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SUMMARY

Measurements of the agymptotic behavior of the isothermal com-
pressibility and of the correlation length for polar fluids slightly
above their critical points have been made to determine the critical
exponents, y and v, assoclated with these quantities for pelar fluids
and to determine whether the polar nature of these fluids affects the
measured values of the critical exponents.

The substances investigated are three polar fluids with a range
of polarities, N,0, very slightly polar, CC1F3, with moderate polarity,
and CH4F, with a relatively large polarity. The method used is a light
scattering technique in which the turbidity of each fluld is measured
as a function of temperature, from which the isothermal compressibility
and the correlation length as a function of the temperature difference
from the critical temperature may be determined. The critical exponents
and coefficlents describing the asymptotic behavior of these substances
may then be determined by filtting the data to appropriate power laws
and varying the range of data for minimum error.

Results show that the exponent describing the asymptotic be-
havior of the isothermal compressibility for NyO, y, 18 approximately
the same as that measured for CO,, as expected, since the fluids have
similar physical characteristics. The exponent for CClF3 has a slightly
lower value with that for CH,F having a value intermediate between the
other two values. Meagurements of the exponents describing the asymp-

totic behavior of the correlatlon length, y, show no significant varia-
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tion among the three fluids.

There 1s no varlation in the exponents that may be related to
the increasing polarity of the fluids, and so the conclusion is that
the dipole moments of these fluids do not affect the measured critical
exponents., The results, however, are consistent with possible effects

on y due to variations in the shape of the molecules.



CHAPTER I
INTRQDUCTION

The study of critical phenomena dates from an 1869 paper by

1 who discovered that gases could be condensed to form

Thomas Andrews
liquids with an observable phase change only if the gas were below a
certain characteristic temperature, different for each gas. He called
this characteristic temperature the critical temperature of the gas

and described several effects assoclated with the critical point, nota-
bly a large increase in the compressibility and the critical opales-
cence, the great amount of light scattered from the substance, at the
critical point. He also noted that the behavior appeared to be similar
for various substances. The behavior observed by Andrews was explained

in 1873 by J. D. van der Waals? with his equation of state for gases.

This equation, together with some assumptions about the minimization

of free energy, described the behavior of gases above the critical
temperature as well as that of the two coexisting phases below the
critical temperature. The universal nature of critical phenomena was
explicitly described by the law of corresponding states which expressed
the behavior of a gas solely in terms of ratios of the variables, P, V,
T, to their values at the critical point.

Analogous behavior was also found for other systems. Iron was
found to lose its ferromagnetic character above a certaln temperature.

For certain binary mixtures, there was a temperature below which mixing



could not take place. It was soon realized that each of these temper-
atures was a critlcal temperature and could be characterized by the
same formalism as the gas liquid critical point. Equations describing
the behavior resulted in formally similar predictions for each of these
diverse systems,

The question of critical opalescence and its relation to the
statistical behavior of the fluld system was investigated by von

3

Smoluchowski~ who realized that the critical opalescence was due to

light scattered by density fluctuations which become very large at the

critical point. Einstein&

calculated the magnitude of the scattering
in terms of the fluctuations in the thermodynamic variables of the
fluld about their average values, but neglected correlations between
the fluctuationa. These correlationa were taken account of by Ornstein
and Zernike® who calculated the magnitude of the density fluctuations
in terms of the integral of the correlation function for the fluid over
the range for which there was correlation in the fluid. They showed
that the divergence in the size of the density fluctuations was related
to an increase in the correlation length in the fluid and obtained an
expression for light gcattered by a fluld in the critical regicen in
terms of the correlation length and the compressibility in the fluid.
Detailed studies of the shape of the coexistence curve for fluids
and measurements of anomalously large specific heats at the critical
points of both fluid and magnetic systems led to the realjization that
the classical theories (van der Waals and ¢ther aimilar thecries) were

not quantitatively correct. Correct descriptions were obtained with

the Ising model, a model for magnetic systems with only nearest neigh-



bor interactioms. The two dimensional Ising model, which predicted
non-classical results including logarithmically diverging specific

heat at the critical point, was solved by Onsager in 1944. Although
the three dimensional Ising model has not been solved exactly, numeri-
cal predictions based on this model have proved to give very accurate
descriptions of critical behavior. The success of the Ising model in
predicting critical behavior is due to the short range nature of its
interactions; the incorrect predictions of the classical theories are
the result of the fact that each assumes that the behavior of the sys-
tem is determined by long range forces. At the present time it is
thought that the critical behavior is due to very short range forces
whose influence propagates indirectly from molecule tc molecule result-
ing in long range correlations, Since the direct interaction is short-
ranged the indirect correlations are much more important in determining
the behavior of the system than the direct interaction; but the indirect
correlations depend on the dimensionality of the system and are influ-
enced only very slightly by the details of the direct interaction.

Thus it is expected, and confirmed by experiment, that the critical be-
havior of systems having the same dimensionality will be the same wheth-
er the system 1is a magnetic or a fluild system; the behavior is expected
to be universal,

Close to the critical point, many parameters describing the
system converge to zero, or diverge; and thus the asymptotic behavior
approaching the critical point may be represented with a power law in
temperature difference from the critical temperature. 1In the early

1960's it was realized that the exponents characterizing these power



laws were of interest in themselves. They provided numerical specifica-
tiong of critical behavior, and atudies of exponent relationships have
led to insights into critical behavior and into appropriate forms for
the equation of state describing denge fluids. Perhaps the most useful
have been the concept of universality and the scaling laws which assume
a homogeneous equation of atate and derive all exponents for static
critical phenomena in terms of two parameters.

Most experimental investigations of critical phenomena are con-
cerned with the determination of the exponents and coefficients de-
scribing the asymptotlc behavior of systems near their critical points
and with verifying exponent relatiomnships. This is often done using
traditional pressure-volume-temperature measurement techniques, but
such measurements near the critical point are subject to many experimen-
tal difficulties. Light scattering and other optical techniques may be
used to overcome some of these difficulties.

Measurements of the critical propertiles of fluid systems have
generally supported the ideas of scaling and universality within the
limits of experlimental accuracy, but nearly all measurements have been
made on simple non-polar fluids.

Polar molecules are characterized by a permanent molecular dipole
moment, and so there is the possibility of a long range interaction via
the dipole moments of the molecules. There is evidence that for certain
ferromagnetic and ferrgelectric aystems, the critical behavior is influ-
enced by the pregence of a long range dipole farce. Measurements of
the coexistence curves of polar molecules show only slight variations

from those of non-polar fluida, differences that are probably not signif-



icant; but the ¢ne reported measurement®

qf the compressibility of
a polar fluid results in a value for the exponent that is different
from that which would be predicted on the basis of universality.

The purpose of this investigation is to determine the asymptotic
behavior of the compressibility and the correlation length for several
polar fluids, one with a very small dipole moment, one with a moderate
dipole moment, and one with a relatively large dipole moment, to deter-
mine the exponents that are characteristic of the asymptotic behavior,
and to determine whether there is any consistent deviation from the
behavior predicted on the basis of universality that may be related to
the effects of the increasing strength of the dipole-dipole interaction
in these fluids.

The method used in this investigation is a light scattering
technique, the measurement of the extinction coefficient, the turbidity,
of the fluid as a functicn of the temperature difference from the crit-
ical point. The turbidity is related by Ornstein-Zernlke theory to
the magnitude of the compressibility and the correlation length in the
fluid; and so the temperature dependence of the turbidity may be used
to determine the temperature dependence of the compressibility and cor-
relation length, from which the exponents characterizing these quan-
tities may be calculated. The behavior of the fluids may then be
analyzed in terms of the exponents and the relation of the measured

exponents to those meagured for non-polar systems.



CHAPTER II

THEQRY OF CRITICAL PHENOMENA

Critical Behavieor of a Fluid

A fluid system may be represented by an equation of state re-
lating the pressure, density, and temperature (P, p, T) of the system.
The general behavior of such a system may be represented graphically
by Figures 1 and 2; Figure 1 shows the pressure and temperature values
for which the system may exist as a solid, liquid, or gas. Within
each phase, gas or liquid for example, changes in the pressure or the
temperature are accompanied by continuous changes in the density of the
phase. The density is not continuous across the vapor pressure curve,
For example, liquid water at 100° C and one atmosphere pressure does
not have the same density as water vapor under the same conditions. As
the temperature increases the density difference between the liquid and
the gas phases across the vapor pressure curve decreases. At the end
of the vapor pressure curve, where the densities of the gas and the
liquid are equal, there is a critical polnt characterized by the fol-
lowing parameters: temperature (Tc)’ pressure (Pc) and density (pc).
The critical temperature is that temperature above which the system
does not exhibit a discontinuous phase change, while below T, the system
may exist as one Qr two phases, depending on the conditions of temper-
ature and pressure. The critical density is that density to which the

liquid and the gas densitles converge at the critical temperature. The
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Figure 1. Pregsure-Temperature Diagram for a Fluid



critical pressure 1s just the pressure at the critical temperature

and density. For a fluid system above its critical temperature, in

the absence of a gravitational field, the density is constant through-
out the fluid. Below T. the fluid separates into two phases with dif-
fering densities, the density difference increasing with decreasing
temperature. This behavior is analogous to that of a magnetic system
in which there is no spontanecus magnetization above the critical
temperature. Below T, there is spontaneous magnetization due to the
alignment of the spins of the particles making up the system, an align-
ment that increases with decreasing temperature. Since the spontaneous
magnetization 1s due to an ordering of the system, it may be defined

as an order parameter that describes the system near the critical point,
The order parameter is non-zero below the critical point, approaches
zero as the critical peoint is approached from below, and is zero above
the critical point. The corresponding quantity for the fluid system

is the quantity p = p - Pos the density difference between the gas or
the liquid phase density and the critical density. Since there 1is no
phase separation above the critical temperature, p 1s zero above the
critical point and non-zerc below. The importance of the order pa-
rameter is that it can be used to characterize the behavior of any
systenm exhibiting a critical point.

The behavior of a fluid system may also be seen in Figure 2, in
which the pressure as a function of density 1s presented for various
values of temperature. The golid lines are isotherms, or lines of
constant temperature. The dashed vertical line represents the critical

isochere, the critical density of the fluid. For very high temper-
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atures, an increase in the pressure results in a proportional increase
in the density, as expected from the ideal gas law. For lower temper-
atures, the isotherms are bent in the vicinity of the critical isochore
indicating deviations from ideal behavior. Low temperature isotherms
have a flat portion where the density can change without a corresponding
change in the pressure. Physically, this correspeonds teo a transition
from a completely gaseous to a completely liquid state; along the flat
portion of the isotherm, the two phases coexist. The densities of the
two coexisting phases at a particular temperature are the densities of
the end points of the flat portion of the isotherm, and the curve drawn
connecting these coexisting densities is known as the coexistence curve.
The top of the coexistence curve, where the coexisting densities have
become equal to the critical density, i1s the critical peint. The iso-
therm passing through this point is the critical isotherm and is dis-
tinguished by the fact that its slope becomes zero at the critical
point.

The isothermal compressibility Kp of a fluid is defined as
1 1
o= - -(%%) = —-(?g) 2-1
T V \oP T p \DP T

At the critical point the slope of the critical isotherm (%E) goes to
zero and the isothermal compressibility diverges.
From Figure 2 it is apparent that two characteristics of the

critical point are:

1. - -0 asT—~T from below
P Pe c
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2. KT - ®© a5 T — Tc from above on critical
isochore

or

from below along coexistence
curve
In addition to p - Pe and KT’ many of the properties that characterize
a fluid either converge to zero or diverge at its critical point. In
such cases, it is appropriate to describe the asymptotic behavior of a

fluid property £, as T = Tc by a power law of the form:
A
f(e)x|e|” as ¢ = 0

with ¢ defined as the reduced temperature

80 that\e\depends only on the relative temperature difference above or
below the critical temperature. ) is the critical exponent for the

power law and is defined precisely by the formula

% = lim In(f(e)) 9.9

e - O;t In(te)

as € approaches zero from above (+) or below (-). With fhis definition,
only the asymptotic behavior of the power law affects A; correction
terms have no effect.

These critical exponents are important because they provide a
numerical specification of critical behavior that may be verified by

experiment or predicted by theory. They thus serve to facilitate com-
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parison between various theories and with the experimental data. In
the gas-liquid system the isothermal compressibility, the order param-
eter, the shape of the critical isotherm, the correlation length, and
the specific heat all exhibit critical behavior.

Isothermal Compressibility

The isothermal compressibility is defined by Equation 2-1, As
the critical temperature is approached from above oan the critical

isochore,

K = Y -
T T (e) 2-3

Ag the critical temperature is approached from below on the coexistence

curve,

r
XK =T"'(-e)7 2-4
T
v and y' are not necessarily equal, although there is experimental
evidence that they are equal for 0027, and various theories predict
such equality. The coefficients T, T’ are not equal.

Coexistence Curve

The shape of the coexistence curve below Tc, and thus the be-

havior of the order parameter, is described by
= - ) = B a 2-5
p=(p- p, e

B is the same whether Pe is approached from the gas or from the liquid
gside. Correction terms far from Tc result in the coexistence curve not

being symmetrical on the gas and the liquid side; close to Tc however,
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the coexistence curve is symmetric. A symmetric order parameter

P& Iels below Tc is a characteristic of critical phenomena in many
systems, with P independent of the type of interaction (ferromagnetic,
antiferromagnetic, or fluid) but depending only on the dimensionality
and symmetry properties of the system.

Specific Heat

The change in temperature of a system for a given heat input at

constant volume is given by

0,139 (D, 26

Although van der Waals and other classical theories did not predict a

8,9 the specific heat

divergence in the specific heat, experimentally
is found to diverge slowly, possibly logarithmically. Close to the
critical temperature, the specific heat Cv may be described by the fol-

lowing equation1

]
0

%{lel @ -1} above T_ 2-7

C
v

A’ -o!
o7 {|e| -1} below T, 9-8

As before, omay not be equal to o«'. The divergence is written in a
form having o in the denominator to take account of a possible loga-
rithmic divergence in which o would equal zero. The above equations

would then reduce to

C = -Aln |¢| 2-9
v
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Shape of Critical Isotherm

The slope of the critical isotherm is zero at the critical point,
in accord with the fact that there is no lower temperature for which
one phase can be in stable equilibrium at this density. Stability also
requires that the second derivative be zero at this point. The rate
at which the slope approaches zero is given by the critical exponent §
with the equation of the critical isotherm in the vicinity of the

critical point given by
P-P | ~|p - p.° s6NCp - p.) 2-10
c oL " fg PL ™ Pg

sgn (x) = + if x is positive, = - if x is negative

Correlation Length

In any fluid, there will be fluctuvationg in density due to the
random motion of the molecules of the fluid. Smoluchowski3 realized
that the observed critical opalescence was due to light scattered by
fluctuations that have become very large near the critical point. These
large fluctuations can be described in terms of a correlation function
and correlation length in the fluid and the light scattered by the
fluid may be calculated in terms of the correlation function for the
fluid.

The fluctuations may be described by assuming that a certain
volume V of the fluid has an average number of particles, (N) ; in
addition, particles may enter or leave the volume, so that the total
number of particles may fluctuate about the average number. This re-

sults in density fluctuations in the element.
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The fluctuation is denoted by [N - {(N)] = &N and the mean square
of the magnitude of the fluctuation, (IGN]Z), is the measure of the
amplitude of the fluctuation. This amplitude is related to the iso-

thermal compressibility of the fluid by11

2-11

|

(v %y = (m

xTo is the isothermal compressibility of an ideal gas of non-interacting
particles. According to 2-11, as the isothermal compressibility of the
fluid diverges at the critical point, the amplitude of the fluctuations
also diverges. The incompressible nature of the particles making up

the fluid tends to limit the density increase in any small region of

the fluid, so the amplitude increase must occur because many more
particles are taking part in the fluctuation. The distance over which
particles in the fluid can take part in a fluctuation 1s determined by
the correlation length in the fluid. The number density of the fluid

in a small region around a point r may be defined as n(r), with the
fluctuation in the number density at a point r equal to [n(r) - (n(f))].

A correlation function G(E, r’) relating the fluctuations at r and r’

may be defined as

6(r, 'y = ([n(®) - (a(r)H] [n(c’) - {ax'HD 2-12

G(r, ') may be thought of as being proportional to the conditiomnal

probability that if a fluctuation of a certain magnitude exists at r

there will be a like fluctuation at r’. Since the fluid is uniform and
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translationally invariant, the average density is the same throughout

the fluid if the fluid is in one phase
-7 - N
MGED) = (D) = & = n

and G(?, r’) should depend only on the distance separating r and r’.
G(r, r’) may then be written as G(r-r’) or G(R), R = IE-E'\ with
G(r-r’) = {n(r) n(c’)) -n2. As R = = the probability of finding a
particle at r’ should not be influenced by the presence or absence of

a particle at r and the probabilities are independent:

(a(n(r”)) = (o) Mnlr’)) = n’

G(R) = 0 then as R -+ @, The range of R over which G(R) is different
from zero is the correlation length for the system.

From the definitions for G and N, one may obtain the relation11

(]aN{Z) = ([N¥ - (N)}2> = V [ G(R)4R 2-13

Combining 2-11 and 2-13 one obtains

% - % [ GRYA®)

0 2-14

n =N

v

According to Equations 2-11 and 2~14 the magnitude of the density fluctua-
tions as well as the isothermal compressibility are proportional to the

integral of the correlation function over the range in which the correlation
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function is non-zero. Since G(R) is bounded above due to the in-
compresgibility of the molecules making up the fluid, as the amplitude
of the fluctuations diverges at the critical point, the correlation

length must also diverge.

A form for the correlation function was given by Ornstein and
Zernike5 who considered G(R) as being due to a short range direct
correlation that may be propagated from molecule to molecule resulting
in a long range G(R). This assumption led to a predicted form for the
correlation function for large R

-K{R

a
G(R) & R 2-15

K; determines the range of the correlation function. It has
dimensions of inverse length, and its inverse € = % is called the cor-
1
relation length in the fluid. As the critical point is approached,

the correlation length is found to diverge according to

¥
go'lel'” €< 0 2-16

un
]

g=8'le|”Y >0 2-17

At the critical point, Kl = 0, and the correlation function goes to

Zero as

=l e

G(R) ~

The ratio of the light scattered from some scattering volume dR with a
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scattering vector k to that which would be scattered in the absence of

fluctuations is given by the Fourier transform of the density cor-

relation function defined in Equation 2-12

k2 4K 2

I(k) ~ik*R 1
T~ J‘e G(R)dR ~ ———
° 1

In the limit as k ~ 0

1(0) 1
oy ™ J‘G(R)dR ~—
o Kl

But this volume integral 1s equal to HT/HT by 2-14 so that
Q

1 2
S Sl T
S|

which implies that

2\)=y

for Ornstein-Zernike theory. More recently, Fisher!® has considered

certain defects in Ornstein-Zernike theory and has proposed that the

correlation function for large R be given by

e-klR
G(R) & Rl—""n—

Since the range far from the critical point is determined by X,

Fisher's correction would have no effect on the correlation length

except very close to the ecritical point, and at the critical point the

correlation function would go to zero as
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7 is a small number, probably slightly pesitive, but the value | = 0

is not excluded by present experimental evidencell. Since experimental
checks of Fisher's correctionsa to Ornatein-Zernike theory do not show
any appreciable deviations from the predictions of Ornstein-Zernike
theory for the temperature range consldered in this experiment,12’13

the Ornstein-Zernike theory will be used to calculate the expected

light scattering as a function of temperature for this experiment,

Theoretical Models of Critical Behavior

Van der Waals Model

The predictions of the various theories of critical behavior for
fluids may be discussed in terms of the critical exponents defined pre-
viously, and the values of the exponents predicted by various theories
may be compared with measured experimental values as a check on the
validity of the theories. Historically, the first theory to have some
success in describing the behavior of gases near thelr critical points
was the van der Waals theory. The van der Waals equation of state may

be writtenll

(P +%2> (\7 - b) = RT 2-19

P = Pressure

R = K * (Avogadro's Number)

vV =

=N L

; a 1s a parameter which takes account of the attractive forces
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between molecules; and b is a parameter taking account of the fact that
the molecules behave as hard spheres. The isotherms predicted by the
van der Waals theory are shown in Figure 3. Above and at TC the iso-
therms are qualitatively correct, with a behavior indicating the diver-
gence of the compressibility at the critical point. Below the critical
temperature the isotherms are curved in such a way that the compressi-
bility is negative for certain regions (B to C on labeled isotherm).
This unphysical result implies that a decrease in thg pressure should
lead to an increase in the density. Also, the isotherms below T. are
characteristic of a single phase system and do not have the flat por-
tion corresponding to a two phase system. The difficulty is removed by
a free energy minimization argument, Maxwell construction, which shows
that along a certain portion of the isotherms below T, {(between points
A and D on Figure 3) the free energy is minimized if the system con-
sists of coexisting liquid and gas phases rather than of one phase.

This coexisting region is bounded by the coexistence curve. In addition
to successfully describing the qualitative behavier of fluids near their
critical points, van der Waals theory predicts that this behavior should
be universal for all gases when the pressure, volume and temperature of
a gas are expressed in terms of P,, V., and T, for the gas. This may

be expressed by writing the van der Waals equation as

o

P .3 RN gL ]
§c+("/)zJ Lsac) 1l =87 2-20
v

with no explicit dependence on the parameters characteristic of the
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Figure 3. Van der Waals Isotherms for a Fluid

21



22

individual gas. This is known as the law of corresponding states and
is thought to be valild for meost gase’ near the critical point, although
the van der Waals theory on which it 1s based does not heold in this
region. The law of corresponding states has been used to determine the
filling parameters for one of the gases investigated in this experiment.
When the van der Waals theory was used to predict values for the
critical exponents, the predicted values were not in agreement with
experimental results. The values expected for the various exponents
on the basis of the van der Waals theory are given in Table 1., In par-
ticular, the van der Waals theory predicted that the specific heat
would not diverge but the experimental evidence 1lndicated that the
specific heat was anomalously large and most likely divergent; in 1937
Michels, Blaisse, and Michelsl4 determined that the coexistence curve

of C02 could best be fitted with B = 0.35 rather than B = 0.52. In

15 analyzed data for eight simple gases and discovered

1945 Guggenheim
that the coexistence curves of each could be fit to a simple power law
with B = 1/3. The theories, Bragg-Williams and mean field, that

have been developed to explain magnetic systems and alloys pred-

icted the same values for the critical exponents as the van der Waals
thecry; so there were various classical theories that were gqualitative-
ly right but quantitatively wrong. Analysis of these theories showed
that each contained, either explicitly or implicitly, a long range
interaction. Various theoretical analyses have shown that the predi-
ctions of the van der Waals model follow rigorously from the assumptien

of long range forc3526.
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Table 1. Selected Critical Point Exponents

B Y o 5 v
Model Systems
van der Waals
{classical) .5 1.0 Q(discon.) 3 5
D = 2 Ising
Model .125 1.75 0(log) 15 1
P = 3 Ising
Model .3125 1,25 .125 5 .638
Magnetic Systems
ny 10 42 1.35 0 4.22
EuS16 .33 0.05
Fluid Systems
co,'7»18:19,20 345 117 12 .63
A21 .357 1.17
4 22
He .354 1.14 .13 3.9

xe23124,23 .35 1.3 .08 445
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Iging Model

The incorrect predictions of models with long range forces led
to investigations of models with short range forces. The most fruit-
ful of such models have been the Ising model for magnetic systems and
the equivalent lattice gas model for fluid systems. The Ising model
of a ferromagnet i1s characterized by the assumptions that each spin
may have only two valuea and that there are only nearest neighbor inter-
actions. The one dimensional Ising model does not exhibit a phase
transition above absolute zero and so is only of limited interest. The
two dimensional Ising model, solved by 0nsagar27 in 1944, has a non-
zerc critical point with associated critical exponents that may be
determined in terms of the lattice parameters. The values for the ex-
ponents are shown in Table 1. This model predicted non-classical
values for the exponents and the logarithmic divergency for the specific
heat. In addition, calculations for various types of lattices and var-
ious types of interactions showed that these had no significant effect
on the exponent values as long as the interaction was short range.

The three dimensional Ising model has not been solved exactly;
however, various techniques have been developed to evaluate critical
parameters associated with this model with a great deal of precision.
Values for the exponentsg calculated for this model are also given in
Table 1 as are experimental values for fluids and magnetic systems.

The exponent values determined for fluids appear to be approximately
the same ag predicted by the three dimensional Iging model, but with
consistent differences that appear to be greater than the experimental

uncertainties in the determination of these quantities.
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The two and three dimensignal Ising predictions are not the
same, and series calculations on the Ising model with dimensionality
D > 3 indicate the results are strongly dependent on the dimensionality,
approaching the classical values a8 D -+ ». As the dimensionality be-
comes infinite, the number of particles that interact with each other
directly becomes large even the interaction is short range. Thus
the system becomes more like a classical system in which every
particle is assumed to Iinteract directly with every other particle.

Exponent Relationships

The physical parameters describing the behavior of a fluid are
related through the thermodynamics of the system, and it 1s reasonable
to expect that the exponents describing the behavior of these quanti-
ties near the critical point will also be related. Some of the rela-
tionships that connect the exponents are rigorously defined and others
are conjectured with varylng degrees of confidence. These serve to
place limits on possible forms for an equation of state,

Two inequalities, the Griffiths and the Rushbrook inequalities,
may be proved rigorously from general conditions of thermodynamic sta-

bility. These are:

Griffiths Inequality28 o +B(l + 8) 22

Rushbrook Ine:;lvm'al‘it:y29 @/ + 28+ 22

where ¢’ 1g the critical exponent for the specific heat, § that for the
coexistence curve, vy’ for the igothermal compressibility, and s for the
critical isotherm as defined abeve.

Various other inequalities may be proved by making certain plau-
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sible assumptions concerning the form of the thermodynamic potentials
but have not been proved rigorqusly. Fisher30 has obtalned the Griffiths
inequality as an equality by assuming a phenomenglagical Hamiltonian
based on cluster theory. Widom3! found that for both classical theo-

ries and the two dimensional Ising model the equality
v' = B(§-1)

is true. He conjectured that the relationship is a characteristic of
all critical behavior.

Other equalities have been proposed. In general these equali-
ties are satisfied by various model aystems and are consistent with the
available experimental evidence, Furthermore all may be derived from
one set of assumptions, the scaling hypothesis, which describes time
independent critical behavior in terms of only two independent param-
eters.

Scaling Laws

The scaling hypothesis may be described in terms of the Kadanoff
picturel6, which considers an Ising-like magnetic system whose behavior
near the critical point may be thought of as being due to interactions
between spins and the interactions between each spin and the external
field. Close to the critical point, the spin-spin interactions will
result in correlations extending over a very large number of spins. If
the spin system is divided into cells, with each cell large compared to
the individual spin site but small compared with the correlation length,
the physical behavior near the critical point should be the same whether

the interaction considered is spin-spin or cell-cell, or whether the
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external field interacts with cells or with individual spins. The

form of the correlation function should be the same in either case,
with the only effect of a change in cell size being a change in the
magnitude of the correlation function. That is, correlation functions
considered for different cell sizes should differ ¢nly by some scale
factor dependent on cell slze. The interactions between spins and the
external field should be determined by a relative field strength, h,
while the spin-spin correlations should depend on the relative tempera-
ture ¢ of the system. The analogous parameters for the system con-
sidered as a cell system are B and ‘e. As the field seen by a cell goes
to zero, the field seen by a spin should also go to zero; the critical
temperature should be Independent of the cell size considered, and so

the spin and the cell parameters should have the following relationship:

~
h X

n
[}
=2

®?

LY ¢, L is the size of a cell

x and y are arbitrary numbers

The functicnal form of the thermodynamic potentials also should
not depend on the size of the cells considered; and the potentials for
various cell sizes should be related by a constant of proportionality.

The Gibbs potential, for example, may be written

o™, = 19 ah,e)
X ¥
G(th, Lde) = LG(hg)

The asymptotic behavior of the thermodynamic quantities obtained by
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differentiating the potentlals with respect to h or ¢ may be described
in terms cof the two parameters % and %. The critical exponents may be
defined in terms of these parameters, and a knowledge of the two param-
eters would be sufficient to determine all of the exponents. The
scaling theory does not predict values for the parameters, however, and
the usual practice is to measure any two of the exponents and to deter-
mine the others in terms of these two. The scaling predictions for

exponent relationships are given in Table 2.

Universality

Since the forces involved in fluild and magnetic systems are of
short range and the effects of critical phenomena are due to correla-
tions involving many particles, the detalls of the interaction might
be expected to have little effect on the critical behavior of the sys-
tem. This concept is made more definite by saying that all systems of
a given type, all fluida, or all magnetic systems of the same dimen-
slonality, should have the same critical behavior; although for example,
a fluid might be_gxpected to have slightly different behavior from a
three dimensional magnetic system. This law is an outgrowth of the law
of corresponding states and is thought to be valid for fluld systems.
The exponents 8 and 8§ have been measured for four fluids, C02, Xe, He ',
and Hy0, one of which, HZO’ is a polar molecule. The exponentg are
found tg be the same (f = .35 and 8 = 4.45) in all casesZB. Since
these two exponents are the same fgr the four fluids, the scaling the-

ory requires that all of the exponents be the same, leading to vy = 1.20

and o= 0.1, The value for « is approximately the game as that pre-



Table 2.

Selected Exponent Relations from Scaling Laws

]
l. o=«

L

2. v=y
3. a+2s+Y=2

b, vy B(s ~ 1)
5. "+ B(1L-8)=2

6. a+ B(s - 1) =2
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dicted by the three dimensional Ising model and is supported by experi-
mental values of o = 0,12 for C0219 and o = 0.13 for Hea.22 The value
for v predicted by scaling theory is smaller than that predicted by the
Ising model. It is consistent with, but slightly higher than, several

18 1
v = 1.17 for Argon2 s

recent experimental results: y = 1.17 for €Oy,
v = 1,18 for krypton21, v = 1.14 for He?.22 1t 1is slightly lower than
a value v = 1.225 for SF632 and considerably lower than the v = 1,275
reported for CClF3,6 a polar fluid and one of the fluids investigated

in this series of experiments. Earlier and presumably less accurate

experiments have produced values for v ranging between 1.0 and 1.37.

Polar Fluids

The above data indicates that the ldeas of scaling and univer-
sality appear to be valild for simple gases; coexistence curve data in-
dicates that B is experimentally measured to be the same even for polar
fluids. The one series of experiments in which B has been measured for
both pelar and non~polar £fluidsl? gshows a value for B that is larger
for the polar fluid, but only by an amount that is approximately equal
to the error reported in the measurement. The measurement of y for
CC1F4 1s somewhat inconsistent with the value predicted by scaling as
well as with measurements of y for non-pclar systems.

It is not clear that a permanent meolecular dipole moment should
affect the critical behavior of a fluid, but there 1s some evidence
that such long range effects are important in cother systems. According
to Fisher, ferrcelectric substances have critical polnts which are not

32

closely analogous to those in fluid systems”<, possibly due to the long
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range Coulomb force. Gonzalo33 has measured P and y for triglycine
sulphate, a ferroelectric material, and has obtained the values expected
on the basis of classical theory. 1In addition, alkali metals, which are
characterized by long range Coulomb forces, seem to have B = 0.,42-0.45.
One measurement of B for nickel, a ferromagnetic system for which long
range dipole forces are important, shows a change in B from a value pre-
dicted by the Ising model to one closer to the classical value as the
critical temperature is approached. Kadanoff has proposed that this may
be due to magnetic dipole interactionsls; there is disagreement about
the experimental results, however.

It is desired in this series of experiments to measure the com-
pressibility as a function of temperature and so to obtain y for three

polar fluids, NZO’ CClF3, and CH,F, ranging from the very slightly polar,

3

N,O, to the highly polar, CH,F; to determine whether the polarity of the

2 3
fluids affects the measured values of y; and to measure values for v to
determine whether these polar molecules obey the scaling and universality
laws that are applicable to simple fluids.

On the basis of these earlier experiments, it is thought that the
effect of a dipole-dipole interaction should be a change in the measured
exponent value from a value characteristic of Ising-like behavior to a
value characteristic of classical behavior, either over the entire range
meagured, if the interaction is strong as in the ferroelectric materials,
or at some characteristic temperature difference from the critical temper-
ature if the interaction is relatively weaker as in the ferromagnetic
materials,

Experimentally, however, a change in the measured value of the
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exponent may be due to effects other than the dipole-dipole interaction.
Such changes in slope may be distinguished from changes due to the dipole-
dipole interaction in two ways. First, the change should be to a value
close to the value expected on the basis of classical theory if the ef-
fect is due to the polar nature of the fluid. Second, an effect measured
for one substance should alsc be observed on substances with greater
polarity., For this reason, fluids with a range of dipole moments are
investigated in this series of experiments., Any effect seen in the CClF3,
for example, should also be seen in the CH3F if the effect is due to the

dipole-dipole interaction, since the dipole moment is considerably larg-

er in the CHBF than in the CClF3.

Measurements of Critical Behavior

Numerical measurements of critical behavior of fluids are obtain-
ed by measuring the quantities of interest as a function of the tempera-
ture difference from the critical point and determining the values of the
exponent and the coefficient that best fit the experimental data. The
gspecific heat is measured by the usual calorimetric methods. The co-
existence curve is measured by determining the densities of the gas and
the liquid phases as a function of temperature, The general behavior of
the fluid in the critical region may be determined by mapping out the
pressure, volume, and temperature relationships of the fluid, but common
to each of these methods is the problem of density gradients im the fluid.
These gradients arise because of the very large compressibility in the
vicinity of the critical point and result in bulk measurements that aver-

age over a range of densities around the critical density and which,
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consequently, may lead to inaccurate determinations of the critical be-
havior.

This difficulty may be minimized by the use of optical techniques.
The index of refraction of the fluid may be measured and from this the
density as a function of height may be determined very accurately by the
use of the Lorentz-lorenz relationl7. In this manner the actual co-
existing densities are measured rather than average values. Also, the
intensity of the light scattered by a fluid is related to the compress-
ibility and the correlation length in the fluid, so that a light scat-
tering experiment may measure y and v. If a laser is used, the beam may
be positioned so that it traverses the cell exactly at the critical den-
sity, again minimizing the problem of density gradients.

Light Scattering Equations for
Fluids near Critical Poiants

Density fluctuations in fluids are related by the Lorentz-Lorenz
formula to fluctuations in the polarizability and dielectric constant for
the fluid, and these fluctuations are responsible for the light scat-
tered by the fluid,

The fluid may be thought of as being divided into small volume
elements (although each contains enough particles so that the fluid may
be regarded as continuous). As the light passes through the fluid, a
dipole moment is induced in each volume element. This moment is propor-
tional to the electric field of the incident wave and oscillates with a
frequency approximately equal to that of the incident wave (ub)' As the

dipole oscillates, it emits radiation. Although the fluids investigated
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in this geries of experiments are polar fluids, it is expectéd that the
average dipole moment in any volume element will be zero and that the
polarity of the material will not affect the light scattered from each
volume element.

The discussion of the light scattering equations will follow a
derivation of the light scattered from fluids near their critical points
given by Benedek34. The polarizability of each volume element may be
divided into two parts: @, an average polarizability, and da, fluctua-
tions from the average polarizability. The average polarizability does
not contribute to the light scattered except in transmission of the
original beam through the fluid, so all of the light scattered ocut of

the original beam is due to the fluctuations,

The scattering from each small volume element may be integrated
over the scattering volume to obtain the total scattered E field, E’
(E,t), at some point R with coordinates R, 6,¢, and ¢ as shown in Figure
4. The total scattered E field is:

) w 2 i(k'R - @t) 2/ )
B/(k t) = -E_ (—C—> = ——(2m) Jsin gha(k,t)d 2-21

E0 is the magnitude of the E field of the incident beam, ¢ the speed of
light in a vacuum, ¢ the angle between the scattering vector k and the
direction of polarization of the incident beam; $ is a unit vector as
gshown in Figure 3. The scattering vector k is related to the wave-
vector ko of the incident beam by the following equation

- 8
k = 2ko sin 2



Direction of propagation

of incident beam

j Ko

Direction of polariz'ation

of incident beam

Figure 4. DPefinition of Angles Used

in Light Scattering Equations
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with

Ro is the wavelength of the incident radiation. Equation 2-21 assumes
that there is negligible multiple scattering. Comparison of the cell
size for this experiment with calculations of Swinney and Cummins3

shows that this assumption is valid for AT > 0.1°¢. 1In addition, the
use of a small aperture limits the effect of multiple scattering still
further. The fluctuation 8a(k,t) is the Fourier transform of the fluc-
tuation in the polarizability bu(ﬁ,t) which has the wavevector k. The
intensity of scattered radiation tranmsmitted through a solid angle d () =

sin 8 d 6 d¢ about the scattering vector is given by Benedek as:
_C_ 4T 2, 2
dI(8¢ ) = g- (|E‘(k,0}{") R" d @ 2-22

Using Equation 2-21 this can be written as

2
CE 4
dI(0p¢) = -—8%-6\2—:) %ainch {|8e(k t)|2) dQ 2-23

where we have substituted the dielectric constant fluctuation for the
polarization fluctuation using the relationship:

§¢(R t) = 4mbar(R t)
obtained from the relation for dielectric materials,

e =1+ 4o
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which relates ¢ and ¢ in a uniform dielectric medium36.

According to Equation 2-23 the scattered intensity with scattering
vector k is determined by the mean square of the amplitude of the fluc-
tuations in the dielectric constant with this wavevector. The magnitude
may be calculated in terms of the thermodynamic variables of the system.
In particular, since one wishes to measure the isothermal compressibility
in the present series of experiments, it is natural to express the fluc-
tuations in the dielectric constant ¢ in terms of the temperature and

density fluctuations of the system. Fluctuations in ¢ may be written

5e(R t) = @ip) bp + @% & T 2-24
T p

A Fouriler transform may be taken of each term to obtain the fluctuations

in terms of the k dependence. The mean square average then becomes

(oek t)|2> - @?)2 (|6p(k t)|2) + (g%)p(lﬂ(k t)|2> + @%)T (g%)p

[(5P(E £)6T(k t)) + Complex Conjugate:l 2-25

p and T are statistically independent, so the third term is zero;
and (%%) is considerably smaller than (gﬁ) and may be neglected37. The
mean square fluctuation in the dielectric constant then depends on the

mean square density fluctuation:

(|oetk ©)]%) - @ﬁp); ek ©)]%) 2-26
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The fluctuation ép may be calculated by an analysis of the energy re-
quired to produce certain fluctuationsg. The probability of a fluctua-

tion occuring is just

W is the work required to produce a given fluctuation, k is Boltzmaun's
constant. This work may be expressed in terms of changes in the thermo-
dynamic variables, and since these variables have a Gaussian distribu-
tion, an average may be calculated. Far away from the critical point,
as the correlation length = 0, only the average density in a fluctua-
tion need be considered, and the result calculated by Einstein in 1910

is obtained:

(|6ptk £)]%) = T3 ¥p KT 2-27
Cloger to the critical point, the energy of the fluctuation will depend
on the gradient of the particle spacing as well as on the average den-
gity in a fluctuation. That is, the fluctuations can no longer be con-
sidered to be independent of one another, but the correlations between
functions must be taken into account. When the correlation function G(R)
discussed previously is included, the Elnstein result is modified and

becomes

2
.2, g KTp v
(|6p(k t)|7) = 3 2-28
\ p | 1+ ;2k2 (2m)
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Where € 1is the correlation length defined previously. This result was

obtained by Ornstein and Zernike in 19145.
The mean square average may also be calculated using Fisher's

modified correlation function to obtain

2
HT kTp

a + e2?

.V
1-%1 (2 °

{|8pk t)|2) = 2-29
with 1) the critical exponent describing Fisher's modification of
Ornstein-Zernike theory. As before, a small non-zero value for T will
not affect the calculated values for the scattered intensity in this
experiment; and the Ornstein-Zernike result will be used for the data
analysis,

The final value for the intensity of light scattered through some
d () about a scattering vector k per unit path length in the scattering

volume is

2 2
dI(epe) = I_ Q@O [p'g'i . H—"’-i—“-% d 0 2-30
0 P 1+ (k)
which reduces to
2 e . 2
dI(6pe) = I —)[ ] KT sin‘ep d 0 2-31
(8o = I K p%; % ¢
ag € - 0.
1. CE?
rells B and V = L*A, L = path length in the scattering volume. The

relative intensity per unit path length may be obtained by integrating

2-30 over all angles.
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21 W 2
Itot = I j' dI(qu;p) sin"gsin 8d 6d g
¢=06G=o

I 3 2
tot 1/ Qe <2a + 2o+ T . §1+a2
SN (%jkT “‘r[ 3 In{l + 2a) - 2-32
0

where g = 2(k0§)2, a dimensionless parameter. Equation 2-32 may be

written as

I 3 2
tot _

T (pb's'bQ KT ¥, £(0) 2-33
v}

2
)=[§2°’+§°’+1) 1n(1+2a)-—(—>-21;2“]. 2-34
= o

As € - 0, f(&@) - 8/3, and for this limiting case, the total relative

scattered intensity becomes:

o]

I 3
tot _ 8 1 be _
- —314[;;( p):rkr:-nr 2-35
o]

This equation is the same as that which is obtained 1f Equation 2-31 is
integrated over all angles. Comparison with measured values for the cor-
relation length in other fluids near the critical point indicates that
Equation 2-35 is a good approximation for temperatures more than 0.5° ¢
away from the critical point.

The isothermal compressibility may be determined using Equation

2-35, 10, kT, and p are all known; gﬁ may be determined from measured
p
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values of the index of refraction and the use of the Lorentz-Lorenz
relation. Each of these quantities, except for the temperature, is a
constant for each sample during this experiment. The temperature de-
pendence due to T is small over the range of temperatures encountered
during this series of experiments and may be removed entirely by multi-
plying both sides of Equation 2-35 by (Tc/T)’ which then may be written

in the form:

I

tot
Io = C Kr . 2-36

C is a constant determined by evaluating the parameters for each sub-
stance,

The total scattered intensity may be determined by measuring the
attenuation of light passing through the sample cell., The attenuation
of light of intensity I per unit length in the sample cell is given by

Kerker36, although with slightly different notation, as
i d_I::(Itot .
dx I
o

x = path length

which may be solved to obtain

(29
I =1 e o 2-37
t o

It the transmitted beam, I0 the incident beam, L total path length. The

quantity (f;oﬁ) is seen from Equation 2-37 to be an attenuation or ex-
o



42

tinction coefficient and is called the turbidity of the fluid:

T may be determined from a measurement of the incident and transmitted

beams by means of the equation

I
1n I 2-38

with L the path length in the scattering cell. The usual dimensions for
turbidity are (cm)-1 and common values for the turbidity in ordinary
liquids range from 4 x 10-3 cm-l to 2 x 10-4 cmul, with most liquids
near the lower end of the range. The turbidities near the critical
point are considerably higher, with T 2'10-2 at AT = 1° ¢ ranging to T
Z 1 a few hundredths of a degree from the critical point.

With this definition of turbidity, Equation 2-36 may be written

in the form

T = C'KT 2-39

with the measured T related by a constant of proportionality to the iso-
o

thermal compressibility for temperatures greater than 0.2 away from the

critical point.

Determination of [,

From the previous discussion of critical exponents, HT should have

the form

KT=FEY
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near the critical point. This functional form for HT may be inserted

into Equation 2-39 to obtain

cTre Y 2-40

A
I

which may be written

re ¥ . 2-41

[l

I
C

In this series of experiments, T is measured as a function of the
temperature difference from the critical temperature. These measured
. AT
values of 7 as a function of the reduced temperature (g = E—) may then

c
be fit to a function of the form

Cce Y 2-42

using a generalized least squares fitting routine. (CI) and y are treat-
ed as adjustable parameters and are varied by the routine in order to

obtain a best least squares fit. (CI') is then divided by C to determine
' In addition the measured values of the turbidity may be adjusted as
described in the next chapter to minimize the errors in I' and v. 1In
this way the magnitude of the isothermal compressibility as a function
of temperature, as well as the critical exponent describing the asymp-
totic temperature dependence may be determined.

Determination of g and v

The correlation length £ as a function of temperature may also be

determined. After values for [ and y have been calculated, these values
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may be substituted into Equation 2-40; all of the terms on the right
hand side of this equation, as well as Equation 2-35, are then known.
These known quantities with a temperature dependence given by vy may be
designated as o the turbidity that would be measured at any tempera-
ture close to the critical point in the absence of correlation effects,

Equation 2-33 may then be written

=1 f() 2-43

which may be put into the form:

2-44

]
[=]

T
£lo) - :
o
with 1+ the measured turbidity at some AT. £ may be calculated from
Equation 2-44 because at a particular temperature the turbidity is meas-
ured, T is calculated from a knowledge of T and y; and so Equation

2-39 is of the form
fla) - (CONST) = 0 2=-45

Equation 2-45 may be solved numerically to determine @, and since o =
z(kog), the correlation length at a particular temperature may be deter-
mined. The procedure 1s then repeated for other temperatures.

The functional form of the correlation length near the critical

point is given by Equation 2-17 as

g = go € 2-46
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The measured values of £ as a function of temperature are then fit to
a function of this form with a generalized least squares fit with go and
v considered as adjustable parameters.

Summary of Data Analysis

To summarize, the procedure used in the analysis of the data is
the following: The turbidity data is fit to Equation 2-41 in the temper-
ature region in which the correlation length may be assumed to be zero,
and T and y are determined. These values for the isothermal compress-
ibility are then substituted into Equation 2-35 in which, with the meas-
ured value of turbidity, the only unknown is a function of the correla-
tion length. This equation is solved for several data points te obtain
the correlation length for various temperatures. These values for £ are

then fit to Equation 2-46 to determine € and v.
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CHAPTER 111

EXPERIMENTAL APPARATUS AND PROCEDURES

Properties of Sample Fluids

Three substances were selected for this investigation, nitrous
oxide (NZO)’ methyl fluoride (CH3F), and chlorotrifluoromethane
(Freon 13, CC1F3). Each is a polar fluid; each has a '"convenient”
critical temperature slightly above room temperature; all are non-
toxic. The coexistence curves and critical temperatures and densities
are known for two of these substances, NoO and CC1F338. The critical
behavior of CH3F has not been investigated recently and no reliable
data on its critical properties are availlable,

The gases used in this investigation were obtained from Matheson
Gas Products, and no attempt was made to further purify them. N0 has
a minimum purity of 98%, the principal impurity being air. The method
of filling the cell by condensation indicated that the purity of the
nitrous oxide in the cell was greater than that in the cylinder. Com=-
parison of the critical temperature obtained from this experiment and
critical temperatures determined for N,0 with carefully controlled

17 indicates that impurities in the present sample

amounts of impurities
of N,0 are considerably less than that specified by the Matheson Gas
Products. Furthermore, the analysis in reference (17) of the coexist-

ence curve data for N,0 indicates that the prime effect of Impurities

af the order of 1% 1s a change in the critical temperature T., with
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only a slight effect on the critical exponent p. Both CClFy3 and CH3F
are 99% pure, the principal impurities being alr for CClF3 and silicon
tetrafluoride and dimethyl ether for CHjF.

No0 is a linear molecule with an N-O bond distance of 1.185 A
and an N-N bond distance of 1.128 l. The CH3F molecule is a methane-
like molecule in which one of the hydrogen atoms has been replaced with
a fluorine atom, distorting the original tetrahedral symmetry. The C-F
bond distance is 1.3852 } and the C-H bond distance is 1.06 A. The
h-C-H angle is 109° s0°. CClF; is also a methane-like molecule in
which three of the hydrogen atoms have been replaced by fluorine atoms
and the fourth by a chlorine atom. The C-F bond distance is 1.328 j
and the C-Cl bond distance is 1.751 &, The F-C-F bond angle is 108.6°
+ .4°,

The dipole moments for these gases are:; .17 D for N,0, .50 D
for CC1F4, 1.856 D for CH3F39. Some of the previously reported critical

data for these gases is summarized in Table 6.

Sample Preparation

Cell Design

The critical pressures of these fluids are fairly high, ranging
from 38 to 72 atm, as shown Iin Table 6. To contain this pressure, the
fluids must be retalinmed in a suitable sample cell. There are two
general approaches to a design of a sample cell to be used in critical
polnt investigatlons. One ig a glass cell which is sealed off with a
flame after filling; the other is a metal cell, generally of stainless

steel, with optical windows. The advantage of the metal cell is the
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ease of adjusting the amount of fluid in the cell through a valve
connection., Also, since a turbidity measurement requires a cell with

a fairly long optical path length and flat ends, a metal cell will con-
tain the pressure with greater safety.

Although there are minor differences between the cells used for
the different fluids, the design, shown in an exploded diagram in
Flgure 5, is basically that of the cell for N,0. This design is adapt-
ed from a deslgn of Morey and Fenner®0 which has been modified with
slightly different sealing geometry and with the addition of windows
for optical measurements. The construction of each is of stainless
steel with %" thick fused quartz windows, with each cell having an
coptical path length of approximately 38 mm. Thick windows are required
because of the enormous amount of stress on the unsupported area of the
window. The stress is inversely proportional to the square of the
thickness41 and approaches the faillure point of the quartz if thinner
windows are used. Although the rated tensile strength of the quartz is
not exceeded when %" thick windows are used, any unevenness in the
supporting area of the window can cause greater stresses, resulting in
cracking of the window. On a filling attempt with %" windows, one of
the windows failed at a pressure of approximately 900 psi. A calcula-
tion that determines the stress on a window of given size and thickness
is given in Appendix A.

When uncoated quartz discs were uged in the cell containing the
methyl fluoride, etching of the interjior aurfaces of the windows gccur-
red. This etching was eliminated by coating the interior surfaces of

the windows with 350 cs Dow Corning 200 fluid (a dimethylsiloxane
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polymer) and baking for 3 hours at 350Y ¢. The windows used in the
other two sample cells were uncoated.

Each of the windows sits in a well and 1is supported over % of
its area by the shoulder of the sample cell. The well in which the
windows are seated is drilled 4 to & thousandths of an inch oversize,
to assure that the differential contraction on cooling will not crack
the windows. The actual seal of the window to the cell is made with a
low viscosity epoxy, TRACON TYPE 2114 that flows and completely fills
the space between the window and the shoulder. When the interior of
the cell is pressurized, the internal pressure pushes the window toward
the shoulder, thereby improving the contact between quartz, metal, and
epoxXy.

The cell is constructed in two sections joined after the windows
are seated from the Inside. The two sections are joined together by
eight 4" bolts. The high pressure seal consists of knife edges machined
onto a shoulder of each section of the sample cell and a copper gasket
into which the knife edges impress when the two sections are drawn to-
gether by tightening the bolts. The valve used in this sample cell is
a Nupro Model 4H stainless steel bellows valve joined to the bhody of
the sample cell with a silver solder seal; the valve has a pressure
rating of 1000 psi.

The entire sample cell assembly is supported by a rigid framework
and is suspended by a %" steel rod from a Brinkmann cell heolder that
may be adjusted to give a rotational motion about the vertical axis and

translational motion in the vertical direction., This latter capabililty

is necessary to enable the cell to be positioned accurately so that the
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beam passes through the sample at the critical density.

Determination of Cell Volume

To determine the critical density of each of the samples used in
this experiment the volume of each of the cells must be known precisely.
To achieve this the empty cell was weighed, filled with water, and
weighed again using the density of water to determine the volume. To
£111 the cell it was necessary to evacuate the cell through one arm of
a two position stopcock connected to the sample cell., The other arm
was connected to a water reservoir and the line to the vacuum pump was
opened and the cell pumped out, The stopcock valve was then turned to
open the line to the water reservoir, and the water flowed inte the
cell. The procedure was repeated untll all the air bubbles present in
the cell were removed.

This method inveolved two major sourtes for uncertainty. First,
the mass of the sample cell is approximately 1800 gms and the available
balances with the required capacity have an accuracy no better than 0.1
gms. Secondly, water wets the steel and the glass poorly, causing
bubbles to be formed. In the cells used for N,0 and CH4F, the opening
into the wvalve was small; there is the possibility that the space was
not completely filled with water. This volume 1s approximately 1 cc
and introduces an uncertainty lnto the volume determination of these
cylinders. The cell used for CClF, has a larger opening so that this
uncertainty is not present. A calculation for the volume of the cell
containing the N,Q 1s presented in Table 3; the calculations for the

other cells are analogous.



Table 3. Determination of Sample Cell Volume of
the N,0 High Pressure Cell

Empty wt. of cell

Avg., wt.

Filled wt. of cell

Avg. wt.

2nd trial filled

Avg. wt.
Avg. of two trials
Mass of water in cell
Volume of water present
Possible additional volume

Limits on the volume:

Avg. of these two numbers

Vol. for this cell

1818.3
1818.4
1818.4

1818.4

1871.1
1870.9
1871.0

1871.0

1871.0

1871.0

1871.1 +

1871.0

Max. vol.

Min. vol.

52.6

52.6

1.1

54.1

52.4

53.3

33.3

gms
gms
gms
_+-.0ll

gms
gms
gms
+ 0.1

gms
gms

0.2

I+

0.2

I+

I+
o
)

gms

gms

gms
gms
gms
cm

cm

cm
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Cleaning of Cell

The cells were first degreased by immersion in trichloroethylene
vapor. The interior of the cell was then washed with acetone followed
by methanol. After the washing and before sealing the cell, methanol
was vaporized, then condensed on the interior of the cell and allowed
to run off, removing any dust particles that may have settled on the
surface.

Calculation of Filling Parameters

Before filling the cell, it is necessary to determine the amount
of gas needed for the sample to be at its critical density. The mass
needed is determined from the meaaured volume of the cell and the crit-
ical density from Table 6. The amount needed to fill the cell i1s
calculated in terms of the pressure difference for each gas, assuming
ideal behavior, and a correction is made for the deviation of the gas
from ideal behavior. The amount actually condensed depends on the
pressure difference in the gas handling system before and after filling
and the mass of gas present in the system for a given pressure.

The density of each gas at standard conditions is found in the
Matheson Gas Data Book42, and a correction is applied for given room
conditions. This density is multiplied by the volume of the gas han-
dling system to determine the mass of the gas 1n the system at a pres-
sure of 1 atm, Assuming ideal behavior, this same mass of gas will be
present for each atmosphere of pressure present in the system; since
the total mass needed 1s known, this masa may he expressed in terms of
a pressure difference in the gas handling system before and after

filling. A sample calculation for N0 is given in Table 4.



Table 4. Calculation of Filling Parameters for N,0 Cell

Critical density

Volume of sample cell

Mass needed for critical density in cell
Density of gas 0° C, 1 atm

Density at 18° C, 1 atm

Volume of gas handling system

Mass in system at 18° C, 1 atm

Number of atm to fill cell (1f ideal)

Number of psi difference

It

1

452 gf/ml
53.3 ml

24,1 gms
1,997 g/liter
1.87 g/liter
340 ml

.0637 gms
37.82

556
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In fact, the density is greater than the ideal demsity at high
pressures. While data are mot tabulated in the International Critical
Tables for N,O or the other gases that are the subjects of this investi-
gation, the density for Co,, which has a similar critical behavior, is
about 10% higher than corresponding ideal density at 250 psi43. The
exact amount is non~critical, since the amount of the gas in the sample

cell may be adjusted by valving gas out or by condensing more gas in.

Filling of Cell

After the cell was cleaned and sealed, and after a calculation
of the filling parameters was made, the cell was placed in an oven and
attached to a vacuum system. As the cell was pumped out, the oven was
heated teo approximately 50° C to outgas water from the interior surfaces.
After several hours in the oven no change in the pressure of the vacuum
system was observed when the cell valve was closed or when it was re-
opened, indicating that the outgassing had been accomplished. The cell
valve was then closed and the cell removed from the vacuum system and
connected to the gas handling system, shown in Figure 6, which was then
connected to the vacuum system. The gas handling system was pumped out
to about 50 microns and the sample cell valve opened. Pumping out con-
tinued overnight.

As the first step in the actual filling procedure, the sample
cell valve is closed and the sample cell immersed in a slurry of dry
ice, water, and isopropyl alcohol and cooled to approximately ~30° ¢.
The relative amount of water and of alcohol is determined by the re-
quirement that the temperature of the cell not go below ~50° €. Below

this temperature the epoxy failas. After the cell has cooled to approx-
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imately the temperature of the slurry, the valve between the gas han-
dling system and the vacuum system 18 closed and the valve to the gas
bottle is opened. Gas flows into the gas handling system until the
pressure reaches 400 psi, maximum pressure of the gauge, at which time
the gas valve 1s closed and the sample cell is opened. A portion of
the gas condenses into the cell, and the pressure in the system drops
untll it is equal to the vapor pressure of the liquid in the cooled
cell. 1If calculation shows that the initial pressure required is
greater than 400 psi, the filling procedure may be repeated. Usually,
not enough of the gas will be condensed on one condensation, so the
valve to the cell must be closed, more gas introduced into the gas
handling system, and condensed into the cell. After the calculated
anount of gas has condensed, the valve is closed, and the slurry is
removed from around the cell.

Determination of Critical Fill

Above the critical temperature the average density is just the
density of the one phase fluid; below the critical temperature the
density of each phase varies with temperature along the coexistence
curve. The average density remains constant as long as the cell is
sealed, and the volume of each phase varies as the critical temperature
1s approcached. When the average density is equal to the critical den-
sity, the volumes of the liquid and of the gas phases will be constant
and equal to each eother as the critical temperature is appreoached from
below. This equality of volume of the liquid and gas phases ig used to.
determine that the fluild in the cell 1s at its critical density.

The volume of the liquid phase relative to the total volume of
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the sample cell below the critical temperature is gilven by Equation
3-1 (for derivation see Appendix B):

VL b - pc

- —_ _E_+ 1 . 3-1
A
2 Blpce 2

V is the total volume of the sample cell, V| is the volume of the
liquid, € the reduced temperature, p the average density of the fluid

in the cell, p. the critical demsity. Bl and P describe the shape of

C
the coexistence curve.

According to Equation 3-1, for densities greater than the crit-
ical density, as the critical temperature is approached from below, the
volume of the liquid phase increases. Eventually as € - 0 there will
be some temperature at which v, =V and the fluid in the cell will be
entirely in the liquid phase. Experimentally, the meniscus, the line
marking the boundary between the two phases, appears to rise and finally
to go through the top of the cell, The temperature at which this occurs
is the temperature at which the density of the liquid on the coexist~
ence curve equals the average density Inside the cell. For densities
less than the critical density, the meniscus will appear to fall, going
through the bottom of the cell at the temperature at which the gas den-
sity on the coexistence curve equals the average density in the cell.
1f the density 1s very cleose to the critical density, the compressibil-
ity of the fluid is large encugh so that a density gradient is set up,
and the meniscus will remain within the cell; the relative volumes as a

function of temperature may then be used to provide a sensitive check

of the density relative to the critical density.



59

The experimental check is made by slowly heating the sample cell
in a water bath and observing the behavior of the meniscus. If the
meniscus goes through the top or bottom of the cell the temperature at
which the system becomes totally one phase is noted; density is deter~
mined from the ceoexistence curve for the material. Close to the crit-
ical density adjustments to density are made until the volumes of the
two phases are equal just below the critical point. By this method one
estimates that each of the samples 1s within %% of the critical density,

After filling and adjusting the density to the critical demnsity,
the sealed cell is removed from the gas system and weighed to determine
the mass and average density of the sample. A sample calculation of
the critical density for No0 is given in Table 5. Table 6 compares the
critical densities and temperatures observed im this experiment with
other published results. Since the presence of small amcunts of im-
purities can affect the critical densitles as well as the critical
temperatures for any glven sample, the most accurate indication that a
particular sample is at its critical density is the position of the
meniscus at the center of the sample cell., The calculation of the
density is useful mainly for comparison with other results. The den~-
sities measured in this experiment are consistent with previously deter-

mined critical densities.

Temperature Measurement and Control

The object of any experiment dealing with critical phenomena is
to determine the behavior of the gystem as a functlon of the temperature

difference from the critical point. To find this temperature difference



Table 5.

Calculation of Critical Densgity for

Mass of cell with NZG

Average

Mass of empty cell

Mass of Nzo

Density

1]

1843.0

24,6

I+

1818.4

0.2

53.3

0.8

]

1843.
1843.
1843,
1843.
1818.

24,

460

I+

N,0

gms

gms

gms

+ 0.1 gms

4+ 0.1 gms

+ 0.2 gms
2.3% = .46 *

60



61

Table 6. Critical Data for NZO' CClF3 and CH3F
o
Investigators TC( C) Pc(Atm) péZqu) ni(pc)
N O
b4 2
villard 38.8 LG54
Kuenan 36.0 71.9
Cardoso and Arni? 36.5 71.65
Quinn and Wernimgnt47 459
int. grit. Tab.* 36.5 71.7 45
Cook? 36.34% 71.12 452
Straubl’ 36.416% 1.1154
This Experiment 36.29 L468
49

Albrighs and Martin 28.85 38,2 .578
Straubl 28.715 1.0996
Schoenes 29.05
This Experiment 28.33 .568
Collie’? 44,9 62.0
Matheson Co.42 44.6 58
This Experiment 44 .26 .306

*The value of the critical temperatures are not that reported in the
original papers, but result from analysis of the data in reference (17)
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one must know as precisely as possible the critical temperature of the
system as well as the current temperature. In addition, the tempera-
ture of the system should be controlled for a time long enough for the
system to reach an equilibrium state and to allow measurements char-
acterizing the behavior at the temperature. These requirements for
precise measurement and control in this experiment are met by placing
the sample cell containing the fluild in a circulating bath, contrelling
the bath temperature with a proportional temperature controller, and
measuring the temperature with a thermistor in a Wheatstone bridge.

The fluid bath consists of approximately 5 gallons of 2 centi-
stoke viscosity Dow Corning 200 fluid in a 12" diameter, 12" high black
anodized aluminum container surrounded by 1 to 3" of insulating foam
except at those places in the sldes of the cell where flat windows for
optical paths are located.

Thermistor Bridge

The primary temperature measuring device for this experiment
consists of a thermistor immersed in the fluid bath. A thermistor is
used rather than a mercury in glass thermometer because the thermistor
has greater sensitivity, it may more easily be used to produce a perma-
nent record of the system temperature, and its behavior is more regular
when measuring temperature changes of the order of a few hundredths of
a degree. The thermistor was calibrated against a platinum resistance
thermometer, so the temperature corresponding to a particular resist-
ance 1s known. A temperature measurement 1s then made by measuring the
reslstance of the thermistor with the thermistor as one leg of a

Wheatstone bridge. One of the sample cells also has a thermistor em-—
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beded directly in the cell. This has been used to check temperature
variations between cell and bath.

Calibration Procedure

The thermistor is a thermally sensitive resistor with a large
negative coefficient of resistance, of the order of 3% per® C. The
change in resistance between two temperatures 1s described by the fol-

lowing equation51

1 1
e —_ . =
R(T) = R(To)e <T Tc) 3-2

R(T), R(To) are the resistances at the temperatures T and TO, @ is a
constant of the individual thermistor. To calibrate the thermistor the
temperature and resistance must be measured at two polnts and © calcu-
lated for the interval between the two points.

Whenever there is power expended in a thermistor, the thermistor
will be at a higher temperature than the surrounding medium. For this
reason, the thermistor was calibrated under conditions that closely
approximate the conditions under which the thermistor is used. It was
calibrated in a water bath with respect to a platinum resistance thermom-
eter (PRT) (Leeds and Northrup Model 8163-C). The thermistor resistance
was measured in the Wheatstone bridge used in the experiment; the resist-
ance of the PRT was measured using a Mueller bridge. The PRT had been
calibrated by the Leeds and Northrup Co. with a calibration traceable to
the National Bureau of Standards; the temperature scale used in that
calibration was the International Practical Temperature Scale of 1948.

The temperature corresponding to a particular resistance value of the
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PRT was calculated using the Callendar formula:

- R
RT o0 T T
T =100 ¢ -R0+5<100' 1) 100

100
RT = PRT resistance measured
Ro = PRT resistance at ice pt.
RlOO = PRT resistance at steam pt.
& = 1.492 for this thermometer

Temperature and thermistor resistance values were calculated for
several pairs of points and @ was calculated for a temperature and
resistance range between each pair of points using the followling equa-

tion obtained by solving Equation 3-2 for

TT
_ o R (T)
6 = T T In [R T 3-3
) o

Temperature Calculation

The temperature corresponding to a given resistance is calculated

using the solution of Equation 3-2 for T

RG] -

T is the temperature to be calculated, R(T) is the resistance measured,

R(To) is the resistance of one of the end points of the range within

which R is measured. T0 is the temperature corresponding to R(To), 9
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is that calculated for the particular range in which R(T) is found. As
a check of the sensitivity of the above equation to the value calculated
for 8, a calculation for one endpoint of an interval was made using the
other endpoint and a value of & approximately .7% high. The error was
approximately 15/1000 of a degree. This variation in § is higher than
the variation in 9 between adjacent intervals, although a general in-
crease in the value of 9 is noted as T increases.

Uncertainties in Temperature Callbration

The uncertainty in the determination of temperature with the
thermistor and Wheatstone brildge 1s due to uncertainties in the cali-
bration of the thermistor against the PRT and in the calibration of the
PRT against the standard temperature scale, The accuracy with which
the thermistor cculd be calibrated against the PRT is limited by the
accuracy with which the resistance of each could be measured. The ther-
mistor resistance was measured during calibration to an accuracy of
0.05 + 0.03 ohms; the resistance of the PRT was measured with a sensi-
tivity of 10-4 ohms, This resistance sensitivity corresponds toc a
temperature sensitivity of 10-3° C for the PRT. The uncertainties for
a particular calibration point are + 0.03 ohms in resistance and 0.001° ¢
in temperature. When two resistance-temperature points are used to
calibrate a range on the thermistor, the uncertainty of the tempera-
ture at a point in the range will be due to the temperature and resist-
ance uncertainty of the endpoints, as well as the uncertainty in the
measured value of the resigtance. The uncertainty in the resistance
reading is approximately 0.03 ohms, corresponding to a temperature un-

certainty of approximately 0.001° ¢ in the temperature reglon of lnter-
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est. The uncertainty in the endpoints adds another 0.002o C uncertain-
ty ao the total uncertainty in the reading is 0.003o C.

In this experiment, the quantities of interest are temperature
differences. For temperature differences in the same range, the cali-
bration uncertainty is less, because the same endpoints and same 6 are
used to calculate both numbers. The calibratioen uncertainty is approx-
imately

Difference in R values x 0.002o C
Range in R

Uncertainty =

For temperatures that are close to each other, the calibration uncer-
tainty is negligible and the uncertainty 1s just the uncertainty due to
the uncertainty in the two measured resistance values, approximately
0.002° C. For temperature differences between temperatures not in the
same range, the uncertainty 1s the sum of the uncertainty in each value
or 0.006° C. For N,0, temperatures within 0.7° C of the critical point
are within the same callbration range, and for CClF3 and CH;F tempera-
tures within 1.5° C are in the same calibration range. The absolute
uncertainties in the temperature measurement can not be accurately
determined, because the calibration of the PRT does not give estimates
on the probable errors in the calibration, but it is probably of the
order of 0.01° C, the uncertainty in the determination of the Inter-
national Practical Temperature Scale.

Temperature Control

Control of the temperature of the fluid inside the sample cell

is achieved by controlling the temperature of the bath in which the cell
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i1s immersed. This contrel is accomplished by decoupling the bath from
changes in heat inflow or outflow and by uslng a proportional tempera-
ture controller te supply heat at a rate that equals the rate at which
heat is lost from the system. The decoupling is accomplished by three
methods:

(1) A synchronous motor powers the stirrer avoiding variatioms
in heat input to the bath due to variations in line voltage.

(2) The temperature of the room in which the experiment is
carried out is lowered so that changes in room temperature will have
relatively less effect on the rate of heat outflow from the system.

(3) Relatively large amounts of insulation between the bath and
room are used.

A Bayley model 252 proportional temperature control controls the
bath temperature by means of a resistance heater along the inner walls
of the bath. The heater is a 500 watt heater, but resistors are placed
in series with the heater, but outside the bath, to reauce the effec~
tive heating power inside the bath to either 30 or 100 watts, depending
on the temperature at which the bath 1s being controlled. This enables
the controller to provide power at a rate between 20% and B80%, in which
range it is most effective in maintaining control. The degree of con-
trol 1Is largely determined by the stirring. Vigorous stirring is nec-
essary to achieve good control, but with an ordinary propeller type
stirrer, stirring adequate for temperature control produces bubbles
which are unacceptable becauge the light beam passes through the fluid.
This difficulty is avoided by the use of a flat disk approximately 3"

in diameter which stirs the fluld without producing bubbles.
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With the control operating normally, a rapid fluctuation of the
temperature of approximately 0.001° C around the control temperature
occurs. This fluctuation in bath temperature does not show up when
checked with a thermistor imbedded inside a sample cell. On a short
term basis for times of the order of 30 minutes, control to within +
0.002° ¢ is achieved, for longer terms, depending on the temperature
of the room, or the output from the air conditioning units in the room,
the control is degraded to i_0.004° C for perlods of 1 to 3 hours, and
1_0.008o C for periods up to 12 hours.

This degradation of the control does not materially affect the
results obtained because, in the temperature range greater than 0.1° ¢
from the critical point, small deviations from the temperature control
point show up immediately as a change in turbidity, and as the tempera-
ture returns to the control point, the turbidity returns to its origi-
nal value. Although appreciable lengths of time are required for the
system to reach equilibrium after large changes, the system mirrors
small changes, of the order of 0.01° C very quickly. Thus an actual
temperature sensitivity of a few millidegrees is possible and meaning-

ful.

Measurements w%th an QOptical Bridge
The actual turbidity of the fluid as a function of temperature
is measured by means ¢f an optical bridge. The use ¢f an optical
bridge enables accurate measurements @f the intengity transmitted
through the sample cell to be made by comparing it to the intensity

of a reference beam which can be adjusted by attenuation. The intengity
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of the cell beam relative to the reference beam is then determined by
measuring the amount of attenuation necessary to produce equal in-
tensities. Although absolute intensity measurements cannot be made,
intensity readings may be made with an empty cell and a filled cell
and with filled cells at different temperatures and the relative in-
tensities compared.

The variable attenuator consists of three Glan Thompson (GI)
polarizing prisms arranged so that there is one rotatable prism in a
divided circle rotator between the two fixed prisms in the optical
path. The two fixed GT prisms are aligned with the same direction of
polarization, so the light intensity transmitted through the three
prisms is proportional to sin4 ®, where € is the angle between the
direction of peclarization for the center prism and the direction for
which the transmission 1s a minimum.

The polarizers are aligned by placing the first GT prism in the
optical path and aligning it to give some convenient direction of polar-
ization. The rotatable prism 1s then placed behind the first prism
and rotated until minimum transmission is cobtained.

The third prism is then put Into place and rotated until a new
minimum of transmission is found. This aligns the first and third
prisms so that they have the same direction of polarization. This
method is used since relative changes in intensity are much greater
near transmission minima than near maxima., The sin4 8 dependence was

checked by means of neutral density filters and found te held within

the error limitations of the neutral demsity filters,
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Optical Bridge Components

The varilous components of the optical bridge are shown in
schematic form in Figure 7. The light source for the bridge is a
Spectra Physics Model 133 laser which emits unpolarized light at 633
nm. The output is well collimated, having a divergence of approximate-
ly 1 mrad., with a beam diameter at the sample cell of about 2 mm.

The beam first passes through a red filter removing any blue
light from the plasma tube and then through the first GT prism (placed
before a beamsplitter so that both beams will be polarized). The beam-
splitter separates the beam through the sample cell-from the reference
beam. The reference beam then passes through the second and third
prisms of the attenuator, the oll bath, and a lens which focuses the
beam onto the plane of a chopper. The other beam passes through the
bath, the sample cell, a circular aperture 3.0 mm in diameter, and
another lens which focuses this beam in the plane of the chopper. The
chopper is aligned so that the two beams fall alternately on the face
of an RCA 7265 photomultiplier (PM) tube which is used to measure the
intensity of the light. A diffusing screen is mounted in front of the
PM tube to minimize the effects of beams incident at different positions
on the tube. The tube is powered by a Keithley Model 240 power supply;
where the turbidity is small, the supply voltage is -~1500 volts. Close
to the critical temperature, the transmitted light intensity decreases
as the turbidity increases and the supply voltage is increased. This
voltage was chosen for the greatest sengitivity on the devices used to
measure the output from the tube. The veltage due to the pheotocurrent

(approximately .03 ma) through a 104 ohm resistor is displayed on a
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Model 535 Tektronix oscilloscope.

Since the beams have been focused at the plame of the chopper,
the rise time during which the intensity of the beam transmitted by the
chopper changes is much less than the time during which there is full
transmission or full extinction, and the output from the photomulti-
plier tube due to each beam has the form of a square wave. Because of
the size of the slits on the chopper, the transmission time for each
beam is less than the bleocking time. Since the beams fall alternately
on the face of the PM tube, the resulting signal consists of two
alternating square waves with the amplitude of each proportiomal to
the incident light.

The circular aperture in the beam that passes through the sample
cell serves two purposes: first, it limits the amount of forward scat-
tered light reaching the PM tube; second, it eliminates possible ef-
fects due to multiply scattered light. It is movable so that varia-
tions in beam position (such as that produced by a downward bending of
the beam due to density gradients in the sample near the critical point)
may be matched. With this aperture in place, the errors in the meas-
ured 1light intenqity due to inclusion of the forward scattered light
may be determined from the scattering equations presented in Chapter II.
The half acceptance angle of this aperture is approximately 6 x 103
rad. At 0.026° C ahove the critical temperature, the smallest AT used
in the final analysgis of the correlation lengths, the forward scattered
light represents only 0.03% of the measured light intensity; farther
away, the error 1s leas. The maximum possible error due to multiple

scattering may be determined by assuming that all of the light scattered
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out of the beam is then scattered a second time and estimating the
amount of this multiply scattered light that passes through the aper-
ture. Calculations show that the maximum error due to this multiple
scattering is approximately the same as the errcor due to the inclusion
of the forward scattered light. Since not all of the light is multiply
scattered, the error will be less than thls maximum calculated; the
error will become still smaller for larger AT.

Pogitioning of Sample Cell

The sample cell is positioned so that the beam traverses the
cell horizontally at the point where the meniscus disappears as the
temperature is raised past the critical temperature. This accurate
vertical positioning is necessary because the very large compressibility
of a fluid near its critical point results in large deng}ty gradients
in the fluid. Oply a small reglon at the center of the cell will actu-
ally be at the critical density, and it 1s at this point in the center
of the cell that the meniscus disappears as the temperature is raised.
These density gradients close to the critical temperature alsc bend the
light beam downward. This effect, however, is only important for
temperatures very near the critical point. Deviations of the beam were
not noted in this experiment until the temperature was less than 0.2° ¢
above the critical temperature. The time required for these density
gradients to become established increases greatly for temperatures near
the critical point, and since no equilibrium data was obtained closer
than 0.1° C from the critical temperature, density gradients did not
pose a serious problem for this series of experiments.

The power of the beam through the sample should be reduced to a
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point where no heating of the sample occurs due to heating by the beam.
The beam power through the sample in this experiment is less than 50
microwatts. Swinney and Cummins35 found that beam powers less than 75
microwatts did not affect similar samples of CO,, so heating is not
considered to be a problem for this series of experiments.

Data Acquisition Procedures

A measurement of the light intensity transmitted through the
sample cell is made by rotating the center GT prism until the inten~
sities of the two beams are equal, as determined from the oscilloscope
trace. Since the output from the PM tube consists of two alternating
square waves, the osclilloscope is adjusted so that the trace is trig-
gered by each pulse; there 1s a stable display of two ﬁulses, one from
each beam, superimposed on the screen. The center GT prism 1s rotated
until the flat portions of each pulse coincide. The amplitude of the
signal from each beam is the same, and thus the intensities of the two

beams are equal. The angle of the rotatable prism is recorded, and the

process 1is repeated for a total of four readings. The readings are
averaged, and the difference between thls average angle and the angle
for minimum transmission is calculated. The intensity may then be
determined from the sin @ law.

The angles of the rotatable GT prism may be measured to the
nearest 0.05°, with the minimum detectable intensity variation cor-
responding to a change in the angular reading of approximately 0.05°.
The percent error in measured intengity depends on the relative trans-
mission, but for the intensities when the turbidity is small, the error

is approximately 0.1Z.
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The optical system is very sensitive to slight movement of the
optical components so absplute stability of the system 1s required
during any data taking run. This is achieved by attaching all com-
ponents firmly to rails which are then bolted to the table. The system
is also sensitive to shifts in the beam position. The sample cell beam
is steady, except for the density gradient bending, but the reference
beam enters and exits the bath through non-parallel windows. Conse-
quen;ly, changes in the refractive index of the bath fluid with temper-
ature cause shifts in the reference beam position. To take account of
this effect, a series of readings were taken measuring the light trans-
mitted through the cell with an empty cell in place of the filled cell
over the temperature regilon of interest. Thus a baseline intensity
was obtained for the transmission of an empty cell as a function of
temperature.

The transmission of an empty cell is different from that of a

filled cell because of the differing index of refraction of the material

in the cell. At the inner surfaces of the windows, the light beam
passes from a medium having one index of refraction te one with another

index of refraction. For normal incidence the transmission at the

interface is given by the formula>?

o]
Al
n

T= 2 .

G117

n; is the refractive index of medium 1;
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n, is the refractive index for medium 2;

T is the transmission

The index of refraction for the air 1In the empty cell i1s assumed to be
1.000 while the indexes of refraction for N,O and CClF5 at the critical
density have been measured and are given in Table 6. The refractive
index for CH4F at the critical density has not been measured, but for
standard conditions of temperature and pressure, the index of refrac-
tion 1s given in the ICT!‘3 as 1.000449, Using the measured critical
density and applying the Lorentz-Lorenz relation,

n2 -1 4 m

n2 + 2

n = refractive index
o = polarizability
p = density
an index of refraction of 1.0904 may be calculated for CH3F at the

critical density.

Using the known index of refraction for quartz, and the values
of the refractive index for the various materials in the cell, the
transmission may be calculated for each surface for both the empty cell
and the filled cells. This value 1s then squared to ¢btain the total
transmigsion for the interior surfaces. The appropriate corrections
to the baseline for the empty cell may be made for each of the filled
cells to obtain a value for the transmission through each fluid in the

absence of scattering from the fluid within the cells. When light



77

intensity measurements are made with the cells containing the fluids,
the measured intensity should be less than the adjusted baseline close
to the critical point and approximately equal to the adjusted baseline
for temperatures 10° C or more away from the critical temperature, The
difference then would be due to the light scattered from the fluid in-
side the cell, from which the turbidity as a function of temperature
for the fluid could be determined. 1In some cases, this is not exactly
correct. The quartz windows have imperfections which may affect the
transmigsion; there may be a small difference of position of the cells
in the bath; and the indexes of refraction for the NZO and CClF3 have
been determined using the sodium D line, % = 589 nm, while the laser
light used is of a different frequency, % = 633 nm. In addition, the

index of refraction for the CH_F has not been accurately determined and

3
the effect on the light transmission of the polymer coating on the in-
terior of the cell windows in the cell containing CH3F is not known.
Experimentally, these differences result in the observed inten-
sities lying above or below the adjusted baseline., If the intensities
lie above the baseline, a log-log plot of the positive turbidities vs
temperature difference from the critical point will have a downward
curvature for AT > 0.2° C. 1f the intensities lie below the baseline,
then a log-log plot as before will show an upward curvature with the
turbidities approaching a constant value. The correct baseline will
result in a straight line when the turbidity is plotted vs AT. So the
final choice of the correct baseline may be made by choosing that base-

line which gives the straightest line for AT >-0.20 C. This is done

mathematically rather than graphically by wvarying the baseline to mini-



mize the error when the turbidity is fitted to a function of the form

of Equation 2-42:

T = CFe-y.

78
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CHAPTER 1V

DATA AND ANALYSIS

Data Analysis Procedure

The first step in the data analysis for each of the substances
investigated is the determination of the critical temperature of the
substance., The critericon for the transition is the appearance of a
meniscus and the beginning of nucleation marking the separation into
two phases; the critical temperatures measured in this way are given
in Table 6. The turbidity at a temperature is determined from Equation
2-38 in which the incident intensity is the measured baseline, adjusted
for the difference in transmission at the windows of the filled cell,
and the transmitted intensity 1s just the measured intensity with the
filled cell in place. AT is determined by subtracting the measured
critical temperature from the temperature at which the turbidity is de-
termined, and turbidity Tvs AT data is obtained. This data is plotted
for the various substances iIn Figure 8 on page 84, Figure 10 on page
90, and Figure 12 on page 96,

This turbidity vs AT data is fit to an equation of the form 2-41
using a generalized least squares fitting program, LSQG. This program,
shown in Appendix C, 1§ an element in the physics program library file,
PH*LIE. LSQG calculates a best least squares fit tgo functions of the

form

4-1

e =
~~~
A
a
-
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where the a's are parameters to be fitted. Equation 2-42 is written
in the form of Equation 4-1 using logarithmic functions, resulting in
two parameters, one the logarithm of the coefficient and the other the
exponent. The best fit parameters a; and a, are those for which the
varlance 1s minimized; the uncertainty in the determination of the a's
is given by the standard deviation of the fit. The program LSQG itself
handles the Iinput of data, calls on a subroutine to evaluate the func-
tions, converts the data into matrices, uses another subroutine te in-
vert the matrices, and finally calculates the parameters and assoclated
errors.

The graph of the turbidity vs AT should be a straight line in
the temperature range in which the correlation length is negligible;
but close to the critical temperature, as the correlation length in-
creases, the exponent describing the slope should become smaller (in
absolute value) as the curve flattens out. It is desired to use tem~
peratures as close to the critical temperature as possible in calcu-
lating the exponent while keeping only that portion of the curve that
is a straight line. To do this, various minimum values of AT are used
to fit the turbidity-AT data, and the minimum AT used is that smallest
AT for which there 1s no consistent decrease iny. Points as close to
the critical temperature as 0.2° C are used for all of the fluids in-
vestigated. For points closer to the critical temperature than AT =
0.2° C, there is a constant decrease in the exponent attributable to
the effects of the increasing correlatien length.

The magnitude of the constant C in Equation 2-40 is calculated
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using the measured index of refraction at the critical density, the
measured critical density and critical temperature, and the constants
A, and k. C is then used to determine the coefficient of the compress-
ibility. The value for the compressibility 1s then used to calculate
the correlation lengths for each fluid for values of AT<0.29 C.
Posslble uncertainties in the intensity measurements result in
an uncertainty of approximately 0,0005 cm“1 in the turbidity measure-
ment. In addition, there are other errors that lead to larger ungfr—
tainty in the turbidity data. The f£irst of these 1s due to possible
changes in the position of the beam transmitted through the sample
cell or errors in the transmission functlon calculated for the window
surfaces. Such errors result in a consistent shift of the entire basge-
line and may be treated as described in Chapter III. OQther errors,
due to changes in the reference beam position, result in inconsisten-
cies between various portions of the measured turbidity-~AT curve. The
magnitude of such errors is not known precisely, but judging from the
experimental data, may result in differences amounting to * 0.0002 em L,
The effects of this type of error may be eliminated by fitting the data
points to Equation 2-42 with no weighting for all AT > 0.2° ¢. The LSQG
program calculates an error In the determined critical exponent; the
range of the data is reduced by taking successively smaller maximum
AT and the error is determined for each range and plotted against the
maximum AT. In each case, the error is relatively large for the entire
range considered, but as the maximum AT becomes less, there is a rapid

decrease in the error until some minimum error is found; a further de-
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crease in the range results in a slight increase in the error due to the
small number of data points considered. The decrease in the magnitude
of the error is accompanied by a change in the calculated critical ex-
ponent. This change in exponent becomes less as the change in the er-
ror decreases, and the exponent finally reaches, in all cases, an ap-
proximate final value for the same maximum AT at which the error is
minimized. This Indicates that the data in the range for which the
errors are approximately congtant i self-consistent. This is expect-
ed because the range over which the data is self-consistent represents
only a small temperature change and thus a small possible change in the
reference beam position,

The turbidity valuea in this self-consistent range may then be
adjusted as described in Chapter III to determine whether the curve
might best be fit with some adjusted baseline. There was no indication
that adjustments to the baseline improved the fit for either of the
three substances investigated.

In addition, the errors determined for the isothermal compress-
ibility may be checked by attempting to use values of the compressibil-
ity outside of the error bounds to calculate the correlation lengths.
This was done for the N20 and resulted in confirmation that values out-
side of the error bounds result In incorrect values for the correlation
lengths, either too large or too small, relative to the observed total

light scattered.
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Determination ofHT

Data Analysis for N20

Two sets of turbidity va AT data, shown in Figure 8, are used
in the analysis of the N20 data. The same baseline is used in both
cases, but the relative transmission of the optical components is dif-
ferent in each case, accounting for the difference in the two data
sets. The data sets are analyzed separately and together; the results
of these analyses are in agreement and are consistent with the accuracy
expected from the experiment, as well as with the errors calculated in
fitting the data.

N,0 Data Set 1. Critical exponents and errors calculated for

this data set for various ranges of temperature are plotted in Figure 9.
The data from 0.2° ¢ to 2° C from the critical temperature is apparently
self~consistent, judging from the approximate constant error for smaller
ranges and the rapidly increasing error outside this range. There is,
however, a steady and significant increase in the calculated exponent
within this range as the maximum AT is reduced, increasing fromy =

1.07 toy = 1.16 for the smallest range considered. Considering the
data without any adjustments, it is reasonable to expect that the data
closest to the critical peoint, which has the smallest relative error,
would give the best determination of v. This may be checked by adjust-
ing the data in the range 0.2 < AT < 2.0 for best fit. When this is

done, a value for vy

y = 1.175 = .01l
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18 calculated. A range with a slightly higher minimum AT gives a value
y=1.16 + ,02; a slightly smaller range results in vy = 1.19 £ 0.013,
The smaller ranges have larger errors than the total range 0.2 < 4T

< 2,0, as expected, because the greater range should give a better fit
due to the larger number of peints. The adjustments required for each
range, however, are of about the same amount, approximately - 0,002
cm-l; consequently, the beat fit value for the complete range is con=-
sidered to be the best value. The values for y found by the analysis

of the first N20 data set, then, are

y = 1.16 = ,02 unadjusted near Tc

1.175 £ .011 adjusted best fit value

2
13

N20 Data Set 2. The second data set uged in the analysis of

the turbidity-AT data for the N20 consilsts of a considerably larger

number of data points than the first set, resulting in smaller errors.
The turbidity values measured for this set appear to be slightly small-
er than the corresponding values measured for the first set, indicating
that some different correction might be needed; and this is the case.
The data for this second set is checked by varying the range as
in the first data set with the results shown in Figure 9. The data
appears to be self-consistent for the range 0.2 < AT < 1.5, with the
values clgse to the critical temperature best fit with y = 1.180 £
.006, for which the error is smallegt. Considering the entire range

for which the data is conaidered to be gelf-consistent, a best fit is

1

obtalned with the addition of approximately 0.0008 cm = to the measured
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values of the turbidity, resulting in a value for vy of 1,160 * ,005,
a value slightly smaller than that obtained by consldering only values
of AT close to the critical temperature. So the two values determined

are

<
]

1.180 + .006 unad justed near Tc

1.160 £ .005 adjusted best fit value

<
il

The numbers are not in perfect agreement, considering the
errors calculated, but the difference 1s small.

N20 Data--Both Sets. A similar check of the effects of range

variation with the combined data from both sets is alsc plotted in
Figure 9. This check ylelds a minimum error with the range 0.2 < AT

< 0.6° C and a corresponding value for vy,
y = 1.176 + .008

No significant decrease in the error is found by varying the measured
values of turbidity.

Because this exponent value is determined using data from both
sets, it is considered to be the most accurately determined; in addi-
tion, the value lies between the values calculated for each of the
separate data sets. Consequently, this value is taken as the value for
v for the Nzo. The range of values calculated, however, indicates
that the error bounds should be extended to include the value atwy=
1.16, and so the actual error in the determination 1s # 0.015. 1Im

addition, the uncertainty in the determination of the critical temper-~
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ature leads to a further uncertainty in the exponent of approximately

0.01. The total uncertainty in the exponent, then, 1s * 0,025 and the

best value calculated for v for the NZO is

vy = 1.176 £ 025 .

The fitting of the data that produced the above value of the exponent

~1
produces a value of (0.01455 * 0,0006) cm for the turbidity coeffi-

cient, and so the turbidity may be written
T = (.0146 + ,0006) AT Y (eml); y = 1.176 £ .025 .

Compressibility Calculation from Turbidity. On the basis of the

measured critical index of refraction and the measured critical density,
the Lorentz-Lorenz formula may be used to calculate the (%ﬁ) for the
NZO' The quantity C from Equation 2-38 may then be calculated, and

the coefficient describing the compressibility then determined from

the measured values of turbidity and the calculated C. This introduces
approximately another 2% error into the coefficient calculation, al-
though not into the calculation for the expenent,

The measured values are:
p = .4b g/cm3
DE = 574 cm /g
A = 633 mm

kT, = 4.28 x 1074 ergs
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from which C may be determined;
2 2
c=% ﬂ(pbj'p) T kr = 151.6 x 107 atm/cm
3 o} A 4 e
o

The coefficient describing the behavior of the isothermal compressi-

bility as a function of AT is then

(.959 + ,07) atm™ L

Kp expressed as a function of AT may be written

%o = (.96 % .07) aT Yatm™}; y = 1.176 £ .025 4-2

or, expressed in terms of the reduced temperature,
-3 Yaep!
KT = (l.14 = .07) 10 ™ ¢ fatm™*; y = 1.176 + .025 4-3

This value of the compressibility, together with the unadjusted meas-
ured values for turbidity is then used to calculate the correlation
length for the N20 as a function of temperature.

Data Analysis for CC1F

3
The turbidity~-AT data for CClF3 ig shown in Figure 10; the re-

sults of the analysis by means of a variation in the range similar to

that detailed earlier for N,Q are shown in Figure 1ll. This analysis

indicates that the data 1s congistent for the range 0.2 < AT < 1.0,

since for this range and for all smaller ranges the fitted value for y
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is approximately the same and the errors approximately constant, while
there are rapidly increasing errors outslde this range. The value and
error for ¥ calculated on this basis are ¥ = 1.120 * 0.003. When the
turbidity values in the range for which the data 1s self-consistent are
adjusted in order to aobtain a best fit, the best fit is found to be
given by the unadjusted baseline with v the same value as above. In
addition the slope and thus the exponent were the same for all of the

smaller ranges considered. It was found, however, that a shift in the

exponent by % 0.005 had no significant effect on the error; the actual
uncertainty then is the sum of the above errors, * 0.008, The values

calculated for y then are the same:

1.120 + ,003 unadjusted baseline

<&
I

1.120 £ .008 best fit

2
]

Comparison of the range variation data with Figure 10 indicates that

at the point where the data becomes inconsistent, there is an abrupt
change in the slope of the line. The possibility that this change in
slope is due to a change in the exponent attributable to the dipole-
dipole interaction has been investigated, but the effect has been found
to be due to experimental incongsistencies between various portlons of
the data, First, an effect due to the dipele-dipole interaction should
result in a value for ¥ close to 1.0, and the value 1.12 1s relatively
far from 1.0. Second, analysis of the data for AT > 1.0 ¢ indicates
that the curve can be fit with an exponent in the range 1.1 - 1.6 (but

with considerably larger errors than for AT < 1.0° C) with the addition
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of approximately 0.0028 cmﬁl to the meagured values for the turbidity,
shown by the x's in Figure 10. The large difference in the adjustment
needed for the two portlons indicates that there is an experimental in-
consistency between the two portions of the data curve. Third, attempts
have been made to fit the entire curve with one adjustment over the
entire temperature range investigated. When this is done, however, the
calculated value of y shows a significant increase as the critical tem~
perature is approached, a behavior contrary“to that expected on the
basis of a dipole-dipole interaction. In addition, as will be seen in
the next section, there is no similar effect observed with the CH3F.
Since the dipcle moment of the CHBF 1s some three times the size of

the dipole moment of CClF3, the absence of such an effect in the CH3F
confirms that the change in slope is not due to the effects of the di-
pole-dipole interaction.

Compressibility Calculations from Turbidity. With the above

fitted value for the exponent, the turbidity for CClF3 as a function of

AT is best fit by the expression

s = (1.633 £ .010) x 1072 AT™Y (ecm™") y = 1.120 # .018

The errors are congidered to be the larger of the two errors calculated
earlier. The constant ¢ is calculated as for the NZO’ with an error of

approximately 2% as before. For the CClF3

n_ = 1.0996
c

p, = +57 g/cm®
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gﬁ = ,392 cm3/gm

and
2 2

C = %n (,;%5-0) fg KT, = 106.4 x 107*  atm/cm

0

Analyzing as for the NZO’ the formula for Ky is
% = (1.54 & .04) AT Yaen™l; y = 1.120 £ .025 b4

Expressed in terms of the reduced temperature this becomes

1

Ky = (257 % .07 x 107 ¢ Vatn™l; y = 1,120 £ .025 4-5

Data Analysis for CH3F

The data analysis procedure for the CH3F is the same as for the

other flulds investigated. The transmission of the filled cell in the
absence of scattering is calculated as described in Chapter II from the
measured baseline, but since the baseline is measured using uncoated
windows and the CHBF cell windows are coated with the silicone polymer,
the calculation for the difference in transmission between filled and
empty cell must take the polymer coating into account, This is done,

and turbidity-AT data for the CH.F is shown in Figure 12 with the re-~

3

sults of range variation shown in Figure 13, Although the errors cal-

culated for the CH3F are considerably larger than those for the other

two fluids, the data appears self-consistent for the range-Z0 C < AT
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< .6° C. The error is smallest for the range 2% ¢ < AT < .55° C for
which range the value of the expoment y calculated is 4 = 1.1534 + 0.024.
There is a slight apparent increase as the range is further decreased,
but this is accompanied by an increase in the error. If the points in
the range for which the error is least are weighted proportional to the
turbidity, the calculated value of the exponent is increased to y = 1l.l6
with no significant change in the error. When attempts are made to ad-
just the turbidity to give a best fit, there is a general decrease in
the error with the addition of some constant value to the measured val-
ues of turbidity. For the range in which the error is smallest, weighted
values of the turbidity give a best fit of 4 = 1.1l while the non-weight-
ed data shows no significant changes on adjustment., Other ranges like-
wise show no significant changes, tending to contradict the indications
of a slight increase in the slope as the range is decreased; in addi-
tion, checks made by calculating the correlation lengths for various
values of vy indicate that the errors are slightly less with the lower
value of ¥. In the absence of consistent indications that the value of
vy should be higher or lower than the measured value for which the error
is least, this measured value is taken as the actual value of vy for
CH3F. Error bounds of # 0.05 should be large enough to reflect the un-
certainty in the actual measurement; including, for example, the value
vy = 1,11. When the uncertainty in the exponent due to the uncertainty

in the determination of the critical temperature is added, the actual

value of v, with errors, is

y = 1.15 + .06
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Compressibility Calculation from Turbidity. Considering the un-

certainties in the fitting of the CH3F data, the turbidity is given by

= (.0130 + ,0015) AT Y

T =
vy = 1.15 £ .06
For CH_F
or 3
n = 1.0904
C
o, = »306
Q¢ . 6564
op
and

BN A ot -4
C = \‘5“) <pbp> . A kTC = 89,6 x 10 atm/cm ,
o
The compressibility as a function of AT is

%o = (1,45 = .16) AT Vaem™!; y = 1.15 + .06 4-6

which when expressed as a function of the reduced temperature is

%y = (1.92 % .20) x 1070 ¢ ™Voegls y = 1.15 £ .06. 4-7

Experimental Determination of §, and v

Correlation lengths are calculated for the fluids investigated

in this series of experiments followilng the procedures discussed in
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Chapter I1; the results are shown in Figure l4. These values of § vs

AT are then fit to an equation of the form

g =g, o1 "

using the LSQG program detailed earlier for various ranges of AT = .2 C
for the combined data for all substances and for the NZO’ CC1F3, and
CH3F data separagely. There is considerable scatter in the data lead-
ing to relatively large errors in the calculation of the fitting param-
eters describing the behavior of the correlation length; these uncer-
tainties are due to the fact that two relatively large numbers, each
with associated errors, are subtracted, resulting in a small number
with relatively large error. Consldering only the uncertainties in the
measurement of the light intensities leads to an uncertainty in the
measured correlation lengths of % 200 A. Possible uncertainties in the
fitting of the compressibility lead to additional uncertainties in the
measured fit for the §-AT data.

Figure 14 indicates, however, that there are no major differences
in the measured correlation lengths for the three fluids., In particular,
there is no indication from the graph that the differing dipole moments
of these three fluids have any effect on the measured correlation
lengths. This is confirmed by analysis that shows that the uncertain-
ties inveolved in fitting the data for each substance are larger than

the differences calculated for the various fluids.

Combined Data for Three Fluids

The combined correlation length-AT data for the N,0, CClF,, and
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CH3F is fitted with the LSQG program for .006° ¢ < AT < 0.2° ¢ and for Var-
ious ranges having a smaller maximum AT; the results are plotted in Fig-
vre 15, There is a large decrease in the error and in the calculated
exponent when the maximum AT is reduced from .20 to .16, and only a

slight change in the error for smaller ranges; consequently the range

AT < .16° C1is taken as the range in which the data appears self-con-
sistent. The minimum error occurs for the range with maximum AT < 0.11,

and for this range, the correlation length~AT data appears best fit by

(180 + 20) aT Y &

un
]

<
i

= (.80 £ .03) 4-8

The fit for various ranges indicates that there is a general decrease
in the measured exponent V as the range is decreased by choosing the
maximum AT closer to the eritical point. This decrease in v is accom-
panied by an increase in the coefficient. Calculation of fitting param-
eters for the substances separately shows that this same general behav-
ior occurs, so comparison of the exponents and coefficients for various
substances should be made using the same range of data in each case.

Comparison of 50, v for NZO’ CCl1F CH3F

3’
CClF3 has the largest minimum AT and thus the smallest range

measured, so the range determined for CClF, will determine the ranges

3
used for the other substances. Variation of the CClF3 range as for the
above combined data indicates that there is a large decrease in the er-~

ror and change in v for the range AT < 0.11; so this range is taken as

the self-consistent range for the CC1F3. Fitting parameters are-then
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calculated using the range 0.025 < AT < 0.11 in each case. The results

are shown below:

Combined data-all substances

€ = (200 + 40) ar (70 % 07D ‘oo
CCLF,

E = (200 £ 25) AT -(.77 £ .04) ie10
CH_F

€ = (250 £ 70) ar ~¢-70 % -09) e
Nzo-both sets

+ 50
E = (125 - 40) ar ~¢-90 & .13) iots

The values calculated for Vv are consistent when error bounds are taken
intec account, but the V for N20 is slightly greater than for the other
two substances. This discrepancy 1s removed when the two sets of N20

data are analyzed separately. Analysis shows!

N.O-Data Set 1

2
+ 20
g = (48 - 14) ar “He17E A1) 4-13
N20—Data Set 2
+ 60

& and v calculated for Data Set 2 are in very close agreement with the

other values calculated; the NZO data set 1 differs from the other set

and from the other substances considered by a considerably larger
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amount. This difference is probably due to the fitting procedure used,
in which both sets are used in determining the best fit parameters for
KI. Since there are considerably more data points in set 2 than in set
1, the fitting parameters are primarily determined by data set 2. Slight
differences in the sets, in particular a difference in the calculated
coefficient, account for the differences in the calculated v . Since

the fitting is determined primarily by data set 2, it is thought that
data set 2 offers the best comparison with the other substances, in
which case there 1s no longer a significant difference between the N20
data and that of the other substances.

The only remaining difference is in the CH,F data, and this dif-

3
ference in exponent is less than the error calculated. As a further
check, the v is calculated for v = l.1l, a number that differs from the
best value of y by approximately the error bound calculated for the
CH3F yv. When this is done, the v calculated is v = (.62 * 0,09, So
evidently the uncertainty in the determination of y accounts for an un-
certainty in v of approximately % 0.08 in addition to the errors calcu-
lated on the basis of the standard deviation. So the total uncertainty
is considerably larger than the difference between the CHBF and the
other substances, leading to the conclusion that the difference is not

significant.

General Discussion of Correlation Length Measurements

Comparison of Equations 4-9, 4-10, 4-11, and 4-12 indicates that
when the range is held constant, there are no significant differences in

correlation length parameters calculated for the three fluids investi-
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gated. The wvalues of §0 and v are, however, larger than values reported
for other substance520’53. Limitation of data to ranges close to the
critical point tends to result in lower values of VvV with larger coeffi-
cients, and with larger errors on each; extending the range to larger
AT results in lower values for the coefficient with larger values of Vv,
together with much larger errors. In addition, when turbidity wvalues
for AT > 0.2° are included, the uncertainties in the measurement of the
turbidity result in some measured values of turbidity being slightly
larger than that calculated on the basis of the best fit parameters for
the compressibility. This results in negative values for o in Equatiomn
2-32, causing a breakdown in the calculation of the correlation length.

Because of the changes in the parameters calculated for various
ranges, and because of discrepancies between this data and other re-
ported values for the correlation length, it is thought that there are
possible systematic errors in the data close to the critical point; but
the data for each substance 1s taken using the same procedures, and any
differences between the varicus substances are expected to result in
differences in the calculated fitting parameters for these substamnces.
There are no significant differences between the substances, with the
slight differences that exist considerably smaller than the uncertainty
in the fitting of the individual substances.

Discussion of Compressibility Results
and Comparison with QOther Experiments

The experimental measurements of I' and y describing the behavior

of KT in the eritical region for the three fluids investigated in this
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series of experiments are given in Equations 4-3, 4-5, and 4-7. These
values are alsc given in Table 7, together with other determinations of

ceritical exponents for N_O, CClF3 and CO

2 2°

These measurements of)(T in the critical region are the first

reported for N20 and CHBF' Although there are no reported measurements

for NZO' this molecule is similar to CO, in its physical properties:

2

the shape 1s the same, the molecular weight is the same, the critical

parameters Po? Tc’ P are similar, and the one critical exponent that
c

has been measured for both, B, 1s the same. The small dipole moment of

N20 would be expected to have either a small or no effect on the meas-

ured critical exponents, and so comparison of N_ O data of this experi-

2
ment with other 002 data can be made. KT for CO2 in the critical re-
glon has been measured using light scattering techniques by Lunacek and

0 7
Cannell2 and by White and Maccabe . Their measured values are (in terms

of the units used in this series of experiments):

Lunacek and Cannell

= (.785 % .047) x 107> 7Y

-
!

1.219 + .01 atm

-
1l

White and Maccabe

(.986 + .08) x 107> ¢°¥

¥\

y=1.17 £ .02 atn™"

These values differ by more than the error reported for each ex-

periment. However, the data of White and Maccabe seems better than
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}‘T(ri Y)’ ﬁs o for N20,
co CClF, and CH_F,

2’ 3
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-1

HT(atm ) p o

r Y
This experiment 1.14 x 10-3 1.176 .13%
CO2
Straubl7 20 -3 345
Lunacek & Cannell .785 x 10_3 1.219 .09%
White & MaccTBe7 .986 x 10 1.17 L13%
Lipa et. al. .12
CCIF3
Straub17 -3 .354
This experiment 2,56 x 10_3 1.12 .17
Schoenes .764 x 10 1.275 .017%
CH3F
This experiment 1.92 x 10-3 1.15

*Value for o predicted from experimental measurement of vy, Straub's
measurement of B, and scaling laws.
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that of Lunacek and Cannell in terms of the amount of data considered,
the greater range of data (by approximately two decades) and correction
terms considered. As seen in Table 7, the value for HT for NZO is in
excellent agreement with that of White and Mccabe and in approximate
agreement with that of Lunacek and Cannell. The coefficient for the
compressibility for the N20 1s slightly larger than that for 002, indi-
cating a possibly greater correlation range for a given AT.

There has been one other measurement of KT for CClFB, that of
Schoenesﬁ. There is serious disagreement between this experimental

measurement and that of Schoenes who feports a value of

(.764 + .05) x 1073 Y

1l

¥y

vy = 1.275 + .04

The reason for this lack of agreement is not known. The data of this
experiment is generally conslstent with measurements of Straub, who
measured B for N20 and CClF3 and found that g for the CClF3 is slightly
closer to the classical value, but by an amount approximately equal to
the error in the experiment. There is a greater relative change in this
data for ¥y than in Straub's data for g.

No other experimental measurements have been made on CH3F in the
critical region, but in terms of the size of the coefficient the CH3F
data from this experiment is consistent with the data for CClF3 from

this experiment,

Comparison of Three Fluids

The exponents calculated for the CClF3 and the CH3F are somewhat
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lower than that calculated for the N20. CClF3 is apparently signifi-
cantly lower (although when errors of both are considered, the error

bounds do not exclude approximate equality), while the CH_F is only

3
slightly lower, with an uncertainty that includes the values of y meas-
ured for each of the other substances.

Predictions from Scaling l.aws

The scaling lawo + 2P + y = 2, together with the measured val-

ues for P and v may be used to predict values for the specific heat ex-

ponent ¢ for CClF3 and N0, nelther of which has been measured. The

2

values should be:

NZO: a= .13

CClF,: o .17

3

These values, and o's predicted on the basis of other experiments, as
well as an experimental wvalue for « for CO2 are also shown in Table 7.

This value predicted for N,0 is consistent with the prediction
of the Ising model (¢ = .125) and the experimental value for 002 (o =

19
.12) . The o predicted for CClF3 on the basis of this experiment is

slightly higher than that predicted for N20; the value predicted on the

basis of Schoenes's data is considerably lower.

Conclusions

¥ and Vv have been measured for three fluids, N_O, CC1F3, and

2

CH,F, with the y and v data for N20 and CH_F the first reported for

3 3

these substances. The data for vy for N20 is in excellent agreement
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with that for CO2 as expected, but there is disagreement with a reported
measurement for CClF3. While the data does not exclude the possibility
that y is approximately the same for all substances, there are indica-
tions that there are differences among the molecules.

Comparison with other non-fluid systems near their critical
points indicates that the effect of a dipole-dipole long range inter-
action 1s the changing of the critical exponents from those that are
characteristic of Ising-like systems to those characteristic of classi-
cal systems with long range forces. If dipole effects are very strong,
as in ferroelectric systems, the exponents have classical values
throughout the critical region. For systems in which the long range
force is much weaker, as in ferromagnetic systems with magnetic dipole
interactions, the critical behavior is primarily determined by the short
range forces; but for temperatures very close to the critical tempera-
ture, the long range force may be expected to cause a change in the ex-
ponent from an Ising-like value to omne closer to the classical wvalue.

For the fluids investigated, CClF3 has the smallest value for v
{closest to the classical wvalue) while NZO is close to values measured
for non-polar fluids, and CH3F has some intermediate value. This
amount of deviation from the measured values for non-polar substances is
not what would be expected if the effect were due to a dipole-dipole
interaction; since the CH4F is much more highly polar (by a factor of
three) than the CC1F3, an effect due to a dipolar interaction would be
expected to be much more important for the CH_ F. But this is not the

3

case, leading to the conclusion that there 1s no evidence that the di-
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pole moment has any effect on the measured values of v.

Consideration of correlation length data indicates that, al-
though the data is not consistent with other reported values, there is
general agreement in the correlation lengths and exponents calculated
for the three fluids., The exponent calculated for CH3F, the most polar,
is slightly lower (nearer the classical value} than the others, but the
difference is considerably less than the uncertainty in the fitting of
the CH3F data and is not considered to be significant. Since the cor-
relation length data analyzed extends to AT = 0.026° C, and no signifi-
cant variations attributable to the dipole-dipole interaction have
been observed, the conclusion is that within the range of data consid-
ered (AT > 0,026° C,e > 9 x 10-5) the dipole interaction does not af-
fect the measured critical exponents.

There does, however, appear to be a slight variation in y; and
this variation is consistent with differences in the shapes of the mol-
ecules. N20 is a linear molecule having the same shape as 002; these
two fluids also have the same measured value fory . CClFB, with an
apparent lower value for v, is a molecule with C3v symmetry and approx-
imately tetrahedral shape. CH3F has a similar shape, but the atoms
off the symmetry axis are hydrogen atoms rather than fluorine atoms.
Since in terms of mass distribution the CH3F molecule is intermediate

between the CClF, molecule and the N20 molecule, an exponent measure-

3
ment intermediate between those for N20 and CClF3 would be consistent
with an effect due to the molecular shapes. There is indication that

this is the case, but the errors assoclated with the variocus measure-
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ments do not allow this conclusion unequivocally. Further work om more
complex molecules with different internal degrees of freedom and differ-
ent symmetries to determine whether these do have a real effect on the
measured exponents for flulds seems warranted.

Turbidity measurements are a useful way of measuring the criti-
cal behavior of fluids. Conceptually, they are extremely simple, but
great care must be taken to avoid changes in intensity due to causes
other than the changes in the fluid inside the cell. Two major improve-
ments would be the avoldance of having a light beam passing through the
0il bath that provides temperature control and the mounting of the com-
plete optical system so that any one part 1s immovable with respect to
the complete system, avoiding problems due to possible misalignment of
components. The use of an Argon ion laser would provide greater scat-
tering efficiency due to the l/ho4 dependence of the scattering. This
would increase the total amount of light scattered out of the beam, in-
creasing the measured turbidity for a given AT and reducing the relative

errors.
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APPENDIX A
CALCULATION OF STRESS ON FUSED QUARTZ WINDOWS

The maximum stress on any circular plate, uniformly loaded, sup-

ported uniformly around the edges is given by the following formula

2
WR . (1 4 m)

stress =
2
t

[+ 3 [}

m is Poisson's ratio, which for quartz is .16. W is the pressure in
psi; R is the radius of the unsupported area, and t is the thickness of
the plate. The units of stress are psi. For the quartz windows used
in this experiment R is %" and the working pressure is 1,200 psi, so

the above equation may be written

s = =
tress 2

356
t
For a thickness of %" the maximum stress is approximately 5,700 psi in
the ideal case. Because of possible lrregularities in the supporting
shoulder or in the epoxy with which the window is attached the actual

stress may be higher, possibly by 50% or more, so in any design a
safety factor must be taken inte account. The ultimate tensile
strength of the quartz is 7,000 psiSa; thus there is danger of failure
if windows of this thickness are used. This indeed occurred, For %"

windows the predicted stress is 1,400 psi, much less than the tensile

strength of the quartz, even when safety factors are taken into account.
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No failure at this thickness would be expected, and none of the %" win-

dows employed have falled.



APPENDIX B
DERIVATION OF EQUALITY OF PHASE VOLUMES AT CRITICAL FPOINT

The volumes of the sample cell and of the liquid and the gas
phases below the critical temperature are given by V, Vi, and VG, with
V= VL + VG. p 1s the average number density in the sample cell, with
the number density of the gas and the liquid phases given by p, and
P - The total number of molecules present is given by N, with N = pv.
Similar equations describe the number of molecules present in each of
the two phases:

No= o Vo5 Ng = pglg

The total number of molecules present is the sum of the number of mole-

cules in each phase

N=N +N

which may be written

=z
1

PLVL ¥ f6Ye

VL ¥ PV - V)

The volume of the liquid phase may be calculated in terms of these

quantities
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L (o - opg) ] o, - 0g) i (o, - pg)

V(p - pG)
- (pL - pG)

with the relative volume given by

L _P e

Voo, TR

According to the definition of the order parameter

(py, = p) = (p - pg) = BeP

close to 1ts critical peint. Then

P~ P~ BGE

PL = P Beﬁ
with

P, = fg = ZBGE

the relative volume then becomes

- P .
L P tBE Pt e pf
v N + N

2B ep 2B ss 23(‘:ﬁ 2B eﬁ
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which reduces to

when p = P~ The volumes of the two phases are then equal to the crit-

ical point when the average density inside the cell is equal at the

critical density.
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APPENDIX C

Computer Program LSQG for Generalized Least Squares Fit

PARAAETER ML=200,MM=10
CIMENSTON IX[MM)rXXlMW)rXI“;g“”)uY(NElrZ(VFJoFF(MU:MM)vFGMM)rC(ME)
DATA Z/vExl./s
NAMELIST/ZRD/MHE»CoIXe KoY ZoLLX
LO0 FORMATA/Z/Y 530 CoNErIAeXoYrloLXY)
101 FORMAT /Y  19ADEQUATE NATA ')
102 FORMATU /11X e YCHI®*2/ Ny GL1.4//7TXe ' [teAXs tPARY +8YX, 'ERR" /
v (I8,3ve2611.4))
L03 FORMAT (/7 /1 IHPUT DATA /)
A09 FORMAT(TB»3£,15G11,4))
CALL LPKY($1l)
1 WRITE(R»100) .
READ (S ,RD(ERF=1/ENNZ99)
D0 3 IzleMM
IFUIXUT4EQe0) 6O TO 3
U0 2 [Fz3.NL
2 X({IE+I1=2 X (IE=L1rI)=XITE~2»1)
3 IXtIy=o
DO 4 I=1rMM
00 4 I1=1.MM
4 FF(I»1t)=0,

GG=0,
NHZ0
<O 8 IF=1l.NE
00 5 Izi/MM

S XXi1)=X11E.1)
CALL FMSICeXXrY{IE} s Z(TE) s MF sF 4G eH)
IFIHLF.0.) GO TO 8
Ni1=MF+1
g0 T I=Ll+8F
vl 6 I1=1WNF

& FFUIVIVISFFUL»I1)+HF(T)RF(I1)

7 FFULPNLISFFUTI o ML) +HeF (T) =G
GOZGO+H=Gx%2 -

B NM=NH+t
LO 9 iI=1N1
80 9 I1=1,1

9 FRIL,I1ISFFLILLI)
K=l
CALL IMVMIMM,NF,FF KD}
IFIK,E0,0) GO TO 10
WRITE (Rel101)
0 T 13

10 U0 1) T=1.MF

11 GGRGG=FFINLyI)=FF{I+N1)
G6=6u/MH
DO 12 1=1.NF

12 FFINLyTISSART (ARSIFE (I T} %30))
WRI T e 10206 T arF LT 1Y efFINL 1) ) o I=1,MF)

13 IFILX,Fu.D) O TO 1
WRITL LR 1OM? '
U0 14 TL=1.Nj

1 wRITE(Ar 08 TE (XTI e IV e I=te LX) Y(IE) e 2(1IF) ~
GO Tu 1t

a9 N

ENu ONSITE PRINTQUT ON DECEMRER 18y 1973 AT 21:17i44
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