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A LATERAL AUTOPILOT FOR A TACTICAL UAV

Introduction

Multiple control strategies and techniques are used for designing 
controllers for UAVs. PID is the control algorithm most often used in process 
control. Thus [1] illustrates flight control system that uses PID controller gain 
scheduling algorithm based on the airspeed. In [2] PID uses model inversion in a 
PID controller algorithm, which is used for autonomous landing for the UAV.A 
key aspect in the efficiency of control algorithm is its ability to accommodate 
changing dynamics and payload configurations automatically. Many factors 
have an effect upon the performance of the controller, such as parametric 
uncertainty (changing mass, and aerodynamic characteristics), unmodeled 
dynamics, actuator magnitude and rate saturation, sensor noise, and atmospheric 
disturbances (turbulence, gust), and assumptions made during control design 
itself. Parametric uncertainty limits the operational envelope of the vehicle to 
where control designs are valid, whereas unmodeled dynamics and saturation 

can severely limit the achievable bandwidth of the system. The effect of 

uncertainty and unmodeled dynamics have been successfully handled using 
robust control techniques [3], [4].

Problem Formulation

In this paper lateral autopilots for a TUAV are designed by means of 
classical control theory (PID controller) and robust control theory ( H

controller). Implemented control algorithms must guarantee satisfactory input 
tracking performance in the face of significant uncertainties and disturbances 
acting upon the system. The uncertainties are assumed to be bounded in size by 
some constant, or by some well-defined functions. 

Mathematical Model of the UAV, EOM Linearization and Stability 
Analysis

A tactical UAV (TUAV) is used as a platform for this work. 6-DoF 
nonlinear model of the TUAV, which consists of several blocks, which represent 
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vehicle’s aerodynamics, environment, forces and moments computation block, 
etc., is developed in MATLAB/Simulink. 

Linear model of the lateral motion of the UAV is obtained by linearization 
of nonlinear equations of motion (EOM). Linearization is performed around a 
certain trim point: velocity in x-direction in body axis u0 =36 m/s, velocity in z-
direction in body axis w0 =1.81 m/s, pitch angle θ =4.4 deg, Thrust = 100 H. 

States, which correspond to the lateral dynamics of an aircraft, are: side 
velocity in body axis (v), roll rate (p), yaw rate (r) and roll angle ( ). To control 
the lateral motion ailerons and rudder are used. State and control matrices, 
which describe lateral motion of an aircraft are as given below:
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The lateral motion of aircraft is described by three dynamic modes: roll 
mode, dutch-roll mode and spiral mode, characteristics of which are given in 
tables 1 and 2.

Table 1.
Dutch-roll Mode Characteristics

Mode 
Name

Root Location Natural 
Frequency 

n  (rad/s)

Period 
(s)

Damping 
ratio 

Time to Half 
Amplitude 

halft  (s)

Dutch-
roll

0.2441 3.2075i  3.216 1.953 0.076 2.826

Table 2.
Roll and Spiral Mode Characteristics

Mode Name Root Location Time Constant 
(s)

Time to Half 
Amplitude halft  (s)

Roll -6.0467 0.165 0.114
Spiral -0.0092 108.695 75.0

Control System Requirements

Requirements to the control system are defined with respect to the 
system’s tracking performance in terms of its response to a unit step input and 
are the following: overshoot < 10%; settling time < 3 sec; rise time < 1 sec; 
steady state error < 2%.



Design of a Classical Controller

PID controller, which is referred to as a classical controller, is used for a 
lateral autopilot of the TUAV. Fig. 1 illustrates a basic configuration of a 
feedback control system. 

Fig. 1. Basic Control System Configuration

Dynamics of the UAV is represented by the linearized lateral dynamic: 
transfer function from ailerons deflection to roll angle of the airplane:

3 2

/ 4 3 2

52.4 42.1 458.3

6.544 13.36 62.69 0.5783a
s s s

W
s s s s 

 


   
and model of the actuator, which is assumed to be a first order servo. The 
transfer function of a PID controller is Gc = − Kp[1+1/(sTi)+sTd]. Choice of 
values of the controller’s parameters (proportional gain, integral time and 
derivative time) can be performed by different techniques. For purposes of this 
work, PID tuning methods described in [5] are used. However, these rules, 
which are based on step response of the plant, provide a response with 10%-60% 
maximum overshoot. For this reason, an experimental tuning is used to tune 
controller’s gains such that response of the closed-loop system would be 
satisfactory for the nominal plant, and for the perturbed plant and with a sensor 
noise presence as well.

The following values of controller parameters are chosen: Kp=2.5, 
Ti=1.66, Td=0.12. Transfer function of the PID 

controller:
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. Response of the 

closed-loop system, which includes nonlinear dynamics of the TUAV, to a unit 
step input in terms of roll angle and ailerons position is shown in fig. 2, 3. 
Simulation results show that tracking performance of the control system satisfies 
the requirements; however, controller requires too many efforts from actuator, 
especially in terms of ailerons’ rate, that might cause saturation of the actuators.
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Fig. 2. System Response to a Unit 
Step Input Roll Angle

Fig. 3. Ailerons Deflection for a Unit 
Step Input

H Controller Design

 Controllers designed by robust techniques involve model uncertainty in 
their algorithms. [6], [7] and [8] explain principles 
of modeling of uncertainties and give the concept of 
the H norm and -synthesis theory. Different 

perspectives and methods of H design technique
are given in [9], [10].

General framework used for robust design is 
illustrated in fig. 4 in which P represents a 
generalized plant, which is derived from the 
nominal plant but includes weighting functions and 
is also assumed Finite Dimensional Linear Time 
Invariant system; K represents a controller; w is an 
external input that includes the reference signal, disturbances, and noise; u is 
control input; y represents measured variables, and z represents the error signals. 
State space models of P and K are available and that their realizations are 
assumed stabilizable and detectable. Defining the transfer function from external 
input to errors as zwT , statement for optimal H  control problem is the 

following: “find all the admissible controllers ( )K s  such that zwT
  is 

minimized”. 
In this work design of the lateral H controller for the TUAV is 

performed using MATLAB Robust Control Toolbox, which enables to compute 
a stabilizing H  controller for a given plant. Consider the the block diagram of 
a closed-loop system as it is shown in Fig.5, in which block G repreents the 
plant to be controlled and K represents the robust controller. Weight function 

mW  that represents multiplicative uncertainty, the main source of which is 

Fig. 4. General 
Framework



change of the TUAV’s aerodynamic parameters. Weight function pW

characterizes controller’s performance and represents the output error, it is 
chosen as a low-pass filter. Weighting function nW  represents effect of the 
sensor noise on the system’s output, assuming 0.1% noise at low frequencies 
and 1% noise at high frequencies nW  is chosen as a high pass filter.

Fig. 5. Block Diagram of Closed-loop System

State space model of the H  controller, which has 1 output, 1 input, and 
8 states in terms of state space matrices is given below. 
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Fig. 6. Step Input Response of the 
Nominal Plant: Roll Angle

Fig. 7. Ailerons Deflection

Performance of the controller is checked by nonlinear simulation and 
illustrated in fig. 6, 7 as a response of the closed-loop system to a unit step roll 
angle input. The results show that for a unit step input designed H  controller 

requires very high actuator’s rate at the initial input time, which can become a 
reason to saturation of the control surfaces.

Robust Performance Analysis

Presence of disturbances acting 
on the system (wind, gusts, sensor 
noise) results in tracking and 
regulation errors. Under perturbation, 
performance of the closed-loop system 
will degrade to the point of 
unacceptability. Robust performance 
test shows the worst-case level of 
performance degradation associated 
with a given level of perturbations [9]. 

In this paper analysis of the 
robust performance of the H  controller is performed by MATLAB Robust 

Control Toolbox [11]. “robustperf” command is used to compute the Robust 
Performance Margin, which is reciprocal of the input/output gain ( H norm). 

The performance of a nominally-stable uncertain system will generally degrade 
(increasing gain) for specific values of its uncertain elements. Robust 
Performance Margin is one measure of the level of degradation brought on by 
the modeled uncertainty. Applying the “robustperf” command for closed-loop 
system the following results are obtained: upper and lower bounds on 
performance margin coincide and are equal to 0.9974, frequency at which the 
minimum robust performance margin occurs (critical frequency) 0.5460. The 
input/output gain remains less than 1.0026.

Fig. 8 illustrates the -plot, the peak value of which is the reciprocal of 

the performance margin, and the frequency at which the peak occurs is the 
critical frequency.

Performance of the Closed-Loop System with a Command Filter
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Command filters, or so-called 
shaping filters, are used for smoothing 
the input command in order to improve 
a system’s step response by removing 
high frequency components from a 
command input, therefore reducing the 
overshoot of the response. 

Implementation of a command 
filter in the closed-loop system does not 
affect its stability. [2] shows usage of a 
second order command filter, which is 
employed to the autolanding control system for a tactical UAV. In [12] a pre-
filter is imlemented in order to eliminate the effect of the zero of a closed-loop 
transfer function on the step response. [13] introduces a time varying bandwidth 
command shaping filter for improving the tracking transient performance by 
limiting the actuator deflection rate to achievable value.

Simulations performed for PID and robust ontrollers for a unit step input 
show that both controllers require very high rate of actuators at the initial input 
moment. Instead of changing controllers’ parameters to improve the response, 
command input is used to shape the input command. Responses of control 
systems to the filtered command input are shown in fig. 9-11.
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Fig. 10. Ailerons Position Fig. 11. Ailerons Rate

Performance Issues for Uncertain Plant

It has been mentioned above, it is assumed that the main source of 
uncertainties is in variation in aerodynamic derivatives. The most important 
aerodynamic derivatives that effect lateral stability of the vehicle are airplane 
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are effective dihedral lC

, and roll-damping lpC . In this work it is considered 5% 

of uncertainty with respect to the nominal value of the parameters. Simulations 
are performed through the nonlinear environment and its results are illustrated in 
fig. 12, 13.
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Fig.12 Roll Angle Response of 
Uncertain Model

Fig.13 Ailerons Position of 
Uncertain Model

Simulation results illustrate, that both PID and robust controllers perform 
satisfactory at tracking the input signal. Such results are expected from the 
robust controller, which takes into account model uncertainties in design 
algorithm. However, it is seen that the PID controller is also able to handle with 
system uncertainties.

Performance of PID and Robust Controllers with a Sensor Noise 
Presence

Assuming the presence of the sensor noise with a frequency of 100 Hz 
and standart deviation of 0.5% of the output nominal value simulations are 
performed for the nominal plant and the results are given in fig. 13-15 which 
show that both PID and robust controllers perform good in tracking the input 
command. However, ailerons deflection and their rate show higher sensitiveness 
of the PID controller to the sensor noise presence. These results are expected 
becuase noise rejection and minimization of actuator’s efforts performes 
systematically by the H  algorithm. Efficient way to decrease sensitivity of the 

PID controller to the noise is decreasing the derivative time dT . However, this 

effects the response of the system by increasing overshoot and settling time.
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Fig.13 Roll Angle Response
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Fig. 14. Ailerons Deflection Response Fig. 15. Ailerons Deflection Rate 
Response

Conclusions

The efficiency of the PID and the H  controllers designed for the TUAV 
is compares by multiple simulations for different cases. All requirements with 
respect to tracking performance are satisfied for the nominal as well as for the 
perturbed models. It is obvious that PID controller algorithm, which is very 
simple, does not take into account the uncertainties and sensor noise. Improving 
the noise rejection properties might have a negative effect upon the tracking 
performance; therefore a trade-off decision should be made with respect to 
system’s performance and its noise rejection capabilities. Designed H

controller anables to guarantee the robust performance of the closed-loop system 
under the model uncertainties and sensor noise presence. Therefore, if the noise 
rejection requirements are not of the major importance for the control system,  
PID algorithm is sufficient for the control purposes. If a high noise suppression 
is required, then a robust controller must be used. 
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