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The routing problem for tanker-refuellers is considered. The tankers start at the bun-
kering company and must serve several ships in different ports. In principle the 
modeling and algorithmic approaches for capacitated vehicle routing problems can 
be used. Since the demands of the ships are uncertain and vague they are modeled 
using fuzzy sets. The first compromise solution can interactively be modified to 
meet the decision makers requirements with respect to the different criteria. The re-
sults are demonstrated using a small example. 

1. INTRODUCTION 

This paper deals with a very important routing problem in marine practice: the 
routing of tanker-refuellers (in the following called tankers) which provide bun-
kering (transportation and unloading) operations for various ships. These ordering 
ships are located at different ports or, in general, at different points offshore. The 
importance of transportation is continuously growing due to the growing interna-
tionalization of this business. Optimization models and methods are very appro-
priate for transportation and distribution planning. This problem can be modeled 
by the so called capacitated vehicle routing problem (CVRP).  

The development of efficient models and algorithms to solve routing prob-
lems is an important contribution of operations research to theory and practice. A 
lot of different approaches have been suggested and are applied to handle a wide 
spectrum of real world problems. An overview can be found in [4]. In particular, 
vehicle routing problems (VRP) with various modifications and different ap-
proaches are considered [16]. Some of these approaches use methods to solve the 
traveling salesperson problem (TSP) as an integral part. A survey on TSP is given 
in [15]. Most of the VRP techniques can be applied successfully also to ship rout-
ing problems [3, 9, 17, 19]. If the demand of the customers is not precisely known 
in advance deterministic and crisp models are not appropriate for decision sup-
port. The VRP with stochastic demands of nodes is described in such publications 
as [1, 2, 5, 6, 8] but the efficient solution of SVRP (Stochastic Vehicle Routing 
Problem) presumes precise information about probability functions of the de-
mands. To handle imprecise and vague information a fuzzy theory based ap-
proach fits well. 
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In marine practice information about customers’ demands to be served can 
be uncertain too. Such kind of uncertain information characterizes the bunkering 
process (BP) by which ships are supplied with ordered fuel [14]. Usually the ship-
owner sends an order for fuel supplying to the bunkering company using such 
uncertain terms as “approximately VALUE”, “about VALUE”, “between 
VALUE_1 and VALUE_2”, “at least VALUE”, “not less then VALUE”, “not 
more then VALUE”. The efficiency of the bunkering operations can be evaluated 
by the possibility to serve the orders with a minimum of consumption of own 
tanker’s fuel during delivery which depends on the total distance traveled by all 
tankers. 

A fuzzy set theoretical approach to the vehicle routing problem when de-
mand at nodes is uncertain is considered in [19]. Their model is based on the 
well-known heuristic “sweeping algorithm” combined with a set of fuzzy rules 
and approximate reasoning to construct routes. They assume that every demand 
has to be served and that it is possible to return to the depot and then revisit the 
customer again. During the bunkering process considered here there is not enough 
time to travel twice. If the demand of a ship cannot be served completely during 
the planned trip the exceeding demand is lost.  

Therefore a fuzzy multi-criteria mathematical programming model is sug-
gested here to solve the tanker routing problem with uncertain demands. An inter-
active approach is used to find the compromise solution, which considers the 
minimal total distance of all routes necessary for all bunkering operations and the 
maximal potential total sales of fuel. For small problems it can be solved opti-
mally by using standard mixed integer linear programming software. For larger 
problems an adequate heuristic has to be chosen. 

2.1. GENERAL PROBLEM STATEMENT 

The port where the bunkering company is located is the only depot for the tank-
ers. Here the orders are announced from the ship owners who know the respective 
demands of their ships approximately. The ships, which must be served by the 
tankers, have various capacities and different demands. Usually the captain of 
each ship orders the final crisp volume of fuel he needs at the moment when 
tanker and served ship meet in the j-th port, Nj ,,1…= . The decision maker of 
the bunkering company has to solve the tanker routing problem before bunkering 
operations start. At the depot 0 the bunkering company has K tankers for bunker-
ing operations at its disposal. The tankers ( Kk ,,1…= ) are identical and they 
have the same capacity Cap to transport fuel. We suppose that the bunkers con-
tain sufficient fuel for all demands of the N  ships in the marine region and that 
the demand of each single ship is less or equal to the capacity of a tanker. Taking 
into account that the above-mentioned customers’ announcements for all ships to 
be served are uncertain the demand of each ship can be presented using a fuzzy 
set. We model the uncertain demand with triangular fuzzy numbers 

( )jjjj dddd ,ˆ,~
=  as shown in fig. 1 [7, 24]. 

The fuzzy number of each demand can be chosen based on the preliminary 
customer’s orders and the decision maker’s experience which deals with his or 
her intuition and the “a priori” knowledge about the type of ship, type of ship’s 
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cargo, region of voyage, prescribed ports, ship’s captain decisions for analogous 
bunkering operations and others. The real world bunkering process with K tankers 
and N ships is parallel: each tanker serves all ships on its route which is planned 
by the decision maker at the bunkering company. The time period for the whole 
bunkering process is much shorter than in the case of an approach where the de-
mands of all the ships must be served sequentially. 

The problem discussed in this paper deals with solving the tanker routing 
problem for fuzzy demands of served ships. A “compromise solution” for the spe-
cific marine operations called “bunkering operations” is determined which takes 
into account the following goals: 

• maximum possible total quantity of unloaded fuel during the entire bun-
kering process (this value is a main component defining bunkering company’s 
profit); 

• minimum possible total distance for tankers which serve ordering ships 
on all planned routes; 

• maximal possibility to serve the demand. 
The specific requirements for the bunkering process under consideration are: 
• each port j  ( Nj ,,1…= ) is visited only once by only one tanker during 

the planning period for which the routes are designed and executed; 
• each tanker starts and finishes its route at the depot 0; 
• each demand jd  at port j ( Nj ,,1…= ) is lower than the capacity Cap of 

a tanker; 
• there are enough tankers at the depot 0 to serve any total demand 

∑∑
==

≤
N

j
j

N

j
j dd

11
of all orders of the ships, 

Additionally, the locations of the depot and all ports with ordering ships, ca-
pacity of the tanker, the distance resp. the traveling costs between the ports must 
be known. 

In the following a fuzzy multi-criteria programming approach is developed 
to solve the above stated problem. The decision maker interactively to improve 
the degree of satisfaction with the different goals can modify the compromise 
model. 

Fig. 1. Triangular membership function of the fuzzy demand jd of ship j 

jd  
jd̂ jd

jd~µ  
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2.2. TANKER ROUTING PROBLEM WITH CRISP DEMANDS 

The problem is modeled as an extension of the one-depot capacitated vehicle 
routing problem which can be represented by the following model. Considering 
several trips to satisfy given demands at locations with tankers having restricted 
capacity available leads to the capacitated vehicle (here tanker) routing problem. 
Several models exist for this problem. In accordance with the above formulation 
the following model for the capacitated vehicle routing problem is chosen. 

The capacitated vehicle routing problem with well-known demand can be 
modeled considering two parts of constraints. One part containing constraints (2) 
and (3) is the generalized assignment problem. It groups cities to a tour consider-
ing the respective demands and the capacity of the vehicles. The other part mod-
els a traveling salesperson problem for each of these tours. This part contains con-
straints (4) to (8). 

First we assume that the demand of each customer is exactly known in ad-
vance and all other information is strictly given. The distribution starts from a 
single depot and the vehicle fleet is homogenous that is all vehicles have the same 
capacity.  

Considering different tours (vehicles, tankers) k  ( Kk ,,1…= ) and cities 
(ports) ji,  ( Nji ,,1, …= ) three types of variables are necessary:  

variable ijkx  is binary with 

 
⎩
⎨
⎧

=
else0

,touronfollowsfor1 kij
xijk  

variable jky  is binary with  

 
⎩
⎨
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=
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and variable jku  is an integer 0≥  and for the optimal solution it is the sequence 
number of city j  on trip k . 

Objective function of the classical vehicle routing problem is to minimize 
the total distance traveled: 
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Min , (1) 

ijc  for Nji ,,0, …=  is the distance from city i  to city j . 

The capacity Cap of the vehicle is sufficient to meet the crisp demand of all 
cities on tour k 

 Kkyd
N

j
jkj ,...,1forCap

1
=≤∑

=
, (2) 

jd  is the crisp demand at city j . 

Each city belongs to exactly one of the tours except city 0 with the depot 

 ∑
=
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k
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1
,...,1for 1 . (3) 
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Each city j must be entered exactly once on the trip to which tour it belongs 

 KkNjyx
N

i
jkijk ,...,1,,...,0for    

0
===∑

=

. (4) 

Each city i must be exited exactly once on the trip to which tour it belongs 

 KkNiyx
N

j
ikijk ,...,1,,...,0for    

0
===∑

=
. (5) 

No city can follow itself on the tour 

 KkNixiik ,...,1,,...,0for0 === . (6) 

Subtours are forbidden 

 ( ) ijNjNiNxuu ijkikjk ≠==−−+≥ ,,...,1,,...,0for11 . (7) 

Each trip starts in the depot 

 Nkuok ,...,1for1 == . (8) 

This is a mixed integer linear programming model. For small instances it can 
be solved exactly by using standard software. For larger instances a heuristic must 
be chosen. Constraint (7) is not the only formulation to avoid cycling and might 
cause difficulties when solving larger problems [17]. Some of the heuristics sug-
gested in literature first group cities to tours and then solve the traveling salesper-
son problem to optimize the respective routes. This vehicle routing model can be 
used to plan the routes for tankers, which are located in a depot and have to travel 
to different ports for bunkering.  

2.3. EXAMPLE: TANKER ROUTING WITH CRISP DEMAND 

Let us consider a small example with 5 ships in different ports. The demand jd , 
5,1…=j , for fuel is known (table 1). Several tankers are located in depot 0. The 

capacity of each tanker is 1000. Table 2 contains the distances ijc , Nji ,,0, …= , 
between the ports in miles. In this example jiij cc =  holds for all Nji ,,0, …= . 

The optimal solution of the capacitated vehicle routing problem is calculated 
using the model (1) to (8) above and the software package ILOG AMPL CPLEX 
System vers. 7.0 (2000). The optimal routes 0 – 2 – 4 – 0 and 0 – 3 – 1 – 5 – 0 are 
shown in fig. 2. The total distance traveled is 340.2 miles. Because this graph is 
symmetric the tours 0 – 4 – 2 – 0 and 0 – 5 – 1 – 3 – 0 are optimal too. Exactly 
two tankers can serve the demands. 

T a b l e  1 .  Demands of the ships 

j 1 2 3 4 5 

dj 500 400 300 600 200 
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T a b l e  2 .  Distances between the ports 

 0 1 2 3 4 5 
0 – 70.2 67.5 48.6 59.4 32.4 
1 70.2 – 97.2 78.3 86.4 43.2 
2 67.5 97.2 – 21.6 10.8 81 
3 48.6 78.3 21.6 – 16.2 70.2 
4 59.4 86.4 10.8 16.2 – 81 
5 32.4 43.2 81 70.2 81 – 

 

3.1. ROUTING PROBLEM WITH FUZZY DEMANDS 

If the demand at the different cities is uncertain and imprecise we suggest to 
model it using a fuzzy set theoretical approach and to use a fuzzy set jd~ , 

Nj ,,1…= , to represent the demand. The mathematical programming model is 
the same as above with the exception of capacity constraint (2). Instead of the 
crisp capacity constraint the following fuzzy constraint for the fuzzy demands on 
tour k  has to be considered:  

 Kkyd
N

j
jkj ,...,1forCap~

1
=≤∑

=
 (9) 

 Kkyd
N

j
jkj ,...1, = for    ~D~ with

1
k ∑

=
= . 

Modeling the fuzzy demand we suggest to consider the possibility that the 
actual demand of all ships on one tour is less or equal to the capacity of the tanker 
to a certain degree. Because of the following considerations this leads to a crisp 
equivalent model. This approach to handle these fuzzy constraints is similar to 
chance constraints programming in stochastic optimization. If the demand is not 
known exactly we suggest to find a solution for which the possibility to serve the 

Fig. 2. Optimal routing considering crisp demands 
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demand is required at least to a certain degree [ ]1 ,0∈α . The decision maker has 
to determine α  in advance. Considering a fuzzy number as a method of repre-
senting uncertainty in a given quantity by defining a possibility distribution for 
the quantity is analyzed in [10]. An even stronger condition is to determine a cer-
tain degree of necessity β that the demand on the tour can be served. That is  

 [ ]Pos1 ,0,,...,1for)Cap~Pos
1

∈=≥
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
≤∑

=

αα Kkyd
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j
jkj  (10) 

or even stronger 
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⎝

⎛
≤∑
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ββ Kkyd
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j
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If the fuzzy demand of each of the ships can be modeled using triangular fuzzy 
numbers a crisp equivalent formulation can be developed. For the calculation let 
us first consider the possibility and necessity of a triangular fuzzy number a~  to 
be greater or equal to zero [13]. 

 ( ) { }( ) )( sup 0Pos0~Pos a
0

~ xxxa
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a µ
≥

=≥=≥ , (12) 

 ( ) { }( ) { }( )0Pos10Nec0~Nec ~~ <−=≥=≥ xxxxa aa . (13) 

For a triangular fuzzy number ( ) aaaaaaaa ≠≠= ˆ and ˆ with  ,ˆ ,~  these 
possibility (Pos) and necessity (Nec) can be determined using the following for-
mulas 
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Fig. 3. ( )0~Pos ≥a  for a triangular fuzzy number a~  

( )0~Pos ≥a
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So the requirement for capacity in the above model can be determined as fol-
lows 

 Nkyd
N

j
jkj ,...,1for      )Cap~(Pos

1
=≥≤∑

=
α , 
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If all demands ),ˆ,(~
jjjj dddd = , Nj ,,1…=  are triangular fuzzy numbers 
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is a triangular fuzzy number too. 
Thus the possibility that the capacity of the vehicle is sufficient to serve all 

demands kD~  on tour k  is equal to 
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The requirements for the necessity that the capacity is sufficient on tour k is 
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It can be calculated similarly to  

Fig. 4. ( )0~Nec ≥a  for a triangular fuzzy number a~  
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For every possibility and associated necessity measure and every set 
XA ⊂ the following implication is satisfied [13] 

 0)( Nec1)( Pos =⇒< AA . 

The consequence for our application is that it is more demanding to request 
the necessity to be greater than 0 than to request the possibility to be less or equal 
to 1. For 0 > α  we can model the following constraints as crisp equivalents for 
the fuzzy constraint (9): 

⇔≤α)~(ServePos kD  

 ( ]∑
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respectively for 0 > β . 

⇔≤ β)~(ServeNec kD  
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To solve this fuzzy mathematical programming model we suggest to deter-
mine the optimal solutions with respect to a given degree of possibility or even 
stronger a given degree of necessity that the capacity is sufficient to meet the total 
demand of the customers on each tour.  

If the decision maker is not able or does not want to require in advance a cer-
tain degree of possibility or necessity for the demand served we suggest to give 
him or her additional information about the dependencies between those values 
and the minimal total distance the ships have to travel. On behalf of that first the 
model (1) and (3) to (8) with constraint (21) is solved with [ ]0,1∈α  parametri-
cally increasing from 0 to 1. Afterwards the second constraint (22) is included 
into the model instead of (21). It is stronger than (21) for every 0>β . Here too, 

[ ]0,1∈β  is parametrically increased from 0 to 1. The parametrical modifications 
for this integer linear programming model exact a lot of calculations. Therefore it 
might be more efficient to calculate the maximal degree of possibility or necessity 
each time an optimal solution has been determined for the model. The next opti-
mal solution can then be determined by improving this maximal degree by a small 
proportion and including this new value into the constraint. The result is an over-
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view over all fuzzy efficient solutions with respect to minimal distance and 
maximal possibility respective necessity meeting the fuzzy demand. A solution is 
fuzzy efficient if it is not possible to improve one of the values without deteriorat-
ing some of other ones [22, 23]. 

3.2. EXAMPLE: TANKER ROUTING WITH FUZZY DEMANDS 

For demonstration purposes we again consider the tanker problem above but now 
the demands of the different ships are not exactly known. What the decision 
maker gets is an order d which is not binding and he has some experience what 
the demand might be. This is modeled using triangular fuzzy numbers 

),ˆ,( = ~ dddd . For the small example the following data are to be considered with 
triangular fuzzy numbers for the uncertain demands.  

T a b l e  3 .  Uncertain demands 

Ship No. 1 2 3 4 5 
d  400 250 150 500 150 

d̂  500 400 300 600 200 

d  600 500 350 800 400 
 

The crisp equivalent model for a requested possibility 0.2 = α  to serve the 
demand is solved by using CPLEX. The optimal solution of the mixed integer 
linear programming model are the two tours 0 – 3 – 2 – 4 – 0 and 0 – 1 – 5 – 0 
with a total travel distance of 286.2.  

Parametric optimization is applied first with constraint set (21) and parame-
ter [ ]1,0∈α  and afterwards with constraint set (22) and parameter [ ]1,0∈β . This 
will give a general idea of efficient solutions with respect to total distance trav-
eled and possibility or necessity to serve the demand. Solving the mixed integer 
linear programming model yields the following results: 

For the possibility α of serving the demand with 25.00 ≤≤α  the optimal 
routes are 0 – 3 – 2 – 4 – 0 and 0 – 1 – 5 – 0 with a total distance of 286.2. 

For 125.0 ≤<α  the optimal total distance is 340.2 and the optimal routes 
are 0 – 2 – 4 – 0 and 0 – 3 – 1 – 5 – 0 . Now the decision maker can decide 
whether he wants to accept the very small possibility 0.25 of meeting the demand 
with a total distance of 286.2 compared to a distance of 340.2 and a possibility of 
1 to meet the requirements. 

The necessity to meet the demand with the above solution is 0. A higher 
necessity can be obtained by the optimal routes 0 – 5 – 1 – 0, 0 – 4 – 0 and 
0 – 3 – 2 – 0 with a total distance of 402.3 and 3 tankers involved. This solution is 
— besides symmetrical ones - the only one with necessity greater than 0. Its ne-
cessity to serve the demand is 1. Now the decision maker can decide which of 
these three different solutions fits his or her preferences best. 

Instead of parametrically varying degrees of possibility and necessity in the 
mathematical model it can be more efficient to determine the respective degree of 
possibility and necessity by calculations outside the mixed integer linear pro-
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gramming model (MILP). Starting with possibility 0 we get the optimal solution 
of the MILP model. This solution contains optimal tours with their fuzzy de-
mands. Using this information the maximal possibility to meet the demand of this 
solution can be calculated by using (21) resp. (22) to calculate Pos (Serve kD~ ) 
resp. Nec (serve kD~ ) for each k , Kk ,,1…= , and then calculating 

)~(ServePos  min
1= k

K

k
D . 

For this example with 0)~Serve(Pos =kD  the optimal routes are 0 – 3 – 2 – 
4 – 0 and 0 – 1 – 5 – 0 with fuzzy demands )1650,1300,900(~

1 =D  and 
)1000,700,550(~

2 =D  and 25,0}1,25.0{min = . Then the MILP model is solved 
again with 25.0>α , e.g. 3.0=α . The results of both approaches are identical. 
They are shown in fig. 6. 

4.1. FUZZY MULTI-CRITERIA APPROACH 

In general the bunkering company is not only interested in the possibility or even 
necessity of serving the demand but the company wants to sell as much fuel as 
possible. Sales is restricted by the demand and by the capacity of the tanker for a 
tour. A solution is preferable if the amount of the demand served is high. If the 
demand is known in advance the capacity constraint (2) ensures that there is 

Fig. 6. Dependency of total distance and possibility and necessity to serve the demand 

25.00 ≤≤α  125.0 ≤<α 1,10 =≤≤ αβ  

Fig. 5. Optimal routes for different α resp. β 
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enough capacity for each tour to serve the entire demand and thus maximize sales. 
In the fuzzy environment considered here it is also possible to serve the entire 
demand. But here it means that so many tankers must travel so long distances that 
their capacity is high enough to meet every possible demand even if the member-
ship degree is very low. Therefore these membership degrees have to be taken 
into account too. To maximize sales in this fuzzy context means to determine and 
maximize a fuzzy set which results from the fuzzy demand, the tour and the ca-
pacity of the tanker.  

The fuzzy set sales kS~  on tour k depends o the minimum of the demand kD~  
and the capacity of the tanker. The membership function can be calculated 
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The membership function of the total demand to be served on all routes can 
be calculated by extended addition of the fuzzy sales. For the extension principle 
and extended operations see e.g. (Dubois and Prade, 1980; Zimmermann, 1992). 

The fuzzy total sales depended on the routes is with 

There are rather many calculations to be done to determine this fuzzy set. 
Therefore we suggest to use an easy to calculate defuzzification method. We sug-
gest to use 
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to determine a crisp approximation kSD~ for the sales on tour k and ∑ =

K
k kSD1

~ as 
a crisp approximation of total sales. 

4.2. EXAMPLE: MULTI-CRITERIA APPROACH 

In the example for the routes 0 – 3 – 2 – 4 – 0 and 0 – 1 – 5 – 0 the demands on 
the tours are as above and the capacity of each tanker is 1000. The membership 
function of the fuzzy demand to occur and to be served on tour 1 that is the mem-
bership function of sales 1~Sµ  is: 
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It is shown in fig. 7. 

The fuzzy total sales for both routes is a fuzzy set with the membership func-
tion depicted in fig. 8. 

The crisp approximation of the total sales is 

 717,1)000,1700550(
3
1)000,1000,1900(

3
1

≈+++++ . 

4.3. FUZZY MULTI-CRITERIA MODEL 

The fuzzy multi-criteria optimization model to be considered is 
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Fig. 8. Membership function of total sales 
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and constraints (3) to (8) uyx ,,  stand for the vectors of variables in this model. 
ni~m  means the extended minimum of the two fuzzy sets kD~  and Cap. The crisp 

set Cap is considered as a fuzzy set with membership function 1Cap. 
We suggest to use the interactive approach developed by Werners [21,22,23] 

for the solution of this tanker problem with some modifications. Due to the fact 
that objective function (25) and constraints (16) resp. (19) are not independent of 
each other they should be handled differently and adequately. For (16) and (19) 
the crisp equivalent models (21) and (22) are used. 

The individual optimum of 1z  i.e. the minimal total distance should be de-

termined so that at least the lower bound of the fuzzy demand ∑∑
= =

K

k

N

j
jkj yd

1 1
 is 

served. 
The individual optimum of the objective “minimal total distance” is the solu-

tion of the model 
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and constraints (3) to (8). 
The optimal solutions are 1

ijkx , 1
jky and 1

jku , Nji ,,0, …= , Kk ,,1…=  

with *11111 )u , ,( zyxz =  given by the solution algorithm and 2
*

1112 )u , ,( zyxz =  
to be calculated using (24). 

To determine the individual optimum of 2z  the crisp equivalent model (24) 
instead of (25) is used. It is easy to prove that for demands  ,~

jd  Nj ,,1…=  the 

maximum of (24) cannot exceed ∑ =
++N

j jjj ddd1 )ˆ( 
3
1 . In case that the number 

of vehicles is not restricted and each single demand is less than the capacity then a 
solution can be found which takes this value. So this individual optimum can be 
calculated without solving a mixed integer linear programming problem. But in 
general, there are several solutions which are not all fuzzy efficient. To determine 
a fuzzy efficient solution all solutions ( )222 ,, uyx  have to be considered implic-

itly and that one with ( )2221 ,, min uyxz has to be found. Those ( )222 ,, uyx  

which are optimal with respect to 2z  all satisfy constraint (22) with 1=β . 

Thus, a fuzzy efficient individual optimum 2z can be ascertained by solving 
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and constraints (3) to (8). 
The optimal solution is ( )222 ,, zyx  with ( ) *22222 ,, zzyxz =  and 

( ) 1
*

2221 ,, zuyxz = . 
Now individual optimal and pessimistic solutions can be used to model 

membership functions for the two goals. 

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥

<<
−

−
≤

=

1
*

1

1
*

1*1
*11

*

11
*

*11

),,(0

,),,(
),,(

,),,(1

 )(1

zuyxz

zuyxzz
zz

uyxzz
zuyxz

x
z

µ  (28) 

and 
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The first compromise model is 
 λ  max  
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and constraints (3) to (8), 10 ≤≤ λ . 
Constraints (16) and (19) can be omitted because they are implicitly con-

tained in (31). 
One can get an equivalent linear model by substituting the following con-

straints for the nonlinear constraint (31). 
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 KkCapttt kk
k

,...1,=     ,ˆ,0 ≤≤
−

. (36) 

4.4. EXAMPLE: COMPROMISE SOLUTION 

Considering the small tanker routing example the following table shows the indi-
vidual optimal solutions determined using models (1), (26), (3) to (8) for 1z  and 
(1), (27), (3) to (8) for 2z . Both are efficient with respect to the two goals.  

T a b l e  4 . Individual optimal and pessimistic solutions 

Individual optimal routes 1z  2z  

0–3–2–4–0  and  0–1–5–0 2,286
*1 =z  1,717 2

* =z  

0–1–5–0  and  0–4–0  and  0–3–2–0 402,3 1
* =z  367,2

*2 =z  
 

This small example also demonstrates that the approach to calculate the in-
dividual optimum of 2z straight forward is not appropriate. Maximizing the de-
fuzzified version of (25) subject to constraints (3) to (8) without taking into ac-
count the total distance leads to the following result. The optimal routes are 0 – 2 
– 5 – 0 and 0 – 3 – 1 – 0 and 0 – 4 – 0 with identical possible sales of 2,367 but 
longer total distance of 497,1. 

The crisp compromise model is 
 λ max  

 3,402116.1  s.t.
0 0 1

≤+∑ ∑ ∑
= = =

N

i

N

j

K

k
ijkij xcλ , 

 ( ) 717,1ˆ
3
1+650  

1=
≥++− ∑

K

k
kkk tttλ  

and constraints (33) to (36) and (3) to (8) and 10 ≤≤ λ . 
The optimal solution of the comprise model are the routes 0 – 1 – 5 – 0, 0 – 

3 – 0 and 0 – 2 – 4 – 0, the membership degree is 19,00 ≈λ  with  7,380z1 =  and 
933,1z2 ≈ . 

The possibility to serve the demand is 
1 and the necessity is 0. The advantage of 
this solution is the higher possible sales 
compared with the routes 0 – 3 – 2 – 4 – 0 
and 0 – 1 – 5 – 0 and even compared with 
0 – 2 – 4 – 0 and 0 – 3 – 1 – 5 – 0 with 
possible sales 1,816 and a lower total dis-
tance compared with 0 – 1 – 5 – 0, 0 – 4 – 
0 and 0 – 3 – 2 – 0. Here the decision 
maker accepts the first compromise solu-
tion, which is shown in fig. 9. 

Fig. 9. Compromise solution 
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5. CONCLUDING REMARKS 

In this paper a fuzzy multi-criteria programming model is developed to solve the 
tanker routing problem with fuzzy demands. Using standard MILP software a 
compromise solution is determined which takes into account several criteria. One 
of the main advantages of this model is its generality. Additional aspects can be 
included into the model appropriately. Exemplarily the model can be extended to 
consider fuzzy distances between the ports. That can be necessary to model 
weather conditions. In case that the number of ships to be served is rather large 
then the model cannot be solved optimally and a heuristic has to be chosen. In 
principle the well known heuristic approaches can be used. Additional research is 
necessary to develop modifications which consider multiple criteria and find a 
compromise solution very efficiently.  
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