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SUMMARY

The basic problem treated by Boltzmann and Gibbs involved
obtaining & workable theory describing irreversible and equilibrium
thermodynamic behavior starting from reversible micrcoscopic dynamics.,
Their theory leaned heavlly on the plausible but unproven hypothesis of
ergodicity, which, locsely speaking, asserts that each trajectcery of an
isolated system samples the entire energy surface of that system. They
deduced that an essentially irreversible approach to eguilibrium followed
from the ergedic hypothesis, despite the reversibility of the under-
lying microscopic dynamics, Until recently, the ultimate Justification
for intrcducing the ergodic assumption has been empirical verification
of the final predictions made by the Boltzmann-Gibbs thecory. Perhaps
the most definitive of the recent evidence supporting the ergodic assump-
tion has been provided by Sinai. In particular, assuming only the
validity of Newton's equaticns of motion, Sinai has rigorously estab-
lished that a hard-sphere gas does indeed exhibit the ergodic behavior
hypothesized by Boltzmann and Gibbs. For the purposes of this work, the
key feature of Sinasi’s proof lies in his showing ergodicity to follow
from the fact that the distance between almost any two system trajec-
tories initially close together in phase space grows exponentially with
Time.

It is believed that Sinai's proof can be extended to a large class
of systems having purely repulsive interparticle forces, hut there is

doubt concerning the extension of the theorem to systems having
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attractive as well as repulsive forces, Thus in this research ve

choge to study a Lennard-Jones gas system empirically on a computer in
order to investigate the question of ergodicity for a physically real-
istic system having attractive as well as repulsive interparticle
forces, These computer experiments show that trajectories for this
Lennard-Jones system separate exponentially in time at the temperatures
{total system energies) studied. Acceording to the theory of Sinai, as
well as that of Arnold and Sinail, this empirical evidence for exponen-
tially separating trajectories implies that the Lennard-Jones system

i1s ergodic, as is the hard-sphere gas,

The computer experiments also lend themselves tc the testing of
an hypothesis in the field of kinetic theory. In kinetic theory, diver-
gences appear when transport coefficients are celculated as series
expansions in the system density. The calculation assumes that binsry
collisions are the dominant transport mechenism at low density, with
three-body, four-body, etec., collisions becoming important sequentially
as the density is increased. OQur hypothesis inveolved the conjecture
that this seguential assumption might be in error and that cooperative
behavior--collisions amcng large numbers of particles--might sud-
denly appear as the density increased, thereby destroying the conver-
gence of the terms in the series expansions, It was expected that the
onset of cooperative behavior would cause the trajectory exponentiation
rate to exceed considerably the exponentiation rate due tc binary col-
lisions alone.

In order to test our hypothesis, a theory of trajectory-

exponentiation in a hard-sphere gas was developed. This theory yielded
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an expression for the rate of exponentiation due to binary collisions
sleone, because many-particle collisions, and hence cooperative effects,
were suppressed by the theoretical calculation, Contrary to our
hypothesis, the empirically-observed exponentiation rate for the Lennard-
Jones gas was in recasonable agreement with the theoretically-derived
binary collision expression over the entire range of densities studied.
Indeed, this agreement extended to densities sufficiently high that
three-body and four-body collisions were observed in the Lennard-Jones
gas. BSince no cooperative behavior was needed to explain the trajec-
tory exponentiation rates, even at these relatively high densities, no
empirical support was obtained for the cconjecture linking divergences

in transport coefficients with cooperative behavior,



CHAPTER I
INTRODUCTION

This dissertation presents the results of some numerical
experiments executed on a digital computer and a theoretical analysis
that partially predicts these results. From the numerical experiments,
which consist of the numerical integration of Hamilton's equations, it
is shown that a classical Lennard-Jones gas system exhibhits exponential
growth of the separation distance between trajectories in phase space
as the system eveglves in time; and data is obtained on the exponential
growth rate over a range of macroscopic eguilibrium conditions, This
behavior is explained by & theoretical treatment consisting of an anal-

vsis of the binary collision process.

Motivation

This study was motivated by two distinct considerations. First,
the ergodic assumptions of Beltzmann and Gibbsl can be shown2 tc hold
rigerously for systems in which the phase-space trajectories separate
exponentially with time, but there are tremendous technical difficulties
in mathematically proving that a given system has this exponential
character., At present, it has not been shown that systems with attrac-
tive interparticle forces exhibit exponentially separating trajectories.
In this work, the exponentially separating character of trajectories
for an attractive-force, Lennard-Jones gas system i1s demonsirated empir-

ically by means of a digital computer.



Second, the conjecture wag made that the term-by-term divergences
which arise in the contemporary kinetic theory of transport coefficient53
could be related to an abrupt appearance of cooperative behavior smong
all the particles of the system as the density increased. We undertook
tc prove or disprove this conjecture by searching for a more rapid
increase in the exponential growth rate with density than could be
explained by binary collision processes alone,

In the remainder of this chapter the background material and

objectives are given in more detail,

Ergodic Theory

The problem of statistical mechanics is to develop a theory for
the irreversible and equilibrium behavior of macroscopic systems start-

ing from reversible microscopic dynamics. Boltzmann and Gibbs were the

1,k-7

first tc deo this, although their treatments included assumptions

which have been put on a rigorous basis only recently by modern ergodic

theory.2’8-l2 In this section, only those features of the original

Boltzmann-Gibbs theory or the more recent ergedic theory having a8 direct

bearing on our work are presented., The discussion generally follows

>

and Wightman.ll For a more detailed exposition the
1,2,k-12

Uhlenbeck and Ford
reader is referred to the references.
Let us begin by considering the reversible, microscopic dynamics
of an isclated mechanical system of N particles. Here the state {micro-
state) of an isolated system is represented by & point in the phase
space (F-space) of the system. This representative point moves in time

along a phase-space trajectory specified by a sclution of the dynamical



equations of motion., Indeed, a detailed, general solution of the
equations of moticn would allow a determination of all possible trajec-
tories and would therefore provide all possible physical information
about the system; however, it is not feasible to obtain such a general
solution or its associated trajectories for any but the simplest mechan-
ical systems. Thus, in attempting to provide a method for calculating
equilibrium, macroscopically observable guantities, statistical mechan-
ics was forced to devise a scheme which aveids having to solve the
equations of motion. It was possible to devise such a scheme because
the macroscopically observable quantities are insensitive to the precise
micrgscopic mechanical state of the system, These eguilibrium quanti-
ties can be shown to be time averages of certain phase functions, that
is, certain functions of the microscopic variables {q,p), where g and P
are the generalized cocrdinates and momenta of the system. To calculate
these time averages would require knowledge of the detailed solutions
of the equations of motion. Since such knowledge is not available,
statistical mechanics sought tc replace these time averages by some
equivalent but more easily calculated averages,

Boltzmann was the first to make such a replacement successfully.
He introduced variocus plausibility arguments in support of the hypothe-
sis (ergodic hypothesis) that the representative point of a system in
phase space wanders freely over the energy surface, spending equal times
in equal (hyper-)} areas. On the basis of the ergodic hypothesis,
Boltzmann then argued that the equilibrium values of macroscopic quan-
tities could be calculated be averaging the appropriate phase functions

over the energy surface rather than over a time interval. In this



Tashion, Boltzmann used the ergodic hypothesis to ease the calculation
of macroscopically observable guantities for systems at equilibrium.

Zrgodicity also appears in Boltzmann's view of the approach to
eguilibrium. Since the long-time average of a phase function 1s pre-
sumed to equal the measured value of the corresponding cbservable quan-
tity for a system at equilibrium, Boltzmenn argued that most microstates
(values of the microscopic variables (q,p)) on a freely-wandering,
ergodic trajectory must correspond to the same thermodynamic eguilib-
rium state. As a conseguence, he suggested that most microstates on
the entire energy surface correspond to & single macroscopic equilib-
rium state., Therefore, Beltzmann expected that an iéol&ted system
started in some disequilibrium state and subsequently allowed to follow
its assumed ergodic tendency to wander freely over the energy surface
would surely approach egquilibrium because most microstates on the
energy surface correspond to the equilibrium state.

Gibbs6 restated and generalized Boltumann's arguments by intro-
ducing an ensemble--a collection of representative system pcints in
phase space confined for our purposes to a thin energy shell. The phase
functicn that gives the density of representative system points in an
ensemble i1s called the distribution of the ensemble. Usually one nor-
malizes this distribution tc unity and treats it as a probability dis-
tribution. This treatment is allowable because, in the course of time,
the representative system points of an ensemble move like an incompres-
gible fluid on the energy shell, according to the Liocuville thecrem.

A physically observable system state (macrostate) corresponds to

a large number of microstates. Therefore, by a physical measuremsnt one



determines the region on the energy shell wherein the representative
point of & system must lie, but not in which of the possible micro-
states it exists. As there is no & priori reason to assign any one of
the possible microstates in preference to another, & system prepared in
3 given macrostate is represented by an ensemble with & distribution
that is initially zero ocutside and constant inside the appropriate
energy shell region. As the system evolves from the prepared state,
the corresponding distribution ecan change its shape but not its volume.
Gibbs suggested that such a distribution evolves in time into a long,
thin filament which eventually permeates the energy shell uniformly,
At any time in the process, one considers the provability that the
original system has evolved to some particular macrostate to be the
measure of the part of the distribution which then cccupies the region
of the energy shell associated with that macrostate, When the distri-
bution becomes uniform over the energy shell, the probability of a
particular final macrostate is proportional to the (hyper-) volume of
the corresponding region. Because by far the largest volume belongs to
a single macroscopic equilibrium state, this state is overwhelmingly
likely to be the final one. The "extension-in-phase” of Gibbs gives
the same final results as the ergodic hypothesis of Boltzmann, both in
the ultimate approach to equilibrium and in the replacement of time
averages by phase space averages.

The rigorous ergodic theorems of Birkhoffll allowed Boltzmann's
assumptions about isoclated systems fo be expressed in terms of suffi-
cient conditions, These theorems are: 1) the time average of an

integrable phase function exists on almost every trajectory, and 2) for



metrically traensitive systems, the time average is the same on &lmost
every trajectory and is equal to the uniformly weighted phase space
average of the phase function. We use the term "almost" in the sense

of measurc theory to mean "except for & set of measure zero." A
mechanical system 1s said to be metrically transitive if 1t is impos-
sible to divide the energy surface into twe regions of positive measure
such that almost all trajectories beginning in one of the regions remain
there. The modern terminclogy 1s to call metrically transitive systems
ergedic, and we shall fellow this practice.

Although ergodicity in the preceding sense is sufficient to
insure the equality of time and phase-space averages, there are sironger
conditions of stochasticity which alsc ensure the equality of time and
phase -space averages;2 we shall consider two of these, the first being
the property of mixing.

Since a distribution of points on the energy surface moves like
an incompressible fluid, there exists an invariant measure there, which
we shall call pu. Suppose that the measure ¢f the entire surface is nor-
melized to unity. ILet A be a fixed set on the surface, and let Bt be
a set on the surface at time t that has evolved from an original set BO
at time t=0 according to the dynamics of the system. The system is

then said te be mixing if we have

o W(ANB,) = u(A)u(B,) - (1)

2
It can be shown that mixing implies ergodicity, but the converse is

not true.



We now give an example (adapted from Arnold and Avezz)
illustrating the mixing property: suppose that we have a glass con-
taining 80 per cent Coca-Cola and 20 per cent rum. If Bo is the region
in the glass originally occupied by the rum, then after sufficient
stirring (t—==) any set A scmewhere in the glass would be expected to
consist of Coca-Cola and rum In four-to-one proporticns, This is
exactly the behavicr indicated by Eq. (1).

Comparison of the last three paragraphs with the arguments of
Boltzmann and Gibbs reveals that mixing is similar to Gibbs's picture
while ergodicity (metric transitivity)} is closer to the ideas of
Boltzmann,

The second stochastic property we shall need is that exhibited

2,11, 12 These Sygtems will be

by a class of systems known as C-systems,
discussed in more detail in the next chapter; for the present, let us
note that C-systems have the following characteristic behavior: every
element of area on an energy surface of & C-system changes shape as it
moves under the dynamical equations of motion in such a way that it
expands exponentially in at least one direction and contracts exponen-
tially in at least one other, Intuitively one can see that such behavior
leads to a distribution of points on the energy surface being drawn out
into a filament as discussed by Gibbs, and in fact it can be shown2 that
C-systems are ergodic and mixing. For cur work, C-systems have the
additional advantage that their behavior is relatively easy to charac-
terize empirically in computer studies.

iz
Sinai has shown that a hard-sphere gas is ergodic and mixing

and exhibits exponential behavicr similar tc that of a C-system.



Further, Wightmanll states that the "folklcre™ holds Sinal's results

tc be extendable to a large class of purely repulsive forces but that
attractive forces would introduce stable, periodic orbits at low encugh
energies, thus preventing ergodic behavior. A natural questicn to ask
is then the following one: do systems with attractive Interparticle
forces exhibit this exponential behavior? This 1s one of the gquestions

which we answer here empirically.

Dense Cases
Another motivating factor in our research lies in the work of

13

Miller, who performed some computer studies on stellar dynamical
systems and observed exponential tehevior as described in the preceding
section. He concluded that his results indicated cooperative behavior
among all of the particles because the results deviated from that
expected due to binary collisions alone. This hehavior was attributed
to the long range of the gravitational force, We were led by this con-
clusion to make the conjecture that cooperative behavior might make a
sudden appearance as the density increased in a system having short-
range interparticle forces, If it did so, one might then, in terms of
this behavior, explain the divergences that cccur when transport coeffi-
cients are calculated by means of & series expansion in powers of the

3

density. In particular,” this calculation assumes that binary (two-
particle) collisions are the dominant mechanism for transport phencomena
at low densities and that three-body, four-body, ete., collisions

become important segquentially as the densifty increases. The sudden

appearance of cooperative behavior among many particles would indicate



that this sequential assumption was not valid but rather that a sudden
transition from two-body to many-body tehavior ccecurred. As was men-
tioned earlier, we observed exponential behavior in the sysiem studied,
and ve expected to detect such a transiticn, if any, by looking for a
sudden, rapid increase in the exponential growth rate as the density
was increased.

We did not observe the onset of cooperative behavior. Neverthe-
less, this was the motivaticn for our study of the gas system over the
wide density range that was covered by our experiments. The major moti-
vatlon of the theoretical analysis that will be reported was to deter-
mine the exponential growth rate due to binary collisions alone in order
to compare it to the experimental growth rate.

In summary, our research consists of computer experiments
degigned to detect exponential behavior in a certain gas system and to
gather data on the exponential growth rate over a wide density range.

It further consists of a theoretical analysis to wnich the computer

results can be compared, These things were undertaken to provide em-
pirical support for some of the basic postulates of statistical mechanics
and to attempt to account for some difficulties in the kinetic theory of

dense gases.



10

CHAPTER II

INTECDUCTICN TO THE NUMERICAL EXPERIMENTS

This chapter contains an introductory description of the numeriecal
experiments mentioned in the preceding chapter. The following chapter
then gives a theoretical calculaticn of some of the quantities observed
in these experiments. By "observed" we shall always mean "computed in
the course of numerical experiments" throughout this thesis, In still
later chapters we shall give a presentation of the experimental results
and a compariscn between experiment and theory. This order of presenta-
tion is feolliowed because the thecretical calculation uses quantities
defined in the description of the experiments, and the experimental
results are then presented in terms of theoretically derived quantities
to facilitate comparison.

In the next section we develop some notation and define a C-
system more precisely than before. The weight of the empirical evidence

presented later is that the gas system under consideration is a C-system.

Mathematical Preliminaries

A classical system of M degrees of freedom is described by giving
its generalized coordinates q:.L and their conjugate momenta P> where
i=1,...,M. The state of such a system at any instant of time t is
conveniently represented by a phase space pcint (q,p) = (ql,...,qM,
pl,...,pM) in the 2ZM-dimensicnal, Euclidean phase space having the =h

and p. as coordinate axes, The representative point moves along a
i
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trajectory in phase space as the system evolves in time. The time
evolution of the system is uniquely generated from the Hamiltonian

H(q,p) Ly means of Hamilton's equations of motion:

i_ o

4t 2p. (2)
1

E_H._ai (3)

ét = ag, ’ ‘

where 1 = 1,...,M.

We shall restrict our attention to Hamiltconians H(q,p) which are
not explicit functions of the time and which yield trajectories lying
totally within a bounded region of phase space. We have dH/dt = Q since
H(q,p) does not depend explicitly on the time; therefore each trajectory

. . . . 1
is restricted to lie on an energy surface given by

H(Q:p) =k, (l‘L)

where E is the total energy of the system. The energy surface is a
(2M-1)-dimensional sub-space of the phase space and has finite, (2M-1}
dimensional (hyper-) area since the system motion is bounded.

Let us denote a single phase space point by y = (q,p), and let
v(t) = {a(t), p{t), - <t < ») be a parametric representation of a
trajectory. Suppose the trajectory y(t) passes through the point Vs at
the time t = 0. In the energy surface containing y(t), construct the
(2M-2)-dimensional (hyper-) plane normal to y(t) at v, Let sy repre-
sent a small displacement from Yo lying in the normal plane, yé the

point y + 5yo, y'(t) the trajectory through yé, and §y(t) the
0



difference [y'(t) - y(t)] at any time t.

A system is said to be a C-system if the normal plane can be
split intc exactly two sub-spaces, called the dilating and contracting
spaces, each sub-space having dimensionality one or higher, and further,
if there exists a positive A (which may depend on yo) such that the

following inequalities hold:

|ey(t)] 2 e lsv | t 20, (5a)

lsx(t3] e foy |, S0, (55)
for SyO in the dilating space, and

lsy(2)| S fsy |, 20, (6a)

[sy(t)| Z et sy |, ¢ to, (61)

for éyo in the contracting space. Conditions (5) or (6) are required to
be valid for arbitrarily large 'tl only for sufficiently small léyol.
There must exist some displacements éyo for almost every point on the
energy surface such that these conditiong heold. It can be shown2 that
C-systems are mixing and ergodic. Therefore, a system exhibiting expo-
nential behavior of this type for almost all trajectories would be
expected to possess all of the statistical properties hypothesized by
Boltzmann and Gibbs.

From the C-system definition, the dilating space has dimension-
ality one or more; thus, the entire coniracting space has measure zero
in the normal plane, and conversely, so does the dilating space. Conse-

quently, almost all sy{t) will be dominated by Eg. (%a) fort -+ and by
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Eq. (6b) for t—-o, Our experimental evidence indicates that in our case
this asymptotic behavior is established virtually immediately (see
Figures 3 through 11). We shall use Eq, (52) exclusively as our exper-
imental criterion for C-system behavior since we have Integrated the
eguaticns of motien only in the forward time direction, starting from
some specified initial conditions.

Throughout the rest of this thesis, we ghall use the temrm
"exponentiation rate" for the coefficient of an independent variable in
the exp function, e.g., A in BEg. (58), and the term "exponentiation of

trajectories" for the conditions indicated by Egs. (5) and (6).

Description of the Gas System

The gas system investigated was a mathematical model of an inert
gas. We attempted to make the model as realistic as possible, within
the limitations of classical mechanics and of computer time.

The system conslsted of N point particles each having mass n.
For various reasons which will be described presently, the system was
restricted to two spatial dimensicons; each particle was confined to
move within the same bounded, two-dimensional area. We denote the two-
dimensional position vector of the ith particle as Fﬁ, and the corre-
sponding momentum vector as fi = m d?i/dt.

Potential
We chose & Lennard-Jones pair potential for the gas system

15

because this interaction is supported by both thecretical and experi-
mentall6 evidence, The potential was modified slightiy to have a

finite range for convenience in the computer calculations, In terms of
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the Euclidean, two-dimensional distance r between two particles, the
range r, of the interaction, and the tabulatedl6 Lennard-Jones param-

eters ¢ and ¢, the pair potential U is given by

U(r) = As\ ( (—) (7)

>
when r < r_, and is zero when r = r_ . We note that both U of Eq. (7)

and dU/dr go continuously to zero as r approaches r, and that U differs
only slightly from the precise Lennard-Jones potential when r, is taken
to be several times the size of ¢, In cur experimentis we set T, = 50C.
The potential, as used in our experiments, is plotted in Figure 1.

It was convenient in our computer experiments to express dlstance
in units of g, energy in units of 4e¢, and mass in units of m. In terms

of these units, Eq. (7) for U becomes

.2
1 1 76 3 r o5 7 in

Ur) =4z - 7+ 12 6)(r ) - TEtE (&)
T r C l"c c rc rc

With Eg. (8), the full Hamiltonian H for cur N-particle system may be

written as

H =

2
VY (9)
>

gJP~‘12

where the distance rij between particles i and J is given by
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. = |r, - r, (10)

Dimengicnality

Although some of our initial computer work was done on a three-
dimensional gas, by far the largest amcunt was done for gas particles
moving in only two dimensions. There were several reasons for this,
the primary one being to achieve faster computer operaticn without loss
of significant generality. In addition, & two-dimensionsl system of the
type used in these investigations has fewer particles near the bound-
aries than a three-dimensional system with the same number of particles;
thus the boundary condltions have less effect on a two-dimensional
system. Moreover, the thecoretical development which we shall present
later would have been scmewhat more complicated in three dimensions
with little promise of adding enough additional information to Justify
the effort. Finally, we expect the gualitative features to be the same
in the simpler, two-dimensicnal system as in the more physically real-
istic three-dimensicnal cne since the most important source of exponen-
tiating trajectories for gas systems 1s the binary collision processg’l3
which is identical in two and three dimensions.

Boundary Conditions

In preliminary experimentaticn with various types of reflecting
walls for the system, it was found that such walls contributed in a sig-
nificant and unpredictable way to the exponentiation rate being observed.
It was therefore decided to eliminate the walls altogether by using
periocdic boundary conditions., With these boundary conditions, the

exponentiation rate is determined by the effects of interactions among

the particles alone.
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The system with pericdic boundary conditions was laid out in the
shape of a square, the opposite edges of which were effectively joined
gc a particle leaving the system through one edge of the square immedi-
ately re-entered thrcugh the opposite edge. The potential was also
effective across the boundaries; thus, our system had the topclogy of a
torus. Bystems with this topology have frequently been the subject of

studies in ergodic theory.2

Description of the Numeérical Experiments

As has been indicated earlier, the numerical experiments
described in this section were performed to obtain evidence that the
trajectories exponentiate in gas systems having attractive interparticle
forces and to gather data on the exponentiation rate over a range of
densities,

Experimental Procedure

The experimental procedure was essentially the same as Miller's

13 17

procedure, A fourth-order, variable-step Runga-Kutta method WwaS
used for all numerical integrations.

In our terminoleogy, a single experiment consisted cf integrating
Hamiltcn's equations of motion simultaneously for two macroscopically
identical systems. The representative points in phase space for the
systems were initially separated by a very small distance (on the order
of 107 in the units of Eg. (8)). The equations of moticn were then
integrated until the distance between the representative points grew by
several orders of magnitude,

Two groups of such experiments were run. For the first and by

far the largest group, the density was varied and the temperature held
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apprceximately constant., For the much smaller second group, the
temperature was varied at constant density. The number of particles
was held constant at N = 100 in both groups of experiments,

Observed Quantities

it was menticned previously that the major observed quantity in
our experiments was the exponentiation rate of the trajectories. For
any single experiment, however, the trajectories separated expconentially
only on the average (see Figures 3 through 11); it was therefore neces-
sary to compute a time-averaged exponentiation rate. In order to make
gsuch a computaticn, we experimentzlly obtained the distance between the
trajectories as a function of time. PFor the purpose of preserving
dimensional homogeneity, the distances Dp:hnconfiguration space and DP

in momentum space were defined separately at time t as

i
./jz

D, (%) [Fi(e) - T (0F (11)
i=l
N

D (t) = [ [By(%) - B2 (12)
' i=1

where we use & prime (') to distinguish the second system from the first.
The experimental values for these distances were then plotted in the
form of 1oglODq and loglODp versus time, The resulting graphs yielded
approximately straight lines which were then fitted by a least-squares
method to obtain time-averaged velues for the exponentiation rates kq

and Ap defined by
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d<1og10 D>
S

d<log.. D >
;\p 3__;12_;9_ , (14)

where the angular brackets here indicate the least-squares derived
guantities,

The results may be conveniently interpreted by expressing the
exponentiation rates with respect to the number of collisions that have
cccurred up to time t instead of with respect to t itself. 1In order to
do this, collisions were ccunted as they occcurred during the integra-
tion process., At high enough density in a real gas one would expect
three-body and higher-order ccliisions to occur, and we observed such
collisicons in the model.

For the purpose of counting, an n-body ccollision was defined as
the formation and subseguent dissolution of a group of n particles, A
group was defined as a collection of particles such that each member of
the group was within a given distance of at least one other member. In
our experiments we took this distance to be ¢ of Eq. (7). A collision
was counted when the first particle left a group, but not when successive
particles did, unless a new particle joined the group before the group
became completely broken up. In this latter case a new ceollision wasg
counted when the first particle left the new group, and so on.

In this chapter the experimental procedure has heen described only
so far as necessary to motivate and introduce the theoretical discussion

of" the following chapter. We shall return to the description cof the
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experiments and the presentation of the data after we have obtained some

theoretical results for comparison.
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CHAPTER III
THEORETICAL ANALYSIS

The obkjective of the theory discussed in this chapter is to
predict the exponentiation of trajectories in a gas system and to cerive
an expression for the exponentiation rate which may be compared with
experiment. The foliowing derivation is concerned exclusively with
binary collision processes, even though higher-order collision pro-
cesses were observed empi}ically. This restriction tc binary colli-
sions was made because a major aim of our experiments was tc find in
what way the observed exponentiation differed from purely binary colli-
sion behavior as the density increased. It therefore behooved one to
determine what this purely binary behavior might be.

The theoretical discussion considers two macroscopically identi-
cal systems which have representetive pointes initially only slightly
separated in phase space, Jjust as in the experiments, We focus our
attention on a single particle in one system as it undergoes a binary
collision and on the corresponding particle in the other system as it
undergces the corresponding collision, The first quantities calculated
are the single-particle position and velocity differences between the
twe systems after the collisicn in terms of these differences tefore the
collision. The final differences are then extended to give the values
of the initial differences in the following collision., This procedure

yields a set of difflerence equations for the single-particle position
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and velocity differences. These equations are solved approximately by
means of an averaging process. The resulting average solutions for
the single-particle differences are used toe produce averaged expres-
sions for the N-particle distances Dq and DP defined by Egs. (11) and
(12). Finally, an expression for the average expcnentiation rates is

obtained from the N-particle distances,

Assumptions

We expect collisions due itc the hard ccre of the potential of
Eq. (8) to be the dominant interaction among the particles since the
attractive part of the potential is very weak and has a finite range.
Moreover, the repulsive hard core of this potentisl is chosenl6 in
particular because of its resemblance to a hard-sphere potential.
Therefore, we elect to simplify our discussion by considering a hard-
sphere gas. We confine our attention to gas systems whose particles

move in only two spatial dimensions.

Definitions
Consider two macroscopically identical, N-particle, hard-sphere

gas systems. Dencte the Cartesian position and velocity vectors of the

.,rN and ul,.

—_
fag2

gas particles by r N

[EEE in the first system and by

s
r t

l,...,?r and 0! 3' in the second. For the kth particle of each

N 17 Yy

system, define 5?k and 5Ek to be the single-particle differences in

position and velocity between the two systems, as given by

6r, =T - T, (152)
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sifk = - Gk . (15D)

We shall uniformly use a small §, as in Egs., (13), to denote the
difference in a guantity between the two systems. Such differences are
elways assumed to be sufficiently small that second and higher-order
terms in them may be neglected in the calculation., Because we work
only to first order in §-quantities, it 1s permissible and freguently
expedient to treat § as a2 differential operator applied to the unprimed
guantities, and we do so several times in the course of the discussion.

The immediate objective of this calculation is to find the dif-
ferences of Egs. (15) as functions of time, for then Dq and DP of Egs.

(11) and (12) can be computed from

, (16)

P (17)

where m, the mass of a gas particle, is unity in the computer dimensions
of Egs. (8) and (9).

Before going into the detailed analysis, let us first define most
of the guantities that will be needed and sketch an outline of the
derivation., To avoid repetition, 1t will be our convention to define
guantities only in the unprimed system. Such a definition will implic-

itly define both the equivalent quantity in the primed system and, as
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in Egs, (15), the difference in the quantity between the two systems.
These implicitly-defined guantities will be denoted respectively by a
prime and by the little-§ acting on the unprimed quantity, again as in
Egs. (15).

We examine the position and velocity differences of particle 1

as 1t undergoes a collision with particle J. In the following deriva-

- -+

tion, we temporarily use the special symbols E;, Eﬁ and Vs vj respec-

tively for the positions and velocities of the particles immediately

after the collision and reserve the symbols ;&, ;3 and E&, Es for these
quantities immediately before the collision. By immediately we here
mean during some small (compared to the time between collisions) but
non-zero time intervals after and before the collision, Later we shall
evaluate the r's and s's at particular times (the U's and v's remain
constant because of the free-particle dynamics), but until we do so, it
should be kept in mind that these specially-defined pcocsition vectors are
Tunctions of time, When we arrive at the resulting difference equations,
we shall return to the more general notation of Egs. (15) through {17)
in which ;k and Ek generically dencte position and wvelccity.

For convenience we perform most of our calculation in the center-
of-mass frame of the unprimed system; this frame is diagramed in Figure 2.

Several center-of-mass quantities will be required, beginning with the

initial and final relative velocities E and v defined by

ﬁ’:ffi—ﬁj, (18)
T =v, - v (19)



v
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Figure 2.

<y

o'y

€

Center-of-Mass Frame.
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26

The initial and Tinal velocities of particle i in the center-of-mass
frame are 572 and ;/2, while those of particle j are -E/E and -;72.

Similarly, we define the relative position vectors r and § to be given

by
(%) = Fi(t) - I«'j(t) , (20)
s(t) = 5,(t) - 5,(8) , (21)

which are the vectors drawn from particle j to particle i before and
after the collision, respectively.
Now define the scattering angle & as the angle measured from E to

=
v, Because energy is conserved in the collision, we have

v = R(O)T , (

no
N
o —

where R(8) is the rotation operator given by

cos 6 - sin 8

R(®) = - (23)

sin @ cos §

-
Finally, let the impact parameter b be the projection of r per-

pendicular to a (this slightly unusual definition of the impact parameter

will be discussed later). For hard spheres, the scattering angle § is a

function of b alone; we represent this fact by writing
8 = o(p) . (2h)

Briefly, the derivation will go as foliows., The initial



ro

differences 6?}, 6?5, 6ﬁ£, and 633 in the lab frame cause conditions in
the center-of-mass frame to differ between the two systems by 5? and &0
(which are implicitly defined by Egs. {i8) and (20) according to our
convention). This produces a difference §b in the impact parameter
which, in turn, generates a difference 86 between the scattering angles
of the two systems. The difference v in the final velocity v is then
obtained with the help of Eg. (22).

After finding the velocity difference, we next compute from 5?
the difference §% in position after the collision by introducing a cer-
tain reflection ¢perator. The final center-of-mass differences 57 and
53 are then transformed back to the lab frame to give the final differ-
ences 6?£ and 5§i for particle i. Finally, we use free-particle dynam-
ics to get the initlal position and velocity differences for the next
successive collision of particle i, Thus, we obtain a set of equations
for the initial differences of a collision in terms of the initial 4if-
ferences of the preceding one, We then solve these eguations approxi-
mately and find an expression to be compared with the experimentally

observed exponencntiation rates.

Velocity Difference

We now begin the detailed calculations by finding first the final
veleocity difference 8¥. 1In our notation, the magnitude of a wvector will
be indicated, unless otherwise specified, by omitting the vector symbol
(™), and a unit vector will always be denoted by a hat (A), as in Eq.
(25) below.

It will be expedient to introduce the orthogonal unit vectors 4
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and A defined by

J/U- ’ (25)

R(g)ﬁ , (26)

S
]

O>
1]

where R is the rotation operator of Eq. (23). The impact parameter b

may then be written as
b =7-b, (27)
and we define the impact vector b by
B = b . (28)

Jt is always possible to pick the direction of positive rotation
in such a way as to make b non-negative according to Eg. (27), but we
do not choose to do so. Instead, we take the direction of positive
rotation to he given, allow negative values for b, and let the scatter-
ing angle § range from zero to 2n. This procedure allows the same posi-~
tive rotation direction to be maintained throughout a sequence of col-
lisions., This will be important later when we solve the difference
equations. Since b can be negative, it is not the magnitude of the
impact vector B of Ea. (28) but rather is the quantity defined by Eg. (27).

Although we shall not need it immediately, we complete the
definitions for this section here by defining the vector E, as shown in
FPigure 2, to be the common value of T and © at the instant of collision,

that is,

E = F(tc) = E.(tc) » (29)
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where tc is the time of the collision., The magnitude d of the vector a
is just the diameter of the hard spheres of the gas.

We now find the difference 6b in the impact parameter of Eg. (27).
This may be done by finding §b (defined implicitly by Eq. (27)) and

then using
sb = b.5T . (30)

It is to be emphasized that &b is the difference (b'-b) and not the mag-
nitude of &b, acccrding to our convention.
The truth of Eq. (30) can be seen easily by dotting B with

Eq. (27) to give

and applying the § operator to Eg. (31) to yield

ey —p

b = b8 + Tesb . (32)

A
Now, since 6 has constant length, b is orthogonal to TL the last term
of Eg. (32) vanishes, and Eq, (30) is established.
As T is the vector projection of T perpendicular to a {cf. Egs.

(27) and (28)), we have

Hl
o

(33)

ol
i
=}
1
=

Application of the § operator to Eg. (33) gives

53:5;-(1—-211155-35(1‘;;) . (34)

u



Hence, from Egs. (30) and (3%), we obtain

5o = B.o7 - {20) 8a1 (35)
u

We next want to simplify Eg. (35) by evaluating T and 6?, which
are functions of time, at the collisicn time tc. Here we must be espe-
clally careful because §T has not been defined at the time tc if the
collision time té in the primed frame happens to be earlier than tc' To

clarify this, we compute 57 explicitly: we write

HA

t) =a + (t - tC)E, t =t (36)

which follows from Eg. (29) and free-particle dynamics. The eguivalent

relation in the primed frame, valid for t earlier than té, is

re(vy =3 + (v - té)ﬁf, t S 6. (37)

On subtracting Eq. {36) from Eg. (37), we have

87(t) = 63 + (¢ - tc)aﬁ -d 5%, (38)
tut Fg. (38) is valid only for times up to the earlier of t, and t'. We
shall call the eariier of tc and té the beginning of the collision

process, and the later, the end. At the beginning of the collision

process, Eq. (38) necomes, to first order,

67 = 6T - ot . (39)

In obtaining Eq. (39), we have evaluated Eg. (38) at the earlier of t,
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and té and then dropped the middle term which is either zero or at
most of second order. The T of Eq. (39) is well defined and is the
particular value we want to consider as the initial position difference
for the collision under investigatlon.

Hereafter, we shall use the symbol 6F exclusively to mean the
gquantity given in (essentially defined by) Eg. (39), although it will
not be convenient to substitute for 6r from this egquation because experi-
mentally 6? is known while 6d and atc are not,

Eg. (35) for &b is valid for any time up to the beginning of the
collision process. We therefore evaluate this eguation at the beginning
of the collision process and substitute for r from Eq. (36) then to

yield, to first order,

- —
§b = b &7 - L9%§l Bosu . (Lo)
u

From the conservation of linear and angular momentum, i1t can be
shown that the line of d bisects the supplement {m - 8} of the scattering

angle 6 as shown in Figure 2, Thus, the angle from b to @ is 8/2, and we

write
d=a RC%) 5. (41)
Hence, with the help of Eg. (26), we have
3.0 =-udsind . (42)

Therefore, Eg, (40) becomes



5b:%-6?+%sim§b-ﬁﬁ’, (L43)

which completes the determination of &b,
Qur next step is to find 686, the difference in the scattering

angle, From Eg. (24) we obtain
50 =22 s, (k)

where we use the partial derivative notation to keep in mind that 9§ in
general, as opposed to the hard-sphere case ccnsidered here, depends on
u as well as b, Now evaluate Eg. (27) at the time tc, with the help of

Egs. (29) and (41), <o get

b=4a cos-g . (L5)
Hence, we have
o6 -2
3 = a—;T——E . (L&)
in g
Eqs. (43) and (L6) may now be substituted into Eg. (L&) to yield
A -+ A -
56 = - 2b 61’8 _ 2b°6u . (LFT)
. u
d sin 5

It remains to compute the final velocity difference §v from §8 of

Eq. (47). Eq. (22), written explicitly for the primed system, is

v' =R(9 + 60)u" . (48)
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Using Eg. (23), the rotation in Eg. (48) can be shown to be given by
it
R(6 + 69) = R(6) + 8 R(Q)R() . (49)

We put Eg. (49) into (48), and use Eq. (22) and the definition
=0 + 65 , (50)
to cbtain, after some rearrangement,
67 = R(8) (67 + ubss) . (51)
By substitution of Eq. (47) into (51), we find 67V to be given by

A, A

6% = B(8) | 67 - eb(P.en) - 2un(v:8r) (52)

d sin g

which was the objective of this section.

Ppsition Difference

The final position difference 53 will now be calculated. As with
8T, we must be careful to state at what time §5 is to be found, for it
has not been defined at times before the later of tc and té. In the
terminology of the preceding section, 62 is not defined before the end
of the collision process.

With the use of Eg. (29), we write, in analogy with Eq. (36),

S=d+ (v -1 )7, 125 . (53)

Eq. (53), in analogy with Eq. (38), leads tc



65 = 63 + (t - £ )6V - Vér_ , (54)

valid at and after the end of the collision process., No matter which
of tc or té is later, however, tc first order §5 at the end of the col-

ligion process is given by
b5 = &3 - V6t , (55)

which is to be compared with Eq. {39) for 6r at the beginning of the

collision process. After this, by 65 we shall always mean the particu-

lar one given by Eq. (55), Just as by 6; we mean the one of Eq. (39).
Now let P be the operator that reflects a vector through the ﬁ

axls. As any vector 2 may be wriiten in the form
- A
a =a Rla)u , (56)
for some angle o, the result of P acting on such an a may be written
Pa =a R(-u)a . (57)
Tt will now be shown that 8r and 65 are related by
§s = R(B)P &7 . (58)

We must have &4 perpendicular to d because d has constant length; thus,

with the help of Eq. (41), we may write 83 as
57 = |53 |R(2) (59)
2

where € is il. Hence, from Eqgs. (57) and (59), we obtain
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P &3 = glaa’lR(- g) 4. (60)
Therefore, by means of Eq. (59), R(8) applied to Eq. (60} gives
R(6) P &3 = 6a . (61)
Further, we note from Egs. (57) and (22) that
R(B) Pu =7 . (62)

Let us now operate on 67 with the composite operator R{8)P. In the
process we substitute from Egs. (39) and (35) and use Eqs. (61) and (62)

to obtain

R(8) P 6% = R(8) P (&3 - = 8%,) (63)

R(6) P 6d - ¥ 8%,

i

§d + 65 - &3 R
so Eg. {58) is proved.

Difference Eguaticons

At this point we have found, in Egs. (52) and (58), expressions
for 8V and 8% at the end of the collision process in terms of center-of-
mass quantities, Before going on to write the corresponding equations
in the lab frame, let us rewrite REq. (52) according to the following con-
sideration.

From Eq. (56) it can be seen that
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Pb=-15. (65)
But, since any vector a may bhe written as
— — A, A -
Z = (290 + @D, (66)
we have, from Egs. (64) through (66), the identity

P& = (-0 - (5.0)0 (67)

>

=& - 207 .
Thus, with Eq., (67), we can rewrite Eq. (52) as

A
67 = R(o)p an - 2RO (fgr (68)

d sin )

which is to be compared with Eq. (58) for 4%.
Now let us transform 8V and 8% of Egs. (68) and (58) to the lab

frame, The lab frame final velocity'ﬁz and position E& are given by

. Gi + U, 7

Vl = 2] +—2- b) (69)
- —~

- I'i + I, ‘é"

- (70)

)

where ﬁ;, Ej’ Sy and Fj are taken at the beginning of the collision
process, and ?i, ?, Ei’ and s at the end. Eq. (70) is valid only to
zeroth order, as we have dropped a term on the order of (Eﬁ + Ej)atc.

However, the equations for the differences 5?i and 6§£ are valid to

first order; we write them explicitly:



- 551 + b, 57
évi = ——~—§——~i + = (Tl)
- 5ri + 6?. 6§
5Si = —'_2—'_""1 + —2‘ . (72)

In order to proceed we must consider successive collisions of a
particle. TFor any particle k, let the single-particle collision index
nk(t) be defined as the total number of cellisions undergone by particle
k¥ from the initial time t = O through the time t. Let tk,n be the time
of the bheginning of the nth collision of particle k, where "beginning”
is used in the special sense that has been defined. We shall usually
omit the expliecit time dependence of the collision index and write simply

n or Jjust n when the particle meant is clear from the context.

k)

We now revert to our earlier notation in which the position and

velocity of eny particle k at time t are denoted by F&(t) and ﬁ%(t). We

immediately introduce the following special notation for Ek and r, at

k
the beginning of the nth collision of particle k: define Jk n and Fk n
2 2

by

-t —

= t %
By =l ) (13)
— —

r = I

ton = Tty ) o (7%)

where n is understood to mean the collision index n, for particle Kk,

Jid

Suppose that the particular coliision we have been examining is

number n, for particle i and number nj for particle j. The old 6Fi and

1

5?j of Eq. (72) go over into the new notation of Eq. (7h) according to

[
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5T, — 5T, (79)
5T . — 6T, _ . 6
rd I‘J ( (J)

A similar change of 55} and 5HJ of Eq. (71) into the notation of Eg. (73)

is given by

6ui - 6ui,n s {77}
0. - &u. . T8
SuJ ug,n (7 )

It is to be understood that the n of Egs. {75) and (TT) is ni, whereeas
ithe n of Egs. (76) and (78) is nj.

We want to write a set of equations for the beginning conditions
of successive collisions, but we have obtained end conditions in Egs, (71)
and (72). The beginning conditions of the next (i.e., n + 1st) colli-
sion are easily found, however., The velocities do not change between

collisions, so we have

(Sul.}n_'“l = Svi p) (T9)

where 5?1 is from Eg. (71). The change in position difference 1s found

from free-particle dynamics to be

— —

i el = 65, + TS onel 6ui,n+l , (80)

where 6§i is from Eq. (72), and where i onal is defined to be the time
2

interval between the collisions n and n+l of particle i according to
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T =1 -t . (81)

i,n+l i,n+l i,n

Thus, from Egs. (79) and (80), by using Egs. (71) and (72), by
substituting from Egs. (68) and (58), and by employing the definitions

of &0 and 87 implicit in Egs. (18) and (20), we obtain

6ui n ¥ éﬁﬁ n 65; n - buj n
— 2 2 > 2 i
i,n+l 2 * R(en)Pn 2 /) (82)
) EJR(%Jﬁ . ﬁan -6£@n
9 n 2 ’
d sin E?
Sr + 6;5 n 6?1 - 6;} n
oy — b) ) 2 2
Tindl T 5 + R(8,)P 3 (83)
7 %)

1,n41%% 041

where the n subscripfts on the center-of-mass quantities (un, en, Pn’
etc.) refer to those guantities in the nth collision of particle i.

In Fgs. (82) and (83), we intend that the particle index i range
over all the particles to produce a set of 2N simultanecus vector dif-
ference equations, the solution of which would give the 6?; and éﬁé for
all N particles as functions of the N collision indices n,. As they
stand, these equations are incomplete, because there 1s no specification
0of the center-of-mass guantities (un, etc.) nor of the times Ti,n+l
between collisions., To specify these quantities, we should have to
solve the equations of motion (Egs. (2) and (3)) for the gas system. As
the exact solution of neither Egs. (2) and {3) nor Eqs. (82) and (83) is

possible, we attempt a statistical solution of them,
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Solutions
Using a statistical method, we next solve Egs. (82) and (83)

approximately. The statistical assumptions introduced in the solutions
preclude any thecretical proof of the stochastic character of our model
by these methods., The hard-sphere gas has been shown by‘Sinaie’lg to

be essentially a C-system; in particuler, the two-particle, two-
dimensicnal, hard-sphere gas we next consider is of this class.2 There-
fore, one would expect statistical methods to be valid. Our purpose in
what follows 1s not a proof of stochasticity but rather a computation of
formulas to be compared with experiment. We rely on Sinai's theorems

to Justify many assumptions that would not be allowed in a rigorous dis-

cussion.

Two-Particle Sclution

Before finding an approximate, general sclution of Egs. (82) and
(83), we find statistical solutions of these equations for a two-particle
system that has periodic boundary conditions as in our computer experi-
ments, This case ig considered first because it is more nearly rigorous
than the general solution we shall present but nevertheless contains
most of the same features,

We initially take the total linear momentum to be zero in both
the primed and unprimed systems and translate one system, if necessary,
so the two centers of mass coincide, The lab and center-of-mass frames
are then identical for both systems and will remain So as the systems
evolve because the total linear momentum is conserved. Thus, in the

notation of Egs. (73) and (74), we have for all n that
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- ——p
ui,n + uj,n =0, (84)
T T, = tant (85)
ri,n + I'J.’n = constant , 5

where 1 and J represent the two particles., The corresponding position

and velocity differences between the two systems are therefore related

by

sw, = - 6. _ , (86)
6? = - 6; > (87)

for every n. The n of these last four equations is clearly the same for
both particles, as the two must always collide with each other.

In order to satisfy the C-system criteria, as stated in connection
with Egs. (5) and (6), we must select the differences of Egs. (86) and
(87) to be both on the energy surface of the unprimed system and normal
to the unprimed trajectory there. These restrictions could be accom-

rlished by requiring that the initial differences 63& ° and é;i o satlsfy
2 2

aui,o.ui,o =0, (88)
éri’o'ui,o = O » . (89)

in addition to Egs. (86) and {87). For the present, however, we omit
applying the restrictions of Egs. (88) and (89) in order to bring out
certain features of the solutions which have a bearing on our computer

experiments, as will be discussed,



Substitution of Egs. (86) and (87) into Egs. (82) and (83) yields

. 2u R(8_)b_ p
611i,n+l = R(en)Pnéui,n - __"""'?T"' n'éri,n ? (90)
d sin E?
O mbl R N Uy nel (91)

where we have dropped the n-subscript from un of Eq. (82) because u is a
constant of the motion in Eq., (90} and the i-subscript from Ts el
2

because Tl is the same for both particles. Bince the lab frame is the

center-of-mass frame, we have

Gn+l = R(8,) u_ > (92}

and hence, from Eg. (26), we also have

A A
b .. =R ) D . (93)
1t would be necessary to insert the possibility of a reflection as well
as a rotaticn intoc Eg. (93) had we not allowed negative values of the
impact parameter b of Eg. (27). The negative values were originally
allowed to avolid this reflection.

With the help of Egs. (92), (93), and (67), we next resclve the
difference vectors of Egs. {90) and (91) intc compcnents along the center

A A ,

of mass axes u ﬂn, un+l’ and 6n+l as appropriate to the nth or n+lst
collisions, In so doing, for ncotational convenience, we make the follow-

ing definitions:

- A —
5y = g 67 (94)
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5 _ A 64 ( 6
zn = U.n ui,n 3 9 )
A
éwn = bn'ﬁui.n 3 (9?)

A
which are to hold for any n. For the u components we obtain, with the

help of Eg. (92),

5Zn+l = 6Zn 3 (98)

5Xn+l - 6Xn + Tn+152n+l ?

while for the B components we get, with the help of Eg. (93),

2u

éwn+l = =0, - -*—_‘?;-6yh 1 (100)
d sin =
>

8Ypga = 8 T B - (101)

Eqs. (98) and (99) have the immediate solutions

Gzn = ézo ) (102)
6x = bx_ 4+ t bz, (103)

where t  is the time of the nth collision (relative to 1,=0), and the
initial conditions 620 and SXO are given.
We now apply the restrictions of Egs. (88) and (89), which, in

view of Egs. (94} and (96), give
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bz, =0 , (104)

5% =0 . (105)
Thus, Egs. {102) and (103) become

§z_ =0 , (106)

bx =0, (107)

for all n.

From Egs. (102) and (103) we can see the features referred to
earlier that are pertinent to the computer experiments., In the experi-
ments, an approximate algorithm was used to satisfy the appropriately
generalized equivalents of Eqs, (88) and (89). Sometimes there resulted
a small component of the initial differences normal to the energy sur-
Tace or parallel to the trajectory, in analogy with 620 and éxo. One
can argue in considerable detall, however, that the analog of Egs. (102)
and {103) should hold for a system of any number of particles, provided
that the particles are sufficiently similar to hard spheres, as we have
assumed ours to be., Therefore, these initial differences contribute at
most a linear time dependence to Dq and DP of Egs. (11) and (12)}. This
linear dependence is quickly dominated by the experimentally observed
exponentiation,

We return now to the solutions for éw and 8y. Egs. (lOO) and

(101) can be separated into two second-order equations, each involving

only one of &w and &y. The separation gives
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2uTr 5in E? sin ——
n+1 2
5w + 11+ + 5w 4 ——w_ =0, (108)
n+2 . en+l i en+l n+1 i en+l n
2 2 2
—
- 2urT T 1 T
89 4o * i1+ ngg + n+2§ 8,0 * D2 50 =0, (109)
. |  Pn T, n+l O
L d sin 5 =

To solve Egs. (108) and (109), we assume that each collision n is an
independent event in which Gn and T are selected independently accord-
ing to eppropriate probabllity distributions. (When we evaluate the
averages in Appendix B, we use a Maxwell, i.e., canonical, velcgecity
distribution.) In addition, we consider an ensemble of unprimed systems
that extends over all possible mieroscopic states consistent with the
macroscoplic eonditions. From it we cobtain an asscciated, primed ensemble
by reguiring the initisl differences 6wo, 6y0, 620, and 6xo to be the
same in every case. Our objective is to solve for the ensemble averages
of 6wn and éyn.

In Appendix A, it is shown that the appreximations

1 1
\/ N A (110)
n <si 1’1>
—2 s1ln _2

\sin

1 1
<?>E<T>’ (111)
n n

where the angular brackets indicate an ensemble average, allow Eqs. (108)
and (109) to be written for the ensemble everages of awn and 5yn by

averaging the coefficients,
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The procedure of averaging the coefficients in Egs. (108) and

{109) gives

. Tur® _

8 o 2(1 + 2d)6“n+1 + & =0, (112)
T o

5yn+2 + 2(1 + 53 )5yn+l + Gyn =0, (113)

9
where all quantities are ensemble averages. The average of sin EE is

taken from Eg. (BlT) of Appendix B. For the initial conditions, a

similar average of Egs. (100) and (101) is needed, which gives

™
= - - — l
Swy Bw -5 v, {114)
—_ [
éyl = - 6yo + o7 Gwl s (115)

where again all gquantities are ensemble averages with the exception of

6wo and 6yb which are the given initial conditicns,

With the initial conditions of Egs. (214} and (115), the solutions

of Egs., (112) anad (113) can be shown to be

m o 6
6wn 2 31nh ¥ { ((l - e wo * d 6yo] € (ll )

+ [(eY_ l){Wo B %? éyo] E‘W} g
e ([ v+ ] -

~

+ (- eMsy - Tawoj e'Y“} :
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where v is here given by

Y = cosh-l(l + %%%) . (118)

]635 = ]Bwn| 5 (119)
57 | = [ov_| . (120)

ouppose we choose 6wo and 6yo to be related by

Y -
(e’ - l)Gwo =5 by, . (121)

Then Bgs. (116), {119), and (111) combine to give

|6 | = |5ﬁ"o|eYn , (122)

and, with the additional help of Eq. (118), Egs. (117), (120), and (121)
give
—~— _ —+ Yn
|6x | = [6F_[e™ . (123)
Egs. (122) and (123) are to be compared with Egqs. (5).

If, instead of Eg. (121), we choose éwo and 5y0 to be related by

(e¥ - 1w = - T oy, (124)

then we similarly obtain

[, | = ei o™, (125)
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for | = [67 e, (126)

which are to be compared with Egs. (6).

Thus, the choice of Eg. (121) determines the dilating space, and
that of Eq. (124) determines the contracting space. Furthermore, Y of
Eg. (118) is the ensemble average of the trajectory exponentiation rate
(with respect to collision index n) for both position and velocity.

General Solution

An approximate, general solution of Egs. (82) and (83) will now
be found for a system of N particles., The problem will be approached in
two parts: 1) Find the overall effect of the seguence in which colll-
sions occur and 2) find the guantitative effect of individual collisicns,
Once the first part is accomplished, the second becomes a straight-
forward generalization of the two-particle case. The difficulty is that
there is no equivalent in the general case to Egs. {86) and (87) of the
two~particle case, This lack tends to destroy the causal reiationship
of a particle with 1ts past, In the first part of the discussion we
shall find a quantity that is causally related to its past and associate
this quantity with the exponentiation of trajectories.

For brevity in the discussion, relational condilitions are sometimes
stated for vectors {e.g., the maximum 63). These statements should be
taken to apply to the magnitudes of the vectors, Also, the discussicon
wiil ve carried through for the most part in terms of the aﬁ‘s; it is
to be understood that eguivalent remarks hold for the 5?'5.

We make the following postulate, based on observation:

Postulate 1., The 63'5 and 5;'5 of a system are distributed at any
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instant over a wide magnitude range.

Empiricaliy it was gbserved that typically a factor of lO3 to 105

existed between the maximwn and minimun 63's and 6T s.

The experimental initial conditlions put all of the fu's and 6T's
with the same magnitude, and it might be thought that at least one col-
lision per particle would be required to establish the condition of
Postulate 1. However, the crucial part of this postulate is that the
maximum U and 8T in the system be much larger than most of the other
s0's and 87's. This condition was observed experimentally to be estab-
1ished rather guickly (within 10 collisions or so of t = 0}.

Two corollariec are obtained from Postulate 1:

Coroilary la. In a large proportion of collisions, the initial §u and
6? cf one particle are much larger than the initial 55 and 5? of the

other particle.

Corollary 1b. The maximum 50 and &T of a system dominate the sums

forming Dp and Dq of Egs. (16) and (17).

Suppose particle i has the larger initial 80 and 6? in an 1-j

collisicon, as in Corollary la. Then we can neglect 55} 0 and 6?5 in
b pl

comparison with 651 , and 5?& , in Egs. (82) and (83) to cbtain

2 3

65; " 65} n Uy R(Gn)ﬁn \
— e 2 _ . bd
Hi,n4 5t R(en)Pn 2 o, (bn 5ri,n) ? (127a)
d sin &=
2
é?i h I:i n
875 il ST R8P, =5 Ty g Wy g o (1271)
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T s, u R en)ﬁn ’
-~ o dyn s . -
S95 nel A R(8 )P —5=+ §_ (%, 875 o) (127¢)
d sin N
- 5;£ n G;i n -
— e —_—l
s i1 T T2 R(8)P, =2~ + 75 nig 89y g - (1274)

If one substituted from Egs. (127a) and (lETc) on the right of Egs.

(127b) and (127d)}, then all four eguations would have only 55} , and
3

-t . -t —t
éri, on the right. Thus, 5ui,n+l and 6ri,n+l are causally related to
- — — -

t .
6ui} and éri,n’ bu 6uj,n+l and 5rJ,n+l are not causally related to
55 . and 5?, . The future of particle j depends on the past of

Jsh Jshl

particle i. In fact, it can be shown from Eqs. (127) that on the

average |5E. +l| and |5? are equal to lsa&,n+l| and Ié;ﬁ,n+l .

Jse1l

In this way, particle i communicates its past history to particle

Jsn+1l

insofar as the §'s are concerned; the past of particle j is irrelevant,
Hence, the 5E£ for a particuler particle 1 is not always causally
related to its own past. Nevertheless, in certain sequences of ceolli-
sicns, it is possible to define a maximum 53 that is causally related to
its own past, although the particle with which this maximum 63 is
associated may change during the sequence. As an example of this, con-
sider the sequence of collisions (1-2, 2-3, 3-4). Let us number these
collisions for reference hy the index n¥*: the 1-2 collision i1s number nﬁ,
the 2-3 number ng + 1, etc. Note that n* 1s not assoclated with any
single particle. We assume that a collision almost always acts to
2,12

increase the 53'5 involved, because of the known exponentiating

character of this system and the argument in Chapter IT about the domi-

nance of the dilating space,
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Suppose that initially au is the maximum of the 53'5. After

1,n%*
o

- -t

-2 i s 1 -
the 1 collision 6ul,n§+l and 5u2,n§+l are the maxima, after the 2-3

¢ e 3 0 i - -

ollision sug,no+2 and 5u3,no+3 are the maxima, and after the 3-4 col
-sn — a id a . - -

lision 6u ,n§+3 nd 5uh,ng re the maxima (similar comments apply to

3
the 5?'8). Now observe that through Egs. (lBTc) and (lQTd) we have
- - -t —
{and sr } causally related to 5ul,ng {and érl,ngL 6u3,ng+2

g 2, n¥+l
O

Yo, n¥+l
© -+

causally related to 5u2,n§+

Thus 8u ., defined by (5un§, aun§+l,

1 and 5u4,n§+3 causally related to 6“3,n§+2‘

—y

— . .
5Ung+2; 6un§+3) being respectively

—

equal to (6ul,ng’ 6u2,ng+l’

throughout the seguence and is causally related to its past.

— — . . —
6u3,n§+2’ 6u4,ng+3)’ is the maximum &u

It is not possible to define such a causally related 63 through-
out any sequence that includes a maximm {other than the first) generated

-

by a collision outside the sequence. In our example, if 5u3 had been
larger than 6Eé in the 2-3 ccllision, then the causal sequence would not
have occurred. But there is one seguence (if it exists) for which it is
always possible to define such a causal 65, rnamely, the sequence in which
a new maximum U (and 5?) for the entire system is produced by each
collision. In this segquence, the maximum 53 at each collision is neceg-
sarily a result of the previous collision in the segquence., PFurthermore,
it is Jjust this sequence which is of greatest interest, for by Corcllary

1t the calculation of the maximum 5E and 5; is the calculation of Dp and

D_.
g

It is unlikely for a single segquence as just described to exist
over a long period of time. However, we shall shortly make the approxi-
mation of replacing the collision parameters of Egs. (82) and (83) by

their averages, and in so doing we shall average over the directions of
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the $0's and 6r's. In this approximation, successive maxima of the

63'5 and 67's appear tc be causally relmted, whether they actually are
or not. This last statement is based on the following argument. After
averaging over the directicns of the $u's and 6?'5, these quantities are
distinguished from particle to particle only by thelr magnitudes. Now
suppose that immediately before some time t particlie i has the current
maximum 63, but at time t the §U of particle j, which is remote from
and unconnected with particle 1, becomes the new system maximum, If, as
we assume in our approximation, the effect of all the parameters
involved in a collision (other than the magnitudes of the 6U's and 6T's)
is fairly regular from collision to cellision, then the 62 in the colli-
sion that produces the new maximum at time t must be of the same order
of magnitude as the old maximum 63&. There is in effect a relation
between these 8u's because they are distinguished only by their magni-
tudes. Hence, the new maximum 655 is effectively related to the cld
maximum aﬁi.

Experimentally, the agsumption of regularity does turn ocut to he
a moderately good one, This can be seen most easily from the loglo Dp
curves in Figures 3 through 11l. There are fluctuations, of course, but
in general, the Jjumps in these curves are reasonably regular,

In sum so far, we have argued that in order to find the overall
exponentiation rate, it is only necessary to calculate the maximum 63
and 8T in the system and that these maxima are In effect causally related
toc their past. We now make one additional postulate which will allow

these maxima to be calculated:
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Postulate 2. The particle having the maximum 87 and 5? at time t is the

one which has effectively undergone the most collisions up to time t.

The term "effectively" is used in Postulate 2 because the particle
with the maximum 83 and 8T need not actually have undergone the most
collisions, For instance in our previcus example, after the 3-b eplli-
sion particle 4 has undergone only one collision but effectively has
undergone all of the collisions in the sequence (as well as whatever
collisions preceded the 1-2 collision).

Postulate 2 1s simply the statement that the particle with the
largest 51 and 6T is most likely to be the one which has undergone the
most collisions because collisions are the mechanism for increasing the
§0's and &T's.

We can now solve Egs. {127) for the system maximum 55 and 5? by
taking n in those equations to be the index n* that counts collisions in
the seguence which has the maximum collisicn rate. We must alsoc take T
in these equations to be the time 1% between the collisions counted by n¥*.
At each collision in this maximum sequence, the resulting su's (and 6?’5)
of the twe particles are approximately equal in magnitude and are there-
fore both system maxima. By Postulate 2, however, we shall assume that
the one of these two which undergoes the earliest succeeding collision is
the maximum in which we are interested; the other of these two particles
will bhe ignored in cur approximation,

In the solution of Egs. (127), we shall obtain second-order d4if-
ference equations in the 53'5 end §r's. These equations necessarily

involve two successive c¢ollisions in the maximum sequence., There are
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two distinct ways in which the two collisions can occur. Suppose that
particle i is the maximum in the first collision between 1 and j and
that one of 1 and j then goes on to collide with k. We then have the
possible sequences {(i-J, i-k) end (i-j, j-k). In the first case, Egs.
{(127a) and (127b) apply to both collisions; in the second case Egs.
(127c) and (127d) apply to the first eollision, and Egs. (127a) and
(127b) to the second collision. DBut it can be shown that the same
second-order eguations result in either case; therefore, for definite-
ness we consider the (i-j, i-k) seguence and solve Egs. (127a) and
(127b).

We define 535* and 5F£* to be the maxima we are following in the
maximum sequence. In order to aveld unwieldy notation, we now drop the
* from n¥ until stated otherwise. As in Egs. (94) through (97), we use
5xn and 5zn for the components of 6;5 and BEn along ﬁn and éyh and awn
for the compconents of 6?; and 535 glong Gn' We also define gn to be the

A A
angle measured from bn to bn on the maximum collision sequence):

1 €

£n+l = R(;n)én : (128)

With the help of the Ffirst line of Eq. (67), we may write

— A A

Pnéun = bz U - 5wnbn , (129a)
e A A

P 6r = éxu - 8yb . (129b)

Now take the dot product of %n+l with both sides of Egs. (127a) and

(127b), and use Egs. (128) and (129); this gives
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bu =% {-[sin § + sin(g, - 8.)16z_ (130a)

+ [cos § - cos(§n - Gn)jawn} - 2 6y,
d sin =
1 . .
Y01 % 5 {-[sin g 51n(§n - Bn)]an (130b)
+ [cos gn - cos(gn - Bn)]éyn} + Tg+l 5wn+l ,

where T§+l is the time between collisions on the maximum sequence, We
next average Lgs. (130) on the collision parameters §n, un, Sn, and

Tg+l; the averages are carried out in Appendix B and result in

N T (3312)

bw n

n+l
8y S by, + T¥ §w (131b)
n+l T ®Jq n+l ’

where 7% 15 the mean time between cellisicons of the maximum sequence and
where u is the system average of un.

One would expect u in the maximum sequence to be larger than the
average 1, at first at least. However, experimentally the speecds of the
particles with the maximum 53 and 5? were on the order of the mean parti-
cle speed, although the speeds were widely distributed. This may seem
more reasonable in the light of the following argument: suppose the
maximum 53 is associated with a single particle throughout a long
sequence of ccllisions. It is then reasonable to expect that particle

to sample the velocity distribution fairly and to have an average speed



56

close to the system average., Conversely, suppose the maximum sU is
assoclated with many different particles during a long seqguence of
collisions., In this case it is reascnable to expect the different
perticles also to represent the velccity distribution fairly. In
either case, the average speed of the particles in the maximum segquence
may reascnably be expected to be close to the system average; there-
fore, for collisiong in the maximum sequence the average relative speed
of one particle to the other may also be reascnably expected tc be
close to the system average relative speed u.

Egs. (131) may now be solved in s manner identical to the solu-
tion of Egs. (100) and (101). One obtains the same seccnd-order equa-

tions for éw and §y:

oL, mr Lo
P /éwn+l +5g bw, =0, (132a)
1), mur*) ,
iz * B\ * BT )Vna1 16 Oy = O (1320)
n Y
These eguations have the two independent solutions (-1) ‘e and
n Y0
(-1)"e , where v¥ is given by
= \
Vi = (133)

Since we are interested only in the dilating space, we use the plus sign

in Eq. (133) and write

W (-1)"Y (13ha)

i

Sw

by, = by (1), (1341)
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where y* 1is defined by

...l' ’
v¥ = cosh ‘\l +—T%Idi)- n & . (135)

A
If one forms the dot product of un with both sides of Egs.

#1
(127a) and (127b}, uses Eqgs. (26), (128), and (129 , and averages on

E,u, B8 and T

N 9 a1’ then one obtains (sec Appendix B for averages)

1

2 .1 =T 6%, > (136a)
5x =+ bx_ + T%67 (136b)

n+l L %'n n+l -’

Egs. {136) have the general solutions
-n 1n 4
bz, =6z e ) (1372)
-n In 4
dx = (axo + htnazo}e , (1370)

where t (= nT*) is the time of the nth collisicn, The megnitudes
]65%, and lﬁ;gl are dominated very guickly as n increases by 5wn and
Byh of Egs. (lBH). Hence, ¥¥ of Eg. (135) is the exponentiation rate
with respect to the index n (= n*)} in the maximum sequence; therefore,
by Corollary 1b, ¥ is the exponentiation rate for Dq and Dp of Egs.
(16) and (17).

We now restore the * to n¥, and we let n without a star count

collisions for the average particle, that is, we let

n(t) =

=3 |t

) (138)



where 7 is the mean time between collisions for a single particle,

B be the ratlo of n¥ to n, so we have
n*(t) = Bn(t)
But by the definition of t¥ and n¥, we must alsc have
n*(t) =

T* 2

and hence we obtain, from Egs. {138) through (140),

T* =

I
5

As mentioned, according to Corollary 1t we have

*
D =D ey*n s
»  po
*
p =p el
g go
Next define ¥ so that
D =n e™,
P po
D =D EYD .
g qo

Then from Egs. (135} and (139) through (143}, we see that

y = B[cosh'l(l + g%%) - 1n u] .

Let

(139)

(1Lko)

(141)

(142a)

(1how)

(143a)

(143b)

(1h4)

We now make a very crude argument that B is given in order of



magnitude by
B~ 1In N . (145)

Observe an N-particle system for one mean collision time 7. During this
time, each particle undergoes one collision on the average; thus, from
Eg. {139), B8 collisions occur in the maximum sequence, At any instant
during this time, there is precisely one particle in the system that
nct only has the maximum 63 and 5; but alsc is in the maximum seguence,
(There are two particles with the maximum 80 and 6?, but only one of
thesz 1s in thliz maximum sequenCe.) Now add one particle to the system
and suppose that during the time 7 the only change is that the new
particle collides once with some other particle., IT the new particle
happens To collide with the particle with maximum 60 and 4T in the maxi-
mum seguence, then, by the supposition that nothing else changes, there
will be B+l collisions in the maximum segusnce during the time 7; other-
wise, there will be B collisions in the maximum seguence. Assuming that
the new particle has the probability 1/N of colliding with any particular
particle, we find the expected average increase 1n B for an increase
from N to N+l particles to be 1/N, which leads to Eg. (145).

We prefer to let Eq. {14b) stand without substituting for 8
because Fg. (145) was obtained by such a crude argument. 1In the later
comparison of Eq. (144) to experiment, however, we shall use Eg. (145)
for lack of a better calculation.

For comparison of v of Eq. (1bL) to experimental guantities,

ocbserve from Egs. {13) and (14) that we may write Dq and Dp as
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At
D =D 10% , (1462)
»  po
At
D =D 109 . (146b)
g~ Tqo

Thus, from Egs. (138), (143), and (146) we have

R
)\q - }‘p T 1n 10 ° (187)

In actual comparison to experiment it will he convenient to write
¥ = AT 1n 10 , (148)

where A is the common value of Kq and kp’ and to compare the experi-

mental evaluation of Eg. (148) to Eg. (1bl),
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CHAPTER IV

RESULTS OF THE NUMERICAL EXPERIMENTS

Previously we gave cnly a rddimentary description of the numerical
experiments; here we present the details of them and show our results.
The procedure for chcosing initial conditions to obtain a fair sample of
the energy surface is described, the macroscopic characteristics of the
system are discussed, and the computer parameters are compared to data
for a real gas, After these preliminaries the central point of this
chapter is reached in setting forth the guantitative findings. Finally,
the error in the numerical method and ite conseguences in the empirical

results are considered.

Initial Conditicns

To determine values for the statistical quantities hq and kp of
Egs. (13) and (14) with any degree of certainty, one reguires a reason-
able sampling of the energy surface for each set of macroscopic condi-
tions. It is apparent from the number of degrees of freedom involved
that an exhaustive sample would be prohibitively time-consuming. We
therefore base our sampling procedure on the fact that empirically our
system is a C-system, and hence almost all trajectories sample the entire
energy surface.

Several original sets of initial conditions were selected by
taking the coordinates and momenta from a table ¢f randem numbers,

Experiments were run with these conditions, and cccasionally during the
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course of an experiment the roordinates and momenta as they existed at
the time were saved to be used subsequently as initial conditions in
further experiments. In turn, these further experiments produced sets
of initial conditions for still further experiments, and so on. Thus,
a falr sample was obtained on the basis of the stochastic properties of
a8 C-system trajectory.

Error in the integration process also added to the randomness of
the sample. The effect of error was that each integration step dis-
placed the system point somewhat from the true trajectory., The distance
from the true trajectory presumably increased exponentially within the
energy surface as the system evolved; thus, errcr introduced early in
the process could grow gquite large after long integration times. The
farther a point became in ftime from the initial point along a numeri-
cally integrated trajectory, the better that point was from the point of
view of a random semple. Of course, this had to be accounted for when
the error in experimentally cbserved quantities was estimated, as will be
discussed later,

Whether the source of initial conditions was random numbers or
previous experimenis, they were processed in initiating each experiment
as we now describe. The given initial conditions were taken to be those
of the unprimed system. The coordinates were uniformly scaled to reach
the desired density, and any particles closer together than .9c were
separated to this distance. The total linear momentum was reduced to
zerc by subtracting 1/N times the total momentum from the momentum of
each particle. The angular velcocity of the system was found by applying

the inverse of the inertia tensor to the total angular momentum, The
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angular momentum was reduced to zero by adding the negative of the
angular velocity to the system as a whole. The linear momenta were
then uniformly scaled to attain the desired total energy. At this
point, if the initial conditions were derived from a random number
table, the system was integrated until an approximately Maxwellian
velocity distribution was obtained. Finally, the initial conditions
for the primed system were derived from those of the unprimed one by
making small displacements (about 10—8 per particle in the units of

Eg. (8)) in the unprimed coordinates and momenta.

Comparison to & Real Gas

The physical reality of the gas model of Eg. (7) can perhaps be
seen more easily than otherwise by expressing the macroscopic system

parameters in a standard system of units., For this purpose, we chaose

neon as a basis of computation. By use of the atomic mass and the tabu-

latedl6 Lennard-Jones parameters ¢ and g for this gas, one can convert
the computer units of Eq. (8) to, say, MKS units. We have made this
conversion; the results are given in Table 1, We use kB for the Boltz-
mann constant and the abbreviations m.u., l.u., t.u., and e.u. for the
computer units of mass, length, time, and energy, respectively. For
comparison, we also give the values of the particle mass m and the
Lennard-Jones parameters g and g in the table.

During the following discussion of the experimenial results, we
use Table 1 to express guantities in familiar units whenever 1t serves

to elucidate the physical state of the computer model.
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Table 1. Conversion Between Computer and MKS Units for Neon.
, Computer MKS
Quantity Units Units
-26
Mass 1 m.u. 3.3L x 10 kem
=10
Length 11.u. 2.7 x 10 meter
. -12
Time 1+t.u. 1.12 x 10 sec
-21 |
Energy 1l e.u, 2.00 x 10 Jjoule
2.U. -23 Joule
L (Boltzmann Constant) .00690 K particls 1.38 x 10 Kooarbicle
m (Particle Mass) 1 m.u. 3.34 x 10-26 kgm
o 1 l.u. 2.7 x 10 meter
€ .25 e.u. 5.00 x 10 Jjoule



Tabulation of Quantitative Results

The majority of the computer experiments were run at approximately
constant temperature. The quantitative results of these are given in
Table 2. Except as noted otherwise, all of the tabulated guantities are
given in computer units (cf. Table 1). Each of these experiments was
performed with N = 100,

The first entry in Table 2 is the number density p, given in
particles per unit area, YFor comparison of experimental states to
states of a real gas, the fraction of the ligquid-neon density that g
represents is given second in the table. Third, we give the temperaturec
T in degrees Kelvin., For this purpose, T in the table is calculated as

the time average of the instantaneous temperature defined by

L

H kB .
i

T = (149)

O~ =
M=
=
<1
He N

1

where v is the speed of the ith particle, Because the system of our
experiments is isclated, the energy remains constant, and the tempera-
Ture fluctuates.l However, in our experiments the standard deviation of
the instantaneous temperaturs from the tabulated time average, as cal-
culated from step to step in the integration process, had a mean value
of about .6 per cent averaged over all the experiments (the maxirnumn
deviation in any one experiment was 2.2 per cent). Therefore, we con-
sider the temperature as given to be a well-defined thermcdynamic vari-
able of the systen.

The next two entries of Table 2 are the experimental values for

&p and lq of Egs. (13) and (14). These are the slopes of the straight



Table 2. Quantitative Results of the Numerical Experiments at
Approxiwately Constant Temperature.

p 152 5 T{°K) xp xq by 2B %B 48 W 5 T exp
1200 14,8 327 .935 1.09 1.01 64 9 2 88 2,14 1.22 2.83
L1000 12,3 312 .857 .BBz .B70 148 19 2 192 6.20 1.62 3,23
L0800 9,84 310 .705 .70 ,704 182 10 0O 202 9.8% 2,44 3,95
L0800 9.84 303 666 685 676 178 17 1 215 9,56 2.22 3.L6
L0600 7.38 300 .690 L.705 .697 91 5 0 101 6.15 3.05 4,89
L0600 7.38 300 L64WE 675 660 130 7 O 14h 8,70 3.02 L.59
L0600 7.38 305 .791 .830 .Bl10 123 7 1 140 7.15 2.55 4.76
LOLboo b,92 297 501 .522 .511 136 7 0 150 14,0 L.,&7 5.49
LO0Loo h,92 290 504 507 .505 129 5 0 139 13.9 5.00 5.82
L0200 2,46 294 .353 .,358 .355 76 2 O 80 18.6 11.6 9.51
L0200 2.46 295 .557 .559 .558 64 2 0 68 13.9 10.2 13,1
L0100 1.23 290 .252 .257 .255 40 O O LO 16.0 20.0 11.7
L008C Lo84 200,203 ,206 .205 62 O 0O 62 33,8 27.3 12.8
L0080 .98hk 290 .200 L2000 L,200 72 O O 72 35.2 2h4.k 11.3
L0060 738 290 .177 .183 180 50 1 O 52 36.2 34.8 14,4
L0060 .738 290 (232,232 .232 52 O 1 55 32,4 29,5 15.7
L0040 492 200 157 L162 159 LB 0 1 51 L35 hLz,7 15.6
L0040 Lhg2 290 L1122 .119 L1649 O O 49 56,4 57.6 15.3
L0040 Loz 289 (146 .157 .152 42 O O 42 Lh,7 53,2 18.6
.0020 .246 290 .102 102 ,102 36 0 O 36 &8.0 94.b 22,1
.0010 .123 290 ,052 054 ,053 28 O o 28 100 179 21.9
L0008 L098 290 L056 065 060 2% 0O O 23 98,0 213 29.h4
L0008 .098 290 .08 .087 084 16 O O 16 69.0 216 Ll1.,5
L0008 L0098 290 ,051 .05 053 23 O 0 23 112 245 29.9
L000k  ,0h9 290 OO ,O0h2 01 12 O O 12 100 418 39,1
L0004k ohg 290 038 .04& .0hz 12 0 O 12 100 418 k0.0
.000k  L0ko 200 .018 .022 .020 14 O © 14 172 616 2B.2
L0002 .025 290 .055 .L059 L,057 10 ¢ © 10 99.6 498 &5.2
L0002 .025 290 025 027 J.026 19 O O 19 214 562 33,8
.0C0L ,012 290 ,025 .030 .027 4 0o 0o 4 99.7 1247 78.7
L0001 012 200 .01k .015 .01 5 0 ©¢ 5 315 3150 104
.0c01 ,0l12 29 .019 ,020 .01 13 C O 1% 269 1036 L6.2

66
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lines resulting from a least-sguares fit of the lcgarithm plots, as
menticned earlier. In Pigures 3 through 11 we show some typical exam-
ples of these plots with the fitted straight lines superposed on them.
In these figures, loglODp and the correspcnding fitted line are plotted
as solid curves while loglODq and its corresponding line are plotted as
broken curves,

In view of Eg. (lh?), we expect lq to be equal to hp' As can be
seen from the plots and from Table 2, this expectation is borne out to
a surprising degree on consideration of the statistical fluctuations
possible in-such quantities, From this point, then, we drop the dis-
tinction between Rq and hﬁ and use the mean value A as given next in
Table 2 in all further calculations.

Following the MA's, we have tabulated the number of two-body,
three-body, and four-bedy collisions, and a weighted sum W of these col-
lisions, under the respective headings 2B, 3B, 4B, and W. No collisions
of more than four particles were observed to occur.

In the weighted total W, three-body and four-body collisions were
given the weights of two and three binary collisions. These weights
represent the simplest seguences of binary collisions that would replace
the multiple ones if the thecoretical, hard spheres were to replace the
experimental particles which have the lLennard-Jones interaction. One
chooses the simplest sequences because it can be argued that these
represent the true binary collision effects of a multirle collision,
whereas more complicated sequences represent effects of higher order for
which our simple theoretical model has no hope of an explanation. Thus,

for the purpose of comparison to our thecretical results, we take W 4o



¥

‘o

L g L4 g
oo~ 2- oD &~ Do -

BAIND ﬂwxonmnnwmo,ﬂmoq

00°8- 0D g-

SAIND PTTOS--

d

ae L~

T80T

¥
.00

Time

68

Plot of Data Corresponding %o Entry 2 of Table 2.

Figure 3.



.78

7.87

7-17

.18

Y

.
00" -

. ¥

00 2~ oD £-

aAIR) USYOJIH--

q.
o ¥~

3 7°Tso

00'$-  00'9-

saIn] RPITSE--

QOHmo_H

Time

Piot of Data Corresponding to Entry L of Table 2.

a

igure 4

¥1

69



00- 2-

SAIND) UlFOIg--

1I
0D 8-

b

T
ob* -

Taor

00*8-  00°§- 00" L~

d
AN PITOS-- a“Tso

.27

.l

4.1

5.79 6.95 Y
Time

§.63

3.47

TO

Plot of Data Corresponding to Entry 9 of Table 2.

Figure 5,



Tigure 6.

Time

Plot of Data Corresponding to Entry 12 of Table Z.

.
Q
-
L
3
[}
o
1]
g
O
9
[nd)]
1
[}
ol
fas ]
(]
r—'
oo
@]
—
QO
:
[ ]
3
o’
'_|
&)
[7p)]
{
]
A jon
- 8
—l r~d
af ]
Q)
—
— - — -y \ - 18
0.00 1.53 .67 +.00 5.38 6.87 8.00 9.33 10.67 12.00 13.93 .67

T



Log lODq——Broken Curve

LoglODp-Solid Curve

"_.‘ .00

-3.00 -’ .00

"'.‘ +00

-p-00

-$.00

-7.00

0.00 1.82

rigure 7.

"7.28 10.87 14.50  18.12 21.76 t5.37  £9.00
Time

Plot of Data Corresponding to Entry 17 of Table 2.

2.6¢

36.25

3.87

43.50

a2l



Q.0

.
'l-i
Q1
z
2 8
= 7
5}
G
5B
pt|1.
™
ot
jum
=
W 8
c—1
s 8
=
[ |
=
[4]
o S |
A8
o %
9]
1
'Cl
4
QQ
~ 2
e
fo!s B |
o]
3

0.00 t.133 1¢.67 25.00 3.93 41.67  50.00  68.3) 86.67 76 .00 83.33  91.87  100.00

Time

Figure 8. Plot of Data Corresponding to Entry 21 of Table 2.

el



LoglODq~—Broken Curve

LoglODp~—Solid Curve

-

-1.00

-} 00 '} +0c

~4.00"

-§.00

-’ 00
)
LY
[}

"’ -W
~»
~

i |

0.00 .3y

Figure 9.

18.87 th.co  33.33 4} .87 50.00  §8.%9 €8.47
Time

Piot of Data Corresponding to Entry 25 <f Table 2,

15.00

63.33

91.67  t1bo.00



-
o
ﬂ. -‘5'
';1 ’4
Q@ F 4
A r
jm} [ -
] ‘:.“ 7 A _
o ' P I
3 PEPIEL
%: o __—:,"
— —"—
ull 3 "“ o"'
IO“ |< "' “4’
Fd -
0 -
Ei o i"
P8 A
3 A Ry
"‘ ‘—'
- -~
g o"’—"’
-
QO ] '—‘l’ /
- -
z H "'- I"
ﬁ 'o ’1
&) ’, -
e o PP
402 2"
A
s N
1
!
oy
.
ant|
0
(@]
3
0.00 .30 16.80 24.89  33.20  41.50 45.80 §8.18  66.40 78.70 03.00 1.3
Time
Figure 10. Plot of Data Corresponding to Entry 28 of Table 2.
g ¥

)



LoglODq-Broken Curve

Loglon-Solid Curve

0.0

‘.‘ 00 -3.00 -2 .00 -8

-

-$.00

~7.00

Figure 11,

0.00 2.2 52.60 7.78 105.00 191.26 157.80 183.2%  210.00

Time

Plot of Data Corresponding to Entry 31 of Table 2.

236.26

262.50

28.7%

ne.0

gL



T

e the total number of collisions coccurring in an experiment and make
our theoretical comparison as if all collisions were binary ones.

After the collision data in Table 2, we glve the duration of
each experiment tr' By comparison of these values with Takle 1, one
sees that even our longest experiments are of extremely short duration
on a macroscopic scgle--a few tenths of & nancosecond at most. With tr
and W, we can calculate the effective mean time 7 between collisions ac-

cording to

.__i
]
=

W
T (150)
r

where the factor of W/2 is included to obtain the mean time between col-
lisions of a single particle, These results are tabulated following tr
in Table 2.

The experimental values Yexp for the exponentiation rate are cal-
culated from Eg. (154) and are given after t in Table 2. Thece results
are shown graphically in Figure 12, where Yexp versus T is plotted.

The results of a few experiments made holding the density con-
stant and varying the temperature are given in Table 3, Table 3 has the
same format as Table 2. The first line of Table 3 is copled for refer-
ence from the twelfth line of Table 2.

Table 4 shows the evaluation of B of Eq. (139) from data taken in
some preliminary experiments. From left to right, the Table 4 entries
are the number of particles N, the total number of collisions chserved,
the average number n of collisions per particle, the number n¥ of col-

lisions in the maximum sequence, § as calculated from Eq. (139), and
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Table

3. Quantitative Results of the Numerical Experiments at

Constant Density.
copied from Table 2, Line 1Z,

The first line of this table is

p l;ﬁ ) T(°K) A, xq A 2B 3B 4B W t. T Yexp
L0100 1,23 290 .252 .257 .255 LO © O 40 16.0 20.0 1l.7
L0100 1.23 435 420 Lk0o L4%0 4O O O L0 10,1 12.6 12.5
0100 1.23 580 .40 koo 430 22 © 0 23 6.00 13.0 12.9
L0100 1.23 725 410 430 420 Lo 0 O LO 11.3 1h.1 13.7

9
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Table 4. Experimental Values of B Compared to Im N for Small Systems,
Total B
* .
N Collisicns o P n N
8 172 21.5 5C 2.33 l.12
12 232 19.3 48 2.48 1.00
16 152 9.5 27 2,84 1,02
20 114 5.7 2k 4,21 .41
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finally, the ratio of B toln N. From this last entry, 1t appears that
Eg. (145) is a reasonable (although slightly small) order-of-magnitude

estimate for B for N in this range,

Accuracy

In our calculations the energy and linear momentum were conserved
to one part in 108, but for such unstable systems, the conservation of
energy (or momentum) is not a goocd accuracy test because these systems
are not unstable in the direction normal to the energy surface. Thus,
the error in the energy is additive from integration step to step,
whereas the error introduced within the energy surface in a given step
grows exponentially in succeeding steps. Murthermore, it is difficult
to obtain an accurate error estimate for the Runga-KuttalT integration
method used, Therefore, we adopted a reversed-integration procedure
f'or error analysis,

For simplicity in this section, we shall plot the quantity'loglOD,

where D is defined by
D = + Di . (151)

Although D is dimensionally inhomogeneous, in view of the equality of
Aq and Ap of Table 2 Eq. (151) is useful for i1llustrative purposes.

A pair of systems were integrated over a time period, and loglOD
was plotted as shown in Figure 13 (solid curve). We shall call this the
forward integration. The velocities were reversed in the final condi-
tions of the forward integration, and these reversed conditions were

used as initial conditions for a similar integration over the same time
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D curve of this reversed integration is also shown in

pericd. The loglO

Figure 13 (broken curve).

The following discussion shows how these twe integrations may be
used to estimate the error. At the end of the forward integration the
difference vector between the two systems has components in each of the
dilating and contracting spaces. The dilating component is overwhelm-
ingly the largest; the contracting component consists only of error
introduced in the last few integration steps because contracting com-
ponents in the initial conditions or introduced by earlier errors have
decayed away exponentially by this time. BReversing the velocities inter-
changes the dilating and contracting components;18 80 the dilating com-
ponent of the reversed integration initially consists only of error
from the forward integration. During the reversed integration the di-
lating ccmponent grows, and the initially large contracting component
decays exponentially. When the dilating component exceeds the contrac-
ting one, the loglOD curve fturns upward. The upward-turned part thus
results entirely from the exponentiation of the initial error plus error
accumuilated during the reversed integration itself. On the other hand,
the loglOD curve of the forward integration results from exponentiation
of the initial difference between the systems. On a logarithmic plot,
the distance of the forward curve above the upward-turned part of the
reversed curve measures the ratio of the initial difference to the error.

The ratio loglOD on the forward curve to loglOD on the reversed
curve can be computed from the data for Figure 13. This computation
yields a geometric mean of 2.0 for the ratio, the largest and smallest

values of the individual ratios in the average being 3.2 and .6,
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regpectively. Hence, the error in the distance D between the two
gystem points is approximately 5C per cent in the early points of the
integraticon, and we shall assume that this value holds for Dp and Dq
separately.

The 50 per cent figure is not a good estimate for the error in
lp and hq, however, because the early error does not propagate into
later data points in a random fashion but rather expcnentiates regularly.
The loglODp and loglODq Plots may be shifted up or down, but the over-
811 slope 1s only affected by the random error introduced into each
point, The ratio of DP and Dq to the random error increases exponen-
tially with time, since there is no reason for errors In each system to
depend on the distance between systems. Therefore, except for the early
data points, the integration error is negligible, and even the early
error tends o change the vertical intercepts but not the slopes of the
leagt-sguares-fitted lines. Hence, integration error is unlikely to be
gignificant in the experimental values of AP and Aq.

We have yet to consider errors introduced in the least-sguares
fitting precess. Although it is possible to compute a so-called corre-
lation factor for such & fit, it is difficult to interpret and, further-
more, would be affected by deviations from straight-line behavior that
can be accounted for on a dynamical hasis, namely, the discontinuities in
the loglODp rlots and the rapid increase in the loglODq curves immedi-
ately after a jump In Dp (see Figures 3 through 11). We feel, there-
fore, that the best idea of the accuracy of the Titting process can be

obtained graphically, and we refer the reader to Figures 3 through 11,

which are typical,



CHAPTER V

EXPERIMENTAL AND THEORETICAL COMPARISON

We have already pointed out cne feature cof the theory that is
verified experimentally: the exponentiation rates are the same in con-
figuration and momentum space. In this chapter, we compare other theo-
retical guantities to the experimental results of the preceding chapter.

A question naturally arises about the applicability of the hard-
sphere theory to the Lennard-Jones experiment. This guestion is compli-
cated by the uncertainties in the theoretical sclution., Fortunately,
cne cah make an independent argument to arrive at the temperature depen-
dence of v in the hard-sphere case. Comparison of this result to the
experimental data indicates that the hard-sphere model is a moderately

good one for the experimental system.

Temperature Dependence

The temperature dependence of y for hard-spheres may be inferred
from the following argument: consider a hard-sphere system as in our
previcus theoretical discussion., Hold N and the volume constant and let
the temperature T, as defined by Fq. (149), vary. Since the total
energy E is entirely kinetic in this case, T does not fluctuate. Sup-
pose we have two trajectories yl(t) = (?&l(t), Eil(t)) and yi(t) =
(?il(t), ia'lzl(t)) at temperature T, such that Dq (t) ana Dp (t), defined

1 1
as Indicated by Egs. (11) and (12), have the average time behavior given

by
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<D (t)>=0D e R (152a)

D (t)>=D_ e 1, (1521)
Py Py
where the bracketls indicate average behavior over the trajectories,
Further, consider two similar trajecltories Yo and yé which

belong to systems at temperature T2 and which are related to ¥y and yi

at t = 0 by
ro(0) =1, (0) , (153a)
,,(0) = ¢ p,,(0) , (1530)
Fig(o) = T1.(0) , (153¢c)
p3,(0) = ¢ 5,(0) , (1534)
where { is defined by
¢ = ;ﬁ . (15%)

From hard-sphere dynamics and the initial conditions of Egs. (153),

it follows that

7o) = 7 (0t) (1558)

p.,(t) = ¢ p,,(C8) (155b)



o
=3

with similsr equations holding Tor the primed trajectories. Thus, one

has that the distances Dq (t) and DP (t), defined as in Egs. (11) and
2

2
(12), are related to D_ (t) and D_ (t) by
9 Py
qu(t) = Dql(gt) ) (156a)
ng(t) =g Dpl(gt) . (156b)

Therefore, if we write the average time behavior of Dq (t) ana DP (t) as

2 2
Mt
<Dq2(t)> = Doqge ) (157a)
Ayt
<Dp2(t)> = Dopze , (1570)
then from Egs, (152), (156), and (157), we obtain
Ay =LA {158)

The ecollision exponentiation rates yl and Yg may be found, in

analogy with Eq. (1:8), to be given by

Y, = AlTl , (159a)

Il

Yo = ATy (159b)

where Ty and T, are the mean times befween collisions for a single

particle in the systems of temperatures Tl and TQ’ respectively, In
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terms of v, and yg, Egs. (152) and (157) may be rewritten as

1
Y.n
<p >=0D e Tt s (160a)
a9 0q,
Y. n
D >=D_ e T, (160b)
1 °Py
Y.n
<D >=D  e-?, (160¢)
QE OQ2
Y0,
<D >=0D e € ° ) {160d)
Po P2

where ny and n, are the average collisions per particle in the systems

at temperatures Tl and T, respectively. From Egqs. (155) we have that

2

T EC, (161)

and, with the help of Eq. (171}, that

Thus, the exponentiation rate with respect to collisions is independent
of temperature for hard spheres, Since the hard-sphere system is

2
, 12 this conclusion, which was arrived at by con-

ergodic and mixing,
sidering a time-averaged behavicor, is applicable to the phase-averaged
v of Egq. (144). The combination ur in Eq. (144) is proportional to the
mean free path and hence is independent of temperature.

For the experimental system, one would expect vy to have only a

small temperature dependence if the hard-sphere model is a good one for
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it., That this is sc can be seen from Table 3 where yexp varies oniy
a few per cent over a wide temperature range.

By the above argument we have verified another of the theoreti-
cal conclusions and gained some confidence that the hard-sphere results

apply to the experiments,

Dependence of v on T

The theoretical and experimental dependence of ¥ on 7 will now be
compared, QOriginally we set out to find the dependence of vy on the
density p, but T arises naturally in both the theoretical and experi-
mental calculaticns and is the natural independent variable to use.
Finding the dependence of Yy on p would require knowing T as a functicon
of p. This function would have to be empirically determined at the
densities involved, and having p a8 the independent variable offers no
particular advantage for our purposes.

The average u of Eq. (144) is evaluated in Appendix C to be

u = /21 ViMS (163)
where vp . is obtained from Eg. (149) acccrding to
2
Vos = — . (164)

Since the particle diameter was taken to be g in the experimental

collision-counting process, we assign d in Eg. (144) to be given by

d=aq, (165)
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which Is unity in the computer units of Table 1. Finally, we use

Eg. (145) with W = 100 as an estimate of the value of B, which vields
B =~ 4.6, (166)

With Egs. (163) through (166), we can plot a theoretical v vs T
curve from Eg. (144); this curve is shown in Figure 14 superposed on the
data points from Figure 12. The fractional absolute deviation A of
this curve from the data points, given by

Yory = VI
A:QP——, (167)

Yexp

where Y 1s the theoretical value corresponding to yexp’ has a mean value
of 21 per cent. In view of the range of T covered and the estimates and
approximations made to obtain Eg. {144), this is extremely good agree-
ment., The discrepancies between the curve and experimental points for
the large 7 values should perhaps be given a relatively small weight
because Postulate 1 used in deriving the theoretical v is least likely
to be true for these points, This is because initially the 55'5 and
5?’5 are equal for all the particles, in direct contradiction to Postu-
late 1 at t = 0, and several ccllisions are necessary for the conditions
of this postulate to be established. The large-t experimental points
which involve small numbers of collisions (say 10 or less) are therefore

the points least likely to satisfy Postulate 1.

Cooperative Behavior

The exponentiation rate {calculated as in Eq. (148)) for
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gravitational systems was reported by Millerl3 to be proportional %o
the number of particles for N in the range 4-32. From this Miller con-
cluded that the long range of the gravitational force caused the system
to behave cooperatively, as if all N particles were tightly coupled.

In the density range observed in our experiments, however, tie empiri-
cal exponentiation rate is in reasonably good agreement with the theo-
retical calculation which includes no such tight coupling and which
does not produce Yy proportional to N (cf, Eg. {(1L44)).

In two-dimensicnal systems, the three-body collision term is the
first divergent one in the calculation of transport coefficients.3
Because our data includes up to 1% per cent three-body and four-body
collisions in the high-density range, one would think that if coopera-
tive effects were to appear (as indicated by an increase in the experi-
mental vy over the thecoretical one at high density), they would have done
so.

Thus, our results indicate that the divergences in the transport
coefficlents are probably not due to the sudden appearance of coopera-
tive behavior, Experiments at somewhat higher densities would be

required to make a definitive statement on this point.

Summary and Conclusions

The problem treated by Boltzmann and Gibbs invelved developing a
workable theory for irreversible and equilibrium thermodynamic hehavior

1,b4-7

starting from reversible microgcopic dynamics. In developing the
theory, the so-called ergodic assumption was introduced which asserts,

loosely speaking, that the trajectory for an isclated system samples

the entire energy surface., This assumption and the statistical



mechanics based on it gave rise to mathematical problems which are
extremely difficult. Only recently has it been shown that the ergodic
assumption is true for a hard-sphere gas. This was done by Sinai,g’lg
who proved that trajectories of a hard-sphere gas separate exponentially
in time and that this property is sufficient to guarantee the validity
of the Boltzmann-Gibbs ergodic assumption.g Sinai's result is believed
1o be extendable to a large class of systems with purely repulsive
forces,ll bul there is some doubt regarding the possibility of exiend-
ing it to systems having attractive forces.

A Lennard-Jcnes system, which has attractive forces, was studied
in the research repcorted here. A series of computer experiments were
performed which provided strong empirical evidence that the trajectories
0T the Lennard-Jones system separate exponentially in time. Therefore,
to computer accuracy, this system satisfies the ergodic assumption.

The computer experiments just menticoned also lend themselves to
the testing of an hypothesis in the field of kinetic theory. In kinetic
theory, divergences appear when transport coefficients are calculated by
series expansicn in the density.3 This calculation assumes that binary
collisions are the dominant transport mechanicm at low density, with
three-body, four-body, ete., collisions becoming impeortant sequentially
as the density is increased., It was thougat possible that this sequen-
tial assumption might be erronecus and that cocperative behavior--
collisions among large numbers of particles--mipght suddenly appear as
the density increased.

To test this hypothesis, a theory of trajectory-exponentiation in

a hard-sphere gas was developed., This theory yielded a rate for the
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exponentiation which represented only non-cooperative phenomena because
only binary collisions were considered. For the density and tempera-
ture range observed in the experiments, the empirically observed expo-
nentiation was in reasonable agreement with the theory., This agreement
extended to densities high enough to make it unlikely that divergences

in the transport coefficients are due tc cogperative behavior.
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APPENDIX A

We want to show that Egs. (108) and (109) reduce to Egs, (112)
and (113) with the approximations of Ege. (110) and (111).

Eg. (109) averages over the ensemble as

r

EuTn
<6yn+2> = - [l +

+2 Tn+2]
+ Sy, (A1)
en+l Tn+lJ o+l
2

d sin

-
n+2
- 6y >
<Tn+l n

Prom Eq. (109), we also sce that 6yn+l is independent of T and 9n+l’

n+e

and further, that 5yn is independent of Tl as well., Thus from Eg.

(A1) we have

2uT D
<6yn+2> ==-(1 +-——fﬁ*?;—- <6yn+l> (AE)
\ n+1
d sin 3

T T
] <Tn+2><5-‘f . _< ni? o +1>
n+l n Tn+l o

We now take Eqg. (109) for 6yn+l’ multiply it by 7 /Tn+l, and average

n+2
the result, with the fact in mind that éyﬁ and 5yh-l are independent of

Tn+l’ to obtain
T
/f n+e 1
g 8y > = - <1 > {< \<6y > (43)
' Thel n+l n+2 Tin/ el -
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Y Al +1 T\ .\
+ + 8y
<Tpq \ T n
san__ n /
2
3
n+l
+\ yn-l>J>
In Eg. (A3), we use the approximationof Eg. (111) to replace
l/<Tn+l> by <l/Tn+l>’ which resulis in
Tn+2 / +2 2ur +1 Tn+1
<‘T‘61’l+l U> Ct T n9+1‘ Gyn (Ak)
n+l \Tn+l . n n
d sin —

. Tn+l 5
T yn-l
n

On comparison of Eq. (A4) with Eq. (Al), we see that

=)
n+2 n+l < n-+ > l> ) (A_%)
Thel Thel

Substitution of Eg. (A5) into Eg. (A2) then yields

2uTt T
nt2
<by > = - 1+ n+2 + } <5y, > (A6)
n+2 ] T n+l
. n+l n+l
d sin 5

T
2l

-< ot ><6yn> .
Tn+l

It is consistent with the espproximation of Eg. (111) to put




oy

-

T
n+?
/—;r—— =1, (A7)
\ nt+l
With Eq. (A7), Eg. (A6) reduces to Eg. (113), which was to be shown.
An exactly analogous calculation allows Eg, (112} to be derived

by averaging Eg. {108) and using the approximation of Eg. (110).
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APPENDIX B

It is required to calculate the averages necessary for Egs,
(112), (113), (131), and (136). In this appendix, all center-of-mass
gquantities will be understood to be for particle i,

Consider a sequence of collisions (i-3, i-k) which are numbered n
and n + 1. Collisionr n has the velocity G; in the center-of-mazs frame

glven by

uo=u, -0, (B1)

and collision n + 1 has the velocity

-—

Yol T M4,n4l T Ykonel (B2)

—_

where the notation of Eq. (73) is used. From Egs. (22) and (69), we

have that
E; n * ﬁ} n Ei n Eﬁ n)
o [V Suin N ? I Rt J j)
Ui ntl 5 + R(8) 2 : (33)
Hence, un+l may be written as
ﬁ; nt U n (Gﬁ n Gﬁ n)
- - ’ Jgpnno 7 22 2
Yrtl 2 Uy nen FR(S,) 5 : (B4)
From Egs. (26) and (128) we see that
A A
u. ., = R(E )u (B5)
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From Eq. (BB), we obtain the following relation for any angle a:
Yl [R(Q)unj T U4 Ty cos(én - ) (26)

With proper selection of @, all of the trigonometric functions of Egs.
(130) may be generated.

Egs. {B1l), (B4), and (B6) combine to yield

u u_ cos(® - @) = L cos a(u2 s Y +u, _u sin « sin @
n+l n n 2 i,n Jrn i,n jsn
B uk,n+l ) [R(a)(ui,n - u,j,n):f
cos{a - 6 )
n 2
+ 5 uo (B7)
where ¢ 1g the angle measured from E. to U, _:
i,n Jan
A _ A
I R(c,o)ul.)D . (B8)

Now we assume that the impact parameter b is uniformly distributed
from -& to d. From Eq. (145), the distribution f{8) of scattering angles

can then be calculated as
= .8
(8) =+ sin 5 (B9)

where 8 ranges from zero to 21, We further assume that the velocities

- ed -+
u, s U. , and u have isotropic directional distributions and are
i,n Jonl kyn+l

entirely uncorrelated either among themselves or with the angle en.

With the foregoing assumptlons, one successively replaces o of
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Eg. (B6) with 0, en, /2, and (Gn + n/2) and averages the results over

Gn and the u's to obtain
<Ccos §n> =0,
<cos(§n - en)> z%— s
<sgin §n> =0,
and

<sin(§n - en)> =0,

where in Eq., {B1l) the approximation

o
5 1>zl
N\ n+

hag been made.

Similarly, we can further find that

8 L’

<<fn Cos(gn - en) uTm

d sin ??

where again the approximation of Eg. (B1l4) has been used, and

u sin(§n - Bn)

%)
d sin ?§

[
O

(B10)

(B11)

(B12)

(B13)

(B1L)

(B15)

that

(B16)

Egs. (B10) through (B16) list all of the averages required for
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Fgs., (131) and (136). In addition, for Egs. (112) and (113) we require

) 6
{1/sin —22\), which is calculated from Eq. (B9) as

/ V=2 . (B17)
n
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APPENDIX C

Our objective 1s to compute the expectation value of u given in
(163).
We assume that the ensemble average of u can be replaced by the
average of this quantity over the particles of a single system. We
further assume that the particle velocities are independent and have the

equilibrium, two-dimensional Maxwell distribution B(V) given by

B(7) = 5 o~ BEL) (c1)

= 2mi T exp 2K T

¥From Bg. {C1), it can be shown that the distyibution B(uij) of differ-

ences uij’ defined by

(c2)

where ;i and ;3 are distributed according to Eg. (Cl}, has the form

4y . (c3)

Bluy )k kBT xp( LT

By direct calculation, one obtains from Eg. (C3) that

/E T
Q.lij> = ﬂzB . (Cllr)
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