In precenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with i1ts regulaticns governing
materials of this type. I agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose directicn it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying cr publication is solely for schelarly purposes
and does not involve potential financial gain. It is under-
stood that any copying from, or publication of, this dis-
sertation which involves potential financial gain will not
be allowed without written permission.

A\

7/25/68



https://core.ac.uk/display/4722872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EYPERFINE STRUCTURE IN THE ROTATIONAL SPECTRUM
OF ASYMMETRIC-~TOP MOLECULES CONTAINING TWO

IDENTICAL QUADRUPOLAR NUCLET

A THESIS
Presented to
The Faculty of the Graduate Division
oy

William Arnall Little, Jr.

in Partial Fuifillment
of the Requirements for the Degree

Doctor of Philosophy in the Schocol of Physics

Georgla Institute of Technology

December 1969



HYPERFINE STRUCTURE IN THE ROTATTONAL SPECTRUM
OF ASYMMETRIC-TOP MOLECULES CONTAINING TWO

IDENTICAL QUADRUPCLAR NUCLET

Approved:

Date approved by Chairman: / q Dec. 19¢ q



ii

ACKNOWLEDGMENTS

The author is grateful to Drs., J. Q. Williams and T. L. Weatherly
Tor their supervision, patience and encouragement in this work.

He also wishes fo thenk Professor A, L. Starrett for reading
the thesis,

A large debt of gratitude is owed to Mrs. Ruby Mainor for her

patience and excellence in typing the manuscript.



TABLE OF CONTENTS

ACKITOWIEDGMENTS & & & o o + o o o o o« o »
IIST OF TABLES & 4 s o o o o o o » o o
ITST OF TLLUSTRATIONS v & o ¢ o « o o o
Chapter

I. INTRODUCTION & v & o o o o o o

TI, EXPERIMENTAL APPARATUS AND TECHNIQUES

Equipment Layout
The Waveform Eductor
Sample Preparation and Use
III - mORY- - . - - - - - - - - - » -
Asymmetric-Top Theory
Quadrupole TInteraction Theory
Relative Intensities of Hyperfine
Iv. DATA ANATYSTS & 4 o o o o 2 o s &
V. CONCLUSTONS AND RECOMMENDATTONS .
-APPENDIX A » L] - - * - L] L] - L] - - - - L]
APPENDIX B & ¢ o o & o 5 s s s s o o o =
APPENDIX € & 4 v 4 e 4 v o o o o o o o
APPENDIX D v 4 4 6 4 4 o ¢ o o & o o = &
APPERBIX E . . & 4 v 4 o 4 4o & o o o &
ITTERATURE CITED: o & v & o o « o o o & &

VITA. v v o = o o o o s o « « o« 2 s « +

iii

Page
ii

iv

17

ko
L7
ko
77
83
87
93
95
99



iv

LIST OF TABLES

Table Page
1. Quadrupole Splittings in the Rotational
Spectrum of SC4p Which Were Used to "
Detemlne Xx ’X ,y Xy ;yp » XZ ;Z ,y a,nd any A & & 8 & s u
2. Species of Wavefunctions Under Operations
of the Four-Group o+ o+ « o o « o s s o s s 5 s s s & 53
3. Matrix Elements of the Direction Cosines
in a Symmetric-Top Representation . + + v « ¢ o « 90
b, Measured Frequencies of Four Transitions

in 85202 255 * 4 = 4 8 & 4 ® & & & & & B 8 ¥ 8 & & & @ 95



LIST OF ILLUSTRATIONS

Figure Page
1. Block Diagram of the Microwave Spectrometer . . . . 6
2. Dual-Trace Oscilloscope Presentation For Data-

Taking - - - L] L] » L] L] L] L] - L] L] * L] L] » - - - - - lo
3. Block Diagram of the Waveform Eductor . « « + « & & 11
L, The Memory Subsystem of the Waveform Eductor . . . 13
5. The 2 o d 20 Transition in SCfa2 With a New

Sample 4 v 4 4 2 e 2 s e o8 o w e e s e s s e a e Iyl
6. The 2_, — 2, Transition in SCg, After Twenty

Minutes . 4 & ¢ & ¢ o o o o & o & s « 2 & @« o s « » Lo
T The Principal Inertial Axes and The Principal

Axes for the Field-Gradient Dyadic in 8022 o v e s 52



CHAPTER I

TNTRODUCTI.ON

The theory leading up to the study of the hyperfine structure
of the asymmetric rotor spectrum has been developed over a pericd of
g years., The theory of the rotational spectrum of an asymmetric
rotor was presented in complete form by King, Halner and Cross (1),
including discussions of wavefunction symmetry and a perturbtation
method of obtaining rotational energy. In a second paper on the
asymmetric rotor, Cross, Hainer and King discussed the selection
rules for the rotor (2). The method used in this work for obtaining
the rotational energy levels of the rotor differed from that of the
above authors in that the Hamiltconian matrix for each J level was
diagonalized by a computer to obtain energy eigenvalues instead of
using second-order perturbation theory.

In 1935 Casimir (3) treated the interaction between a
quadrupolar nucleus and atomic electrons for a single atom and
this was extended to the case of a single quadrupolar nucleus in
a symmetric-top molecule by Low and Townes (4), The case of two
quadrupolar nuclei in a symmetric rotor was treated by Bardeen and
Townes {5) using the vector coupling algebra developed by Racah (6),
(7), (8) a few years before to couple the spins of the nuclei.
Bersohn (9) derived expressicns for treating the guadrupcle interac-

tion of two or more nuclel in terms of the algebra of irreducible



tensor operators which was also developed by Racah in the above papers.
More recently Flygare and Gwinn {10) developed expressions for diagonal
and off-diagonal matrix elements of the quadrupole Hamiltonian for an
asymmetric rotor in terms of parameters which are explicitly evaluated
in thils work.

The purpose of this research is to completely develop and test
the theory of the quadrupole interaction in an asymmetric rotor
molecule containing two identical quadrupolar nuclei. The observed
spectra of such molecules contains transition patterns displaying
varying degrees of asymmetry. The diagonal matrix elements of the
gquadrupole Hamiltonian obtained in the theory when applied to a
molecule through first-order perturbation theory lead only to pre-
dicted patterns which are symmetric for even-t transitions. Thus,
it was hoped, the derivation of off-diagonal matrix elements and their
application through second-order perturbation theory would lead to a
theoretical explanation of the slightly asymmetric patterns in even-t
transitions. The off-diagonal elements involve the off-diagonal
element of the quadrupole coupling constant tensor, xx'y" (as well
as the diagonal elements), and accurate predictions of asymmetric
transition patierns should lead tc a determination of this otherwise
unobtainable physical parameter, This component of the tensor is
related through a transfcrmation to the angle between the molecular
symnetry axis and the z-principal axis of the dyadic. (See Figure 7).

The quadrupcle moment of bromine is large enough to lead to
second-order, asymetric effects of a magnitude which should be

easily measurable, e.g., 0.5 to 1 MHz. Originally it was intended



to observe the spectra of asymmetric-tops containing bromine such as
CHzBrz and CFzBrz. However, these molecules were found to have high-J
transitions of large intensity in the same region as the desirable low-
J, low intensity transitions., Both these molecules possess two sets
of identical nuelei. The Exclusion Principle applied to them results
in many more allowable states than would exist in a molecule with just
one palr of identical nuclei. The complication of the resulting
spectrun of both molecules prevented assignment of either spectrum.

Attention was then directed at 8520£235 for two main reasons,
even though the quadrupole moment of chlorine is considerably smaller
than that of bromine; (1) The only previously published work on SCiz
in the microwave region was done in this laboratory by J. T. Murray
{11). There was therefore a certain degree of familiarity with the
vehavior of the molecule., Also the spectrum of SCL2 in the microwave
region had been assigned in this laboratory on basically the same
apparatus as was to be used in this work. (2) Murray's work had
analyzed the quadrupcle spectrum of the molecule to first-order and
thus predicted symmetric patterns of tramnsitions. Several transiticns
had been observed to be asymmetric, and, it was hoped that employing
second-order theory would lead to a better determination of the
diagonal elements of the coupling constant tensor as well as a first
determination of the off-diagonal element.

Chapter IT contains a description of the general experimental
setup of the microwave spectrometer ag well as a fairly detailed
treatment of the Waveform Eductor, a new piece of apparatus in this

laboratory, which was used in data taking.



Chapter II1 discusses the theoretical development of the
quadrupole interaction in the asymmetric-top with two identical
nuclei. Parts of this theory may be found in many references,
however the entire theory with a computer program for calculations
is presented here,

The analysis of experimental data is presented in Chapter IV,
Tollowed by a discussion comparing the observed spectrum of SCgo
with the theoretical predictions in Chapter V. The Appendices con-
tain derivations, examples and programming necessary for a complete

presentation of the problem.



CHAPTER IT

EXPERTMENTAT, APPARATUS AND TECHNIQUES

The apparatus used in this work involved a Stark-modulated
spectrometer which has been described in various forms by several
authors {12), (13). An important difference in this work, however,
is that data was taken with the aid of a Princeton Applied Research
Corporation Waveform Eductor, a device designed to extract repetitive
wavelorms from noise.

This chapter will provide a description of the apparatus from
the point of view of subsystems, a more detailed discussion of the

Eductor, and a section on preparation and use of the sample of SCLs,

Equipment Layout

Figure (1) shows the general layout of the apparatus involved in
the microwave spectrometer, It has been divided inte Tour main sections
or subsystems which will be describved below.

The Microwave System - Number One

Microwave energy is provided by a reflex klystron which may be
electrically swept rapidly, or mechaniecally or electriecally tuned
slowly over the frequency range of interest. After passing through
monitoring equipment the energy enters the absorption cell through
hermetically sealed mylar windows.

The cell is about seventeen feet of rectangular hollow waveguide

in which a conducting plate is supported by teflon strips. The plate
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is parallel to the broad dimension of the waveguide and, with the sides
of the guide, forms the load capacitor for the Stark voltage generator.
The gas to be investigated is admitted into the guide at one end. It
may be kept at low pressure - typically in the range 30 to 70 microns -
by pumps attached to the guide, and at low temperature by placing dry
ice on the guide. The net energy coming out of the absorption cell
passes through ancther mylar window intc a crystal detector.

The Stark Modulation System - Number Two

An 85 kHz square wave voltage is applied between the conducting
piate and the walls of the absorption cell by the Stark sguare wave
generator. If the amount of incoming miecrowave energy absorted by the
gas is different for the Stark-field-on case and the Stark-field-off
case, the microwave power at the detector will fluctuate at the rate of
85 k¥Bz, The magnitude and phase of the detected signal, with respect
to the original 85 kHz signal from the generator, is determined by
phase comparator circuitry in the 85 kHz receiver. This has been well
described by Reinhart (14). Absorptions which occur during the field-
on half-cycle of the square wave produce a negative output signal,
while those occurring during the field-off half-cycle produce a
positive output. Thus the spectrum of the molecule resulting from
the Stark effect can be distinguished from the field-free spectrum.

It should be noted that the amplitude of the sguare wave is
variable from zero to one thousand veolts, so the magnitude of the
Stark effect is controllable. This, plus the different pclarity of
the field-on and fileld-off signals, would lead one to hope that he

might eliminate the Stark effect from consideration. One would hope



to move the Stark spectrum far enough away from the field-free spectrum
so that the Stark spectrum could be neglected. In some transitions
the Stark veltage could not be increased encugh tc accomplish this
because the cell would arc-over past a certain voltage,

The amplified output of the phase sensitive detector 1s sent to
the spectrum display apparatus.

The Spectrum Display System - Number Three

The output of the phase sensitive detector may be applied to one
channel of the dual-trace oscilloscope directly, or it may be analyzed
by the Waveform Fductor and then applied to the oscilloscope. ({The
operation of the Fductor will be explained in more detail below).

The oscilloscope 18 swept horizontally on both traces by the
same sweep generator that sweeps the klystron. The amplitude of the
sweep may be altered, thus changing the frequency range over which the
klystron is swept. The slope of the sawtooth sweep may be inverted to
change the direction of the sweep in terms of frequency. The need for
this arises because in sweeping over the absorption line the slight
time delay suffered by the line in the lock-in output filter causes a
small displacement of the line peak from its true positicn, Inversion
of the sawtooth causes the apparent displacement of the line to be of
the same magnitude but in the opposite direction, Data taking involves
both types of readings.

The other trace of the dual-trace oscilloscope displays a
fregquency marker which is produced by the Frequency Measurement System.

The Frequency Measurement System - Number Four

Frequencies are measured Ty mixing the output of the klystron




and a Micro-Now frequency multiplier chain, The fundamental frequency
of the multiplier chain may be set to any frequency in the interval
4,979 MHz to 5.006 MBz, This frequency is measured by a Hewlebt-
Packard frequency counter., The counter operates by counting the
oscillations of the input signal over a very exact time gate which
is determined by an internally generated 1 MHz frequency from a crystal
controlled oscillator. The frequency of the oscillator in the frequency
counter is checked continuously by comparison with a frequency received
from WWVB or WWVL in Boulder, Colorado. The beat note between the
reference frequency and the oscillator frequency i1s plotted by a VLF
comparator and allows an immediate estimate of the accuracy of the
counter.

As 1s deseribed by Reinhart (15), strong harmonics of the multi-
plier chain are found at about every 50 MHz. Some multiple of this
is mixed with the klystron frequency to produce a beat note. When
the beat frequency coincides with the frequency at which the receiver
is set, the receiver produces an audio signal which is displayed on one
trace of the dual-trace oscilloscope along with the signal from the
absorption cell. The pesition of the marker was varied in this
experiment by changing the fundamental frequency of the multiplier

chain. The oscilloscope display looked like Figure (2).

The Waveform Eductor

A simplified block diagram of the Eductor is shown in Figure (3).
It consists of four main subsystems, the signal input channel, the

memory, the timing and control system, and the signal output channel.
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A signal consisting of a repetitive waveform plus noise is
applied to the signal input channel where it is amplified and pre-
filtered to remove high freguency components which are beyond the
1 per cent of sweep time resolution capability of the instrument,
The signal i1s again amplified and applied across a changeable time-

constant RC-circulit. The "analyze and readout"

position of the

signal mode switch then causes the signal te be applied to the signal
bus of the memory subsystem, which is a common line for +the 100 channel
capacitor memory.

The memory subsystem shown in Figure (4} includes 100 capacitor
memory channels each of which consists of a five microfarad capacitor,
one end of which is grounded and the other end of which is connected
to the signal bus through a field-effect transistor gate, During a
sweep the Timing and Memory Control Subsystem consecutively opens
each of the gates for 1 per cent of the sweep time, and the memory
capacltors charge toward the average level of the signal in that
particular frequency interval. After several sweeps have occurred
each capacitor will be charged to the average of that voltage applied
to the time-constant resistor over the appropriate intervals, and the
repetitive portion of the input signal will have been stored as 100
consecutive voltage levels or pedestals. It is this series of
pedestals which is coupled to the signal output channel during each
sweep.

During any given sweep, the signal on the signal bus at any
instant will be the voltage to which the "on" memory capacitor is

charged at that Instant. This signal, which comprises the memory
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contents, is applied to the input of the Signal Output Channel as the
sweep advances, The signal is then amplified and then may or may not
be smoothed at the choice of the operator. The smcother is a series
of two filters which integrate or smooth out the output signal sco that
it 1s no longer pedestaled but continuous. Tinally the output signal
is amplified and displayed on the dual-trace oscillcscope.

The Timing and Memory Control system steps the memory, triggers
the sweep, and determines the sweep duration among other functions.
The stepping of the memory is provided by a ring counter which
sequentially unlcocks the memory gates. A clock coscillator provides
the ring counter drive and determines the sweep time., One may vary
the frequency of the clock oscillator manuaily so that the oscillator
period is maintained at l/lOO of the selected sweep time. The
oscillator is turned on and off by logic circuits which sense the
operating condition at any moment, such as the state of the trigger
circuits, whether or not delay has been selected, and whether or not
sweep is occurring. An external trigger is provided by the sweep
generator in Figure (1) which coincides with the frequency used to
sweep the klystron and the various oscilloscopes. The trigger pulse
may be delayed by a2 selected time which, in effect, selects the
portion of the sweep range toc be analyzed by the BEductor. The
trigger pulse is applied to a trigger gate which advances the ring
counter and starts the sweep.

Because the random noise has been averaged out, the frequencies
of lines which were difficult to see in the lock-in cutput are easily

measured in the Eductor output. The Eductor will respond to effects
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which take a long time relative to the sweep time such as klystron
frequency drifts arising from temperature variations. The amount of
response is dependent on the value of the time-constant resistance in
the Signal Input Channel. It was decided to have this time constant
as small as possible so that such effects would average ocut cver the

repetitions involved in taking data.

Sample Preparation and Use

The commercially prepared sample of 8C{z used in gathering data
for this work was found fo decompose in ths bottle as well as in the
waveguide while the experiment was in progress., A discussion of the
dissociation of the molecule may be found in a paper by Lowry, McHatton
and Jones (16). As a result certain techniques for sample preparation
and use were arrived at which will be menticned here.

It was found advisable to prepare the sample by pumping on the
commercial liquid for several minutes with the vacuum pump attached
to the wavegulde, The liquid was kept at dry ice temperature during
this process, This appeared to remove gasecus decomposition products
of the sample which had previously formed. However, it is thought
that* the primary decomposition process in SCLz at dry ice temperature
and low pressure obeys the equation 2304z — 52042 + Clz2, =0 that
prolonged pumping will remove the chlorine from the right-hand side
of thils eguation, thus forcing the decomposition of SClz, and

leaving the undesirable impurity S20fz. Therefore it is not

*
A private communication from Dr, D. J. Royer, Department of Chemistry,
Georgia Institute of Technology.



recomended that the sample be distilled to half its original volume
as suggested by Murray (11). Fractional distillation of the commer-
cial liquid would be feasible because of the large differences in
boiling points of SClz, S2Cfz2 and Cfz. This would Ilncrease the
initial concentration of 8Cfz in the sample hut the disscciation
process guoted above would still occur, resulting in the problems
mentioned in Chapter IV,

The distilled sample was admitted fo the cell, which was
surrounded by dry ice, by opening the stopcock of the sample holder
while the pump was on and the liquid still at dry ice temperature.
The sample was slowly allowed toc warm up to room temperature by
lowering the dry ice away from the holder. (SCgz has a very low
vapor pressure at dry ice temperature). After & fairly strong
absorption line had appeared on the dual-trace oscilloscope, the
pump was shut off and the sample shut off and placed back in the
dry ice.

The pressure in the cell rose as the S5Clz decomposed as ex-
plained above. The cell had to be pumped out when the pressure
reached 90 or 100 microns to prevent arcing of the Stark cell at
high voltages., The sample had to be replaced about every hour be-
cause of decomposition, depending on how much was initially admitted

to the guide.

16
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CHAPTER 111
THEORY

The total Hamiltonian operator for a molecule including a

quadrupole interaction may be written

H= Hez + Hvib * Hrot * HQ ’

where the He and Hvi are cperators concerned with electronic and

AL b

vibrational energies. In the miercowave region only H the rota-

rot’
tional Hamiltonian, and any interactions which may be treated as

perturbations on the rotaticnal Hamiltonian such as H., the quadrupole

Q’
Hamiltonian, need be considered. The object of this chapter will be to
apply second-order, non-degenerate perturbation theory to the calcula-
tion of the rotational plus quadrupole interaction energy of an
asymuetric rotor molecule with two identical quadrupolar nuclei.
This will involve determining a form of the asymmetric-top wavefunction
and calculating the dquadrupole matrix elements between different rota-
tional states of the molecule.

The asymmetric-top theory outlined here may be found in detail
in several references (17), (18). The quadrupole interaction theory
presented employs the notation used by Wolf (19) with regard to the

symbols of vector algebra, but follows the general development of

Flygare and Gwinn (20).
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Asymmetric-Top Theory

The rotational Hamiltonian for the symmetric-top is given by (21)

where P and Pz' are operators for the total and z’- (or symetry-axis)
component of angular momentum of the rotor, respectively. The quantities

IB and Iz' are principal moments of inertia, usually chosen sc that

i > ’ =
and if IB IZ then Iz' IA

The eigenstates of the Hamiltonian operator may be taken to

otherwicse I - = 1.
Z C

be eigenfunctions of the three commuting observables PE, Pz, and F,,
where %Z is the operator for the space-fixed Z-compecnent of angular

momentum. Thus ohe obtains

\?S = YS (J)K)M) 2

where

1

e ¥q (T,K,M) J(J+1)h2 ¥ (T,5,M) ,

il

P+ Y¥gq {J,K,M) = K h ¥q (J,K,M) ,
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and

E. ¥

" (T,K,M) = Mh Yo (J,K,M) .

5

The Hamiltonian for the asyrmetric-top has the Torm

where IA < IB < IC. Now, however, Pz' does not commute with the

Hamiltonian and PE, ?Z and HA must be taken as a complete set of
commuting observables. Wang (2P°) has suggested that in order to

solve the resulting Schrodinger equation,

the asyrmetric-top wavefunction shouid be expanded as a linear
combination of symmetric-top wavefunctions. When this is done the
resulting wavefunmction is an eigenfunction of PE and EZ with the
same eigenvalues as listed above for a symmetric-top function, that
is, J and M retain their identity as good quantum numbers. So the
asymmetric wavefunction may be written

J

¥, (J,7,M) = K§ S Ay YS(J,K,M)

where 1 is related to the Hamiltonian operator's eigenvalue, and the

fyp ATe the expansion coefficients. When one requires that the above
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wavefunction be an elgenfunction of the H

a operatcr, one obtains by

crthonormality of the eigenfunctions EJ+1 simultaneous equations for
the aKT'S for each value of J. The matrix cbtained from these
equations is called the rotational Hamiltonian matrix and when it is
diagonalized it yields 2J+1 eigenvalues for HA which are enumerated by
T, the largest eigenvalue being assigned 1 = J, the next largest being
assigned the value 7 = J-1 and so forth., The matrix elements of HA

may be obtained from angular momentum algebra (23),

Quadrupole-Interaction Theory

The average orientation of a non-spherical charged nucleus with
respect to the electronic bonds in the molecule will determine the
magnitude of a small quadrupolar energy correction to the rotational
energy of the molecule.

The Hamiltonian Operator

The electrostatic interaction between a nucleus and the electrons

in & molecule is given by (24)

where e is the electronic charge, ;ei is the position vector of the
ith electron in a space-fixed frame, and ij is the pesition wvector
vector of the jth proton in a space-fixed frame, The sun is over all

the protons in the nucleus and all the molecular electrons.
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Tt may be shown (25) that

1 © -(4+1) )
— — = T (r.)) (r_ )" P (cosg)
F.o-%, =0 °F 3’ T ’
el ~ "pj
(7,51< 17y )

vhere Pﬁ(cose) is a Legendre polynomial and 8§ is the angle between

— — .
rei and r 3 Thus one obtains

H= -e r (r )-(£+l) (rpj)ﬂ Pz(cose) .

s s el
i,3,42

The term with £=2 is called the guadrupcle interaction term of the

series, therefore one has

The spherical harmonics, Céﬂ)(mje); are such that (26)

2
P (coss) = £ (-D)" 4 (4. ,6.) ¢ (9.8.) ,
2 — m i‘vi =1 J7J

where N and 6, are the polar coordinates of Fei’ and Qj and 93 are

the polar coordinates of ;pj' The quadrupole Hamiltonian ther becomes



e2

(2) 2 (2)
‘E _—_3 Cm (CPi’Bi) J; e rpj C_m (CPJ:QJ-) .
el

From the theory of spherical tensor operators {27) one has

that the dot product of two such operators is defined by

2
A-B= ¢ ()" Aéﬁ) Bgi) .
)

So that one can express the Hamiltonian operator as

2)

2
H o=A-B= 5 (-1)% Aé?) BEm
m=-

2

where
(e o
e T ORI (1)
i(r .
ei
and
(2) 2 A(2)
B ? e 7 c (wj,ej) .

Matrix Elements of the Hamiltonian

The quadrupole interaction is an internal interaction which,
as explained above, will involve the nuclear orientation and the

electronic enviromment of the nucleus. The former is related to
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the nuclear spin vector T and the latter to the rotational angular
momentum vector J, Thus a total molecular wavefunction is needed
involving rotation of the molecule and spin of the nuclei., An

asymmetric rotor state function will then be written
(J:T)I :F:M) g

¥

where

and fl and fé are the spins of the two quadrupolar nuclei, and

el
+
Hl
I
=l

Since the operator for F, the tctal angular momentum vector, commutes
with the guadrupcle Hamiltonian, there are no matrix elements of the

quadrupole Hamiltonian between states of different F. The matrix

elements to be considered then are of the form (J’t'I°F M’|A-B|JTIF).
According to Edmonds (28) this may be expressed as
, » Pl '+ L
(377 T FM|AB| ITIFM) = (-1)'3”rI FW(FI J:12J1)
oA T Tl Bl (2)

where W(FI'J*:2JI) is a six-j symbol (see Wolf (29) or Edmonds

P. 97). One notes that the right-hand side shows no M dependence
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since the interaction cannot depend on the orientation cf the
molecule with respect to a space-fixed frame. One may then write
that {30)

(J'Tﬁw'[AéE)|JTM) = () Myreramron) (Tt

A‘lJT) .

Here x(J 27;-M°0M) is a three-j symbol (see Wolf (31} or Edmonds
p. 46). A property of the three-j symbol x(glJEJB; mlmEmB) however

is that it is zero unless (32)

80 the sbove expression becomes

MeT (2

It
S (T 72T ; -MCOM)

where, from equation (1),

Aég) -t ? (TEi)—B CéE)(wei’eei) .

Now, it may be shown that (33)

where 7 is the space-fixed Z-axis. The field gradient coupling
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eq .y is defined as (3h4)

<J"T’M’

€4z .3 %EHMLM =M=J,

(T3 |V, | T7T) o

One should note that since the reduced matrix element (J 't

|Al}aT) is
independent of M’ and M, any matrix element involving Aée) in equation
(3) may be used in evaluating (J’7’||A]|Jr), so eqy.; Will suffice.
This gives
J=J7
-1)7 7 eqg

Allgy = . (k)
2x(J 2F 5 -J0J)

<J,'T'l

Now consider the second reduced matrix element in equation (2}.
The reduced matrix element of an operator B acting on an eigenvector
u(jlml) in a scheme in which u(jlml) ig coupled to u(jgm

2)
by (35)

is given

0 *

A , Jl +j2+j+k
(37735 37113l aqa59) = (-1)

(2540025 *+0) /2003, %3 73,2350 <3y 71131 13)

where k is the order of the tensor operator. Also the reduced matrix
element of B operating on u(jgmg) in a scheme in which u(jame) is

coupled to u(jlml) is given by (35)
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s L Jy*dp*d e
(31357371 Bl 3 30> = (-1)

L(ag+1)(2g +1) ]l/QW(jg‘j “31233k) 7L IBl 1y -

Thus, for nucleus one,

(TB]{1) = (1 T,r7|{B|[1,T,T) =

(-0 (era)er ) o Findey Slleid

and for nucleus two,

@By = <111 |2) 1T, =
F e Mg R QB - )

Applying Edmond's equation 5.4.1 (3C) to the operator B gives

>

) il

J
am) = (<)

AR -
(31 = 7|8y

so that
el
(l)l 2<5m,|

(2)),2
- 5oy |13, |5 m)
<%||B|l%> - g 115 g m

3 4 3. -
X(g 2 Z3-my Oml)
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Qnce again, the three-j symbol is non-zero only if ml’ =m . Tt can
be shown (36) that for the state in which the nucleus has the maximum

projection of its angular momentum along the Z-axis

(2) _eq
B 5

where Q is known as the guadrupole moment of the nucleus. Thus one has

s

=5 eQ (6)

o [P
o Fop

pa—

Combining egquations (2), (&), (5) and (6) above gives

AT HRAL
{J’7’T‘F|A*B|JIF) = (;12-2- W{FI’J *:2JT)

w(g- I’ %;I g 2V [(2T+1) (21 ’+l)]1/2(5)1/2

[eP(ay 1y, 8 (-1)" + e .0),0,(-1)7 ]

w(J2J %5 JO-J)

If I° =1, I+ the part in brackets becomes

(-1 {e%(a0p), 9 + e (a.0),8] = ()T,
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and if T’= T4l the part in brackets becomes
I 2 2 -
(-1 1eP(ay00),0) - Playp)ya] = (DY
Thus, finally one obtains

J4T “+F+1
(J°7°IF|A B|IrIF) = (“%) W(FI 'J’:EJ‘I)W(-S—I ’%:Ige)

ol

[(2r+1)(21 “+1) ]1/2(5)1/2 X

% (J2T *3J0-T)

where the gquantities Xi depend on I’-I,

The Quantities &

Up te this time the discussion has been framed in terms of
asymmetric-top wavefunctions., However, tc evaluate Xi, which are
functions of J,J°, I, and T°, one must go to a symmetric-top
expansion of the wavefunction.

It should be noted first that the above definition of (quj),
the field gradient coupling constant, assumes J < J’ since if this
were not true, the state on the left-hand side of the element could
not exist, i.e., M’ cannot be greater than J‘. Tt turns out that
(q;.5) will be zero if J > J’. Likewise the three-j symbol in the
dencminator of equation (7) goes to zerc if J > J°. Therefore the
expression for the second-order quadrupole matrix element becomes

indeterminate then if J > J° because M’ > J*, This difficulty is

overcome by calculating
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(JTIFM|A-B|J 1 T FM’) for M* =M= J°

instead of

(J'T’I)FM'

A-B|JrTFM) with M" =M = J

if J >J°. The former must give the complex conjugate of the latter
since the quadrupole interaction cannot depend on the orientation
of the molecule relative to a space-fixed axis, and the guadrupole

Hamiltonian is Hermitian.

The ZZ-term of the field gradient tensor is given by (57)

5 o 2y 2
2V _ o p 3 L2 AV L2 3V L, 2V
5= Qyxr Tzt gy 2z %x’ %y’ 3xay
377 *axe 7oy F 2" 32 % voax"3y

2
o A L L P n A

3y dz”
where the Oﬁj's are the direction cosines relating the space-fixed

Z-axis to the molecular principal axes indicated by primes. Using

the abbreviation

the field gradient coupling constant becomes
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(oF

gt Urgs (a?Zy,> LAV (o, NV

+=

2 # qu'> Vx'y" 20y By ) Vg

-+

2<aZy * % 2% vy ‘2’

where the brackets mean the matrix element for the state M* = M = J.
The field gradient tensor in its mclecular principal axis
system may be obtained from the field gradient ftensor expressed in
its principal axis system by means of a similarity transformation
(see Appendix B)., When this is done for both nuclei it is foumd that

v ,(];)= Vv ,(2»)= V - .
X X X X

xx

v, Doy By

¥y T vyt T vy

v Doy By
Z Z Z

v v By,

x’y xy* T x’y



where the superscripts refer to nucleus mmber. Thus the expression

for (qJ,J) for nucleus one becomes

(qJJ —(o? ,;V,X,+(o? ,)V,y,

* <aFZz'> Vprgs T 20, qu’> Vx'y' ’
and for nucleus two

_ 2
(qJ;J)g = <O‘EZX'> VX,X' + <a Zy,> Vy»y,-

P2 .
+ (Ct ZZ;) VZ’Z, -2(0’2}{-' Ozy;> Vx;y’ .
One obtains for xi then
+ P
= 2[<QZX’> XX,X’ + <£Zy’> Xy'y' + (O‘?ZZ'> XZ’Z‘] E
and

X-=)*<Q;ZX any>x»yu

where

21



In order to evaluate the matrix elements of the direction
cosines above the symmetric-top expansion of the asymmetric-top wave-

function was chosen,

since a table of direction cosine matrix elements for a symmetric-
top is available from Cross, Hainer and King (38). In terms of

symmetric-top functions, the quantities X% become

’ J’ J
. s » 2
" MKy {(J'K g\, -

JKT) Yo * *

4 rd 2
+ (J’K J\§Zy' J-K.J> Xy;yf + (J’K Jlazz;lJKJ> XZ,Z'}

and

J ,
- J J ,
xo o=k E , L Epee s ap (I X3\, . azy,lm> X 7y ? "

Now, in general, if « and B are two operators

(n\a 8 Bln') ,

n’y = z,, (n]aln®y(n"’
n

where n”” ranges over all states linked to n and n”’, so that one

cbtains in this case
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rl

J J
aK' , r z
T aK'T Jr'-’ K}"

{(J'K'JIO/ZX, TR INT KT 0 | TKTY Xy

+ gimilar terms for Xy;ya and Xz'z'} .
Likewige one obtains

E >

J’ J
= s z
)K aK'T aK'T J- Ka

-

(KT, T TKITIHT KT

%_y_;lm) 'X_X'_y;

Here the sums over J°% and K’  are over all states which may be linked

to J and J’. It has been assumed here that J = J as explained above.
The zbove expressions for Xi must now be evaluated using the

table from Cross, Hainer and King. An example 1s done in Appendix D

and the final results are written here for all cases., If J° = J, then

+ e

- J 2
X = Ty L e e 0 X,

R [(3-K) (T+01) (T-K-1) (F4x+2) T/ 2
T K+27* 2

1/
+ai'r a}i-err' [(J+K)(J-K+l)(g+-K—l)(J—K+2)] }(Xx'x" Xyy

')] ]
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C et T 1 e (GO T e )

J J
¥ 8 Fgor’ [(J+K)(J-K+1)(J+K-1)(J-K+2)31/2 | Xy
if 7= J+1, then
- 1 J I+l 2 1/2
= z L TeK[(T+1) 2K .,
* (3+1)(J42) (27+3) /2 IaKT Byer + [OKL(IHL) )%,

J _dJ

+ e aKiéT» [(J-K)(J+K+1)(J+K+2)(J+K+5)]1/2 _sJ a%+l

[(34K) (T-k41) (T-ke) (3-k3) T2 | Oerer = Hgrg D)

) o1 I Ju

o (J+l)(J+2}(2J+3)l/2 E{: {aK'T Fg+oq? [(T-K) (T+K+1) (T+K+2)

/e, g JH

(J+K+3) ] e aK_gT,[(J+K)(J—K+l)(J-K+2)(J-K+5)]1/2}

24 3

if J°

ii

J+2, then

+ 2

(g40) (234+3) (341) /2 (2345) L2

% aiT a%T, 3[(J-K+1)(J+K+1)(J-K+2}(J+K+2)]l/2 Kyt *

) { J J+e [(J+K+1)(J+K+Q)(J+K+3)(J+K+h1]?/2
T KT’ 2
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[(J-K+1) (T-K+2) (T-K+3) (T-K+h) ]1/9_

* %t Fx-pr’ 5 }(XX}X’ i Xy'y') ’

- -21 T {d‘}i'\’ gTJ{-:gT,[(J+K+l)(J+K+2)(J+K+5)
K

i (J+2)(2J+5)(J+1)1/9(2J+5)1]§

RN B 80 )
(THK+E) ]l/ -agrr aK’_LQT, [(J-K+l)(J—K+2)(J-—K+3}(J-K+h)]l/2} Yoy |

Relative Intensities of Hyperfine Lines

The relative intensity of a rotational transition in a molecule
ig proportional Go the sguare of the matrix element of the dipole
moment operator between the initial and final states (39). The
guadrupole interaction removes the degeneracy in previously degenerate
levels of the asymmetric rotor. When the first-order quadrupole
matrices are diagonalized the correct zero-order state function

corresponding to a hyperfine level is given by
p(Bype) = LBy ¥y (B 00 9)

where g distinguishes different hyperTine levels and MF is the space-
—

fixed Z-component of ¥, the total angular momentim. The functions

YA(EJTIFMF) are those referred to on page {19), but MF was suppressed

before since the quadrupole interaction is internal and does not depend

on the spatial orientation of the molecule, The B .. are the trans-

el

Tormation coefficients between the T and ¢ representations.

)
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The total intensity of a line, N, is obtained by summing over
all possible values of MF since the molecules are randomly distribvuted
in spatial orientation (LO) so that

K= % [(EéT ei!dél)|E§T ef)]g s (10)

e Uy

where d(l)

m is a component of the spherical tensor operator of rank one

representing the dipole moment of the molecule, The spherical tensor

components are related to the rectangular components by the following

Substituting (9) and (10) one obtains

N= 3¢ [% BliiBfff
“%Mg REN s s
(EJi IlFlMF1|d;l)lE§T JfFfM§>] . (11)

Tn equation (11) the i and f refer to initial and final states
respectively.
For polarized electric fields such as are used in microwave

spectroscopy one may choose the Z-axis to be the direction of
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polarization. Then using FTdmonds' equation (41) one obtains

1 ,igt 1y (1), F £f f
(By, TTFM"|ag ™ |E; o F i)

Fla b . L
= (-1) x(Frt st o Fyeer ot |a)|e] 1)

f

How, the reduced matrix element above is zero unless Ii =1 =71
because d, the dipole moment of the molecule, does not involve the
nuclear spin. Using Edmonds' equation (L42) the reduced matrix element
can be written

S o .
(85 1P |a) |8 TFY) = (-1)7 T AL orb y (2T ) 12

i i of i f
WS F I:F Jfl) (EJT||d]|EJT) s
where (Ej’.T ]ld||EJ£) is a further reduced matrix element which is the

same for any pair of interacting JT levels, The intensity expression

then becomes

i f
i T i +T4F +
X(FhaEts anog) (-1)7 T

[(2F1+1)(2Ff+1)]l/EW(JiFiI:FfJfl)(E§T||d]]E§T)]2 .
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This may be rearranged to give

Fl-M;+J5Ff+1.

N= 3 [(-1) x(FH1F" 5 Mo

e M

1/2

[(2rte1) (2 1) V28] | |a]|5] ) : BT, B, (1))

el €1
w(atrin:rtat1) 18,
or finally,

N= = xg(FilFf;-M;OMg)
M 10
(ert1) (pFT AL )(EL |[al|E] )7

[£B,; Bff (ORI T
T ¢TI eI

Using Edmonds' equation (43) one has that

£ FhEagon) - 2,

g g

sc that
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i f .
N = (oF +1)§2F +1) <E}T||d||E§T)2

[s Bii Bff (-1)" watrtnrle iy (12)
I T 1T

The quantity <E}Tl|d||E§¢> as mentioned above ig the same for all
hyperfine lines assoclated with a particular JT transition so that the
above equation gives relative intensities. A sample calculation of

intensity may be found in Appendix C.
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CHAPTER IV
DATA ANALYSIS

In order to test the second-order perturbation theory developed
in other portions of this work, the measurements of J. T, Murray (11)
on SC_@2 were repeated. It was hoped that the addition of the Waveform
Eductor to the experimental eguipment would result in more accurate
measurcement of the transition frequencies and guadrupcle splitfings.
This would result in a better determination of the diagonal elements
of the quadrupole coupling constant tensor, X ?x Xy'y" and PRy
as well as a first determination of xx'y"

Data was taken on each quadrupcole and main rotational line as
discussed in Chapter IT on page 9. IKach group of data consisted of ten
measurements of the line frequency taken with a positive-slope sweep
and ten with a negative-slope sweep for the reason explained in
Chapter TI. A standard deviation for each data group was obtained
with the formulae found in Beers (4L). However, the rapid dissociation
of SCJ?.2 into the products SECEE and Cﬁg, even at dry ice temperature,
resulted in a rapid increase in pressure in the waveguide whiie data
was belng taken., Also, in several transitions an impurity line due to
cne or the other of the by-products fell in among the SC;,2 lines. Such
a case is shown in Figures 5 and 6 where the graphical ammeter trace
clearly demonstrates the growth of an impurity line near the high-
frequency quadrupole lines as the intensity of the SCﬂ,2 spectrum

diminishes., Nave (45) has explained that the rapidly increasing
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pressure itself can result in different values of quadrupole splitting
for different Stark voltages. (At times different voltages must be
used for the two lines involved 1n a splitting to ensure that the
Stark components of close~lying lines are displaced enough so as to
not interfere with the main lines.,) The presence of the impurity
line(s) produces a similar effect, because the intensity of the
impurity line increases as the disscociation progresses, l1.e., as the
pressure increases. The averaging effect of pressure btroadening with
such an impurity line will shift one of the two lines inveolved in a
splitting more than the other, resulting in different values for the
splitting at different pressures.

Since the effect of the impurity line described above acts
independently on each of the two lines involved in determining a
splitting the rules for calculating a standard error for the splitting
assuming statistical independence may be employed (55). As the measure-
ments in a data group were taken the pressure rose from about 10 to 15
microns to an equilibrium pressure of about 100 microns. The measure-
ments of frequency within a deta-group displayed a definite trend as
expected due to the impurity lines. The average standard error for
the four transitions is + 0.05 MHz. This will be taken as the experil-
mental error.

Table 1 lists experimentally measured and theoretically calcu-

lated splittings for four transitions in SCg Several of the lines

5e

recorded by Murray were not used in this work because the intensities



Table 1. Quadrupole Splittings in Miz for the Rotational Spectrum of 83 Cz 55 Used to Determine
»,,)('y; ;,X) »and)(_—y-

-

Transition Measurements Calculations Comparisons
Meas ,Splitting Average,Deviation €al.Split. Average, Deviation
-a'_, e B m
T I g efe e A" Am=‘Av |—Am A A° Ac=[Avc[-A AV a0° | A=A AP-AC
00 01 -2,83 0.01 -2,82 0.00 -0.01 0.01
% 1o 2,82 2.82 C.00
o2 21 2.79 -0.03% 2,82 0.00 -0.03 -0.03
21 22 -10.71 -0.01 -10.67 -0.06 -0.0k4 0.05
10.72 10.73 -0.01
o2 21 10,72 0.00 16,80 0.07 -0,08 -0.07*
% %
22 22 -12.97 -0.15 -12.96 -0.16 -0.,01 0.01
13,12 13,12 0.00
o2 02 13.27 ¢.15 13.28 0.16 -C,01 -0.01
s 3 02 03 4,29 -0.02 -L,22 -0.04 -0.07 0.02
-2 <2 L.31 I, o6 0.05
2P 2% L, 32 C.01 4,29 0.03 0.03 -0,02
NoL ol 2L -G, 72 -0.07 -9.80 0.00 0.08 -0,07*
L oo 3.79 g.80 -0.01
ok ok 9.85 0.06 3,80 0.00 0.05 0.,06%

*
See Chapter V for a discussion of these splittings.

m
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invoived were calculated to be too small to be reliably measured,
The data recorded by Murray Tor these lines may have been due to
impurity lines. Several guantities are listed in the Table which
are designed to illustrate different facets of the data. For example,
the quantities entitled "Average", A" and AC, are the axithmef;c
averages of the absolute values of the splittings indicated, for the
measured and calculated splittings, respectively. This quantlty is
the symmetric portion of the splitting, i.e., it is the portion which
would be due to a first-order interaction only. The quantities
A" = |axW] - A" and A% = |AxF[ - A% are measures of the deviation of
the splitting from symmetry, i.e., measures of the asymmetry of the
splitting.

The quadrupole splittings for the transitions listed in the
Table were used ag input for a computer program which calculated
"best" values of Ko *x 77 Yoty 22 and X, * # The theory programmed was
that explained by Clayton (L486), and may be used only for the diagonal
elements of the tensor, as it is essentizlly a least-squares Tit of an
overdetermined three-parameter system of linear eguations. (The
second-order effect is non-linear in the three diagonal elements as
well as Xx‘y')‘ An initial value of Xg g * was obtained from expression
(15) 4in Appendix B with a value of B taken from a molecular structure
table (k7), and the values of Yy 7y + B0G X, 2, ¢ Obtained by Murray. This
value of Ay "y * was adjusted in the computer program described in Appendix
A until the best fit of the asymmetric patterns was obtained.

The values of the quadrupole coupling constants in the principal

inertial system and in the principal dyadic system derived from the
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measurements in Table 1 are guoted here:

-38.98 MAzZ ,

>
»

~
1]

Xla=-8-87,

h7.95 ,

<
»
LY
It

Yo+ += 64,3 (in magnitude),

Xy
B = 5L.6°,
and,
Kaex = L7,85 MHZ ,
Xy = ko,10 ,
Xy = ~89.9k .

The transformstion between the two systems is explained in Apperndix B.
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CHAPTER V
CONCLUSIONS AND RECCOMMENDATIONS

The seccond-order theory applied to SCﬁE significantly improved
the comparison between calculated and measured quadrupole spilittings
in the transitions indicated in Chapter IV. In the language of
statistics, the average deviation between Murray's measurements and
calculated first-order splittings was 0.054 MHz. and the standard
deviation was 0.106 MHz. (48). The average deviation between the
measurements in this work and the calculated second-order splittings
is 0.010 MHz., and the standard deviation is 0.055 MHz,, i.e., the
standard deviaticn has been cut in half,

The values of Yog *5 *2 Xy{y;, and Xy, £ 7 derived from the data in
Chapter IV better accouwt for the symmetric portion of the splittings
than the previously quoted values. The standard deviation between
the averages (as defined in Chapter IV) of the splittings measured
by Murray and the averages of the first-order splittings is 0.06 MHz,
The standard deviation between the averages of the splittings measured
in this work, labelled A" in Table 1, and the averages of the second-
order splittings, labelled A% in Table 1, is 0.03 MH=z,

The last column of Table 1 shows that the value of o gquoted
in Chapter IV accounts for the asymmetry in the splittings to within
the estimated experimental error, 0.05 MHz., except for the three
splittings indicated by asterisks. In these three splittings impurity

lines were found aulite close to the SC.@2 transition lines, and it is
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felt that this may well account for the deviations of these lines as
explained in Chapter IV. It should be noted that the asymmetry of the
splittings in SC.@2 is so small that the calculated splittings are not
strongly dependent on the value of Xx'y" Only in the 2_2 - 20
transition for the lines 22 - 22 and 02 — 02 does the asymmetry of
the splitting become significantly more than the estimated experi-
mental error. The particular value of xx?y' quoted here accounts for
these asymmetries quite well. However, it should be noted that the
uncertainty in the value of xxfy, produces a corresponding uncertainty
in the angle B. The calculated B differs from half the Cg-3-C4 bond
angle measured by Murray, 102.8° (11), by only 0.2°, This is not a
significant difference because of the uncertainty in B.

It is recommended that a second-order perturbation treatment
ag well as a quadrupole spectrum of an asymmetric rotor molecule con-
taining identical bromine nuclei be undertaken., The asymmetry in the
quadrupole splittings of such a mcolecule should be easily measurable
and large enough to determine the xxfy, value Tfor these nuclei with

considerable accuracy.



APPENDIX A

COMPUTER CAICULATT QNS
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DESCRIPTION OF THE PROGRAM

An Algol computer program was writien to calculate matrix
elements of the Torm derived in Chapter IIT, in eguation (7}, for
the quadrupole interacticn of the asymmetric-top. The general
structure of the program will be discussed here, and the program
itself may be found on succeeding pages.

The program was divided into two blocks and information was
transferred from block one to block Two through three global parameters,
The first block diagonalized the asymmetric-top rotational Hamiltonian
using symmetric-top functions as basis functions. The block reads-in
the rotaticnal constants of the molecule, usually designated A,B, and
C. The program computes the asymmetric-top Hamiltonian matrix elements
and uses a double-precision procedure, called "DJACOBI", to produce
eigenvalues and orthonormal eigenvectors of the Hamiltonilan. This
block also calculates the rotational symmetry of sach asymmetric level.

The eigenvalues, eigenvectors, and symmetries are transferred
tc the second block which calculates the appropriate diagonal and off-
diagonal matrix elements for the quadrupole Hamiltonian. The input
parameters of the second block include four components of the coupling

constant tensor, Yyt o2 % A S and Xx'y” which are related to

vy
the field gradient tensor as explained in Chapter IIT.
One may proceed in two ways with the elements from block two.

The elements themselves may be placed into a rotational plus quadrupole

Hamiltonian matrix, which will in general be complex, and the matrix
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may be diagonalized giving the actual frequencies of the perturbed
lines. Or perturbation theory may be employed to give successive
corrections to the rotational energy. In this work, both methods were

tried on the JT =2 _ to J’T, = 2

o transition and found to agree to

0
within 0.001 MHz,, which, it is felt, justified the use of perturbvation
theory on the entire spectrum. In either case, one must determine

which levels a particular Jrr rotational level will interact with.

This is arrived at by symmetry arguments.

For 8032, the identificaticn of the rotational constants

A=121

Bn IA
B= —5

8n IB
and h
C = 5

8x IC

and the fact that I, < IB < I, dictates that the principal inertial

A C
axes of the molecule be drawn as in Figure 7. The relation between

the abc axes shown inthe figure and the x v’z referred to in other

parts of this work is
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Figure 7. Principal Inertial Axes and Principal Axes
for the Field-Gradient Dyadic in 8012.
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The wavefunctions of a planar asymmetric-top molecule belong

to a point symmetry group called the four group which has the four

b

and Cc. Here E is the identity operator and
27! 2

operators E, C:, C
the C; operations indicate a rotation of the molecule through 180°
about the superscripted axis., The four non-degenerate representations

of the group, define four species of wavefunctions labeled A, Ba’ Bb’

and Bc with symmetries as shown in the table below. The plus and minus

Table 2. Species of Wavefunctions Under Operations of the Four-Group.

: ¢ b a
Species E C2 C2 C2
A + + + +
B + + - -

c
B, + - + -
B + - - +

a

signs indicate symmetry and anti-symmetry with respect to the given
group operaticn, respectively. Clayton shows this explicitly in his
thesis (49).

The rotaticnal symmetry of the rotational Hamiltonian is species
A, The guadrupole Hamiltonian contains terms of symmetry A and Bc'
Now, for a non-zero result for rotational cor guadrupole matrix elements,
the integrand must have symmetry A which means that the product of wave
Tunctions must have symmetry A or Bc' The program only considers

interactions between states satisTying the above symmetry relations.
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The Exclusion Principle applied to the total wavefunction for
the asymmetric-top, i.e., electronic, vibrational, rotational, and
spin parts, states that the entire function must be anti-symmetric
with respect to interchange of identical nuclei of spiln 3/2. For a
symetric electronic and vibrational state, such as the ground state,
this means that the rotational times spin parts must be anti-symmetric
with respect to interchange of identical nuclei. This interchange can
be accomplished by operating on the rotational functions with the Cz
aperation of the four group, and interchanging the spins of the nuclei,
As explained in Clayton (50), rotational states with even t values are
symmetric with respect to CE and states with odd t values are anti-
symmetric. This means that the spin funections for the above states
must be anti-symmetric and symmetric respectively te satisfy the

Exclusion Principle. Now, one has from Edmonds (51) that, if u(IlIEI)

are the spin eigenvectors for the two nuclei systen,

Il+I2—I

u(I;I.1) = (-1) u(I,1,1) ,

and in the case Il =T, = 3/2, one obtains

2

wW(I,1,1) = (-1)5'Iu(12111) )

Therefore requiring u{IlIQI) to be symmetric with respect to interchange
of identical nuclel is the same as saying I may be only 3 or 1. Like-
wise, requiring anti-symmetry is the same as saying I may be only 2

or 0.
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To summarize then, states with even T may have I values of only
2 or Q, and states with odd + may have I wvalues of only 3 or 1. This
information is inciuded in the program and greatly reduces the number
of elements that must be calculated.

In this program, the perturbation theory approach was chosen,

The general perturbation formula to second-order is (52}

rot Q Hgm Hgn
En = En * Hnn * = rot rot ’ (13)
m#n E--B)

t

where EEO is the rotational energy of the state n, and Hgn is the first-

order correction of the guadrupole interaction which is just the diagonal
matrix eiement HQ
nn

Q

sum, where Hnm

itself. The second-order correction is given by the
is the off-diagonal quadrupole matrix element linking
states n and m (which may be complex), and the sum extends over all the
appropriate states determined by the above symmetry considerations. One
notes the difference in rotational energies in the denominator of the
sumand, Interactions between rotational levels separated by more than
20,000 MHz. were not considered because of this term.

It is found that, for states with even 7 values, the F = J
levels may be obtalned in two ways, i.e.,, with I =2 or I = 0, and
for odd T levels, the FF = J and F = J+1 states may be obtained in two
ways, i.e., with I = 3 or I = 1. The first-order quadrupcle inizraction
removes the degeneracy of these rotational states and new zero-order
wavefunciions may be found which correspond to the non-degenerate

perturbed states. For the even 1 levels the new zero-crder wavefunctions
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are of the form

¥, (JTed) = [vA(JTEJ) + ?A(JTOJ)] (1)

L
e
where YA(JTIF) are the functions discussed above and in Chapter TTII.
Here ¢ is a pseudo-spin parameter discussed in Robinson and Cornwell
(53). Noun-degenerate second-order perturbation theory may be applied
if the new zero-order wavefunctions are used.

First-order perturbation theory gives a symmetric transition
frequency pattern for even 7 values, and for odd 7 values the pattern
is unsymmetrical. This work examined only the more symmetric even -
patterns and, as a result, the computer program assumes new zero-order
wavefunctions of the above form. In the computer output the duantity
written in the column labelled "ENERGY CORRECTION" is the term in the
summand of equation (13) corresponding to the matrix element Hgﬁ. In
the position labelled "CORRECTICN FOR STATE WITH NCN-ZERO FIRST-ORDER
SPLITTING" the appropriate summand term appears for F = J assuming the
JT level is of even 17, i.e., the new zero-order wavefunction is used in
caleulating this correcticn assuming 7 is even. If 1 is not even, the
energy correction columm will not be meaningful and a 2 by 2 matrix
must be diagonalized to obtain the correct zero-order wavelfunctions and

the correct energies, It was found that in 5C4,., the second-order

2’
correction for the F = J levels was the same for both F = J states since
only one of the two asymmetric functions in equation (14) gave non-zero

matrix elements with other J’T. states and this fact is also incorporated

into the computer program. If both asymmetric functions were to con-
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tribute to the off-diagonal elements, the correction would not be the
same for both F = J states and considerably more programming would be
involved.,

The machine only calculates matrix elements if J” = J because
of the problems indicated in Chapter ITI on page 28, so if a certain
J level interacts with a lower J° level the machine inverts the roles
of the two states and, in effect, calculates the set of complex
conjugate elements. One should understand that, if this is the case,
the number in the position "CORRECTICN FOR STATE WITH NON-ZERC FIRST-
ORDER SPLITTING" will be the correction for the F = J” state, not the
I' = J state. In these cases, one must calculate the appropriste F = J
correction using the matrix element and the correct zero-corder F = J
wavefunctions,

The program itself is profusely commented to make it easier to

locate any particular section of programming.
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BEGIN

00000100

COMMENT YEGINNING OF PRUGRAM TD COMPUTE THE FIRST™ AND SECUND~QORUOER MATR00000200

IX ELEMENTS OF THE wUADRUPOLE HAMILTONIANS
COMMENT THE DATA CARLS MUST BE AS FOLLOWSS
CARD 1 MUST CONTAIN THE ROTATIUNAL CUNSTANTS AsBsC AND
THE NUMBER UF J LEVELS TO BE DIAGONALIZED» N» ALL IN
FREE=FIELY READ.,
CARDS 2 THROUGH N+} EACH CUNTAIN ONE JoVALUE FUR DIAGONAL=
ILATIUN,
CARD N+2 CUNTAINS XAA»XxBBsXCC»AND XAB IN FREE=FIELD REAU.
CARD N+3 CUNTAINS THE NUMBER OF J=T LEVELS FOR WHICM THE FIRST
AND SECUND ORDER CORRECTIONS ARE 7O BE CALCULATED®.
CARDS N+4& THROUGH N+4+p EACH CONTAIN ONE J=T PAJIR OF NUMBERS
FUR wHICH CALCULATIONS ARE MADE}
FILE IN BAL (2+10)3
FILE QUT LAb 16(2,15))
ARRAY EC(O319,0119),CMI=19119,"19319,"19119))
INTEGER ARRAY RS[0#19,0819);
BEGIN

00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
000014800
00001900

COMMENT BEGINNING OF FIRST BLOCK WHICH CALCULATES ASYMMETRIC=TOR ENERGY00002000

LEVELS AND NURMALIZED EIGENVECTORS IN TERMS OF SYMMETRIC=TOP EIGENVECT
GRS}

INTEGER IsoJsRaNsMsPLlsPEINN»II»JJrGoHpNMsJISK]])

REAL AA»BB»CCaCL3

ARRAY ADLOt151,B[0815,0815]}

ARRAY AsAH»AL»BH»BLI{O$1520t15%]3

INTEGER PROCEVURE MIN(P1,P2)}

COMMENT CALCULATES THE MINIMUM OF TwD NUMBERS}

VALUE PlaP2)

INTEGER Pl1,P23

IF P1 < P2 THEN MIN « P1 ELSE MIN ¢ P23

PROCEDURE MATRIXPRINT (NsMsA))}
COMMENT PRINTS UUT AN N BY M MATRIX Aj

VALUE NoMj

INTEGER NsM3
ARRAY A{0»0)3

BEGIN

00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700



INTEGER MIN13

FORMAT QUT FMT (/2"ROW™,132X2,"C0L"»13,5F2048)}

LIST ROw ( 1»JsFOR K¢J STEP 1 UNTIL MIN1 DO ALIsK] )3
FUR I ¢« 1 STEP 1 UNTIL N DO

BEGIN

MINI ¢« 53

J o+ 1)

NHILE v s M 0D
BEGIN

WNRITE C(LAC»FMT»RONW))
J ¢ Kj
MINL & MINCQJ+4oM)
END
END
END MATRIXPHRINT)
PROCEDURE EAGLE(N,A)J
VALUE N}
INTEGER NJ
ARRAY A[O»01]3
BEGIN
ALPHA SYMM}
REAL TRA,TRUJ
ARRAY REF»USEsUSOC0134,08538)»X»GU00FL0834)2TL011113
INTEGER ARRAY ID[Q334,0134];
INTEGER ARRAY CZ2A»C2BsC2CL0115)3;
FORMAT QUT FMTIC/2X0sM UM X6 T ", X9s"ROTATIONAL LEVEL"» XGs"SYMMETRY™ )}
FORMAT DUT FMT2(/sX2212sX5,120X42F20.82X10542))}
FORMAT OUT GOOFF("VECTOR CHECK BY SUM OF PRODUCTS FUR ROW™,I2,F12.8)}
FORMAT QUT CHECK(T"TRAZ"SF 13,4 X9 mTRD=™)F 13,4, X92"0IFF="sF7,4)3
LIST SNAFUCTRA»TRD»TRA=TIRD);
LIST GUOFU <I»GOOFLC11)3

PROCEDVRE DJACOBL(OPTsNsAHsAL»BHIBL) § %

VALUE OPT»N ; %

INTEGER OPTLN 3 %

REAL ARRAY AH»AL»BHIBLIO,0) 3 3

3

THIS PRUCEDURE TRANSFORMS THE N=TH URDER UOUBLE

00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00004700
o00p4800
00004900
00005000
00005100
00005200
00005300
00005400
00005500
00005600
00005700
00005800
00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
00007200
00007300
00007400
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B PR DE W DR DR OB DU DL DG M

BEGI
INTE
VALY
REAL
i
3
|
b 4
3
BEG]
REAL

END

INTE
REAL
REAL
INTE
DEF1

PRECISIUN REAL SYMMETRIC MATRIX A INTU A DIAGONAL MATRIX
NHUSE ELEMENTS A(I»1)s 1 = 122s¢esNs CONTAIN THE EIGENVAL™
JES OF A IN DESCENDING ORDER OF MAGNITUDE, THE EIGENVECTOR
ASSOCIATED wITH THE I~TH EIGENVALUE IS STURED IN THE I=TH
COLUMN OF THE DUUBLE PRECISION MATRIX 8, TWO UPERATIONS ARE
PERFORMED DEPENUING ON THE vALUE OF THE OPTION PARAMETER UPTH

IF UPT = 1» BOTH EIGENVALUES AND EIGENVECTORS ARE PHRUDUCED.,
IF OPT = 2» ONLY EIWENVALUES ARE PRUDUCED,
N &
GER PRODCEVURE DCUMPARE(XH»XL2YH»YL) 3 %
E Xtdp XL2YHoYL 3 %
XHoXL2YHsoYL 3 %

THIS PRUCEDURE COMPARES THE DQOUBLE PRECISION REAL NUMBERS

X % (XHsXL) AND Y = (YHsYL), THE PRUCEDURE IDENTIFIER IS ASSIGNED

THE VALUE =1, 0r +1 ACCORDINGLY AS X <» =, > Y,

NoA
IH» L ) %
DOUBLECAH» XL YHaYLoa=res ZH2ZL) 3 %
DCOMPARE ¢ SIGNCZH) 5 %
OCOMPARE } 3
GER IsKsLoMsKL2KMsP 3 REAL DELH#DELLsEHsEL 3 X

00007500
00007600
00007700
00007800
00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008900
00009000
00009100
00009200
00009300
00009400
00009500
00009600
00009700
00009800
00009900
00010000

XoYrQrHrQ@LsRHASRL2SHISLy THo TLoVHAVL s WHs WL ZHs ZLoMLH,MLL ) MMH»MML 300010100

ARRAY MXH,MALILOIN]» CON[OS7] 3 3
GER ARRAY KX[Oitn] 3 X

NE 0 = QUUBLE # » @ = QH»QL # » DEL = DELHsDELL # » %
STU = STEP 1 UNTIL # » R = RHsRL # » %
STW = STEP &t WHILE # » § = SH»SL # » %
IDOY = FOR 1 ¢ 1 STU N DO # » T = THsTL # » %
1002 = FOR [ € 1 STW I S N DO # » V = VHsvVL 2 » %
IV03 = FOR I ¢ 1 STW I < L DO # » W = WHyWL # » %
1004 = FOR I ¢ L+1 STA I < M DO % » Z = ZHs2L # » %
1005 = FOR I « M#1 STWw I S N DO # » ML = MLHsMLL # »

3

00010200
00010300
00010400
00010500
00010600
00010700
00010800
00010900
00011000
00011100

18



LABEL
DEF INE

3
DEF INE
3
DEF INE

BEGIN

END #

BEGIN

END #

BEGIN

END #

l1u0é6
KDO1
Kbo2
BlI
BIK
MX1
ALM
AMM
BIL
AM]
LMX

FOR 1 ¢« 1 STw I < N UO
FOR K ¢ I+1 STU N OO ¢#
FOR K ¢ I+1 STW K S N

BHII»1)aBLII»]1])
BHI]»K]aBLII»K1]
MXHCTIoMXLITI) #
AHIL»M)sALIL2M])
AH[MsM]IsALIMIM]
BHl1,L)sBLLIAL)
AMIM»I)sALIMa]]
MXHLLI»MXLIL) #»

L1sL2,RETIPRET2 ) %

SETUP
b 4

ne e

P
Y
j

ITER =2 ¥ & (0,5)x(Y + X/Y) ¥ } &

= %

DS@RT1 = i
= 0 THEN w0 TO L1 3 %
SETUP 3 ITER 3 ITER J ITER 3 ITER }

I ZH

D{ZsYr0r/3Y205=220¢50X0Y¥2(Qs406€25)
SH « SL « 0 } %X

Lis
RETY1t

»

DSQRTZ = %
IfF ZH = 0 THEN GO TO L2 ) ¥
SETUP 3 ITER 3 ITER J ITER 3 ITER J

DCZaYoO2/0Y200=000452»XsY2Qs%s¢27)
TH « JL ¢ 0 3} %

L2y
RET21
} %

%

W W e W W

(1.0)xZH 3 P « 0 } %
Xoel812] 3 Poladsl] ¢ X,0281]) 3 %
X 3 Yol316) ¢ Y, [216] 3 Y & YXCONIPI } %

»
»

- v w

»

AL
BKI
AlM
ALL
ATL
B1M
ALK

D

H UMy HO» =

»
4
t » 3

AMEL,T)sALLLSI]
BHIK»J)sBLIK»I]
AHLI»>MI»ALT I M]
AHCL L3I ALIL»L]
AHLIsLY»ALTI»L])
BHLI»M]»BLEINM]
AHLIsKI2ALLI»K]

MXM = MXH[MIoMXLIM] # 5 %

O v W W W W

} GU TO RETY 3 %

J GU TO RET2 3 3

MM = MMH,MML # » 3

" w v W w ww

e IR PR DR W WG W0

00011200
00011300
00011400
00011500
00011600
00011700
00011800
00011900
00012000
00012100
00012200
00012300
00012400
00012500
00012600
0002700
00012800
00012900
00013000
00013100
00013200
00013300
00013400
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300
00014400
00014500
00014600
00014700
00014800
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BEGIN

END }

BEGIN

BEGIN

END

END

BEGIN

CUNLOJ ¢
CUN{2] ¢
CUNL4) «
CON[6J

2.6973988@~06 3 CUN[1]
T7:62949=06 3 CON[3] ¢
2¢1370998423 3 CON[S] +
745557868422 3 CON[T] «

IF COPT # 2) THEN %

100t &
3

DC1,0,¢0B11) 3 %
KDO1 BEGIN BHIIsK] ¢ BLIIAK) ¢ BH{K»]I] ¢ BLIK»I) ¢ O END 300015700

i

QH « Wb ¢ 0 3 L ¢ 1 } %

1002 &
H

MMH ¢ MML ¢ 0 } KM ¢ N } %

KDo2

DCAIKs¢2W) ) wH ¢ ABS(WH) 3 %
IF WH > MMH THEN %
BEGIN U(Nse,MM) } KM ¢ K END 3 &

DCMMaesMXL) 3 KXII) ¢ KM 3} %
IF MMH > 4H THEN %
BEGIN D(MM»¢»Q) J L ¢ ] END J %

4

M ¢ Kx[L] } &%
DCALL»*¢»R) 3 RH ¢ ABS(RH) 3} %
D(AMMa¢s2) 3 ZH ¢ ABS(ZH) 3 %

En ¢ 1,08=20 3 EL ¢ 0 3 D(Rslsr+,¢5R) J} D(uwsRrtre,Q) ) %
DCABS(RH)»RL,ABS(uH)»uLs=r¢»DEL) J VELH ¢ ABS(DELH) J %

¢ 1.6030838~06 )

4453646568=06 }
127072790423 )
4,48269T9+22 3

NHILE UCOMPARE(DELHADELLSEHSEL) > O DO %

1

DCALMIALMo2+2¢5Q) 3} DCALLSAMMs=sesR) 3 %
D(RsRoXsQrudoXp+s4»Qsxre,nl} 3} DSURTL 3 %
IH ¢ ABS(KRH) 3 ZL ¢ RL } %
D(ZsSs/2s0e50+42%572) } DSARTZ J %
DCOs0als+sSrToXs/s¢55) } &

IF RH< O THEN 3%

00014900
00015000
00015100
00015200
00015300
00015400
00015500
00015600

00015800
00015900
00016000
00016100
00016200
00016300
00016400
00016500
00016600
00016700
00016800
00016900
00017000
00017100
00037200
00017300
00087400
00017500
00017600
00017700
00037800
00017900
00018000
00018100
00018200
00018300
00018400
00018500
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BEGIN

END J

BEGIN

END 3

BEGIN

END
BEGIN

BEGIN ZHeTH } ZLeTL 3 THeSH J TLeSL J SHeZHW 3 SLeZL END 3 00018600

IF COPT # 2) THEN %

1v02 &

i

D(BILs»e¢sQ) 3 D(BIMs¢»R) } %

DCTrQoxsSsRsxs+rerBIL) 3 D(TsRsx25s0s%s"p¢,BIM) } &
) ]

MLH « MLL ¢« MMH ¢ MML ¢ 0 3 KL « KM ¢« N } &%

1003 =

3

OCAIL»*2Q) J DC(AIMre)R) J 3}

DCTrQsx2S2RoxsdseV) J3 D(Va®rAIL) } %
DCT2Rox2S2Qrxs"sesl) J D(ZstsAIM) } %

IH ¢ ABSCZH) 3 VH €& ABS(VH) 3 D(MXIsreaW) } %

IF (ZH > wH) OR (VvH > WH) THEN 1

IF (ZH » yH) THENX

BEGIN O(Z,esMx1I) 3 KX[I] ¢ M END ELSE %

BEGIN D(VasesMXI) 3 KX[I} ¢ L END %

) 4

I1D0g =

4

DCALI»¢»Q) 3 DCAIMre¢sR) } 3%
DCT»QrxXsSrRaXs¥2e,V) 3 D(VstsAL}
D(TsRrX285sQoXp=s&1) }3 D{ZrtsAlM
I# ABS(VH) > MLH THEN %

BEGIN MLH ¢ ABS(VH) 3} MLL ¢ VL 3} KL ¢« I END 3 3

IF ABSCZH) > MXH(IJ] THEN %

BEGIN MXH[I) ¢ ABSCZH) 3 MXLLI) ¢ ZL 3 KX{I) e M END X
3

1005 3

) 3 %
P A ¢

DCALI»*2Q) 5 DCAMI»€»R) 3 %
D{TsQrxsSsRoxs+rep V) 3 D(Vs®sALI) } %
D(TsRsxsS2Qoxs®r®pl) 3 DCZr*sAMI) } %

IF ABS(VH) > MLH THEN %

BEGIN MLH ¢ ABS(VH) 3 MLL ¢ VL ; KL « I END 3 %
IF ABS(ZH) > MMH THEN %

00018700
000188090
00018900
00019000
00019100
00019200
00019300
00019400
00019500
00019600
00019700
00019800
00019900
00020000
00020100
00020200
00020300
00020400
00020500
00020600
00020700
06020800
00020900
00021000
06021100
00021200
00021300
00021400
00021500
00021600
00021700
00021800
00021900
00022000
00022100
00022200
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BEGIN MMH ¢ ABS(ZH)Y J} MML ¢« ZL ; KM ¢ ] END 5 %
END 3 %
DCMLs#2LMX) ) KXIL] ¢ KL 3 %
D(MMs e, MXM) 3 KXI[M) ¢ KM } 3
DCALL»*»2Q) 5 DCAMMs»¢»R) 3 DCALM,es2) 3 &
D(TsSoxoerV) 3 D(ToTsoxresT) 3 D(SsSsxresrsS) } %
D(ToSro=sZsxsRoQr=sVaxst, ¢ ALM) } D(2,0sdsXs¥YoXsésy) } X
D(TsQrxsSsRoxstoVotaesALL) 3 %
D(TsRsaX2SsQrXsdsV=re s AMM) } D(MLs¢sg) } &
1006 IF (RH « MXH{I] > gH) THEN %
BEGIN o«H ¢« RH 3 @ ¢« RL 3} L « ] END 3 X
M e KX[L]
D{ALLs*sR} } RH ¢ ABS(RH)
D(AMM»e»2) } ZH ¢ ABS(IH) 3
D(RsZr4+r¢,R) 3} D(Q»Rrt+rerQ) } X
2(ABS(RH)!RL’ABS(QH)!QL:"GDDELJ } DELH ¢ ABSC(DELH) J %
END 3
FOR I ¢ 1 STEP 1 UNTIL N DO %
FOR K # 1 STEP 1 UNTIL 1=1 00 %
. IF K # [ THEN AH{I»K] & ALLI»XK] ¢ AHIK»I) ¢ ALIKsI]1 ¢ O 3
END DJACDBI 3 %
PROCEDURE SORTR(ADsBaN)}
VALUE N}
INTEWER N3
ARRAY ADIO1»B8L0,0]}
BEGIN
INTEGER 1sJ2K3
REAL T3
FOR J ¢ 1 STEP 1 UNTIL N=1 DD
FOR 1 ¢ 1 STEP 1 UNTIL N=J DO
IF ADLI] 2 AD[i+1] THEN
BEGIN
T ¢ AD(LY}
AULI] ¢ AULI+1))
ADLI+1] e 13
FOR K ¢« 1 STEP 1 UNTIL N DO
BEGIN

00022300
00022400
00022500
00022600
00022700
00022800
00022900
00023000
00023100
00023200
00023300
00023400
00023500
00023600
00023700
00023800
00023900
00024000
00024100
00024200
00024300
00024400
00024500
00024600
00024700
00024800
00024900
00025000
00025100
00025200
00025300
06025400
00025500
00025600
00025700
00025800
00025900
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ENDJ
ENDJ

X
— P w
=1 ‘e
—_ X
e

I+11;

o —
-
XX+
— = (D
-
—

* T

- w

END UF SORTK3

BEGIN

END3

BEGIN

END

BEGIN

FUR I ¢ 2 STEP 1 UNTIL N DO
FOR J ¢ | STEP 1 UNTIL 1I=1 DO ALl»J) ¢ A[Js11])
FOR I ¢ 1 STEP 1 UNTIL N DO FOR J ¢ 1 STEP 1 UNTIL N 0D

REF{I»J] ¢ ALI»Jl}
IF I = J THEN 10([12J) ¢ 1}
IF I # J THEN ID[I+sJ] ¢ O

MATRIXPRINTONSN,A)F COMMENT PRINTS INPUT MATRIX}
FOR I¢1 STEP 1 UNTIL N DO
FOR J ¢« 1 STEP 1 UNTIL N 0O

AnlIrv) ¢ ALI»J)}
ALLI»w] « 0,003

TRA ¢ 0,003

FUR I ¢« 1 STEP 1 UNTIL N DO

TRA ¢« TRA + ALI»1)3

DJACOBICLaN»AHLALSBH»BLY} COMMENT CALCULATES EIGENVALUES
AND EIGENVECTORS)

FOR I « 1 STEP 1 UNTIL N 0D

AUCTI) ¢ CCAA+BBY/2)X((N=L)/2)x{{N+1)/2) + (CC=(AA+HB)/2)
XAH{I»I113 COMMENT CONVERTS EIGENVALUES TO ROTATIONAL
ENERGY LEVELS)

SURTRCAD»S5HsN)I COMMENT SURTS ENERGY LEVEL MATRIXJ

FOR I ¢« % STEP 1 UNTIL N DD

AHCI»1) ¢ CADLII=CCAA+BB)Y/2)X((nN=1)/2)%C(N+1)/2))/
{CC=(AA+BB)/2)}

NRITECLAB»FMTL1)3

FUR I ¢ N STEP =1 UNTIL 1 0O

00026000
00026100
00026200
00026300
00026400
00026500
00026600
00026700
00026800
00026900
00027000
00027100
00027200
00027300
00027400
00027500
00027600
00027700
00027800
00027900
00028000
00028100
00028200
00028300
00028400
00028500
00028600
00028700
00028800
00028900
00029000
00029100
00029200
00029300
00029400
00029500
00029600

99



C2CLI} ¢ (=L)*(ENTIERC(I=1)/2) + JI)}
C2A{I) ¢ (=1)#(ENTIERC1/2))}
C2B(1) ¢ C2C{1)xC2A[I1}

ENDJ

FOR I « N STEP =1 UNTIL 1 00
BEGIN
COMMENT THIS SECTIUN OF PROGRAMMING STORES THE ROTATIONAL
SYMMETRIES OfF THE ASYMMETRIC WAVEFUNCTIONSS

IF C2¢01) = 1 AND C2ALI) = 1 AND C2W[1] = 1 THEN
BEGIN

SYMM ¢« " AY}

RS[(N=1)/221=1) ¢ 1}
END}

IF ¢2C(I1 = =1 AND C2A[F) = 1 AnD C2B{1) = =1 THEN
BEGIN

SYMM ¢ "BA"}

RSL(N=1)/2s1"1]) ¢ 2}
ENDJ

IF C2C01) = =1 AND C2A(I) = =1 AND C28(I] = 1 THEN
BEGIN

SYMM ¢ "Bu";

RSC(N=1)/2»]1*1] ¢« 3}
ENDJ

IF C2C0I) = 1 AND C2A[I) = =1 AND C2BLI) = =1 THEN
BEGIN

SYMM ¢ ®BC%)

RSL(N=1)/2,1=1] ¢ 5)
ENDJ

WRITECLABAFMT2o(N=1)/22=(C(N"1)/2) = 1 + IsAD[I]2SYMM)}
END

MATRIXPRINT(N,NsBH)} COMMENT PRINTS QUT EIGENVECTOR

MATRIX]

COMMENT NEXT SECTION UF PROGRAMMING CHECKS NORMALIZATION

AND ORTHOGONALITY ON THE EIGENVECTORSS

TRD ¢« 0.003

FOR I ¢ 1 STEP 1 yUNTIL N DO

TRD ¢ TRD + AH{I»11}

00029700
00029800
00029900
00030000
00030100
00030200
00030300
00030400
00030500
00030600
00030700
00030800
00030900
00031000
00031100
00031200
00031300
00031400
00031500
00031600
00031700
Q0031800
00031900
00032000
00032100
00032200
00032300
00032400
00032500
00032600
00032700
00032800
00032900
00033000
00033100
00033200
00033300
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BEGIN

BEGIN

ENDJ
ENDJ

IF ABS(TRA = TRD) > lé~=6 THEN
NRITEC(LAB2»CHECK»SNAFU)S
FUR K ¢« 1 STEP 1 UNTIL N DO

FUR 1 ¢+

GOOFC1]
FUR J +
GoorFll1l

1

L 4

1
.

STEP 1 UNTIL N DO

0e0Q3
STEP 1 UNTIL N DO
GUOFEI) + (REF(I2JY = AHIR»KIXIDII»J])xBHIJI»K]}

IF GOOFLI) > 1@=6 THEN
NRITE(LAB»GUUFF»GOOFO)

END EAGLE}
COMMENT THE ACTUAL BODY OF BLOCK ONE NOW BEGINSS
WRITE (LABEINCY))

REALDCBAL»/»AA»bBsCCoNN)J
CLeCAA=BB)/(2x(CC)~(AA+BB)))}
FOR NM &« 1 STEP 1 UNTIL NN DO

BEGIN

READ(BAL»/»Jl)}

FOR Ge#1 STEP 1 UNTIL 2x(JI)+% DO

BEGIN

COMMENT THE NEAXT SECTIQN OF PROGRAMMING FORMS THE ASYMMBTRIC
HAMILTONIAN MATRIX WHICH WILL BE DIAGONALIZED BY THE ABUVE
PRUCEDURESS

KI ¢ =(JI=0u+1);

AlGrGle(KI)*2)

ENDJ

FOR Ge¢1 STEP 1 UNTIL 2x(JI)+1 DO
FOR HeGel STEP 1 UNTIL 2x(JI)+1 DO

BEGIN

KIte={JI=G+1)}
IF H=®=G+2 THEN
ALGaH] €=((CLI/2)XSQRTC((JI=KIIX(JI=K[=1IX{JI+K]+2)
X{JI*KI+1))
ELSE A[LGsH] ¢ 0,003

00033400
00033500
00033600
00033700
000336800
00033900
00034000
00034100
00034200
00034300
00034400
00034500
00034600
00034700
00034800
00034900
00035000
00035100
00035200
00035300
00035400
00035500
00035600
00035700
00035800
00035900
00036000
00036100
00036200
00036300
00036400
00036500
00036600
00036700
00036800
00036900
00037000
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END;

EAGLE(2x(J])+1,A))}

COMMENT THESE STATEMENTS STORE THE THE RESULTS OF THE DIAG=
ONALIZATION INTO THE ENERGY AND COEFFICIENT ARRAYS E AND CM3

FOR Il¢ 2x(JI) + | STEF =1 UNTIL 1 DD
E{JI»EI=1) ¢ AD(II)}
FOR Ile 2x(JI) ¢+ 1 STEP =1 UNTIL ! DO
FOR JJe 2x(J1) ¢+ 1 STEP =1 UNTIL 1 DO
CMLJIsIE=10dJ=]]¢BHLJJ,I1]]I

ENDJ

END OF BLOCK ONEj

BEGIN

COMMENT BEGINNING OF BLOCK TWO WHICH CALCULATES THE QUADRUPOLE MATRIX

00037100
00037200
00037300
00037400
00037500
00037600
00037700
00037800
00037900
00038000
00038100
00038200
00038300

ELEMENTS AND THEIR ENERGY CORRECTIONS ACCORDING TO PERTURBATION THEORY300038400

INTEGER WaEXPLIsPaPLlaP2sPIsPUsrSsKsMIN3sFI»drT»JPsTPsKAS
REAL U1s02:,035J15J22J3s0L12L2sL325M12M1oM2sN3AB2CHIXPXPACHIYPYPR,

CHIZPLP,CHIXPYP}
INTEGER ARRAY JALTA(Q150]3

FORMAT QUT HEADING{(/»X32»"MATRIX ELEMENT™s//sX4s"JP"s X3, "TP"eX3s
RIPM o XIaMFMa XA MU KU " T s X4 [ s X18,"REAL VALUE™» X527 M VALUE™»

X8,»"ENERGY CORRECTIUNT»X5s"SYMMETRY™);

FORMAT OUT EMIT(/»Xx9»"PROCESSOR TIME IS™sF10,6,"MIN 10 TIME IS"»
FlOe6s"MIN™))

INTEGER PROCEDURE MINZ(P1sP2,P3,P4);
COMMENT FINDS THE MINIMUM OF FOUR NUMBERS}
VALUE P1,P2sP35P4)
INTEGER P1sP22P3,»P43

REAL PROCEDURE FACT(S))

BEGIN

ENDJ

IF PisP2
IF P2sP1
IF P3sP1
If P4sPl

AND P15P3
AND P2<P3
AND P3sP2
AND P4SP2

COMMENT CALCULATES THE FACTORIAL

VALUE S3
INTEGER

53

AND P1SP4 THEN MINZ
AND P2SP4 THEN M]IN2
AND P3SP4 THEN MINZ
AND P4<SP3 THEN MINZ

OF §3

* T e

Pl
P2}
P33
Paj

00038500
00038600
00038700
00038800
00038900
00039000
000394100
00039200
00039300
00039400
00039500
00039600
00039700
00039800
00039900
00040000
00040100
00040200
00040300
00040400
00040500
00040600
00040700
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FACT € IF $<0 THEN O ELSE IF S<2 THEN 1 ELSE FACT(S=1)x53 00040800

REAL PHKDCEDURE DELCU1,D22D3)3 00040900
YALUE 01,D2,03) 00041000
REAL D1sD2,»03) 00041100
DEL &« SQRT(FACT(D1+D2=03)xFACT(U1=D2+DIIXFACT(=D1+R2+03)/ 00041200
FACTCD1+D2+D3+12)3 00041300

REAL PROCEDURE SUMK(J12J2sJ3:L1sL2sL3)3 00041400
VALUE J1»,J2sJ32L1,L22L33 00041500
REAL JisJ2sJ32L)sL2,L3) 00041600
BEGIN 00043700

SM1 ¢ Q3 00041800

MIN3 ¢« MIN2(J1+J2=J3sJ1+L2=L3, L 1¢J2"L3,L1¢L2=03)3 00041900

FOR K ¢ 0 STEP 1 yUNTIL MIN3 DO 00042000

BEGIN 00042100

F3 € PACT(KIXFACT(J1+¢J2=J3=K)xFACT(J1+L2=L3=K) 00042200
XFACTCLI4J2=L3=K)IXFACT (»JivL1+JI+LI+KIXFACT(~J2=L2+J3+LL3 00042300
+KIXFACTCLI+L2=J3=K )} 00042400

IF F3 > 0 THEN SM1 ¢ 5M1 + (IF HOOLEAN(K) THEN =1 ELSE 1) 00042500
XFACT(J1+J2¢L1+L2+1=K)/F 3} 00042600

ENDJ 00042700

SUMK ¢ 3$M1) 00042800

END OF SUMK} 00042900

REAL PROCEDURE SIXJ(J1,02sJ3,L1,L2,1.3)3 COMMENT CALCULATES WIGNER SIX=J 00043000
SYMBOLS) 00043100
VALUE J1sJ22J390L1sL22L3} 000433200
REAL JlsJ2sJ3sL1,L2,L33 00043300
BEGIN 00043400

EXP1 ¢ J1+J2+L1+L2) 00043500

IF ABS(J1+42) 2 J3 AND ABS(JI=J2) S J3 THEN 00043600

SIXJ ¢ (IF SBOOLEANCEXP1) THEN =1 ELSE 1)xDELCJ1»J2243) 00043700
XDELCLLI»LZ2sJd3)xDELCJI»L2,L3)IXSUMK(JLJ20 U350 0L2,5L3) 00043800
XDEL(LI»J2,L3) ELSE SIXJ ¢ U3 00043900

ENDJ 00044000

REAL PROCEDURE SUMKZ2({J1sJ2,J3»MLPM2oM3)3 00044100
VALUE J15J2sJ3sM1oM22M3; 00044200
REAL J1s,J22J32Mi,M22M3) 00044300
BEGIN 00044400

oL



SM1 « O3}
MIN3 € MINZ2(JLI+JU2=J3rJ1"M1,»J2+¢M25100)3
FUR K ¢« O STEP 1 UNTIL MIN3 DD
BEGIN
F3 ¢ (FACT(KIXFACTC(JLI+J2=JU3"KIXFACT(J1=M1=K)x
FACT(UZ+M2=K)IXFACT(JI=J2+MI+KIXFACT(JIA=JL1"M2+K))}
IF F3 » O THEN SM1 ¢ sSMi + (IF SOOLEANCK) THEN ={ ELSE 1)
/F33
ENDJ
SUMKZ +« SM1)
END OF SUMKZ23;
REAL PROCEDURE THREEJ(J1»J2,J3»M1,M2,M3)3 COMMENT CALCULATES THE WIGNER
THREE=J SYMBOLJ
VALUE JisJ2sJ32M1,M25M3)
REAL J1sJ2,J3sM15sM2,M33
BEGIN
EXP] ¢ Ji1=J2=M3}
IF M1+M2+M3 # O THEN THREEJ ¢ 0 ELSE
THREEV ¢ (1f BOOLEANCEXP1) THEN =1 ELSE 1)
XSQRTC(FACT(J14JU2=J3)XFACT(JLI=U2+JIIXFACT(=J1+J2+J3)
XFACT(JI+MI)IXFACT(J1=M1)XFACT(J2+M2)XFACT(J2=M2)
XFACT(JI+MIIXFACT(J3=MI)/FACT(J1+J2+4J3+1))
XSUMKZ(JirJ2rJdIsMLiaM22M3)}
END OF THREEJ}
COMMENT THE FOLLOWING TwO PROCEDURES DETERMINE THE VALUES OF THE
QUANTITIES X+ AND X™ WHICH ARE FUNCTIQONS UF JsTsJP»TPs1»AND IP, THE
PHYSICAL CONSTANTS UF THE MOULECULE WHICH ENTER HEREs CHIXPXPsETCe»
ARE THE POTENTIAL DERIVATIVES WITH RESPECT TO PRINCIPAL INERTIAL
AXES OF THE MOULECULE?
REAL PROCEDURE CHIPLUS(AAB»C»DsKA)S
VALUE A»BrCrD2KA}
INTEGER A»B»C2DrKAJ
BEGIN
IF ABS(A=H) =3 0 THEN
CHIPLUS ¢ ((2)/((B+1Xx(2x(B)+3))IX((CMIBsB+D»B+KAIXCM{B2B+(C,»
BYKAJIX(Ix(KA®2)=(B)X(B+L)IX(CHIZPZP) = (CM{B,B+DsB+KAlxX
CMIB,B+CrB+RA+2])IXSQRT((B=KA)IX(B="KA=1)x(B+KA+1)x(B+KAa+2))

00044500
00044600
00044700
00044800
00044900
00045000
00045100
00045200
00045300
00045400
00045500
00045600C
00045700
00045800
00045900
00046000
00046100
00046200
00046300
00046400
00046500
00046600
00046700
00046800
00046900
00047000
00047100
00047200
00047300
00047400
00047500
00047600
00047700
00047800
00047900
00048000
00048100

.



X(CHIXPXP=CHIYPYP)/2 = (CMIB,B+D,B8+KAIXCMLBsB+C,B+KA®2])
XxSART((O+KA)X(B=KA+1 I x(B¢KA=1 I (B=KA+2) IXx(CHIXPXP=CHIYPYP)
/72)3
IF ABS(CA=B) = 1 THEN

CHIPLUS & (1/((B+1)X(B+2)xSQURT(2XB+3))1x(CM[P,B+DsB+KAIX
CMLAS A+CrA+KAIXEXKAXSURT(((B+1)%2)"(KA)*2)x
CHIZPZP+CM{BsB+DsB+KAIXCMIA»A+CrA+KA+2IXSART((B=KA X
(B+KA+1 )X (B+KA+2)IX(B+*KA+3)IX(CHIXPXP=CHIYPYP)

00048200
00048300
00048400
00048500
00048600
00048700
00048800
00048900

*CMIBsBHDIB+KAIXCMIA»A+CrA+KA=2IXSQRT((B+KA)IX(B=KA+])x(B=KA+000439000

2)X(B=KA+3)IX(CHIXPXP=CHIYPYP))}
IF ABS(A=u) = 2 THEN
CHIPLUS ¢ (Z2/(SQRT(B+1)x(B+2)x(2XB+3)XSQRT(2XB+5)))
X(CMIB )B+DsB+KAIXCMIASA+L)A+KAIXIXSURT((B+KA+1Ix(B=KA+1)
X(B+KA+2)x(0="KA+2)IXCHIZPZP=CMIBro+DsB+KAIXCM{AsA+CLA+KA+2]
XSART((B+KA+LIX(BEKA+2Ix(B+KA+I )X (B+KA+4 Y IX(CHIXPXP
*CHIYPYP)/2 = CMIBsB+DsB+KAIXCMIALA+CA+KA=2 IXSQRT{(B=KA+1)
X(B=KA+2)x(p=KA+I)x(B=KA+4) )Ix(CHIXPXP=CHIYPYP)/2)}
END OF CHIPLUS)
REAL PROCEDURE CHIMINUS(A»B8»CrDsKA)}
VALUE A2B»C2D2KAJ
INTEGER A»B:C»DsKa}
BEGIN
IF ABS(A=p) = 0 THEN
CHIMINUS ¢ ((2)/C(B+1)x(2x(B)+3))IX(CM[BsrB+DsB+KA]
XCM[OrB+CobB+KA+2I1X(=SQART((B=KA)X{B+KA+1IX(B»KA*L)x(B+KA+2)))
+CM(Br0+DB+KAIXCMIB»B+CrB+KA=2IXSQRT((B+*KAIX(H=KA+L)IX(B+KA=1)
X{H"KA+2))IXCHIXPYP}
IF ABS(A=8) = 1 THEN
CHIMINUS ¢ (2/((B+1)x{(B+2)xSQRT(2XB+3)))X(CM(BrB+DsB+KAIX
CMLAPA+CHA+KA+2 IXSQRT((B=KAIX(B+KA+1 }x(B+KA+2)X(B+KA+3) )X
CHIXPYP + CMIBso+DsB+KAIXCMIA»A+CHA+KA=2IXSQRT((B+KAIX{E=KA+1)
X(B=KA+2)x(8=KA+3)IXCHIXPYP)}
IF ABS(A=B) = 2 THEN
CHIMINUS ¢ (2/(SURT(B+1)x{B8+2)x(2xB+3)IXSURT(2xX
(BI+5))Ix(CM[BsaB+D»B+KAIXCMIASA+CHA+KA+2 Ix(=SQRT((B+KA+L)x
(BrKA+2IX(B+KA+3IX(B+KA+4))) + CM[Bru+Drb+XAIXCMIALA+CIA+KA=2])
KSGRT((B=KA+1)IX(B"KA+2)X(B=KA+3)X(B=xKA+4))IXCHIXPYP}

00049100
00049200
00049300
00039400
00049500
00049600
00049700
00049800
00049900
00050000
00050100
00050200
00050300
00050400
00050500
00050600
00050700
00050800
00050900
00051000
00051100
00051200
00051300
00051400
00051500
00051600
00051700
00051800
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END OF CHIMINUS)
PROCEDURE MATRIXELEMENT(JsT»JP»TP))
COMMENT THIS PROCEDURE CALCULATES THE FIRST= AND SECOND=ORDER QUADRU=

00051900
00052000
00052100

POLE MATRIX ELEMENTS FOR THE ASYMMETRIC ROUTOR AS niElLL AS THEIR CUNTRIBU=00052200

TIONS TGO THE SECUND=ORDER ENERGY CORRECTIONI
VALUE JrT»JP»TP3
INTEGER JsT»JP»TP}
BEGIN
REAL ME,REP»IMA,PIMALPREPSIECS
INTEGER S8»5Ps1sIPsFsRsRPsUIUPAFUsLsLPAFL]
ALPHA SYM3
LABEL FIRST»SECUND»THIRD#FOURTH»FIRSTPS
FORMAT ODUT ROWC/» X4, 11sX85120X35112X485110X6511,%45125X3,112X19»
FLlisOrFi8,60XT72F10402X502A2)

00052300
00052400
00052500
00052600
00052700
00052800
00052900
00053000
00053100
00053200

KROWC/2X5,"CURRECTION FOR STATE wITH NON=ZERD FIRST=ORDER SPLITT00053300

ING IS"sX222F10:6,X102A2)»
PROWNC/2X8p 11 X422 X32112X80 T 1o X80 1 ax8s12,X32112%X192F114+6»
Fla.orX27sA2)3
COMMENT DETERMINES THE SYMMETRY UF THE PRUOUCT OF THE WAVEFUNCTIUNS
INVOLVED IN THE MATRIX ELEMENT AND THUS THE SYMMETRY OF THE CONTRIBUT=
ING PART OF THE HAMILTONIAN}
SYMe(LF RS{JrJ*TIxRS[JP,JP+TP) = 5 OR
RS{JsJ*TIXRS{JP» JP*TP]) = 6 THEN ™BC®™ ELSE " AM™))
COMMENT THIS DETERMINES THE STEPPING RANGE ON I AND IP}
SS5¢(IF RSUJr»u4T) = §{ OR RS(JrJ+T]1 = 3 THEN 2 ELSE 3))
SP &« (IF RSLJP»JP+TP) = 1 OR RS[JPsJP+TP] = 3 THEN 2
ELSE 3))

FOR ] ¢ S5 STEP =2 WHILE 1 2 0 o0
FOR IP « SP STEP =2 WHILE IP 2 0 DO
BEGIN
COMMENT THIS DETERMINES THE STEPPING RANGE ON F3
Uede])
UPe¢JP+1P}

IF UPSU THEN
FueUP ELSE FUe«U)
LeaBS(u=1)}
LP¢ABS(JP=IP)3

00053400
00053500
00053600
00053700
00053800
00053900
00054000
00054100
00054200
00054300
00054400
00054500
00054600
00054700
00054800
00054900
00055000
00055100
00055200
00055300
00055400
00055500
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BEGIN

BEGIN

ENDJ

BEGIN

END}

IF LPSL THEN
FLeL ELSE FL¢LP;
FUR FeFU STEP =1 UNTIL FL DO

PREP¢REP+0.00;
PIMA€IMA®0,00}
I¥ JPsJ OR JPaJ+l OR JP=J+2 THEN

IF JP=i+1 OR IP=]=1 THEN

FOR KAae=(J) STEP 1 UNTIL J DO

PIMA ¢ PIMA ¢ (((=1)*(J+IP+F+I+1))/2)XSIXJ(F2IP»JPs2sJ)r])
XSIXJ(3/251P»3/725123/252)%XSQRTC(2xCI)+1Ix(2%CIP)+1))
XSART(DSIXCHIMINUS(JP2JsTP»F»KA)/(IF THREEJ(N222JPsds0s=J)
= Q.0 THEN 1 ELSE THREEJ(J22,JP2J20,=J))}

IF IP = | OR [P = [+2 OR IP = ]I=2 THEN

FOR KA ¢ =(J)} STEP 1 UNTIL J 00

PREP ¢ PREP + (((=1)a(JeIP+F+1+1))/2)XSIXJ(F2IFsJP22sJsl)
XSIXJ(3/7201P»3/25123/2»2)%SQRTC(2%x(1)+1)x(2XCIPI+1))
XSQART(SIXCHIPLUS(JP»JsTP»TH»KA)/(LIF THREEJ(J225JPsJr03s=y)
® 04U THEN 1 ELSE THREEJ(J22sJPsJs0s=4)))}

If JP = J*1 OR JP = J=2 THEN

IF JP = J+1 OR IP = Je1 THEN

FUR KA ¢ =(J) STEP 1 UNTIL J DO

PIMA ¢ PIMA + (((=1)2(J+IP+F+142))/2)%XSIXJ(F2IP»JP»2sJs1])
XSIXJ(3/2,1P»3/25123/2»2)xSAURTC(2XC])+1Ix(2X(IP)+1))
XSQRT(3)IxXCHIMINUS(JIP2Js TP2To»KA)/C(LF THREEJ(J222JPsJ2r0s=J)
= 040 THEN 1 ELSE THREEJ(J22,JPsJdrl»r=J))]}

IF [P = I OR IP = 142 DR I[P = I=2 THEN

FOR KA ¢ «(J) STEP 1 UNTIL J DO

PREP « PREP + (((=1)2(J+IP+F+[+1))/2)XSIXJ(FsIPsJP22sJs])
XSIXJ(3/251P»3/22123/202)xSQRT((2XCII+1Ix(2X(IPI+1))

XSART(IIxCHIPLUSCUP»JsTPs»ToKAY/ (IF THREEJC(V225JPsJr0r=y)
= 0,0 THEN 1 ELSE THREEJ(J»25JPsaJdslsa™d));}

IF J=JP AND T=TP THEN GO 10 FIRSTS

00055600
00055700
00055800
00055900
00056000
00056100
00056200
00056300
00056400
00056500
00056600
00056700
00056800
00056900
00057000
00057100
00057200
00057300
00057400
00057500
00057600
00057700
00057800
00057900
00058000
00058100
00058200
00058300
00058400
00058500
00058600
00058700
00058800
00058900
00059000
00059100
00059200

.



FIRST:

FIRSTP

SECOND3

THIRD:
FOURTH1

COMMENT

BEGIN

IF ABSCELJ2J+T) = ELJP»JP+TP)) < 10XAdSC(PREP) OR
ABSCELJ»J+T]) = E[JP,JP+TP)) < 10xABS(PIMA) THEN
GO YO FIRSTP ELSE GO TO SECONDJ

REP ¢ PREPS

IMA ¢ PIMAJ

EC ¢ SAURT((REP)I*2 + (IMAI%Z2))

GO TO THIRDS

REP ¢ PREPJ

IMA ¢ PIMAJ
WRITE(LABsPRO#%s JP) TP IPsFsJ2Tol»REP»IMA»SYM)}
GU TO FOURTHJ

IF F = J THEN

REP ¢ PREP/SQRT(2)}

IMA ¢ PIMA/SQRT(2))

EC ¢ ((REP)I*2 + (IMA)I*2)/CELJ»J+T] = ELJP#JP+TP1)}
WRITECLABSKROWSEC,SYM)S

GO TO FOURTH}

END ELSE

BEGIN

ENDS

REP ¢ PREP}
IMA ¢ PIMAJ
EC ¢ ((REP)I*2 + (IMAYI#2)/CELJ»J+T] = ELJP+»JP+TP])}
GO TQ THIRD}

WRITECLABSROWSJP2TPIPsFsJsTolsREPSIMASECISYM)}

END UF F LOUPS

END OF 1 ANDL IP LOOP3

END OF PROCEDURE MATRIXELEMENTS

THIS IS THE BEGINNING OF THE B0DY OF BLOCK TwOJ

WRITECLABINOD]))S

A e« TIMECZ2))

B ¢« TIME(3))

READCBAL» /s CHIXPXPsCHIYPYP2»CHIZPZPsCHIXPYP)S
READ(BAL,/»P)}

FUR w « %1 STEP 1 UNTIL P DD
READCBAL» /72 JALWI»TALN] )}

00059300
00059400
00059500
00059600
00059700
00059800
00059900
00060000
00060100
00060200
00060300
00060400
00060500
00060600
00060700
00060800
00060900
00061000
00061500
00061200
00061300
00061400
00061500
00061600
00061700
00061800
00061900
00052000
00062100
00062200
00062300
00062400
00062500
00062600
00062700
00062800
00062900
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END3S
END,
ENDENU.,

BEGIN

ENDS

BEGIN

BEGIN

BEGIN

ENDJ

BEGIN

ENDJ
END}S
ENDJ

CLOSE (BALsRELEASE)]
FOR W ¢ 1 STEP 1 UNTIL P DO

WRITECLAB»HEADING)}

JP e J ¢ JALN]S

TP &« T ¢ TALW}3
MATRIXELEMENT(JsT»JP»TP)}

FUR W ¢ 1 STEP 1 UNTIL P DO

J ¢ JAalnwlj;

T ¢« TAlN]S

FOR JP « O STEP 1 UNTIL 5 DO

FOR TP ¢« JP STEP =1 UNTIL =(JP) DO

IF (J#JP UR T#TP) AND RS[J»J+TIXRSLJP»JP+TP] # 2 AND

RSTJsJ+TIXRSLUPJP+TP] # 3 AND RS{IJ2J+TIXRSLJP»JP+TP)
# 10 AND RSIJ»J+TIXRS[JPsJP+TP} # 15 AND ABS(E[JU»J+T)
= ELJP2JP+TP)) £ 20000 AND JP2J THEN

WRITECLAB,HEADING))
MATRIXELEMENT(JsT»JP»TP)}

IF (J#JP UR T#TP) AND RS[JsJ+TIxXRSLJP»JP+TP) # 2 AND

RSEJsJHTIXRSIUPSJP+TP) # 3 AND RS{JrJ+TIXRSLJUPLJP+TP])
# 10 AND RSLJU»J+TIXRSLJUP»JP+TP] # 15 AND ABS(ELJU,»J+T]
= E(JPsJP+TPI) $ 20000 AND JPSJ THEN

WRITEC(LAB»HEADING))
MATRIXELEMENT(JP»TP»JUsT)}

WRITECLABSEMITA(TIMEC2)~A)/3600,(TIME(3)=8)/3600);

LAST CARD UN OCRDING TAPE

00063000
00063100
00063200
00063300
00063400
00063500
00063600
00063700
00063800
00063900
00064000
00064100
00064200
00064300
00064400
00064500
00064600
00064700
00064800
00064900
00065000
00065100
00065200
00065300
00065400
00065500
00065600
00065700
00065800
00065900
00066000
00066100
00066200
00066300
00066400
00066500
99999999

al
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APPENDIX B
TRANSFORMATION BETWEEN THE PRINCIPAL
INERTTAL SYSTEM AND THE PRINCIPAL

DYADIC SYSTEM FCR THE FIELD GRADIENT TENSOR

For the asymmetric-top molecule, the principal inertial axes
a,b, and ¢ are chosen as in Figure T on page 52, and the nuclear or
principal dyadic axes are labelled xyz on the same drawing. The angle
B is not necessarily the bond angle, for the principal dyadic system is
not necessarily the bond axis systemn.

In the principal dyadic system one first assumes that Laplace's

equation heolds at the nuclei, i.e.,

XX yy 22

and so the dyadic becomes

v 0 0
XK
Vvi=]0 =V__ -V a
ZZ
0 0 VZZ

To go from this to the principal inertial axis system a

similarity transformation is used,

V=A" VA



9

where A is the matrix of direction cosines relating the two sets of

axes, l.e., one may write

cos{xa) cos(xb) cos(xc)
A =] cos{ya) cos(yb) cos(ye)

cos{za) cos(zb) cos{zc)

In the case of the systems in Figure 7 this becomes, for

nucleus two,

0 0 1
'AE =| cosp sinp O
-3inpB cosB O
and for nucleus one,
0 0 -1
A1‘= -cosP sinp O

sing cospP 0

{The calculations for nucleus two will be outlined here and the changes

for nucleus one will be indieated.)

From above one has

0 cospP -sinp

=
i

0 sinp cosf

1 0 0



so that the expression for V in the prineipal inertial axis system

becomes
0 cosB -ginp Vxx 0 6] 0O Q 1
Vo= 0 sinB cosp 0 -VXX-Vyy 0 cosP sinp O
1 0 0 0 0 v -3inp cosB O

ZZ

Carrying out the indicated matrix multiplication gives

0 cosp -sinp 0 0 VXX

V=0 sinf cosp -(VXX+VZZ)0056 -(VXX+VZZ)sinB 0

l_l

0 0 —VZ231n6 VZZcosB 0
Thus, for nucleus two one obtains
(2) 2 .2
= - + + s
v (VXX VZZ) cos™f +V__ sin’Pp

ag

which may be written

V(E) = -(V__+2V_) cosEB + ¥
aa XX 7% i

Likewise one has

(2) _ 2
V.= -(vXX + VZZ) + (vXX + zvzz) cos"p
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file:///-sinp

and
V;%) = (v, + 2V, ) sinf cosp
Inverting this transformation gives
v, = (V(E) + v 2))
and

(2) _ (2) _ 2
Voo -V = -2(vXX + EVZZ) cos B + (vXX + QVZZ)

which may be written

(2 @) _

on Vb (VXX + evzz) cos2B

Now, one alsco has from above that

Al

V(2) - (V. + oV, ) 51n25
a XX

so that

Finally, using the above expression for tanff, one has

7 (2) _ y(2)

a8

cos2p = (hvéi)e N (V;:) (2))2)1/2

81
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But from equation (15} one has that

vgi) _v(2) (v, *2V_) cos2p

bb

so that

”Véi) + 7P V(E))z]l/E, v

as bbb X

or

<
i
rof

=3 T+ - (W) e )

For nucleus one the results are

W )
ag g4

1 7
Véb) = Vﬁb} ’
o
T - gy -

The inverted transformation for nucleus cne gives

A _ (@
pod XX
A1) = (2
7z 2.z
and B(l) _ —5(2) i

- 2V

LE

3 Véi))gjl/ej
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APPENDIX C

SAMPTE INTENSITY CALCULATLION

FOR HYPERFINE LINES

According to equation {(12) on page 39 of Chapter III, the

intensity of a quadrupole line is given by

_ <EiJTlld|‘E§T>2

3

(oFl41) (25 +1)

zet., B (cn)Twalrlnrld o,
el

a8 particular

i f . .
where (EJT[]d||EJT) is the same for all levels in
Jli — Jff transition. The expression for relative infensities 1is
T T
then

N = ¢(eria1) (eF+1) [ B, Bff

I €I ¢TI

(Y wertrtrirtst) 12,

where C is the same number for all lines in the transition.

Consider the line elFl =21 to efFf =02

f

in the J o = 2_2

te J = 2. transition. For even 7 levels ¢ and I may have the

o

values O and 2 only, as explained in Appencix A,

above becomesg

i t

Thus the expression

N=cl2(1)+1] (2217 ©® B. B W(2 iI:2 2 1)]2,

1=0,2 &7 T

84



85

The BGI'S are the transformation coefficients between the I and e
representations, and, as explained in Appendix A on page 56
one has

B = and B = & AE— ifrFr=2J.

1
el '\E— eC '\/'2_

The sign of the latter coefficient depends on the assignment of ¢

to the energy levels resulting from first-order splitting. The plus
sign 1s always assigned to the higher energy level, and minus is
assigned to the lower energy level, however the higher ¢ value is not

always assigned to the higher energy, Tor example, in the JT = 20

level. The assignment of ¢ is discussed further in a paper by
Robinson and Cornwell (55).

In the case of the above line, one obtains

Wwel1o0:221) +B.. B weie:ze ).

i _f
N = 15C[B.. B oo Bop

20 700

Here the initial state is the J:L:.L = 2 o state where g = 2 corresponds
T

to the higher energy level, and the final state is the Jff = 20 state
T

where ¢ = 0 corresponds to the higher level., Therefore one has

B. = L B -
- ’ ==
20 VE— 22 VE-

£ 1 f _ 1
Boo'f’Boe‘E’
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and so

¥=C w1022 1)+wz1e:22 1)

The values of the six-j symbols may be obtained from Rotenberg (54)

giving

N=150[ N ]E_JEEJ_
2 T(2WF (5) °

The example chosen here was for F' = J' and Ff and Ff = Jf which
is probably the most complicated situation. TFor lines where F # J, the
transformation coefficients are simply one since then e is assigned

the I value of the state.
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APPENDIX D

SAMPLE CAICULATION OF x
In Chapter IIT the expression for X_ is given as

pl

J > rd -
"T' aKT Jg" K¥J<JK J]Q’ZX» J’K J>

J
o

™
=

(J”K"J]azy,

JKJ) Xx;y.l

where the sums over J77 and K’ are over all states which may be
linked to J and J*. The above expression is evaluated in this
Appendix for cone choice of the quantum numbers J and J° using the
table of direction cosine matrix elements in the symmetric-top
representation shown in Table 3. This is taken from Cross, Hainer
and King {2) where it is explained that the total matrix element in

each case is made up of a product of three elements from the table, i.e.,

(FxM o JoRED = (3 Vg pes (e ) s e pee (B oy sraee

where the F subscript refers to the space-fixed axis system,
P = (X,Y,72), and the g subscript refers to the molecular principal
axis system, g = (x,y,7).

In the case above the elements are referred to the space-

fixed 7 axis, and, as mentioned in Chapter TII, the elements for



vwhich M = J and J* =2 J are the ones to be calculated., Thus the

expression becomes

(THTNop NIKTY = (8, )55+ (8 )5 w57 k- '(QZg)J,MJ;J',MJ ’

where M = J,
Consider the case of J” = J + 2. The elements of the product
of the two operators %y - and Oﬁy' may be divided into those diagonal

in K and those off-diagonal in K, i.e.,

(T KT |a, - azy,lJKlT) ;

and

(TKT|o, . O;ZY,LTKJ)

where K° # K, The first type are of the form

89

(J+2KJ[QZX,|J+1 K+1J){(J+1 K+1J|O4Zy,lJKJ) , (16)

and

(J+2KJ|O;ZX,[J+1 K-1J%({J+1 K-—lJIO’Zy,[JKI} . (17

{One should note that the elements of the form

{(J-1 K+1J| aZgUKJ)



Table 3, Matrix Flements of the Direction Cosine Operators in a Symmetric-Top Representation.

Value of J°
Matrix element factor J+1 J J-1
\ -1 -1 2 -l

(epg)r 77 [(T+1) /(27413 (2T+3) 7 [47(J+2) ] (A -1
(ap,) 5 1y 7% 2 JH2+41) (T-K+1) 2% o /7P
V)7 e *+ (T1) (F2542) JIFE) (T841) ) (T7K-1)

= ii(@ ) ,

Fx'J,K;d ",K+1 )
2/ TH+1 ~M+1) _ _

(2p0) 1 2y 0 (THL) (T-M41) oM 252
(oye) 3 50 i o /Tae1) (Ta0e) (TR (T141) T TR (TM-1)

= 08 )5 gt

06
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and

(J-1 K-lJ[qulaKJ)

must be zero because of the direction cosine factor

(3 - .o (JE_ME)l/E

Zg)J! J';J-l)MJ'

which is zero if M = J.)

To evaluate elements of the form (16) one has that
(342 K Jla,_.|J+1 K41 J) = (J+1 K+ J|q,_ .|J+2 K J)*

and

(J+1 KH1 Jfq, . |T+2 K J)*
= [(%g)J-JaE,J-f-l '(ézg)J@,K;Jﬂ,Kﬂ'(%g)Jﬂ,J;J+1,J]*

This element may be written

(J7 K41 Tlay, |3 K J)*

e -~ ~
rd

where J =dJ + 2 and J° = J - 1, so the appropriate column is the

third column in the table., The element factors are
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1
( P ) R = P
e RN V=% FE O -

1
(B20) 510 50w . = T VIR

(#50) pip,35041,5 =~

Therefore one obtains

(-1) AT+ JT-K+2){T-K+1

(T+2) T+ 2J+5

(742 X Jlo, L |J+1 K+ J) =

In the same manner cne may obtain

- A THHL) (T+HK42)

2(J+1) J2J+3

(J+l K+1 J(()Zy,1JKJ) =

so that the product element (16) is given by

13/ (T-K+2) (T=K+1) {T+K+1) (T++2)
2 ST J2a+3  fog+s

The other element of the product operator diagonal in K, (17), turns
out tc be the negative of the above element, so the term in the sum of
expression (13) which is diagonal in K is zero. The off-diagonal
elements in K may be done in the same manner, giving the result

quoted for y in Chapter III.



APPENDIX E
MEASURED FREQUENCIES OF

FOUR TRANSITIONS TN S-°°Cia>?

95



gk

Table 4. 32 35
Measured Frequencies of Four Transitions in § Cﬁz

Transition Rotational Quadrupole
Frequency Frequency
-J°, e -eF’ v (MUz) V(MHz)
"I' 0
00 01 17,041.37
10 17,044 ,20
22 21 17,046.99
21 22 12,677.27
02 21 12,698.70
_9 20 12,687.98
22 22 12,675.01
02 02 12,701.25
02 03 26,523.52
-2 3_2 26,527.81
22 23 26,532.13
24 24 14,563,29
-4 hnz 14,573.01

04 04 14,582.86
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