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Different permutation entropy patterns of electroencephalogram  
recorded during epileptiform activity 

Behavior of permutation entropy for the orders 
from 3 to 7 was shown for the electroencephalo-
gram (EEG) containing epileptiform activity. It was 
revealed that changing the order in the range from 
3 to 7 has no significant effect on the results. Two 
different EEG groups containing epileptiform activ-
ity were distinguished, one with the tendency to a 
permutation entropy decrease in areas where epi-
leptiform activity persists, another with increase of 
permutation entropy during epileptiform activity. 
Reference 17, figures 6. 
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Introduction  

More than 50 million people worldwide are 
affected by epilepsy which is one of the most 
common neurologic disorder. It is characterized by 
(repeated) seizures caused by excessive abnormal 
synchronous activity of neuronal groups in the 
brain. Clinical manifestations of epilepsy are 
unforeseen and abrupt motor phenomena, loss of 
consciousness, psychic and sensory symptoms 
etc., causing the low everyday life quality of 
sufferers. Despite the availability of variety of 
antiepileptic drugs, one third of patients have 
intractable seizures. For those positively reacting to 
treatment, therapy quality control must be 
conducted. Due to this fact, the need for automated 
techniques for epileptic seizures prediction and 
control is of great current interest. The most 
widespread way to analyze brain functioning in 
healthy and epileptic conditions is to apply various 
signal analysis techniques to the 
electroencephalogram (EEG) signal. This is the 
multichannel signal reflecting the time variations of 
brain biopotentials. 

While many signal processing techniques are 
available for EEG analysis and classification, 
nonlinear approach to brain electrical activity 
analysis was paid many attention recently. A 
variety of techniques for nonlinear signal analysis 
have been developed, which allow better

characterization of spatial and temporal dynamics 
of epileptic processes in the brain: effective correla-
tion dimension, entropy related measures, 
Lyapunov exponents, similarity index, phase syn-
chronization, nonlinear interdependency and other 
measures for generalized synchronization [8]. 
Entropy analysis of brain activity is widely used for 
analysis of brain electrical activity, since different 
types of entropy parameters can reflect 
unpredictability, chaoticity, complexity and 
nonlinearity of brain activity. One of the most 
commonly used entropy measure is Permutation 
Entropy (PE) [5], which reflects dynamics in time 
series of various complexity and over different time 
spans. PE gives quantitative characteristics of 
symbol patterns in EEG, and has two adjustable 
parameters to be set before calculation: PE order 
which controls the number of permutations and in 
this way influences the number of unique patterns 
which could be observable in the signal, and PE 
time lag corresponding to the duration of each 
pattern. Depending on the parameter’s 
combination, one can get various values of PE [3, 
12, 4]. 

It is generally assumed and experimentally 
proven on different datasets that complexity of 
EEG becomes less in ictal than in interictal period 
[2, 6, 9, 10, 11, 14, 16, 17]. Due to this fact it is 
possible to build classification system for 
distinguishing between seizure and normal activity 
and seizure prediction system as well. To do this, 
PE of EEG in different conditions should be studied 
for wide range of parameters (order and time lag) 
to get the optimal parameter set with respect to 
selectivity and specificity. 

In paper [16] the study on genetic absence 
epilepsy rats was performed and PE was 
investigated as a tool for seizures prediction. It is 
shown that permutation entropy can track 
dynamical changes in EEG and can reflect 
transient dynamics prior to seizure in half of cases 
(169 out of 314) with the average anticipation time 
around 4.9 sec. In this study the EEG epoch 
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duration was restricted by 1 sec, and PE of only 
one order and time lag combination (m=4, l=1) was 
used, which is insufficient. 

In the work [17] authors presented preliminary 
results on detection of qualitative and quantitative 
dynamical changes in the clinically characterized 
brain wave data from epileptic patients. In the 
result they showed that the dynamics of the brain 
first becomes more regular right after the seizure, 
then its irregularity increases as it approaches the 
normal state, and concluded that PE has indicated 
all the seizures present in the analyzed data. They 
studied recordings from deep-brain electrodes from 
three patients and used PE order m=5 time window 
of 2048 samples (with 200 Hz sampling frequency) 
and time lag l=3 for their studies. Other orders and 
time lags have not been investigated in that paper. 

Distinct vigilance states are also typically 
characterized by different degrees of regularity of 
EEG. Paper [6] was aimed to verify the reliability of 
permutation entropy in the detection of fluctuation 
of vigilance levels and in seizure prediction from 
scalp EEG. The goal was to test the capability of 
PE to distinguish between preictal and interictal 
states on the basis of scalp EEG. In the paper only 
three patients of different age and sex (17, 36 and 
47 years old) were used, which is not sufficient for 
deriving any statistically proven results. Main result 
is the notion that all seizures occurred in 
association with the transition of vigilance states, 
and PE was able to discriminate between different 
vigilance states, independently of the occurrence of 
seizures. Hence, the good separability between 
pre- and interictal phases might depend exclusively 
on the coincidence of epileptic seizure onset with a 
transition from a state of low vigilance to a state of 
increased vigilance. Nevertheless this result is very 
important in enhancing the PE behavior in various 
brain states, in the paper only one PE order and 
time lag were used (m=4, l=1). 

In paper [10] permutation entropy was used as 
a feature for automated epileptic seizure detection 
by Support Vector Machine (SVM) classifier. PE of 
order m=3 and m=4 was used as a feature for 
automated seizure detection, the best average 
discrimination of 93.55% is obtained for seizure 
activity versus activity obtained from awake healthy 
volunteers with eyes open. PE values for 1 sec. 
segments were used as a feature for linear and 
non-linear SVM, and time dependence of PE 
during seizure-free, pre-ictal and ictal periods was 
not considered, moreover, EEG from different 
subjects was used for discrimination. 

Discrimination analysis between normal and 
epileptic EEG in the presence of additive Gaus-
siannoise was performed in [14]. As indicative 
parameters, PE and its mean and mean deviation 
were used for the same dataset as in 
abovementioned paper. The results indicated that 
the proposed measures can distinguish normal and 
epileptic EEG signals with an accuracy of more 
than 97% for clean EEG and more than 85% for 
highly noised EEG signals. In this study the time 
lag was changed from 1 sec to 30 sec, but for only 
one order (not specified). 

In the paper [9], a spatio-temporal analysis of 
EEG synchronization based on trend of EEG 
Permutation Entropy in patients affected by 
absence seizure is proposed and the results are 
compared to the results obtained with a group of 40 
healthy subjects. It was found that fronto-temporal 
areas appear constantly associated to PE levels 
that are higher compared to the rest of the brain, 
whereas the parietal/occipital areas appear 
associated to low-PE. While this is an important 
result, the study of PE order and time lag influence 
on synchronization characteristics was not 
conducted. 

In the study reported in [11], auto mutual 
information which is derivative of PE is analyzed to 
evaluate EEG dynamics. In the result, authors 
showed that the permutation entropy was not 
effective in discriminating interictal phase from 
preictal phase. Again, only one PE parameter set 
was used, order m=5 and time lag l=1. Effect of 
order to identify patterns of epileptic activity has 
been considered previously [2]. But the research 
was conducted only for two EEG signals: EEG of a 
healthy person and signal contained only epileptic 
patterns.  

The previous results don’t give a complete 
picture of PE behavior during the periods of EEG 
transition from normal background activity to ictal 
activity for different orders. PE has not yet been 
studied systematically for wider range of orders for 
epileptic seizure onset. This can contribute to the 
improvement of prediction and detection of 
seizures. This paper aims to study PE dependence 
on the wider range of orders for EEG containing 
periods of normal activity, seizure onset and 
seizure oscillations. 

This paper is organized as follows. In Section 1 
the mathematical background of Permutation 
Entropy is presented, in Section 2 the experimental 
results on time-entropy analysis for EEG before, 
during and after seizure onset are given, and some 
discussion takes place. Last section concludes the 
research. 
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1. Mathematical basis of Permutation Entropy 

The PE is measure of disorder (randomness) of 
information contained in comparing the consecutive 
values of the signal, and it uses the relative fre-
quencies of various patterns encountered in signal 
samples. Such approach benefits from the fact that 
PE does not depend on the signal values and uses 
only the symbol sequence. 

Permutation entropy of integer order m ( 2m ≥ ) 
of the signal [ ]x n , 0... 1n N= −  is given [5] by: 

( ) ( ) ( )
!

1
, log

m

x j j
j

PermEn m l p pπ π
=

= −∑ . 

This value is the measure of the amount of 
information contained in comparing m consecutive 
signal samples over some time interval. To calcu-
late ( ),xPermEn m l , m successive samples of [ ]x n  

with time lag , , 1l l N l∈ ≥  should be selected 
starting from the first sample in the time window of 
interest: 

[ ] [ ] [ ] [ ]
[ ] ( )

, , 2 ,

3 , , 1
lv i x i x i l x i l

x i l x i m l

= + +

 + + − …
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where ( )1 1i N m l= − −… , to obtain ( )1N m l− −  

embedded signal patterns [ ]lv i . 

Embedded pattern [ ]lv i  thus consists of m dif-

ferent numbers, which represent one of !m  possi-
ble permutations. Therefore each pattern [ ]lv i  can 

be considered as one of !m  permutation [14], and 
is denoted , 1... !j j mπ =  For signal [ ]x n  the relative 

frequency of permutation jπ  is defined as: 

( ) ( )
( )1j
q j

p
N m l

π =
− −

, 

where ( )q j  is the number of occurrence of permu-

tation jπ . 

It should be noted that method of calculating 
the PE [5] does not allow situation where the 
neighboring signal samples have the same value. 
But in real applications there is the problem of 
limited distribution capacity of 
electroencephalographs. Therefore sometimes 
there is the presence of the identical neighboring 
samples in the electroencephalograms. Example of 
solution of this problem is presented in the paper 
[15]. 

( ),xPermEn m l has values in the range 

( )0 , log !xPermEn m l m≤ ≤ ( ), 0xPermEn m l =  cor-

responds to the case when signal values are totally 
predictable, they are only ascending or descend-
ing. ( ), log !xPermEn m l m= corresponds to the case 
when signal contains all possible patterns with 
equal probability (the signal values are random 
numbers). To get rid of the PE dependence on the 
order, normalized PE is introduced with values 
lying between 0 and 1: 

( )
( ) ( )

!

1
log

,
log !

m

j j
j

p p

PermEn m l
m

π π
=

−

=
∑
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( ),PermEn m l values depend on the order and 
lag: 
− order m affects the number of patterns can be 

found in the signal. Order m equals to the 
number of samples to be taken from the signal 
to construct one pattern. Selecting large order 
leads to finding more patterns in the signal, i.e. 
more variations of successive samples’ 
combinations; 

− lag l is responsible for the time interval be-
tween signal samples with which they are 
elected in patterns (Fig. 1). 

 
Fig. 1. Patterns in signal for different time lags [4] 

Signal samples for patterns are picked conse-
quently for the selected time window of analysis 
with time step equel to one sampling interval. 
There are only limited recommendations on 
selection of PE order and time lag. In the original 
paper of Bandt [5] usage of comparably low orders 
(3-5) is recommended due to the computation 
complexity. Order can be related to the variability of 
patterns which are to be found in the signal, thus 
this consideration can be used as well. In paper [4] 
it is recommended to draw a connection between 
time lag, sampling rate and time duration of pattern 
wherever it is meaningful, but there is no general 
recmmendations for selection of time lag for any 
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particular case. Hence the selection of time lag and 
PE order should be done according to the aim of 
research.  

In this work we restrict ourselves by orders of 
3-7, and time lag was fixed at the minimal possible 
time interval between two samples. This was done 
for finding the possible order dependence of PE for 
the signals of interest, without possible presence of 
time lag dependence. 

2. Experimental Results and Discussion 

We used real EEG signals from public available 
Physiobank Database [7] “CHB-MIT Scalp EEG 
Database”. This database was previously 
described and used in paper [13]. EEGs were 
collected at the Children's Hospital Boston, and this 

database consists of EEG recordings from pediatric 
subjects with intractable seizures. Subjects were 
monitored for up to several days following 
withdrawal of anti-seizure medication in order to 
characterize their seizures and assess their 
candidacy for surgical intervention [7].  

For our research 12 EEG signals with epileptic 
seizures were selected. Recordings were collected 
from 8 subjects (3 males, ages 16-22; and 5 
females, ages 13-19). All signals were sampled at 
256 samples per second with 16-bit resolution. The 
International 10-20 system of EEG electrode 
positions and nomenclature was used for these 
recordings. All signals have 45 seconds length. 
Each seizure begins in a time instant near 30th 
second. Examples of EEG signals used for the 
analysis are given in Fig. 2. 
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Fig. 2. Examples of EEG signals from the experimental dataset containing epileptic seizure activity starting 
approximately at 30th sec 

The aim of the experimental part was to study 
PE behavior in wide range of orders, and to track 
the changes in PE while transition from interictal to 
ictal brain state. We selected the time window du-
ration of 1 sec. and 90% overlapping of successive 
time windows, and then calculated ( ),PermEn m l  
for all signals with time lag equal to one sampling 
period. Obtained PE trends for each patients were 
synchronized to have the siezure start time at 30th 
second, and then averaged to get the common 
trend. 

During experiments different results were ob-
served for different group of signals. In some 
signals (4 EEGs) PE decreased at the time of 
epileptic pattern onset and remains low, which is in 
agreement with the results reported elsewhere. 
This is generally considered as “regular” PE 
behavior in case of seizure. PE trend for this case 
is presented in Fig. 3, which is in agreement with 
the results of other studies. 
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Fig. 3. Average PE trend with decay during and after seizure onset 

But in the same time for significant group of 
signals (8 EEGs) the opposite situation was ob-
served, when PE increase to the values larger than 
before seizure (Fig. 4) immediately after seizure 

onset. It can be noted, that before seizure PE has 
practically the same values (from 0.7 to 0.8) in both 
groups. 
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Fig. 4. Average PE trend with immediate increase after seizure onset 
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Trends in Figs. 3-4 are obtained for order 3, 
and to study if this tendency persists for other or-
ders, we calculated time-entropy dependence of 
PE for two groups of EEG signals with different be-
havior. In Fig. 5 the result for EEGs showing 

“regular” behavior is presented for orders from 3 to 
7. In Fig. 6 the surface of PE dependence on the 
time and order is presented for the group of EEGs 
showing “abnormal” behavior, namely the increase 
of PE during and after seizure onset. 
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Fig. 5. Time-entropy dependence for EEG with PE decay for different orders 
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Fig. 6. Time-entropy dependence for EEG with PE immediate increase after seizure onset for different orders 
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From Figs. 5 and 6 it can be seen that PE 
characteristics in each EEG groups have in general 
the same shape for all orders. The only difference 
is the decrease of offset of PE curve with order 
increase, which can be concluded from the obvious 
slant of PE surface towards higher orders. For 
smaller orders all PE values are larger, and PE 
decreases for signal parts before and during 
seizure for high orders. 

Thus in our experiment with EEG containing 
seizure activity we have obtained the phenomenon 
of PE increase for significant group of EEGs. To 
the best of our knowledge it has not been 
previously reported in the literature. Although by 
now we can only present a few-case study, we 
have to emphasize that despite the fact that orders 
are different, there is obvious increase in PE values 
after seizure onset for at least some EEGs, which 
is not usual in general. Not going deeply into the 
nature of this phenomenon due to the lack of 
statistical evidence, at the moment we can only 
make speculations that the reason might be due to 
the different nature of seizures presented in EEGs 
from two groups. As reported in many papers, PE 
of a signal with epileptiform activity is less than PE 
of the EEG signal of a healthy person due to more 
regularity in brain functioning during seizure. It is 
often explained by shifting of the firing pattern of 
the thalamo-cortical neurons to an oscillatory, 
rhythmic, synchronized state of the EEG. Under 
these conditions, we are intended to observe the 
start of PE decline at that time. High PE values are 
connected to entirely random sequences. PE 
decrease during seizure activity in EEGs of this 
group might indicate noisy properties and is 
unpredictableness of brain activity. Thus it is very 
probable that one can distinguish two different 
patterns of ictal EEG with respect to PE behavior: 
with increased randomness (large PE) and with 
increased orderness (low PE). Such assumption is 
needed to be further investigated on larger 
datasets. 

Conclusions 

In this paper permutation entropy of EEG con-
taining seizure activity was studied in wide range of 
orders, and the same behavior of EEG PE values 
for orders from 3 to 7 was shown during transition 
from pre-ictal to ictal stage. Two different types of 
EEG signals were distinguished, first with PE 
decrease during ictal stage and second with 
prominent increase of PE values during ictal stage. 
Obtained results suggest that increase of PE order 
for the purposes of epileptic activity detection might 
not be needed since the common tendency to PE 

change (whether increase of decrease) is 
presented for all orders. 
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Різні патерни ентропії перестановок електроенцефалограми при 
епілептиформній активності 

Показано поведінку часової залежності ентропії перестановок при зміні порядку з третього 
до сьомого для електроенцефалограм, що містять епілептиформну активність. Встановлено, 
що зміна порядку в межах від трьох до семи не має істотного впливу на одержувані результати. 
Було виділено дві різні групи сигналів, що містять епілептиформну активність, одна зі знижен-
ням ентропії перестановок в області з епілептиформною активністю, а інша - із збільшенням 
ентропії перестановок при епілептиформній активності. Бібл. 17, рис. 6. 

Ключові слова: ентропія перестановок, епілепсія, електроенцефалограма, порядок, 
епілептиформна активність. 
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Различные паттерны энтропии перестановок электроэнцефало-
граммы при эпилептиформной активности 

Показано поведение временной зависимости энтропии перестановок при изменении порядка 
c третьего до седьмого для электроэнцефалограмм (ЭЭГ), содержащих эпилептиформную ак-
тивность. Установлено, что изменение порядка в пределах от трех до семи не имеет сущест-
венного влияния на получаемые результаты. Было выделено две различные группы сигналов, 
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содержащих эпилептиформную активность, одна со снижением энтропии перестановок в об-
ласти с эпилептиформной активностью, а другая – с увеличением энтропии перестановок при 
эпилептиформной активности. Библ. 17, рис. 6. 

Ключевые слова: энтропия перестановок, эпилепсия, электроэнцефалограмма, порядок, 
эпилептиформная активность. 
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