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SUMMARY

A preliminary investigation is presented concerning
the possible application of the Kihara core model theory
used in the study of non-spherical gas molecules to physical
adsorption studies. The theory is based on Kihara's defi-
nition of the core of the molecule which has physical
dimensions greater than the point center used with many gas
studies but at the same time is confined within the molecular
limits.

The three adsorbate-adsorbent systems investigated
are the benzene-graphite system, the carbon dioxide-graphite
system, and the argon-graphite system. Core values are
calculated for the adsorbent graphite and one of the adsor-
bates, argon. Core values for benzene and carbon dioxide are
taken from Kihara's calculations.

The core values are used én the Kihara equation to

calculate the Kihara parameters —% and (R which best fit

U %
experimental data. —% is set equal to EF for the system under

investigation, and o is adjusted until the second gas-solid
virial coefficient corresponding to a given temperature is
correctly calculated by use of the Kihara equation. The
value of p, calculated for the benzene-graphite system is
smaller than expected. The values of P, Calculated for the
carbon dioxide-graphite system and argon-graphite system are

larger than expected.



CHAPTER 1
INTRODUCTION

The study of gases and their interactions with one
another has been taking place for many years by physical
chemists. By using existing laws of chemistry and physics,
new theories are developed based upon experimental work.

These theories are usually expressed in the form of a mathe-
matical model. This model is tested on other systems and if
necessary modified with more complete experimental information
so that the behavior of unstudied systems can be predicted
without making measurements. A model may become widely
accepted even though it does not describe a system accurately
or is only useful over short ranges. In these cases empirical
equations are generally formulated which give good agreement
with experimental findings but yield no information on funda-

mental molecular interactions.

Ideal Gases

The ideal gas equation came about as the result of
work done mainly by three men. In 1662, Robert Boyle deter-
mined that the volume of a given amount of gas at constant
temperature was inversely proportional to the pressure,

stated mathematically as



V = constant/P (1)

where

P

the pressure exerted by a gas in volume V

\

!

the volume of the gas.

In 1802, Gay-Lussac reported that the volume of a
given amount of gas at constant pressure was directly
proportional to the absolute temperature. This can be

written as
V = constant x T (2)

where

T = the absolute temperature.
Avogodro's law, stating that equal volumes of gases at the
same temperature and pressure contain the same number of
molecules, was combined with relationships (1) and (2) to

give the ideal gas equation

PV _
i constant (3)
where
n = the number of moles of gas.
The ideal gas equation did not apply very well to most real

systems; therefore, new and better relationships were called



for.

Real Gases

In 1879, Van der Waals reported a variation of the

ideal gas equation2

(P + E%%)(V-nb) = hRT (4)
where
a = a constant proportional to the cohesion between
molecules
b = a constant proportional to the volume of the
molecules.
The E%% term represents the attractive force between real

molecules that does not exist in the ideal state. The nb
term is called the excluded volume of n moles of the gas.
Further attempts to explain the gas phase over the
entire temperature-pressure range saw the development of more
empirical relationships, some of which, for example those of
Clausius]'andﬁBerthelotS, were modifications of Van der Waals'
equation. Dieterici® developed an equation with an exponential
factor. Beattie andﬁBridgeman3 introduced a five parameter
equation, and Benedict, Webb, and Rubin3 used an eight
parameter equation in order to fit certain experimental data.
In 1901, Kamerlingh Onnes3 fit compressibility data to

what is now called the virial equation of state for real



gases. For a given temperature this equation relates the

compressibility factor to a Taylor series in the power of

1/V as
;% = A+ E + 27 o (5)
v v
where
A = the first gas virial coefficient
B = the second gas virial coefficient
C = the third gas virial coefficient
R = the gas constant

V = the molar volume.
By means of statistical mechanics the virial coefficients may
be expressed in terms of intermolecular potential functions,
It is therefore possible to obtain a quantitative interpre-
tation of the deviations from the ideal gas law in terms of
the forces between molecules.

For spherically symmetrical molecules the second gas
virial coefficient can be written in integral form as

_U(=)
B = 2mN, [“(1-e KTy, 24, (6)

where

the intermolecular distance

e
n

U(«=) the potential of molecular interaction
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k

Avogadro's number

the Boltzmann constant,

The exact nature of the intermolecular potential is
not known but generally a Lennard-Jones 6-12 form can be used
when the gas is monatomic or consists of spherically symmetric
molecules. The potential, e(r), can then be expressed in
terms of the two parameters €§D and T where T, is the
distance between molecular centers when the interaction energy
is zero and T, is the separation at the potential minimum,

EED (Figure 1).

Several theories have been developed in attempts to
calculate the second virial coefficients for non-spherical
molecules, Isihara3 took an earlier treatment which showed
the second virial coefficient for rigid spheres to be equal
to four times the volume of the molecules in the gas and
extended it to rigid non-spherical molecules. The resultant

equation was

B=4N Vo f (7)

where
N = the number of molecules in the gas
Ve T the volume of a single molecule
f = a factor which indicates deviation from rigid

sphere behavior.

For each molecule tested the factor f was calculated by the
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use of group theory and differential geometry.

In 1948, Corner3 developed a theory to study the
second virial coefficients for long molecules. He adopted
a four-center model in which the molecule is represented by
four centers of force distributed along a line dependent on
the molecular length. Kihara took the results from Isihara's
treatment and extended them to obtain expressions for the
second virial coefficient of angle dependent Lennard-Jones
moleculesB. An extension of Kihara's core model theory to

unlike, non-spherical molecules is presented in Chapter IT.

Adsorption

Adsorption is the production of a concentration
gradient near the surface of a solid placed in a gaseous
atmosphere. The magnitude of the adsorption is dependent on
temperature, gas pressure, surface structure, interactions
between gas molecules and atoms of the solid, and the lateral
interactions between adsorbed molecules. Adsorption can be
divided into chemical adsorption (chemisorption) and physical
adsorption (physisorption). Chemisorption occurs with
electron transfer or orbital overlap and the production of
heat usually much higher than the heat of vaporization of
the adsorbate. Physisorption will occur with any gas-solid
system. It is an exothermic process with the heat produced
being of the same order of magnitude as the adsorbate heat of

vaporization.



It is convenient to conduct physisorption studies
with an adsorbate near its normal boiling point. 1In this
region condensation simulates adsorption. As the pressure is
increased, condensation continues until a monolayer is formed.
Further increases in gas pressure will then produce multi-
layers. In physical adsorption measurements, the amount of
gas adsorbed is calculated by introducing a known amount of
gas into a known volume at a given temperature, calculating
the amount of gas present from pressure readings, and
subtracting the calculated amount from the initial amount.
An isotherm is made by taking a series of measurements at a
constant temperature by varying the pressure, and a plot of
gas adsorbed versus pressure is made for each temperature.
A series of isotherms taken on one adsorbate-adsorbent system
is used to extract thermodynamic data concerning that system.
Three major approaches have been used in attempts to
explain physical adsorption., The first of these methods
treats adsorbed molecules as being localized at a particular
site on the adsorbent surface, while the remaining two methods
treat the adsorbed molecules as a two-dimensional phase along
the plane of the adsorbent. The two-dimensional parameters,
spreading pressure and area, can be more easily understood
by assuming that a gas adsorbed on a solid will obey the
same type two-dimensional equation found with low concentrations
of fatty acids on water. The behavior of these films at low

concentrations is approximated by the two-dimensional ideal



gas law

wA = RT (8)

where
7 = the spreading pressure
A = the average area available to a mole of molecules
in the surface film
R = Boltzmann's constant multiplied by Avogodro's
number
T = the absolute temperature

By the use of the Gibb's absorption equation, the equation

P = K8 (9)

where

K a constant

B a fractional surface coverage

can be derived which is the adsorption equivalent of the
Henry's law equation when dealing with dilute solutions. It
is generally applicable in the linear low coverage portion
of an isotherm referred to as the Henry's law region, and K
is known as the Henry's law constant.
In 1918, Langmuir developed what is known as the Langmuir

isotherm equation
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_ bP
® = 3B (10}
where
b = a constant equal to ?——l————
(6=1/2)
8 = the fraction of surface sites covered by adsorbate

using the localized model and assuming negligible interactions
between neighboring sites and adsorbate. It is evident that
at high pressures the maximum coverage predicted will be
that of a monolayer, which therefore limits its use to the
submonolayer region. 1In the low pressure region Henry's law
behavior is predicted as the term bP becomes negligible in
comparison with one in the denominatorl.

In 1938, Brunauer, Emmett, and Teller2 developed an
adsorption isotherm equation, assuming localized sites, which

provided for multilayer formation. The BET equation can be

written
VAEFO-Pi VmC Vm p
where
C = a constant
VA = the volume of gas adsorbed
Vm = the volume of gas in a monolayer

P = the pressure

P = the saturated vapor pressure of liquid adsorbate
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at the isotherm temperature.
Other assumptions made were that all surface sites are
equivalent, stacking takes place on previously adsorbed
molecules at localized sites, lateral interactions between
adsorbed molecules are negligible, and the heat of vapori-
zation of layers above the initial monolayer is equivalent
to the heat of vaporization of the bulk ligquid. The BET
equation has since been modified in attempts to account for
lateral interactions.

Further attempts to account for lateral interactions
included the development of mobile adsorption models from the
two-dimensional form of gas equation of state and modification
of existing liquid theories. One of the more recent liquid

theory derivatives is that of Pierotti and McAlpin4’5.

Virial Treatment of Adsorption

Many authors have applied the virial treatment of

imperfect gases to adsorption by the use of statistical

mechanics6. The equation produced expresses the amount of

gas adsorbed by a solid as

N. = £ B
a 3.1

ie1,s (E/RTY? (12)

where

o
]

the ith gas-solid virial coefficient

the fugacity of the adsorbate in the bulk gas

phase
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Na = the number of moles of gas adsorbed.
The virial coefficients, Bis’ are functions of temperature
and are related to the interaction between individual gas
molecules and the adsorbent surface and the interaction
between adsorbed molecules. It is therefore possible to
gain information about the adsorptive process by relating the
virial coefficients to interaction parameters.

Halsey and co-workers were the first to relate virial
coefficients to experimental adsorption and introduced the

15. Isotherm

concept of apparent volume and excess volume
measurements were made in the Henry's law region where the
only effective interaction is between individual gas molecules

and the surface. Applying a Maxwell distribution to the gas

phase, the apparent volume was given by the equation

U
kT
v = f e dv (13)
app Vgeo
where
Vapp = the apparent volume of the sample cell
V = the volume
v = the geometric volume of the sample cell

geo
U = the interaction energy between a gas molecule

and the adsorbent.

(The apparent volume can also be given by the equation

(14}



where

13

n, = the total number of moles of gas in the sample

t

cell volume.)

The excess volume was given by the equation

U
_ kT
Vex = IV (e™" -1)dv (15)
geo
where
v = the excess volume.
ex
A Sutherland type potential was used to describe the inter-
action between an adsorbate atom and adsorbent atom. It was
alsc assumed that
<
U = O Z = Z (16)
0
—e*zo3
U = __:;T—_ z > Zo (17)
where
e* = the potential minimum for interaction between an
adsorbate molecule and the adsorbent
Z = the vertical distance from the surface
2, = the distance of closest approach.

After substituting this potential into the equation for

excess volume and integrating, the result was
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G133-1) (g (18)
0

Vex = Azo

TR

j
Vex was determined experimentally, and Azo and E% were
adjusted until a best fit of the experimental data was
obtained. The resulting £* was used with a Kirkwood-Muller
equation to evaluate Zg- This approach allowed A to be
calculated from Azo.

The work of Halsey and co-workers up to this time had
been done on poorly characterized surfaces. Shaeffer, Smith,
and Polley developed a new homogeneous graphitized carbon
black P33(2700) for use in physical adsorption studies,
and Halsey and co-workers used it with many inert gas systems.

Sams, Constabaris, and Halsey15 conducted extensive
experimental work on P33 with the inert gases, methane,
deuteromethane, hydrogen, and deuterium using the apparatus
described by Constabaris, and the apparent cell volume was
determined at several different pressures for each isotherm.
The plot of apparent volume versus pressure was extrapolated
to zero pressure and the apparent volume at zero pressure was
determined. This apparent volume was equal to the sum of
the geometric volume of the sample cell plus the second gas-
solid virial coefficient, BZs’ defined as

B = f (e
2s Vgeo

U
KT 1yav. (19)



15

Four potentials were used to analyze the data; (1)
the Sutherland potential integrated over a semi-infinite
solid, (2) a Lennard-Jones 6-12 potential integrated over a
semi-infinite solid to yield a 3-9 potential, (3) a Lennard-
Jones 6-12 potential integrated over a semi-infinite solid
for the attractive part to yield a 3-12 potential, and (4)

a Lennard-Jones 6-12 potential integrated over an infinite
plane to yield a 4-10 potential. The Sutherland model was
mentioned earlier. The Lennard-Jones models can be expressed
in terms of the potential minimum e* and a position Z, where
the interaction energy is zero. These parameters are demon-
strated in Figure 2 along with the variation of potential
energy of an admolecule with its distance from the adsorbent
surface.

The equation for B28 has been solved analytically
using the Lennard-Jones potential functions and integrating
overall space (reasonable due to the short range interaction

forces) to yield the equation
= A fk—e* 0
B,g = Az ( T) (20)

*
A locus of values was obtained for Azo and f(%T) for each
6*
B25 and a plot of Azo versus f(ET) was made. When corre-
sponding curves were drawn through the points for each BZS’
they intersected at a point which represented the best fit

®
value of EE and Az . The Sutherland model produced a poor
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Figure 2.

Potential Energy of an Adsorbate Molecule
as a Function of Distance from the
Adsorbent Surface., The Lennard-Jones
Parameters e* and z, are Indicated.
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fit, while the three models derived from the Lennard-Jones
6-12 potential were all reasonable and a best model was not
evident7.

There have been other methods derived in attempts to
calculate various parameters necessary for a better under-
standing of gas-solid interactions, both spherical and non-
spheric313’7. Some of the methods are relatively simple but
are of value over a limited range of conditions. Such is the
case with the spherical potential. It gives reasonable
values for the parameters EE and area if the adsorbate is
spherical, but when the adsorbate is non-spherical the area
is frequently too small by a factor of 100 or more while at
the same time a reasonable value of E% is indicated. Some
of the methods give generally acceptable values for their
parameters but are of such complexity that they are difficult
to work with. An example is the use of a potential function
which accounts for hindered rotation to solve the problem of
a non-spherical adsorbate mentioned with the use of the
spherical potential in the previous example.

The Kihara core model employing a Lennard-Jones type
{m-n) potential is known to be of value when studying non-
spherical gaseous mixtures. It is a relatively easy equation
to work with and contains only two parameters, Po and E%.

Due to its ease of use and value in working with non-spherical

molecules, an attempt is in order to extend it in its original

form to gas-solid interaction studies.
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CHAPTER 1I
THE KIHARA CORE MODEL THEORY

In the study of non-spherical gas molecules Taro
Kihara8’9 developed a theory based upon a concept which he
termed the core of the molecule. This theory allows the
Lennard-Jones model of molecules with spherical symmetry to
be adapted to non-spherical molecules without sacrificing the
integrability of the second virial coefficient., The essential
generalization exists in the definition of the intermolecular
distance, p, the intermolecular potential, u, being assumed
to be a function of p only, u = u{p), for which u(o) = .

p is defined as the shortest distance between cores.

The Core of a Molecule

A description of the core begins with the idea of a
convex body, a body in which any line segment whose end
points are inside lies entirely in that body. Let C be the
convex body of discussion. A second convex body formed by
all points whose distances from C are smaller than or equal
to 1/2 p is called the parallel body of C in the distance of
1/2 p. C is then defined as the core of the two parallel
bodies.

Consider the core as a convex polyhedron. With N

being the number of edges of the polyhedron, the length of
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each edge is given by 21, 22, 23,..., QN and the angle of the
ith edge by ui(i =1, 2, 3,..., N).

A parallel body of this polyhedron in the distance
1/2 p is composed of several parts of a sphere of diameter
p, several parts of a cylinder of diameter p, and several
parts of a plane. The surface integral of the mean curvature,

M, of this parallel body is therefore given by
M = % X (surface area of all spherical parts)
+ % X (surface area of all cylindrical
parts). (21)
Gathering together all the spherical parts gives
M= % x (surface area of a sphere of diameter p)
+ Ly
e

(n—a.)% 2., (22)

With the introduction of the surface integral of the mean

curvature for the core, Mo’ equation (22) becomes
M= Zmp + Mo (23)

where
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By similar reasoning the surface area, S, and the volume, V,

of the parallel body are given by the equations

_ 2
S = nmp” + Mop + SO (24)
.m 3 1 2 1
V=gp +tgxMpe  +350+V, (25)

where

S

o the surface area of the core

i the volume of the core.

0

1]

Since any convex body can be represented as a limit of
polyhedrons, the preceding equations apply to parallel bodies
of any convex core.

With the necessary information of interatomic distances
and bond angles, an appropriate convex core is depicted within
each molecule, Kihara used geometry to prepare Table 1.

Using this table and previously mentioned necessary infor-
mation he was able to prepare Table 2, which is a list of
core values for some of the more well-studied non-spherical
gas molecules. Figure 3 is an illustration of the core size

and shape for the molecules benzene and carbon dioxide.

Derivation of the Kihara Core Model Equation

for Non-Spherical Molecules

For spherically symmetric like molecules the second

virial coefficient B can be written in the form
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Core

T

co

- O
-
L o
F ot
L

i

=2

-

Figure 3. Size and Shape of the Molecular Core for
the Molecules Benzene and Carbon Dioxide
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Table 1. Volume, Surface Area, and Surface Integral

of the Mean Curvature of Convex Cores

22

Core

0 o 0
S . 4 3 2
phere (radius r) T 7T 4qr 4qr
Rectangular
Parallelopiped TR+ 8,*22)
(length of each fpky  Z(RqRp*Ryigta,g) N1 7273
edge 21,22,23)
Regular Tetrahedron 13 EZ 62
(length of one edge &) -“— -— —
6/2 V3 tan,?2
Regular Octahedron /723 252’2 122
(length of one edge &) —z ;§— cot /2
Circular cylinder 2
(length %, radius r) "7 * 2nT (T+4) LAGERED
Circular Disk 0 ? 2 2
(radius r) mr mr
Rectangle (length
of each side £,,%,) 0 281k LACT Rt
Regular Triangle 2
(length of one side 2) 0 /S & A




Table 1 (concluded)
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Core Vv S M
0 o
Regular Hexagon 2
(length of one side &) 0 /3 3 % 3mk
Thin Rod
(length %) 0 0 wL




Table 2. Core Values for

Some Well-Characterized Gases

24

Hydrogen:
vV, © 0

Nitrogen:
V. =0

0

Carbon Dioxide:

VO =0

Methane:

0.670 A

Vo

Carbon Tetrafluoride:

v, o= 147 A7
Ethylene:

vV, = 0
Benzene:

V. =10

o

S, = 0
S, = 0

S, = 0

S, = 5.52
S, = 9.32
S, = 3.47
S, = 19.4

fl

=)

2.32

e

3.44

7.23 A

10.23 A

13.30 A

Te

8.92

18.2 A
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B =17 [1-e ]d bo(r) (26)

where

bo(r) the second virial coefficient for a rigid

sphere of diameter r, or

2 3
bo(r) 7 M.

Kihara's core model for non-spherical molecules gives a similar

equation,

o= _u(p)
B=f [l-c KT

]d B(p) + b{(o) (27)
where
b(p) = the second virial coefficient for the rigid
parallel body of the molecular core in the
distance 1/2p.

By the use of statistical mechanics he was able tc show that

b(p) = V + ﬁ MS. (28)

21

Kihara used a Lennard-Jones (m-n) function for u(p)

(Figure 4),
P ©
oyn _ n_.70,m (29)

w(e) = u (B

where
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Figure 4.
and p_ Used in Kihara's Core Model

Treatment of Non-Spherical Molecules

(m-n) Potential Function Parameters u,

26
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u, = the absolute value of the potential minimum
Py the core separation at the potential minimum
m = the index of attraction

n = the index of repulsion.

Kihara integrated equation (27) using the Lennard-Jones
(m-n) potential function for u(p) and substituting the equations
for V, S, M and b(p) (equations (25), (24), (23) and (28),

respectively) where necessary. The resulting equation,

3 2
mo, Fo(z) + Moo "F,(2) (30)

TN

1 2
* (S + 4—.”. MO )QOFI(Z)

1
* (Vo * ZF'MOSOJ

where

¥ 1. .tm-s, nit m .[{n-m)t+s]/n
Fo(z) EOWT( ) G )

)
|
s
=l O

=

s =1, 2, or 3,
is Kihara's core model equation for the second virial coef-
ficient of like, non-spherical molecules.

The equation for unlike molecules 1s derived in the
remainder of this chapter. It is similar to that for like
molecules and is accomplished by the use of statistical

10,11

mechanics and relationships developed by Isihara and



Minkowski
When

is extended

12

the equation for like molecules (equation 27)
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to unlike molecules, A and B, the second virial

coefficient is given by
Usg (P)
== kT
BAB = fpzo[l—e ]dbAB(p) + bAB(o) (31)
where
b (o) - VA+VB . MBSA+MASB (32)
ARP 2 87
MA = 2mp + MOA (33)
N 2
A= el MOAD + SOA (34)
_m 3 1 2 1
VA= 5P "7 MoaP * 7 50aP * Voa (35)
MB = 2mp + MOB (36)
g - TP * Mapp * Sop (37)
. T 3 1 2 1
VB =& P * 7 MopP * 7 S0P * Vop (38)
and
MA = the surface integral of the mean curvature of
the parallel body of the core of molecule A
M = the surface integral of the mean curvature of

0A
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the core of molecule A
S, = the surface area of the parallel body of
the core of molecule A
S = the surface area of the core of molecule A
V, = the volume of the parallel body of the core

of molecule A

VOA = the volume of the core of molecule A
MB = the surface integral of the mean curvature of
the parallel body of the core of molecule B
MOB = the surface integral of the core of molecule B
SB = the surface area of the parallel body of the

core of molecule B
S = the surface area of the core of molecule B
V, = the volume of the parallel body of the core of
molecule B
VOB = the volume of the core of molecule B.
Substituting equations (32), (33), (34), (35), (36), (37), and

(38), the Lennard-Jones (m-n) potential function uAB(p), and

the value for bAB(p) where p=o0 into equation (31) gives

p N

e Ugapl G (2B - R (BBH™
BAB = f ) [1-exp{ T ] (39)

0=0
Spa*S M, M
2 oa*S0p , Moaos
[Zmo+ (Mop*Mpgle + ——5— + —75 1dp
V.,V M-S S

OA "0OB + OB OA OA OB
2 8w

+
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After multiplying and collecting terms equation (39) can be

separated into three integral terms and a constant term,

0 p
OAByn ( n_y POAB)m

=co “Unarl (7= ( -
By = /  2r[l-exp{—2nB_ DM @ nmtc e 7 T310%dp (40a)
p=0 kT
POAB.n n POAR. m
p=er Ugapl G (2D G20 (25 ™
+ (M-, +M. ) [1-exp{ }ledp
_ Yoa™oB
p=0 kT
(40b)
P p
OAB.n n OAB.m
p=w S +S . M .M Uy apl G (- () (—2)
+ f ( OA2 0B, OQHOB)[I—exp{ OAB'*n-m 0 n-m D }1dp
(40¢)
V., +V M.,5.,*M..S
+ OA 0B, TOB"0AT0AT0B (40d)

The values of the integrals can be solved for separately and
substituted back into the equation for BAB' Integral (40a)

can be written
25 (l-e P &P ypldp (41)

where

. UOAB "
X G PoAs


http://cj.cu/TA/r
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Using the expansion

2 3
eX = 1 + X + %T + %T + ,
integral (41) becomes
-2
p=oo n 2 3
2nf [lee P+ R+ D _w B v 5152, (42)

- m y 2 