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Introduction

In most important practical cases the measuring task is formulated as a
determination of R, L, C-parameters of the linear passive bipolar electrical cir-
cuits (BEC) [1]. The important problem is the control of electrical and radio
elements as a part of electrical schemes [2, 3]. The control of radio elements is
carried out without physical discontinuity of electrical circuit by creating a spe-
cial mode in the difficult multipolar electrical circuit, that allows to detach
separate sections in the form of multi-element electrical bipolars [4]. It is
important to provide the high-speed measuring transformation in the
manufacture. The usage of test signals (TS) in special form and usage of
transitive processes in investigated circuits for the realization of selective
transformation allows to determine the bipolar electrical circuits parameters by
comparably simple device and provides the minimum time of measuring
parameters [4, 5].

The principle of selective transformation by synthesis of the special form
of TS is used in measuring parameters of BEC according to the zeros-and-poles
method (ZPM) [6, 7]. TS, created by the combination of exponents, image of
which is represented in the form of fractional-rational function of the complex
variable, is used Zeros and poles of TS compensate accordingly poles and
zeros of impedance function of BEC. In this case response reduction to the set
form, comfortable for analysis, occurs. According to the creation of TS inverse
model of impedance function of BEC is used. Zeros-and-poles values of TS
during the control are taken equally for the nominal values of poles and zeros
of an impedance function. According to the deflection of response from the set
response the tolerance R, L, C — parameters’ control is carried out.

The formulation of a problem

The usage of the high-powered measuring methods and the control of R,
L, C-parameters of BEC demands the solution of some urgent tasks, in
particular tasks of discrete synthesis of exponential TS [6, 7]. A class and
properties of system of the approximating functions [8, 9], used in the
synthesis, determine qualify of reproduced exponential dependences which are
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represented as an electrical signal. The demand of TS permanence and its
derivatives are made accordingly.

In such way, precondition for the usage of the exponential splines
method (ES) in problem of measuring are:

— class of the exponential TS that are used in measurement and control of
R, L, C-parameters of BEC;

— the requirement of TS smoothness (there is a possibility of signal
differentiation in the investigated electrical circuit during measurements);

— necessity in the matching method of the signal analytical description,
with the character of signals, formed in electrical circuit;

— during measuring of BEC parameters, using ZPM, the temporal
approach is important (the form and instantaneous values of transient process
in investigated circuit are informative [6, 7], accordingly the temporal approach
must be when the synthesis of TS occurs).

Nowadays the method of ES is generally known as a method of spline
function in Computational Mathematics [10]. The close analogy takes place in
measurements. In the problem of measurements the method of ES actually
means approximation of investigated processes for creating their analytical
model and its usage for treatment of measuring information and the usage of
splines for electrical signals generation and their (“approximant”) usage as test
signals for the implementation of measuring transformation [11].

Accordingly the properties "approximant” determine accuracy of
receiving information about parameters of electrical circuits during the process
of measuring. A discrete character of splines successfully coordinates with
discrete way of signals formation using digital-analog device. In this case the
development of methodology of TS is formed on the basis of ES. This will
allow to use given signals in the tasks of measuring parameters.

Theoretical positions

Let’s look into the following aspect of splines. Let system of nodes
(grid) Ay:a=1ty<t; <..<ty=bbeset on segment [a, b]. Let's mark the set of
(m—v)-times continuous differentiable functions on the segment [a, b] as
C™[a, b].

Definition 1. m-ordered exponential spline (ES) of C™' class
(1 <v < m) with nodes on the grid Ay is represented as a segmented function
sfem(t), which is (a) — is a solution to some linear inhomogeneous differential
equation (LIDE) with constant coefficients on every segment
[ti, ti+1], 1= O,l,..., N-1
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1

Zaj D' si(t) = fi(6); DI = (%)j (D

j=0

with such right part: fi(t) = Pii(t) - e?f, Pyi(t) — is a k-ordered polynom, its
Laplas transformation gives fractionally—rational function; (b) — in this case
sfem(t) € C™"[a, b].

Exponential splines can be presented using the system of basic splines
that are not equal to zero in finite interval.

Definition 2. Basic exponential splines (BES) or m — ordered G — splines
of C""[a, b] class are functions Gp(t) € Sfom(t), which Gp;(t) = 0 on the
interval t € [t;, tirm] @and Gy, i(t) = 0 out off the interval t e [t;, ti+m].

The order of splines m =1 + k +1 is "order" of functions forming a
spline, which is understood to be an order of LIDE, determined by number of
roots of the characteristic polynom Q(p). This polynom can be received for
the solutions of LIDE taking for the consideration of the right part. An interval,
where G-spline is not equal to zero, is minimum and uniquely determined by

the order of LIDE. The functions Gp;(t), i = 0, N - 1 are linearly independent
and form basis in space of splines sfgm(t).

Let's look into uniform interval of discretization. Let's inject the variable
t =i+ ¢, which means relative time connected with current ¢ =t/ h, where h —
is the interval of discretization; i = 0, 1, 2, ... 0 <& < 1. Let's consider G —
spline of the third order as an example

G3(0)
r - e —QE] ¥ .
a(l—e‘o‘)[ 1+ ae+e %]t €[0,1];
- __ —o _ —a€] F .
_ ) a(l—e‘“)[1+a+e 1+ e Yae—2e %], t €[1,2]; 0
1
- - ,-af_ _ —a(e-1)] 7 .
oc(l—e‘“)e [ l1+a(e—1)+e ],t e[2,3];
\ 0,t<0,t>3.
The spline-function looks like
_ : o —oe
SfG3(f)——a(1_e_a){f[l+1] (—1+ae+e )+
+fli][l+a+e ™= (1+e Yae —2e %] + (3)

+fli—1]e Y a(e—1) —1+e “EV]} (D =i+e
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Mentioned splines are formed on each interval t < [i, i + 1] by solutions
of LIDE as:

h?-[D? + o D]sy(8) = d; - 1(D) )

The solution of LIDE on each interval as the Koshi task gives:
2

s;(t) = %{aSi(O) +aS;(0) (1 —e ) +

+[-1+ac+e ) -d;},t=i+s (5)

Solutions have three "free" parameters S;(0), S;/(0) and d;. Parameters
S;(0) and S;(0) can be set according to the meaning at the end of previous
interval considering their continuity in i-th node: S;(0) = S;_;(1), S/(0) =
S;_,(1). Parameter d; on each interval is set by external action (right part of
LIDE) and can be defined from an interpolating in the (i + I)-th node.

Let's look into to the synthesis of splines that are based on the modal of
linear electrical circuits. The spline-function can be represented as a sum of
some finite functions shifted in time:

Sfars® = ) fU1-GsE=E=i+e
j=0

Thus
G3(0)

o 2
= <a_> 1+ af - ) + 9] _-a,, (6)
j=0
t=i+s
where
2

h o )
a(® = (a—) e emer], g = {00

0,t <0;
is the solution of LIDE (4) within zero entry conditions, for which during the
moments of “inclusion” in the nodes g(0,) = 0; ¢g'(0,) = 0. The values of
function and its first derivative during the moment of “inclusion" can be
determined as

L{g(t)} =

,where a = a;h, L — is the operator of Laplas
1

2— can
_ N 7 opilptar)
be determined as reduced transmittive function of some linear

p*(p + ar)

transformation for continuous functions. Image W (p) =

1
forming electrical circuit, for which lim ———Xxp =0 and
poo p?(p + ar)
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1
lim ———— X p? = 0. That means that function G-(t) will be
pow p2(p +ag) (D)

continuous and will have a continuous first derivative. In this way, continuity is
determined by the choice of LIDE or transmittive function of the forming
circuit W(p).

Coefficients d; in the equation (6) can be determined from the condition
G;(t) # 0; t € [0, 3] and G5(t) = 0; t¢[0, 3]. Let's look into the following of
these conditions. If we apply discrete Laplas transformation [12] in relation to
the shifted gridded functions (SGF) in both parts (6), we'll get

h2

—_ m_—lb . ,q(m—=k)
G3(g,€) = H(e ) - W*(g,&) = H(e ) - & Zie=o bi(2) -

jeo @ * e’ '
where
g=ph;m=3;bg(e) =-1+ac+e ™ 0<e<1;
bi(e) =1+a+e”—(1+e™) ac—2e™,
b, = e [afe — 1) — 1 + e
He™ =A(a, h) - (1 +d;- e +d, e+ dy e ):
3
aj-e?/ = (e —e *)(e?— 1)
=0
If
m
H(e™) = A(o, h) z a - edU-m)
=0
then

G3(q,€) = H(e™)-W7(q,¢)

B2 m-1
= A(a, h) = e~ma. Z by (€) - edm=H), (7)
k=0

which means expression G;(q, €) will contain only zeros. The expression (7) in
time domain is matched to the pulse function g (£) = 0 on the interval £ e [0,
m]and g'(£) = 0 out of this interval [12]. Thus, G-spline, taking into account
the normalizing multiplier, can be presented.
G (o, 8) = A, h) - g* (o ) =
2

= A(a, h) .%. p-1 {e—mq . Z by (g) - eq(m—k)} (8)
k=0

where A(a,h) IS the normalizing  multiplier, such  that
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2
a
A(o, h) = 2 ; D71 —is the operator of inverse discrete

m-—1

Z bk (8)/?.:1
k=0

Laplas transformation of the SGF. Variable ¢ is a real parameter for discrete
Laplas transformation. That causes a simple transition to time domain
(according to the expression (2)).

The expression of spline-function (3) is received by combination of
G5(t). The change of coefficients f[i] does not influence the form of functions
G, (), that is a resultant function sf,5(£) e C'[a,b] too.

The form of representation (3) is suitable for ES because the coefficients
f[i] are directly (straight) represented as counts, feeding to the entrance port of
some spline—approximating filter, which has the transmittive function that
looks like G3(q, €).

Let's show that received segmented-polynomial function sf;5(t) of a
form (3) is a spline. By definition, function on the i - th interval is sf;5(t) =
sfe3(i,€), where € € [0,1]. The values of the function in nodes are determined
when ¢ = 0 and € = 1. The values for spline—function at the end of previous
interval sf;5(i — 1, €) are determined when ¢ = |. For each i we have sf;;(i —
1,1) = sfz5(i,0). That means that the condition of function's continuity in
nodes is being satisfied. The expression of the first spline—function’s derivative:

SFis68) = o Ui+ 11 [1 = e +
+f[i]-[-1—e 42 e %]+ f[i — 1] - e7*[1 — e~ D]}

The values of derivative in the end—points on the i-th interval for ¢ = 0
and ¢ =1 are received in the same way. The value of derivative at the end of
previous interval sf;;(i — 1,¢) is determined when ¢ = |. Thus sf;;(i — 1, 1)
= sf¢3(i,0). That means that the conditions of the first derivative's continuity
in nodes are satisfied.

The expression (3), when ¢ = 0 and € = 1 means that the values of
spline—function and the restored signal, which assigned by its discrete counts
f[i], in nodes mismatch in times of discretization. Thus, function (3) should be
considered as approximating. It is easy to show that certain Shenberg splines
Bn(t) [8] when n < m are the particular variant of splines Gy,(t) and can be
received from G (t) as some limit when o — 0. Parameter o differed from
Bn(t) makes it possible to change the form of spline.
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Conclusion

ES creates "real" basis of approximate function for mentioned class of
test signals. An advantage of basis is the possibility of generation in real
electrical circuits. The resulted continuous part of forming circuit defines a
kind of splines, providing a continuity of the function and its derivatives. The
discrete part provides ended duration of basic functions.

Using the models of linear electrical circuits many various models of ES
can be constructed. It is also obvious that the usage of real signals takes off
accuracy limitation for reproduction of basic functions because of ended high—
speed performance of used element basis, in particular because of ended
coefficient of amplification of operating amplifiers, on the base of which
integrators are constructed, in a strip of frequency.

There is principle possibility to improve accuracy of reproduction of the
set form TS and their parameters, if there are limitation of dimensions of the
basis for the class of exponential signals, described by the same functions as
the splines. This allows to improve the accuracy of measurements.

It's expedient to continue further development of exponential spline
method in the field of research metrological aspects of applying test signals,
formed on basis of exponential spline models, in tasks of measuring.
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