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SUMMARY

The third-order elastic constants of a solid represent a mea-
sure of the anharmonic properties of that material. In particular
these constants appear as coefficients in the theoretical expressions
for quantities such as thermal expansion and ultrasonic wave attenuation.
Heretofore, experimental measurements of third-order elastic constants
have, for the most part, been made by determining the variation of

acoustic wave velocity as a function of hydrostatic pressure or uni-

axial stress. However, some recent determinations of the third-order
elastic constants have utilized, in addition, measurements of gecond
harmonic generation from initially sinusoldal, finite amplitude, longi-
tudinal ultrasonic waves. The purpose of this research is to extend
this second harmonic generation technique to include the use of trans-
verse excitations, and to determine the full set of third-order elastic
constants for single crystal sodium chloride.

Absolute displacement amplitudes were measured in three crystals
at both the fundamental and second harmoniec frequencies for longitu-
dinal waves propagating in either the [100], [110], or [111] crys-
tallographic direction. The actual displacement amplitudes were
determined using the capacitance microphone technique, which 1s most
suitable for this purpose. From these three samples one obtains
numeric values for three linearly independent combinations of third-
order elastic constants for sodium chloride.

Rather than obtain additional combinations of third-crder elastic
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constants by measuring longitudinal displacements in still other crys-~
tallographic directions, or resort to the usual hydrostatic pressure

or uniaxial stress techniques, the technique of second harmonic genera-
tion was used again, but utilizing transverse acoustic waves. Since
the capacitance miciophone is incapable of measuring transverse dis-
placements, a magnetic detection technique was perfected, which allowed
displacement measurements for either longitudinal or transverse acous-
tic beams. The accuracy of this magnetic detection system was verified
by repeating those measurements made using longitudinal vibrations pro-
pagating along the [100] and [111] directions.

Thus, two additional linear combinations of third-order elastic
constants were obtained uéing this ﬁechniqﬁe; one from waves polarized
in the [211] direction propagating along the [111] direction, and the
other from waves pclarized in the [ii5] direction propagating aleng the
{221] direction. The five linear combinations of elastic constants so
obtained are the maximum number allowable when using the technigue of

second harmonic generatiocn.

In order to determine values for the six distinet third-order
elastic constants for a cubic structure such as sodium chloride, a
sixth relationship among the elastic constants is reqﬁired, Theoretical
work has suggested that the Cauchy relation Clhh = Ch56 remains true
even at elevated temperatures. With the assumption of this relation-
ship, the six third-order elastic constants for sodium chloride were

determined to have the values C =0.79, Clhh = +0.19,

11 = 97 G130 =
- _ _ : . 12 2
Cieg = -0.83, C123 = +0.90, and Ch56 = +0.19 in units of 10~< dynes/cm©




CHAFTER 1
INTRODUCTION

In 1676 Hooke (1) published the famous law which bears his name
in the anagram ceiiinossstfuv. Reconstituted, these letiers form the
words ut tensio sic vis, that is, "The power of any spring is in the
same proportion with the tension thereof." In contemporary language
this statement takes the succinet form, "Stress is proportional to
strain." However, this linear relationship fails to explain such well
known phencmena as non-metallic thermal conductivity, thermal expansion
{2), the temperature dependence of the second-order elastic constants
(3), attenuation of ultrasconic waves in solids {4), and the interaction
of acoustic and thermal phonons (5). The finite elastic theories of
recent years endeavor to explain these deviations from the predictions
of Hoocke's law.

In the formalism of the microscoplc theory of elasticity, the
elastic potential energy density U of a crystal is expanded as a Taylor

series about the equilibrium configuration of the lattice in the form

5 3
1 1 .
U=3 Z ijrg 3% T 3T L sk 515%g%m t T
i,J,k, 4=1 i,d,k, 4ymyn=1 (1)

where the £'s are displacements from atomic eguilibrium positions and



the c¢'s are generally referred to as the microscopic coupling parameters.

These coupling parametei’s are then just the spatial derivatives of tlie
elastic potential energy density U, referred to the equilibrium posi-
tions. The zeroth-order term in this expansion is set equal to zero,
and the first-order term vanishes, as the expansion is made about the
equilibrium configuration. If one knew these microscoplc coupling
parameters, all the transpert properties of the crystal could then be
determined. Measuring these paramefers requires tﬁe generation of
acoustic waves with wavelengths cOmﬁarable to the interatdmic spacings.
It is not experimentally possible at present, however, to generate
ultrasonic waves having the requisite high frequedcies.

For the wavelength range currently available, it is permissible
to treat the solid as a continuum which has a constant mass density in
the unstrained state. The elastic potential energy density U is then

expanded in a Taylor series in the strain tensor elements in the form

> 3
_ 2N 1 Z
U=53 Z CisnaMiiMes * 31 ) teprn M3 e glham * 705 (B)
i’vj,k" -f’:l i,j,k’f;,m,n=l

where the strain tensor elements T are defined in Equation (3) in
Chapter IT, and the C's are the elastic constants. As before, the
zeroth-order term is set equal to zero, as this term represents the
energy density of the solid at equilibrium, which is independent of the
strain. Also, the first-order term vanishes if the underformed crystal
state invelves no external forees.

Obviocusly the elastic constants are not as fundamental as the

microscopic coupling parameters, since the.latiter are directly derivable




from the interatomic potential-energy of the crystal. However, using
the various symmetry properties of a lattice structure, one can estab-
lish a relationship between the élagtic constants and the microscopic
coupling parameters. In particular, for the special case of nearest
neighbor forces in a face-centered cubic lattice, Pfleiderer (6) and
Coldwell-Horsfall (7) express the second- and third-order coupling
paramefers in terms of the second- and third-order elastic constants.
Explicit relations of this type were also obtained by Coldwell-Horsfall
(7) for body-centered cubic lattices using nearest and next-nearest
neighbor interactions. Thus, in this rather indirect approach, one can
determine information about the microscopic level (interatomic potential
energy) by measuring macroscopic quantities (elastic constants).

If the elastic potential energy density is expressed in terms
which are quadratic in the strain elements oniy, and linear elastic
theory is used, a linear relationship between stress and sfrain results,
Hooke's law. This procedure yields the so-called harmonic approximation
and is quite sufficient to describe many of the physical properties of
solids. To explain anharmonie effects, one must, at the least, retain
third-order terms in the strain tensor elements in the expressicn for
the elastic potential energy density. Thus, the determination of third-
order elastic constants, to which end this work is directed, enables
cne to write down an explicit expression for the potential energy den-
sity function about an atomie site in a crystal structure. One can
then hope to better understand those effects for which a simpler Hookean

explanation is insufficient.




Historical Background

Cauchy (8) had by 1822 formulated much of the linear theory of
elasticity. A non-linear theory was establighed in tensor notatlon by
Brillouin ($) in 1925, Murnaghan (10) reformulated the theory in the
matrix notation, which will be used here. Murnaghan's theory of finite
strains was developed by Birch (11) for media of cubiec symmetry, in-
cluding terms to third order in the st£ain elements in the elastic po=-
tential energy density. Hearmon {12, 13) summarized previous work in
the area and enumerated the dlstinct, independent second- and third-
order elastic constants for all erystal classes. Brugger (14) presented
general thermodynamic definitions for the higher order elastic constants
in 1964 in tensor and in engineering notation. Because Brugger's
notation will be adopted here, the relationships between this notation
and that of Birch is indicated in Table 1.

In recent years much work hags been done in theoretical calcua-
lations of the elastic constants for various materials. Ghate (15) has
estimated the third-order elastic constants for NaCl-type and CsCl-type
crystals using the Born model of ionic solids. Short-range interactions
were included up to next-nearest neighbors. The linear temperature
dependence of the elastic constants was also determined, in the high-
temperature limit. Lincoln,AKoliwad, and Ghate (16) calculated the
second- and third-order elastic constants for Al, Cu, Ag, Au, Na, and
K from a central-force model which was based on an interatomic potential
function expressed in terms of the Morse potential. The electrostatic

and repulsive ion-ion contributions to the elastic constants were

deduced by Cousins (17) for face-centered and body-centered cubic structure




metals. In 1970 Suzuki (18) calculated the elastic constants for Al
and I'b from derivatives of the bhinding energy function derived from a
local pseudo-potential,

There has also been no shortage of experimenters and experiments
to deteyrmine the magnitudes of elastic constants of different materials.
One generally categorizes these methods as hydrostatic pressure, uni-
axial stress, acoustic-optic, acoustic mixing, or second harmonic
generation techniques. It will be instructive to briefly review some
of the work done in recent years using each of these technigques for
determining elastic constants.

From the equations of motion describing an elastic medium, one
can relate the second-order elastic constants with the velocities of
acoustic waves propagating in various crystallographic directions through
the solid. If one includes anharmonic terms in the equation of motion,
the wave velocity is found to depend also on the third-order elastic
constants. In a pioneer experiment performed in 1949 Lazarus (19) made
such velocity measurements as a function of hydrostatic presure on
crystals of XC1l, NaCl, CuZn, Cu, and Al. In 1958 Daniels and Smith (20)
measured the pressure derivatives of the elastic constants of the
homologous series of metals Cu, Ag, and Au. In 1962 McSkimin and
Andreatch (21) investigated the acoustic wave velocities of high purity
germanium as a function of both pressure and temperature. Chang and
Barsch (22} in 1967 measured the pressure dependence of the elastic
constants of the cesium halides and determined three linear combinations
of fourth-order elastic constants for this group. This experimental

technique lends itself to materials which might undergo plastic strain




under relatively small stresses, ﬁhfortunately measurements using
hydrostatic pressure variations do not allow one to determine a complete
set of third-order elastic constants..

One can, however, obtain the eﬁtire set of desired constants by

&

corbining the results of hydrostatic pressure experiments with those
obtained by using the technique of change in acoustic wave velocity in
a crystal with applied uniaxial stress. Hughes and Kelly (23) measured
the transmission times of elastic pulses traveling through such ilsotropic
materials as polystyrene, iron, and Pyrex glass under uniaxial stress.
Bateman, Mason, and MeSkimin (24) in 1960 were able, for the first time,
10 determine the six third-order elastic constants of a cubic material,
germanium, using this technique. MeSkimin and Andreatch (25) in 196k
extended the number of complete sets of constants with thelr measure-
ments on silicon, and improved upon the accuracy of the data on germa-
nium. The third-order elastic constants of germanium, magnesium oxide,
and fused silica were found in 1965 by Bogardus (26) using a pulse super-
position detection apparatus to determine the ultrasonic velocity as a
funetion of both uniaxial stress and hydrostatic pressure. Thurston,
MeSkimin, and Andreatch (27) found all fourteen of the third-order elas-
tic constants of quartz in 1965. Chang (28) combined uniaxial stress
measurements for NaCl and KC1 single crystals with Lazarus' data to
determine the elastic constants for these materials. The same year Hiki
and Granato (29) found values for the third-order elastic constants of
high purity copper, silver, and gold single crystals at room temperature
and estimated the fourth-order constants. In 1968 Thomas (30) used an

interferometric technique to find the third-order constants of aluminum




single crystals. Powell and Skove (31) measured the elastic constants
of whiskers of copper, silver, and iron and fibers of fused quartz in
1968 and estimated the fourth-order canstants: for this form of quartz.
Bince the use of either hydrostatic pressure or uniaxial stress
techniques invelves the pogsibility of plastic deformation to the crys-
tal under measurement, it is of considerable interest to determine the
values of elastic constants by less poténtially destructive methods.
One such procedure utilizes the diffraction pattern produced by a mono-
chromatic light beam passing through a transparent sample perpendicular
to an initially sinuscidal ultrascnic wave propagating through the
material, as suggested by Melngailis, Maradudin, and Seeger (32) in
1963, The asymmetry in the intensity of the diffraction pattern can
then be relatedAto the third-order elastic constants of the crystal.
Measurement of one of the third-order elastic constants of NaCl was
carried out in this manner in 1964 by Parker, Kelly, and Bolef (33).
Yet a different approach to the problem utilizes the interaction
of two intersecting ultrasonic beams in a crystal, which generates a
scattered wave, KXnowing the amplitudes of both input and scattered waves
and the getmetric parameters of the experiment, one can measure a value
for linear combinations of third-order elastic constants of the crystal.
Such phonon-phonon experiments were made by Rollins (34) in 1963 and.by
Rollins, Taylor, and Todd (35) in 1964, A quantum mechanical calcu-
lation of the phonon-phonon interaction was made in 1964 by Taylor and
Rollins (36) and its application to the determination of third-order
elastic constants by Childress and Hambrick (37). In 1961 Carr (38)

used harmonic generation of microwave phonons by wave interacticn to




measure the elastic constants of MgO. Holt (39) in 1967 tabulated a
set of phonon-phonon interactionsg for cubic materials which could he
useful for measuring elastic constants. Experimental determinations
of combinations of third-order elastic constants for fused silica and
for single crystal NaCl were recently made in 1970 by Dunham and
Huntington (LO).

The technique of harmeonic generation as a means for determining
elastic constants has its roots in the observations of Mendousse {(L41)
in 1952, Cedroits and Krasil'nikov (42) in 1962, and Blackstock (43) in
1665, It was noted that originally sinusoidal acoustic waves propagating
in a nonlinear solid became distorted, and that the amount of second
harmonic thus produced could be related to the elastic constants of the
material. The amplitude of the second harmonic generated is proportional
to the sauare of the amplitude of the fundamental, to the distance
traveled in the solid, and to a non-linearity factor which is a combi-
nation of second- and third-order elastic constants. If one assumes
that the second-order constants are known, the third-order constants
can then be determined by measuring the absolute amplitudes of both the
fundamental and second harmonic acoustic waves. Breazeale and Ford (L)
showed that longitudinal waves propagating in the [100], {1103, or [111]
direction yield three linearly independent combinations of third-order
elastic constants. In 1966 Buck and Thompson (45) found those constants
and combinations of constants which, in principle, could be obtained
using this technique. Holt and Ford (46) in 1966 calculated those
combinations of third-order elastic constants which could be obtained

using acoustic waves of sgpecified polarization and propagation directions




in cubic materials. They noted that harmonic generation does not yield
all six third-order elastic constants for cubic materials, and that
the results of such experiments would have to be combined with data
obtained using some other technique to achieve such a set,

An experimental determination of third-order elastic constants
using harmonic generation was made by Gedroits and Krasil'nikov (42}
in 1962 for Al, NaCl, KC1, and LiF; by Breazeale and Thompsdn (47) in
1963 for aluminum; and by Gauster and Breazeale (48) in 1966 for
copper single crystals. These last investigators used as an acoustic
detector a capacitance microphone developed by Peters, Breazeale, and
Paré (49). Hikata, Chick, and Elbaum (50) in 1965 measured a dislo-
cation contribution to the second harmonic generation of ultrasonic
waves in aluminum single crystals. Third harmonic generation has been
used by Peters and Arnold (51) in the determination of the temperature
dependence of one of the third-order elastic constants of SrTiO3 single

crystals.

The Elastic Constants of Sodium Chloride

Because of a relatively simple lattice structure, sodium chlo-
ride has been a favorite material of those who have calculated the
third-order elastic constants from first principles. Nran'yan (52)
calculated the constants-for NaCl-type structures using the Born model
with nearest neighbor interactions, while Ghate (15) used the Born-
Mayer potential for short-range r_epulsive interactions and included
next-nearest neighbor effects. In 1969 Paul {53, 54) investigated the
effect of the three-body interaction on the third-order elastic con-

stants of the alkali halides, and included in the total potential
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function the Coulomb interaction, the overlap interaction in exponential
form, and the van der Waals interaction.

All the measurement techniques described have been utilized fo
some extent in the determination of the third-order elastic constants
of sodium chloride. Swartz (55) in 1966 used uniaxial stress data with
the results of hydrostatic pressure experiments to find a complete set
of gix constants. Ghafelehbashi and Koliwad (56) in 1970 used hydro-
static pressure to measure the pressure derivatives of the second-order
elastic constants. Uniaxial stress methods have been used extensively
by Chang (28) in 1965, by Drabble and Strathen (57) in 1967, and by
Gluyas (58) the same year, all on sodium chloride. Parker, Kelly, and
Bolef (33) used the newly developed acoustic-optic technique to cal-
culate one of the third-order elastic constants of NaCl, while Dunham
and Huntington (40) used the phonon-phonon interaction method.

Harmonie generation methods were used by Stanford and Zehner
(59) in 1966 to determine one of the third-order elastic constants for
both NaCl and KCl. Mikhailov and Shutilov (60) in 1963 suggested that
a magnetic-electric method of acoustic wave detection could be useful
in determining ultrasonic properties of solids. The innovation of both
of these approaches to the problem of determining a complete set of
third-order elastic congstants provided the impetus for the present work.
Using both the capacitance microphoﬁgyénd magnetic detector techniques,
we here obtain five linear combinations of the six sought constants for
sodiuvm chloride. With the acceptance of the validity of a sixth, theo-
retical, relationship among the constants, the full set of third-order

elastic constants for sodium chloride will be calculated.

10
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CHAPTER II
THEORY OF HARMONIC GENERATION

The velocities of ultrasonic pulses in sodium chloride are on
the order of 5 x 107 m/sec. Since the frequency of fundamental operation
in this experiment was 30 MHz, the corresponding wavelength was about
1.7 x :l.O_LL meters. The lattice parameter a for sodium chloride is 5.63
A. For this crystal structure, the hearest neighbor distance for like
atoms is a/,2, or about 4 A. Thus, one wavelength of the ultrascnic
signal is some 100,000 times longer than the lattice spacings of the
crystal, and it will be quite justifiable to regard the solid as an
elastic continuum. Since large amplitude displacements are involved,
Murnaghan's finite deformation elastic theory (10} will be used to deve-

lop the equations of motion for a point in a medium of cubic symmetry.

The Strain Tensor

Let a point in the continuum of the medium have the Cartesian

coordinates ) aa) in the initial, or unstrained, state. The

(ay5 &y
Cartesian coordinates of the same point at some later time in a strained,
or deformed, state are given by (xl, X5 x5). Then the Lagrangian sgtrain

tensor for finite deformations is defined by the relation

2w, d
[Z&Ta_:?_éij], : (3)

f\Jll-'

where 6ij is the Xroneker o, and the subscripts i and j take on the
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values 1,2,3, It is seen by inspection that the strain tensor is sym-
metric. One also notes that the origin of the initial, unstrained
reference frame need not coincide with the origin of the final, deformed
© frame.
The strain matrix may be expressed in terms of the Jaccbilan
matrix J of the transformation from the initial to final coordinate

systems:

‘axl Bxl axl

@, &, 2,
5(31,52,8.5) aal aa-2 a3

i R B

The final coordinates (x o x3) are assumed to be differentiable

1 *
funetions of (al, ays aB), and the determinant of the Jaccdbian matrix,

a(xlsxesxg . ) .
;s assumed to be positive. Then the volume element 4V
fe) al,a2,a3 x

of the final state is given by the expression

det

B(Xlax2:X3)
de = XmdXEdXBV = det W (3.3.:1.@8.,&.'(13.3 = (de‘t J) dVa. (5)

*
For a rigld displacement, i.e. no deformation, or a pure rotation, J J

is the unit matrix I, where J* is the transpoge of J. To eliminate

either of these cases, we can write the strain matrix as the difference
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between J*J and I as a measure of the deformation cf the medium about

a point (a 2,5 & )

1’ 3

0= 2007 - 173, (6)

where the factor of % is necessary to insure agreement with infini-
tesimal theory. Equation (6) yields the same strain elements nij as

does Equation (3).

Generalized Definition of the Elastic Constants

The elastic potential energy density U of a s0lid can be expanded
in terms of powers of the strain components. We express U as a sum of
terms, where each term contains the strain elements to the power in-

dicated by the term subscript. Thus we have the relation

Us Uy o+ Uy + Uy + Uy oo, (7)

Ub is just the free energy of a solid in equilibrium and may be set
equal to zeroc, since U

0]

initial state 1s the undeformed equilibrium state. All terms higher

is strain-independent. Ul is also zero, as the

than third order in the strain elements are assumed to he negligibly
small, justified by experimental considerations.

The remaining terms in Equation (7}, U, and U,, are given by

2 3
Us = 57 T LY (8)

and
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N .
Uz = 37 i Cs % amn 3 e g o (9)
3 3% fmn
-1

where all subseripts take on the value 1, 2, 5. Thus, including terms
cubic in the strain elements in Equation (7) goes one term beyond the
approximation of Hoocke's law. The Cijkz and Cijkﬂmn in Equations (8)

and (9) are the second- and third-order elastic constants respectively

in tensor notation. Considering all possible conmbinations of the sub-

'scripts of the elastic constants, there are some 81 possible second-

order and 729 possible third-order elastic constants. However, Birch
has shown that one can greatly reduce the number of independent con-
stants by considering the symmetry properties of the crystal. TFor the
class of cubic crystals, there are but three distinect, non-zero,
second-order elastic constants. If we also restrict ocurselves to those
cubic crystals, such as NaCl, with the very highest order of symmetry,
the number of distinect, non-zero, third-order elastic constants is
reducea to six.

Thus, for the special case of sodium chloride, we may write the

elastic potential energy density, using Brugger's notation, as

1 > 2
U(M) = 5 Cyq LTy + Moy @3] O Ty + TopThs + ThsThy ] (10)

2 2 1
+ 20, I, + Ty + 7@3] * 60111[@1 * 1122 * @5]
1
* 5 CppplMyy + “53)“?1 + (Mg + T‘ae”éa * (T + “53)@2]

+ CozlMhyThoThs ]+ 261&&“111@3 * Tl22@1 ¥ %31‘?2]

===
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* 266ty T1:zzmie (T + “55)“;5 (Mgt “55)“?3] * 80T o Ths Ty 0

where the strain elements Tﬁj are calculated using coordinate axes
" parallel to the erystal symmetry axes. In Equation (10) we have uti=

lized the conventional contraction of subscripts of the temnsor elastic

constants:
11 -1 33 =3 31 -5
22 - 2 23 = L 12 = 6

Equation (10) differs from Birch's expression for the elastic
potential energy density by various constant factors, since Brugger's
notation for the elastic constants is not the same as that of Birch.

Table 1 1lists a comparison of Brugger's notation with that used by Birch.

The Equations of Motion

One can derive the equations of motion directly from the ex-
pression for the elastic potential energy density and from Lagrange's
equations for continuous media. If we let p be the mass density of the
medium in its initial unstrained state, then the Lagrangian density for
the system is

o, - u(n) (11)

[~

L -3

i=1

where the dot denotes differentiation with respect to time.

Tagrange'’s equations for continuous media are




Table 1. Comparison of Birech's Notation for Third-order
Elastic Constants with that of Brugger's Used Here

Brugger's (present) Notation Birch's Notation
112 6 s
CllB 2 C:]B_J_E
€103 Chos
C1u A
€166 5 Chee
Chs6 %I CE%
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S AR A o2
i k=1 B(Sgi)

where i takes on the values 1, 2, 3. Combining Equations {11) and (12),

one cbtains

--_idrau )

PRy da.l 3 ax i =0 (13)
o T Py o)
J,._’ aaj
Differentiation of Equation (3) with respect to °°i yields
Q4. .
J
_Eﬂﬁi__ _ 1 5 Efi + & B Efi | (14)
X, 2 ik 2= 2 j4 2.,
a( i £ k
..
o J
If we use the Jacobian notation for Equation (&)
X
i
5= T o (15)
dJ
then Equation (14) can be written in the form
ank : .
g 1 1
éjk 0% 3 GMJik . (16)

x.. 2
[ AN
a\;ﬁ

With the substitution of Equation (16) into Equation (13), one obtains

the equations of motion of the system in the usual form:

3
- v d [ U
X, =1 ks s
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where it has been assumed that ﬁ(ﬂ) is of the form such that

__SU - -—2% . (18)
Thes 4
If we define the particle displacement vector u, to be

u., =X, - a, , (19)

then Equation (15) can be written as

J,, ==—= =—=+ 6§  , 20
ig aa.E aa‘e i1
and the equations of motion become
i, = ) S 2E .8 (21)

+ ==
da. L 2a . a7 ATl
K, 11 " ¢ Mg My

One takes the appropriate derivatives of the elastic potential
energy densgity U with respect to T, and expresses the results in terms
of %E + The terms are then collected, and products of three or more
derivatives are dropped. Three coupled partial differential equations

are obtained, one for each of the particle displacements U, s with the ay

and t as independent variables., The first of these equations is

2 2 2 2 2 2
. s uy o U, ) u3 ) 3 uy 3 uy 3 u,
My =Cp =5+ Cp (et ) T Tt e
a8, 08 085 1%%3 0, ooy 1%
. (22)
+ 3 u5

aal 63‘3




2
Bul fe) ul au2 a u au3 a u

2 ; 2
au 3 u, aul o) U,

+

c 3 +
ll[ 28, 2 34 2 2
1 aal 2 aa2 5 aa5

2
8115 au +aulau3

da

2 24 2
l aal 2 aa2

aa 28, 2
1 aal 3 aa5
- au au5 agul au au3 a uy ul au2 aeul
* CI|.2|_ aa 28 ) 2 aa 2 28, " a2, ) 2
3 daq 1 3 38, 1 2 aaj
2 2 2
+2ﬁaul +2aulaul +(au1+au2) 3 u,
aa2 aalaa2 aa5 aa.laa5 aal aa2 aalaa2
2 2 2
au, a3 u gu. 3 u du, 3 u au Su, Ju
. 1 2 S °0% S, Oy
aa3 aalaa5 aa5 aaeaa3 aa2 aalaae aal aa5 aalaa5
2
. aul ) u3 ]
N aa28a3
2 2 2
au 3 u du 3w du 3 u
1 1 1 1 2 1
+ 2 ( + ) + 2(2 + )
uu[ N ad;é aa52 %, %y’ W, 08,
LI B R 5 5 %2 za
) 2 2 2
. aue 3 u, . (aua . aul) ) ug . (aul . au2) P} u2a
1 23a e = 20 %8, oAy’ 08,08,
2 2 2 2
. au 3 u Bul 3 u2 N aul 3 u5 . u u3 ug
% 3 aa5 5 B8pMs By oo aa5 aal 2o
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2 2 2 2
e bl P S T T N T S T

38, aa52 %8, daqda, B8y ¥z’ @z M, 38,095
au a u
" Cy1 38 2
oay
3 a u a3 A, 82u u b5
0112[( u5) 2 + 1,2 2, ( 1, u3) UBaa
aa2 *5" %, 08y 08" @08, 38y 3|y 3| 084
2 o} 2 2
; uu[ 3 u1 . au2 ) u1 au3 o u2 auB ) d u2
1 aa3 aa22 %, aa5? aa5 aalaa aa aa3 aa13a5

y u Bus) a u y u BUB u3 . au2 fa) u5
633 aal aa 5 aa5 aa aa aa aae aalaa3

1
3, 28, 2,08,

2
au u auB) a u aul au2 o uw

+
no
—_
+
—

2
. (Bul . Bug) o) u2 . (aul N aua) (a u3 . d u3
aal aa2 aalaa2 aa3 da

ou, BUB) a U ]
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au3 a U, au 82u3 )

125 (aa 38 632 aa aa

3 5
w, 2 5 u, . . 3w s, a0
sosefe (R 2 ke (gh e ) —2 v (g2 )
2 By = 08,085 aa2 32 2, aa5 325 aalaa
2
u g au 9 a u 3
T e P G e Bl 3

aa} aa2 aalaa5 aa} 03 aa28a5 aa22

2
+ (aul + au2) 0 uB .
2, o8 3By

The corresponding equaticns for u, and u3 can be cbtained by cyclic

2
permutation of the subscripts in Equation (22).

Nonetheless, Equation (22), which approximates Equation (21) by
the omission of higher order terms, is 'still too complex and unwieldy
to be very useful. The selection of particular propagation and po-
larization directions, however, further simplifies the problem. The
number of equations can then be reduced to one, and the number of in-
dependent variables reduced from four to two, the time t and the dis-
tance a along the propagation direction.

Consider the simplest case: a plane, longitudinal acoustic wave
propagating along the [100] crystallographic direction. The particle
displacement uy thus depends only on t and aqs where the al-axis is now
in the propagation direction. Dropping the subscripts, Equation (22)
here beccmes

2
v _ o du 2u 2y
pi = C + ey, + ¢y 15 . (23)

o2 a
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To treat the case of plane waves propagating in directions other
than the [100] direction, it proves advantageous to rotate the initial
coordinate frame so that the new al-axis coincides with the propagation
direction. Let us now recall that the elastic constants were defined
in Equation (10) as the coefficients of the terms in the expansion of
the elastic potential energy density U in powers of the strain elements,
where the strain was calculated with the ai-axes parallel to the symmetry
axes of the crystal. Thus, we must determine the changes in the U(T)
and T of Equation (10) under a rgtation of the a,-axes in order that
Equation (17) contain the convéﬁtiqnally,defined elastic constants.

Consider a real‘rotation of the a, -axes given by the matrix

equation
a=Ra, . | (2k)

where R is a 3 x 3 orthogonal matrix which rotates the éi-axes into the
a;-axes. The bar superscript denotes a quantity calculated with the
crystal axes parallel to the coordinate axes. Quantities without the
bar are calculated with the ai-axis parallel to the propagation direc-
tion. Murnaghan (10) has shown that the strain transforms as

*

T=RTR, (25)

where R* is the trangpose of R. Bince the elastic potential energy

density transforms as a scalar under a rotation, we must have q
|
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u(m) = u(M) = U(R*R). (26)

Equation (10) then becomes
U(T) = 3 oy (M weeer 2 (P oo, (27)

Putting the expression for T, from Equation (25) into Equation (27)

yields

3 o 3 i}

U= % Cll[:EzRijTEkRklj et % Clll[:EzR;jTEkRli o (28)
Jk Jk
=] =1

Thus, the equations of motion become
d 2 U(R*TR)"
pu =d_a[zJik M J (29)
k=1

As an example, consider the case of longitudinal waves propa-
gating in the [110] crystallographic directicn. The initial coordinate
frame is rotated by L5° about the aa-axis so that the new a -axis

coincides with the [110] direction in the crystal. The required ro-

tation matrix is given by

L L o (30)
22

Roll L o |,
2R

o
o
[




o4

and the strain elements are related by the expression

5 =Mooy * ) %( T3 =TTy 375( 5= Ths)
M= 3y p* Ty Thp) 2Ty o* Ty *Thy) ig(“15+“23) oG
iz”%f%e) }J}( Ty M) T3

The elastic potential energy is then written in terms of the T
and the new equation of motion is determined. A similar procedure is

used to align the a,-axis with the [111] or the [221] propagation
direction. The experimentally relevant equation of motion for either

of these directions cor for the general case is then found to be of the

-

form

pu =“a_§+\"__§: (32)

where L is a combination of second-order elastic constants, and v is a
combination of second- and third-order elastic constants as defined by

Holt (39).

It is conventional to write Equation (32) in the form

2

2 2
N au o4 g ui |34 sy
i = K, e + o2 aa2;|+ Ki[aa iy (33)

where K2 is a linear combination of second-order elastic constants,

and K5, called the non-linearity parameter, 1s a combination of third-
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order elastic constants. The parameter b is a constant whose value
depends on the propagation and polarization directions, as do the

values for K2 and K}' One notes that p = K2 and v = K5 + bKE’ Values
for pu, v, K2, K3 , and b are given for sodium chloride in Table 2 of
Holt's work (39). The particular propagation and polarization directions
are specified in Table 2 by vectors referred to the crystal symmetry
axes.

One might note from Equation (33) that the condition for "linear"
behavior is not that K3’ the non-linearity parameter, be zero, but that
K5 = -bKE. Thus, the fact that all of the third-order elastic constants
of some material may vanish identically dcoes not, in general, preclude
second harmonic generation by finite amplitude acoustic waves propa-
gating in the material. This fact is a consequence of the form of the
elastic potential energy density U(T) rather than the assumption of a

non-linear stress-strain relationship.

The Sclution to the Equation of Motion

Consider again the case of a longitudinal plane wave propegating

in the [100] direction. It is found from Equations (23) and (32) that

W=0Cpyand v=3C, +Cp . Equation (32) then takes the form
2 2
e _ a u _a_u a 11
pu =0y o2 *DBCy +Cyp )5 2 (34)

Since any second harmonic experimentally generated by the non-linearity
of a crystal will be small in magnitude compared with the fundamental
amplitude, we can assume that the solution w to Equation (34) can be

written in the form




Table 2.

Coefficients for the Egquation of Motion for Sodium Chloridé
for Those Polarization and Propagation Directions Used

- v = K + DK,
Propagation Polarization % 10-12 b, x 10-12
Direction Direction dynes/cm% Kj dynes/cm?

1.000C,,, + 0.000C,, +

[100] [200] 0.487 0.000C ), + 0.000C, o + 1.461
0.000C, 5, + 0.000) ¢
0.250C 14 + 0.750C; 1, +

[110] [130] 0.431 0.000C ), + 3.000C . + 1.29k4
0.000C, 55 + 0.000C)
0.113C,45 + 0.6670112 +

[111] [1111 0.413 1.333C ), + 2'667C166 + 1.2%9
0.222C, 5 + 1.T78C) g6
F0.079C, 1, + 0.236C , =

(1117 (311] 0.163 0.236C,),, + 0.236C, oo - 0.000
0.157C, 5 + 0'1570u§6
0.022C, 11 - 0.052C;4, ~

92



Table 2.

Coefficients for the Equation of Motion for Scdium Chloride
for Those Polarization and Propagation Directions Used {continued)

. - v = K5 + ng

2 - p‘

Propagation Polarization x 10—12 bK. x 10-12

Direction Direction 2 2
dynes/cin. K3 dynes/cm”

11 . . + 0. + 0.0
[221] [115] 0.140 0 EOTCth 0 3010166 17
0.0500125 - 0'53hch56

Lz
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a(a,t) = ul® 4 o) (35)

(0) (1)

where u

is a sclution to the linear equation, and u is a small

- perturbation. We take the fundamental component of the solution to be
0 R
u( ) = A sin (ka - wt) , (36)
where AO is the wave amplitude at the fundamental frequency, k is the
magnitude of the wave vector, and w is the angular frequency of the

acoustic wave, given by

(1)

Then u is an approximate solution to the equation

2 (1) 2 (0) (0)
< (1) _ 3 u 3 u Ju
pu =01 2 * ey *+ 00155 = (38)
o2 d
Solving Equation (38) for u(l) yields
AC + C
u(l) = = 11 ll; Ag k2 L cos 2(ka - at), (39)
8011

where L is the distance through which the initially sinusoidal disturb-
ance has propagated. For a completely arbitrary choice of propagation
and polarization directions, the eguation of motion is represented by

Equation (32). The analogous perturbation solution is then merely
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1 2
u( ) = - g; Aq ¥° L cos 2(ka - ut) . (40)

The magnitude of the second harmonic u(l) of Equation (39) or

" (40) can be experimentally determined by measuring the second harmonic

content of a distorted acoustic wave. The sign of u(l) is determined
by ascertaining the relative phase bhetween the fundamental and second
harmonic components.

The selutions to the equations of motion presented here are the
same as those presented by Keck and Beyers (61), who were concerned with
the case of a sinusoidal driver in a fluid. In their work an exact
solution was presented for the particle velocity v = U in terms of Bessel

functions and a discontinuity distance £:

i Jn(na/ﬂ) -
v(a,t) = 2vg z TS sin n(ut - ka) . (41)

n=1
A power series expansion of Equation (41) yields the same perturbation

term of Equation (40).

Determination of the Elastic Constants

Since the values for the second-orderelagtic constants are usually
known, determination of v in Equation (32) for a particular propagation
and polarization direction combination yields a definite value for the
corresponding linear combination of third-order elastic constants. Ide-
ally, obtaining six different values for v, corresponding to six different
combinations of propagation and polarization directions, would enable
one to determine all six of the discrete, third-order elastic constants

for crystals of high cubic symmetry, such as sodium chloride. However,
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as will be shown in the next section, it is not possible to find six
combinations of propagation and polarization directions which will give

six linearly independent equations involving the third-order elastic

. constants. Thus, we will combine our results of five linear combinations

£ the C
oL The ik

This will then enable us to finally extract all six third-order elastic

. . . . _
s with the aggumption. of the Cauchy relatim Clhh = Ch56'

constants.

(1)

S8ince the magnitude of the second harmonic u varies directly
as the sample length L, it would be felicitous if u(l) continued to
increase after reflection of the acoustic wave from the ends of the
sample. Sample costs and physical size could both be significantly
reduced, as several transits of the acoustic signal could be used to
achieve a sizeable path length. Holt (39) has shown, however, that the
process of second harmonic generation is exactly reversed after re-
flection of the acoustic signal from a stress-free boundary, which the
sample-air interface represents. Thus, not only is there no additiocnal
production of second harmonic content in the returning signal, but also
the distorted wave "undistorts."

For each particular propagation and polarization direction choice,
cne can measure the amounts of fundamental and second harmonic content
of the acoustic signal, from which a value for vexp can be determined.

We can write vexp as a linear combination of second- and third-order

elastic constants

Vexp = P10111 * PoC11o T PsConn * PuCige T PsCing (42)

T BCus6 * 0301 T 9l * 930y, o
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where the values of the 1 and the q; are obtained by aligning the aq-
axis with the propagation directiocn as previocusly described. For N
different experimental combinations of propagation and polarization

directicons, we obtain N values of K5’ given by

K3 = 210001 7 PoClygn * 2aCouy * Puligg t PsCioz * PeCysge (43)

where i = 1, 2, 3,...,N. By combining Equations (42) and (L3), we

arrive at the system of equations

K30 % Y5 exp = U1 7 Blp = Bl ()

where i =1, 2, 3, ...,N. The Cij‘s are assumed to be known. Thus

Equation (Uk) represents a set of N equations in six unknowns, the Cijkis'

If Equation (43) ineludes six linearly independent combinations of the
Cijkrs’ then Equation (44) can be solved for the complete set of all
six third-order elastic constants.

One finds, however, that for all possible selections of pro-

pagation and polarization directions, the following relationship holds:
D, = 2D, *+ 3D - (45)
3 5 276
Using (45), we may rewrite (43} in the form

Kz3 = P13C991 * PoiCi90 * PyiCie6 (ko)

1
+ (2C ), * Cip3)Psy * (5 Coyy * Cysp)Pg; s
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Thus, only the five quantities 111> C1120 C1660 (eclhu + 0123), and
(% Coy * Ch56) can be determined by harmonic generation experiments.

The Five Ccnstant Limitation

In order to derive Equation (45), let us consider a cubic me-
dium in which the only strains used are single plane waves. Let us
further consider only that portion ¢ of the elastic potential energy

density U which contains the particular third-order elastic constants

Coyly Oppss 20d Cpept
- - =D - - - -
ﬂ“):QQWMUthB+1E§§1+’%5€2] ()
* Cyon Ty ThoThs* B8Cy 56T oThs Ty -

As before in Equation (2k) the bar superscript denotes a guantity
measured with respect tco the crystal symmetry axes. In general, how-
ever, the ay direction is along the propagation direction of the
acoustic wave. By the rotation process previously described, the

function & can be written

8(M) = £.Cppy + £,0 05 + T3Chcp (48)

where the fl are functions of both the rotation matrix R and the strain

elements.

If it can be ghown that the equality

-2f, + bf, + £, =0 , (49}

1 5
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holds for each rotation matrix R, then Clhh’ c , and Ch56 can only

123

appear in & as (Eclhh + 0125) and (%Clhh + Ch56)' Then only the five
cps 1

quantities Cpyys Cpops Cpggs (BCy), + Cppy)s and (30, + Cy50) can

be determined by harmonic generation experiments.

For a plane wave of arbitrary polarization, the Jacobian matrix

u
1
1+=— 0 0
g
J = —= 1 0 (50)
=N

o .
_ué 0 1

Bal

follows from Eaquations (15) and {19). The strain matrix, from Equation

(6) is then given by

Ty The  Ths

M=%, © o . (51)

Tﬁ} 0 0

It is tempting to immediately put Tb2 = T%5 = Tb} = T%E =0

into the expression for §. But the equations of motion given by Equation
U

T g

vanish yet have a nonzero derivative. For a plane wave, however, only
AU

EL)

will not appear in the equations of motion.

(17) contain

» 80 that it might be possible for a term in fi to

appears, 8o that terms containing Tbg, ﬂ35, Tbj’ or ﬂ52 as a factor
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Substitution for the £, from Equation (47) into the left-hand

side of Equation (49) yields the expression
-2ty + bty 4 1= W [Ty - Ty ] (52)
+ W [Ty = Tl 1+ ”?121[?527113 - Ty 1

Note that the right-hand side of Equation (52) is equal to four times
the value of the determinant of the strain matrix, which is invariant
under rotation of the coordinate system. From Equation (51) it is

apparent that det(T) = O in that particular coordinate system where al
is along the direction of propagation. Hence, det(T7) must vanish in all

rotated coordinate frames. We conclude that Equation (49) is true for

all rotations R.

Attenuation Effects

Ag the fundamental and second harmonic signals propagate down
the crystal, each undergoes a digsipation of acoustic energy, or atten-
uation. As an approximation to the problem of accounting for this
attenuation, one asgsumes that the fundamental and second harmonic com-
ponents of the acoustic signal are attenuated as if each were the only
wave present. For the case of uniform attenuation, the fractional loss
& per unit length of amplitude A is constant. For a layer of thickness
da of the medium at a distance a from the origin, the fractional loss

is given by ¥

= =0da . (53)
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Given the boundary condition that A = A, at a = 0, a solution to

0
Equation (53) is

Ala) = A e s (54)

where ¢, the attenuation factor, is in general, a function of frequency.

Then the fundamental component of the acoustic wave is given by

u(o) = Aoe'aa sin(ka - at) . (55)

Let al = the attenuation factor for a wave of fundamental frequency fl,
a2 = the attenuation factor for a wave of second harmonic frequency
f2 = Efl traveling alone in the medium,
Al = the amplitude of the fundamental at point a,
A2 = the amplitude of the second harmonic at point a.

The change in the amplitude A, per unit path length is derived

2

from a positive term, to account for the second harmonic generated by
the fundamental, and a negative term, to account for the damping of the

second harmonic. From Equation (40) we denote the change in A, as

Ai W - oA . (56)

With the boundary condition that A2 = 0 at a = 0, the solution to

Equation {56) is
re-aala i e-aéa
ORS o ]- (57)
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Thus the particle displacement u becomes

0.8
ula,t) = Aye 1 sin(ka - wt) (58)

-200_ 8 =C_a

. 1 2
v L2 2Me - e
- & Aok [ 5, - Eal J cos 2(ka - wh).

For the frequency range used in this work &, is taken to be

1
equal to ae, s0 that the amplitude of the second harmonic is
=Cra, -
v 22 e -an
Ay = g Ak S - e , (59)

where al = a2 = ., When we solve Equation (59) for v and recall that

v = K3 + bK2 and p = KE’ we find that K3, the desired linear combination

of third-order elastic constants, is given by

BKAS - '
Alk a e ~ 1
Finally,
ZLAK, (61)
K5 = bk = 55>
(aFT)°A

where L is the attenuation-adjusted sample length, F is the fundamental

frequency, and T is the transit-time of a pulse down the sample.

Diffraction Effects

The circular quartz transducers are assumed to behave as piston
acougtic sources. There exists a so-called Fresnel region in which the
acoustic beam may be considered to be a plane wave. This zone extends

from the transducer a distance of approximately rE/A, where r is the
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radius of the transducer and M is the wavelength of the wave in the

solid. Beyond this distance, the ultrasenic beam diverges at an angle

8 given by

sin 6 = . (62)

This divergence manifests itself a2s an additional attenuation of the

acoustic wave on the order of cne decibel per r2/?\. See Seki, Granato,

and Truell (62).

For the sodium chloride samples used re/?x. A 20 cm. Thus, the
harmonic generation measurements were carried out in that region within

the sample where the plane wave approximation is wvalid.
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CHAFTER TIT
INSTRUMENTATION AND EQUIPMENT

Feagibllity

The values of K5 in Equation (33) may be calculated from know-
ledge of the displacement amplitudes of the sample at the fundamental
and second harmonic frequencies and of K2 from previous experiments in
velocity measurement. A detector is then required for the measurement
of strain amplitudes which can be accurately calibrated over a wide
frequency spectrum. If one estimates values of the third-order elastic
constants, one can calculate the expected amplitude of the second
harmonic generated by the crystal sample for a specified fundamental
vibration amplitude at a given frequency. The entire experiment
becomes feasible if the choice of a detection apparatus permits the
accurate measurement of these estimated second harmonic vibration
amplitudes.

The selection of a frequency for fundamental operation requires
the careful consideration of several factors. Diffraction of the
acoustic wave results in an additional attenuation effect on the vi-
bration amplitude and is a function of both sample dimensions and the
acoustic wavelength. Seki, Granato, and Truell (62) determined that
frequencies above 10 MHz were most desirable for the minimization of
diffraction effects when’using transducers of usual size.

The second harmonic vibration amplitude is seen in Equation (40)

to be proportional to the square of the fundamental fregquency, making
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higher frequencies even more desirable. However, the cost and extreme
fragility of quartz transducers cut for fundamental operation gt fre-
quencies above 60 MHz preclude the use of such transducers above that
limiting frequency as scurces for either longitudinal or transverse
acoustic waves. Since I. F. Strips were readily available as high-gain
amplifiers with passbands tuned respectively to 30 MHz and to 60 MHz,
the choice of 30 MHz as the frequency of fundamental operation was
optimal.

From Equation (40) one notes that the magnitude of the second
harmonic amplitude will be at least one order of magnitude smaller that
the fundamental amplitude. Since the fundamental displacements would
be in the one-to-ten ﬁngstrom range, any cholce of detector must be
capable of yielding measurable signals for wave amplitudes down to lO—9
cm.

The end faces of the crystal sample will_réflect the acoustic
waves back and forth several tiﬁes. These ﬁﬁvés will interfere with
each other on each pass, until their energy is dissipated through
attenuation. This interference is undesirable and its presence suggests
using pulsed acoustic waves in the experiment. The repetition rate of
the initial electric signal must be chosen to allow one pulse train to
die out bhefore the next pulse is introduced. One must also keep in
mind that, since the receiving end of the crystal is a force-free end,
the displacement amplitude there will be twice the magnitude of the dis-

placement amplitude within the body of the sample.
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Capacitance Microphone Detector

Sampleholder

A diagram of the mechanical parts of the capacitance microphone .
detector sampleholder assembly is shown in Figure 1. The crystal rests
vertically on the annular portion of the bottom plate assembly, which
serves as electric ground for the detector circuit. The copper center
button of the bottom plate 1s the detecting electrode and is held in
place by epoxy resin, which also serves to isolate the button electrically
from the grounded ocuter ring. This button is recessed slightly below
the plane of the annular plate so that the sample end face and the copper
button form the components of a parallel plate capacitor. When a bias
voltage is applied to the center electrode, a uniform electric field is
set up across the capacitor gap. FPlane, longitudinal acoustic waves,
impinging on the sample face, cause the gap spacing to osclllate about
some equilibrium value, producipg.a time-varyihg voltage between the
center button and the ground plﬁte. -

As a source for the generation of longitudinal acoustie waves,

a plezoelectric transducer was affixed to the upper end of the sample
with a suitable bonding material. A copper electrode, flat on one side,
provided the electric signal to fhe transducer and was held tightly in
place by a spring mount. To complete the transducer assembly, the cop-
per outer ring was grounded, like its lower twin, and the entire assembly

held in pldce atop the sample with flexible bands. Both ends of the

crystal were metallically coated, since sodium chloride is a non-conductor.

Careful placement of the upper and lower assemblies with respect to the

gold coatings, which alsc served to assure good electriecal shielding,
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was absolutely necessary for the retrieval of the ultrasonic signals.
Finally, the electrical input to the upper assembly was by means of a
B. N. C. connector, whose center pin was connected to the copper center
electrode, which rested on the transducer itself.

In order to achieve maximum sensitivity of the capacitance
microphone detector, the gap spacing had to be made as small as possible,
which will also be discussed In the next section. To this end, both
the sample faces and the mating surfaces of the detector assembly were
lapped until optically flat. The desired gap spacing was then created
by masking the copper center button of the detector assembly with tape
and electroplating copper onto the annular ring by immersion of the
assembly in a standard copper bath until the thickness of the copper
s0 deposited was slightly greater than desired. The outer ring was
then lapped until fhe final gap spacing was reached. Care was taken
to maintain parallelism between the outer ring and the inner copper
button. To check for parallelism, an optical flat can be placed on the
detector assembly and illuminated with monochromatic light, as from a
sodium lamp or laser. If the fringe patterns so produced are identical
in density and relative corientation over both ring and center button,
then the two parts are truely parallel.

Rather than measure this gap spacing directly, the gap capaci-
tance was dete?mined with the sample in place on the detector assembly
using a digital capacitance meter. The subtraction from this capaci-
tance value of the capacitance of the lead wires with the sample removed
thus enables one to determine accurately the gap capacitance. From
this gap capacitance the gap spacing is directly determined. Gap

gpacings on the order of ten microns were measured in this manner.
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Preamplifier

The capacitance microphcne detector and preamplifier eircuits
were combined on a single printed circuif board, as shown in the sche-
matic diagram of Figure 2. The output impedance of the preamplifier
was chosen to match both the 50 ohm impedance of the RG59/U coaxial
cable and the input impedance of the high gain amplifiers. The time-
varying gap capacltance is represented in the diagram by a variable
capacitor, Typical quiescent values for this capacitance lie between
20 and 30 picofarads. The design and physical layout cof the aétual
circuit were generally the same as those of Gauster (63). Because of
the proximity of a televigion breoadcasting antenna using frequencies
around 60 MHz, it was essential that both the detector and preamplifier
be heavily shielded from outside electromagnetic interference. For this
reagson the preamplifier circuit board and detector lead wires were
mounted inside a brass container. All coaxial wires leading into the
box were also ghielded by metal, also brass.

One may determine the displacement amplitude A of the sample face
from the various circuit parameters. If we represent the input imped-

ance of the preamplifier with a resister, R

5 = 38 kilohms, the detector

circuit can be represented as shown in Figure 3. It follows from a
straightforward analysis of the circuit that the time-varying voltage

V produced bty a sinuscidal displacement A of the sample face is

| BV yEL+—(CO/CE)Q(RQGOuﬂ-e]l/E

A )
[(1/3102w - Racow)e 1+ /0y RE/Rl)E]l/e

where C. is the quiescent value of the gap capacitance, V

0 is the applied

0
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bias voltage, vy = A/so is the ratio of the displacement amplitude A to

the quiescent gap spacing s w 1g the angular frequency of vibration,

0,
and the other guantities are the various parameters of the cirecuit as
shown in Figure 3. With typical values for these parameters of CO =25

L
DL, 00/02 = 0.05, R2/Rl = 0.0k, R,C,w =9 x 10" rad., and R Cow = 180
rad. for a frequency of 30 MHz, Equation (63) simplifies to the convenient
form

V= v (64)

0
to an error of less than 0.5 per cent. A derivation of Equation (63)
is found in Appendix A, as is a discussion of the harmonic generation
limitations of the capacitance microphone detector itself.

The gain of the preamplifier is, of course, a function of signal
frequency. The frequency response of the circuit, as shown in Figure U4,
was found by Gauster to be flat within the region of interest. This
frequency range of consgtant gain extends from about 5 MHz to 90 MH=z.
Using the standard definition of bandwidth as the frequency interval
between the minus 3 dB. points, the bandwidth is seen to be 130 MHz.
Here O dB. relative gain corresponds to an actual gain of 0.49 dB.

With this size bandwidth, the rise time of the preamplifier is about
3 nanoseconds, providing excellent pulse response.

From Equation (64) it can be seen that the signal voltage is
merely the product of the ultrasonic displacement amplitude A and the
electric field intensity produced by the bias voltage across the gap.

Thus, any practical limitation on signal strength is determined only
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by the breakdown field of the air in the gap., Xisliuk (64) has shown
that the breakdown field of air is several million volts/cm. at
atomospheric pressure for gap spacings of less than 1 micron. By care-
fully polishing the copper surface of the detector button and the
sample end face, fields of 110 KV/cm. were obtained with gaps of 20
microns. lattice displacements on the order of 10_9 em., with this gap
spacing and a bilas voltage of 220 volts yielded signals on the order

of 100 microvolts. With judicious choice of the transistors used in
the preamplifier and careful shielding, noise could be held to about

10 mierovolts, RMS, so that the signal-to-noise ratic was favorable.

Magnetic Detector

Figure 5 is a diagram of the mechanical parts of the magnetic
detector and sampleholder assembly. The sample lies horizontally, with
the acoustic pulses traveling down the crystal axis, between the poles
of an electromagnet. The detector consists of two copper contacts
which are spring mounted by phosphor-bronze supports. These contacts
rest against opposite ends of a gold strip which is evaporaﬁed cnto the
sample end face. As a plane, transverse ﬁltrasonic wave lmpinges on
the sample end face, the gold strip is caused to vibrate, inducing an
electromotive force along the strip. Since the wavelength of the ultra-
sonic waves is on the order of 10'LL meter, and the thickness of the
evaporated gold strip is but a few thousand ﬁngstrOms at most, the
lattice vibrations should be unperturbed by the presence of the gold.
The time-varying voltage is picked up by copper contacts and transmitted

directly to the high gain amplifiers.




hgj

TRANSDUCER : DETECTOR
ASSEMBLY | ASSEMBLY /

: b : )

ul SAMPLE <

AN N

\

\

N

N

- \

\

\

] N

\ \

\

\ \

N

N

N

R

- - - SMANN
/ — \
ELECTROMAGNET ELECTROMAGNET
POLE FACE POLE FACE

Figure 5, Magnetic Detector and Sampleholder Assembly




50

A great advantage which the magnetic detector has over the
capacitance microphone detector is that the magnetic detection tech-
nique can be used to determine both longitudinal and transverse dis-
placements, while the capacitance microphone technique is necessarily
restricted to measurements of longitudinal displacements. By rotating
the crystal sample so that the evaporated gdld 8trip, when vibrating
with the sample, cuts lines of magnetic flux, one can easily measure
transverse acoustic displacements, in additioﬁ to being able to deter-
mine lengitudinal motion. The use of second harmonic generation to
determine third-order elastic constants in solids has heretofore been
restricted to longitudinal acoustic waves. Thus, this magnetic de-
tector permits a new method of attack.

The signal input to the transducer is eséentially the same as
that used in the capacitance microghone assembly, where the differences
are purely configurational, due to the space limitations‘imposed by
the pole separation of the magnet. The assembly is built around a
copper ring, through which a spring loaded contact provides the signal
to the transducer. A B. N. C. jack mounted radially to the ring allows
attachment of doubly~shielded RG9/U coaxial cable from the pulsed oscil-
lator. The outer ring is electrically grounded and isolated by air
from the center contact. The center caductor, in turn, fits into a
copper button, which rests against the quartz transducer, allowing
maximum contact.

An AC-cut quartz transducer, cut for shear mode vibration at
30 MHz, was permanently bonded onto the gold-evaporated sample face

with a mixture of Duco Cement and acetone. This type of so0lid bond is
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necessary, since a viscous bond such as Nonag will not support shear
vibration.

The sample rested on plastic supports glued to a plastic base.
The use of plastic and norimagnetic metals, such as aluminum and copper,
was required in order to keep the magnetic field in the vieinity of the
detector electrodes as uniform as possible. All screws used in the
congtruction of the assembly were either brass or stainless steel, for
the same reason. The aluminum supports of the transducer assembly
allowed variation of the height of the input contact according to the
diameter of the sample being used.

Fach of the copper pickups was soldered to phosphor-bronze
supports, which allowed the contacts to bend freely and to glve maximum
contact with the gold strip on the sample face, while minimizing damage
to the gold Ly the pressure of the sharp copper edges. One of the pick-
ups was connected directly to ground, while the other was soldered to
a B. N. C. output jack. Again RG9/U doubly shielded coaxial cable was
used to connect the detector cutput to the amplifiers in an effort to
keep out extraneous electrical noise.

The induced Emf in the gold strip is given by Faraday's lew

= [Exd) - db, (65)
where B is the magnetic field strength vector, 1 is the velocity of a
point on the sample end face, and dﬁ is an increment of length of the
gold strip. Since the displacement amplitude 1s sinusoidal, the mag-

nitude of the induced voltage is Jjust
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E = Bufw , (66)

where w is the angular frequency of the signal. Thus, the amplitude of

- the ultrasonic displacement is jJjust

E
A = . 6
2nB LF (67)
Instrumentation

The equipment used for this research consisted basically of a

pulsed osgeillator, one of the two detection devices previously discussed,
amplifiers, and readout devices to measure low amplitude ultrascnic
pulses in'single crystal sodium chloride. The instrumentation was gen-
erally similar to that used by Gauster (63) for the capacitance micro-
phone detector. A hlock diagram of the experimental arrangement using
the capacitance microphone is shown in Figure 6. An analogous block
diagram, shown in Figure 7, describes‘the arrangement using the magnetic
detector.

The pulse source was a pulsed oscillator, model PG=650C {Arenberg
Ultrasonic Laboratory, Inc.). This oscillator provided pulses of
variable width and intensity over a range of frequencies by the substi-
tution of appropriate oscillator coils. Repetition rate of the pulses
was adjustable so that samples of different lengths could be used in
the experiment, if required.

Attenuation for calibration purposes was provided by two contin-
ually variable precision attenuators, models 3132 and 3162 (Airborne

Instruments Laboratory). A simple matching network provided the proper
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impedance matching between the 95 ohm output impedance of the pulsed
oscillator and the 50 ohm impedance of the attenuators. The attenuators
were tuned to 30 MHz and 60 MHz respectively and had a range of over

110 4E .

The DC bias potential reQuirea:in fhe détector-preamplifier was
obtained from a voltage regulated power supply, model ABC 1000M (Kepco,
Inc.), which provided bias voltages comtinuously variable from zero to
1000 volts. The exact voltage magnitude was monitored with a digital
voltmeter plug=-in unit, model DP-100 (Hickock Electrical Instruments
Company) with its mating mainframe, model DMS=~3200.

The same mainframe was also used to determine the capacitance
of the gap spacing of the microphone detector. A capacity meter plug-
in unit, model DP-200, enabled measurement of this capacitance to cne
picofarad accuracy.

To monitor the frequency of the output of the pulsed oscillator,
a grid-dip meter, model 59 (Measurements Corporatioﬁ) was employed.

The grid-dip meter itself was calibrated against an electronic counter
and frequency converter plug-in unit, models 52L51, and 5253B respec-
tively (Hewlett Packard). The calibration of the grid-dip meter was

done in continuous mode operation using the frequency counter, but the

pulse response of the grid-dip meter would be the same as the CW response.

Up to 1004B . gain was provided by tuned amplifiers, models
EV3010 and EV6010 (RHG Electronies Lab) with center frequencies at 30
MHz and 60 MHz respectively. ZEach amplifier had a passband adjusted to
10 MHz, which was large enough to reproduce pulses of short duration.
Power to both amplifiers was supplied by a single voltage regulated

power supply, model KR12M (Kepco, Inc.).
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The rectified video ocutput of both amplifiers were cbserved on
a model 585A oscilloscope with a type 82 dual-trace plug-in unit
{Tektronix, Inc.). Triggering of the oscilloscope was supplied by a
trigger pulse generated at the pulsed oscillator at the same time that
the leading edge of the signal pulse was created.

Accurate pulse height measurement was accomplished with the use
of a model CW-1 boxecar integrator (Princeton Applied Research), which
allowed the retrieval of signals as small as 0.1 volts buried in nolee
of several volts RMS. The pulsed oscillator also triggered the inte-
grator gating, whose width and position in time were both adjustable.

The only differences in instrumentation in adapting the experi-
ment to magnetic detection were those involving the detector itself
and the electromagnet. See Figure 7. A four-inch diameter, adjustable
electromagnet, model 7536-modified (Alpha Scientific laboratories, Ine. )
was used to provide a uniform magnetic flux density up to a maximum
value of one-half Weber/m? The current to the magnet windings came
from a 20 ampere, 100 volt adjustable power supply, model AL100, and
regulator, model AL1O4R (Alpha Scientific Laboratories, Inc.).
Monitoring of the magnetic field strength was made by calibrating the
current dial reading of the power supply with the magnetic field with
a model 620 gaussmeter (F. W. Bell) for each position of the detector

between the pole pieces.
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CHAPTER IV

EXPERIMENTAL PROCEDURE

Sample Preparation

The singie crysbals of sodium chloride which were used in this
experiment were obtained from the Harshaw Chemical Company. Each
crystal waeg cylindrical, 3.8 cm. long and 2.5 cm. in diameter, with the
cylinder axis along a specified crystalline direction. Both faces of
the cylinder were cut at right angles to The axis and were polished
optically flat. Ultrasonic measurements were made on four crystals,
whose axes were oriented in the [1007], {1107, [111], or [2217 crystal-
lographic direction. This choice of directions was dictated by two
factors: +the cost of obtaining single crystals of sodium chloride of
this shape and size and the fact that this selection of crystals was
sufficient to yield the five combinations of third order elastic con-
stants which were sought.

To reduce the appreciable attenuation of the ultrasonic waves in
the crystals, it proved advantagecus to anneal each of the samples in
an oven in an attempt to relieve the thermal stresses set up within the
lattice in the actual formation of the crystal. Each sample was heated
within the oven at a controlled rate of 60 C° per hour until the tem-
perature of the oven stabilized at 540° ¢. After half an hour at this
temperature, the sample was allowed to cool to room temperature at a
rate of 60 C° per hour. Since the melting point for sodium chloride is

801° C, no deterioration of the crystal resulted from the anmealing
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process. All crystals so treated showed significant reduction in the
amount of attenuation of ultrasonic waves.

To properly orient the direction of the AC-cut quartz transducer
onto the sample face for generation of transverse mode acoustic waves,
it was necessary to locate as accuratéiykas possible particular vectors
directions in two of the crystals: the [211] direction in the [111]
crystal and the [ii5] direction in the [221] crystal. Although the
latter two directions are not perpendicular to each other, they are as
close ag 1t was possible to get ccnsidering Holt's tabulation of propa-
gation and polarization directions for acoustic waves in sodium chloride
{39). These particular vectors were located using standard Bragg re-
flection of neutrons. This orientation was carried out with the assis-
tance of D. E. Wrege and J. W. Lynn using one ﬁngstrom neutron beams at
the Frank H. Neely Nuclear Research Center on the Georgia Tech campus.

A thin ccating of gold was then evaporated onto the transducer
face of the sample using a vacuum evaporator {Veeco Instruments, Inc.).
A layer several thousand Angstroms thick was sufficient to act as a
ground plate for the signal input assembly and ftransducer. For use
with the capacitance microphone detector, the opposite end of the sample
was also completely coated with a gold layer of comparabie thickness.
For uge with the magnetic detector, the opposite face was masked,
allowing the depogiticn of a gold strip about 1.5 em. long.

When the gold leyer or strip became worn from repeated handling,
the gold was removed with acetone. The surface was relapped with first
a #30-1/2 grit and then a #38-1200 grit (U. S. Products Company) before

gold was again evaporated onto the surface. The sgame lapping compounds
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were used to polish all copper surfaces which were in contact with the

sample faces.

Amplitude Measurements

A pulsed oscillator furnished high voltage electrical signals
at 30 MHz up to 600 volts peak-to-peak with pulse widths in the 5 to
10 microsecond range. A tuned metching network provided both step-up
transformer capability and clean, squared pulse shape. A schematic
diagram of this network is shown in Figure 8. The network was basically

a series combination of an autotransformer of inductance

L =1L +1 (68)

and capacitance

C=0C +Cy s __ : (69)
where Cl was a small variable capacitor of approximately 100 pf., and
02 was the capacitance of the quartz transducer in place of the sample.
The inductance I of the coil was about 0.5 microhenries. Varying the
ratio Ll/L2 allowed additional amplification of the electrical signal

from the oscillator. The variable capacitor C. was then adjusted to

1
series rescnance at the freguency of operation and also allowed tuning
the circult for optimal pulse shape. The Q of the resonant circuit was
determined by the resistor R, whoge value was 50 ohms in this experiment.
The pulsed electrical signal was then applied to the transducer,

a quartz disec, X-cut for longitudinal vibration, or AC-cut for trans-

verse vibration. Those transducers used were either 1/2 inch or 3/U
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inch in diameter and fine ground polished for fundamental mode operation
at 30 MHz. Both gold plated and unplated transducers were used, with
neither showing any apparent advantage over the other (Fisher Scientific
Company). It was found that Nonag stopcock grease provided a suitable
bond between the transducer and the sample face for X-cut transducers.
For transverse acoustic wave generation, however, use of the Nonag was
not feasible, as a shear wave will not propagate through such a viscous
medium. A suitable bonding material was fabricatéed by diluting Duco
cement (E, I. du Pont de Nemours & Company) with sufficient acetone

to make the mixture flow freely. A small drop of this diluted glue was
applied to the sample face and the AC-cut transducer quickly positioned
before the acetone evaporated. When all the acetone had evaporated,

the resulting solid bond proved to support shear waves adequately.

For either detection technique, the ultrasonic pulses were de-
tected at the opposite end of the sample after passing down the full
length of the erystal. Echoes of the original pulse regulted from re-
peated reflections from the sample end faces. Occasionally the first
returning pulse would be of sufficiently large magnitude to cause the
transducer to vibrate resonantly, thus producing an additional electric
wave. However, these electrie pulses could be distinguished from the
acoustic pulses by the pogition of each within the pulse train, as
displayed on the oscilloscope screen. The electrical pulses occurred
exactly halfway in time between the detection of acoustic pulses, since
they were produced at opposing ends of the sample. Since the first
pulse in the train was the initial electrical pulse, it was then a simple

task to determine the source of every other pulse.
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This characteristic pattern of electrical and acoustic pulses
and echoes is shown in Figure 9, which shows the oscilloscope screen
displaying the video output of both amplifiers. The upper trace is the
30 MHz channel, and the 60 MHz channel is on the lower trace. Wote
that the initial electrical pulse in the 30 MHz pattern is absent in
the 60 MHz pattern, further indicating a spectrally pufe initial signal.
Numbering the pulses from left to right, the even-numbered pulses are
acoustic, while the odd-numbered ones are electric. Accurate measure-
ment of the pulse heights themselves was facilitated by the use of a
boxcar integrator, which time-averaged a single repetitive signal, thus
cancelling the effects of random noise.

With the high gain of the amplifiers, typically about 70 dg.
for the 30 MHz channel and 100 db. for the 60 MHz channel, video sig-
nals of up to twenty volts in magnitude were recorded. The gain of
the 60 MHz amplifier was adjustable, as the negative DC level of one
of the grids of each of the amplification tubes could be varied {(with
batteries) as a manual gain control. This proved to be useful when
recovering particularly small signals otherwise buried in electrical

noise.

Calibration Procedure

During a run using the capacitance microphone detector, one
recorded the bias voltage necessary to yield a pulse height of a given
magnitude on the boxcar integrator. This procedure was followed on both
the 30 MHz channel and the 60 MHz channel for a single setting of the
pulsed oscillator ocutput. A complete run then consisted of bias

volbage readings and pulse height readings for a range of oscillator
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strengths. At the end of each run the gap capacitance was recorded,

along with the detector button area, the frequency of the fundamental
gignal, the length of the sample ecrystal, and the transit time of the
pulse down the sample. Ags noted in the discussion on attenuation in

Chapter II, measurement of the relative heights of the first acoustic
pulse and the first echo yield a wvalue for the attenuation constant ¢
of the ultrasonic signal. Sample data sheets are shown in Appendix B.

When using the magnetic detection apparatus, one recorded the
current dial reading of the power supply to the electromagnet and the
distance between the detector pick-ups, in addition to those parameters
rertinent to this apparatus. The current dial reading, and the magnetic
field intensity to which it is calibrated, is the analogous parameter
to the bias voltage reading of the capacitance microphone technique.
Using either method of detection, the intensity of the oscillator slg-
nal was decreased incrementally, and data recorded at each setting. It
was anticipated that the combination of third-order elastic constants
derived from each set of readings remain a constant as the wave vi-
brations were made smaller and smaller.

After a complete set of readings had been recorded, both ampli-
fiers were carefully calibrated. This calibration was accomplished by
applying an electrical signal of precisely known value to the inputs
of both amplifiers first at the fundamental frequency and then at the
second harmeonic frequency. Figure 10 shows a schematic diagram of the
general calibration procedure. The amplitude of each calibration sig-
nal was then adjusted so that the same pulse height was obtained on the
boxcar integrator as was obtained during the preceding run. At this

point the calibration voltage magnitude is equal to that of the
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electrical signal created by elther of the detectors due to vibration
of the sample end face. Application of Equation (64) for the capaci-
tance micropheone, or Equation (67) for the magnetic detector, then
¥ields the absolute amplitude of the ultrasonic displacement., It must
be observed, however, that since the end face of the gample represents
a stress-free boundary between the crystal and air, the vibratiocnal
amplitudes at the detector will be twice the magnitude as those within
the body of the sample itself. This factor of two must be taken into
account in the calculation of the absolute amplitudes used in the
derivation of each value for Kj‘

A pulsed signal, like the one used during-a run, was obtained
from the oscillator at either 30 MHz or 60 MHz and was connected to a
two resistor impedancé matching network, a schematic diagram of which
is shown in Figure 11. The 95 ohm output impedance of the pulsed oscil-
lator was thus properly matched to the 50 ohm impedance of either of
the precigion attenuators. The output of an attenuator was connected
to the input jack of the oscilloscope, which was terminated with a 50
ohm resistor to simulate the input impedance of the amplifiers. With
an attenuator set arbitrarily at zero dB., the calibration voltage was
adjusted to some convenient value, such as 0.5 velt, by direet com-
parison with a calibrated square wave internally generated within the
Taktronix oscilloscope. The terminating resistor was then removed, and
the attenuation increased hefore the attenuated signal was applied to
either the preamplifier or amplifier input. The amount of attenuation
was carefully adjuated until the pulse height of the amplifier output

as measured on the boxcar integrator was the same as that during a run.
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With the initial calibration veltage amplitude and the attenuation

reading, one ¢an then caleculate the magnitude of the attenuated cali-

bration voltage. Both attenuators had an accuracy of + 0.05 dB. per

10 dB. increment, while dial readings were recorded in units of 0.02 dB.
To minimize the possgibility of error in changing scales on the

boxecar integrator, both pulse height and scale were always recorded

as a pair. During the calibration procedure, a particular pulse helght

was always matched to the same scale on which it was originally recorded.
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CHAPTER V
RESULTS AND CONCLUSIONS

Amplitude Measurements

A sample of the results of the experiments on three different
sodium chloride single crystals using the capacitance microphone
detector i1s shown in Table 7 in Appendix B. In Figure 12 the results
of Table 7 are depicted and demonstrate the quadratic dependence of
the second harmonic amplitude on the fundamental amplitude in various
crystalline corientations using the capacitance mlcrophone detector.
Figures 13 - 16 are graphical representations of the data shown in Table
8 in Appendix B. These data verify the quadratic dependence of the
second harmonic amplitude on the fundamental amplitude using the mag-
netic detector. Figures 13 and 14 depict this dependence for longi-
tudinal waves, while Figures 15 and 16 demonstrate this dependence for
transverse waves. The quadratic dependence of A2 on Al is a critical
experimental test of the theory @ee Equation (hoﬂ'which permits measure-
ment of third-order elasgtic constants by the techniques employed in
these studies.

The non-linearity parameters Kj, which appear in Equation (33)
and which are composed of third-order elastic constants, have been com-
puted from the data obtained using five separate measurement procedures
on four different single crystals of NaCl. The determination of K3
depends on twe other parameters, b and K

2

of second-crder elastic constants respectively. K2 and b are related

, a constant and a combination
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to the coefficient v in the equation of motion, Equation (32), by the
relation v = K3 + bKB' In evaluating KB’ the second-order elastic

constants used were those given by Holt (39):

Cyp = 0.487 C,, = 0.124 Chp)y = 0.126
in units of 10%° dynes/cm? i

The values of K3 compﬁted from the véfious experimental arrange=-
ments of propagation and polarization directions are tabulated in Table
3. The root-mean-square error of each measurement procedure is a
meagure of its precision, and these values are‘alsortabulated for each’
experimental arranéement in Table 3. |

The third-order elastic constant; are not g function of sample
dimensions, and this independence has been verified in similar experi-
ments using capacitance microphone techniques by Gauster (63). All
erystals used in this work were 3.8 cm. in length and 2.5 cm. in diameter,

regardless of orientaticn with respect to crystalline directions.

Calculation of Third-order Elastic Constants

The non-linearity parameters K5 cbtained in these experiments
are the values of those linear combinations of third-order elastic con-
stants listed in Table 2 in Chapter IT. To determine the entire set of
six elastic constants, it is necessary to obtain a sixth relationship
among the C's. One might use for this relationship a value of some
combination of C's obtained from either hydrostatic pressure or uni-
axial stress experiments. Still another, and perhaps preferable, method
of obtaining a sixth relationship is to consider the results of theore-

tical predictions for third-order elastic constants.




Table 5. The Non-linearity Parameters of Sodium Chloride
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Propagation Polarization K5 BRMS Error
Direction Direction (1012 dyne/cm?) (1012 dyne/cm?)
{1007 [100] -3.5 + 1.2
[110] [110] -5.5 + 0.5
f111] (1113 -3.0 £ 0.5
f111] [211] +0.21 + 0,04
[e21] (1157 =0.54 + 0.11
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Birch (11) has pointed out that for NaCl-type structures using
a central force model at absolute zero, the following so-called Cauchy

relaticns are found:

Q Q Q (8] Q
Clip=Clge 8md  Clipe =Clyyy = Cheg s (70)

where the zero superscript denotes 0°K. Both Nran'yan (52) and Ghate

(15) have shown that for NaCl at finite temperatures the relationship

Cp(T) = Cp(T) (71)

is still quite good, although the remaining Cauchy relations no longer
are valid.

With the acceptance of Equation (71) as a sixth linear relation-
ship, the gystem of equaticns represented by Table 2 may now be solved
explicitly for each of the third-crder elastic constants by standard
matrix methods. Table 4 shows the resulting values determined for the
third-order elastic constants for NMaCl, along with both theoretical
calculations and other experimentally determined values of previous

investigators.

Discussion of Results

In comparing the present data with previously published
theoretical and experimental data for sodium chloride, one notes that
there are wide variations in the reported values of the third-order
elastic constants. The largest discrepancy between the present data

and the others is in the value of C The Cauchy condition C =

123° 112




Table L.

The Third-order Elastic Constants of Sodium Chloride at 300°K

Investigatoer Year and Type Clll 0112 Clhh C166 0125 0456
of Study (in units of 1012 dynes/cm?)

Trebits 1971 exper. -9.5 -0.79 +0.19 -0.83 +0.90 +0.19
Bross 1963 theor. -13.07 -0.47 +0,26 -0.47 +0.26 +0.26
Nran'yan 1963 theor. -5.45 -0.69 +0.,35 -0.63 +0,27 +0.36
Ghate 1965 theor. -8.61 -0.52 +0,26 -0.57 +0.16 +0.25
Lincoln et al. 1966 theor. -8.20 -0.64 +0.25 -0.64 +0.25 +0.25
Paul 1970 theor. -8.97 -0.70 +0.27 -0.86 +0.15 +0.27
Parker, et al. 1964 exper. -6.42

Chang 1965 exper. -8.80 ~0.571 +0.257 0.611 +0.,284 +0.271
Swartz 1966 exper. -8.6k4 -0.50 +0,07 -0.59 +0.09 +0.13
Stanford, Zehner 1966 exper. -8.30

Gluyas 1967 exper. -8.23 +0.02 +0.23 -0.61 +0.53 +0.20
Drabble, Strathen 1967 exper. -8.43 -0.50 +0.29 -0.60 +0.46 +0.26

QL
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0166 appears to be fulfilled, contrary to theoretical predictions.

However, the predicted inequality of C and Clhh appears to be borne

123
cut,

The effects of error propagation in determining the set of
elastic constants is alarmingly significant. If the experimentally
determined value for K3 for each of the propagation and polarization

direction pairs is arbitrarily changed by ten per cent (larger, in

the absolute sense), the set of elastic constants is calculated to be

Cppy = ¥0.54 Cysg = +0.5k
in units of 10°° 4 es/cm2 The values of C and C are seen to
yn e VaLues OF b0 123

be particularly sensitive to changes in values of the K3's, while
Clhh and 0166 are much less affected.

This sensitivity clearly demonstrates the iﬁportance of error
propagation in the evaluation of the elastic constanfs. Two possgible
sources of error are those of crystal purity and crystal orientation.

Hart (65) measured the second-order elastic constants of several
alkali halides in an effort to remove the many discrepancies in published
values for those constants, many of which were too large to be accounted
for by individual experimental error. In measuring these constants in
samples taken from the same parent crystal by three different experi-
mental teclmiques, he obtained close agreement among the data and
concluded that previous discrepancies might be due to differences in
the single crystals used by the different experimenters. In measuring

Clll of NaCl, Parker, Kelly, and Bolef (33) also found that the two
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crystals used, obtained from different sources, showed appreciable dif-
ferencies in elastic constant behavior. Hikata, Chick, Elbaum, and
Truell (66) noted experimental evidence of a dislocation contribution

" to the second harmonic generation of ultrasonic waves in a sample. Thus,
the annealing process used becomes extremely important in minimizing
this effect.

In the present experiments one sample was cubt with its cylin-
drical axis along the [221] cr&stallogréﬁhic direction and ifs ends
perpendicular to this direction. This seleétion of propagation direction
is, at best, a close approximation to that dlrection specified by Holt
{39) for the corresponding combination of third-order elastic constants
given in Table 2: the [0.672,'0.672,.0.311] direction. The specified
polarization direction [-0.192, -0.192, 0.963 ] was also approximated by
(1I5] Quring alignment for transverse mode operation. However, the
magnitudes of the errors introduced by this selection of directions
amount to only 1.2 degrees in the propagation direction and to only 1.9
degrees in the polarization direction.

The principal socurces of measurement error in the use of the
capacitance mirecrophone detector lie in the measurementlof the gap ca-
pacitance and in the calibration of the detector and amplifier system.
Because the gap capacitances were very small, on the order of 30 pf.,
an uncertainty of even a single picofarad results in a relatively large
percentage error. Another possible source of error was the lack of
precise frequency control of the pulsed oscillator. A tabulation of
possible experimental error in individual parameters is shown in Table

5. Reasonable estimates of the total experimental error can then be




Table 5. Possible Experimental Error in Individual Parameters
Parameter Magnitude of Error/Typical Value Per Cent Error
L estimated 2.0
Ve 0.01/1.00 volts 1.0
Vo, 0.01/1.00 volts 1.0
J estimated 3.0
C 1/25 picofarads 4,0
vy 0.1/10.0 volts 1.0
v, 1/100 volts 1.0
Y, 0.02/60 decivels 0.025
1, 0.02/60 decibels 0.025
F estimated 0.5
F2 estimated 1.0
T 0.1/10.0 microseconds 1.0
B estimated 5.0
2 0.04/1.00 centimeters k.o

81
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made in the determination of the non-linearity parameters K3, as
tabulated in Table 6.

While the problem of accurate'determination of gap capacitance
does not, of course, arise when using the magnetic detection technique,
the problem of precise frequency control remains. In addition, there
is some uncertainty in the magnitude of the magnetic field strength
and in the length of the evaporated gold strip in the detector. Total
experimental errors in the determination of K3 using the magnetic de-
tector are also depicted in Table 6.

Equation (61) describes a non-linearity parameter K, in terms
of the appropriate combination K2 of second-order elagtic constants and
various measured parameters. The diépl&cement amplitude of the ith
harmonie A; in Equation (61), using the capacitance microphone tech-

nique, is determined by the expression

-Yi/2o

VSi =10
i

where Vi is the capacitance microphone bias voltage, Yi is the calibra=-
tion attenuation in decibels, J = l/éw is the reciprocal of the product
of the permitivity of air ¢ and the detector button area W, C is the
capacitance of the sample-button capacitor, and vsi is the calibration
voltage (see Chapter IV). Inserting Equation (72) into Equation (61)
vields

LTy JCV2K . 10Yl/lo_¥2/20
g2 12

= = bK,. - ‘ s (73)
K5 2 (nFTvsl)Eve




Table 6. Estimated Percentage Errors of the Non-linearity Parameters of Sodium Chloride

Propagation Polarization K} Capacitance Microphone Magnetic Detector
(1012 4 es/cmz) Estimated (Per cent) Estimated (Per cent)
yn . Error Error

[100] [100] -9.5 + 1.6 17.0 £ 1.4 14,7
[110] {110] -9.5 + 0.8 15.3 - -

[111] [111] -3.0 + 0.4 11.7 + 0.3 10.2
(112] [311] +0.21 - - % 0.05 20k
[221 ] [115] -0.54 - - . + 0,12 21.7

8
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where an extra factor of two appears in"the second term due to the fact
that the crystal receiving end is.a stfess;free boundary.

The expression corresponding to-Equation (72) for the magnetic
detection technique is given by Equation (67). In terms of experi-
mentally measured quantities, the displacement amplitude of the ith
harmonic A, in Equation (67) is given by
-Yi/eO

v + 10

si
By = LaF, B2 ’ (74)

where B 1s the magﬁetic field strength, £ is the length of the gold

strip evaporated onto the sample face, and Fi is the frequency of the
ith harmonic. Insertion of BEquation (74) into Equation (61) then
yields

¥,/10-1,/20

16LB£V52K2 + 10

- - bK. - . (75)
K3 2 nFE(VslT)E

Again the extra factor of two has been taken into account.

Table 5 lists the experimentally determined parameters found in
Equations (73) and (75) with in indication of the accuracy obtainable
for the measurement of each parameter and the corresponding possible
percentage error. With the capacitance microphone technique, a possible
experimental error of up to 17.0 per cent results for the calculated
values of the non=linearity parameters Kj' With the magnetic detection
technique, the posgible experimental error in K3 is determined to be

up to 14.7 per cent for longitudinal waves propagating in crystals

whose axes were oriented in the [100] or {111] direction. Possible
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errors of up to 22.4 per cent result for the crystals whose axes were
oriented in the [111] or [221]direction, and where the transverse
orientation of the AC-cut transducer requires an additional five per

cent error estimate.

Recommendations

Table 4, which records the history of both theoretical and
experimental studies of third-order elastic constants for NaCl, has
two obvious featﬁres. First, there i1s a wide variance among reported
experimental values determined using a wvariety of measurement tech-
niques. Second, one may observe a discernible, though not surprising,
discrepancy between experiment and theory;

Parker, Kelly, and Bolef (3%) have already noted an inexplicable
variation in the elastic parameters of individual crystals of NaCl
obtained from different sources. Whether or not this is the major rea-
son for the wide variance in measured values of third-order elastie
consﬁants could be determined by using one or two single crystals. Each
crystal would have to be studied serially by those different laboratories
having the specialized facilities appropriate to each of the different
measurement techniques. ”

The magnetic detection technique described in the present work
offers a means of checking measurements by uniaxial stress and hydro-
static pressure techniques. This technique permits the measurement of
transverse acoustic wave amplitudes, a feature of elastic measurement

not heretofore utilized.
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AFPPENDIX A

RESPONSE OF THE EQUIVALENT DETECTOR CIRCUIT

TO SAMPLE DISPLACEMENTS

Equation (63) may be derived from a consideration of the equi=~
valent electrical circuit shown in Figure 3. This circuit is redrawm
with its relevant electrical parameters as shown in Figure 17. The

current i. flows about lcop C, VO, R, and the current i, flows about

1 1 2
loop C, 02, R2, The following notation will be used:
C = instantanecusz gap capacitancé,:
CO = quiescent gap capacitance,
s = instantaneous gap width,
SO = guiescent gap width.

The last two parameters are related by the equation

8 = s, * Os sin ut, (76}

where
As = vibration amplitude of the sample,
w = angular frequency of vibration,
t = time.
VO’ Rl, R2, and 02 are depicted in Figure 17. Since the structure




Figure 17. Input Equivalent Circuit of the Capacitance Microphone Detector and Preamplifier
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formed by the detector button and sample end face represents a parallel

plate capacitor, we may write
W
CO = E_ 3 (TT)
0
=12 | T .
where ¢ = 8.86 x 10 in M. K. 8. units, and W is the area of the

center button in meterse. The instantaneous gap capaciftance will then

be

c=5. : (78)

With the substitution of Equation (76) for s, Equation (78) becomes

8
1_s8 _0 8
5= eW(l + 5 sin ot ), (79)
or
%=é—[l+vsin wb ], (80)
0

where v = éﬁ as in Chapter III.
0]

If Ql and Q2 are the charges on capacitors C and 02 respectively,
then the two loop equations are given by
dQl 1
Rl "ot %l=T (81)
and
% 9%
1
—_——t —+ = + = .
T c, " gy +Ql=0 (82)

The desired result is the time-varying voltage output of the detector



30

dQl

With the insertion of the expression for 1/C from Equation (80) into

" Equations (81) and (82), the loop equations.become

dQl

1 .
e ! ES[Ql * QL ey sin wb] =V, (84)
and
dQE Q2 1
REdT+§ +%[Q1+Q2][1+Ysm at ] = O (85)

If BEquation (84) is solved for Q, and then differentiated with

respect to time, the variables Q2 and dQE can be eliminated from Equation

dt
(85)., One then seeks a solution to the resulting second-order differ=
d
ential equation with variables Ql and e :
d291 By . o
[-RlRECO] —5= + Rl[RECOYlD cos ot - (1 + = )y sin wt (86)
dt 1
R C dq.
2 0] 1 i s
- (l+R—+-c—)]'d—_t——-E—l_l+Y sin th]Ql
1 2 2
CO
+V.[1 +=—+ vy 8in at - R,C, yw cos at] = O.
9] C2 270

We now assume a Fourier series solution to Equation (86) for

Q =n:20(an sin nut + bn cos nyk ). (87)

This expression for Q’_L is substituted into Equation (86), where one




9l

retains only the n = 0 and n = 1 terms. The resulting equation is

2 1 % o Y
[(RlRECOw - E_)al + le(l te E—)blz- o bg * VVO]51nfwt (88)
2 2 B 2
Co B 2 1
+ [-aR (1 + 5, + 'ﬁI)al *+ (RR,Cou - C—é)bl = RyCqy YoV, Jeos wt
R b C
y 2 1. .1 B, . 20 %,
+ [G(RRCou 02)5‘1 * SRy ye(1 + Rl)bl g, " Vot + Ce)]

+ {second harmonics] = O.

Since Equation (88) must be valid for all times &, we may equate se-
parately the coefficient of each sine, cosine, and constant term to
zero. The resulting three equations in the three unknowns ar‘bo, and
b. may then be solved for the desired guantities aq and bl. Since the

1

timesvarying output voltage will be Just

dq

V = Rl E%i = Rl[alm cos wht - bluasin wt] , (89)

the coefficient b, of the constant term in Equation (87) need not be

0
calculated.

After a great deal of time-consuming arithmetic, one finds that
the time-varying component of the output voltage of the capacitance

microphone detector capacitively connected to a preamplifier of giveﬁ

input impedance is given by




v

N A

C 1/2
|:(l EQ %2 * (RyCow - 'w%".cT')e]

12
For F = 30 MHz, CO = 25 pf., CO/C2 = 0.05, RE/Ri = 0.0k, REC =
180 radians, and RC = G x lOl+ radiang, this output voltage is just
YVO to an error of 0.5 per cent.
S3ince the measurement of importance in this experiment is the
amplitude of the second harmonic ultrasonic signal generated within
the sample crystal, it is absclutely essential that any second harmonic
signal generated by The defector itself be much smaller in magnitude
than the crystal generated signal. To determine whether or not this
particular detector fulfills this requirement, one can extend the
analysis of the previous discussion by considering the effects of in-
cluding the n = 2 terms in the Fourier solution of Equation (86). When
this is done, it is found that the ratio of the second harmonic voltage

amplitude V2 to the fundamental voltage amplitude V. is given by

5 c, -JL/2
|v2| 2‘{[(300203) + (v )"]
v, C, ) ]1]2 :

1
(z—— =~ 4R C w) +l+(1+—+—
[lRlCEUJ 270

1

(91)

R
[Ae3 (o R L)

C2 Rl

Since v is on the order of 10'h, this voltage ratio is approximately

equal to

o/, ﬁ%\{ - 0.5 % 107", (92)

with the same parameters as before. Thus, the second harmonic produced

92
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by the detector itself is at least 80 dB8. below the fundamental ampli-
tude. But since the second harmonic generated within the sample is
only 40 dB. below the fundamental amplitude, it is still scme 40 ¢B.
above the second harmonic produced by the detector.

Experimental verification of this conclusion was determined by
injecting an attenuated 30 MHz signal into the auxiliary detector in-
put Jack and decreasing the amount of attenuation until an cbservable
amount of 60 MHz output signal was produced. The results of this pro-

cedure bore out the validity of the above estimates.
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Sample: NaCl{100] Polarization: [100] Date: 10 Sept. 1970
2
PHV | CH | 8CL | VOLT | ATTEN Ay A7 A, K3
aB. | 1077 ca. 1o'lu cm® 10'8 em. | 1012 dyn/cm?
75 |1 20 |6.73 [70.35 | 0.759 0.576 0.527 -10.1
2 20 [95.2 |[70.50
7011 20 [7.07 |70.35 [0.723 0.522 0.478 -10.1
2 20 [105 |70.50
65 |1 20 |7.59 |70.35 | 0.673 0.453 0.420 -10.0
2 20 122 |70.50
60 |1 20 [8.10 |70.35 |0.631 0.398 0.36k -10.1
2 20 |138 |70.50
55 |1 20 |8.59 |70.35 {0.595 0.354 0.320 -10.0
2 20 157 |70.50
50 |1 20 19.4%0 [70.35 | 0.54k 0.295 0.270 -10.1
2 20 {186 |70.50
45 |1 20 [10.1 |70.35 |0.506 0.256 0.230 - 9.90
2 20 |218 |70.50
Yo |1 | 20 |11.2 |70.35 |0.456 0.208 0.200 -11.9
2 20 |274 |70.50 ‘
35 |1 20 [12.5 |70.35 |0.409 0.167 0.146 - 9.80
2 20 [338 170.50 - : -
Fund. Freq. = 27.0 D.M. = 29.3 MHz Vs = 0.5 volts
See. Harm. = 57.6 C.M. = 58.6 MHz - JF = 11.89
c = 25 pf-
Capacitance with Crystal = 160 pf. a = 3.8 cm.
Capacitance w/o Crystal = 135 pf L =2.6 cm.
Net Gap Capacitance = 25 pf. F = 2G.3 MHz
T = 8.0 i sec 5
X1 = 10 X2 = 2.5 Ky = 0.49 x 1012 dynes/em”
Figure 18. Sample Data Sheet Using the Capacitance Microphone

Detector
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Sample: NaCl[111] Polarization: {211] Date: 11 May 1971

PHV|CH|SIG | SCL| I B ATTEN.| Aq Ai A, Kz
wb/re| 9B 107 e, 10" en2| 10" em. 10*%ayn/
cm?‘.’
47 t1 |10 20 (1.83 | .120 65.6 [0.565 [0.319 0.532 |+0.229
2 |1.85 | 2.0|10 468 gk.3 | -
45 |1 |10 20 [1.88 | .12h4 65.6 [0.547 [0.299 0.491 |+0.226
2 {1.65]| 2,0|10 468 95.0
43 |1 (10 20 (1.99 | .129 65.6 |[0.526 |0,276 0.469 |+0.234
2 11.50( 2.0(10 468 95.4
41 |1 |10 20 |2.09 | .135 65.6 |0.502 [0.252 0.418 |[+0.228
2 f1.25| 2.0]10 .Lhes G6 .4 '
39 |1 |10 20 |2.20 | .142 65.6 |0.477 }0.228 0.360 |+0.217
2 [0.95] 2.,0|10 468 97.7
37 |1 |10 20 |2.30 | .1hk7 65.6 |[0.461 [0.213 0.336 |+0.217
2 [0.82] 1.0{10 468 98.3
25 |1 (10 |20 |2.52 | .161 65.6 |0.k21 |0.177 0.296 [+0.230
2 |0.68] 1.0|10 468 99.4
3% |1 |10 20 |2.61 | .166 65.6 0.L08 0;167 lo.264 |+0.218
2 10.55] 1.0|10 L4688 1100.4
31 {1 |10 20 [2.93 | .185 65.6 [0.367 |[0.13k 0.232 [+0.238
2 10.39} 0.5|10 468 )101.5
Fund. Freq. = 29.5 D.M. = 29.9 MHz Vg = 0.5 volts
See., Harm. = 61.3 D.M. = 59.8 MHz Fy = 29.9 MHz
£ = 1.0% cm.
X1 = 10 X2 = 4.5 T = 12.9 usec.
8 = 3.8 cm.
L =3%.1 em.
K, = 0.165 x 10'2 dynes/cn”
Figure 19. Sample Data Sheet Using the Magnetic Detector




Table 7. Amplitude Measurements in Sodium Chloride
Using the Capacitance Microphone Deteetor
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Propagation Polarization  Fundamental  Second Ag/Al2
Direction Direction Anmplitude A, Harmonic
Amplitude A2
(Angstroms) (Angstroms) (10-5 Engstromsnl)
(1001 [1007] 12.6 1.13 7.12
11.6 0.946 7.06
10.4 0,758 7.03
9,25 0.599 7.02
8.34 0.491 7.06
9,74 0.875 9.23
9.34 0.795 9.11
8.88 0.710 9.02
8.21 0.597 8.85
7.66 0.523% 8.9%
6.94 0.425 8.8%
6.30 0.352 8.89
5.57 0.276 8.88
4,86 0.206 B.7h
8.85 0.673 8.58
8.13 0.585 8.87
7.05 0.437 8.78
6.42 0.366 8.87
5,35 0.251 8.78
10.8 1.12 9.57
9.75 0.923 9.71
8.66 0.721 9.60
7.79 0.583 9.60
7.06 0.hée2 9.26
6.09 0.338 9.11
[1101] [110] 11.62 0.644 .77
: 1l.12 0.570 4.62
10.59 0.529 4.73
5.83 0.468 4.85
9.19 0.402 Y.76
8.40 0.349 4.95
7.84 0.304 . gl
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Table 7. Amplitude Measurements in Sodium Chloride
Using the Capacitance Microphone Detector (continued)

Propagation Polarization Fundamental Second AQ/AIE
Direction Direction Amplitude A Harmonic
Amplitude A2
(Ingstroms) (Angstroms) (lO-5 ﬁngstroms-l)
[110] (110] 12.7 0.773 L.77
11.6 0.655 4.89
10.7 0.563 4.90
9.91 0.481 4.90
19,00 0.387 4.79
8.12 0.318 4.82
14,5 0.917 4.39
13.1 0.758 4.40
12.1 0.6L8 L4l
©11.1 0.549 4. 43
10.0 0.451 TS
9,47 0.400 TS
8.43" 0.321 .52
10.24 0.547 5.21
9.57 0.485 5.29
8.93 0.L28 5.37
8.37 0.367 5.24
7.65 0.310 5.31
7.05 0.263 5.31
6.24 0.213 5.46
[111] (1111 11.91 0.241 1.70
11.35 0.219 1.70
10.70 0.194 1.69
9.95 0,169 1.71
9.07 0.139 1.69
13.67 0.31k4 1.68
12.43 0.260 1.68
11.13 0.211 1.70
10.26 0.176 1.67
9.27 0.156 1.84
8.97 0.139 1.73
8.26 0.118 1.73

7.53 0.097 1.71
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Table 7. Amplitude Measurements in Sodium Chloride
Using the Capacitance Microphone Detector (continued )

Propagation Polarization  PFundamental  Second AE/A12
Direction Direction Amplitude Al Harmonie
Amplitude A

‘ 2
(Ingstroms) (Angstroms) (ZLO-5 Angstroms_l)

(111] {111] 8.62 0.155 2.09
8.11 0.138 2.10
T.52 0.119 2.10
6.89 0.101 2.13
6.46 0.088 2.11
6.07 0.081 2.20

11.86 0.298 2.12
11.50 0.279 2.11
10.79 0.243 2.09
10.42 0.222 2.05
9.79 0.198 2.07
G.1h4 0.170 2.04
'8.59 0.148 2.01
8.18 0.134 2.01
7.50 0.11k 2.03
7.01 0,097 1.98
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Propagation Polarization  Pundamental  Second

Directicn Direction Amplitude A Harmonic
Amplitude A

1

Ay/hy

2

( ingstroms) (Angstroms) (lO-Bﬁngstroms-l)

1007 {100] 16.6 0.222
15.2 0.194
13.4 0.17h4
12.0 0.146
11.3 0.119

9.9 0.100
23.6 0.405
22.6 0.372
21.7 0.362
20.8 0.330
19.2 0.30k4
17.9 0.270
17.0 0.244
16.2 0.227
12,7 0.141
10.4 0.094
4.6 0.191
16.7 0.257

(1111 (1117 18.9 0.448
16.6 0.360
15.7 0.301
13.4 0.245
12.6 0.191
11.2 0.181
10.0 0.141
23.3 0.430
21.5 0.378
19.0 0.313
17.3 0.276
15.0 0.276
13.6 0.193
13.1 0.179

8.08
8.36
9.68
10.01
9.38
10.02

.

W Moo~~~
PG =l ONFEFEFR NI
FNWON OO &\ O\

HHEEEHR -
RO D
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& .

0.795
0.818
0.868
0.927
1.23
1.05
1.0k
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Table 8., Amplitude Measurements in Sodium Chloride
Using the Magnetic Detector (continued)

Propagation Polarization Fundamental  Second AE/Al
Direction Direction Amplitude Al Harmonie
Amplitude A2

(Ingstroms) (Angstroms) (IO-Bﬁngstroms-l)

(1117] [111] 23.2 0.471 0.875
22.7 0.4h2 0.858
21.4 0.406 0.885
19.5 0.368 0.964
18.6 0.348 1.01
17.7 0.313 1.00
16.8 0.292 1.02
15.7 0.260 1.06
14.9 0.244 1.10
13.9 0.214 1.10

(1117 (5117 5.65 0.0532 1.67
5.47 0.0491 1.64
5.26 0.0469 1.70
5.02 0.0418 1.66
4.77 0.0360 1.58
L.61 0.0336 1.58
L.21 0.0296 1.67
L.,08 0.0264 1.58
3,67 0.0232 1.73
3.50 0.0198 1.62
3,20 0.0166 1.63
3.00 0.0143 1.59
6.40 0.0611 1.49
5.73 0.0520 1.59

- 5.p2 . 0.0413 1.51
I.50 0.0328 1.60
4,08 0.0258 1.55
3.53 0.0187 1.50

. 3,05 0.0148 1.59
2.74 0.0121 1.61
5.59 0.0585 - 1.87
4.91 0.0481 1.99
4. L7 0.0369 1.84
3.93 0.0277 1.79
3.51 0.0220 1.79
3.91 0.0277 1.81
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Table 8. Amplitude Measurements in Sodium Chloride
Using the Magnetic Detector (continued)
Propagation Polarization Fundamental Second Ae/Al2
Direction Direction Amplitude Al Harmonic
. Amplitude A 3, -1
(Angstroms) (ingstroms) “(10 ~ Angstroms )
(1111 [211] k.27 0.0378 2.06
4,65 0.0487 2.26
5.02 0.0592 2.3
[221] [I15] 1.74 0.0141 h.66
1.66 0.0136 L.g5
1.62 0.0129 h,g93
1.55 0.0115 L.80
1.47 0.0107 L.ou
1.9 0.0156 L.20
1.86 0,014k 4.16
1.78 0.0136 L.32
1.66 0.0129 L.60
1.5% 0.0123 5.24
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