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SUMMARY 

The Heisenberg paramagnet in one, two, and three dimensions is 

analyzed by a second order Green's function theory similar to that 

used by Knapp and ter Haar. This theory which incorporates the exact 

values for the zero, first, and second moments of the relaxation 

function as boundary conditions yields results satisfying the rotational 

symmetry of the paramagnetic region as well as the principle of detailed 

balance. Predictions obtained for equal time properties in the classi

cal limit are identical with the RPA Green's function theory of Liu as 

well as the spherical model results of Lax. The quantum limit is 

analyzed, and present theory predictions for the l/T series coefficients 

for both internal energy and susceptibility are compared with exact 

results. The linear chain antiferromagnet is briefly examined near 

absolute zero. 
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CHAPTER I 

INTRODUCTION 

The phenomenon of paramagnetism occurs only in materials in which 

the individual atoms or molecules comprising the substance have a non

zero magnetic dipole moment. A paramagnet is characterized "by the 

absence of long range order in the absence of a magnetic field and by a 

positive magnetic susceptibility. Although diamagnetic effects are 

always present, they can usually be neglected when non-zero atomic 

moments are present. In the case of many magnetic substances, a phase 

transformation to either the ferromagnetic or antiferromagnetic state 

occurs when the temperature is lowered sufficiently. The Heisenberg 

model has been used to describe such substances with some success. The 

applicability of the Heisenberg model to insulators has been reviewed by 

P. W. A n d e r s o n ^ a n d to metals and alloys by A. Arrott^ 2^. A general 

justification of this model will not be attempted here; instead, the 

utility of the model will be assumed and its properties investigated. A 

brief discussion of how it arose historically will be considered later 

in this chapter. 

Objective and Scope 

The Heisenberg model consists of a large number of spins arranged 

on a lattice. These spins may interact both with an external magnetic 

field through their magnetic dipole moment and with each other via an 

exchange interaction. In insulators for example, this spin is associated 
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with the localized spins of the electrons in the unfilled shells of the 

atoms comprising the substance. The Hamiltonian, denoted "by H, for the 

Heisenberg model with nearest neighbor isotropic exchange is given by 

H = - J Z.TJ!. • 3.. + |j, H E. S Z ( 1 ) 

where 2J is the exchange constant between neighboring spins S. and £f. n. 
J J+d 

The sum over j ranges over all lattice sites, while the sum over d 

ranges over the set of nearest neighbor displacement vectors only. The 

interaction of the magnetic moment, m. = - \i S., at the lattice site j 
J J 

with an external magnetic field, H = + H z, is reflected in the last 
& ' o o 

term where z is a unit vector in the z-direction. The assumption of 

nearest neighbor isotropic exchange omits the possibility of the spiral 

structures observed in the rare earth metals, but allows for the possi

bility of the ferromagnetic state for positive J at low temperatures. 

The antiferromagnetic state is likewise allowed in the case of negative 

exchange constant J. The model exhibits the unordered or paramagnetic 

state at high temperature. 

The objective of this dissertation is to describe the thermo

dynamic behavior of the Heisenberg model with nearest neighbor isotropic 

exchange and periodic boundary conditions in the limit of zero magnetic 

field. The dependence on dimensionality, lattice configuration, atomic 

spin quantum number, and sign of the exchange will be considered. 

Survey of Paramagnetism 

Some simple calculations related to paramagnetism and the Heisen

berg model will now be considered. The simple paramagnet and the Weiss 
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molecular field give some insight into the "behavior of the Heisenberg 

model. The original justification of the exchange interaction will "be 

presented along with a "brief discussion of the effective field theories 

which result from certain statistical approximations on the form of the 

Hamiltonian. The limitations of the l/T series expansions for the 

Heisenberg model will "be summarized along with the difficulties encoun

tered with the Green's function approach. 

The Simple Paramagnet 

Some of the dominant features of paramagnetism at high tempera

tures may "be understood in terms of the simple paramagnet which consists 
—* 

of a large number of particles each with a magnetic dipole moment, m, 
—* 

interacting with an externally applied magnetic field, H , with an inter

action energy, -m«l? . Classically, the angle "between the moment and the 

field can take on any value, while quantum mechanically the moment is 

quantized so that only specific projections along the axis of quantiza

tion are allowed. In either treatment, the system will "be in thermo

dynamic equilibrium in that state which minimizes the Helmholtz free 

energy, F, defined by 

F = U - T S 

where U is the internal energy, T the temperature, and S is the entropy. 

There are two opposing effects which determine the thermodynamic state 

of the system. First, the internal energy is lowest when all moments 

are aligned with the field. Second, the entropy is largest for random 

orientations of the moments. If one denotes Boltzmann's constant by k^, 

then at temperatures for which the thermal energy, k^T, is much smaller 



than the maximum interaction energy of one dipole with the external 

field, o n e expects the tendency toward maximum alignment to domi

nate. In the opposite case, the tendency toward random orientations 

should dominate. Therefore the magnetization, M(H , T ) , which is the 

average magnetic moment per unit volume, should "be a decreasing function 

of temperature for fixed values of H . This property of the magnetiza

tion implies that the zero field susceptibility x̂, defined by 

dM(H o,T) 
*o = cTl 

° H =0 
o 

should also be a decreasing function of temperature. Mathematically, 

the zero field susceptibility is found to obey the Curie law 

X c = £ (2) 

where C is the Curie constant. 

The simple paramagnet represents an incomplete description of 

real systems since it fails to account for the interaction between neigh

boring moments. Nevertheless, the experimental results show that the 

Curie law is obeyed at high temperatures by almost all paramagnets. 

Deviations from this behavior become important only when the temperature 

is sufficiently low so that the interaction energy between neighboring 
(3) 

moments is of the order of the thermal energy, k^T. Kittel v ' demon

strates by applying the general susceptibility theorem of Kirkwood, (ll) . 
Frohlich, and Price ' that the leading term in the 1/T series for the 
zero field susceptibility is given by the Curie law independent of the 
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model assumed so long as diamagnetic effects are neglected. The most 

important deviation of the zero field susceptibility from the Curie law-

may be understood from the Weiss molecular field model which will now be 

considered. 

Weiss Molecular Field 

The first successful model of ferromagnetism was proposed by 

(5) 

Pierre Weiss ' in 1907 long before the advent of quantum mechanics. He 

assumed that each magnetic moment was acted upon, not only by an exter

nal magnetic field, but also by an internal field which by hypothesis 

was proportional to and in the direction of the average magnetic moment. 

The origins of this field, now called the Weiss molecular field, 

remained obscure until quantum mechanics was understood. Below a transi

tion temperature, called the Curie temperature, the substance was ferro

magnetic exhibiting a spontaneous magnetization which is a finite mag

netization in the limit of zero applied magnetic field. Above the Curie 

temperature the substance was paramagnetic with the zero field suscepti

bility obeying the Curie-Weiss law, 

~ — 0 (o\ 

x o ~ T - e u ; 

where 9 is the Curie-Weiss temperature. 

The Weiss molecular field model in its present day quantum 

f o m / ^ can be thought of as a crude statistical approximation on the 

Heisenberg model. Equation (l) becomes the more modern version of the 

Weiss model Hamiltonian when one of the spin operators in the exchange 

interaction is replaced with its average value and when the proportional

ity between the spin operator and the magnetic moment operator is used. 



6 

The original Weiss model results if, in addition, the spin operators 

are considered as classical angular momentum vectors. 

Thus the molecular field gives a rough approximation to the 

"behavior of the Heisenberg model. In particular when J is positive, 

there is a singularity in the zero field susceptibility that arises as a 

result of the interaction between neighboring spins. The nature of the 

singularity is described incorrectly in three dimensions since the in-

vi-

(7) 

4/3 
verse susceptibility apparently obeys a (T-T ) ' power law in the vi

cinity of the Curie temperature, T , in the three dimensional case. 

The Weiss molecular field correctly predicts a transition to the ferro

magnetic state for temperatures below the Curie temperature, although 

the expression for the Curie temperature is about 50 percent too large 
/ o \ 

when compared with the expression of Rushbrook and Woods ' obtained 

from the l/T series. In less than three dimensions, the situation is 

much worse since the Weiss model also predicts a ferromagnetic state at 

low temperature for the one and two dimensional lattices in disagreement 
(9) 

with the proof of Mermin and Wagner ' which states that the ferromag

netic state cannot exist in one or two dimensions. Perhaps an even more 

serious deficiency is that there is no mechanism in the Weiss model for 

short range order. As a result the Weiss model yields a specific heat 

which is identically zero in the absence of an applied magnetic field 

throughout the entire paramagnetic region. Thus the Weiss model is 

fairly good at describing the long range order in the Heisenberg model 

in three dimensions, but fails completely in describing the short range 

order aspects of the Heisenberg model. 
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Heisenberg Exchange Interaction 

From a fundamental point of view, the idea that the interaction 

between neighboring moments arises from magnetic interactions is incor

rect. Weiss noted in his 1907 paper that the magnetic dipolar inter

actions which he initially thought to be responsible for the molecular 

field were entirely too weak to account for the observations. With the 

arrival of quantum mechanics, H e i s e n b e r g ^ s h o w e d that the interac

tions were quantum mechanical in origin being a direct consequence of 

the restrictions placed on the wavefunctions by the Pauli exclusion 

principle when applied to the electronic states of the atoms. More 

specifically, the electronic wavefunctions must be antisymmetric with 

respect to the exchange of both the space and spin coordinates of any 

pair of electrons. D i r a c ^ s h o w e d for the special case of localized 

electrons that the symmetry requirement was equivalent within an addi

tive constant to an effective two body potential of the form 

V. . = - 2 J. . S. -S*. 
I J I J 1 J 

The exchange constant, ^ s a measure of the spatial overlap of the 

electrons localized at the lattice sites i and j. For the case of in

sulators where the electronic wave functions are highly localized, the 

assumption of only nearest neighbor interactions is probably justified. 

Effective Field Theories 

An excellent review of the strengths and weaknesses of the 

effective field theories is contained in the book by S m a r t . H e con-
( 1 2 ) 

siders the Weiss molecular field theory, Oguchi, Bethe-Peierls-

Weiss,^"^ and constant coupling approximations and concludes that 
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the constant coupling approximation is probably the best effective 

field theory in the paramagnetic region. The constant coupling approx

imation gives short range order in the paramagnetic region as well as a 

non-linear dependence of the inverse susceptibility on temperature near 

the transition temperature. The estimates of the transition temperature 

are good to within about twenty percent with two exceptions. There is 

no transition predicted for the three dimensional tetrahedral lattice 

which is thought to have a Curie transition. In the other case, a Curie 

transition is predicted for the two dimensional hexagonal layer lattice 

which is impossible by the proof of Mermin and Wagner mentioned earlier. 

Smart discusses these effective field theories with both posi

tive and negative exchange constants. Neel^"^ in 1936 pointed out that 

an ordered state could exist at low temperatures for negative J. This 

state would have antiparallel alignment favored between neighboring 

spins. This ordered state seems plausible if one thinks of the spin 

operators in (l) as classical vectors. The temperature for which the 

transition occurs from the ordered antiferromagnetic state to the 

unordered paramagnetic state is known as the Eee'l temperature. 

l/T Series Expansions 

The most successful method of analyzing the thermodynamics of the 

Heisenberg paramagnet in practice has been the l/T series expansions of 

quantities. Normally, the l/T series expansions are obtained for the 

susceptibility and internal energy from which most other series may be 

constructed. One then estimates the Curie temperature by determining 

the values of the constants A, T , and y in the expression 
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-l = A 

which "best fit the known terms in the l/T susceptibility series. The 

determination of the critical temperature depends somewhat on the method 

mates for the Curie temperature than Rushbrooke and Wood ' using the 

same data as Rushbrooke and Wood. The estimates are most reliable for 

the face centered cubic lattice in the infinite spin limit. 

The Heisenberg model has been extensively studied during the last 

several years using the techniques of double time temperature dependent 

Green's functions. Formally, the problem of finding the solution for 

magnetization and time dependent spin-spin correlation functions is 

reduced to the determination of the solution to an infinite set of cou

pled first order differential equations. The development of a tractable 

formalism necessitates a decoupling approximation. 

A majority of the decoupling procedures, which have been utilized 

on the Heisenberg model, have been made at the first stage of the cal

culation, since further delay introduces an enormous mathematical com

plexity to the problem. The random phase approximation (RPA) of 
(17 - 2 1 ) 

Bogoliubov and Tyablikov has been used extensively in many 

slightly modified forms. A short and somewhat representative sample of 

these theories are given by Refs. 1 7 - 3 0 . 

These first order theories are largely designed to apply to sys

tems in the ordered state, and therefore the failure of the excitation 

used to determine the best fit. Domb and Sykes (7) obtain lower esti-

(8) 

Survey of Green's Function Theory 
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energies to agree with experiment and the exactly known properties of 

the Heisenberg model in the paramagnetic region is perhaps understand

able . One finds that all these theories with the notable exception of 

L i n e s ^ ^ produce excitation energies for which the scaling with tem

perature is wave vector independent. A further examination of these 

theories show that all spin wave energies are vanishingly small in the 

paramagnetic region. Both neutron diffraction^"1" and R a m a n ^ ^ ' ^ ^ 

experiments on magnetic systems reveal that short wavelength excitations 

remain finite and continue to propagate well into the paramagnetic 

region. This phenomena is most apparent in one and two dimensional 

systems. Of the literature cited, ̂ o n l y L i n e s ^ ^ has a 

first order Green's function theory for the paramagnetic region that is 

even qualitatively correct and his approach, which is phenomenological 

in nature, leaves obscured the underlying basis for the theory. 

In Chapter II, both the Green's functions and the corresponding 

relaxation functions which are pertinent to the Heisenberg model are 

defined. Some of the spectral relations that are developed in the literal k2) 

ature ' J and reviewed in Appendices I and II are utilized in con

structing the Green's function theory. By using arguments based on the 

invariance properties of the Heisenberg paramagnet as well as exact 

moments of the relaxation function, one may conclude that a second order 

Green's function theory is the best approach because the second order 

theory incorporates exactly the zero, first, and second moments of the 

relaxation function as boundary conditions for the Green's function 

equation insuring non-vanishing excitation energies in the paramagnetic 

region. 
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A decoupling of the Green's function equations which is a 

(kk) 
modification of the procedure used "by Knapp and ter Haar , and is 
similar to theories used "by Richards and Lo and H a l l e y ^ ^ , and 

( 4 3 ) 

Scales and Gersch is examined in Chapter III. The present theory is 

in fact an extension to all dimensions of the previously published 

theory of Scales and Gersch. 

In Chapter TV", a further approximation is made on the Green's 

function equations obtained from the truncation used in Chapter III. 

This approximation is tentatively identified as the classical limit; the 

proof is deferred to Chapter VI. The equal time properties predicted by 

the present theory in the absence of a magnetic field in the classical 

limit are shown to be identical with the predictions of the RPA theory 
(21) 

of Liu . It is also found that the thermodynamics reduce to the 

spherical model results in the classical limit as did the theory reported 

by Lo and Halley^ ̂  ^. 

In Chapter V, quantum effects are examined which were ignored in 

the classical limit approximation of Chapter IV. In particular, correc

tions to the Curie and Neel temperatures predicted by the RPA and spheri

cal model by the present theory to order l/S(S+l) are derived. The 

critical value of the nearest neighbor spin-spin correlation function is 

also calculated to the same level of approximation. Comparisons of 

present theory results with (l/T) series results are given in Tables 1 

and 2. 

In Chapter VI, the (l/T) series expansion for the susceptibility 

and nearest neighbor correlation function predicted by the present theory 

is examined and as a by-product the (l/T) series expansions for the 
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spherical model, the RPA theory, and the RPA theory of Liu are obtained 

The present theory is found to give a much more accurate description of 

the high temperature thermodynamics than either the spherical model or 

the RPA theory of Liu especially for small spin values as may be seen 

by an examination of the (l/T) series coefficients tabulated in Appen

dices III and IV. 

In Chapter VII, the predicted solution for the one dimensional 

antiferromagnet is compared with the experimental data available for 

(CD ^ J j^MnCl ^ ^ ' ^ ^ , with the predictions of classical theory, and with 
(45) 

the predictions of Richards . The present theory is able to explain 

the excitation spectra observed in this antiferromagnet even though the 

sublattice magnetization is zero. 
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CHAPTER II 

GREEN'S FUNCTION' THEORY 

The usual retarded and advanced Green's functions reviewed "by 

(hi) 
Zubarev ' are defined "by 

where 

G r(t) - « A ( t ) ; B ( 0 ) » r = +ie(+t)<[A(t),B(0)]> (h) 

e(t) = i, tx>; e(t) = o, t<o (5) 

[A,B] = AB - BA (6) 

A(t) = exp(iHt)A(0)exp(-iHt) (7) 

< . . . > = Z_1Tr[exp(-3H)...] (8) 

(3 = l/^T (9) 
Z = Tr[exp(-pH)] (lO) 

and H is the hamiltonian defined "by 

H = -JE. A S.-S._ (11) 
J J+d 

where J is the exchange constant in units of energy (Units are chosen so 

that Planck's constant is equal to 2rr.) arid where the sum over the spin 

index j ranges over the positions of all N lattice sites while the sum 
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over d ranges over the set of nearest neighbor vectors only. 

Upon taking the time derivative of (k) and utilizing ( 6 ) and ( 7 ) 

in the resulting equation, one finds that both advanced and retarded 

Green's functions satisfy 

ir^«A(t);B(0)» r = <A,B]>6(t)-HC<A,H](t);B(0)» r (12) 
a a 

The convention that all operators to the left of the semicolon in the 

Green's function appearing on the right hand side of (12) are to be 

evaluated at the time t has been used. The function 6(t) is the Dirac 

delta function defined by 

6(t) = "Mil' (13) 
One defines the image A (UJ) of an arbitrary function of the time A(t) 

under the Fourier transform operator F(u)jt) via 

00 

£(a>) = F(<u;t)A(t) = 7 ^ J dt exp(i<ot)A(t) (ik) 
—00 

It is convenient to define a relaxation function R(GU) by 

R(u>) = iou-1Lim[F(uH-ie;t)G (t)-F(uj-ie;t)G (t)] (15) 
<+o+ r a 

The correlation function <B (o )A(t)>, which is of ultimate interest, is 
(kl) 

given by the spectral relation 

<B(0)A(t)> = F - W ) (L6) 

where F "̂(t;u)) is the inverse Fourier transform operator. The spectral 
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theorem given "by ( l 6 ) is proved in Appendix I. 

The relevant Green's functions for the Heisenberg model are 

given by 

Gmti,*) = <<S*(t);S£( 0)» (17) 

where m and n are labels which may take on any of the values +, -, x, y, 

or z. To each Green's function defined by ( 1 7 ) there corresponds a 

Green's function defined by 

G (k,t) = F .G (j,t) ( 1 8 ) mn ' k;j mn ' ' 

where the Fourier lattice transform operator F is defined by 
k j J 

To each Green's function defined by ( 1 7 ) and ( l 8 ) there corresponds a 

relaxation function defined by ( 1 5 ) . The moments of the relaxation 

functions, which we denote by <ui> , are defined by ' 0 k mn' 0 

00 00 

< o o f > = P R ( k , o u ) d U ) / f R ( k , o u ) d o u (20) x mn J mn x ' ' ' J mn ' ' v J 

-00 -00 

These moments are related in an important way to the boundary conditions 

on the Green's functions at time t=0. One finds from (20) that 

<* B*(t"0) = ( l & f R ( t ) t = 0 = l ^ ) " 1 G r ( t ) t = 0 + (21) 

where R(t) is the inverse Fourier transform of R(o)) defined by ( l 4 ) . 

One is now in a position to determine what is wrong with the use 
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of a first order Green's function truncation in the paramagnetic region. 

One has that G (k,t=0 +) = 2i<sS. Therefore it follows from (21) that 4—r 0 ' 

< % > + _ = 2<S*>/R +_(k,t=0) = <SQ>/xk (22) 

where -̂R (k,t=0) = R (k,t=0) = x in the paramagnetic region due to the 
(42) 

spherical symmetry . It is established in Appendix II that is the 

wavelength dependent paramagnetic susceptibility. If one insists that 

the Green's functions have only one pole corresponding to the magnon 
(17-30) 

energy as is the case in the literature cited > then the magnon 

energy must be given by 

as a result of (ij). One must in fact solve the Green's function equa

tions in the limit of vanishing magnetic field in order to get a solution 

since <SQ> is identically zero when the magnetic field is identically 

z e r o . 

It is clear, however, that the Green's function for G (k,t) must 

have two poles in the paramagnetic region (to the extent that the concept 

of elementary excitation is valid) since the operators F, .S+. and F. .S. 
k;j j k;j j 

in the absence of a magnetic field must by symmetry have equal probabil

ity for creating and destroying a magnon. Therefore (22) should be in

terpreted as a measure of the asymmetry in the location of the poles in 

the Green's function corresponding to the propagation of a magnon and a 

magnon hole. 

The information contained in the boundary condition for the 
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second moment of the relaxation function in the paramagnetic region will 

now be considered. One obtains 

= 0 ; 4 z z = ̂ v ^ K ^ + ^ / ' i ^ 

from the relaxation function R (k,t). The lattice site d appearing in 

(24) refers to any one of the nearest neighbor sites of the site 0. The 

function, Yn > i s defined by 

Y k = E d , exp(ik.d') (25) 

where the sum over d' ranges over the set of nearest neighbor displace

ment vectors. Notice that (24) is consistent with a relaxation function 

given by 

R z z(k,t) = X k cos(E kt) (26) 

where 

Equation (26) is obtained by assuming that for a given k, the relaxation 

function contains a pure negative frequency corresponding to the presence 

of a magnon of energy E , and a positive frequency component correspond-
K. 

ing to the presence of a magnon hole of energy -E, . The relative ampli-
K. 

tude and phase of the two frequency components are fixed by the principle 
(42) 

of detailed balance. More explicitly, Marshall and Lowde have shown 

that for crystals with inversion symmetry, R^(k,t) must be an even 

function of t which they show is equivalent to the statement of detailed 
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"balance. Finally (2k) determines the energy of the excitations to "be 

given by (27). 

It must be emphasized that (26) and (27) are meaningful only to 

the extent that it is possible to describe the behavior of the Heisen

berg paramagnet in terms of elementary excitations. The experimental 

(31-4o) 
data ' suggest this assumption is realized most strongly in systems 

of low dimensionality. In particular, the experimental measurement of 

the excitations of TMMC (a one dimensional Heisenberg paramagnet with 

S=5/2 and J=-7.7°K) have revealed the existence of elementary excitations 

obeying 
E k = 6.MeV|sin k| (28) 

over the entire Brillouin zone at 4 . 4 ° K . ^ ^ It will be shown in Chapter 

VI the present theory is able to explain the excitation spectra given by 

(28) for TMMC at k.k°K. 

In the next chapter, a truncation procedure on the Green's func

tion equations at second order will be used to describe the Heisenberg 

paramagnet. A second order decoupling scheme is chosen because the 

second moment sum rule for the relaxation function given by (2k) is in

corporated into the Green's function as a boundary condition. Further

more, the symmetry of the second order equation of motion for G (j,t) 

guarantees that the condition of detailed balance is satisfied, and this 

feature is easily retained in the truncation. In fact this theory has a 

relaxation function given by (26) and excitation energies given by (27). 

These equations are supplemented by (kQ)-(52) which define a self con

sistent scheme for determining the unknown susceptibility and nearest 
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neighbor correlation function appearing in (26) and (27). 

One may justifiably ask why one should use a theory having a 

relaxation function given by (26) in three dimensions at high tempera

ture when both experimental and theoretical studies indicate that the 

relaxation function should be Gaussian in cu for large values of k and 

Lorentzian in to for small k . The answer is that the dynamics pre

dicted by (26) is certainly unrealistic; however, the static properties 

are determined by only low order moments <iiy^> of the relaxation function 

and these are correctly represented in our theory. For example one 

finds from (l6) that 

F .<s*sZ>3 = x (1 + cN3<oi > + cQ32<cuf> + ...) (29) 
k;j 0 j Ak^ 1 K zz 2 k zz ' 

Similar remarks hold for the Heisenberg paramagnet at high temperatures 

in the case of one and two dimensions. 



20 

CHAPTER III 

DECOUPLING THE EQUATIONS OF MOTION 

The Green's function G (j,t) is found to satisfy a second order 

equation, 

(%)\z^ = 2 J ^ 0 S d + S0 Sd> < 8J , 0 -W ) 6 ( T ) 

+ kj2y ,f«(s. * s . , s z - s z s \*s\ _ J(t ) ; s z ( o ) > > (30) 
d,d' v j+d j+d' j j+d j j+d' / x ' 0K ' w ' 

after using (12) two times and simplifying the resulting equation with 

the aid of the spin angular momentum commutation relations given "below. 

The spin angular momentum commutation relations are 

[ S X , S y ] = I S 2 , [ S y , S Z ] = i S X , [ S Z , S X ] = i S y (31) 
J J 3 3 3 3 3 3 3 

when the spin operators act on the same lattice site. The spin commu

tators are always zero "between spin operators at different lattice sites, 

The operation S. * S . appearing in (30) is presently to be interpreted 31 3p 
(kk) 

as the usual dot product of two vectors. Knapp and ter Haar^ ' pro

ceeded to approximate the Green's functions on the right hand side of 

(30) by 
« S *S S Z (t);S Z ( o ) » ~ < S *S >G (j , t ) (32) 1 2 3 1 2 
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(33) 

Knapp and ter Haar described this truncation as a natural generalization 

of the first order RPA decoupling scheme. The reader is referred to 

their paper for a discussion of the ambiguities that arise in their 

truncation procedure. 

The truncation which will now be considered differs only slightly 

from that of Knapp and ter Haar. Notice that the Green's functions 

appearing on the right hand side of (30) which involve only z-component 

spin operators when summed yield identically zero for all values of j 

and t. Therefore we interpret the operator S. * S . as 

and (30) is still exact. One can truncate the Green's function equa

tions using (32), (33). and (34). 

The reason that (32) and (33) are appropriate when the product 

is defined by (34) and are not appropriate when the product is inter

preted as the ordinary dot product will now be examined. For n=x or y 

(but not z ) , one has 

(3*) 

(35) 
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The equality in (35) follows from the fact that both the correlation 
functions S z > and <S^ S Z > are rigorously zero for n=x or y (but 

J 2̂ 3 3 2 3 3 
not z ) . This may be seen most easily if the trace is taken in a basis 

in which the states are eigenstates of the z-component of total spin. 

Similar arguments apply to (33). 

The symmetries of the isotropic Heisenberg model with nearest 

neighbor interactions, periodic boundary conditions, and the equivalence 

of nearest neighbor sites -will be used to obtain a compact form for the 

truncated equations of motion contained in (32) and (33). One has 
<St S" > = <S* S» > = <S* S* > = <S* _. sz> (36) 

J ^ <̂2 2̂_ "̂2 ^ 1 ̂2 ^ 1_*̂2 
and 

where J 1 and j2 are arbitrary lattice vectors, where d, d', and d 1 are 

nearest neighbor displacement vectors, and where YQ i s "^ n e number of 

nearest neighbor displacement vectors. 

It is important to retain the fact that (32) and (33) are only 

approximately true in our truncation since there will be more equations 

than there are unknowns which can easily lead to a system of equations 

for which there exists no solution. In anticipation of the problems 

that will arise, (32) and (33) will be treated as exact when Iĵ-jpJ = |d| 

This leads to 

E «S*S SZ (t);SZ(o)» = 2f £ G (j+d+d',t) (38) d,d' 3 J+d J+d+d ° d,d' ZZ 
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and 

z < < S i + d ^ ^ i + d ' ( t ) j S o ( o ) > > = 2 f v ^ ^ ( J - ^ ) ( 3 9 ) d,d« J J J
 Y0 d z z 

where 

f = < S ^ > (40) 
However, when |j 1-J 2| ^ |d| one does not demand a strict equality in 

( 3 2 ) and ( 3 3 ) unless j-^=j^. Instead the approximations 

a f d . < < 3 J * ^ ' S ^ ( t ) ; S ° ( 0 ) > > = 2 g Y ° a G ^ ' t ] ( k l ) 

and 

^ ^ j ^ i ^ ^ ' 5 ^ = 2 g V o G z z(j,t) (42) 
where 

c g - Y - 1 ! * ^ > (43) 

d 

and where c is a constant that may deviate from unity. After combining 

( 3 8 ) thru ( 4 3 ) one finds 

d 2 <> z z(J,t) = M 5 ( t ) f ^ ( 6 ^ 0 - 6 . ^ 0 ) 
dt 

+ 8 j 2 £ . f G z z ( M S t ) £ d ^ ^ (kk) 

One sees that (kk) is a difference equation which is easily solved 

by use of the Fourier lattice transform defined by ( 1 9 ) . The solution is 
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G /r';(k,t) = +4G(+t)jf( Y o-Y k)sin(E kt)/E k (45) 
\a / 

where 

E k = 8 j 2(v 0 -Y k ) (gY 0 - fY k ) W 

The relaxation function is found to "be 

f cos(Kt) 

upon substituting (45) into (15). The wavelength dependent susceptibil

ity Xn is identified from (47) and (26) as 

x k = 2j(g Y ( )-fY k) ( 4 8 ) 

The susceptibility given by (42) is of the Ornstein-Zernike^^ form. 

The present theory will be complete once the temperature dependence of 

the parameters f and g are determined. 

Upon substituting the Fourier transform of (47) into (l6) one 

obtains 

-1 k k\cosh(i3E k+iE kt) 
<££(0)St(t)> = F. , • w i Q T ? \ (49) Cr y y j;k smh(^3E kJ v y y 

for the time dependent spin-spin correlation functions. The parameters 

f and g are determined from (49) by the self-consistency relations, 

s(sa)/3 = <s*(o)s*(o)> = ^ E 2jZ^0-\) (50) 
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and 

fYvV(k,T) 
3N ^ 2J(gyn-fYv) (51) 

0 

where 

V(k,T) = |3E, coth(ipE, ) (52) 

There is an additional self consistency equation that determines the 

constant c given in ( 4 3 ) . It is 

The present Green's function theory is now complete. One will 

find out how well this theory, which is contained in ( 4 6 )-(52), describes 

the behavior of the Heisenberg model in the remaining chapters. One can 

determine qualitatively the behavior of the theory by examining the 

classical spin limit which is to be considered in the next chapter. 

fvf; V(k,T) 
(53) 
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CHAPTER IV 

CLASSICAL LIMIT 

One may now proceed to recover the classical limit for the equal 

time properties of the present theory and show that the thermal prop

erties of our theory are the same as those predicted by the RPA theory (21) 
of Liu ' as well as the spherical approximation on the Heisenberg 

(4Q) 

model by Lax . The description of the equal time properties is con

tained in (46), (50), (5l)j (52), and the equation 

which may be deduced by substituting (48) into (49) and using the inverse 

of the Fourier lattice transform operator defined by (l9). In Chapter VI 

it will be proved that the classical limit corresponding to this system 

of equations is given by (50) and (54) where one uses V(k,T) = 1 instead 

of the expression given by (52). 

The present theory in the classical limit has only one unknown 

parameter h=f/g. One can also use xo determined from (48) with k=0 as 

the unknown parameter. The classical limit of (54) is then 

< ^ ( o ) S j : ( o ) > = ^ S (5*0 

exp(-lk- j) (55) 
k % + 2 J ( v V 

where the susceptibility is determined from 
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S(S+l ) /3 = ±= 2 (56) 
m k *o +

 2J< W 
which is deduced from the classical limit of (50). 

In the case of J=-|JJ it is more reasonable to express (55) and 
(56) in terms of the staggered susceptibility x when it can be defined. 

s 

More precisely, when a lattice is decomposable into two interpenetrating 

sublattices with the property that nearest neighbors of a point on one 

sublattice all lie on the other sublattice, then one may define a stag

gered susceptibility. Then there exists at least one wave vector k^ 

such that exp(ik^*j)=+l for all lattice sites j. The lattice points for 

which exp(ik^'j)=1 are on one sublattice, while the points for which 

exp(ik *j) =-l are on the other sublattice. The staggered susceptibility 

is then determined from (48) by x =Xv • ^ n e important wavevectors when 

s kQ 

J=-|JJ are those wavevectors for which JK-k̂J are small. One may define 

a new wavevector Q by 

so that (55) and (56) now become 

1 exp(-i(k +q)-j)) 

<s"(o)s z (o)> = ±= 2 — y V- (58) 
0 P % ^ 1 + 2|J|(Y 0- YJ and 

S(5fl)/3 4 J ^ ^ — (59) 
W q x- s

1
 + 2|j|(Y0-Yq) 

respectively. 
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The equal time spin-spin correlation functions which one obtains 
(21) 

from (55) and (56) are identical with those obtained by Liu ' when he 

restored the spherical symmetry to the RPA Green's function theory for 

the quantum Heisenberg model in the paramagnetic region. It remains an 

unanswered question why the classical limit for the equal time spin-spin 

correlations given by (55) and (56) which were calculated by a second 

order Green's function theory with finite frequencies given by (27) are 

identical with the equal time spin-spin correlations obtained by Liu 

from the first order RPA Green's function approximation in which the 

excitation energies become zero for all wavevectors in the limit of zero 

magnetic field in accordance with ( l 8 ) . This identity strengthens the 

parallelism between the present theory and the RPA theory mentioned by 
(kk) 

Knapp and ter Haar. ' 
(22) 

About ten years ago, Tahir-Kheli and ter Haar ' pointed out 
that their RPA Green's function theory produced the same critical tem-

(21) 

peratures as the spherical model of Lax '. It will now be shown that 

the equal time spin-spin correlations predicted by the RPA Green's 

function of Liu are the same as those predicted by the spherical model of 

Lax. This identity is most easily obtained by a treatment of the Heisen

berg model in the spherical approximation paralleling the development 

leading to Eq. (36) in the paper by Berlin and K a c ^ * ^ devoted to the 

spherical approximation to the Ising model. The transition to the spher

ical approximation results for the Heisenberg model from the spherical 

model results of Berlin and Kac requires only a redefinition of the sym-
x y 

bols since the new degrees of freedom S. and S. are not dynamically 

coupled to S. in the spherical approximation. It remains an unanswered 
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question why the equal time spin-spin correlation functions predicted 

by the present theory are equivalent to both the spherical model of Lax 

and the RPA theory of Liu. This identity however gives us an insight 

into the behavior of our model in one, two, and three dimensions. 

The classical limit of the present theory as defined by ( 5 5 ) and 

( 5 6 ) predicts a transition from the paramagnetic state to a state of long 
( 4 9 ) 

range order is possible only in three dimensions J in agreement with 

the proof of Mermin and Wagner ̂ ^ . For J X ) , one finds a second order 

phase transition from the paramagnetic to the ferromagnetic state, spin-
( 4 7 ) 

spin correlation functions of the Ornstein-Zernike form in the 
( 4 Q) / \ 2 critical region v ^ , susceptibility obeying a (T-T c) law in the critical 

r e g i o n ^ i n s t e a d of a (T-T ) ^ " ^ law predicted by early (l/T) series 

( 5 1 ) 
methods , and the predicted specific heat remains finite at T c in 

(52) 

disagreement with the (l/T) series result . For J< 0 , one must dis

tinguish between two distinct cases. For those lattices for which it is 

possible to define a staggered susceptibility, one finds a transition 

from the paramagnetic state to the antiferromagnetic state only in the 

three dimensional case in agreement with the theorem of Mermin and 

W a g n e r . The critical properties are analogous to those for the 

ferromagnetic transition as in evidenced by the isomorphism that exists 

between the set of equations, ( 5 5 ) and ( 5 6 ) , and the set of equations, 

( 5 8 ) and ( 5 9 ) - When J<D and xs i-s undefined, one does not generally 
find a transition even in three dimensions as is evidenced by the face 

( 5 3 ) 
centered cubic lattice with only nearest neighbor interactions. In 

the case of both positive and negative exchange constants J, one finds 
( 3 2 ) 

that the classical limit is asymptotically exact at high temperatures 
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In the development that is to follow, one will need the RPA 

expressions for the Curie and Neel temperature first obtained for 

the Curie temperature in the RPA which is to be denoted by 3^ is easily 

obtained from (56) by setting XQ1^00 while the expression for the Neel 

temperature in the RPA which is to be denoted by % is easily obtained 

from (59) "by setting x = 0 0» Both results may be expressed as 

It should be recalled that we introduced a parameter c in ( 4 3 ) 

which may differ from unity if necessary to insure the existence of a 

solution for f and g. One can show that in the classical limit, c has 

the unique solution of unity and hence ( 4 3 ) is redundant. The situation 

is quite different in the quantum case which is now to be considered in 

the following chapter. 

arbitrary spin by Tahir-Kheli and ter Haar (22) The expression for 

•s 

(60) 
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CHAPTER V 

QUANTUM RESULTS 

The thermodynamics predicted Toy the present Green's function 

theory in the quantum case is defined to he the solution to (46) , (50), 

(51)> (52), and (54) . The solutions to these equations have the same 

qualitative features as the solution in the classical limit. In partic

ular, one finds that XQ and x s
 a r e decreasing functions of temperature 

with Xq~Xs=Q
 a t infinite temperature and with X Q ^ a ^ "^ n e Curie tempera

ture which implies that f=g due to (48) , and with x =<» at the Neel tern-
s 

perature which implies that f=-g due to (48) . One now finds from (50) 

that in the quantum limit the Curie temperature which we denote by T^ 

and the Neel temperature which we denote by T^. are given by 

/ V(k,T/C\)\-l 
_2|J[S(S+1) 1 V K M / 6 l ) 

(£)' 3k* \ N " Y ° T Y k / 
where one choses the minus sign for T and the plus sign for T in (6l). 

It no longer follows that the Curie and Neel temperatures are equal. 

The reason for this is that excitation energies appearing in the defini

tion of V(k,T) given by (52) are quite different. In fact one has from 

(46) that 

E k = 4 j f i ( V Y K ) , E k = 4 | j | |f | * ( Y Q - Y ^ ) * (62) 
T C T N 
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Notice that at T , the excitations have the same wavelength dependence 

as low temperature ferromagnetic magnons, while at T^. the excitations 

have the same wavelength dependence as low temperature antiferromagnetic 

spin waves. The fact that "both the staggered susceptibility becomes 

infinite and the excitation energies have a higher periodicity in It-

space consistent with a sublattice picture strongly suggests the appear

ance of antiferromagnetism at lower temperatures although one is unable 

to explicitly demonstrate this fact since the assumption of a spherically 

symmetric phase is no longer valid below T̂ .. Likewise, one can only 

suggest the existence of the ferromagnetic phase below T^. 

Rushbrooke and Wood ' have used a (l/T; series expansion for 

the susceptibility and staggered susceptibility to determine estimates 

for the Curie and Neel temperature. They find 

( T ^ W - T £ W ) / T £ W ~ 0.63/YoS(Sfl) (63) 

RW RW 

where T and T c are their estimates for the Neel and Curie tempera

tures respectively. One should therefore expect a different expression 

for the Curie and Neel temperature as is evidenced by (6l) . 

It will now be shown that the Green's function theory in the quan

tum limit is consistent with the theorem of Mermin and W a g n e r w h i c h 

states that a phase transition to the ferromagnetic state or antiferro

magnetic state at finite temperature is impossible in either one or two 

dimensions. To do this, observe that v"(k,T) as defined in (52) satisfies 

the inequality, v"(k,T)^l for all values of k and T for both positive and 

negative exchange constant J. This inequality, when used in (6l) leads 

to the results, 
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which in view of the known values of IF and 1L implies consistency with 
IN U 

the theorem of Mermin and Wagner. 

The change in the thermal properties arising due to the quantum 

effects which were neglected in the classical limit presented in Chapter 

XV will now he estimated. V(k,T) appearing in (52) may he expanded 

about 3=0. If one substitutes this expansion into (50) and (5l) one 

obtains 

2S(S+1)3J = 31(h) + 2 p 2 J 2 Y Q f +•.. (65) 

and 

2 3 J Y n f = (Y nl(h)h" 1-1) - 2 3 2 j 2
Y n f / 3 +..- (66) 

where l(h) is the lattice sum, 

i N k Y 0 Yk 

and 

h = f/g (68) 

2 

A comparison of (50) and (51) with (29) shows that terms to order < \ >
z z 

in the expansion given in (65) and (66) have been retained. It should be 

recalled that the exact zero, first, and second moments of the relaxation 

function R (k,t) have been used as boundary conditions on our Green's 

function at t=0 as is reflected in (21) and (24). Higher moments have 

not been included in (65) and (66) since these are not correctly given 
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by the relaxation function as given in (26) which contains only two 

frequencies. The contributions from these higher moments to the thermo

dynamics is small except possibly for systems with a small number of 

near neighbors for temperatures near the critical temperature in the 

three dimensional case. One may rearrange (66) to obtain 

23JY Qf = (Y 0l(h)h" 1-l)(l+pj / 3 ) " 1 (69) 

Furthermore, one obtains 

2S(S+1)3J = (T0) 
1 - [2S(S+l)]"-L(Y0l(h)h"-L-l)(l+3J/3)"-L 

upon substituting (69) into (65). In order to motivate one further 

approximation, the expression (l+pj/3) which appears in both (69) and 

(70) may be written as 

/ F id) \ 
(1+BJ/3) = U + S s ^ r j (71) 

with the aid of (60) and (6l). Equation (71) indicates that (65) and 

(66) when expressed as a series in (T^/T) will also be a series in 

inverse powers of S(S+l). The same results apply to (69) and (70) which 

are derived from (65) and (66). If one now compares (69) and (70) with 

the aid of (jl), one sees that the denominator of (70) contains higher 

terms in inverse powers of S(S+l) than does (69). Therefore one may 

make the further approximation of replacing ( 70) by 

2S(S+1)3J = 2l(lLJ - (72) 
1 - [2S(S+1)]~ J-( Y nl(h)h" J--l) 
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so that (72) reflects the same level of approximation as does (69) in 

inverse powers of S(S+l). 

In the remainder of this thesis, (69) and (72) will "be used to 

describe the high temperature region of the Heisenberg paramagnet. The 

high temperature region is defined as the entire paramagnetic region for 

three dimensional paramagnets which undergo either a Curie or Neel tran

sition. For one and two dimensional paramagnets as well as those three 

dimensional paramagnets which do not undergo a Neel transition when J is 

negative, the high temperature region is defined to be the temperature 

range above the Curie-Weiss temperature defined by 

SC-W = 2 | j | Y 0 S ( S f D/3k B (73) 

A comparison with experiment would require use of analytical expressions 

for the Watson sums, i ( h ) ^ ^ ' ' ^ ' ' ^ to obtain the self-consistency 

parameters f and h appearing in (69) and (72). However, the primary 

interest at present is in making a comparison with exactly known prop

erties of the Heisenberg model to test the validity of the statistical 

approximations used in this thesis. The bulk of the theoretical know

ledge related to the Heisenberg paramagnet is contained in the (l/T) 

series expansion results and results deduced from these series by Pade 

approximations^ 1' 5 2 , 5 4 , 6 l 66) ̂  ^ ^ e next chapter, the solutions for 

the specific heat and susceptibility deduced from (69)^ (71).? and ( 4 8 ) 

will be expressed as a series expansion in powers of (l/T) which may be 

compared with the exact results. 

Before proceeding to the (l/T) series, one may examine the pre

dicted Curie and Neel temperatures as well as values of the nearest 
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neighbor correlation functions at the critical temperature. The 

unphysical results obtained by Liu in the RPA for the S==^ simple cubic 

paramagnet in which the energy predicted at the critical temperature 

was lower than the ground state energy disappears when the quantum 

effects present in (69) and (71) are taken into account. 

Using the fact that 

1(h) = -l(-h) (T4) 

for lattices that are decomposable into two interpenetrating sublattices 

with the property that nearest neighbor sites always lie on separate 

sublattices, one finds from (72) with |h| =1 that the Curie and Neel 

temperature are given by 

T C = T H = T C ^ " 2 § T W J (T5) 

so that the Curie and Neel temperatures are in agreement to order 

l/S(S+l). Equation (75) is in disagreement with the predictions of 

Rushbrooke and Wood given in (63). One needs the values of l(l) which 

are given by 

O.2527 (sc) 
l(l) = 0.1742 (bcc) (76) 

0.1122 (fee) 
for the simple cubic, body centered cubic, and face centered cubic lat

tices in order to compare our predictions for the Curie and Neel tempera-

(52-54) 
ture with the predictions of Rushbrooke and Wood x ' which are given 
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by (63) and RW 

T C = 5J(Y 0-l)(llS(&fl)-l) /96k B (77) Table 1 gives a comparison of present theory predictions for the Curie 

and Neel temperature with both RPA and (l/T) series predictions. The 

present theory predictions are uniformly lower than the (l/T) series 

estimates. 

The predictions for the nearest neighbor spin-spin correlation 

predicted by the present Green's function theory at the critical tem

perature will now be considered. One obtains 

«c(yQKl)-l)) 
upon substituting (75) into (69) and (7̂). These values are consider

ably lower than the RPA values of Liu which are given by 

<s0-sd>fAL = - <3Q.sa>fAL = S ( S + I ) ( I - I / Y 0 I ( I ) ) (79) 

Present theory values of <S ' S > are much closer to the (l/T) series 

values of Domb and S y k e s ^ 1 ^ than the RPA values of Liu as may be seen 

by an examination of Table 2. 

The power laws in the critical region are the same as for the 

RPA theory and the spherical model although the numerical values of the 

coefficients change somewhat as is evidenced by the change in the 

critical value of the nearest neighbor correlation function calculated 

above. Since the critical behavior of the spherical model is known to 

be incorrect, the matter will be pursued no further. 
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Table 1. Predictions for the Curie and Neel Temperatures. Tabulated 

Temperatures are Multiples of the Curie-Weiss Temperature, 

ecw = SYQIJISCS+I)^. 
Lattice 

Method 
Curie Neel Curie Neel S=l/2 S=l/2 S=l S=l Curie Neel 

Simple Cubic 
l/T S e r i e s ^ ' ^ 
R P A ^ 
Present Theory 

Body Centered Cubic 
l/T S e r i e s ^ 
RPA( C) 
Present Theory 

Face Centered Cubic 
l/T Series^) 
l/T Series^ 

.(c) 
.(d) 

0.629 O.660 0.433 
0.661 0.718 0.530 

0.717 O.660 
0.433 0.730 0.718 0.530 

O.683 0.660 
0.575 
0.735 0.718 
0.647 

0.719 O.660 
0.575 
0.764 0.718 
0.647 

O.709 O.660 
0.641 

0.744 0.718 0.702 

0.718 0.660 
o.64i 

0.750 0.718 0.702 

RPA 
Present Theory 

0.692 
None 

0.752 
None 

0.780 
None 

0.679 None 0.747 None None 

0.743 None 0.743 None 0.743 None 0.571 None 0.679 None 0.728 None 
(a) Ref. 52 
(b) Ref. 54 
(c) Ref. 22 
(d) Ref. 51 
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Table 2 . Critical Values of the Normalized Nearest Neighbor 
-* - . , 2 

Correlation Function <S •S_>/S . 
0 d ' 

Lattice 
Method 

Curie 
S=l / 2 

Neel 
S=l / 2 

Curie 
S=l 

Neel 
S=l 

Curie 
S=oo 

Neel 
S=oo 

Simple Cubic 
R P A ( L i u ) ( a ) 

Present Theory 
Body Centered Cubic 

R P A ( L i u ) ( a ) 

Present Theory 
Face Centered Cubic 

R P A ( L i u ) ( a ) 

Present Theory 
l/T S e r i e s ^ 

1 . 0 2 

0 .53 

0 .84 

0 .54 

- 1 . 0 2 

- 0 . 9 0 

-0 . 8 4 

-0 . 7 4 

0 . 6 8 

0 . 5 5 

0 . 5 6 

0 .48 

- 0 . 6 8 

-0 . 6 4 

-O . 5 6 

- 0 . 5 4 

0 . 3 4 

0 . 3 4 

0 . 2 8 

0 . 2 8 

- 0 . 3 4 

- 0 . 3 4 

- 0 . 2 8 

- 0 . 2 8 

0.TT None 0 . 5 1 None 0 . 2 6 None 
0 . 5 4 None 0 .46 None 0 . 2 6 None 
0 . 4 5 None 0 . 3 4 None 0 . 1 9 None 

(a) Ref. 2 1 

(b) Ref. 5 1 
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CHAPTER VI 

l/T SERIES RESULTS 

It is useful to introduce the notation 

J = 2JS 2 (80) 

K = = j / V ( 8 l ) 

and 

X = S(S+l) (82) 

so that the Hamiltonian given "by (ll) now "becomes 

H = - S S -S (83) 
2S 2 j,d J J + d 

It is easier to assess the quantum effects as a function of S with the 

last form of the Hamiltonian for which the ferromagnetic ground state is 

independent of S for fixed J and for which the Curie temperature depends 

only weakly on S for a fixed value of J. Equations (69) and (j2) become 

S 2( Y nl(h)h" 1-l) 
f = - 2 - 2 2 — ^ 

i r ( i+vK / 6 s ) 
and 

3S 2X" 1l(h) K = J ° X W (85) 
1 - jv(Ynl(h)h -1)/X 
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when use is made of (80) thru (82). The variable v which is equal to 

unity has been introduced. The reason for the introduction of v is 

that if one sets v=0, one recovers the (l/T) series solution for the 

classical limit discussed in Chapter TV. One is therefore able to get 

(l/T) series expressions for both the spherical model and the RPA model 

of Liu as well as the (l/T) series expressions for the quantum limit of 

our model. 

Notice that (85) gives h as a function of spin and temperature. 

So long as |h|<l, one can expand (67) to obtain 

1(h) = Y I f 1 S I h 1 (86) 
n=0 

where 

W n = 1 , - 1 S ( ^ 
k 

The lattice sums given in (87) may be interpreted with the aid of (25) 

as the probability of returning to the starting point after n random 

steps between nearest neighbor spin sites. These values are easily 

obtained on a computer and are given in Table 3 for several lattices. 
(48) 

These values are in agreement with the values calculated by Laxv . 

Combining (85)> (86), and (87) and inverting the series one 

obtains 

h = 2 A n(K / s 2 ) n (88) 
n=l 

where the first four coefficients are given by 



Table 3. Probabilities ¥ of Returning to Starting Point After n 
n 

Steps Between Nearest Neighbor Lattice Sites. 

Lattice ¥ Q ¥ 2 ¥^ ¥^ 

Linear 1 1/2 0 3/8 
Square 1 1/k 0 9/64 
Simple cubic 1 1/6 0 5/72 
Face-centered cubic 1 1/12 1/36 5/192 
Body-centered cubic 1 1/8 0 27/512 
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A l = X V 3 ' A 2 = ° ' A 3 = -^Y^(2X+v)/5k, Ak = X 3Y 0V 3(2X+v)/l62 (89) 

and where V is defined by n 

V n = (90) 

One can now obtain an explicit expression for f as a function of 

temperature by substituting (88) and (86) into (84). The resulting 

expression is readily reduced to a (l/T) series in temperature. We 

write our prediction for the normalized nearest neighbor correlation 

function as 
00 

<50.Sd>GF/S2 = - 7 lP(v,S) S'^K 2 1" 1 (91) 
n=2 

where one obtains our prediction for the classical Heisenberg model when 
(21) 

v=0 as well as the series expansion for the RPA theory of LiuN ' and 
the spherical model of Lax^^\ and where one obtains our prediction for 

GF 
the quantum Heisenberg model when v=l. The coefficients B n (v,S) are 

(52) 

given in Appendix III where they are compared with the exact results ' 

B E(v,S). 

Upon substituting (68) and (78) into (48) and upon setting k=̂ 0, 

one obtains 

Xo = ~ s 2 h (92) 
^ JY 0 ( I - H ) 

for the susceptibility. Finally, one obtains after substituting (88) 

into (92) an expression for the susceptibility as a function of inverse 



temperature. The present prediction for the series is expressed as 

0 0 

3k BTxf/S(S+1) = 7 rfjF(v,S) S ' 2 n ̂  (93) 
n=0 

GF, N 

where the coefficients (v,S) are given in Appendix IV and are com

pared with the exact coefficients obtained by Brown and L u t t i n g e r ^ ^ . 

Again one obtains predictions for the classical Heisenberg model when 

v=0 and predictions for the quantum Heisenberg model when v=l. Equation 

(93) also gives the exact l/T series for the RPA theory when v=0 as well 

as the exact l/T series for the spherical model of L a x ^ 8 ^ due to the 

relations established in Chapter XV. 

Notice in Appendix III and TV that predicted (l/T) series coeffi

cients for the classical and quantum Heisenberg model are related in 

precisely the same way as the exact (l/T) series for the classical and 

quantum Heisenberg models. One observes that the coefficients with sub

script n are polynomials in the variable X of degree n in the quantum 

case, whereas one finds that the coefficients in the classical case con

tains only the term in the polynomial containing the highest power of 

the variable X. This rigorous relation is used to establish that by 

setting V(k,T) in (52) equal to unity, one does indeed obtain the clas

sical limit of the present theory as was tentatively assumed in Chapter TV. 



45 

CHAPTER VII 

ONE-DIMENSIONAL ANTIFERROMAGNET AT LOW TEMPERATURE 

(45) 

Recently Richards^ y j showed that the results of a second order 

Green's function theory for a one-dimensional antiferromagnet similar to 

the present theory gave good agreement with both Fisher's classical sol

ution for the inverse correlation length and the static correlation 

function and with experimental neutron scattering results for these 

quantities in (CD^)j^NMnCl^ (TMMC) on the temperature interval 

1.1 < T < 40°K. The spin-spin correlations between nearest and next 

nearest neighbor spins in Richard's calculation were taken from the 

classical solution, rather than obtaining them from a self-consistent 

Green's function theory. This procedure raised the question of whether 

the good agreement of the Green's function theory with the classical 

solution is in large measure enforced by the utilization of the classi

cal parameters in that theory. This question has been considered by 

(43) 

Scales and Gersch ' where it was found that the good agreement with 

long range correlation properties found by Richards largely disappears. 

The calculation of Scales and Gersch will be reviewed in this 

chapter and the theoretical results obtained will be compared with the 

experimental results on TMMC as well as competing theoretical results. 

In Ref. (43) it was assumed that the constant c appearing in (53) 

was unity. Thus the correction for this inconsistency affects only the 

values of <SQS£> which were not displayed in Ref. 43. A fully self 
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consistent treatment is given in this chapter which place the results 

obtained by Scales and Gersch on a sounder foundation. It is conveni

ent to introduce the parameter i, defined by 

I = -f/g (94) 

in order to prevent confusion that might arise between the parameter h 

defined by (68) and the parameter h appearing in Ref. (43) which differ 

by a factor of (-l). Upon substituting (94) into (46) one obtains 

E 2 = 32J 2|f |(l-cos kJU'Vcos k) (95) 

for the excitations for the one dimensional antiferromagnet. The 

Fourier lattice transform of the equal time spin-spin correlation func-
z z 

tion <S kS k > which is of interest in quasi-elastic neutron scattering 

experiments is given by 

<SkS-k>
 = k j f ( 1 ~ c o s k ) ( X + 2 n k > / E k ( 9 6 ) 

as a result of (48) and (48) where the function n^ is defined by 

n k = l/(exp(3Ek)-l) (97) 

The self consistency parameters f and £ are determined by 

s(s+i)/3 = r 1

 E <s£sf > (98) 
k 

and 

f = w"1 E < s k s z

k > (99) 
k 



The last two equations are merely a restatement of (50) and ( 5 l ) . 

The sums that appear in (98) and (99) which are explicitly 

independent of n^ are exactly summable in the thermodynamic limit. The 

self-consistency equations that follow after this summation is performed 

may "be expressed in terms of the remaining lattice sums L ( K . , K^,) as 

*f 
L N ( K . , K F ) = 2 N _ ± ^ A

N ( K ^ K (100) 
k. 

2 

where 

A (k,-t) = [(l+^cosk)/2]" 1 / / 2sin(k/2)cos nk (lOl) 

The first self-consistency equation is 

3f/S(S+l) = - MF(A) , M = l ' 1 - ! (102) 

where 

F(A)/2 = D - ( D 2 - ! ) 1 / 2 (103) 

D = 1 + C(l+A) 2 (10k) 

C = 3/(TT2 S(S+1)) (105) 

and 

A = TT^J [Lq(0,2TT)M/2 + L ^ O ^ T T ) ] (106) 

The second self-consistency equation is given "by 

/M\1/2\/M \ ~ l / 2 

log 

= RR^ L / 2 L 0 (o,2ir)/2 + ( 6 c|f | / s ( s + i ) ) 1 / 2 (107) 
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The ground state results are easily obtained after setting L n=0 

in (106) and (107). One readily obtains 

( M ^ ^ c o t h " 1 ^ 1 / 2 ) = (ikF(o)C)-1/2 (108) 

from the self-consistency equations at T=0. Equations (103) and (108) 

determine T=0 values for f and t -which are tabulated in Table h. Present 
z z 

theory values for f = ^ Q S - ^ are considerably larger than the classical 
prediction, f = S(S+l)/3, and agree fairly well with the exactly known 

1(69) 

value in the case of S—^ and the rigorous bounds in the case of 

S = 5 / 2 ^ ° \ The relation <O|H|O> = 6HJf between the ground state energy 

and the correlation function f shows that the ground state energy is 

quite accurately determined by the present theory. 

The ground state results for S=5/2 are applicable to TMMC and 

provide a description of the excitation energies E. according to (98). 

The experimental results of inelastic neutron magnetic scattering at 

4.4°K are known to fit very closely the curve E k=6.1 meV sin k over the 

entire one-dimensional Brillouin zone^ 0^. Since h=0.99o>6 at T=0°K, 

the E predicted by present theory does not quite go to zero at k=n 

(see (109)). However the percentage deviation of E^ from the value 
JL_ 

Ek=ikf(2|f I )2sin k is only % at k=0.95Tr and 1.5$ at k=0.9rT. 
Richard using classical theory values f=-S(S+l)/3 and £=1 

at zero degrees, predicts E k=4j(2S(S+l)/3) 2sin k, while Lovesay and 
(71) 

Meservev ' use a theory of the shape of the relaxation function to get 
± o E k=4j(S(S+l)) 2sin k. If one uses the value J=7.7 K obtained from 

(39) 

quasi-elastic neutron data ' in the above expressions for the excita

tion energies, one obtains the maximum at k=rr/2 to be 5.65 meV 
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Table 4. Ground State Parameters for the One Dimensional Heisenberg 
Antiferromagnet. 

Spin I 3f/S(&KL) ( a ) 3f/s(S+l) (a) 

(Present Theory) (Exact) 1/2 0.72880 -0A9571 -0.591 ̂  1 0.92935 -0.60214 -3/4<3f/s(s+i)<-i/2 5/2 0.99860 -0.76941 -6/7<3f/s(S+l)<-5/7 ̂  
(a) Ground state energy per spin is 6jf 

(b) Ref. 69 
(c) Ref. 70 
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(present theory), 6.kl meV (Richards), and 7.$5 m e ^ (Lovesay and 

Mersrve) compared with 6.1 meV (Hutchings et al). 

Equation (98) predicts an energy gap at k=n, 

K g =8 j(|f|( t- 1-l ) )2 (109) 

which at T=0 is O.298 meV, and a parabolic dependence of on k for k 

near TT. The energy gap is of course a consequence of t being less than 

unity. A further implication of t being less than unity is a finite 

value of the staggered susceptibility at T=0°K since the staggered sus

ceptibility is proportional to <i/(±-&). This in turn implies finite 
—> —> 

values for both H, the inverse correlation range and <S •S ̂ > , con

trasted with the zero value predicted by the classical theory for these 

two quantities. 
(71) 

Numerical calculations ' on finite spin systems produce E ^ 

spectra with no evidence for such a gap, so we are led to believe its 

presence represents a flaw in the present theory. It appears that the 

zero temperature results here correspond to a ground state which is 

deficient in the long-range spin-spin correlations and concomitant large 

fluctuations in sub-lattice magnetization about its zero average value 

since i^L implies finite staggered susceptibility and finite correlation 

range. 

Solutions for finite temperature are now restricted to low tem

peratures where the principal contributions to thermal excitations have 

wavevectors in the neighborhood of k=0 and k = t T . (For TMMC this corre

sponds to T<25°K.) The lattice sums in (100) involve a phonon-like 

spectrum on the interval 0 < k < TT/2. The sums, L (o,n/2) become 
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integrals in the thermodynamic limit, and one finds upon using E. «k 
K. 

and extending the upper limit of integration to infinity that 

L (0,n/2) = ^ | l + 0(g- 4) (110) 

The evaluation of L (TT/2,TT) is more complicated since its value 

is very sensitive to the height of the roton-like minimum in the excita

tion spectrum given by (109). Upper and lower bounds for L (TI/2,T) are 

obtained by the following procedure. At low temperatures (lOl) indicates 

L0(TT/2,TT) ^ -L^(TT/2,TT) SO one need only consider L (TT/2,TT). The excita-
l/2 

tion spectrum is approximated by E^JE [l+'tcosk)/(l-^) ] ' . Expanding n^ 

in a geometric series, one obtains 
L0(TT/2,TT) = | ( 2 ^ _ 1 / 2 E" = 1exp(-rpE G) 1^ (ill) 

X 0 
I r = J dx[x(l+x/2)]"1/2exp(-r3EGx) (ll2) 

0 
-1/2 

-l/2 
the rigorous bounds, exp(-x/4) <. (l+x/2) ' ^ 1 into (112) yields 

has XQ—l+(l-£) ' as the upper limit of integration. Substitution of 

I r = [(r3EG+71/4)/7T]"l/2exp(-3EGr) x Erf ([x 0(r3EG+V4) ] l / 2) (113) 

for some value of T) satisfying 0 ^ T| ̂  1. For the case of S=5/2, the 

error function in (113) may be replaced by unity for T < 25°K. 

After inserting the lattice sums L Q and into (106) and (107)> 

upper and lower bounds on f and <t are determined by varying the parameter 

7] for fixed T. The quantity <S>S > in (96) has the Lorentzian form in 
k —k 

—• —» rJ2. 2 -1 terms of £ = rr-k, <S »S , > «(k + a )" , defining the inverse correlation ' k -k 
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length H as 

(-)2 = %4 [: 
2 

—1 1 + (114) TT 

The inverse correlation length K depends on the parameter T], Upper and 

lower hounds for K at each temperature result fay varying T) "between zero 

and unity. 

Our results, Fisher's classical solution, and Richards result for 

the inverse correlation length K are shown in Figure 1. One sees from 

the figure that the large discrepancy between present theory and the 

classical solution remains for temperatures up to 25°K. For tempera

tures above about 4o°K, a better approximation to present theory is 

obtained from the high temperature limit which is equivalent to the 

classical limit J-O, S-«>, and & = JS(S+l) fixed. In this limit the self-
2 -l/2 

consistency equations are easily solved, yielding &=(l+x ) ~ ' , 

3f/S(S+l) = x-h" 1, and (K&)2=£(1-1)/l with x=3/(4|3Y). This last expres

sion for K is shown in Figure 1 as the dotted line. Comparison of K 

over an extended temperature range indicates the discrepancy is reduced 

to about J<fo at the Curie-Weiss temperature e=4jS(S+l)<^90°K for TMMC. 
—• —> 

Inspection of Figure 2 depicting ^ Q " ^ ^ data for S=l shows the improve

ment of present predictions over the classical results when compared with 
(73) 

the computer calculations of Weng x . 

In conclusion, the present theory has been shown to produce an 

improvement over the classical theory description of local spin behav

ior, as exemplified fay nearest neighbor correlations in the low tempera

ture region for a one-dimensional Heisenberg antiferromagnet. The long 

n 



Figure 1. Inverse Correlation range K Versus Temperature for TMMC (S=5/2). Solid line is 
Fisher's Classical Solution, Dashed Line is Richards' Result, Cross-Sectioned Curve 
Represents Upper and Lower Bounds of Present Theory, and Dotted Line is Classical Limit 
of Present Theory. 
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Figure 2. Nearest Neighbor Correlation Function ^ '"§̂ > Versus Temperature for the Linear Heisenberg 
Antiferromagnet, S=l. Solid Line is Fisher's Classical Model, Dashed Line is Computer Cal
culation of Weng. Upper Dotted Line at Low Temperatures is Present Theory, and Lower Dotted 
Line is Classical Limit of Present Theory. 
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range spin behavior is, on the other hand, much more accurately given 

by the classical theory. This unbalanced performance does not seem to 

us surprising, given that the ground state of this system is character

ized by an infinite spin correlation length and concomitant macroscopic 

fluctuations in sub-lattice magnetization. These characteristics, 

similar to those present near an ordinary Curie or Neel point of a 

three-dimensional magnet, are known to receive adequate description via 

classical theory. 
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APPENDIX I 

0) R(a>) = F(u>;t)<[A(t),B(o)]> (115) 
If one denotes the eigenvalues of the hamiltonian H by E^ and the cor

responding eigenfunctions by |E^>, then one finds from (7) that 

<B(0)A(t)> = Z' 1 £ <JE |B(0)A(t)|E > e _ p E i (ll6) 
and 

<A(t)B(0)> = Z" 1 z <E |A(t)B(0)[E > e" 3 Ej (llT) 

The last two equations become 

<B(0)A(t)> = | S < î|B(0)|E^><EJ|A(0)|Ei>exp(-3E;L-i(E;L-EJ)t) (ll8) 
-̂J 

and 

<A(t)B(0)> = \ Z <E. |B(0)|E X E |A(0)|E >exp(3E -i(E -E )t) (119) 
respectively after the explicit expression for A(t) given by (7) and 

the completeness property 

1 = 2. E.XE. (120) J J J 

are used. Upon Fourier transforming (ll8) and (119) one finds 

The purpose of this appendix is to establish the spectral theorem 

given by (l6) in Chapter II. After substituting the definitions for the 

Green's functions given by (k) into (15)? one finds 
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F(uyt)<B(0)A(t)> = e'PcUF(u);t)<A(t)B(0)> (l2l) 

so that (115) becomes 

-ggteL = F(IB.t)<j(0)A(t)> (022) 
e - 1 

Upon Fourier transforming the last equation, one obtains 

<B(0)A(t)> = r\t;w) - f ^ ~ (123) 
e p u j - 1 

•which is the desired result. 
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APPENDIX II 

^ 
V*_..=0 

(125) 
k 

The evaluation of the derivative in (l25) is somewhat tedious because 

[H,S z] ^ 0 unless k=0. Therefore one must expand e ^ in a Taylor's 
k 

series and take account of the non-commutativity. One finds that 
» r-1 

NX k = Z _ 1 I I TriS^-Wf-^HVQ^i-mf/rl " 3<S kXS Z
k> (126) 

r=l,s=0 

where Z is the partition function in zero field. The last term iz zero 

in the paramagnetic region since by definition, the paramagnetic region 

has no Ions range order. 

The purpose of this appendix is to find the linear response of 

the Heisenberg model to a spatially dependent magnetic field and to 

show that the susceptibility "to he defined below is identical to 

R z z(k, t=0). 

To the Heisenberg hamiltonian given by (ll) one may add a term 

reflecting the Zeeman interaction of the spins with an applied spatially 

dependent magnetic field h^. The Hamiltonian is then 

ff =H - h-A - \ S - K 

where = h ^ so that the Hamiltonian is Hermetian. The susceptibility 

y, is defined as ^k 
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In the energy eigenstate "basis described in Appendix I, the last 

equation is found to be 

-PE. -0E. 
N X k =Z" ^ <E.|S KLE | s _ K | E . > E

E ; / E
E ' (127) 

10 J i 

with the aid of the identity 

r - 1 

x r - y r = (x-y) I x M y s (128) 

s=0 

But (127) is easily shown to be equivalent to 

N X k = F- 1 (t=O, U ))(F( ( U jt)<S^(t)sf k(O)>(e e' 0-l)/c U) (l2 9) 

when compared with the Fourier transform of (ll9)> and when the identifica

tion A(t)=S Z(t) and B ( o)=S z is made. One can use the invariance of the 

spin correlation functions to translations to obtain 

X k = S eik-JF-1(t=O;tu)(F(cU;t)<SJ
Z(t)S^(0)>(eP<u-l)/t„) (130) 

Finally (130) is seen to reduce to 

= *J*>*=<» (131) 
when compared with ( 1 2 3 ) . This is the desired result. 
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APPENDIX III 

Linear: 

B* =X 2/3, *3 = 0X 3 -vX 2 / l2 , •RE 
= X 2(-3X 2-8vX+3v)/l35 

B f = £/3, B3 ~ 0X 3 -vX 2 / l8 , GF 
\ = x 2(-5X 2-i0vX+i.25v)/i35 

Square: 

^ = 0X 3 -vX 2 / l2 , = X 2(TX 2-l8vX+3v)/l35 

B f = X/3, B f = 0X 3-vX 2/l8, B f = X 2(5X 2-20vX+1.25v)/l35 

Simple Cubic: 

4 = x 2 / 3 > B3 0X3-vl?/l2, *t = X2(lTX2-28vX+3v)/l35 

B f = 7?/3, B3 - OX 3 - v X 2 / l 8 , B f = X 2(l5X 2-30vX+1.25v)/l35 

Body Centered Cubic: 

= X 2 / 3 , B* = 0X 3 -vX 2 / l2 , B 4 = X 2(5TX 2-38vX+3v)/l35 

B f = £13, B f = 0X 3 -vX 2 / l8 , = X 2(55X2-4ovX+1.25v)/l35 

Face Centered Cubic: 

4 = £/3, •RE - = X 2(l07X 2-78vX+3v)/l35 

B f = ^ / S , B f = X2(l05X2-70vX+1.25v)/l35 

GF 
The nearest neighbor spin-spin correlation coefficients B^ (v,S) 

defined by (91) and discussed in Chapter VI are compared below with the 
E 

exact coefficients denoted by B n (v ,S) which were deduced from the coef-
(52) 

f icients of Rushbrooke and Wood . 
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APPENDIX IV 

GF 
The susceptibility coefficients D^ (v,S) defined by (93) and 

discussed in Chapter VI are compared with the exact coefficients denoted 

) wh: 
(67) 

E 
by D^(v, S) which were deduced from the coefficients of Brown and 
Luttinger 

Linear: 

DQ = 1 , D F = 2X / 3 , Dvj = 2X 2 /9-vX /6 

DGF = ^ DGF = 2 x / 3 ^ DGF = 2 x 2 / 9 _ v X / 9 

Square: 

D Q =1, =4X/3, =4X 2/ 3-TX/3 
= 1, T)f = W3, = ̂ /3-2vX/9 

Simple Cubic: 

D 0 = ^ D l = 2 X ' D 2 = l o x 2/3-vX/2 
D ^ F = 1 , D ^ F = 2.X, D 2

F = lOX^-vX/S 

Body Centered Cubic 

D* = 1 , D* = 8X/3, D* = 56x 2 /9-2vX /3 

D G F = ^ D G F = Q X / 3 ^ D G F = 5 6 x 2 / 9 _ W x / 9 

Face Centered Cubic: 

D F = 1 , D F = Iff, D* = 

D^ F = 1 , D^ F = kX, D ^ F = kk^/3-2vX/3 



62 

BIBLIOGRAPHY 

1. P. W. Anderson, in F. Seitz and D. Turnbull (eds), Solid State 
Physics: Advances in Research and Applications, New York, Vol. lk, 
pp. 99-^1^ (1963). 

2. A. Arrott, in G. T. Rado and H. Suhl (eds), Magnetism: A Treat
ise on Modern Theory and Materials, New York, Vol. lib, pp. 296-
ti6 (1966). 

3. c. Kittel, Elementary Statistical Physics, New York, p. 83 (1958). 

k. p. J. Price, Phys. Rev. 97:259 (1955). 

5. P. Weiss, J. Phys. Radium k:66l (1907). 

6. J. 
p. 

Smart, Effective Field Theories of Magnetism, Philadelphia, 
23 (1966). 

7. c. Domfa and M. F. Sykes, Phys. Rev. 128:168 (1962). 

8. G. S. Rushhrooke and P. J. Wood, Mol. Physics 1:257 (1958). 

9. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17:1133 (1966). 

10. W. Heisenberg, Z. Physik 38:44l (1926). 

11 . P. A. M. Dirac, Proc. Roy. Soc. 112A:66l (1926). 

12. T. Oguchi, Prog. Theoret. Phys. (Kyoto) 13:l48 (1955). 

13. H. A. Bethe, Proc. Roy. Soc. (London) A150-.522 (1935). 

Ik. R. E. Peierls, Proc. Cambridge Phil. Soc. 32:477 (1936). 

15. P. R. Weiss, Phys. Rev. _7_4:l493 (1948). 

16. L. Neel, Ann. Phys. (Paris) 17:5 (1932). 

17. N. N. Bogolyufaov and S. V. Tyablikov, Dokl. Akad. Nauk SSR 
126:53 (1959); Sov. Phys.--Dokl. k:6ok (1959). 

18. S. V. Tyablikov, Ukrain. Mat. Zhn. 11:287 (1959). 

19. V. 
in 

L. Bonch-Bruevich and S. V. Tyablikov, Green Function Methods 
Statistical Mechanics, Moscow, I96I; Amsterdam, (1962). 



63 

20. R. A. Tahir-Kheli, Phys. Rev. 159:439 (1967). 

21. s. H. Lin, Phys. Rev. 139:A1522 (1965). 

22. R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127:88 (1962). 

23. T. Oguchi and A. Honma, J. Appl. Phys. 34:1153 (1963). 

24. H. Callen, Phys. Rev. 130:890 (1963). 

25. R. A. Tahir-Kheli, Phys. Rev. 132:689 (1963). 

26. M. Wortis, Phys. Rev. 138:A1126 (1964). 

27. C W. Haas and H. S. Jarrett, Phys. Rev. 135:A1089 (1964). 

28. J. A. Copeland and H. A. Gersch, Phys. Rev. 143:236 (1966). 

29. s. Katsura and T. Horiguchi, J. Phys. Soc. Japan 25:6o (1968). 

30. M. E. Lines, Phys. Rev. B3:1749 ( l97l) . 

31. T. Riste, J. Phys. Soc. Japan 17, Suppl. B III, 60 (1962). 

32. K. C. Turberfield, A. Okazaki, and R. ¥. H. Stevenson, Proc. Phys. 
Soc. 85:7^3 (1965). 

33. P. Martel, R. A. Cowley, and R. W. H. Stevenson, J. Appl. Phys. 
39:1116 (1968). 

3k. R. Nathans, F. Menzlnger, and S. J. Pickart, J. Appl. Phys. 
39:116 (1968). 

35. P. D. Lowde and C. G. Windsor, Solid State Communications 6:189 
(1968). 

36. P. A. Fleury, Phys. Rev. 180:591 (1968). 

37. P. A. Fleury, Phys. Rev. Lett. 24:1346 (1970). 

38. J. Skalyo, G. Shirane, R. J. Birgeneau, and H. J, Guggenheim, 
Phys. Rev. Lett. 23:1394 (1969). 

39. P. J. Birgeneau, H. J. Guggenheim, and G. Shirane, Phys. Rev. 
Lett. 22:720 (1969); Phys. Rev. B (to "be published). 

40. M. T. Huchings, G. Shirane, R. Birgeneau, R. Dingle, and S. Holt, 
J. Appl. Phys. 42, 1265 (1971); Phys. Rev. (to he published). 

41. D. Zubarev, Usp. Fiz. Nauk 71:71 (i960); Sov. Phys.--Usp. 3:320 
(I960). 



64 
42. W. Marshall and R. D. Lowde, Rep. Prog. Phys. 31:705 (1968). 

43. S. A. Scales and H. A. Gersch, Phys. Rev. Lett. 28:917 (1972). 

44. R. H. Knapp, Jr., and D. ter Haar, J. of Stat. Phys. I:l49 (1969). 

45. P. M. Richards, Phys. Rev. Lett. 2J_:l800 (l97l) . 

46. S. K. Lo and J. W. Halley, Proceedings of 17th Conference on 
Magnetism and Magnetic Materials, Chicago, Nov. 1971 (American 
Institute of Physics; New York, to he published). 

47. L. S. Orstein and F. Zernike, Proc. Kon. Ned. Acad. Wet., 

Amsterdam 17:793 (1914). 48. M. Lax, Phys. Rev. 97:629 (1955). 

49. T. H. Berlin and M. Kac, Phys. Rev. 86:821 (1952). 

50. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17:1133 (1966). 

51. C. Domb and M. F. Sykes, Phys. Rev. 128:l68 (1962). 

52. G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1:257 (1958). 

53. L. Neel, Ann. de Physique 3:137 (1948). 

54. G. S. Rushbrooke and P. J. Wood, Mol. Phys. 6:409 (1963). 

55. G. N. Watson, Quart. J. Math 10:266 (1939). 

56. M. Tikson, J. Res. Natl. Bur. Stds, 50:177 (1953). 

57. A. A. Maradudin, E. W. Montroll, G. H. Weiss, R. Herman, and 
H. W. Milnes, Acad. Roy. Belgique Classe Sci. Mem. XIV:7 (i960). 

58. A. Levitas and M. Lax, Phys. Rev. 110:1016 (1958). 

59. I. Mannari and C. Kawabata, Research Notes of Dept. of Physics, 
Okayama University, Japan, 1964 (unpublished). 

60. L. Flax and J. C. Raich, Phys. Rev. 185:797 (19^9); rbid B3:l86 
(1971). 

61. G. A. Baker, H. E. Gilbert, J. Eve, and G. S. Rushbrooke, Phys. 
Lett. 20:146 (1966); Ibid 22:269 (1966); Phys. Rev. l64, 800 
(1967). 

62. H. E. Stanley and T. A. Kaplan, Phys. Rev. Lett. 17:913 (1966); 
Ibid 16:981 (1966); J. Appl. Phys. 38:975 (1967); Xbid 3§:977 
(196777 



65 

63. K. Pirnie, P. J. Wood, and J, Eve, Mol. Phys. 11, 551 (1966). 
64. P. J. Wood and G. S. Rushfarooke, Phys. Rev. Lett. 17:307 (1966). 
65. H, E. Stanley, Phys. Rev. 164:709 (1967); Ibid 158:537 (1967); 

Ibid 158:5̂6 (1967). 
66. J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc. (London) 

A275:257 (1963). 
67. H. A. Brown and J. M. Luttinger, Phys. Rev. 100:685 (1955). 
68. M. E. Fisher, Amer. J. Phys. 32:34-3 (1964). 
69. L. Hulthen, Arkiv. Mat. Astron. Fysik 26A:No, 1 (1938). 
70. P. W. Anderson, Phys. Rev. 83, 1260 (1951). 
71. S. W. Love say and R. A. Me serve (unpublished). 

72. J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128:2131 (1962). 
73. Chi-Yuan Weng, Ph.D. thesis, Carnegie-Mellon University (1969) 

(unpubli shed). 



66 

VITA 

Sam Allen Scales was born on May 22, l^h-2 in Shelbyville, 

Tennessee. He lived at Eagleville, Tennessee until he graduated from 

Eagleville High School in i960. 

In the fall of i960, he entered Georgia Institute of Technology 

where he received his B.S. in Physics with honor in June of 1964 and his 

M.S. in Physics in June of 1965. He attended the Latin American School 

of Physics during the Summer of 1966 under the sponsorship of the 

National Science Foundation. He was selected to be a member of such 

honor societies as Phi Eta Sigma, Tau Beta Pi, Phi Kappa Phi, and Sigma 

Pi Sigma. 

While at Georgia Tech, he was employed by the Physical Sciences 

Division of the Georgia Tech Experiment Station during his senior year 

and his first year of graduate school. Later he taught sophomore physics 

as a graduate teaching assistant and was employed as a graduate research 

assistant during portions of his thesis research which was sponsored in 

part by the National Science Foundation and in part by the National 

Aeronautics and Space Administration. 

On September 3> 1966 he was married to the former Charlotte Marie 

Swinney. They have one son, Sam Allen Scales, Jr. who was born on their 

second wedding anniversary. 


