - 11 COS A ) -(k + 3 COS A ) 

50 50 
L/2 1/2 0 0 Q/O 0/0 -3N/21 (1 + COS A) 3 ̂ 21 (1 - 3 COS A) 

51 200 200 
R / O W P 3̂ 35 (3 COS A - 2) 3̂ 35 (2 - COS A ) 
P / ^ 1 / - 200 200 
Q / O N / P - J15 (1 + COS A ) N/T5 (1 - 3 COS A ) ^ 200 200 

1/2 3/2 3/2 ( 1 1 r0

s a" M ( 4 + lcos a) 

1/2 1/2 0 0 
+ COS A ) (3 COS A - L ) 3/2 1/2 50 — IJO " 

J = 2, |K| = 1 
F I T / V = 0 v = 1 11/2 7/2 7/2 

(2-3 COS A ) ( C O S A - 2) 25 28 " 

F I I' V = 0 v = 1 
5/2 7/2 5/2 9 ^ (2 -^3 COS a) 9 ^ ( E O S , ^ - 2) 

7/2 3/2 
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J =2,IKI = 1 (continued) F I I 

9/2 7/2 7/2 
9/2 5/2 5/2 

7/2 5/2 
7/2 7/2 7/2 

5/2 5/2 
3/2 3/2 
7/2 5/2 
7/2 3/2 
5/2 3/2 

5/2 7/2 7/2 
5/2 5/2 
3/2 3/2 
1/2 1/2 
7/2 5/2 
7/2 3/2 
7/2 1/2 

v = 0 v = 1 19 (3 cos a-2) 19 [2 - cos a) 392 392 (3 cos a-2) [2 - cos a) 196 196 >J~33 [2-3 cos a) 3̂3 [cos a-2) 2 9« 
[3 cos a-2) 

2( 98 
[2 - cos a) 49 49 17 [2-3 cos a) 17 ( [cos a-2) i960 i960 [4 - 11 cos a) -[4+3 cos a) 140 140 •JT i [3 cos a-2) sir ( [2 - cos a) 196 196 -3̂ 14 [l + cos a) 3 Vl4 ( '1-3 cos a) 196 196 -9 N/21 ( 'l + cos a) 9 V 2 1 ( 1-3 cos a) 980 980 5( [2-3 cos a) 5( cos a-2) 392 392 [2-3 cos a) [cos a-2) 196 196 '11 cos a - 4) '4+3 cos a) 56 56 0 0 17 V T ( 3 cos a - 2) 17 -JTi 2 - cos a) 490 490 - 9sTT( 1 + cos a) 1-3 cos a) 490 490 
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J = 2, K| = 1 (continued) 

F I I' 

5/2 3/2 
5/2 5/2 1/2 

3/2 1/2 
3/2 7/2 7/2 

5/2 5/2 
3/2 1/2 
7/2 
7/2 
7/2 
5/2 
5/2 
3/2 

1/2 5/2 
3/2 

3/2 1/2 
5/2 
3/2 
1/2 3/2 
1/2 
1/2 
5/2 
3/2 

V = ̂  0 V = = 1 VIE (1 + cos a) Vii (3 cos a-l) 196 196 VT (2 - 3 cos a) VT (cos a - 2) 20 20 (1 + cos a) /̂42 (3 cos a-1) 280 280 15 (2 - 3 cos a) 15 (cos a - 2) 196 196 (3 cos a - 2) (2 - cos a) 196 196 0 0 0 0 9 VT (3 cos a - 2) 9 VT (2 - cos a) 245 245 

- VT (l + cos a) VT (1 - 3 cos a) 70 70 0 0 3 (1 + cos a) 3 (3 
cos 

a-l) 56 56 VI (2 - 3 cos a) VT [cos a - 2). 40 

40 - VI (l + cos a) VT (1 - 3 cos a) 40 

4o (3 cos a - 2) (2 - cos a) 70 70 (^ - 11 cos a) + 3 cos a) 40 

4o -3 Vi4 (1 + cos a) 3 Vl4 (1 + 3 cos a) 3/2 5/2 
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J = 2, [K| = 2 

F I I' 

1 1 / 2 7/2 7/2 

9/2 7/2 7/2 " y ^ " 5/2 5/2 3/2 

5/2 5/2 5/2 1/2 

7/2 5/2 ^ C % ° 3/2 1/2 

7/2 7/2 7/2 3/2 7/2 7/2 ±S- |§!L2 

5/2 5/2 i 2 _ ~ l - 2 5/2 5/2 

cos 
1 4 

a 
- 1 9 COS a 

196 

- COS a 9 B ^ 3 3 COS a 
- 4 COS a 

h9 

1 7 COS a 9 8 0 
COS 

1 0 a 
COS a 

9 8 
3sTlh COS a 

9 « / 2 l COS a 
245 COS a 1 9 6 
COS 

9 8 a 
- COS a 4 

0 
• 1 7 ^ 3 COS a 

2 4 5 
cos a 2 4 5 0 

N/21 cos a 5 9 
N/"2 COS a 1 0 
N/42 cos a 7 0 

- cos a 
9 8 — 

3/2 3/2 ^ 2 3/2 3/2 0 

7/2 5/2 y 7/2 5/2 - 18 V T c o s a 
7/2 3/2 J V ^ u j £ " 7/2 3/2 2 ^ c

3°s a 

5/2 3/2 *v *x gos " 7/2 1/2 0 

5/2 7/2 7/2 ^ f j p 5/2 3/2 ^ 3 _ c o s _ a 

sl~3 cos a 
2 0 

5/2 ~ g J £ 5/2 l/2 

3 / 2 3 / 2 3/2 l/2 

1/2 X/2 0 1 / 2 5 / 2 5 / 2 
7/2 s/p - 1 7 v 3 cos a , „ 
f/ 5 / 2 3/2 3 / 2 7 cos a 

2 0 

N/3* COS a 
1 0 

- cos a 
3 5 7 / 2 3 / 2 1 ^ 7 cos a 5 / 2 3 / 2 

7 / 2 1 / 2 - 3 ^ 1 4 cos a 
7 0 
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F I I' 

13/2 7/2 7/2 
ll/2 7/2 7/2 

5/2 5/2 
7/2 5/2 

9/2 7/2 7/2 
5/2 5/2 
3/2 3/2 
7/2 5/2 
7/2 3/2 
5/2 3/2 

7/2 7/2 7/2 
5/2 5/2 
3/2 3/2 
1/2 1/2 

7/2 7/2 5/2 
7/2 3/2 

v = 0 V = 1 
(cos a - - 7 COS a) 00 

48 
(k - COS a) 

cos 

a ->0 
56 

56 
(k - COS a) [7 COS a -*0 

336 336 
\l~2~6 (cos a -

^ ) Vii [k - 7 COS a) 168 168 kl(k - cos a) ki fJ COS a -

V462 

V154 

V66" V462 

1680 
cos a - k) 

+ 13 cos a) 
24o" 

cos a - 4) 
420 

1 - 4 cos a) 
"420" 1 - 4 cos a) 280 

4 - cos a) 
—mi 

cos a - 4) 

8+13 cos a) 120 
0 

4 - cos a) 420 

1 - 4 cos a) 420 

VT 

- ̂ 462 
- VT54 

66 
462 

4-7 cos a) "~2B0 
8-29 cos a) 
4-7 cos a) 

420 
1 + 2 cos a) 

420 
1+2 cos a) 

280 

7 cos a - 4) 4-7 cos a) 
280 

29 cos a - 8) 
120 

0 7 cos a - 4) 420 1+2 cos a) 420 

file:///l~2~6
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J = 3> | K [ = 1 (continued) 

280 280 5/2 1/2 sTf (cos a - 4) 80 V7(4 - 7 

80 

cos a) 

3/2 1/2 (4 cos a-l) (1+2 COS a) 3/2 1/2 

40 40 7/2 7/2 
(cos a - 4) 

112 

(4 - 7 

112 
COS a) 

5/2 5/2 (cos a - 4) 4200 (4 -7 cos a) 4200 
3/2 3/2 (8 + 1 3 cos a) ( 2 9 cos a • • 8) 3/2 3/2 

400 400 1/2 1/2 0 0 

7/2 5 / 2 
2 9 N/T (4 - cos a) 

2100 2 9 N/J ( 7 cos 2100 a -
7/2 3/2 

3 sF(0 (1-4 cos a) - 3 Ĵ o" (2 cos a + 1 ) 7/2 3/2 
7 0 0 7 0 0 

7/2 1/2 0 0 

5/2 3/2 
1 7 >/i4 (4 cos a-l) 

1400 

1 7 V l 4 (1+2 1400 COS a). 

5/2 1/2 
N/210 ( C O S a - 4) V210 (4 - 7 

COS a) 5/2 1/2 

600 600 3/2 1/2 
si 1 5 (1-4 cos a) - KHJJ (1+2 cos a) 3/2 1/2 

100 100 
7 / 2 7 / 2 

5 (cos a - 4) 5 (4 - 7 COS a) 7 / 2 7 / 2 1 6 8 

168 5 / 2 5 / 2 

11 (4 - cos a) 11 ( 7 cos a -5 / 2 5 / 2 

2800 2800 

F I I' v = 0 v = 1 

7 / 2 1 / 2 0 0 
\/T (4 cos a - l) \/T ( 1 + 2 cos a) 
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J = 3j [ K | = 1 (continued) 

100 100 

1 3 N / i o ' (4 - cos a ) 13 o /l6" (7 cos 

a -1400 1400 

N/*35~ ( 1 - 4 c o s a ) _ »> / F (1 + 2 cos a ) 
350 350 9 N/TF (4 cos a - l ) 9N 

/ U ( 1 + 2 cos a ) 
700 700 5 (cos a - 4) 5 (4 - 7 cos a ) 112 112 

(4 - cos a ) (7 cos 

a -4) 140 140 

\/~6~ (4 - cos a ) \T6~(7 cos a -140 140 

All matrix elements are zero. 

F I I' v=0 v = 1 
/ I - (8+13 cos g ) (8 - 29 cos a ) 

5' ->L I nn I nn 
7/2 5/2 
7/2 3/2 
5/2 3/2 

1/2 7/2 7/2 
5/2 5/2 
7/2 5/2 



97 
LITERATURE CITED* 

1. H. B. G. Casimir, On the Interaction Between Atomic Nuclei and 
Electrons (Teyler's Tweede Genootschap, E. F. Bonn, Haarlem, 1936). 

2. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill 
Book Co., Inc., New York, 1955 ), P- 150. 3. J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (19̂ 8). 

k. R. Bersohn, Unpublished Ph.D. Thesis, Harvard University (19̂ 9)' 
5» Townes and Schawlow, op. cit., p. 173• 6. G. Racah, Phys. Rev. 62, +38 (19+2). 7- , Phys. Rev. 63, 367 (19̂ 3). 8. , Phys. Rev. 76, 1352 (19̂ 9). 9. M. Mizushima and T. Ito, J. Chem. Phys. 1£, 739 (1951). 10. S. Kojima, et al., J. Chem. Phys. 20, 80+ (1952). 11. G. Herrmann, J. Chem. Phys. 22, 2093L (195+). 12. P. N. Wolfe, Unpublished Ph.D. Thesis, Ohio State University (1955). 13. , J. Chem. Phys. 25, 976 (1956). 

ik. M. W. Long, Unpublished Ph.D. Thesis, Georgia Institute of Techno­
logy (1959). 15. M. W. Long, J. Chem. Phys. 33, 508 (i960). 16. R. Livingston, Phys. Rev. 82, 289 (1951). 

17. Long, Thesis, p. 72. 18. R. C. Johnson, J. Chem. Phys. 36, 1588 (1962). 19. P. G. Favero and M. Mirri, Nouvo Cimento XXX, 502 (1963). 
The abbreviations used in this section follow the Style Manual published 

by the American Institute of Physics (Second Edition^ 1959)• 



98 
20. T. L. Weatherly, Q. Williams, and A. A. Wolf, Bull. Am. Phys. Soc. 

10, 492 (1965). 
21. K. K. Svidzinskii, "Theory of the Hyperfine Structure in the Rota­

tional Spectra of Molecules, 11 Soviet Maser Research, ed, D. V. 
Skobel'tsyn (Consultant's Bureau^ New York, 1964). 

22. C. R. Nave, Unpublished Ph.D. Thesis, Georgia Institute of Techno­
logy (1966). 

23. J. H. N. Loubser, J. Chem. Phys. 36, 2808 (1962). 
2k, M. Jen and D. R. Lide, Jr., J. Chem. Phys. 36, 2525 (I.962). 
25. E. P. Wigner, Group Theory and Its Application to the Quantum 

Mechanics of Atomic Spectra (Academic Press, Inc., New York, 1959)• 
26. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 

University Press^ Princeton, 1957)• 
27. Ibid., p. 8. 

28. Ibid., p. 55-

29. Ibid., p. 59-

30. Townes and Schawlow, op. cit., p. 62. 

31. Edmonds, op. cit., p. 37. 

32. Ibid., p. k6. 

33- Ibid., p. hj, 

34. Ibid., p. 92. 
35. M. Rotenberg, R. Bivins, N. Metropolis, and J. Wooten, Jr., The 3-j 

and 6-j Symbols (The Technology Press, Cambridge, Mass., 1959)• 
36. Edmonds, op. cit., p. 75* 

37. Ibid., p. 111. 

38. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, Inc., 
New York, 1962), p. 99. 

39* M. A. Preston, Physics of the Nucleus (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962), p. 6k. ho, Svidzinskii, loc. cit., p. 112. 



99 
4.1. Edmonds, op. cit., p. .117• 
42. N. F. Ramsey, Nuclear Moments (John Wiley and Sons, Inc., New York, 1953), p. 5-
43. M. Hamermesh, Group Theory and Its Applications to Physical Problems 

(Addison-Wesley Publishing Co., Inc., Reading, Mass., 1962), p. 161. 
44. H. Eyring, J. Walter, and G. Kimball, Quantum Chemistry (John Wiley 

and Sons, Inc., New York, 19̂ 4), p. 179. 
45. J. Indritz, Methods in Analysis (The Macmillan Co., New York, 1963) 

p. 31. 
46. Hamermesh, op. cit., p. 111. 

47. Ibid., p. 103. 

48. Ibid., p. 113. 

49. Svidzinskii, loc. cit., p. 109. 

50. U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press, Inc., 
New York, 1959), p. 7̂ -51. Svidzinskii, loc. cit., p. l47» 

52. Ibid., p. 111. 

53. Ibid., p. 146. 

54. Townes and Schawlow, op. cit., p. 65. 

55. Ibid., p. 19. 

56. Wolfe, Thesis, p. 8l. 

57. Townes and Schawlow, op. cit., p. 336. 

58. Long, Thesis, p. 49. 

59. Townes and Schawlow, op. cit., p. j8. 

60. Y. Beers, Introduction to the Theory of Error (Addison-Wesley Pub­
lishing Co~ Inc., Reading, Mass., 1953), P- 31 • 

61. Ibid., p. 31. 

62. Johnson, op. cit., p. 1588. 

63. Long, Thesis, p. 69. 

64. Ibid., p. 68. 



100 
VITA 

Albert Allen Wolf was born on September 2, 1935 in Nashville, 

Tennessee and attended public school there. He received the B. A. degree 

from Vanderbilt University in 1958 and attended the Graduate School at 

Vanderbilt from September, 1958 to June, 1959* He was employed as an. 

engineer by the Sperry Microwave Electronics Company of Clearwater, Florida 

in June of 1959• Vanderbilt awarded him the M. A. degree in i960. 
Mr. Wolf was an Instructor in the School of Physics at the Georgia 

Institute of Technology from June, 1961 to December, 1964. While here, 

he was awarded a Science Faculty Fellowship by the National Science Founda­

tion for graduate study from January, 1965 to September, 1965* 
In September, 1965 Mr. Wolf was appointed Assistant Professor of 

Physics at Davidson College. He was married to the former Cary Brums Hunt 

in 1956 and has three children. 


