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SUMMARY 

Measurements of the asymptotic behavior of the isothermal com­

pressibility and of the correlation length for polar fluids slightly 

above their critical points have been made to determine the critical 

exponents, y and v, associated with these quantities for polar fluids 

and to determine whether the polar nature of these fluids affects the 

measured values of the critical exponents. 

The substances investigated are three polar fluids with a range 

of polarities, N 2 0 , very slightly polar, CCIF^, with moderate polarity, 

and CH3F, with a relatively large polarity. The method used is a light 

scattering technique in which the turbidity of each fluid is measured 

as a function of temperature, from which the isothermal compressibility 

and the correlation length as a function of the temperature difference 

from the critical temperature may be determined. The critical exponents 

and coefficients describing the asymptotic behavior of these substances 

may then be determined by fitting the data to appropriate power laws 

and varying the range of data for minimum error. 

Results show that the exponent describing the asymptotic be­

havior of the isothermal compressibility for N 2 0 , y , is approximately 

the same as that measured for CO2, as expected, since the fluids have 

similar physical characteristics. The exponent for CClF^ has a slightly 

lower value with that for CH^F having a value intermediate between the 

other two values. Measurements of the exponents describing the asymp­

totic behavior of the correlation length, v , show no significant varia-
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tion among the three fluids. 

There is no variation in the exponents that may be related to 

the increasing polarity of the fluids, and so the conclusion is that 

the dipole moments of these fluids do not affect the measured critical 

exponents. The results, however, are consistent with possible effects 

on y due to variations in the shape of the molecules. 



CHAPTER I 

INTRODUCTION 

The study of critical phenomena dates from an 1869 paper by 

Thomas Andrews* who discovered that gases could be condensed to form 

liquids with an observable phase change only if the gas were below a 

certain characteristic temperature, different for each gas. He called 

this characteristic temperature the critical temperature of the gas 

and described several effects associated with the critical point, nota­

bly a large increase in the compressibility and the critical opales­

cence, the great amount of light scattered from the substance, at the 

critical point. He also noted that the behavior appeared to be similar 

for various substances. The behavior observed by Andrews was explained 

in 1873 by J. D. van der Waals2 with his equation of state for gases. 

This equation, together with some assumptions about the minimization 

of free energy, described the behavior of gases above the critical 

temperature as well as that of the two coexisting phases below the 

critical temperature. The universal nature of critical phenomena was 

explicitly described by the law of corresponding states which expressed 

the behavior of a gas solely in terms of ratios of the variables, P, V, 

T, to their values at the critical point. 

Analogous behavior was also found for other systems. Iron was 

found to lose its ferromagnetic character above a certain temperature. 

For certain binary mixtures, there was a temperature below which mixing 
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could not take place. It was soon realized that each of these temper­

atures was a critical temperature and could be characterized by the 

same formalism as the gas liquid critical point. Equations describing 

the behavior resulted in formally similar predictions for each of these 

diverse systems. 

The question of critical opalescence and its relation to the 

statistical behavior of the fluid system was investigated by von 

Smoluchowski^ who realized that the critical opalescence was due to 

light scattered by density fluctuations which become very large at the 

critical point. Einstein^ calculated the magnitude of the scattering 

in terms of the fluctuations in the thermodynamic variables of the 

fluid about their average values, but neglected correlations between 

the fluctuations. These correlations were taken account of by Ornstein 

and Zernike^ who calculated the magnitude of the density fluctuations 

in terms of the integral of the correlation function for the fluid over 

the range for which there was correlation in the fluid. They showed 

that the divergence in the size of the density fluctuations was related 
to an increase in the correlation length in the fluid and obtained an 

expression for light scattered by a fluid in the critical region in 

terms of the correlation length and the compressibility in the fluid. 

Detailed studies of the shape of the coexistence curve for fluids 

and measurements of anomalously large specific heats at the critical 

points of both fluid and magnetic systems led to the realization that 

the classical theories (van der Waals and other similar theories) were 

not quantitatively correct. Correct descriptions were obtained with 

the Ising model, a model for magnetic systems with only nearest neigh-
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bor interactions. The two dimensional Ising model, which predicted 

non-classical results including logarithmically diverging specific 

heat at the critical point, was solved by Onsager in 1944. Although 

the three dimensional Ising model has not been solved exactly, numeri­

cal predictions based on this model have proved to give very accurate 

descriptions of critical behavior. The success of the Ising model in 

predicting critical behavior is due to the short range nature of its 

interactions; the incorrect predictions of the classical theories are 

the result of the fact that each assumes that the behavior of the sys­

tem is determined by long range forces. At the present time it is 

thought that the critical behavior is due to very short range forces 

whose influence propagates indirectly from molecule to molecule result­

ing in long range correlations. Since the direct interaction is short-

ranged the indirect correlations are much more important in determining 

the behavior of the system than the direct interaction; but the indirect 

correlations depend on the dimensionality of the system and are influ­

enced only very slightly by the details of the direct interaction. 

Thus it is expected, and confirmed by experiment, that the critical be­

havior of systems having the same dimensionality will be the same wheth­

er the system is a magnetic or a fluid system; the behavior is expected 

to be universal. 

Close to the critical point, many parameters describing the 

system converge to zero, or diverge; and thus the asymptotic behavior 

approaching the critical point may be represented with a power law in 

temperature difference from the critical temperature. In the early 

1960fs it was realized that the exponents characterizing these power 
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laws were of interest in themselves. They provided numerical specifica­

tions of critical behavior, and studies of exponent relationships have 

led to insights into critical behavior and into appropriate forms for 

the equation of state describing dense fluids. Perhaps the most useful 

have been the concept of universality and the scaling laws which assume 

a homogeneous equation of state and derive all exponents for static 

critical phenomena in terms of two parameters. 

Most experimental investigations of critical phenomena are con­

cerned with the determination of the exponents and coefficients de­

scribing the asymptotic behavior of systems near their critical points 

and with verifying exponent relationships. This is often done using 

traditional pressure-volume-temperature measurement techniques, but 

such measurements near the critical point are subject to many experimen­

tal difficulties. Light scattering and other optical techniques may be 

used to overcome some of these difficulties. 

Measurements of the critical properties of fluid systems have 

generally supported the ideas of scaling and universality within the 

limits of experimental accuracy, but nearly all measurements have been 

made on simple non-polar fluids. 

Polar molecules are characterized by a permanent molecular dipole 

moment, and so there is the possibility of a long range interaction via 

the dipole moments of the molecules. There is evidence that for certain 

ferromagnetic and ferroelectric systems, the critical behavior is influ­

enced by the presence of a long range dipole force. Measurements of 

the coexistence curves of polar molecules show only slight variations 

from those of non-polar fluids, differences that are probably not signif-
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icant; but the one reported measurement of the compressibility of 

a polar fluid results, in a value for the exponent that is different 

from that which would be predicted on the basis of universality. 

The purpose of this investigation is to determine the asymptotic 

behavior of the compressibility and the correlation length for several 

polar fluids, one with a very small dipole moment, one with a moderate 

dipole moment, and one with a relatively large dipole moment, to deter­

mine the exponents that are characteristic of the asymptotic behavior, 

and to determine whether there is any consistent deviation from the 

behavior predicted on the basis of universality that may be related to 

the effects of the increasing strength of the dipole-dipole interaction 

in these fluids. 

The method used in this investigation is a light scattering 

technique, the measurement of the extinction coefficient, the turbidity, 

of the fluid as a function of the temperature difference from the crit­

ical point. The turbidity is related by Ornstein-Zernike theory to 

the magnitude of the compressibility and the correlation length in the 

fluid; and so the temperature dependence of the turbidity may be used 

to determine the temperature dependence of the compressibility and cor­

relation length, from which the exponents characterizing these quan­

tities may be calculated. The behavior of the fluids may then be 

analyzed in terms of the exponents and the relation of the measured 

exponents to those measured for non-polar systems. 
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CHAPTER II 

THEORY OF CRITICAL PHENOMENA 

Critical Behavior of a Fluid 

A fluid system may be represented by an equation of state re­

lating the pressure, density, and temperature (P, p, T) of the system. 

The general behavior of such a system may be represented graphically 

by Figures 1 and 2; Figure 1 shows the pressure and temperature values 

for which the system may exist as a solid, liquid, or gas. Within 

each phase, gas or liquid for example, changes in the pressure or the 

temperature are accompanied by continuous changes in the density of the 

phase. The density is not continuous across the vapor pressure curve. 

For example, liquid water at 100° C and one atmosphere pressure does 

not have the same density as water vapor under the same conditions. As 

the temperature increases the density difference between the liquid and 

the gas phases across the vapor pressure curve decreases. At the end 

of the vapor pressure curve, where the densities of the gas and the 

liquid are equal, there is a critical point characterized by the fol­

lowing parameters: temperature (T c), pressure (Pc) and density (p c). 

The critical temperature is that temperature above which the system 

does not exhibit a discontinuous phase change, while below T c the system 

may exist as one or two phases, depending on the conditions of temper­

ature and pressure. The critical density is that density to which the 

liquid and the gas densities converge at the critical temperature. The 



7 

Figure 1. Pressures-Temperature Diagram for a Fluid 
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critical pressure is just the pressure at the critical temperature 

and density. For a fluid system above its critical temperature, in 

the absence of a gravitational field, the density is constant through­

out the fluid. Below T c the fluid separates into two phases with dif­

fering densities, the density difference increasing with decreasing 

temperature. This behavior is analogous to that of a magnetic system 

in which there is no spontaneous magnetization above the critical 

temperature. Below T c there is spontaneous magnetization due to the 

alignment of the spins of the particles making up the system, an align­

ment that increases with decreasing temperature. Since the spontaneous 

magnetization is due to an ordering of the system, it may be defined 

as an order parameter that describes the system near the critical point. 

The order parameter is non-zero below the critical point, approaches 

zero as the critical point is approached from below, and is zero above 

the critical point. The corresponding quantity for the fluid system 

is the quantity p = p - pc, the density difference between the gas or 

the liquid phase density and the critical density. Since there is no 

phase separation above the critical temperature, p is zero above the 

critical point and non-zero below. The importance of the order pa­

rameter is that it can be used to characterize the behavior of any 

system exhibiting a critical point. 

The behavior of a fluid system may also be seen in Figure 2, in 

which the pressure as a function of density is presented for various 

values of temperature. The solid lines are isotherms, or lines of 

constant temperature. The dashed vertical line represents the critical 

isochore, the critical density of the fluid. For very high temper-



9 

Figure 2: Pressure-Density Diagram of a Fluid 
in the Critical Region 
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atures, an increase in the pressure results in a proportional increase 

in the density, as expected from the ideal gas law. For lower temper­

atures, the isotherms are bent in the vicinity of the critical isochore 

indicating deviations from ideal behavior. Low temperature isotherms 

have a flat portion where the density can change without a corresponding 

change in the pressure. Physically, this corresponds to a transition 

from a completely gaseous to a completely liquid state; along the flat 

portion of the isotherm, the two phases coexist. The densities of the 

two coexisting phases at a particular temperature are the densities of 

the end points of the flat portion of the isotherm, and the curve drawn 

connecting these coexisting densities is known as the coexistence curve. 

The top of the coexistence curve, where the coexisting densities have 

become equal to the critical density, is the critical point. The iso­

therm passing through this point is the critical isotherm and is dis­

tinguished by the fact that its slope becomes zero at the critical 

point. 

The isothermal compressibility Kj> of a fluid is defined as 

v-K©T-t«)t 

At the critical point the slope of the critical isotherm (̂ "̂  goes to 

zero and the isothermal compressibility diverges. 

From Figure 2 it is apparent that two characteristics of the 

critical point are: 

1. o - D -*0asT-»T from below K Kc c 
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2. H ,̂ -» » as T -» T c from above on critical 
isochore 

or 
from below along coexistence 

curve 

In addition to p - and K^, many of the properties that characterize 

a fluid either converge to zero or diverge at its critical point. In 

such cases, it is appropriate to describe the asymptotic behavior of a 

fluid property f, as T -» T £ by a power law of the form: 

f (e)<*| elX as e -» 0 

with e defined as the reduced temperature 

T - T 
e = c 

T 
c 

so that jej depends only on the relative temperature difference above or 

below the critical temperature. X is the critical exponent for the 

power law and is defined precisely by the formula 

^ 0 ± ln(±«) 

as e approaches zero from above (+) or below (-). With this definition, 

only the asymptotic behavior of the power law affects X; correction 

terms have no effect. 

These critical exponents are important because they provide a 

numerical specification of critical behavior that may be verified by 

experiment or predicted by theory. They thus serve to facilitate com-
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parison between various theories and with the experimental data. In 

the gas-liquid system the isothermal compressibility, the order param­

eter, the shape of the critical isotherm, the correlation length, and 

the specific heat all exhibit critical behavior. 

Isothermal Compressibility 

The isothermal compressibility is defined by Equation 2-1. As 

the critical temperature is approached from above on the critical 

isochore, 

\ = T (e)"Y 2-3 

As the critical temperature is approached from below on the coexistence 

curve, 

K T = r ' ( - e ) " Y ' 2-4 

Y and y' a r e n o t necessarily equal, although there is experimental 

evidence that they are equal for C O ^ , and various theories predict 

such equality. The coefficients T, V* are not equal. 

Coexistence Curve 

The shape of the coexistence curve below T , and thus the be-
c 

havior of the order parameter, is described by 

p = (p - pc) = B | c | P 2-5 

B is the same whether is approached from the gas or from the liquid 
side. Correction terms far from T result in the coexistence curve not 

c 
being symmetrical on the gas and the liquid side; close to T however, 
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the coexistence curve is symmetric. A symmetric order parameter 
Q 

p CY |e| below T is a characteristic of critical phenomena in many 

systems, with (3 independent of the type of interaction (ferromagnetic, 

antiferromagnetic, or fluid) but depending only on the dimensionality 

and symmetry properties of the system. 

Specific Heat 

The change in temperature of a system for a given heat input at 

constant volume is given by 

Cv=T(M)v = (Dv 

Although van der Waals and other classical theories did not predict a 
8 9 

divergence in the specific heat, experimentally ' the specific heat 

is found to diverge slowly, possibly logarithmically. Close to the 

critical temperature, the specific heat C v may be described by the fol-

lowing equation 

C = - T i e I 01 -l\ above T 2-7 v a I1 1 J c 

^ ^ { M " * " 1 }
 b e l o w T c 2-8 

As before, a may not be equal to & . The divergence is written in a 

form having a in the denominator to take account of a possible loga­

rithmic divergence in which a would equal zero. The above equations 

would then reduce to 

C = -A In e 2-9 v 
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Shape of Critical Isotherm 

The slope of the critical isotherm is zero at the critical point, 

in accord with the fact that there is no lower temperature for which 

one phase can be in stable equilibrium at this density. Stability also 

requires that the second derivative be zero at this point. The rate 

at which the slope approaches zero is given by the critical exponent 6 

with the equation of the critical isotherm in the vicinity of the 
• . • L 11 critical point given by 

lP - PJ ~ I PL " PG|6 SGN<PL " PG> 2"10 

sgn (x) = + if x is positive, = - if x is negative 

Correlation Length 

In any fluid, there will be fluctuations in density due to the 
3 

random motion of the molecules of the fluid. Smoluchowski realized 

that the observed critical opalescence was due to light scattered by 

fluctuations that have become very large near the critical point. These 

large fluctuations can be described in terms of a correlation function 

and correlation length in the fluid and the light scattered by the 

fluid may be calculated in terms of the correlation function for the 

fluid. 

The fluctuations may be described by assuming that a certain 

volume V of the fluid has an average number of particles, (N) ; in 

addition, particles may enter or leave the volume, so that the total 

number of particles may fluctuate about the average number. This re­

sults in density fluctuations in the element. 
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The fluctuation is denoted by [N - ( N ) ] = 6N and the mean square 
2 

of the magnitude of the fluctuation, (|6N| ), is the measure of the 

amplitude of the fluctuation. This amplitude is related to the iso­

thermal compressibility of the fluid by^ 

<|6N|2> = <N> ^ - 2-11 
o 

K T is the isothermal compressibility of an ideal gas of non-interacting 
To 
particles. According to 2-11, as the isothermal compressibility of the 

fluid diverges at the critical point, the amplitude of the fluctuations 

also diverges. The incompressible nature of the particles making up 

the fluid tends to limit the density increase in any small region of 

the fluid, so the amplitude increase must occur because many more 

particles are taking part in the fluctuation. The distance over which 

particles in the fluid can take part in a fluctuation is determined by 

the correlation length in the fluid. The number density of the fluid 

in a small region around a point r may be defined as n(r), with the 

fluctuation in the number density at a point r equal to [n(r) - (n(r))]. 

A correlation function G(r, r') relating the fluctuations at r and r' 

may be defined as 

G(r, r') = <[n(r) - <n(r)>] [n(r') - <n(r')>]> 2-12 

G(r, r') may be thought of as being proportional to the conditional 

probability that if a fluctuation of a certain magnitude exists at r 

there will be a like fluctuation at r', Since the fluid is uniform and 
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translationally invariant, the average density is the same throughout 

the fluid if the fluid is in one phase 

<n(r')> = <n(r)> = <| > = n 

and G(r, r') should depend only on the distance separating r and r'. 

G(r, r') may then be written as G(r-r') or G(R), R = |r-r'| with 
2 

G(r-r') = <n(r) n(r')) -n . As R -» » the probability of finding a 

particle at r' should not be influenced by the presence or absence of 

a particle at r and the probabilities are independent: 

<n(r)n(r/)> = <n(r)><n(r')> = n 2 

G(R) -> 0 then as R -» ». The range of R over which G(R) is different 

from zero is the correlation length for the system. 

From the definitions for G and N, one may obtain the relation''"''" 

<|6N|2> = <[N - <N>]2> = V J G(R)dR 2-13 

Combining 2-11 and 2-13 one obtains 

o 2-14 

According to Equations 2-11 and 2-14 the magnitude of the density fluctua­

tions as well as the isothermal compressibility are proportional to the 

integral of the correlation function over the range in which the correlation 
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function is non-zero. Since G(R) is bounded above due to the in-

compressibility of the molecules making up the fluid, as the amplitude 

of the fluctuations diverges at the critical point, the correlation 

length must also diverge. 

A form for the correlation function was given by Ornstein and 

Zernike^ who considered G(R) as being due to a short range direct 

correlation that may be propagated from molecule to molecule resulting 

in a long range G(R). This assumption led to a predicted form for the 

correlation function for large R 

-KjR 
G(R) a 2-15 

KI determines the range of the correlation function. It has 

dimensions of inverse length, and its inverse Z = H is called the cor-
Kl 

relation length in the fluid. As the critical point is approached, 

the correlation length is found to diverge according to 

§ = 5 Q * I «| " V e< 0 2-16 

§ = O e t v e > 0 2 - 1 7 

At the critical point, = 0, and the correlation function goes to 

zero as 

G(R) ~ | 

The ratio of the light scattered from some scattering volume dR with a 
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scattering vector k to that which would be scattered in the absence of 

fluctuations is given by the Fourier transform of the density cor­

relation function defined in Equation 2-12 

I(k) p -ik-R . . , n 1 
T O O ~ • > G(R)dR ~ - j — o v k + 

In the limit as k -• 0 

i^~J>G(R)dR 1 
o 

But this volume integral is equal to T̂/Kj, by 2-14 so that 
o 

K i 
which implies that 

2v = y 

for Ornstein-Zernike theory. More recently, Fisher*^ has considered 

certain defects in Ornstein-Zernike theory and has proposed that the 

correlation function for large R be given by 

-k]_R 
G(R) a ^ 

Since the range far from the critical point is determined by K^, 

Fisher's correction would have no effect on the correlation length 

except very close to the critical point, and at the critical point the 

correlation function would go to zero as 
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1 
R 1 + T, 

Tl is a small number, probably slightly positive, but the value T] = 0 

is not excluded by present experimental evidence^. Since experimental 

checks of Fisher's corrections to Ornstein-Zemike theory do not show 

any appreciable deviations from the predictions of Ornstein-Zemike 

i o n 
theory for the temperature range considered in this experiment, , J 

the Ornstein-Zemike theory will be used to calculate the expected 

light scattering as a function of temperature for this experiment. 

Van der Waals Model 

The predictions of the various theories of critical behavior for 

fluids may be discussed in terms of the critical exponents defined pre­

viously, and the values of the exponents predicted by various theories 

may be compared with measured experimental values as a check on the 

validity of the theories. Historically, the first theory to have some 

success in describing the behavior of gases near their critical points 

was the van der Waals theory. The van der Waals equation of state may 

be written11 

P * Pressure 

R • K • (Avogadro's Number) 

V - —; a is a parameter which takes account of the attractive forces 

Theoretical Models of Critical Behavior 

2-19 

n 
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between molecules; and b is a parameter taking account of the fact that 

the molecules behave as hard spheres. The isotherms predicted by the 

van der Waals theory are shown in Figure 3. Above and at T the iso-
c 

therms are qualitatively correct, with a behavior indicating the diver­

gence of the compressibility at the critical point. Below the critical 

temperature the isotherms are curved in such a way that the compressi­

bility is negative for certain regions (B to C on labeled isotherm). 

This unphysical result implies that a decrease in the pressure should 

lead to an increase in the density. Also, the isotherms below T c are 

characteristic of a single phase system and do not have the flat por­

tion corresponding to a two phase system. The difficulty is removed by 

a free energy minimization argument, Maxwell construction, which shows 

that along a certain portion of the isotherms below T c (between points 

A and D on Figure 3) the free energy is minimized if the system con­

sists of coexisting liquid and gas phases rather than of one phase. 

This coexisting region is bounded by the coexistence curve. In addition 

to successfully describing the qualitative behavior of fluids near their 

critical points, van der Waals theory predicts that this behavior should 

be universal for all gases when the pressure, volume and temperature of 

a gas are expressed in terms of P c, V c, and T c for the gas. This may 

be expressed by writing the van der Waals equation as 

2-20 

with no explicit dependence on the parameters characteristic of the 



Figure 3. Van der Waals Isotherms for a Fluid 



22 

individual gas. This is known as the law of corresponding states and 

is thought to be valid for most gases near the critical point, although 

the van der Waals theory on which it is based does not hold in this 

region. The law of corresponding states has been used to determine the 

filling parameters for one of the gases investigated in this experiment. 

When the van der Waals theory was used to predict values for the 

critical exponents, the predicted values were not in agreement with 

experimental results. The values expected for the various exponents 

on the basis of the van der Waals theory are given in Table 1. In par­

ticular, the van der Waals theory predicted that the specific heat 

would not diverge but the experimental evidence indicated that the 

specific heat was anomalously large and most likely divergent; in 1937 

Michels, Blaisse, and Michels1^ determined that the coexistence curve 
2 

of C0 2 could best be fitted with B <= 0.35 rather than B = 0.5 . In 

1945 Guggenheim1"* analyzed data for eight simple gases and discovered 

that the coexistence curves of each could be fit to a simple power law 

with B = 1/3. The theories, Bragg-Williams and mean field, that 

have been developed to explain magnetic systems and alloys pred­

icted the same values for the critical exponents as the van der Waals 

theory; so there were various classical theories that were qualitative­

ly right but quantitatively wrong. Analysis of these theories showed 

that each contained, either explicitly or implicitly, a long range 

interaction. Various theoretical analyses have shown that the predi­

ctions of the van der Waals model follow rigorously from the assumption 

of long range forces . 
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Table 1. Selected Critical Point Exponents 

P Y a 6 v 

Model Systems 

van der Waals 

(classical) .5 1.0 0(discon.) 3 .5 

D = 2 Ising 

Model .125 1.75 O(log) 15 1 

D = 3 Ising 

Model .3125 1.25 .125 5 .638 

Magnetic Systems 

Ni 1 6 .42 1.35 0 4.22 

EuS 1 6 .33 0.05 

Fluid Systems 
^17,18,19,20 U 1 ? A 2 > 6 3 

A 2 1 .357 1.17 
4 2 2 

He .354 1.14 .13 3.9 Xe 23,24,25 > 3 5 U 3 ^ Q 8 4 > 4 5 
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Ising Model 

The incorrect predictions of models with long range forces led 

to investigations of models with short range forces. The most fruit­

ful of such models have been the Ising model for magnetic systems and 

the equivalent lattice gas model for fluid systems. The Ising model 

of a ferromagnet is characterized by the assumptions that each spin 

may have only two values and that there are only nearest neighbor inter­

actions. The one dimensional Ising model does not exhibit a phase 

transition above absolute zero and so is only of limited interest. The 
27 

two dimensional Ising model, solved by Qnsagar in 1944, has a non­

zero critical point with associated critical exponents that may be 

determined in terms of the lattice parameters. The values for the ex­

ponents are shown in Table 1. This model predicted non-classical 

values for the exponents and the logarithmic divergency for the specific 

heat. In addition, calculations for various types of lattices and var­

ious types of interactions showed that these had no significant effect 

on the exponent values as long as the interaction was short range. 

The three dimensional Ising model has not been solved exactly; 

however, various techniques have been developed to evaluate critical 

parameters associated with this model with a great deal of precision. 

Values for the exponents calculated for this model are also given in 

Table 1 as are experimental values for fluids and magnetic systems. 

The exponent values determined for fluids appear to be approximately 

the same as predicted by the three dimensional Is ing model, but with 

consistent differences that appear to be greater than the experimental 

uncertainties in the determination of these quantities. 
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The two and three dimensional Ising predictions are not the 

same, and series calculations on the Ising model with dimensionality 

D > 3 indicate the results are strongly dependent on the dimensionality, 

approaching the classical values as D -» «. As the dimensionality be­

comes infinite, the number of particles that interact with each other 

directly becomes large even the interaction is short range. Thus 

the system becomes more like a classical system in which every 

particle is assumed to interact directly with every other particle. 

Exponent Relationships 

The physical parameters describing the behavior of a fluid are 

related through the thermodynamics of the system, and it is reasonable 

to expect that the exponents describing the behavior of these quanti­

ties near the critical point will also be related. Some of the rela­

tionships that connect the exponents are rigorously defined and others 

are conjectured with varying degrees of confidence. These serve to 

place limits on possible forms for an equation of state. 

Two inequalities, the Griffiths and the Rushbrook inequalities, 

may be proved rigorously from general conditions of thermodynamic sta­

bility. These are: 

28 
Griffiths Inequality a' + 0(1 + 6) ̂  2 

29 
Rushbrook Inequality a' + 2p + y' ̂  2 

where a' is the critical exponent for the specific heat, p that for the 

coexistence curve, y' for the isothermal compressibility, and 6 for the 

critical isotherm as defined above. 

Various other inequalities may be proved by making certain plau-
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sible assumptions concerning the form of the thermodynamic potentials 
30 

but have not been proved rigorously. Fisher has obtained the Griffiths 

inequality as an equality by assuming a phenomenological Hamiltonian 

based on cluster theory. Widom^1 found that for both classical theo­

ries and the two dimensional Ising model the equality 
y ' = B ( 6 - D 

is true. He conjectured that the relationship is a characteristic of 

all critical behavior. 

Other equalities have been proposed. In general these equali­

ties are satisfied by various model systems and are consistent with the 

available experimental evidence. Furthermore all may be derived from 

one set of assumptions, the scaling hypothesis, which describes time 

independent critical behavior in terms of only two independent param­

eters . 

Scaling Laws 

The scaling hypothesis may be described in terms of the Kadanoff 

picture1^, which considers an Ising-like magnetic system whose behavior 

near the critical point may be thought of as being due to interactions 

between spins and the interactions between each spin and the external 

field. Close to the critical point, the spin-spin interactions will 

result in correlations extending over a very large number of spins. If 

the spin system is divided into cells, with each cell large compared to 

the individual spin site but small compared with the correlation length, 

the physical behavior near the critical point should be the same whether 

the interaction considered is spin-spin or cell-cell, or whether the 
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external field interacts with cells or with individual spins. The 

form of the correlation function should be the same in either case, 

with the only effect of a change in cell size being a change in the 

magnitude of the correlation function. That is, correlation functions 

considered for different cell sizes should differ only by some scale 

factor dependent on cell size. The interactions between spins and the 

external field should be determined by a relative field strength, h, 

while the spin-spin correlations should depend on the relative tempera­

ture e of the system. The analogous parameters for the system con-

sidered as a cell system are h and e. As the field seen by a cell goes 

to zero, the field seen by a spin should also go to zero; the critical 

temperature should be independent of the cell size considered, and so 

the spin and the cell parameters should have the following relationship: 

h = L h 

= e» L is the size of a cell 

x and y are arbitrary numbers 

The functional form of the thermodynamic potentials also should 

not depend on the size of the cells considered; and the potentials for 

various cell sizes should be related by a constant of proportionality. 

The Gibbs potential, for example, may be written 

G(h,7) = L d G(h,8) 
2£ y. 

G(Ldh, L d
e) = LG(he) 

The asymptotic behavior of the thermodynamic quantities obtained by 
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differentiating the potentials with respect to h or e may be described 
x y 

in terms of the two parameters "j" and ^. The critical exponents may be 

defined in terms of these parameters, and a knowledge of the two param­

eters would be sufficient to determine all of the exponents. The 

scaling theory does not predict values for the parameters, however, and 

the usual practice is to measure any two of the exponents and to deter­

mine the others in terms of these two. The scaling predictions for 

exponent relationships are given in Table 2. 

Universality 

Since the forces involved in fluid and magnetic systems are of 

short range and the effects of critical phenomena are due to correla­

tions involving many particles, the details of the interaction might 

be expected to have little effect on the critical behavior of the sys­

tem. This concept is made more definite by saying that all systems of 

a given type, all fluids, or all magnetic systems of the same dimen­

sionality, should have the same critical behavior; although for example, 

a fluid might be expected to have slightly different behavior from a 

three dimensional magnetic system. This law is an outgrowth of the law 

of corresponding states and is thought to be valid for fluid systems. 
4 

The exponents B and 6 have been measured for four fluids, CO^* Xe, He , 
and H2O, one of which, ^ Q , is a polar molecule. The exponents are 

23 
found to be the same (B « .35 and 6 » 4.45) in all cases . Since 

these two exponents are the same for the four fluids, the scaling the­

ory requires that all of the exponents be the same, leading to Y " 1*20 

and 0/= 0.1. The value for a is approximately the same as that pre-



Table 2. Selected Exponent Relations from Scaling Laws 

1. a = a 

2. Y = Y ' 

3. cY+2p + y = 2 

4. v = (3(6 - 1) 

5. Y' + P(l - 6) = 2 

6. a + 0(6 - 1) = 2 
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dieted by the three dimensional Ising model and is supported by experi-
19 4 22 mental values of a - 0.12 for CQ2 and a * 0.13 for He . The value 

for Y predicted by scaling theory is smaller than that predicted by the 

Ising model. It is consistent with, but slightly higher than, several 
18 21 recent experimental results: y » 1.17 for CO2, Y = 1-17 for Argon , 

Y = 1.18 for krypton21, Y " 1 -14 for He^. 2 2 It is slightly lower than 
32 

a value y - 1.225 for SF^ and considerably lower than the Y ~ 1.275 

reported for C C I F 3 , a polar fluid and one of the fluids investigated 

in this series of experiments. Earlier and presumably less accurate 

experiments have produced values for Y ranging between 1.0 and 1.37. 
Polar Fluids 

The above data indicates that the ideas of scaling and univer­

sality appear to be valid for simple gases; coexistence curve data in­

dicates that S is experimentally measured to be the same even for polar 

fluids. The one series of experiments in which S has been measured for 

both polar and non-polar fluids17 shows a value for P that is larger 

for the polar fluid, but only by an amount that is approximately equal 

to the error reported in the measurement. The measurement of Y for 

CCIF3 is somewhat inconsistent with the value predicted by scaling as 

well as with measurements of y for non-polar systems. 

It is not clear that a permanent molecular dipole moment should 

affect the critical behavior of a fluid, but there is some evidence 

that such long range effects are important in other systems. According 

to Fisher, ferroelectric substances have critical points which are not 

closely analogous to those in fluid systems"^2, poss ib ly due to the long 
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range Coulomb force. Gonzalo has measured p and y for triglycine 

sulphate, a ferroelectric material, and has obtained the values expected 

on the basis of classical theory. In addition, alkali metals, which are 

characterized by long range Coulomb forces, seem to have |3 = 0.42-0.45. 

One measurement of £ for nickel, a ferromagnetic system for which long 

range dipole forces are important, shows a change in j3 from a value pre­

dicted by the Ising model to one closer to the classical value as the 

critical temperature is approached. Kadanoff has proposed that this may 

be due to magnetic dipole interactions^; there is disagreement about 

the experimental results, however. 

It is desired in this series of experiments to measure the com­

pressibility as a function of temperature and so to obtain y f° r three 

polar fluids, ̂ 0 , CClF^, and CH^F, ranging from the very slightly polar, 

N 20, to the highly polar, CH^F; to determine whether the polarity of the 

fluids affects the measured values of y; and to measure values for v to 

determine whether these polar molecules obey the scaling and universality 

laws that are applicable to simple fluids. 

On the basis of these earlier experiments, it is thought that the 

effect of a dipole-dipole interaction should be a change in the measured 

exponent value from a value characteristic of Ising-like behavior to a 

value characteristic of classical behavior, either over the entire range 

measured, if the interaction is strong as in the ferroelectric materials, 

or at some characteristic temperature difference from the critical temper­

ature if the interaction is relatively weaker as in the ferromagnetic 

materials. 

Experimentally, however, a change in the measured value of the 
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exponent may be due to effects other than the dipole-dipole interaction. 

Such changes in slope may be distinguished from changes due to the dipole-

dipole interaction in two ways. First, the change should be to a value 

close to the value expected on the basis of classical theory if the ef­

fect is due to the polar nature of the fluid. Second, an effect measured 

for one substance should also be observed on substances with greater 

polarity. For this reason, fluids with a range of dipole moments are 

investigated in this series of experiments. Any effect seen in the CClF^, 

for example, should also be seen in the CH^F if the effect is due to the 

dipole-dipole interaction, since the dipole moment is considerably larg­

er in the CH3F than in the CC1F3. 

Measurements of Critical Behavior 

Numerical measurements of critical behavior of fluids are obtain­

ed by measuring the quantities of interest as a function of the tempera­

ture difference from the critical point and determining the values of the 

exponent and the coefficient that best fit the experimental data. The 

specific heat is measured by the usual calorimetric methods. The co­

existence curve is measured by determining the densities of the gas and 

the liquid phases as a function of temperature. The general behavior of 

the fluid in the critical region may be determined by mapping out the 

pressure, volume, and temperature relationships of the fluid, but common 

to each of these methods is the problem of density gradients in the fluid. 

These gradients arise because of the very large compressibility in the 

vicinity of the critical point and result in bulk measurements that aver­

age over a range of densities around the critical density and which, 



33 

consequently, may lead to inaccurate determinations of the critical be­

havior. 

This difficulty may be minimized by the use of optical techniques. 

The index of refraction of the fluid may be measured and from this the 

density as a function of height may be determined very accurately by the 

use of the Lorentz-Lorenz relation^. In this manner the actual co­

existing densities are measured rather than average values. Also, the 

intensity of the light scattered by a fluid is related to the compress­

ibility and the correlation length in the fluid, so that a light scat­

tering experiment may measure y a n c* v« If a laser is used, the beam may 

be positioned so that it traverses the cell exactly at the critical den­

sity, again minimizing the problem of density gradients. 

Light Scattering Equations for 
Fluids near Critical Points 

Density fluctuations in fluids are related by the Lorentz-Lorenz 

formula to fluctuations in the polarizability and dielectric constant for 

the fluid, and these fluctuations are responsible for the light scat­

tered by the fluid. 

The fluid may be thought of as being divided into small volume 

elements (although each contains enough particles so that the fluid may 

be regarded as continuous). As the light passes through the fluid, a 

dipole moment is induced in each volume element. This moment is propor­

tional to the electric field of the incident wave and oscillates with a 

frequency approximately equal to that of the incident wave (WQ)• As the 

dipole oscillates, it emits radiation. Although the fluids investigated 
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in this series of experiments are polar fluids, it is expected that the 

average dipole moment in any volume element will be zero and that the 

polarity of the material will not affect the light scattered from each 

volume element. 

The discussion of the light scattering equations will follow a 

derivation of the light scattered from fluids near their critical points 
34 

given by Benedek . The polarizability of each volume element may be 

divided into two parts: aQ, an average polarizability, and 6a, fluctua­

tions from the average polarizability. The average polarizability does 

not contribute to the light scattered except in transmission of the 

original beam through the fluid, so all of the light scattered out of 

the original beam is due to the fluctuations. 

The scattering from each small volume element may be integrated 

over the scattering volume to obtain the total scattered E field, E* 

(k,t), at some point R with coordinates R, 0 , 0 , and cp as shown in Figure 

4. The total scattered E field is: 
2 i(k-R - ocit) 2/ 

E'(k t) = - E 0 Q ^ ) — (2TT) sin cp&c*(k,t)cp 2-21 

E q is the magnitude of the E field of the incident beam, c the speed of 

light in a vacuum, cp the angle between the scattering vector k and the 

direction of polarization of the incident beam; cp is a unit vector as 

shown in Figure 3. The scattering vector k is related to the wave-

vector k Q of the incident beam by the following equation 

k = 2k sin f 
O 2. 



Direction of propagation 

of incident beam 

K 

Direction of polarization 

of incident beam 

Figure 4. Definition of Angles Used 

in Light Scattering Equations 
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with 

\ q is the wavelength of the incident radiation. Equation 2-21 assumes 

that there is negligible multiple scattering. Comparison of the cell 
35 

size for this experiment with calculations of Swinney and Cummins 

shows that this assumption is valid for AT > 0.1° C. In addition, the 

use of a small aperture limits the effect of multiple scattering still 

further. The fluctuation 6a(k,t) is the Fourier transform of the fluc­

tuation in the polarizability Ga(R,t) which has the wavevector k. The 

intensity of scattered radiation transmitted through a solid angle d Q = 

sin 9 d 0 d<p about the scattering vector is given by Benedek as: 

where we have substituted the dielectric constant fluctuation for the 

polarization fluctuation using the relationship: 

6 t ( R t) = 4 n 6 a ( R t) 

dl(60cp) = §- <|E'(k,t)|2> R 2 d Q 
2-22 

Using Equation 2-21 this can be written as 

CE 4 

|*) \ sin2<p (|6e(k t)|2> d Q 
2-23 

e = 1 + 4 n a 

obtained from the relation for dielectric materials, 
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36 which relates e and a in a uniform dielectric medium 

According to Equation 2-23 the scattered intensity with scattering 

vector k is determined by the mean square of the amplitude of the fluc­

tuations in the dielectric constant with this wavevector. The magnitude 

may be calculated in terms of the thermodynamic variables of the system. 

In particular, since one wishes to measure the isothermal compressibility 

in the present series of experiments, it is natural to express the fluc­

tuations in the dielectric constant e in terms of the temperature and 

density fluctuations of the system. Fluctuations in e may be written 

6e(R £) = C®T

6'+ (̂ )p

e T 2-24 

A Fourier transform may be taken of each term to obtain the fluctuations 

in terms of the k dependence. The mean square average then becomes 

<l*.(k t)| 2> - ( ^ ) 2 <|6P(C t)|2> + (g) < | 4 T ( k t)|2> + (M) QD 
p ^ T p 

£(6p(k t)6T(k t)> + Complex ConjugateJ 2-25 

p and T are statistically independent, so the third term is zero; 

and "̂̂p *-s considerably smaller than a n a" may be neglected"^. The 

mean square fluctuation in the dielectric constant then depends on the 

mean square density fluctuation: 

<l 6 e ( t ^l 2) = Qffi <lM* t)|2> 2-26 
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The fluctuation 6p may be calculated by an analysis of the energy re­

quired to produce certain fluctuations. The probability of a fluctua­

tion occuring is just 

W 
e " *T 

W is the work required to produce a given fluctuation, k is Boltzmann's 

constant. This work may be expressed in terms of changes in the thermo­

dynamic variables, and since these variables have a Gaussian distribu­

tion, an average may be calculated. Far away from the critical point, 

as the correlation length -• 0, only the average density in a fluctua-
4 

tion need be considered, and the result calculated by Einstein in 1910 

is obtained: 

<|M* t)|2> = (5S)3 K T kT 2-27 

Closer to the critical point, the energy of the fluctuation will depend 

on the gradient of the particle spacing as well as on the average den­

sity in a fluctuation. That is, the fluctuations can no longer be con­

sidered to be independent of one another, but the correlations between 

functions must be taken into account. When the correlation function G(R) 

discussed previously is included, the Einstein result is modified and 

becomes 

2 >L kTp2 

<|6p(k t)| ) = -J—Tl 7^)3 2-28 
1 + § k K J 
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Where § is the correlation length defined previously. This result was 

obtained by Ornstein and Zernike in 1914^. 

The mean square average may also be calculated using Fisher's 

modified correlation function to obtain 
2 

<|6p(k t ) | 2 ) = a TSW - *• ' ̂ ""3 ' 2"29 

with T] the critical exponent describing Fisher's modification of 

Ornstein-Zemike theory. As before, a small non-zero value for T) will 

not affect the calculated values for the scattered intensity in this 

experiment; and the Ornstein-Zernike result will be used for the data 

analysis. 

The final value for the intensity of light scattered through some 

d Q about a scattering vector k per unit path length in the scattering 

volume is 

which reduces to 

di(e<£cp) = I q dV) [f^\2
 *r k T s i n 2 ( p d 0 2 - 3 1 

as 5 -* 0. 

I CE 2 

— = and V = L'A, L = path length in the scattering volume. The 

relative intensity per unit path length may be obtained by integrating 

2-30 over all angles. 
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2TT TT 2 

"'"tot = J J dl(60cp) sin cp sin 6 d 6 d cp cf>= o G = o 
o X ^ u a o 

2 
where a - 2(kQ§) , a dimensionless parameter. Equation 2-32 may be 

2-32 

written as 

0 *o 

f ( a ) . H 2 o f 2 + g« + 1) l n ( 1 + 2 e ) . 2 ( 1 + 2g ) ' 
2 2-34 

As | -» 0, f(a) -> 8/3, and for this limiting case, the total relative 

scattered intensity becomes: 

-j21
 = f I 0 ( ̂  ) I kT K. 2 - 3 5 

This equation is the same as that which is obtained if Equation 2-31 is 

integrated over all angles. Comparison with measured values for the cor­

relation length in other fluids near the critical point indicates that 

Equation 2-35 is a good approximation for temperatures more than 0.5° C 

away from the critical point. 

The isothermal compressibility may be determined using Equation 
x e 2-35. X , kT, and r> are all known; ~- may be determined from measured o r bp 
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values of the index of refraction and the use of the Lorentz-Lorenz 

relation. Each of these quantities, except for the temperature, is a 

constant for each sample during this experiment. The temperature de­

pendence due to T is small over the range of temperatures encountered 

during this series of experiments and may be removed entirely by multi­

plying both sides of Equation 2-35 by (Tc/T), which then may be written 

in the form: 

Im. 
I 
o 

= C Kj, . 2-36 

C is a constant determined by evaluating the parameters for each sub­

stance. 

The total scattered intensity may be determined by measuring the 

attenuation of light passing through the sample cell. The attenuation 

of light of intensity I per unit length in the sample cell is given by 
36 

Kerker , although with slightly different notation, as 

L 

o 

x = path length 

which may be solved to obtain 

.... t o 2-37 

Ifc the transmitted beam, I the incident beam, L total path length. The 

quantity ̂ ^ 0 t ^ is seen from Equation 2-37 to be an attenuation or ex-
o 
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tinction coefficient and is called the turbidity of the fluid 

T = — 
o 

T may be determined from a measurement of the incident and transmitted 

beams by means of the equation 

T - - I In i - 2-38 
o 

with L the path length in the scattering cell. The usual dimensions for 

turbidity are (cm) ̂  and common values for the turbidity in ordinary 
-3 -1 -4 -1 liquids range from 4 x 10 cm to 2 x 10 cm , with most liquids 

near the lower end of the range. The turbidities near the critical 

point are considerably higher, with T = 10 2 at AT = 1° C ranging to T 

= 1 a few hundredths of a degree from the critical point. 

With this definition of turbidity, Equation 2-36 may be written 

in the form 

T = C-XT 2-39 

with the measured T related by a constant of proportionality to the iso­

thermal compressibility for temperatures greater than 0.2° away from the 

critical point. 

Determination of r , y 

From the previous discussion of critical exponents, should have 

the form 
."Y 
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near the critical point. This functional form for may be inserted 

into Equation 2-39 to obtain 

T = C T s" Y 2-40 

which may be written 

r e " Y . 2-4i 

In this series of experiments, T is measured as a function of the 

temperature difference from the critical temperature. These measured 

values of T as a function of the reduced temperature (e = 7T~) may then 
Tc 

be fit to a function of the form 

(C D e" Y 2-42 

using a generalized least squares fitting routine. (CT) and y are treat­

ed as adjustable parameters and are varied by the routine in order to 

obtain a best least squares fit. (CT) is then divided by C to determine 

T. In addition the measured values of the turbidity may be adjusted as 

described in the next chapter to minimize the errors in r and y. In 

this way the magnitude of the isothermal compressibility as a function 

of temperature, as well as the critical exponent describing the asymp­

totic temperature dependence may be determined. 

Determination of E and v 2£ 

The correlation length § as a function of temperature may also be 

determined. After values for T and y have been calculated, these values 
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may be substituted into Equation 2-40; all of the terms on the right 

hand side of this equation, as well as Equation 2-35, are then known. 

These known quantities with a temperature dependence given by y may be 

designated as tq, the turbidity that would be measured at any tempera­

ture close to the critical point in the absence of correlation effects. 

Equation 2-33 may then be written 

T = t q f(<2) 2-43 

which may be put into the form: 

f(a) " 7 = 0 2-44 
o 

with t the measured turbidity at some AT. § m a v be calculated from 

Equation 2-44 because at a particular temperature the turbidity is meas­

ured, t q is calculated from a knowledge of r and y; and so Equation 

2-39 is of the form 

f(a) - (CONST) = 0 2-45 

Equation 2-45 may be solved numerically to determine a, and since a -

2(kQ§)» the correlation length at a particular temperature may be deter­

mined. The procedure is then repeated for other temperatures. 

The functional form of the correlation length near the critical 

point is given by Equation 2-17 as 

2-46 
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The measured values of 5 as a function of temperature are then fit to 

a function of this form with a generalized least squares fit with §^ and 

v considered as adjustable parameters. 

Summary of Data Analysis 

To summarize, the procedure used in the analysis of the data is 

the following: The turbidity data is fit to Equation 2-41 in the temper­

ature region in which the correlation length may be assumed to be zero, 

and r and y are determined. These values for the isothermal compress­

ibility are then substituted into Equation 2-35 in which, with the meas­

ured value of turbidity, the only unknown is a function of the correla­

tion length. This equation is solved for several data points to obtain 

the correlation length for various temperatures. These values for § are 

then fit to Equation 2-46 to determine § and v. 
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CHAPTER III 

EXPERIMENTAL APPARATUS AND PROCEDURES 

Properties of Sample Fluids 

Three substances were selected for this investigation, nitrous 

oxide (N20), methyl fluoride (CHgF), and chlorotrifluoromethane 

(Freon 13, C C I F 3 ). Each is a polar fluid; each has a "convenient" 

critical temperature slightly above room temperature; all are non­

toxic. The coexistence curves and critical temperatures and densities 
38 

are known for two of these substances, N2O and CCIF3 . The critical 

behavior of CH^F has not been investigated recently and no reliable 

data on its critical properties are available. 

The gases used in this investigation were obtained from Matheson 

Gas Products, and no attempt was made to further purify them. N2O has 

a minimum purity of 98%, the principal impurity being air. The method 

of filling the cell by condensation indicated that the purity of the 

nitrous oxide in the cell was greater than that in the cylinder. Com­

parison of the critical temperature obtained from this experiment and 

critical temperatures determined for N 20 with carefully controlled 

amounts of impurities'^ indicates that impurities in the present sample 

of N 20 are considerably less than that specified by the Matheson Gas 

Products. Furthermore, the analysis in reference (17) of the coexist­

ence curve data for N 2Q indicates that the prime effect of impurities 

of the order of 1% is a change in the critical temperature T c, with 
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only a slight effect on the critical exponent 8 . Both CCIF3 and CH3F 

are 99% pure, the principal impurities being air for CCIF3 and silicon 

tetrafluoride and dimethyl ether for CH3F. 

N 20 is a linear molecule with an N-0 bond distance of 1.185 A 

and an N-N bond distance of 1.128 I. The CH3F molecule is a methane­

like molecule in which one of the hydrogen atoms has been replaced with 

a fluorine atom, distorting the original tetrahedral symmetry. The C-F 

bond distance is 1.3852 I and the C-H bond distance is 1.06 A. The 

H-C-H angle is 109° 50'. CCIF3 is also a methane-like molecule in 

which three of the hydrogen atoms have been replaced by fluorine atoms 

and the fourth by a chlorine atom. The C-F bond distance is 1.328 A 

and the C-Cl bond distance is 1.751 A . The F-C-F bond angle is 108.6° 

± .4°. 

The dipole moments for these gases are: .17 D for N 20, .50 D 

for C C I F 3 , 1.856 D for CH^F 3 9. Some of the previously reported critical 

data for these gases is summarized in Table 6. 

Sample Preparation 

Cell Design 

The critical pressures of these fluids are fairly high, ranging 

from 38 to 72 atm, as shown in Table 6. To contain this pressure, the 

fluids must be retained in a suitable sample cell. There are two 

general approaches to a design of a sample cell to be used in critical 

point investigations. One is a glass cell which is sealed off with a 

flame after filling; the other is a metal cell, generally of stainless 

steel, with optical windows. The advantage of the metal cell is the 
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ease of adjusting the amount of fluid in the cell through a valve 

connection. Also, since a turbidity measurement requires a cell with 

a fairly long optical path length and flat ends, a metal cell will con­

tain the pressure with greater safety. 

Although there are minor differences between the cells used for 

the different fluids, the design, shown in an exploded diagram in 

Figure 5, is basically that of the cell for N2O. This design is adapt­

ed from a design of Morey and Fenner^ which has been modified with 

slightly different sealing geometry and with the addition of windows 

for optical measurements. The construction of each is of stainless 

steel with V' thick fused quartz windows, with each cell having an 

optical path length of approximately 38 mm. Thick windows are required 

because of the enormous amount of stress on the unsupported area of the 

window. The stress is inversely proportional to the square of the 

thickness^* and approaches the failure point of the quartz if thinner 

windows are used. Although the rated tensile strength of the quartz is 

not exceeded when V' thick windows are used, any unevenness in the 

supporting area of the window can cause greater stresses, resulting in 

cracking of the window. On a filling attempt with V' windows, one of 

the windows failed at a pressure of approximately 900 psi. A calcula­

tion that determines the stress on a window of given size and thickness 

is given in Appendix A. 

When uncoated quartz discs were used in the cell containing the 

methyl fluoride, etching of the interior surfaces of the windows occur­

red. This etching was eliminated by coating the interior surfaces of 

the windows with 350 cs Dow Corning 200 fluid (a dimethylsiloxane 



Scale Approximately Full Size 
Figure 5. Exploded View of High Pressure Cell 
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polymer) and baking for 3 hours at 350° C. The windows used in the 

other two sample cells were uncoated. 

Each of the windows sits in a well and is supported over ̂  of 

its area by the shoulder of the sample cell. The well in which the 

windows are seated is drilled 4 to 6 thousandths of an inch oversize, 

to assure that the differential contraction on cooling will not crack 

the windows. The actual seal of the window to the cell is made with a 

low viscosity epoxy, TRACQN TYPE 2114 that flows and completely fills 

the space between the window and the shoulder. When the interior of 

the cell is pressurized, the internal pressure pushes the window toward 

the shoulder, thereby improving the contact between quartz, metal, and 

epoxy. 

The cell is constructed in two sections joined after the windows 

are seated from the inside. The two sections are joined together by 

eight V 1 bolts. The high pressure seal consists of knife edges machined 

onto a shoulder of each section of the sample cell and a copper gasket 

into which the knife edges impress when the two sections are drawn to­

gether by tightening the bolts. The valve used in this sample cell is 

a Nupro Model 4H stainless steel bellows valve joined to the body of 

the sample cell with a silver solder seal; the valve has a pressure 

rating of 1000 psi. 

The entire sample cell assembly is supported by a rigid framework 

and is suspended by a V' steel rod from a Brinkmann cell holder that 

may be adjusted to give a rotational motion about the vertical axis and 

translational motion in the vertical direction. This latter capability 

is necessary to enable the cell to be positioned accurately so that the 
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beam passes through the sample at the critical density. 

Determination of Cell Volume 

To determine the critical density of each of the samples used in 

this experiment the volume of each of the cells must be known precisely. 

To achieve this the empty cell was weighed, filled with water, and 

weighed again using the density of water to determine the volume. To 

fill the cell it was necessary to evacuate the cell through one arm of 

a two position stopcock connected to the sample cell. The other arm 

was connected to a water reservoir and the line to the vacuum pump was 

opened and the cell pumped out. The stopcock valve was then turned to 

open the line to the water reservoir, and the water flowed into the 

cell. The procedure was repeated until all the air bubbles present in 

the cell were removed. 

This method involved two major sources for uncertainty. First, 

the mass of the sample cell is approximately 1 8 0 0 gms and the available 

balances with the required capacity have an accuracy no better than 0 . 1 

gms. Secondly, water wets the steel and the glass poorly, causing 

bubbles to be formed. In the cells used for N 2 0 and CH3F, the opening 

into the valve was small; there is the possibility that the space was 

not completely filled with water. This volume is approximately 1 cc 

and introduces an uncertainty into the volume determination of these 

cylinders. The cell used for CCIF^ has a larger opening so that this 

uncertainty Is not present. A calculation for the volume of the cell 

containing the N 2 Q is presented in Table 3 ; the calculations for the 

other cells are analogous. 
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Table 3. Determination of Sample Cell Volume of 
the N 20 High Pressure Cell 

Empty wt. of cell 1818.3 
1818.4 
1818.4 

gms 
gms 
gms 

Avg. wt. 1818.4 ± 0.1 gms 

Filled wt. of cell 1871.1 
1870.9 
1871.0 

gms 
gms 
gms 

Avg. wt. 1871.0 ± o-1 gms 

2nd trial filled 1871.0 
1871.0 

gms 
gms 

Avg. wt. 1871.1 + 0.1 gms 

Avg. of two trials 1871.0 ± 0.1 gms 

Mass of water in cell 52.6 + 0.2 gms 

Volume of water present 52.6 + 0.2 3 
cm 

Possible additional volume 1.1 + 0.2 cm3 

Limits on the volume: Max. vol. 54.1 

Min. vol. 52.4 

cm3 

cm3 

Avg. of these two numbers 53.3 3 
cm 

Vol. for this cell 53.3 + 0.8 cm3 
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Cleaning of Cell 

The cells were first degreased by immersion in trichloroethylene 

vapor. The interior of the cell was then washed with acetone followed 

by methanol. After the washing and before sealing the cell, methanol 

was vaporized, then condensed on the interior of the cell and allowed 

to run off, removing any dust particles that may have settled on the 

surface. 

Calculation of Filling Parameters 

Before filling the cell, it is necessary to determine the amount 

of gas needed for the sample to be at its critical density. The mass 

needed is determined from the measured volume of the cell and the crit­

ical density from Table 6. The amount needed to fill the cell is 

calculated in terms of the pressure difference for each gas, assuming 

ideal behavior, and a correction is made for the deviation of the gas 

from ideal behavior. The amount actually condensed depends on the 

pressure difference in the gas handling system before and after filling 

and the mass of gas present in the system for a given pressure. 

The density of each gas at standard conditions is found in the 

Matheson Gas Data Book^2, and a correction is applied for given room 

conditions. This density is multiplied by the volume of the gas han­

dling system to determine the mass of the gas in the system at a pres­

sure of 1 atm. Assuming ideal behavior, this same mass of gas will be 

present for each atmosphere of pressure present in the system; since 

the total mass needed is known, this mass may be expressed in terms of 

a pressure difference in the gas handling system before and after 

filling. A sample calculation for N£0 is given in Table 4. 
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Table 4. Calculation of Filling Parameters for N 20 Cell 

Critical density = .452 g/ml 

Volume of sample cell = 53.3 ml 

Mass needed for critical density in cell = 24.1 gms 

Density of gas 0° C, 1 atm « 1.997 g/liter 

Density at 18° C, 1 atm =1.87 g/liter 

Volume of gas handling system = 340 ml 

Mass in system at 18° C, 1 atm - .637 gms 

Number of atm to fill cell (if ideal) = 37.82 

Number of psi difference - 556 
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In fact, the density is greater than the ideal density at high 

pressures. While data are not tabulated in the International Critical 

Tables for N 2Q or the other gases that are the subjects of this investi­

gation, the density for C0 2, which has a similar critical behavior, is 
3 O 

about 10% higher than corresponding ideal density at 250 psi . The 

exact amount is non-critical, since the amount of the gas in the sample 

cell may be adjusted by valving gas out or by condensing more gas in. 

Filling of Cell 

After the cell was cleaned and sealed, and after a calculation 

of the filling parameters was made, the cell was placed in an oven and 

attached to a vacuum system. As the cell was pumped out, the oven was 

heated to approximately 50° C to outgas water from the interior surfaces. 

After several hours in the oven no change in the pressure of the vacuum 

system was observed when the cell valve was closed or when it was re­

opened, indicating that the outgassing had been accomplished. The cell 

valve was then closed and the cell removed from the vacuum system and 

connected to the gas handling system, shown in Figure 6, which was then 

connected to the vacuum system. The gas handling system was pumped out 

to about 50 microns and the sample cell valve opened. Pumping out con­

tinued overnight. 

As the first step in the actual filling procedure, the sample 

cell valve is closed and the sample cell immersed in a slurry of dry 

ice, water, and isopropyl alcohol and cooled to approximately -30° C. 

The relative amount of water and of alcohol is determined by the re­

quirement that the temperature of the cell not go below -50° C. Below 

this temperature the epoxy fails. After the cell has cooled to approx-
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To vacuum System t 

® indicates valve 

Figure 6. Filling System for Sample Cell 
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imately the temperature of the slurry, the valve between the gas han­

dling system and the vacuum system is closed and the valve to the gas 

bottle is opened. Gas flows into the gas handling system until the 

pressure reaches 400 psi, maximum pressure of the gauge, at which time 

the gas valve is closed and the sample cell is opened. A portion of 

the gas condenses into the cell, and the pressure in the system drops 

until it is equal to the vapor pressure of the liquid in the cooled 

cell. If calculation shows that the initial pressure required is 

greater than 400 psi, the filling procedure may be repeated. Usually, 

not enough of the gas will be condensed on one condensation, so the 

valve to the cell must be closed, more gas introduced into the gas 

handling system, and condensed into the cell. After the calculated 

amount of gas has condensed, the valve is closed, and the slurry is 

removed from around the cell. 

Determination of Critical Fill 

Above the critical temperature the average density is just the 

density of the one phase fluid; below the critical temperature the 

density of each phase varies with temperature along the coexistence 

curve. The average density remains constant as long as the cell is 

sealed, and the volume of each phase varies as the critical temperature 

is approached. When the average density i s equal to the critical den­

sity, the volumes of the liquid and of the gas phases will be constant 

and equal to each other a s the critical temperature is approached from 

below. This equality of volume of the liquid and gas phases is used to 
determine that the fluid in the cell i s at its critical density. 

The volume of the liquid phase relative to the total volume of 
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the sample cell below the critical temperature is given by Equation 

3-1 (for derivation see Appendix B): 

VT p - p 
_ii =

 v Kc + 1_ . 3-1 V 2 B.p e
p 2 1 rc 

V is the total volume of the sample cell, is the volume of the 

liquid, e the reduced temperature, p the average density of the fluid 

in the cell, Pc the critical density. B-̂  and 8 describe the shape of 

the coexistence curve. 

According to Equation 3-1, for densities greater than the crit­

ical density, as the critical temperature is approached from below, the 

volume of the liquid phase increases. Eventually as c -• 0 there will 

be some temperature at which V-̂  « V and the fluid in the cell will be 

entirely in the liquid phase. Experimentally, the meniscus, the line 

marking the boundary between the two phases, appears to rise and finally 

to go through the top of the cell. The temperature at which this occurs 

is the temperature at which the density of the liquid on the coexist­

ence curve equals the average density inside the cell. For densities 

less than the critical density, the meniscus will appear to fall, going 

through the bottom of the cell at the temperature at which the gas den­

sity on the coexistence curve equals the average density in the cell. 

If the density is very close to the critical density, the compressibil­

ity of the fluid is large enough so that a density gradient is set up, 

and the meniscus will remain w i t h i n the cell; the relative volumes as a 

function of temperature may then be used to provide a sensitive check 

of the density relative to the critical density. 
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The experimental check is made by slowly heating the sample cell 

in a water bath and observing the behavior of the meniscus. If the 

meniscus goes through the top or bottom of the cell the temperature at 

which the system becomes totally one phase is noted; density is deter­

mined from the coexistence curve for the material. Close to the crit­

ical density adjustments to density are made until the volumes of the 

two phases are equal just below the critical point. By this method one 

estimates that each of the samples is within of the critical density. 

After filling and adjusting the density to the critical density, 

the sealed cell is removed from the gas system and weighed to determine 

the mass and average density of the sample. A sample calculation of 

the critical density for N 2Q is given in Table 5. Table 6 compares the 

critical densities and temperatures observed in this experiment with 

other published results. Since the presence of small amounts of im­

purities can affect the critical densities as well as the critical 

temperatures for any given sample, the most accurate indication that a 

particular sample is at its critical density is the position of the 

meniscus at the center of the sample cell. The calculation of the 

density is useful mainly for comparison with other results. The den­

sities measured in this experiment are consistent with previously deter­

mined critical densities. 

Temperature Measurement and Control 

The object of any experiment dealing with critical phenomena is 

to determine the behavior of the system as a function of the temperature 

difference from the critical point. To find this temperature difference 
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Table 5. Calculation of Critical Density for N 2Q 

Mass of cell with N 20 

Average 

Mass of empty cell 

Mass of N 20 

Density = 

1843.0 - 1818.4 

24.6 + 0.2 

1843.0 gms 
1843.0 gms 
1843.0 gms 

1843.0 +0.1 gms 

1818.4 +0.1 gms 

24.6 + 0.2 gms 

.460 + 2.3% = .46 + .01 

53.3 + 0.8 
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Table 6. Critical Data for N 20, CC1F3 and CH3F 

Investigators T (°C) P (Atm) p f " ^ V ) n. ( o ) 
c c ^cVcm-y 1 Kc 

N 20 
Villard44 38.8 .454 
Kuenan45 36.0 71.9 
Cardoso and A m i 4 6 36.5 71.65 
Quinn and Wernimont47 .459 
Int. Crit. Tab. 4 3 36.5 71.7 .45 
Cook 4 8 36.34* 71.12 .452 
Straub17 36.416* 1.1154 
This Experiment 36.29 .468 

Albright and Martin49 28.85 38.2 .578 
Straub17 28.715 1.0996 
Schoenes6 29.05 
This Experiment 28.33 .568 

Collie50 44.9 62.0 
Matheson Co. 4 2 *4.6 58 
This Experiment 44.26 .306 

*The value of the critical temperatures are not that reported in the 
original papers, but result from analysis of the data in reference (17) 
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one must know as precisely as possible the critical temperature of the 

system as well as the current temperature. In addition, the tempera­

ture of the system should be controlled for a time long enough for the 

system to reach an equilibrium state and to allow measurements char­

acterizing the behavior at the temperature. These requirements for 

precise measurement and control in this experiment are met by placing 

the sample cell containing the fluid in a circulating bath, controlling 

the bath temperature with a proportional temperature controller, and 

measuring the temperature with a thermistor in a Wheatstone bridge. 

The fluid bath consists of approximately 5 gallons of 2 centi-

stoke viscosity Dow Corning 200 fluid in a 12" diameter, 12" high black 

anodized aluminum container surrounded by 1 to 3" of insulating foam 

except at those places in the sides of the cell where flat windows for 

optical paths are located. 

Thermistor Bridge 

The primary temperature measuring device for this experiment 

consists of a thermistor immersed in the fluid bath. A thermistor is 

used rather than a mercury in glass thermometer because the thermistor 

has greater sensitivity, it may more easily be used to produce a perma­

nent record of the system temperature, and its behavior is more regular 

when measuring temperature changes of the order of a few hundredths of 

a degree. The thermistor was calibrated against a platinum resistance 

thermometer, so the temperature corresponding to a particular resist­

ance is known. A temperature measurement is then made by measuring the 

resistance of the thermistor with the thermistor as one leg of a 

Wheatstone bridge. One of the sample cells also has a thermistor em-
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beded directly in the cell. This has been used to check temperature 

variations between cell and bath. 

Calibration Procedure 

The thermistor is a thermally sensitive resistor with a large 

negative coefficient of resistance, of the order of 3% per° C. The 

change in resistance between two temperatures is described by the fol­

lowing equation-*1 

R(T), R(TQ) are the resistances at the temperatures T and T^, 0 is a 

constant of the individual thermistor. To calibrate the thermistor the 

temperature and resistance must be measured at two points and 0 calcu­

lated for the interval between the two points. 

Whenever there is power expended in a thermistor, the thermistor 

will be at a higher temperature than the surrounding medium. For this 

r e a s o n , the t h e r m i s t o r was c a l i b r a t e d u n d e r c o n d i t i o n s that c l o s e l y 

approximate the conditions under which the thermistor is used. I t was 

calibrated in a water bath with respect to a platinum resistance thermom­

eter (PRT) (Leeds and Northrup Model 8163-C). The thermistor resistance 

was measured in the Wheatstone bridge used in the experiment; the resist­

ance of the PRT was measured using a Mueller bridge. The PRT had been 

calibrated by the Leeds and Northrup Co. with a calibration traceable to 

the National Bureau of Standards; the temperature scale used in that 

calibration was the International Practical Temperature Scale of 1948. 

The temperature corresponding to a particular resistance value of the 

3-2 
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PRT was calculated using the Callendar formula: 

R̂  = PRT res i s tance measured 

R = PRT res i s tance at i ce p t . o 

R ^ Q Q = PRT res i s tance at steam pt . 

6 = 1.492 for th i s thermometer 

Temperature and thermistor res i s tance values were calculated for 

several pairs of points and 0 was calculated for a temperature and 

res i s tance range between each pair of points using the following equa­

tion obtained by solving Equation 3-2 for 

O O 

Temperature Calculation 

The temperature corresponding to a given res i s tance i s calculated 

using the so lut ion of Equation 3-2 for T 

T i s the temperature to be ca lcu lated , R(T) i s the res i s tance measured, 

R ( T q ) i s the res i s tance of one of the end points of the range within 

which R i s measured. T i s the temperature corresponding to R(T ) , 0 



65 

is that calculated for the particular range in which R(T) is found. As 

a check of the sensitivity of the above equation to the value calculated 

for 0 , a calculation for one endpoint of an interval was made using the 

other endpoint and a value of 0 approximately .7% high. The error was 

approximately 15/1000 of a degree. This variation in 0 is higher than 

the variation in 0 between adjacent intervals, although a general in­

crease in the value of 0 is noted as T increases. 

Uncertainties in Temperature Calibration 

The uncertainty in the determination of temperature with the 

thermistor and Wheatstone bridge is due to uncertainties in the cali­

bration of the thermistor against the PRT and in the calibration of the 

PRT against the standard temperature scale. The accuracy with which 

the thermistor could be calibrated against the PRT is limited by the 

accuracy with which the resistance of each could be measured. The ther­

mistor resistance was measured during calibration to an accuracy of 

0.05 + 0.03 ohms; the resistance of the PRT was measured with a sensi-
-4 

tivity of 10 ohms. This resistance sensitivity corresponds to a 

temperature sensitivity of 1Q"~J C for the PRT. The uncertainties for 

a particular calibration point are +0.03 ohms in resistance and 0.001° C 

in temperature. When two resistance-temperature points are used to 

calibrate a range on the thermistor, the uncertainty of the tempera­

ture at a point in the range will be due to the temperature and resist­

ance uncertainty of the endpoints, as well as the uncertainty in the 

measured value of the resistance. The uncertainty in the resistance 

reading is approximately 0.03 ohms, corresponding to a temperature un­

certainty of approximately 0.001° C in the temperature region of inter-
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o est. The uncertainty in the endpoints adds another 0.002 C uncertain-
o 

ty so the total uncertainty in the reading is 0.003 C. 

In this experiment, the quantities of interest are temperature 

differences. For temperature differences in the same range, the cali­

bration uncertainty is less, because the same endpoints and same 9 are 

used to calculate both numbers. The calibration uncertainty is approx­

imately 
i j «. • «. Difference in R values x 0.002° C Uncertainty = : J Range in R 

For temperatures that are close to each other, the calibration uncer­

tainty is negligible and the uncertainty is just the uncertainty due to 

the uncertainty in the two measured resistance values, approximately 

0.002° C. For temperature differences between temperatures not in the 

same range, the uncertainty is the sum of the uncertainty in each value 

or 0.006° C . For N 20, temperatures within 0.7° C of the critical point 

are within the same calibration range, and for CCIF^ and CH3F tempera­

tures within 1.5° C are in the same calibration range. The absolute 

uncertainties In the temperature measurement can not be accurately 

determined, because the calibration of the PRT does not give estimates 

on the probable errors in the calibration, but it is probably of the 

order of 0.01° C, the uncertainty in the determination of the Inter­

national Practical Temperature Scale. 

Temperature Control 

Control of the temperature of the fluid inside the sample cell 

is achieved by controlling the temperature of the bath in which the cell 
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Is immersed. This control is accomplished by decoupling the bath from 

changes in heat inflow or outflow and by using a proportional tempera­

ture controller to supply heat at a rate that equals the rate at which 

heat is lost from the system. The decoupling is accomplished by three 

methods: 

(1) A synchronous motor powers the stirrer avoiding variations 

in heat input to the bath due to variations in line voltage. 

(2) The temperature of the room in which the experiment is 

carried out is lowered so that changes in room temperature will have 

relatively less effect on the rate of heat outflow from the system. 

(3) Relatively large amounts of insulation between the bath and 

room are used. 

A Bayley model 252 proportional temperature control controls the 

bath temperature by means of a resistance heater along the inner walls 

of the bath. The heater is a 500 watt heater, but resistors are placed 

in series with the heater, but outside the bath, to reduce the effec­

tive heating power inside the bath to either 30 or 100 watts, depending 

on the temperature at which the bath is being controlled. This enables 

the controller to provide power at a rate between 20% and 80%, in which 

range it is most effective in maintaining control. The degree of con­

trol is largely determined by the stirring. Vigorous stirring is nec­

essary to achieve good control, but with an ordinary propeller type 

stirrer, stirring adequate for temperature control produces bubbles 

which are unacceptable because the light beam passes through the fluid. 

This difficulty is avoided by the use of a flat disk approximately 3" 

in diameter which stirs the fluid without producing bubbles. 
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With the control operating normally, a rapid fluctuation of the 

temperature of approximately 0.001° C around the control temperature 

occurs. This fluctuation in bath temperature does not show up when 

checked with a thermistor imbedded inside a sample cell. On a short 

term basis for times of the order of 30 minutes, control to within + 

0.002° C is achieved, for longer terms, depending on the temperature 

of the room, or the output from the air conditioning units in the room, 

the control is degraded to + 0.004° C for periods of 1 to 3 hours, and 

+ 0.008° C for periods up to 12 hours. 

This degradation of the control does not materially affect the 

results obtained because, in the temperature range greater than 0.1° C 

from the critical point, small deviations from the temperature control 

point show up immediately as a change in turbidity, and as the tempera­

ture returns to the control point, the turbidity returns to its origi­

nal value. Although appreciable lengths of time are required for the 

system to reach equilibrium after large changes, the system mirrors 

small changes, of the order of 0.01° C very quickly. Thus an actual 

temperature sensitivity of a few millidegrees is possible and meaning­

ful. 

Measurements with an Optical Bridge 

The actual turbidity of the fluid as a function of temperature 

is measured by means of an optical bridge. The use of an optical 

bridge enables accurate measurements of the intensity transmitted 

through the sample cell to be made by comparing it to the intensity 

of a reference beam which can be adjusted by attenuation. The intensity 
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of the cell beam relative to the reference beam is then determined by 

measuring the amount of attenuation necessary to produce equal in­

tensities. Although absolute intensity measurements cannot be made, 

intensity readings may be made with an empty cell and a filled cell 

and with filled cells at different temperatures and the relative in­

tensities compared. 

The variable attenuator consists of three Glan Thompson (GT) 

polarizing prisms arranged so that there is one rotatable prism in a 

divided circle rotator between the two fixed prisms in the optical 

path. The two fixed GT prisms are aligned with the same direction of 

polarization, so the light intensity transmitted through the three 

prisms is proportional to sin^ 9, where 0 is the angle between the 

direction of polarization for the center prism and the direction for 

which the transmission is a minimum. 

The polarizers are aligned by placing the first GT prism in the 

optical path and aligning it to give some convenient direction of polar­

ization. The rotatable prism is then placed behind the first prism 

and rotated until minimum transmission is obtained. 

The third prism is then put into place and rotated until a new 

minimum of transmission is found. This aligns the first and third 

prisms so that they have the same direction of polarization. This 

method is used since relative changes in intensity are much greater 

near transmission minima than near maxima. The sin^ 0 dependence was 

checked by means of neutral density filters and found to hold within 

the error limitations of the neutral density filters. 
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Optical Bridge Components 

The various components of the optical bridge are shown in 

schematic form in Figure 7. The light source for the bridge is a 

Spectra Physics Model 133 laser which emits unpolarized light at 633 

nm. The output is well collimated, having a divergence of approximate­

ly 1 mrad., with a beam diameter at the sample cell of about 2 mm. 

The beam first passes through a red filter removing any blue 

light from the plasma tube and then through the first GT prism (placed 

before a beamsplitter so that both beams will be polarized). The beam­

splitter separates the beam through the sample cell from the reference 

beam. The reference beam then passes through the second and third 

prisms of the attenuator, the oil bath, and a lens which focuses the 

beam onto the plane of a chopper. The other beam passes through the 

bath, the sample cell, a circular aperture 3.0 mm in diameter, and 

another lens which focuses this beam in the plane of the chopper. The 

chopper is aligned so that the two beams fall alternately on the face 

of an RCA 7265 photomultiplier (PM) tube which is used to measure the 

intensity of the light. A diffusing screen is mounted in front of the 

PM tube to minimize the effects of beams incident at different positions 

on the tube. The tube is powered by a Keithley Model 240 power supply; 

where the turbidity is small, the supply voltage is -1500 volts. Close 

to the critical temperature, the transmitted light intensity decreases 

as the turbidity increases and the supply voltage is increased. This 

voltage was chosen for the greatest sensitivity on the devices used to 

measure the output from the tube. The voltage due to the photocurrent 

(approximately .03 ma) through a 104 ohm resistor is displayed on a 



Figure 7. Optical Bridge Components 
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Model 535 Tektronix oscilloscope. 

Since the beams have been focused at the plane of the chopper, 

the rise time during which the intensity of the beam transmitted by the 

chopper changes i s much less than the time during which there i s full 

transmission or full extinction, and the output from the photomulti­

plier tube due to each beam has the form of a square wave. Because of 

the size of the slits on the chopper, the transmission time for each 

beam is less than the blocking time. Since the beams fall alternately 

on the face of the PM tube, the resulting signal consists of two 

alternating square waves with the amplitude of each proportional to 

the incident light. 

The circular aperture in the beam that passes through the sample 

cell serves two purposes: first, it limits the amount of forward scat­

tered light reaching the PM tube; second, it eliminates possible ef­

fects due to multiply scattered light. It is movable so that varia­

tions in beam position (such as that produced by a downward bending of 

the beam due to density gradients in the sample near the critical point) 

may be matched. With this aperture in place, the errors in the meas­

ured light intensity due to inclusion of the forward scattered light 

may be determined from the scattering equations presented in Chapter II. 

The half acceptance angle of this aperture is approximately 6 x 10 

rad. At 0,026° C above the critical temperature, the smallest AT used 

in the final analysis of the correlation lengths, the forward scattered 

light represents only 0,03% of the measured light intensity; farther 

away, the error is less. The maximum possible error due to multiple 

scattering may be determined by assuming that all of the light scattered 
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out of the beam is then scattered a second time and estimating the 

amount of this multiply scattered light that passes through the aper­

ture. Calculations show that the maximum error due to this multiple 

scattering is approximately the same as the error due to the inclusion 

of the forward scattered light. Since not all of the light is multiply 

scattered, the error will be less than this maximum calculated; the 

error will become still smaller for larger AT. 

Positioning of Sample Cell 

The sample cell is positioned so that the beam traverses the 

cell horizontally at the point where the meniscus disappears as the 

temperature is raised past the critical temperature. This accurate 

vertical positioning is necessary because the very large compressibility 

of a fluid near its critical point results in large density gradients 

in the fluid. Only a small region at the center of the cell will actu­

ally be at the critical density, and it is at this point in the center 

of the cell that the meniscus disappears as the temperature is raised. 

These density gradients close to the critical temperature also bend the 

light beam downward. This effect, however, is only important for 

temperatures very near the critical point. Deviations of the beam were 

not noted in this experiment until the temperature was less than 0.2° C 

above the critical temperature. The time required for these density 

gradients to become established increases greatly for temperatures near 

the critical point, and since no equilibrium data was obtained closer 

than 0.1° C from the critical temperature, density gradients did not 

pose a serious problem for this series of experiments. 

The power of the beam through the sample should be reduced to a 
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point where no heating of the sample occurs due to heating by the beam. 

The beam power through the sample in this experiment is less than 50 
35 

microwatts. Swinney and Cummins found that beam powers less than 75 

microwatts did not affect similar samples of CO2, so heating is not 

considered to be a problem for this series of experiments. 

Data Acquisition Procedures 

A measurement of the light intensity transmitted through the 

sample cell is made by rotating the center GT prism until the inten­

sities of the two beams are equal, as determined from the oscilloscope 

trace. Since the output from the PM tube consists of two alternating 

square waves, the oscilloscope is adjusted so that the trace is trig­

gered by each pulse; there is a stable display of two pulses, one from 

each beam, superimposed on the screen. The center GT prism is rotated 

until the flat portions of each pulse coincide. The amplitude of the 

signal from each beam is the same, and thus the intensities of the two 

beams are equal. The angle of the rotatable prism is recorded, and the 

process is repeated for a total of four readings. The readings are 

averaged, and the difference between this average angle and the angle 

for minimum transmission is calculated. The intensity may then be 

determined from the sin^ $ law. 

The angles of the rotatable GT prism may be measured to the 

nearest 0.05°, with the minimum detectable intensity variation cor­

responding to a change in the angular reading of approximately 0.05°. 

The percent error in measured intensity depends on the relative trans­

mission, but for the intensities when the turbidity is small, the error 

is approximately 0.1%. 
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The optical system is very sensitive to slight movement of the 

optical components so absolute stability of the system is required 

during any data taking run. This is achieved by attaching all com­

ponents firmly to rails which are then bolted to the table. The system 

is also sensitive to shifts in the beam position. The sample cell beam 

is steady, except for the density gradient bending, but the reference 

beam enters and exits the bath through non-parallel windows. Conse­

quently, changes in the refractive index of the bath fluid with temper­

ature cause shifts in the reference beam position. To take account of 

this effect, a series of readings were taken measuring the light trans­

mitted through the cell with an empty cell in place of the filled cell 

over the temperature region of interest. Thus a baseline intensity 

was obtained for the transmission of an empty cell as a function of 

temperature. 

The transmission of an empty cell is different from that of a 

filled cell because of the differing index of refraction of the material 

in the cell. At the inner surfaces of the windows, the light beam 

passes from a medium having one index of refraction to one with another 

index of refraction. For normal incidence the transmission at the 
52 

interface is given by the formula 

n^ is the refractive index of medium 1; 
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n 2 is the refractive index for medium 2; 

T is the transmission 

The index of refraction for the air in the empty cell is assumed to be 

1.000 while the indexes of refraction for N 20 and CCIF3 at the critical 

density have been measured and are given in Table 6. The re fract ive 

index for CH3F at the critical density has not been measured, but for 

standard conditions of temperature and pressure, the index of refrac­

tion is given in the ICT^3 as 1.000449. Using the measured critical 

density and applying the Lorentz-Lorenz relation, 

n - 1 _ 4 t t n 

"2 3~~ P 

n + 2 J 

n = refractive index 

0 / = polarizability 

p = density 

an index of refraction of 1.0904 may be calculated for CH^F at the 

critical density. 

Using the known index of refraction for quartz, and the values 

of the refractive index for the various materials in the cell, the 

transmission may be calculated for each surface for both the empty cell 

and the filled cells. This value is then squared to obtain the total 

transmission for the interior surfaces. The appropriate corrections 

to the baseline for the empty cell may be made for each of the filled 

cells to obtain a value for the transmission through each fluid in the 

absence of scattering from the fluid within the cells. When light 
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intensity measurements are made with the cells containing the fluids, 

the measured intensity should be less than the adjusted baseline close 

to the critical point and approximately equal to the adjusted baseline 

for temperatures 10° C or more away from the critical temperature. The 

difference then would be due to the light scattered from the fluid in­

side the cell, from which the turbidity as a function of temperature 

for the fluid could be determined. In some cases, this is not exactly 

correct. The quartz windows have imperfections which may affect the 

transmission; there may be a small difference of position of the cells 

in the bath; and the indexes of refraction for the N^O and CCIF^ have 

been determined using the sodium D line, X = 589 nm, while the laser 

light used is of a different frequency, \ = 633 nm. In addition, the 

index of refraction for the CH^F has not been accurately determined and 

the effect on the light transmission of the polymer coating on the in­

terior of the cell windows in the cell containing CH^F is not known. 

Experimentally, these differences result in the observed inten­

sities lying above or below the adjusted baseline. If the intensities 

lie above the baseline, a log-log plot of the positive turbidities vs 

temperature difference from the critical point will have a downward 

curvature for AT > 0.2° C. If the intensities lie below the baseline, 

then a log-log plot as before will show an upward curvature with the 

turbidities approaching a constant value. The correct baseline will 

result in a straight line when the turbidity is plotted vs AT. So the 

final choice of the correct baseline may be made by choosing that base­

line which gives the straightest line for AT > 0.2° C. This is done 

mathematically rather than graphically by varying the baseline to mini-
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mize the error when the turbidity is fitted to a function of the form 

of Equation 2-42: 

T = C T e " Y . 
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CHAPTER IV 

DATA AND ANALYSIS 

Data Analysis Procedure 

The first step in the data analysis for each of the substances 

investigated is the determination of the critical temperature of the 

substance. The criterion for the transition is the appearance of a 

meniscus and the beginning of nucleation marking the separation into 

two phases; the critical temperatures measured in this way are given 

in Table 6. The turbidity at a temperature is determined from Equation 

2-38 in which the incident intensity is the measured baseline, adjusted 

for the difference in transmission at the windows of the filled cell, 

and the transmitted intensity is just the measured intensity with the 

filled cell in place. AT is determined by subtracting the measured 

critical temperature from the temperature at which the turbidity is de­

termined, and turbidity Tvs AT data is obtained. This data is plotted 

for the various substances in Figure 8 on page 84, Figure 10 on page 

90, and Figure 12 on page 96. 

This turbidity vs AT data is fit to an equation of the form 2-41 

using a generalized least squares fitting program, LSQG. This program, 

shown in Appendix C, is an element in the physics program library file, 

PH*LIB. LSQG calculates a best least squares fit to functions of the 

form 
N 
E a f (x C) 4-1 

n = 1 n n 1 
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where the a's are parameters to be fitted. Equation 2-42 is written 

in the form of Equation 4-1 using logarithmic functions, resulting in 

two parameters, one the logarithm of the coefficient and the other the 

exponent. The best fit parameters â  and a 2 are those for which the 

variance is minimized; the uncertainty in the determination of the a's 

is given by the standard deviation of the fit. The program LSQG itself 

handles the input of data, calls on a subroutine to evaluate the func­

tions, converts the data into matrices, uses another subroutine to in­

vert the matrices, and finally calculates the parameters and associated 

errors, 

The graph of the turbidity vs AT should be a straight line in 

the temperature range in which the correlation length is negligible; 

but close to the critical temperature, as the correlation length in­

creases, the exponent describing the slope should become smaller (in 

absolute value) as the curve flattens out. It is desired to use tem­

peratures as close to the critical temperature as possible in calcu­

lating the exponent while keeping only that portion of the curve that 

is a straight line. To do this, various minimum values of AT are used 

to fit the turbidity-AT data, and the minimum AT used is that smallest 

AT for which there is no consistent decrease in y• Points as close to 

the critical temperature as 0.2° C are used for all of the fluids in­

vestigated. For points closer to the critical temperature than AT = 

0.2° C, there is a constant decrease in the exponent attributable to 

the effects of the increasing correlation length. 

The magnitude of the constant C in Equation 2-40 is calculated 
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using the measured index of refraction at the critical density, the 

measured critical density and critical temperature, and the constants 

XQ and k. C is then used to determine the coefficient of the compress­

ibility. The value for the compressibility is then used to calculate 

the correlation lengths for each fluid for values of AT<0.2° C. 

Possible uncertainties in the intensity measurements result in 

an uncertainty of approximately 0.0005 cm ^ in the turbidity measure­

ment. In addition, there are other errors that lead to larger unper-

tainty in the turbidity data. The first of these is due to possible 

changes in the position of the beam transmitted through the sample 

cell or errors in the transmission function calculated for the window 

surfaces. Such errors result in a consistent shift of the entire base­

line and may be treated as described in Chapter III. Other errors, 

due to changes in the reference beam position, result in inconsisten­

cies between various portions of the measured turbidity-AT curve. The 

magnitude of such errors is not known precisely, but judging from the 

experimental data, may result in differences amounting to ± 0.0002 cm"^. 

The effects of this type of error may be eliminated by fitting the data 

points to Equation 2-42 with no weighting for all AT > 0.2° C. The LSQG 

program calculates an error in the determined critical exponent; the 

range of the data is reduced by taking successively smaller maximum 

AT and the error is determined for each range and plotted against the 

maximum AT. In each case, the error is relatively large for the entire 

range considered, but as the maximum AT becomes less, there is a rapid 

decrease in the error until some minimum error is found; a further de-
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crease in the range results in a slight increase in the error due to the 

small number of data points considered. The decrease in the magnitude 

of the error is accompanied by a change in the calculated critical ex­

ponent. This change in exponent becomes less as the change in the er­

ror decreases, and the exponent finally reaches, in all cases, an ap­

proximate final value for the same maximum AT at which the error is 

minimized. This indicates that the data in the range for which the 

errors are approximately constant is self-consistent. This is expect­

ed because the range over which the data is self-consistent represents 

only a small temperature change and thus a small possible change in the 

reference beam position. 

The turbidity values in this self-consistent range may then be 

adjusted as described in Chapter III to determine whether the curve 

might best be fit with some adjusted baseline. There was no indication 

that adjustments to the baseline improved the fit for either of the 

three substances investigated. 

In addition, the errors determined for the isothermal compress­

ibility may be checked by attempting to use values of the compressibil­

ity outside of the error bounds to calculate the correlation lengths. 

This was done for the N 2Q and resulted in confirmation that values out­

side of the error bounds result in incorrect values for the correlation 

lengths, either too large or too small, relative to the observed total 

light scattered. 
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Determination of ̂  ̂  

Data Analysis for ^0 

Two sets of turbidity vs AT data, shown in Figure 8, are used 

in the analysis of the ̂ 0 data. The same baseline is used in both 

cases, but the relative transmission of the optical components is dif­

ferent in each case, accounting for the difference in the two data 

sets. The data sets are analyzed separately and together; the results 

of these analyses are in agreement and are consistent with the accuracy 

expected from the experiment, as well as with the errors calculated in 

fitting the data. 

N 20 Data Set 1. Critical exponents and errors calculated for 

this data set for various ranges of temperature are plotted in Figure 9. 

The data from 0.2° C to 2° C from the critical temperature is apparently 

self-consistent, judging from the approximate constant error for smaller 

ranges and the rapidly increasing error outside this range. There is, 

however, a steady and significant increase in the calculated exponent 

within this range as the maximum AT is reduced, increasing from v -

1.07 to v = 1.16 for the smallest range considered. Considering the 

data without any adjustments, it is reasonable to expect that the data 

closest to the critical point, which has the smallest relative error, 

would give the best determination of y . This may be checked by adjust­

ing the data in the range 0.2 < AT < 2.0 for best fit. When this is 

done, a value for y 

y - 1.175 ± .011 
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is calculated. A range with a slightly higher minimum AT gives a value 

V = 1.16 ± .02; a slightly smaller range results in Y = 1.19 ± 0.013. 

The smaller ranges have larger errors than the total range 0.2 < AT 

< 2.0, as expected, because the greater range should give a better fit 

due to the larger number of points. The adjustments required for each 

range, however, are of about the same amount, approximately - 0.002 

cm S consequently, the best fit value for the complete range is con­

sidered to be the best value. The values for y found by the analysis 

of the first N^Q data set, then, are 

y = 1.16 ± .02 unadjusted near T^ 

y = 1.175 ± .011 adjusted best fit value 

N^O Data Set 2. The second data set used in the analysis of 

the turbidity-AT data for the N^Q consists of a considerably larger 

number of data points than the first set, resulting in smaller errors. 

The turbidity values measured for this set appear to be slightly small­

er than the corresponding values measured for the first set, indicating 

that some different correction might be needed; and this is the case. 

The data for this second set is checked by varying the range as 

in the first data set with the results shown in Figure 9. The data 

appears to be self-consistent for the range 0.2 < AT < 1.5, with the 

values close to the critical temperature best fit with y » 1.180 ± 

.006, for which the error is smallest. Considering the entire range 

for which the data is considered to be self-consistent, a best fit is 

obtained with the addition of approximately 0.0008 cm"1 to the measured 
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values of the turbidity, resulting in a value for y of 1.160 ± .005, 

a value slightly smaller than that obtained by considering only values 

of AT close to the critical temperature. So the two values determined 

are 

y = 1.180 ± .006 unadjusted near T £ 

Y = 1.160 ± .005 adjusted best fit value 

The numbers are not in perfect agreement, considering the 

errors calculated, but the difference is small. 

N^O Data—Both Sets. A similar check of the effects of range 

variation with the combined data from both sets is also plotted in 

Figure 9. This check yields a minimum error with the range 0.2 < AT 

< 0.6° C and a corresponding value for Y» 

Y = 1.176 ± .008 

No significant decrease in the error is found by varying the measured 

values of turbidity. 

Because this exponent value is determined using data from both 

sets, it is considered to be the most accurately determined; in addi­

tion, the value lies between the values calculated for each of the 

separate data sets. Consequently, this value is taken as the value for 

Y for the N2Q. The range of values calculated, however, indicates 

that the error bounds should be extended to include the value at Y -

1.16, and so the actual error in the determination is ± 0.015. In 

addition, the uncertainty in the determination of the critical temper-



88 

ature leads to a further uncertainty in the exponent of approximately 

0.01. The total uncertainty in the exponent, then, is ± 0,025 and the 

best value calculated for y for the N O is 

The fitting of the data that produced the above value of the exponent 

produces a value of (0.01455 ± 0.0006) cm * for the turbidity coeffi­

cient, and so the turbidity may be written 

Compressibility Calculation from Turbidity. On the basis of the 

measured critical index of refraction and the measured critical density, 

N^O. The quantity C from Equation 2-38 may then be calculated, and 

the coefficient describing the compressibility then determined from 

the measured values of turbidity and the calculated C. This introduces 

approximately another 2% error into the coefficient calculation, al­

though not into the calculation for the exponent. 

Y = 1.176 ± .025 . 

T = (.0146 ± .0006) AT~Y (cm - 1); Y = 1.176 ± .025 

the Lorentz-Lorenz formula may be used to calculate the (SD for the 

The measured values are: 

bp 

P .46 g/cm 

.574 cm^/g 

X 633 nm o 
kT 4.28 x 10 -4 c ergs 
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from which C may be determined; 

2 2 
C = | TT (J^) = 151.6 x IO"4 atm/cm 

o 

The coefficient describing the behavior of the isothermal compressi­

bility as a function of AT is then 

(.959 ± .07) atm"1 

expressed as a function of AT may be written 

lij, = (.96 ± .07) AT^atnf1; y = 1.176 ± .025 4-2 

or, expressed in terms of the reduced temperature, 

K T = (1.14 ± .07) 10"3 e^atrn"1; Y = 1.176 ± .025 4-3 

This value of the compressibility, together with the unadjusted meas­

ured values for turbidity is then used to calculate the correlation 

length for the N^0 as a function of temperature. 

Data Analysis for CC1F3 

The turbidity-AT data for CC1F3 is shown in Figure 10; the re­

sults of the analysis by means of a variation in the range similar to 

that detailed earlier for N 2Q are shown in Figure 11. This analysis 

indicates that the data is consistent for the range 0.2 < AT < 1.0, 

since for this range and for all smaller ranges the fitted value for y 
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is approximately the same and the errors approximately constant, while 

there are rapidly increasing errors outside this range. The value and 

error for Y calculated on this basis are Y • 1.120 ± 0.003. When the 

turbidity values in the range for which the data is self-consistent are 

adjusted in order to obtain a best fit, the best fit is found to be 

given by the unadjusted baseline with y the same value as above. In 

addition the slope and thus the exponent were the same for all of the 

smaller ranges considered. It was found, however, that a shift in the 

exponent by ± 0.005 had no significant effect on the error; the actual 

uncertainty then is the sum of the above errors, ± 0.008. The values 

calculated for y then are the same: 

Y = 1.120 + .003 unadjusted baseline 

Y = 1.120 ± .008 best fit 

Comparison of the range variation data with Figure 10 indicates that 

at the point where the data becomes inconsistent, there Is an abrupt 
change in the slope of the line. The possibility that this change in 

slope is due to a change in the exponent attributable to the dipole-

dipole interaction has been investigated, but the effect has been found 

to be due to experimental inconsistencies between various portions of 

the data. First, an effect due to the dipole-dipole interaction should 

result in a value for Y close to 1.0, and the value 1.12 is relatively 

far from 1.0. Second, analysis of the data for AT > 1.0° C indicates 

that the curve can be fit with an exponent in the range 1.1 - 1.6 (but 

with considerably larger errors than for AT < 1.0° C) with the addition 
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of approximately 0.0028 cm to the measured values for the turbidity, 

shown by the x's in Figure 10. The large difference in the adjustment 

needed for the two portions indicates that there is an experimental in­

consistency between the two portions of the data curve. Third, attempts 

have been made to fit the entire curve with one adjustment over the 

entire temperature range investigated. When this is done, however, the 

calculated value of y shows a significant increase as the critical tem­

perature is approached, a behavior contraryvto that expected on the 

basis of a dipole-dipole interaction. In addition, as will be seen in 

the next section, there is no similar effect observed with the CH^F. 

Since the dipole moment of the CH^F is some three times the size of 

the dipole moment of CClF^, the absence of such an effect in the CH^F 

confirms that the change in slope is not due to the effects of the di­

pole-dipole interaction. 

Compressibility Calculations from Turbidity. With the above 

fitted value for the exponent, the turbidity for CCIF^ as a function of 

AT is best fit by the expression 

T = (1.633 ± .010) x 10"2 AT~Y (cm"1) y = 1.120 ± .018 

The errors are considered to be the larger of the two errors calculated 

earlier. The constant C is calculated as for the N^Q, with an error of 

approximately 2% as before. For the CCIF^ 

n = 1.0996 
c 
pc = .57 g/cm3 
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^ = .392 cm3/gm bp 

and 

2 2 
C = | TT (J^) kTc = 106.4 x 10"4 atm/cm 

X 
o 

Analyzing as for the ̂ 0 , the formula for Kj. is 

Kj, = (1.54 ± .04) AT'Yatm"1; y = 1.120 ± .025 4-4 

Expressed in terms of the reduced temperature this becomes 

, Kj. = (2.57 ± .07) x 10"3 e^atm"1; y = 1.120 ± .025 4-5 

Data Analysis for CH^F 

The data analysis procedure for the CH^F is the same as for the 

other fluids investigated. The transmission of the filled cell in the 

absence of scattering is calculated as described in Chapter II from the 

measured baseline, but since the baseline is measured using uncoated 

windows and the CH^F cell windows are coated with the silicone polymer, 

the calculation for the difference in transmission between filled and 

empty cell must take the polymer coating into account. This is done, 

and turbidity-AT data for the CH^F is shown in Figure 12 with the re­

sults of range variation shown in Figure 13. Although the errors cal­

culated for the CH^F are considerably larger than those for the other 

two fluids, the data appears self-consistent for the range .2° C < AT 
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< .6° C. The error is smallest for the range .2° C < AT < .55° C for 

which range the value of the exponent y calculated is y = 1.154 + 0.024. 

There is a slight apparent increase as the range is further decreased, 

but this is accompanied by an increase in the error. If the points in 

the range for which the error is least are weighted proportional to the 

turbidity, the calculated value of the exponent is increased to y = 1.16 

with no significant change in the error. When attempts are made to ad­

just the turbidity to give a best fit, there is a general decrease in 

the error with the addition of some constant value to the measured val­

ues of turbidity. For the range in which the error is smallest, weighted 

values of the turbidity give a best fit of y = 1.11 while the non-weight­

ed data shows no significant changes on adjustment. Other ranges like­

wise show no significant changes, tending to contradict the indications 

of a slight increase in the slope as the range is decreased; in addi­

tion, checks made by calculating the correlation lengths for various 

values of y indicate that the errors are slightly less with the lower 

value of Y• In the absence of consistent indications that the value of 

Y should be higher or lower than the measured value for which the error 

is least, this measured value is taken as the actual value of Y for 

CH^F. Error bounds of ± 0.05 should be large enough to reflect the un­

certainty in the actual measurement; including, for example, the value 

Y = 1.11. When the uncertainty in the exponent due to the uncertainty 

in the determination of the critical temperature is added, the actual 

value of Y» with errors, is 

Y = 1.15 ± .06 



Figure 12. Turbidity vs AT Data for CH F 
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Compressibility Calculation from Turbidity. Considering the un­

certainties in the fitting of the CH^F data, the turbidity is given by 

T = (.0130 ± .0015) AT"7 

v = 1.15 ± .06 

For CH F 3 

n = 1.0904 c 
p = .306 ĉ 

.6564 
bp 

and 

c = Cî Obp2
 k T c = 8 9 # 6 x 1 0 ~ 4 a t m / c m • 

The compressibility as a function of AT is 

K T = (1.45 ± .16) AT" v
a t m-l. y = i.i5 ± .06 4-6 

which when expressed as a function of the reduced temperature is 

H T = (1.92 ± .20) x 10"3 e" Vatm _ 1; y = 1.15 ± .06. 4-7 

Experimental Determination of § Q and v 

Correlation lengths are calculated for the fluids investigated 

in this series of experiments following the procedures discussed in 
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Chapter II; the results are shown in Figure 14. These values of § vs 

AT are then fit to an equation of the form 

5 - 5 0 A T " V 

using the LSQG program detailed earlier for various ranges of AT < .2 C 

for the combined data for all substances and for the N,0, C C 1 F , and 
2 3 

CH^F data separately. There is considerable scatter in the data lead­

ing to relatively large errors in the calculation of the fitting param­

eters describing the behavior of the correlation length; these uncer­

tainties are due to the fact that two relatively large numbers, each 

with associated errors, are subtracted, resulting in a small number 

with relatively large error. Considering only the uncertainties in the 

measurement of the light intensities leads to an uncertainty in the 
o 

measured correlation lengths of ± 200 A. Possible uncertainties in the 

fitting of the compressibility lead to additional uncertainties in the 

measured fit for the g-AT data. 

Figure 14 indicates, however, that there are no major differences 

in the measured correlation lengths for the three fluids. In particular, 

there is no indication from the graph that the differing dipole moments 

of these three fluids have any effect on the measured correlation 

lengths. This is confirmed by analysis that shows that the uncertain­

ties involved in fitting the data for each substance are larger than 

the differences calculated for the various fluids. 

Combined Data for Three Fluids 

The combined correlation length-AT data for the ̂ 0 , C C I F 3 , and 
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CH^F is fitted with the LSQG program for .006° C < AT < 0.2° C and for Var­

ious ranges having a smaller maximum AT; the results are plotted in Fig­

ure 15. There is a large decrease in the error and in the calculated 

exponent when the maximum AT is reduced from .20 to .16, and only a 

slight change in the error for smaller ranges; consequently the range 

AT < .16° Cis taken as the range in which the data appears self-con­

sistent. The minimum error occurs for the range with maximum AT < 0.11, 

and for this range, the correlation length-AT data appears best fit by 

§ = (180 ± 20) AT"V A 

V = (.80 ± .03) 4-8 

The fit for various ranges indicates that there is a general decrease 

in the measured exponent V as the range is decreased by choosing the 

maximum AT closer to the critical point. This decrease in v is accom­

panied by an increase in the coefficient. Calculation of fitting param­

eters for the substances separately shows that this same general behav­

ior occurs, so comparison of the exponents and coefficients for various 

substances should be made using the same range of data in each case. 

Comparison of LQ, v for N 20, C_C1F 3, CR3F 

CCIF^ has the largest minimum AT and thus the smallest range 

measured, so the range determined for CCIF^ will determine the ranges 

used for the other substances. Variation of the CClF^ range as for the 

above combined data indicates that there is a large decrease in the er­

ror and change in v for the range AT < 0.11; so this range is taken as 

the self-consistent range for the CC1F . Fitting parameters are then 
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calculated using the range 0.025 < AT <;0.11 in each case. The results 

are shown below: 

Combined data-all substances 

5 = (200 ± 40) AT _ ( ' 7 6 ± , 0 7 ) 4-9 

CC1F3 

C H 3 F 

§ = (200 ± 25) AT ' ( ' 7 7 ± , 0 4 ) 4-10 

§ = (250 ± 70) AT " ( , 7 ° 1 ' 0 9 ) 4-11 

N 0-both sets 2 

§ = (125 - 40) AT " ( , 9 ° ± , 1 3 ) 4-12 

The values calculated for V are consistent when error bounds are taken 

into account, but the V for ̂ 0 is slightly greater than for the other 

two substances. This discrepancy is removed when the two sets of N^O 

data are analyzed separately. Analysis shows: 

N20-Data Set 1 

+ 20 
§ = (48 - 14) AT " ( U 1 7 ± ' 1 3 ) 4-13 

N20-Data Set 2 

5 = (215 - 45) AT " (" 7 5 1 ' 0 8 ) 4-14 

§ and v calculated for Data Set 2 are in very close agreement with the 

other values calculated; the N 20 data set 1 differs from the other set 

and from the other substances considered by a considerably larger 
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amount. This difference is probably due to the fitting procedure used, 

in which both sets are used in determining the best fit parameters for 

Kp. Since there are considerably more data points in set 2 than in set 

1, the fitting parameters are primarily determined by data set 2. Slight 

differences in the sets, in particular a difference in the calculated 

coefficient, account for the differences in the calculatedv . Since 

the fitting is determined primarily by data set 2, it is thought that 

data set 2 offers the best comparison with the other substances, in 

which case there is no longer a significant difference between the N^O 

data and that of the other substances. 

The only remaining difference is in the CH^F data, and this dif­

ference in exponent is less than the error calculated. As a further 

check, the v is calculated for v = 1.11, a number that differs from the 

best value of v by approximately the error bound calculated for the 

CH3F v. When this is done, the v calculated is v = 0.62 ± 0.09. So 

evidently the uncertainty in the determination of y accounts for an un­

certainty in v of approximately ± 0.08 in addition to the errors calcu­

lated on the basis of the standard deviation. So the total uncertainty 

is considerably larger than the difference between the CH^F and the 

other substances, leading to the conclusion that the difference is not 

significant. 

General Discussion of Correlation Length Measurements 

Comparison of Equations 4-9, 4-10, 4-11, and 4-12 indicates that 

when the range is held constant, there are no significant differences in 

correlation length parameters calculated for the three fluids investi-



105 

gated. The values of § and v are, however, larger than values reported 
20 53 

for other substances ' . Limitation of data to ranges close to the 

critical point tends to result in lower values of V with larger coeffi­

cients, and with larger errors on each; extending the range to larger 

AT results in lower values for the coefficient with larger values of V , 

together with much larger errors. In addition, when turbidity values 

for AT > 0.2°C are included, the uncertainties in the measurement of the 

turbidity result in some measured values of turbidity being slightly 

larger than that calculated on the basis of the best fit parameters for 

the compressibility. This results in negative values for a in Equation 

2-32, causing a breakdown in the calculation of the correlation length. 

Because of the changes in the parameters calculated for various 

ranges, and because of discrepancies between this data and other re­

ported values for the correlation length, it is thought that there are 

possible systematic errors in the data close to the critical point; but 

the data for each substance is taken using the same procedures, and any 

differences between the various substances are expected to result in 

differences in the calculated fitting parameters for these substances. 

There are no significant differences between the substances, with the 

slight differences that exist considerably smaller than the uncertainty 

in the fitting of the individual substances. 
Discussion of Compressibility Results 
and Comparison with Other Experiments 

The experimental measurements of T and y describing the behavior 

of Km in the critical region for the three fluids investigated in this 
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series of experiments are given in Equations 4-3, 4-5, and 4-7. These 

values are also given in Table 7, together with other determinations of 

critical exponents for NO, CC1F and CO . 

j z 
These measurements of X in the critical region are the first 

T 
reported for ̂ 0 and CH^F. Although there are no reported measurements 

for N^O, this molecule is similar to CO^ in its physical properties: 

the shape is the same, the molecular weight is the same, the critical 

parameters p̂ , T^, P^ are similar, and the one critical exponent that 

has been measured for both, B, is the same. The small dipole moment of 

N 20 would be expected to have either a small or no effect on the meas­

ured critical exponents, and so comparison of N 20 data of this experi­

ment with other C0 2 data can be made. K T for C0 2 in the critical re­

gion has been measured using light scattering techniques by Lunacek and 
20 7 Cannell and by White and Maccabe . Their measured values are (in terms 

of the units used in this series of experiments): 
Lunacek and Cannell 

K T = (.785 ± .047) x IO - 3
 e~ V 

Y = 1.219 ± .01 atm"1 

White and Maccabe 

K T = (.986 ± .08) x 10"3
 e" Y 

Y = 1.17 ± .02 atm"1 

These values differ by more than the error reported for each ex­

periment. However, the data of White and Maccabe seems better than 
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Tab le 7. KPCR, Y ) , 0 , Q, for N 20 ; 

C0 2, CC1F3 and CH3F. 

R 

-3 
This experiment 1.14 x 10 1.176 .13* 
co2 

17 
Straub 2Q .345 
Lunacek & Cannell .785 x 10" 1.219 .09* 
White & Macca^e7 .986 x 10 1.17 .13* 

! t. a 1. Lipa et. al. .12 

CC1F3 

Straub _ .354 
This experiment 2.56 x 10~ 1.12 .17 
Schoenes6 .764 x 10*J 1.275 .017* 

C H 3 F 

-3 
This experiment 1.92 x 10 1.15 

*Value for a predicted from experimental measurement of Y» Straub's 
measurement of p, and scaling laws. 
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that of Lunacek and Cannell in terms of the amount of data considered, 

the greater range of data (by approximately two decades) and correction 

terms considered. As seen in Table 7, the value for X for N 0 is in 
T 2 

excellent agreement with that of White and Mccabe and in approximate 

agreement with that of Lunacek and Cannell. The coefficient for the 

compressibility for the N^O is slightly larger than that for CO^* indi­

cating a possibly greater correlation range for a given AT. 

There has been one other measurement of K T for CCIF^, that of 

Schoenes . There is serious disagreement.between this experimental 

measurement and that of Schoenes who reports a value of 

Kj. = (.764 ± .05) x 10"3
 e" Y 

Y = 1.275 ± .04 

The reason for this lack of agreement is not known. The data of this 

experiment is generally consistent with measurements of Straub, who 

measured B for N 20 and CC1F3 and found that 6 for the CCIF^ is slightly 

closer to the classical value, but by an amount approximately equal to 

the error in the experiment. There is a greater relative change in this 

data for v than in Straub's data for B. 

No other experimental measurements have been made on CH^F in the 

critical region, but in terms of the size of the coefficient the CH^F 

data from this experiment is consistent with the data for CCIF^ from 

this experiment. 

Comparison of Three Fluids 

The exponents calculated for the CC1F and the CH F are somewhat 
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lower than that calculated for the N^O. CCIF^ i s apparently signifi­

cantly lower (although when errors of both are considered, the error 

bounds do not exclude approximate equality), while the CH^F is only 

slightly lower, with an uncertainty that includes the values of y meas­

ured for each of the other substances. 

Predictions from Scaling Laws 

The scaling law a + 2|3 + y = 2 , together with the measured val­

ues for 0 and y may be used to predict values for the specific heat ex­

ponent a for CClFg and ^ 0 , neither of which has been measured. The 

values should be: 

N 20: a = .13 

CC1F3: a = .17 

These values, and o/'s predicted on the basis of other experiments, as 

well as an experimental value for a for C0 2 are also shown in Table 7. 

This value predicted for N 20 is consistent with the prediction 

of the Ising model (a = .125) and the experimental value for C0 2 (a = 
19 

.12) . The a predicted for CCIF^ on the basis of this experiment is 

slightly higher than that predicted for 1^0; the value predicted on the 

basis of Schoenes's data is considerably lower. 

Conclusions 

Y and V have been measured for three fluids, N 20, CCIF^, and 

CH^F, with the y and V data for N^O and CH^F the first reported for 

these substances. The data for y for N O is in excellent agreement 
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with that for CO^ as expected, but there is disagreement with a reported 

measurement for CCIF^. While the data does not exclude the possibility 

that v is approximately the same for all substances, there are indica­

tions that there are differences among the molecules. 

Comparison with other non-fluid systems near their critical 

points indicates that the effect of a dipole-dipole long range inter­

action is the changing of the critical exponents from those that are 

characteristic of Ising-like systems to those characteristic of classi­

cal systems with long range forces. If dipole effects are very strong, 

as in ferroelectric systems, the exponents have classical values 

throughout the critical region. For systems in which the long range 

force is much weaker, as in ferromagnetic systems with magnetic dipole 

interactions, the critical behavior is primarily determined by the short 

range forces; but for temperatures very close to the critical tempera­

ture, the long range force may be expected to cause a change in the ex­

ponent from an Ising-like value to one closer to the classical value. 

For the fluids investigated, CCIF^ has the smallest value for v 

(closest to the classical value) while N^O is close to values measured 

for non-polar fluids, and CH^F has some intermediate value. This 

amount of deviation from the measured values for non-polar substances is 

not what would be expected if the effect were due to a dipole-dipole 

interaction; since the CH^F is much more highly polar (by a factor of 

three) than the CCIF^, an effect due to a dipolar interaction would be 

expected to be much more important for the CH^F' But this is not the 

case, leading to the conclusion that there is no evidence that the di-
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pole moment has any effect on the measured values of y . 

Consideration of correlation length data indicates that, al­

though the data is not consistent with other reported values, there is 

general agreement in the correlation lengths and exponents calculated 

for the three fluids. The exponent calculated for CH^F, the most polar, 

is slightly lower (nearer the classical value) than the others, but the 

difference is considerably less than the uncertainty in the fitting of 

the CH^F data and is not considered to be significant. Since the cor­

relation length data analyzed extends to AT = 0.026° C, and no signifi­

cant variations attributable to the dipole-dipole interaction have 

been observed, the conclusion is that within the range of data consid­

ered (AT > 0.026° C,e > 9 x 10"5) the dipole interaction does not af­

fect the measured critical exponents. 

There does, however, appear to be a slight variation in y; a nd 

this variation is consistent with differences in the shapes of the mol­

ecules. N^O is a linear molecule having the same shape as C0 2; these 

two fluids also have the same measured value for V . CC1F , with an 
3 

apparent lower value for y, is a molecule with C ^ symmetry and approx­

imately tetrahedral shape. ^ a s a s i m i l - a r shape, but the atoms 

off the symmetry axis are hydrogen atoms rather than fluorine atoms. 

Since in terms of mass distribution the CH^F molecule is intermediate 

between the CCIF^ molecule and the N 20 molecule, an exponent measure­

ment intermediate between those for N 0 and CC1F0 would be consistent 
2 3 

with an effect due to the molecular shapes. There is indication that 

this is the case, but the errors associated with the various measure-
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ments do not allow this conclusion unequivocally. Further work on more 

complex molecules with different internal degrees of freedom and differ­

ent symmetries to determine whether these do have a real effect on the 

measured exponents for fluids seems warranted. 

Turbidity measurements are a useful way of measuring the criti­

cal behavior of fluids. Conceptually, they are extremely simple, but 

great care must be taken to avoid changes in intensity due to causes 

other than the changes in the fluid inside the cell. Two major improve­

ments would be the avoidance of having a light beam passing through the 

oil bath that provides temperature control and the mounting of the com­

plete optical system so that any one part is immovable with respect to 

the complete system, avoiding problems due to possible misalignment of 

components. The use of an Argon ion laser would provide greater scat­

tering efficiency due to the l A ^ dependence of the scattering. This 

would increase the total amount of light scattered out of the beam, in­

creasing the measured turbidity for a given AT and reducing the relative 

errors. 
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APPENDIX A 

CALCULATION OF STRESS ON FUSED QUARTZ WINDOWS 

The maximum stress on any circular plate, uniformly loaded, sup­

ported uniformly around the edges is given by the following formula 

3 WR 2 , v stress = - — - (1 + m) 

m is Poisson's ratio, which for quartz is .16. W is the pressure in 

psi; R is the radius of the unsupported area, and t is the thickness of 

the plate. The units of stress are psi. For the quartz windows used 

in this experiment R is Jg" and the working pressure is 1,200 psi, so 

the above equation may be written 

356 
stress = — j 

t 
For a thickness of V' the maximum stress is approximately 5,700 psi in 

the ideal case. Because of possible irregularities in the supporting 

shoulder or in the epoxy with which the window is attached the actual 

stress may be higher, possibly by 50% or more, so in any design a 

safety factor must be taken into account. The ultimate tensile 

strength of the quartz is 7,000 psi"*4 ; thus there is danger of failure 

if windows of this thickness are used. This indeed occurred. For V 

windows the predicted stress is 1,400 psi, much less than the tensile 

strength of the quartz, even when safety factors are taken into account. 
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No failure at this thickness would be expected, and none of the win­

dows employed have failed. 
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APPENDIX B 

DERIVATION OF EQUALITY OF PHASE VOLUMES AT CRITICAL POINT 

The volumes of the sample cell and of the liquid and the gas 

phases below the critical temperature are given by V, V L, and Vg, with 

V - V + V . p is the average number density in the sample cell, with 
L G 

the number density of the gas and the liquid phases given by p G and 

p . The total number of molecules present is given by N, with N = pV. 

Similar equations describe the number of molecules present in each of 

the two phases: 

N L " PLV N G = PGVG 

The total number of molecules present is the sum of the number of mole­

cules in each phase 

N = N + N_ L G 

which may be written 

N " P L V L + PG VG 

• P L

V L + P G
( v - V 

The volume of the liquid phase may be calculated in terms of these 

quantities 
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V N V PG
 N - V P G 

L ( P L " P G
} ( P L " P G

} " (PL " P G
} 

- V ( P " PG ) 

" ( P L - P G

} 

with the relative volume given by 

VL P " PG 

V PL _ PG 

According to the definition of the order parameter 

( P L " P c
} = (Pc " P G

} = B e P 

close to its critical point. Then 

PG " Pc " B e 

PL = Pc + Be^ 

with 

P L - PG = 2Be^ 

the relative volume then becomes 

VL P ' Pc + B g P _ P * Pc , B eP _ P * Pc 
V 2BeP 2BeP 2B e

P 2B S
P 
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which reduces to 

when p = pc* The volumes of the two phases are then equal to the crit­

ical point when the average density inside the cell is equal at the 

critical density. 



1 1 8 

APPENDIX C 

Computer Program LSQG for Generalized Least Squares Fit 
PARAMETER Mfc. = 200»M.vi=10 
DIMENSION IX (MM) rXX(MM) ,X(̂ c»̂ M) »Y(Mt) * 7 (K'F ) * FF ( MM . MM ) , fr (wM) , C (ME) 
DATA Z/ME*l./ 
NAMELl̂T/RO/'-lE»C» IX»XtY,Z»LX 

100 F0RMAT<//« S>{D C »NE»IX * X» Y»Z»LX * ) 
101 FORMATi/• INADEQUATE nATA •) 
102 FORMAT e/I IX» •CHI**2/N=I .G11.4//7X, »X »»8X, »PAR» »8X, »EPRV 

c (I8,3v,2G11.4)) 
103 FORMAT(//• INPUT DATA •/) 
x04 FORMAT ( 10»3X, (5G11.4) ) 

CALL BPKY(Sl) 
1 MRITE(6»100) 

KEADl5,RD»ERR=l#EN0=99) 
DO 3 IrDMM 
IF(IX(IJ.EO.O) GO JO 3 
00 2 IF=3»NL 

2 XUE,I)=2.*X< IE-1»I>-X(IE-?»I> 
3 IX(I>=0 

DO i* 1=1»MM 
00 4 11=1.MM 

4 FF(I»I1)=0. 
GG=0. 
NH=0 
dO 8 IF=l»Nt 
DO 5 IrDMM 

5 XX(I)=X(IE»I) 
CALL FMSJC#XX»Y(IE)»Z(TE)tMF»F,G»H) 
IFIH.LF.O.) GO TO 8 
NlrNF+1 
00 T I=1»NF 
uO 6 I1=I,NF 

6 FF (1, 11) =FF I1»11) +H*F ( T ) *F (ID 
7 FFII,N1)=FF(I>N1>+H*F(T)*G 

GG=GG+H*G**2 
0 N H = N H + 1 

DO 9 I=1»N1 
00 9 11=1,1 

9 FFtI,Il)=FFlIl»I) 
K=l 
CALL IWVM(MM,NF»FF»K»DJ 
IFIK.EO.O) GO TO 10 
WRITt:(«S» 10D 
GO TO 13 

10 DO 11 1=1,NF 
11 GG=GG-FF(NlfI)*FF(I,ND 

GG=GG/r'H 
00 12 T=1.NF 

12 f-F I Nl, I ) =SOKT ( ARS (F* ( I»I) *«G) ) 
*RlTt(̂ » 102)GG» ( ( !»»-F(T»iU) »f FCN1»I) ) »I = 1,NF) 

13 iF(Lx.Ftt.O) 00 TO 1 
WRlTi_t6» 103J 
DO 14 IL'=1»NL" 

14 ftRlTL(6,104)IL,(X(Ic»I)rl=l»LX)»Y(It)rZ(lF) 
GO TO 1 

99 iW 

ENiy 0lN(bITE PRINTOUT ON DECEM°EH U<, 1973 AT 21:17:44 
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