
MESH MOTION METHODS FOR NUMERICAL AERODYNAMIC 
DESIGN OF LIFT AND CONTROL SURFACES

Introduction

This work is part of great effort to build a numerical platform to simulate 
and optimize fluid-structure interaction problems applied to the design of UAVs. 
The creation of a numerical analysis tool to design lift and control surfaces 
depends on the development of specific knowledge in moving mesh strategies 
and data interpolation methods between mesh domains. In order to create this 
modular numerical platform for the solution of fluid-structure interaction 
problems, several moving mesh methods were implemented and tested in a 
scientific CFD code based on a finite element projection method and a 
performance comparison was done resulting on the definition of the best moving 
mesh strategies.

Traditionally, the movement of numerical meshes related to fluid domains 
due to the displacement of the boundary between fluid and structure is done by 
solving a pseudo-elastic problem referent to the fluid mesh. The first numerical 
schemes (Batina, 1990, Johnson & Tezduyar, 1994) to solve the mesh motion 
problem transformed the fluid mesh into a fictitious structure where lineal 
springs were placed between the mesh element nodes. The stiffness of every 
lineal spring is inversely proportional to the distance between nodes. The total 
stiffness of the pseudo structure has the contribution of the stiffness of each 
lineal spring. Therefore, the finte element method was the natural choice for 
solving the mesh motion problem.  However, this procedure was limited to 
problems with small mesh deformations because of the possibility of collapsing 
the elements. 

A more complete approach uses the superposition of lineal and torsional 
springs (Farhat et al., 1998). Similarly to lineal spring, the stiffness of the 
torsional springs is proportional to the inverse of the angle in radians between to 
edges connected to each element node, the vertex of the element. From the 
beginning the linear and torsional spring method was developed for two-
dimensional triangular elements. The adaptation of technique to three-
dimensional elements such as tetrahedrons required a modification in the 
position of the torsional spring action plane. For three-dimensional elements it 
was necessary to avoid not only the collapse of the face of the element but also 
the volume of the element (Degand and Farhat, 2002). One of the difficulties 
faced by this method is to guarantee the mesh quality.  Despite of preventing 
issues with collapsed elements, the moving mesh may have regions with 
elements that are excessively stretched or squeezed.

The most recent approach for moving meshes was developed for the 
solution of fluid-interaction problems using the open source code based on finite 
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volumes called OpenFOAM (Jasak and Tukovic, 2007). The displacement field 
of the mesh is obtained by the solution of a diffusion problem that propagates 
the displacement of the fluid-structure boundary to the interior of the fluid 
domain.  The displacement computation is now associated to the velocity of 
modification of the mesh, or the nodal velocity field. The formulation of the 
problem is based on application of the Laplace operator to the nodal velocity 
field. The Laplace equation is solved by a finite element method, given the 
nodal velocity at the fluid-structure boundary. The mesh displacement is 
recovered multiplying the velocity by a predefined time step. The main 
drawback of this method is the choice of the diffusivity coefficient to avoid 
collapsed elements in the moving mesh process. 

The idea of using the nodal velocity field to solve the mesh motion 
problem is not new (Lohner and Yang, 1996). One could interpret it as a 
particular case of a pseudo flow problem, more specifically a pseudo-Stokes 
problem. The advantage of modeling the mesh motion problem by using Stokes 
flow equations is possibility of getting a final mesh configuration with better 
element quality. The constraint of divergence null may guarantee the mesh 
quality by avoiding collapsed elements and the smoothness of the solution 
would improve excessively distorted elements. The main difficulties of this 
methodology is also in the choice of an adequate diffusion coefficient and 
because the solution of a flow problem is a time consuming process.  The 
efficiency of the flow problem solution can be improved by using a projection 
finite element method as solver.

In this work several methods based on the pseudo structure and pseudo 
flow field strategies are implemented and tested. The methods are: Laplacian 
operator, Lineal spring analogy, Torsional spring analogy, Lineal-Torsional 
spring analogy and Pseudo-Stokes problem. The performance of the different 
methods is accessed by solving the moving mesh problem of a rotating rigid 
airfoil with a prescribed constant rotation velocity.

The structure of this paper is divided in five sections, including 
section 1 for the introduction. In section 2, the mesh motion strategies are 
introduced, basically two strategies are explored, one consider the mesh as a 
pseudo structure and the other as a pseudo flow field. The section 3 presents a 
summary of the numerical methods used to solve the mesh motion strategies 
proposed. In section 4, a specific rule is introduced to evaluate the mesh quality 
during the moving mesh process, and to illustrate this concept, the results of the 
solution of a rotating rigid airfoil obtained by several moving mesh methods are 
presented. In addition, results of the numerical simulation of a laminar flow over 
a rotating airfoil are also introduced to evaluate the mesh motion technique. 
Finally, section 5 presents the main conclusions of this work. 



Mesh Motion Strategy

There exists two main strategies to move mesh grids in numerical 
simulations of fluid-structure interaction problems, one is to consider the mesh 
as a pseudo structure or a second option is to consider the mesh as a pseudo flow 
field. For the first strategy the mesh motion problem is modeled as a dynamic 
system with prescribed displacement boundary conditions. The final mesh 
configuration is determined by solving the dynamic equation of a pseudo-
structural problem for its displacement field that is added to the previous mesh 
configuration. The second strategy consists in modeling the mesh motion 
problem as pseudo fluid problem. The final mesh configuration is computed by 
solving the governing equation of a pseudo flow problem for its velocity field 
which is converted into displacement using a time increment and added to a 
previous mesh configuration.

Pseudo structure strategy

The dynamic governing equation for a continuous pseudo-structural 
system (Farhat et al., 1998) is represented as described in:
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where  tx  is the time dependent vector of the  mesh position, ps is the 

pseudo-structural density, psσ e psε  are the pseudo-structural stress and strain 

tensors, respectively, psf  is the vector of reaction forces acting on the domain 

and x̂  are the values of the mesh position on the fictitious structure boundary 

ps .

Pseudo flow field strategy

By considering a time dependent laminar and incompressible pseudo flow 
problem, the mesh motion governing equation is described as:
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where  ,tu x  e  ,p tx  represent, respectively, the velocity and the 

pressure fields of the pseudo flow, pf  and pf are in this order the density and 

the viscosity of the pseudo fluid problem and pff  is a given force function. One 

of the advantages of the pseudo flow modeling strategy is the constraint imposed 
by the divergent of the velocity field to be null that has an impact in the 
preservation of the mesh quality over the mesh motion process. The boundary 
conditions are defined on pf d m o       by:

 , dt u x u  on d (5)

 , t u x v  on m (6)

 , refp t px  on o (7)

The subset d  represents the boundary values that are constant where the 

Dirichlet boundary condition for the velocity field is prescribed. m  is the 
moving boundary, where the fluid velocity is equivalent to the domain velocity. 

o  is the outlet boundary condition where a reference pressure is prescribed.
An alternative to build the governing equation to model the mesh motion 

problem is to only consider the diffusive part of the Eq. (4) resulting in the 
Laplace equation (Jasak and Tukovic, 2007).  

 . 0pf   u (8)
The drawback of the Laplace equation is that the largest mesh movement 

happens close to the moving boundary, potentially leading to local deterioration 
of the mesh quality. This problem is avoided by employing a variable diffusivity 
( pf ), what may confine the largest deformation to the internal part of the mesh.

Numerical Solution Methodology

Pseudo structure solution

The governing equation of the motion of the mesh on its discrete form is 
built considering the mesh as a pseudo-elastic structure (Batina, 1991, Koobus et 
al., 1998, Degand and Farhat, 2002):
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where χ  is the vector of mesh displacement, 
_

M , 
_

C and 
_

K  are respectively the 
fictitious mass, damping and stiffness matrices associated to the fluid grid and 



_

R  is the reaction force. The first and second time derivatives are represented in 

this order by the dot signs (
.

) and (
..

). For a quasi-static model the fictitious 
mass and damping matrices are neglected (Farhat et al., 1998), resulting in
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The quasi-static approach, due to its simplified structure and solution 
strategy, is usually preferred for the modeling of fluid-structure interaction 
problems. The quasi-static fluid mesh motion equations obey the kinematic 
compatibility between fluid and structure. The kinematic compatibility dictates 
how the position 

psχ  of mesh on the moving boundary ps  is related to the 

mesh boundary velocity 1
ps

n
u  at the referent time step by:

1
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where t is the problem time step. For this work the mesh boundary points have 
a uniform rotation movement of radius r  with respect to a specified center 
point. Therefore, the boundary moves as if there was a rigid structure rotating 
with a constant angular velocity .

1
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The fictitious stiffness matrix 
_

K  and the reaction force vector 
_

R  in 
equation can be divided in subsets related to the internal ( ps ) and external 

( ps ) degrees of freedom of the fluid mesh.
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Equation (13) is solved with the condition of null force on the internal 

grid points ( 0ps 
_

R ). Also, in this work for the mesh motion problem, a quasi-

static model is used as described in Eq. (10), and the fictitious stiffness matrix 
_

K  is constructed by improved spring analogy methods (Koobus et al., 1998,
Farhat et al., 1998, Degand and Farhat, 2002). Three methods based on the 
pseudo structural approach are tested: a lineal spring method, a torsinal spring 
method and lineal-torsional spring method. 

As the main goal is to deal with fluid-structure interaction problems of 
small to medium scale, the solution strategy employs a direct method to solve 
the mesh motion linear system of equations. The direct method is preferred 



because of its simplicity and robustness. The mesh position 1nx  is updated by 
summing the mesh displacement vector to the previous configuration of the 
mesh position vector nx , such as follows:
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Pseudo flow solution

The following methodology is based on the semi-explicit iterative solution 
of the systems of equations (3)-(4) after a time and a spatial discretization, and 
considering a projection method framework (Goldberg and Ruas, 1999, 
Guermond et al., 2006, Lohner et al., 2006).

For a given 0t   and considering the set of variables nu , np  and nx

known from the previous time step t . The solution 1nu , 1np   and 1nx  at the 
time t t   is computed by using a staggered approach such as:
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In Eq. (15) the convective term is neglected highlighting the use of a 
Pseudo-Stokes formulation to model the mesh motion problem. The fractional 

step method introduces a predicted velocity *u which is corrected at the end of 
the block. Also, taking the divergence of the Eq. (16) and using Eq. (15) the 
Poisson equation is obtained:
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and the boundary condition for Eq. (18) is:
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The projection method here described is called Incremental Projection 
Scheme. This method is a modification of the version proposed by Chorin 
(1968) which improves convergence as reported in the literature (Codina and 
Blasco, 2000, Codina, 2000, Guermond et al., 2006).



By considering the dimension of the finite element space equals to N and 

defining the base function as  : 1, ,i i NN   and  : 1, ,j j NN  . The 

matrix form of the discrete finite element problem is:
Step 1: Predict velocity through the Momentum equation

 * * , ,n n np  uM u F u x (20)

Step 2: Poisson problem

 1 * *,n n
pp  A F u x (21)

Step 3: Velocity correction – projection on the divergence free space

 1 1,n n np   uM u F x (22)

Step 4: Update the mesh position
1 1n n n t   x x u (23)

Similarly to what is established to the pseudo structural methodology, the 
moving boundary m  rotates with a constant angular velocity  as if it was a 
rigid structure.

 v r (24)

For equations (20) to (22), M  and A are the mass and the Laplacian 
matrices which are given by:
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The vectors *
uF , pF and uF  are related to the discretization of the right-

hand side of the equations through steps 1 to 3, and the boundary integral terms 
referent to the boundary conditions are also included to these vectors. 

The greatest advantage of presented numerical scheme at the steps 1 to 3 
is the mass matrix. In order to enhance convergence and time efficiency the 
mass matrix is lumped in a diagonal form, and its construction is performed only 
when the mesh position is updated. As for the Laplacian operator which 
symmetric, Eq. (21) is solved by a preconditioned conjugated gradient method 
(PCG) using a partial Cholesky factorization as preconditioner. For the 
numerical scheme, the time step computation or definition is directly linked to 
the viscosity term pf  and vice-versa (Massarotti et al., 2006). 

The numerical scheme for particular case that employs the Laplacian 
equation to solve the mesh motion problem is represented as follows



 1 ,n n  vM u F v x (27)

where vF  is the right-hand side resulting from the application of the boundary 
conditions to the Laplacian equation (Jasak and Tukovic, 2007). Also, the mesh 
update is performed as showed in Eq. (23).

Numerical Results

Mesh motion methods evaluation

The meshing process is defined as the breaking of any given domain into 
smaller elements. This division aims to facilitate the numerical solving of 
differential equations at this domain by replacing that equation into a set of 
algebraic equations. Those elements can be triangles or rectangles (for a 2D 
case) or tetrahedral or hexahedra elements. It is an important part of pre-
processing, thus the demand for mesh generators that has improved robustness, 
speed and quality is very high, and since a low quality mesh can lead to 
inconsistent results. This care on meshing is more necessary when one turns its 
attention to simulation with moving boundaries that use mesh deformation. It is 
necessary to guarantee that the mesh elements hold a minimal of their quality 
after the deformation process, in order to do not affect the quality of the solution 
and the time needed to obtain it. So, a mesh quality evaluation method must be 
implemented to assess the quality of every element, as well as how suitable a 
particular meshing is for the analysis type. The present paper will use the work 
of Rypl (1998), that consist in evaluate the element quality with respect to the 
equilateral simplex (as the best possible element), Noleto, Barcelos e Brasil 
Junior (2009). For a 2D triangular element, the quality is expressed as:

(28)

where A is the area, a, b and c are the lengths of the element´s sides and 
is a normalizing factor which justifies the quality of an equilateral 

triangle to 1. This parameter is calculated for every element. It is important to 
indicate how values of q are adequate to ensure a geometric topology that leads 
to an accurate calculation. Extremely deformed elements can lead to inaccurate 
calculations, and the solution robustness will be severely affected by this 
geometry aspect, as well as the convergence. Based on that, an important 
conclusion can be affirmed: if the quality drops to very small values after the 
deformation, than the calculation will be compromised by the element geometry 
shape. Therefore, it is reasonable to assume that quality values between 1 and 
0.5 are values that will maintain, or will not extremely affect, the calculation. 
Values below 0.5 indicates that the mesh quality can influence the calculation 
for the worse, and far small values of q indicates that the element is highly 



distorted, which will lead to poor results and affect the calculation robustness 
and convergence.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Final configuration for different moving mesh methodologies

Figure 1 shows the undeformed, Fig. 1a, and deformed meshes, Fig. 1b to 
Fig. 1f, for each mesh moving methodology (Laplacian Fig. 1b, Lineal Springs 
Fig 1c, Torsional Springs Fig. 1d, Lineal-Torsional Springs Fig 1e and Pseudo-
Stokes Fig. 1f).  Each methodology moved the airfoil nodes to the same final 
angle of attack, about 30 degrees. One can note that the methods presented 
different forms of deformed elements at the surroundings of the airfoil, but some 
methodologies presented similar deformed mesh display. The Laplacian and 



Lineal Springs methodologies presented a small number of flattened elements 
above the airfoil when compared with the remaining methodologies.  Below the 
airfoil, the elements for the above mentioned methodologies appear less 
stretched than the remaining ones. The Torsional, Lineal-Torsional and Pseudo-
Stokes methodologies show a higher number of flattened elements compared 
with the previous methodologies, with slightly more stretched elements below 
the airfoil. 

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Mesh quality for different moving mesh methodologies

Figure 2 shows the mesh quality parameter plotted for each element of the 
mesh for the undeformed mesh, Fig. 2a, and for the five methodologies, Fig. 2b 
to Fig. 2f (Laplacian Fig. 2b, Lineal Springs Fig 2c, Torsional Springs Fig. 2d, 



Lineal-Torsional Springs Fig. 2e and Pseudo-Stokes Fig. 2f). The Lineal-
Torsional and Lineal methods show elements with quality below 0.5 at the 
airfoil´s trailing edge. The Torsional, Laplacian, and Pseudo-Stokes methods 
presented elements with better quality at the same location. It is important to 
highlight that the fact that the leading edge elements that have a quality value 
below 0.5 does not mean that this element has poor quality geometry. As seen 
above, the quality values that will compromise the calculation are far below 1. 
So, a quality limit can be established. This limit will be determined by the 
effects caused by the mesh shape in the flow calculation. These effects will be 
noted by the flow results that will be generated with the deformed mesh. Further 
studies must be conducted to determine minimum quality values that ensure 
good flow calculation.

(a) (b)

(c) (d)



(e) (f)

(g) (h)

Fig. 3. Velocity Vectors and Pressure Contours (Lineal Torsional Springs)

The velocity vectors and pressure contours showed in Fig. 3a and 3b for 8 
degrees, Fig. 3c and 3d for 12 degrees, Fig. 3e and 3f for 16 degrees, Fig. 3g and 
Fig. 3h for 20 degrees, respectively, show the dynamic stall pattern, Barcelos, 
Noleto e Brasil Junior (2009). The flow topology bears close similarity with the 
visualization results displayed at Naudascher and Rockwell (2005) and Svacek 
et al. (2007). In a pitching airfoil condition where the angle of attack increases, 
the boundary layer is fully attached at the lower surface of the airfoil, while the 
upper surface shows that the separation point moves upstream (figure 6). The 
presented flow topology is a free shear layer wake at the trailing edge, while the 
vorticity assumes a counterclockwise shedding pattern, which is consistent with 
the increasing airfoil circulation. One can note that on this phase of increasing 
angle of attack, the separation point remains moving upstream, until it reaches 
the leading edge, Digavallis (1993) and Fujisawa and Shibuya (2001). The shear 
layer at the upper surface rolls up, configuring the dynamic stall pattern, 
identified by a primary vortex formed. This vortex becomes bigger as it departs 
from the airfoil to, finally, detaches itself. At this moment, the shear layer that is 



emitted from the trailing edge gains force, to generate the counterclockwise 
shedding mentioned before. At this moment, the normal force reaches its 
maximum value. 

Conclusions

In this work several methodologies to solve the mesh motion problem 
were employed. Basically, two main strategies were chosen: Pseudo-Structural 
strategies, represented by the Laplacian, Lineal Springs, Torsional Springs and 
Lineal Torsional Springs, and Pseudo-Flow strategy, represented by the Pseudo-
Stokes method. A quality parameter was used to evaluate the mesh after 
deformation, and the computational time was measured.

Results for all strategies had shown that all methodologies were able to 
move the mesh generated by an airfoil that increases its attack angle. The quality 
parameter analysis showed that the deformed meshes hold good quality for flow 
calculation. The visual results obtained for the deformed meshes show that the 
airfoil has moved to a position of 30 degrees with resulting final meshes that can 
provide robustness and stability for flow calculation. The main concern is regard 
to the computational time. All the Pseudo-Structural strategies has presented 
similar results, while the Pseudo-Stokes strategy demanded a small time step to 
ensure convergence and the condition of projection on a divergence-free space, 
and it has taken a high amount of computational time. Based on those results, 
one can conclude that the Pseudo-Structural strategies are better suited for flow 
calculation for the time being, while the Pseudo-Stokes strategy need more 
research to pose as an alternative to the remaining strategies.

Results of the numerical simulation of a laminar flow over a rotating 
NACA 0012 airfoil were presented, and those hold resemblance with 
experimental flow visualization available at the literature. Flow effects, such as 
vortex shedding, recirculation zones formation and shear layer shedding were 
observed.
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