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AUTOMATIC FEEDBACK CONTROL FOR ONE CLASS 
OF CONTACT PIEZOELECTRIC PROBLEMS 
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In this paper we investigate the dynamics of solutions of the second order evolution 
inclusion with discontinuous interaction function which can be represented as the 
difference of subdifferentials. This case is actual for feedback automatic control 
problems. In particular, we concider mathematical model of contact piezoelectric 
process between a piezoelectric body and a foundation and for this problem 
investigate the long-term behavior of state function. We deduce a priory estimates 
for weak solutions of studied problem in the phase spase. The theorem on the 
existence of a global attractor for multi-valued semiflow generated by weak 
solutions of the problem and the structural properties of the limit sets is prooved. 
The main results of the paper were applied to the investigated piezoelectric problem. 

INTRODUCTION AND PROBLEM FORMULATION 

Let us consider a mathematical model which describes the contact between 
a piezoelectric body and a foundation. We formulate this problem as in [1]. 

Let dR  be a d -dimensional real linear space and dS  be the linear space of 
second order symmetric tensors on dR  with the inner product ijij

ij
τστσ ∑=:  

and the corresponding norm τττ :2 =dS , ijσ , .dij S∈τ  

Let us consider a plane electro-elastic material which in its undeformed state 
occupies an open bounded domain ,Ω dR⊂  .2=d  This domain as a result of 
volume forces and boundary friction can contact with rigid or elastic support. Let 
the boundary of piezoelectric body Ω  be Lipschitz continuous. Assume that the 
boundary Γ,  on the one hand, consists of two disjoint measurable parts DΓ  and 

NΓ , 0)Γ( >Dm  and, on the other hand, consists of two disjoint measurable parts 

aΓ  and bΓ , 0)Γ( >am  (Figure). Suppose that the body is clamped on ,ΓD  so 

the displacement field ,: dQu R→  ),,( txuu =  where ),0(Ω ∞+×=Q , vanishes 
there. Moreover, a surface traction of density g  act on ,ΓN  and the electric 
potential R→Ω:ϕ  vanishes on .Γa  The body Ω  is lying on “support” medium, 
which introduce frictional effects. The interaction between the body and the 
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support is described, due to the adhesion or skin friction, by a nonmonotone 
possibly multivalued law between the 
bonding forces and the corresponding 
displacements. 

The body forces of density f  
consist of force ,ef  which is prescribed 
external loading and force sf  which is 
the reaction of constrains introducing the 
skin effects, i.e. se fff += . Here sf  is 
a possibly multivalued function of the 
displacement u . 

To describe the contact between 
a piezoelectric body Ω  and a foundation 

let us consider the basic piezoelectric equations: equation of motion, equilibrium 
equation, strain-displacement equation, equation of electric field-potential and 
other constitutive relations (see [1] and references therein). 

We suppose that the process is dynamic. Let us set the constant mass density 
.1=ρ  Then we have the equation of motion for the stress field and the 

equilibrium equation for the electric displacement field respectively:  

 ,   in   Div Qufu ttt γσ −=−  (1) 

 ,   in   0div QD =  

where (Ω)L∞γ ∈  is nonnegative function of viscosity; ,: dQ S→σ  ( )ijσ σ=  is 

stress tensor; ,Ω: dD R→  ),( iDD =  , 1, 2i j =  is the electric displacement 
field; )(Div , jijσσ =  is the divergence operator for tensor valued functions; 

)(div , iiDD =  is the divergence operator for vector valued. Equation (1) regulates 
the change in time of the mechanical state of the piezoelectric body. 

The stress-charge form of piezoelectric constitutive relations describes the 
behavior of the material and are following:  

 ,   in   )()( T QEu ϕεσ PA −=  

 ,   in   )()( QEuD ϕε BP +=  

where dd SS →×Ω:A  is a linear elasticity operator with the elasticity tensor 
,)( ijklaa =  2,1,,, =lkji ; dd RS →×Ω:P  is a linear piezoelectric operator 

represented by the piezoelectric coefficients ),( ijkpp =  ;2,1,, =kji  
dd SR →×Ω:TP  is transpose to P  operator represented by 

)()( TT
kijijk pp ==P , ,2,1,, =kji  dd RR →×Ω:B  is a linear electric 

permittivity operator with the dielectric constants ),( ijββ =  ;2,1, =ji  
)),(()( uu ijεε =  , 1, 2i j =  is the linear strain tensor; )),(()( ϕϕ iEE =  the electric 

vector field. 

Figure. Partition of Γ  
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The elastic strain-displacement and electric field-potential relations are 
given by  
 ,   in   ))((2/1)( T Quuu ∇+∇=ε  

 .   in   )( QE ϕϕ −∇=  

We consider the reaction-displacement law of the form:  

 ,   in   )),(,()),(,(),( 21 QtxuxGtxuxGtxf s ∂−∂∈−  

where RR →× d
iG Ω: , 2,1=i  are measurable in ( , )x u , convex in u  for a.e. 

Ω∈x  functionals; ),,( ⋅∂ xGi  2,1=i  are their subdifferentials [2, Chapter 2]. 
Let 0u  be the initial displacement and 1u  be the initial velocity. The 

classical formulation of the mechanical model can be stated as follows: find 
a displacement field u  on dR×Ω  and an electric potential ϕ  on R×Ω  such that: 

 ,   in   Div Quffu tsett γσ −+=−  

 ,   in   0div QD =  

 ,in     )()( T QEu ϕεσ PA −=  

 ,  in   )()( QEuD ϕε BP +=  

 ,in     )),(,()),(,(),( 21 QtxuxGtxuxGtxfs ∂−∂∈−   (2) 

 ),,0(   on   Γ   ),,0(   on   Γ0 TgnTu ND ×=×=  

 ),,0(   on   Γ0   ),,0(   on   Γ0 TDnT ba ×=×=ϕ  

 ,)0(   ,)0( 10 uuuu t ==  

where n  denotes the outward unit normal to Γ.  
We now turn to the variational formulation of Problem (2). Let us 

consider the space 0:);Ω({ 1 =∈= vHvV dR  on ).;Ω(}Γ 1 d
D H R⊂  Let =H  

),;Ω(2 dL R=  );Ω( dR=H  be a Hilbert spaces equipped with the inner products 

uvdxvu H ∫=〉〈
Ω

,  and dxτστσ :,
Ω
∫=〉〈 H  respectively. Then ),,( *VHV  be an 

evolution triple of spaces. Then H〉〈=〉〈 )(),(, vuvu V εε , H)(vv V ε= , Vvu ∈,  

is the inner product and the corresponding norm on V . Therefore ),( VV ⋅  is 
Hilbert space. 

Assume that ,2,1 ,Ω: =→× iG d
i RR  satisfies standard Carathéodory’s 

conditions, and there exist )Ω(1
)( Lc i ∈  and ,0)( >iα  and that ≤d

id
R

|||| )(  

duxc ii
R

||||)( )()( α+≤  for a.e. Ω∈x  and any du R∈ , .),()( uxGd i
i ∂∈  

Moreover, )2(α  is sufficiently small. 
Let us set the following hypotheses for the constitutive tensors: 
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(i) ),( ijklaa =  ),Ω(∞Laijkl ∈  klijijkl aa = , jiklijkl aa = , ijlkijkl aa = , 

ijijklijijkl xa τατττ ≥)(  for a.e. Ω∈x , d
ij +∈=∀ S)(ττ , ;0>α  

(ii) ),( ijkpp =  ;)Ω(∞Lpijk ∈  

(iii) ),( ijββ =  )Ω(∞ββ Ljiij ∈= , 2||||)( dmx jiij R
ζζζβ β≥  for a.e. Ω∈x , 

d
i R∈=∀ )(ζζ , .0>βm  

Without loss of generality let us consider 0≡g  and 0≡ef . Following [1], 
we present Problem ( 2 ) in the generalized formulation:  

 ( )
⎪⎩

⎪
⎨
⎧

==
∋∂−∂+++

,)0(   ,)0(
,  for  a.e. ,0))(()()()()(

10

_

21

uuuu
ttuJtuJtAutButu

t

ttt  (3) 

where ;: *VHB →  ;: *VVA →  RHJi →: , 2,1=i  are locally Lipschitz 

functionals, dxxuxGuJ ii ))(,(:)(
Ω
∫= , .2,1=i  iJ∂  is the Clarke subdifferential 

for )(⋅iJ , 2,1=i ; );;( *VHV  is evolution triple. 
Note that the parameters of Problem (3) satisfy following assumptions [1]: 
• Assumtion :)(B  HHB →:  be a linear symmetric such that there exists 

0>β  such that 2),( HH vvBv β=  ;Hv∈∀  

• Assumtion : )(A  V  is a Hilbert space; *:A V V→  be a linear, 

symmetric and there exists 0Ac >  such that 2,
VAV vcvAv ≥〉〈  ;Vv∈∀  

• Assumtion :)(J  RHJi →: , 2,1=i  be the functions such that  
(i) )(⋅iJ , 2,1=i  are locally Lipschitz and regular (see Clarke [2]), i.e.: 

- for any ,, Hvx ∈  the usual one-sided directional derivative 

t
xJtvxJ

vxJ ii
ti

)()(
lim);(

0

−+
=′

→
, 2,1=i , exists, 

- for all ,, Hvx ∈  ,);();( vxJvxJ ii
o=′  where =);( vxJi

o  

t
yJtvyJ ii

txy

)()(
lim

0 ,

−+
=

→→
, ;2,1=i  

(ii) for 2,1=i  there exists 0>ic  such that  

 ;  ),(  ),1( HvvJlvcl iHiH ∈∀∂∈∀+≤  

(iii) there exists 02 >c  such that  

 ,  ),(  ,),( 22
2 HvvJlcvvl HH ∈∀∂∈∀+≤ λ  

where ( )( ) {  |  ( , ) ;  }i H iJ u p H p w J u w w H∂ = ∈ ≤ ∀ ∈o  denotes the Clarke 

subdifferentials of ,)(⋅iJ  2,1=i  at a point Hu∈  (see Clarke [2] for details); 

),0( 1λλ ∈ , 01 >λ : 2
1

2
HVA vvc λ≥  .Vv∈∀  
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We define Hilbert space X V H= ×  as the phase space for Problem (3). Let 
.∞+<<<− Tτ∞  

Definition. Let . ∞+<<<∞− Tτ  The function ];,[))(),(( XTLuu T
t τ∞∈⋅⋅  

is called a weak solution for Problem (3) on ],[ Tτ  if there exist );,(2 HTLli τ∈ , 

,2,1=i  ))(()( tuJtl ii ∂∈  for a.e. ( , )t Tτ∈  such that ,V∈∀ψ  :),(0 TC τη ∞∈∀  

 +− ∫ dtttu tHt

T

)()),(( ηψ
τ

 

 [ ] .0)()),(()),(()),(()),(( 21 =−+++ ∫ dtttltltutu HHHHt

T

ηψψψψ
τ

 

Theorem 1.4 from [1] provides the existance of a weak solution of 
Problem (3) on ],[ Tτ  with initial data  

 buau t == )(    ,)( ττ  (4) 

for any ,Va∈  .Hb∈  
In the non-autonomous case the abstract existence results for such problem 

with nonmonotone skin effects are presented in [1]. The long-time behavior of all 
weak solutions for this problem with continuous interaction function is 
investigated by Ball in [3]. The solution dynamics for autonomous model when 

02 ≡J  is studied in [4], [5]. The particular scalar situation is considered in [6]. 
Here we consider the case of multidimensional laws with discontinuous 
interaction function which can be represented as the difference of subdifferentials, 
that is actual for feedback automatic control problems. The main purpose of this 
paper is to investigate the long-term behavior of state function, to study the 
structural properties of the limit sets and to deduce sufficient conditions that 
direct the system to the desired asymptotic level. 

PROPERTIES OF SOLUTIONS 

We consider a class of functions ).];,([ XTCW T ττ =  To simplify our conclusions 
from Assumptions ( )A , ( )B  we suppose that  

 ,),(),(  ,,  ,,),( 2
HHVVVV vBuvuvAuvvAuvu =〉〈=〉〈= β  

 .,  ),(2 VvuvBvv HH ∈∀=β  (5) 

Let us set ),()()( 21 uJuJuJ −=  .Hu∈  Lebourgue’s mean value theorem 
[2, Chapter 2] yields the existence of constants 3 4, 0c c >  and :),0( 1λμ∈  

 .    
2

)(    ),1(|)(| 4
22

3 HucuuJucuJ HH ∈∀−−≥+≤
μ  (6) 

According to [7, Lemma 4.1, p. 78], [7, Lemma 3.1, p. 71] and [1, 
Theorem 1.4] the following existence result holds. 
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Lemma 1. For any ,T<τ  ,Va∈  Hb∈  Cauchy problem (3), (4) has 

a weak solution ).;,(),( XTLuu T
t τ∞∈  Moreover, each weak solution T

tuu ),(  of 
Cauchy problem (3), (4) on the interval ],[ Tτ  belongs to the space )];,([ XTC τ  

and ).;,( *
2 VTLutt τ∈  

Let us consider the next denotations: Xba T ∈=∀ ),(τϕ  we consider 
T

tT uu ))(),({()(, ⋅⋅=ττ ϕD | T
tuu ),(  is a weak solution of (3) on ],[ Tτ , ,)( au =τ  

})( but =τ . Lemma 1 implies that .)];,([)(,
T

T WXTC τττ τϕ =⊂D  

Note that translation and concatenation of weak solutions are also the weak 
solutions. 

Lemma 2. If ∞+<<< Tτ0 , ,X∈τϕ  ),()( , ττ ϕϕ TD∈⋅  then =⋅)(ψ  
)()( , ττ ϕϕ sTss −−∈+⋅= D  s∀ . If ,Tt <<τ  ,X∈τϕ  )()( , ττ ϕϕ tD∈⋅  and 

)()( , τϕψ TtD∈⋅ , then 

 
⎩
⎨
⎧

∈
∈

=
],[),(
],,[),(

)(
Ttss
tss

s
ψ

τϕ
θ  belongs to ).(, ττ ϕTD   

Proof. The proof is trivial. 
Let Xba T ∈= ),(ϕ  and  

 ).()(
2
1)( 21

2 aJaJX −+= ϕϕV  (7) 

Then we have the next lemma.  
Lemma 3.  Let ,∞+<<<∞− Tτ  ,X∈τϕ  ).())(),(()( , ττ ϕϕ T

T
tuu D∈⋅⋅=⋅  

Then RT →],[: τϕoV  is absolutely continuous function, and for a.e. ),( Tt τ∈  
2)())(( Ht tut

dt
d βϕ −=V . 

Proof. Let ∞+<<<∞− Tτ , TT
t Wuu τϕ ∈⋅⋅=⋅ ))(),(()(  be an arbitrary weak 

solution of (3) on ).,( Tτ  As ),;,())(( 2 HTLuJ i τ⊂⋅∂  1, 2i =  then from [7, 
Lemma 4.1, p. 78] and [7, Lemma 3.1, p. 71] we get that the function 

22 )()( VHt tutut +→  is absolutely continuous, and for a.e. :),( Tt τ∈   

 [ ] =+=+ HtttVHt tutAutututu
dt
d ))(),()(()()(

2
1 22  

  ,))(),(())(),(()( 21
2

HtHtHt tutltutltu +−−= β   (8) 

where ))(()( tuJtl ii ∂∈ , 2,1=i  for a.e. ),( Tt τ∈  and ).;,()( 2 HTLli τ∈⋅  

As )];,([)( 1 HTCu τ∈⋅  and RHJi →: , 2,1=i  are regular and locally 
Lipschitz, due to [5, Lemma 2.16] we obtain that for a.e. ),( Tt τ∈  there exist 

),)(( tuJ
dt
d

i o  .2,1=i  Moreover, ),,())(( 1 TLuJ
dt
d

i τ∈⋅o  2,1=i  and for a.e. 
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,),( Tt τ∈  )),(( tuJp i∂∈∀  ,2,1=i  Hti tuptuJ
dt
d ))(,())(( =o , .2,1=i  In 

particular, for a.e. ),( Tt τ∈  ,))(),(())(( Htii tutltuJ
dt
d

=o  .2,1=i  Taking into 

account (8) we finally obtain the necessary statement. 
The lemma is proved. 
Lemma 4. Let 0>T . Then any weak solution of Problem (3) on ],0[ T  can 

be extended to a global one defined on ),0[ ∞+ . For any X∈0ϕ  and )( 0ϕϕ D∈  
the next inequality holds :0 >∀t  

 ,
)(2

)0(
2

)(
1

1432

1

312

μλ
λ

ϕ
μλ

λ
ϕ

−
+

+
−
+

≤
ccc

t XX  (9) 

where for an arbitrary X∈0ϕ  let )( 0ϕD  be the set of all weak solutions (defined 
on ),0[ ∞+ ) of problem (3) with initial data .)0( 0ϕϕ =  

Proof. The statement of this lemma follows from Lemmas 1–3, conditions 
(5), (6) and from the next estimates:  

 ),())(),(()(   ,   , , τττ ϕϕϕτ T
T

tuuXT D∈⋅⋅=⋅∀∈∀<∀  

 ],[ Tt τ∈∀  22

1

3
3 )()(

2
12 HtV uu

c
c ττ

λ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ =≥≥ ))((2))((2 tϕτϕ VV  

 4
22

1

22 2)()(1))((2)()( ctututuJtutu HtVHtV −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥++=
λ
μ .  

The lemma is proved. 
Now let us provide the continuity property for the weak solutions of the 

main problem in the weak topologies of the phase and the extended phase spaces. 

Theorem 1.  Let ,T<τ  T
nn Wτϕ ⊂⋅ ≥1)}({  be an arbitrary sequence of weak 

solutions of (3) on ],[ Tτ  such that τϕτϕ →)(n  weakly in ,X  ∞+→n , and let 
],[}{ 1 Tt nn τ⊂≥  be a sequence such that ,0ttn →  ∞+→n . Then there exists 

)(, ττ ϕϕ TD∈  such that up to a subsequence )()( 0ttnn ϕϕ →  weakly in ,X  

∞+→n .  

Proof. Let ,Tτ <  T
nnnn Wuu τϕ ⊂⋅′⋅=⋅ ≥1))}(),(()({  be an arbitrary sequence 

of the weak solutions of (3) on ],[ Tτ , and ],[}{ 1 Tt nn τ⊂≥  such that 

 .    ,    , in      weakly )( 0 ∞+→→→ nttX nn τϕτϕ  (10) 

According to Lemma 4 we have that 1)}({ ≥⋅ nnϕ  is bounded on 

).;,( XTLW T ττ ∞⊂  Therefore there exists a subsequence 11 )}({)}({ ≥≥ ⋅⊂⋅ nnknk
ϕϕ  

such that 
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,,);,(instarweakly

,,);,(instarweakly
,,),(a.e.forin)()(

,,],[a.e.forin)()(
,,);,(in
,,);,(instarweakly
,,);,(instarweakly

,,);,(instarweakly
,,);,(instarweakly

*
2

2

*

2

,

*

∞+→→

∞+→′→′
∞+→∈′→′

∞+→∈→
∞+→→
∞+→→
∞+→′′→′′

∞+→′→′
∞+→→

∞

∞

∞

∞

kVTLAuAu

kHTLuBuB
kTtVtutu

kTtHtutu
kHTLuu
kHTLll
kVTLuu

kHTLuu
kVTLuu

kn

kn
kn

kn
kn

iikn
kn

kn
kn

τ

τ
τ

τ
τ
τ
τ

τ
τ

 (11) 

where );,(2, HTLl in τ∈  be such that 

 ,)()()()()( 2,1, FtAutltltuBtu nnnnn =+−+′+′′  

 )),(()(, tujtl niin ∂∈    .2,1  ,1  ),,(  for  a.e. =≥∈ inTt τ  

Since ij∂ , 2,1=i  is demiclosed, the following inclusion holds:  

 ))(()( ⋅∂∈⋅ ujl ii , 2,1=i , where  .)(),(: ,
T

Tt Wuu τττ ϕϕ ⊂∈= D  

For a fixed Vh∈  formula (11) implies that the sequence of real functions 
)),(( hu

kn ⋅  is uniformly bounded and equicontinuous one. According to (9), (11) 
and the density of V  in H  we obtain that )()( 0tutu

kk nn ′→′  weakly in H  and 
)()( 0tutu

kk nn →  weakly in V  as .∞+→k  

The theorem is proved. 
Theorem 2.  Let ,Tτ <  T

nn Wτϕ ⊂⋅ ≥1)}({  be an arbitrary sequence of weak 
solutions of (3) on ],[ Tτ  such that τϕτϕ →)(n  strongly in ,X  ∞+→n , then up 
to a subsequence )()( ⋅→⋅ ϕϕn  in ),];,([ XTC τ  ∞+→n .  

Proof. The proof follows from [4, Theorem 2] and Lemma 3. 

MAIN RESULTS 

Now let us examine the long-time behavior of all weak solutions of the main 
problem as time .∞+→t  For this purpose let us define the m-semiflow G  as  

 .0   )},()(|  )({),( 00 ≥∈⋅= ttt ξξξξ DG   (12) 

Denote the set of all nonempty (nonempty bounded) subsets of X  by )(XP  
))(( Xβ . Note that the multivalued map )(: XPXR →×+G  is a strict 

m-semiflow, i.e. (see Lemma 2): dI),0( =⋅G  (the identity map), 
)),(,(),( xstxst GGG =+  +∈∈∀ RstXx ,, . Further G∈ϕ  will mean that 

)( 0ξϕ D∈  for some .0 X∈ξ  
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We recall, that the m-semiflow G  is asymptotically compact if for any 
sequence G∈≥1}{ nnϕ  1)}0({ ≥nnϕ  is bounded, and for any sequence :}{ 1≥nnt  

∞+→nt  as ∞→n , the sequence 1)}({ ≥nnn tϕ  has a convergent subsequence.  
Let us consider a family )( 00

uXu DK ∈+ = U  of all weak solutions of 

inclusion (3) defined on ),0[ ∞+ . Note that +K  is translation invariant one, i.e. 

+∈⋅∀ K)(u , 0≥∀h  +∈⋅ K)(hu , where ,)()( shusuh +=  0≥s . On +K  we set 
the translation semigroup 0)}({ ≥hhT , )()()( ⋅=⋅ huuhT , ,0≥h  +∈Ku . In view 
of the translation invariance of +K  we conclude that ++ ⊂ KK)(hT  as 0≥h . On 

+K  we consider a topology induced from the Fréchet space .);(loc XRC +  Note 
that  

 0  );(   in   )()( loc >∀⇔⋅→⋅ + MXRCffn  

 ),];,0([   in   )(Π)(Π XMCff MnM ⋅→⋅  

where MΠ  is the restriction operator to the interval ],0[ M  [8, p.179]. We denote 
the restriction operator to ),0[ ∞+  by .Π+  

Let us consider autonomous inclusion (3) on the entire time axis. Similarly 
to the space );(loc XRC +  the space );(loc XRC  is endowed with the topology of 
local uniform convergence on each interval RMM ⊂− ],[  (cf. [8, p. 180]). 

A function );();(loc XRLXRCu ∞∩∈  is said to be a complete trajectory of 
inclusion (3) if Rh∈∀  ++ ∈⋅ K)(Π hu  [8, p. 180]. 

Let K  be a family of all complete trajectories of inclusion (3). Note that 
Rh∈∀ , K∈⋅∀ )(u  K∈⋅)(hu . We say that the complete trajectory K∈ϕ  is 

stationary if zt =)(ϕ  for all t R∈  for some .Xz∈  
Following [9, p. 486] we denote the set of the rest points of G  by ).(GZ  We 

remark that }.0)()()(  , | ),0{()(
_

21

_
∋∂−∂+∈= uJuJuAVuuZ G  Assumptions )(A  

and )(J  provide that the set )(GZ  is bounded in .X  Lemma 3 implies the 
existence of a Lyapunov type function [9, p.486] for m-semiflow G.  

We consider construction presented in Ball [9], Melnik and Valero [10]. We 
recall that the set A  is said to be a global attractor for G  if: (i) ),,( AGA t⊂  

;0≥∀t  (ii) A  is attracting set, i.e.  

 ),(   ,   ,0)),,((dist XCtCt β∈∀∞+→→AG  (13) 

where XEeDd edED −= ∈∈ infsup),(dist  is the Hausdorff semidistance; (iii) for 

any closed set HY ⊂  satisfying (13), we have .Y⊆A  The global attractor is 
invariant if ,),( AGA t=  .0≥∀t  

Provide the main result of this paper. 
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Theorem 3. The m-semiflow G  has the invariant compact in the phase 
space X  global attractor A . For each K∈ψ  the limit sets  

 ztXz j →∈= )(  |{)( ψψα   for some sequence  },∞−→jt  

 ztXz j →∈= )(  |{)( ψψω   for some sequence  }∞+→jt  

are connected subsets of )(GZ  on which V  is constant. If )(GZ  is totally 
disconnected (in particular, if )(GZ  is countable), the limits ),(lim tz

t
ψ

∞−→
− =  

)(lim tz
t

ψ
∞+→

+ =  exist and −z , +z  are the rest points; furthermore, )(tϕ  tends to 

a rest point as ∞+→t  for every +∈Kϕ .  
Proof. According to Theorems 1, 2 and [3, Theorem 2.7] we need to provide 

that m-semiflow G  is asymptotically compact. 
Let ),,( nnn vtG∈ξ  )(XCvn β∈∈ , 1≥n , ,∞+→nt  .∞+→n  Let us 

check the precompactness of 1}{ ≥nnξ  in .X  In order to do that without loss of the 
generality it is sufficiently to extract a convergent in X  subsequence from 

1}{ ≥nnξ . From Lemma 4 we obtain that there exist such 1}{ ≥knk
ξ  and X∈ξ  that 

ξξ →
kn  weakly in ,X  XXn a

k
ξξ ≥→ , .∞+→k  Show that Xa ξ≤ . 

Let us fix an arbitrary .00 >T  Then for rather big 1≥k  
)),(,(),( 00 kkkk nnnn vTtTvt −⊂ GGG . Hence, ),,( 0 kk nn T βξ G∈  where ∈

knβ  

),( 0 kk nn vTt −∈ G  and ∞+<
≥ Xn

k
k

β
1

sup  (see Lemma 4). From Theorem 1 for 

some 1 1{ , } { , }
j j k kk k j n n kξ β ξ β≥ ≥⊂ , XT ∈

0
β  we obtain:  

 .    , in      weakly     ),,(
000 ∞+→→∈ jXT TkT j

βββξ G   (14) 

From the definition of G  we set: 1≥∀ j  ,))(),(( 00
T

jjk TuTu
j

′=ξ  

,))0(),0(( T
jjk uu

j
′=β  ,))(),(( 0000

TTuTu ′=ξ  ,))0(),0(( 000
T

T uu ′=β  where 

),];,0([),( 0 XTCuu T
jjj ∈′=ϕ  ),;,0( *

02 VTLu j ∈′  ),;,0( 0 HTLl j ∞∈   

 )),(()(    ,0)()()()()( ,

_

2,1, tuJtltltltAutuBtu jiijjjjjj ∂∈=−++′+′′  

 ),0(a.e.          for  2,1 0Tti ∈= . 

Let for each ],0[ 0Tt ∈   

 )).(),((
2

))(())(()(
2
1:))(( 21

2
tututuJtuJttI jjjjXjj ′+−+=

βϕϕ  

Then, in virtue of [5, Lemma 2.16], [7, Lemma 4.1, p.78] and [7, Lemma 

3.1, p.71], )),(())((
))((

ttI
dt

tdI
jj

j ϕβϕβ
ϕ

H+−=  for a.e. ,),0( 0Tt ∈  where  
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 )).(),((
2
1))(())(),((

2
1))(())(( 2,21,1 tutltuJtutltuJt jjjjjjj +−−=ϕH  

From (9), (14) we have that there exists :0
_
>R  0≥∀ j  ],0[ 0Tt∈∀  

.)()(
_
222

Rtutu
VjHj ≤+′  Moreover,  

 ,  ),;,0( in      weakly 020 ∞+→→ jVTLuu j  

 ,  ),;,0( in      weakly 020 ∞+→′→′ jHTLuu j  

 ,  ),;,0(   in   020 ∞+→→ jHTLuu j  

 ,  ),;,0( in      weakly 02, ∞+→→ jHTLll iij   (15) 

 ,  ),;,0( in      weakly *
020 ∞+→′′→′′ jVTLuu j  

 .  ,   in   )()(    ],0[ 00 ∞+→→∈∀ jHtutuTt j  

For any 0≥j  and ],0[ 0Tt ∈  

 ,))(())0(())(( )(

0

dseseItI st
j

t
t

jj
−−− ∫+= ββ ϕϕϕ H   

in particular 

 .))(())0(())(( )(

0
0

0
0

0 dseseITI sT
j

T
T

jj
−−− ∫+= ββ ϕϕϕ H   

From (15) and [5, Lemma 2.16] we have 

 .  ,))(())(( )(
0

0

)(

0

0
0

0
0

∞+→→ −−−− ∫∫ jdsesdses sT
T

sT
j

T
ββ ϕϕ HH  

Therefore, 

 =+≤ −−−

+→+→ ∫ dseseITI sT
T

T
j

j
j

j

)(
0

0
0

0
0

0 ))(())0((lim))((lim ββ

∞∞
ϕϕϕ H . 

 ,))(())0(())0((lim))(( 00
00000

TT
jj

eTIeIITI ββ

∞
ςϕϕϕϕ −−

+→
+≤⎥⎦

⎤
⎢⎣
⎡ −+=  

where ς  does not depend on .00 >T  On the other hand, from (15) we have  

 ≥
+→

))((lim 0TI jj
ϕ

∞
 

 )).(),((
2

))(())(()(lim
2
1

0000002001
2

0 TuTuTuJTuJT
Xjj

′+−+≥
+→

βϕ
∞

 

Therefore, we obtain: 022

2
1

2
1 T

X ea βςξ −+≤  .00 >∀T  Thus, .
X

a ξ≤  

The Theorem is proved. 
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APLICATION 

Let us apply main Theorem 3 to Problem (2). 
Corollary. Under listed above assumptions on parameters of Problem (2) all 

statements of Theorem 3 for m-semiflow G  defined in (12) hold.  
In particular, for any Vu ∈  such that HuA ∈  there exist such functionals 

1G  and 2G  such that Assumption )(J  holds and .}{)( uZ =G  

CONCLUSIONS 

For one class of feedback automatic control problems in sence of the global 
attractor theory the dynamics of solutions is investigated. In particular, we 
concider the mathematical model of contact piezoelectric problem with 
discontinuous interaction function which can be represented as the difference of 
subdifferentials. 

A priory estimates for weak solutions of studied problem in the phase spase 
are deduced. This contributes to obtain the existence of the weak solutions and 
their properties.  

The existence of global attractor for generated multi-valued semiflow is 
proved. The structural properties of the limit sets are studied. These results are 
applied to the considered piezoelectric problem. Thus, it became possible to 
forecast the long-term behavior of state function and to direct the investigated 
system to the desired asymptotic level. 

This research was partially supported by Grants of the President of Ukraine 
GP/f44/076, GP/F49/070 and Grant of NAS of Ukraine 2273/13. 
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