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Permutation entropy of fetal heart rate with extraction of maternal
heartbeats

Development and application of maternal and
fetal physiological states identification techniques
based on the noninvasive electrical heart activity
monitoring is of great clinical importance during
pregnancy. In this paper, new possibilities of
applying one of nonlinear measures of time series
behavior analysis to the fetal heart rates are
explored, and permutation entropy (PE)
characteristics of fetal rhythmograms are used to
get new insight on the fetal heart rhythm
parameters. The new technique of fetal
electrocardiogram (fECG) extraction is used, based
on filtration in wavelet domain and reconstruction of
fECG using detalization coefficients. Permutation
entropy analysis is applied to obtain PE values and
trends for the case of raw fetal rhythmograms and
those obtained with excluded maternal heart beats.
The assumption about the need to extract maternal
heartbeats from initial rhythmogram is proven by
the difference in PE values for two cases. Ref. 11,
figs. 11.

Keywords: permutation entropy, heart rate,
HRV, ECG, fECG, fetal ECG, maternal ECG, R-
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Introduction

Development and application of maternal and
fetal physiological states identification techniques
based on the noninvasive electrical heart activity is
directed to prediction and control of heart diseases
on the early stage of pregnancy [1] and favored
mainly from the high resolution recording and
signal analysis technologies. Of main interest are
the possibilities to detect fetal distress, hypoxia,
breathing movements, fetal heart functioning and
other, to identify possible deviations and/or
diseases in fetus development. Many researchers
have been developing new techniques for fetus
and mother state evaluation wusing various
noninvasive modalities such as
electrocardiography, Doppler ultrasound, MRI etc.
The main focus is on the fetal heart rate analysis
[4-6] for assessment of fetal development, prenatal
diagnosis, and autonomic nervous system
functioning during pregnancy.

The goal of this paper is to study the
permutation entropy (PE) characteristics of
rhythmograms to get new insight on the fetal heart
rhythm parameters. We have applied PE to the
fetal heart rhythm calculated for two cases, dealing
with the problem of potential presence of maternal
R-peaks in the processed fetal electrocardiogram
(fECG) and shown that there is significant
difference for these cases.

1. Fetal heart beats detection

Despite of high level of medicine nowadays,
estimation of prenatal normal and pathological
states is far from its final solution because of the
lack of our knowledge about fetal physiology and
pathophysiology. Automated analysis of measured
data can provide researchers and clinicians with
objective information about fetus state and
functioning. The most beneficial approach is the
analysis of fetus heart beats, registered and
detected by cardiotocography or fetal
electrocardiography [9]. There are several
characteristics of fetal heart beats [9] based on the
interbeat intervals:

— arrhythmicity levels of different types (oscilla-
tory, linear, arrythmic);

— basal frequency;

— variability magnitude;

— variability frequency;

— accelerations and decelerations of different
types (early, late, variable, prolonged).
Estimation of electrical activity of fetus heart is

an inherent diagnostic  procedure during

pregnancy. The most informative is the fetal ECG

(fECG) signal which should be registered with high

signal-to noise ratio. After registration of ECG

signal containing mother and fetus activity (Fig.1),
separation of fECG from maternal ECG should be
done, based on the differences in their magnitude
spectral, shape and other characteristics. Among
the existing techniques to solve this task those
based on wavelet transform and blind sourcesepa-
ration are the most effective [2, 7, 10].
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Fig. 1. Example of maternal ECG QRS complex with peaks from fetal heart beats (boxes)

In this paper the new technique of fECG extrac-
tion from the mixture of maternal and fetal ECGs is
used. This approach is based on discrete wavelet
analysis (DWT). First, appropriate mother wavelet
function should be selected, which resembles the
shape of fetal QRS complexes and thus allows its
detection in abdomen ECG with higher accuracy.

After that abdomen ECG S(t) is decomposed into
detalization Dj(t) and approximation A (t) parts

using standard DWT technique:
S(t)=A_ (t)+Z1:Dj (),
=

where j is the decomposition level.

Approximation coefficients contain low-varying
signal components, while detalization coefficient
resemble  high-frequency fluctuations. Noise
components are concentrated in the detalization
coefficients thus they should be processed in
orderto remove high-frequency noise. To do this,
the threshold should be chosen first, and then hard
thresholding procedure is applied. After threshold-
ing ECG is reconstructed using only detalization
part of the appropriate decomposition level. This
level is empirically optimized to obtain only fECG
part in reconstructed signal.

Then simple geometric approach can be
employed to get precise positions of fetal R-peaks:
one needs to find starting and ending point of fetal
QRS complex and then the time position of R-peak
occurrence is assigned to time instant in the middle
point. This approach can be used to extract fECG
only owing to the fact that the reconstruction and
filtration introduces the same delay into the
processed ECG, thus the RR-peaks intervals will
remain the same.

Another possibility to obtain rhythmogram is to
process the recovered ECG signal after filtration.
Having the presumably only-fetal QRS-complexes
singled-out, the next task is to choose and
elaborate the R-peaks detection algorithm. One of
the most robust and widely used algorithms is the
Pan-Tompkins algorithm [8]. It starts from
bandpass filtering. After applying the filter the
signal is differentiated to provide the QRS-complex
slope information. Then to obtain waveform feature
information in addition to the slope of the R-wave
the moving-window integration is used. And finally
in order to get the R-peaks thresholding is applied.
In the present paper the algorithm is implemented
as is up to the thresholding part which should be
remodeled for the case of amplitude-varied R-
peaks.

2. Permutation entropy of rhythmogram

The PE is a measure of disorder of information
contained in comparing the consecutive values of
the signal [3]. The PE shows the extent to which
analyzed signal is random (chaotic). It is based on
approaches of symbolic dynamics and uses the
relative  frequencies of various patterns
encountered in signal samples. Such approach
benefits from the fact that PE does not depend on
signal values and uses only symbol sequence.

Permutation entropy of integer order m (m=>2)

of asignal x[n], n=0..N -1 is given in [3] by:

PermEn, (m,l) = —ip(ﬂj)logp(zj) ,

where m — is the order of PE. It affects the number
of patterns that can be found in the signal. Order m
equals to the number of samples to be taken from
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the signal to construct one pattern. Selecting large
order leads to detection of additional patterns in the
signal, i.e. more variations of successive samples’
combinations; | — lag. It is responsible for the time
interval between signal samples with which they

are elected in patterns (Fig. 2); p(;rj) — relative

frequency of permutation 7, for signal x[n]. It is
defined as:
__a)
pl)= N=(m-1)]

whereq(j) is the number of occurrence of permu-

tation ;.
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Fig. 2. Patterns in signal for different time lags [11]

A more detailed mathematical foundations of
the method’s calculation are given in the papers [1,
3].

Embedded pattern thus consists of m different
numbers (Fig. 3), which represent one of m! pos-
sible permutations. Therefore each pattern can be
considered as one of m! permutation (Fig. 4), and

is denoted 7, j =1..m!

x»-?, XM, Xn
11,8, 1 =G, 2, D
6,11, 8 =, 3D
4,6,11 =23

X= Iq, 6; 11; 8, 1, o xar-_’, A‘Jr-f, A‘JI’}

Fig. 3. How patterns are formed for PE with order
m=3

M=Pattern
Fig. 4. All possible patterns for order m = 3 [11]

PermEn,(m,/)has values in the range

0 < PermEn, (m,l) <logm!, PermEn, (m,l)=0 cor-
responds to the case when signal values are totally
predictable, they are only ascending or descend-
ing. PermEn,(m,/)=logm! corresponds to the

case when signal contains all possible patterns
with equal probability (the signal values are random

numbers). To get rid of the PE dependence on the
order, normalized PE is introduced with values
lying between 0 and 1:

m!

~2_p(7;)logp(x;)

PermEn(m,l)=—"

logm!

3. Experimental results and discussion

In the Fig. 5 the results of fetal R-peaks detec-
tion procedure are presented. Obtaining a
rhythmogram having the ECG with fetal
constituents may be a challenging task due to the
overlapping of fetal QRS complexes over the
maternal ones. Since the maternal ECG signal is 3-
15 times larger than fetal ECG special effort of
distinguishing the QRS complexes should be
made. To show this, we detected only maternal R-
peaks by standard technique (Fig. 6), and then
removed them from the presumably fetal-only R-
peaks signal. After obtaining the signal with
significantly less peaks, which are believed to
belong to the fetal heart beats only (Fig. 7). Despite
the fact that there is the possibility of maternal and
fetal heart beats overlapping, the study if this is
common satiation should be done. In the following,
the two peaks sequences are analyzed: raw one
(Set 1) and another with maternal peaks subtracted
(Set 2).
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Fig. 5. 30-second processed maternal ECG signal
with detected fetal R-peaks
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Fig. 6. 30-second raw maternal ECG with detected R-
peaks
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Fig. 7. 30-second processed presumably only-fetal
ECG signal with detected fetal R-peaks and
subtracted maternal ones, that are designated by
dashed rectangles on corresponding places

After that two rhythmograms were obtained us-
ing data from Set 1 and 2 (Figs. 8-10 respectively).
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Fig. 8. Raw fetal rhythmogram (Set 1)
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Fig. 9. Fetal rhythmogram with mother’s heartbeats
excluded (Set 2)
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Fig. 10. Maternal rhythmogram

Then PE for the rhythmograms of Set 1 and
Set 2 as explained above for orders from 3 to 5
was calculated. Two approaches were used to PE
calculation: first, we calculated one PE value for
whole rhythmogram, obtaining one value for each
order. PE trend for each rhythmogram with different
time windows (TW=50 and TW=200 heartbeats)
and then averaged PE values for all time windows
were also calculated, resulting in one averaged PE
value for each rhythmogram for each window
duration. Typical PE trends for the case of order
m=4 are given in Fig. 11 (top — PE for Set 1,
bottom — PE for Set 2). Results of PE calculations
for two approaches are summarized in Table 1.
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Fig. 11. PE trends for rhythmograms of Set 1 (top)
and Set 2 (bottom), order m=4, time window is 50
heartbeats

It can be seen from Table 1 that fetal PE which
is calculated for the whole signal is very close for
the data from Set 1 and Set 2. The largest differ-
ence equal to 0.02 for 5th order, which is about 2
%. Thus it's hard to distinguish between the two
sets using PE value for whole signal. In the case
when PE trend was analyzed, there are different
average values for two sets for various PE orders:
PE for Set 2, where maternal heartbeats were re-
moved, is less in general than for Set 1 where ma-
ternal heartbeats are presumably present. The
largest difference is for order 5 for both of time
windows durations. The most prominent difference
in for the large time window TW=200 heartbeats
and for order m=5: mean value for the Set 1 is 0.7,
and for Set 2 is 0.88. Thus the assumption about
the need to extract maternal heartbeats from initial
R-peaks sequence can be proven by the difference
in PE values for Sets 1 and 2.
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Table 1.
Fetal PE Fetal PE
Entropy (Set 1), (Set 2), Fetal PE (Set 1), Fetal PE (Set 2),
Order whole whole averaging averaging
signal signal
3 0.98 0.98 0.96 + 0.04 (TW=50) 0.97 + 0.02 (TW=50)
: . 0.98 + 0.01 (TW=200) | 0.99 + 0.01 (TW=200)
4 0.95 0.96 0.88 + 0.06 (TW=50) 0.94 + 0.02 (TW=50)
: : 0.89 + 0.03 (TW=200) | 0.96 + 0.01 (TW=200)
5 0.90 0.92 0.69 + 0.06 (TW=50) 0.85 + 0.04 (TW=50)
' : 0.70 £ 0.04 (TW=200) | 0.88 + 0.06 (TW=200)

Thus it might be feasible to subtract maternal
heartbeats from the R peaks sequence when it is
possible to detect peak from maternal ECG in-
stead of fetal R peak. The study of entropy
characteristics of fetal heart activity obtained by
unmixing of fECG from composite abdominal
ECG can be useful for diagnostics.

Conclusion

Combining the fetal and maternal ECG sepa-
ration techniques with entropy analysis, one can
acquire new insights on fetus heart activity. The
new technique of fECG extraction is used in this
paper, based on filtration in wavelet domain and
reconstruction of fECG wusing detalization
coefficients. Permutation entropy analysis is
applied to obtain PE values and trends for
different time windows and steps. The
assumption about the need to extract maternal
heartbeats from initial rhythmogram is proven by
the difference in PE values for the fetal
rhythmogram and fetal rhythmogram obtained
after extraction of maternal R-peaks.
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EHTpoOnia nepectaHOBOK cepueBOro putMmy nnoay npuv Buny4veHHi
yAaapiB cepusa matepi

Po3pobka i 3acmocysaHHsi Memodig ideHmudbikauii ¢hizionoeiyHux cmaHie 0nsi mamepi ma nnody, 3a-
CHOBaHUX Ha HeiHea3Uu8HOMY MOHIMOPUHay cepueesoi QisiibHOCMI, Mae 8esluKe KiliHIYHe 3HaqyeHHs nid Jyac
gacimHocmi. Y OaHili pobomi docnidxXyrombCcs HO8i MOXX/IUBOCMI 3acmOCy8aHHSI eHMPOTii nepecmaHo80K
(ElM) — o00HOo20 3 HesiHilHUX Memo0die 4acoeoz20 aHasi3y Cepuesux CKopoYeHb moda. Ell
suKopucmoegyembcsi 0511 OnuUcaHHsI pummozpam nody 3 Memor OmpuUMaHHS Ho8UX OaHUX Wodo xapak-
mepucmuk cepuyesoz2o pummy mnoda. Bukopucmosyembcsi Hoga mMemoduka eudineHHs ghemarbHOl
enekmpokapOdioepamu (YEKT), 3acHoeaHa Ha hinbmpauii y setisrniem-rnpocmopi ma pekoHcmpykuii pEKI
3 sUKOpUCMaHHAM KoegbiyieHmie demani3auir.

Exnmponisi nepecmaHo80K 3acmocogyembcsi 0711 OMPUMaHHsS  HYUC/I08UX 3Ha4YeHb ma 4Yacoeux 3a-
nexHocmed EIl1 dns cepuyesozo pummy y eurnadKy HeobpobrieHux pummozpam niody ma pummospam,
ompumaHux 3 gudineHumu yOapamu cepuyss mamepi. [NpunyweHHs npo HeobxidHicmb eudansmu ydapu
cepusi Mamepi i3 no4amkoeoi pummozpamu nidmeepdxxyemnscs pisHUUEet0 y 3HavyeHHsx ElN dns deox
sunadkis. bion. 11, puc. 11.

Knto4oBi cnoBa: eHmponis nepecmaHo80K, 4acmoma Cepuesux CKOpPOYeHb, gapiabesibHicmb cep-
uesozo pummy (BCP), enekmpokapdioepama (EKI), cbEKI, EKI™ nnody, mamepuHcbka EKI, susisneHHs
R-3ybuis.
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OHTpoONUA NnepecTaHOBOK CepAeYHOro puTMa nnoga npu N3bATMm
yaapoB cepaua maTtepu

Paspabomka u npumeHeHue memodoe udeHmucgbukayuu u3uoI02UYEeCKUX COCMOSIHUU Mamepu u
nnoda, OCHOBaHHbIX Ha HEUHBAa3UBHOM MOHUMOPUHze cepledyHol OesimesnbHOcMU, umeem b6onbuwoe
KnuHu4yeckoe 3HadeHue ripu bepemeHHocmu. B OaHHOU pabome uccriedyomcsi HO8ble 803MOXHOCMU
rpumMeHeHus1 sSHMponuu nepecmaHo8ok (A1) - 00HO20 U3 HeuUHelHbIX MemModo8 8PEMEHHO20 aHaslu3a
cepOeyHbix cokpaweHul nnoda. 31 ucnonb3yemcs 07151 onucaHusi pummozpaMm raoda ¢ Yesbko nosy-
YeHus1 HoB8bIX 0aHHbIX O Xapakmepucmukax cepdeyHo20 pumma nnoda. Yicrionb3yemcsi Hogas Memoouka
ebi0esieHuss pemarbHoU 3srekmpokapouoepammbl ((p3OKI), ocHosaHHas Ha chunbmpauyuu 6 eelisriem-
npocmpaHcmee u pekoHcmpykyuu pIKI™ ¢ ucnonb3osaHuem KoaghgbuyueHmos demanusayuu.

OHmponusi nepecmaHo80K rpuMeHsiemcs 05151 MOyYeHUs] YUCII08bIX 3HaYeHUl U 8PEeMeHHbIX 3asu-
cumocmel Of1 Onss cepdeyHozo0 pumma 8 criydae HeobpabomaHHbIX pummozpamm rnoda u pummo-
2pamm, Mosly4eHHbIX C 8blOesieHHbIMU yOapamu cepOua mamepu. [pedronoxeHue o Heobxodumocmu
yOansmb ydapbl cepdua Mamepu U3 HadasbHol pummozpaMmMbl nodmeepxxdaemcs pasHuyel 8 3Haqe-
Husx 3l onsa 08yx criy4aes. bubn. 11, puc. 11.

KnroueBble crnoBa: 3HMPOrusi rnepecmaHo80K, 4Yacmoma cepOeyHbIX COKpauweHul, eapuaberib-
Hocmb cepdeyHo20 pumma, anekmpokapduozpamma (OKT), pOKI, SKI nnoda, SKI™ mamepu, obHapyxe-
Hue R — 3ybuyos.
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