
27

ISSN 2219-9454, Telecommunication Sciences, 2013, Volume 4, Number 1
© 2013, National Technical University of Ukraine “Kyiv Polytechnic Institute”

UDC621.39

MULTILEVEL INTELLECTUAL APPROACH TO HTTP-REQUESTS
LEGITIMACY VALIDATION

Volodymyr M. Kononenko1, Serhii O. Kravchuk1,
Yurii V. Ivlev1, Liubov A. Kononenko1

1National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine

In the paper a multilevel intellectual approach to HTTP-requests legitimacy validation is proposed. The approach is devised for
HTTP-flood DDoS-attacks detection and prevention in telecommunication networks with a web-server as the target attack ob-
ject. The analysis of HTTP-requests attributes and their signatures is provided. On the basis of the analysis the attributes are
separated into several levels that allow us to design a flow analyzer in a form of the multilevel block. Due to a multilevel struc-
ture of the flow analyzer a minimization of resources, spent for a request handling, is achieved.

Keywords: DDoS-attack, HTTP-flood, request, validation, legitimacy, signature method.

Introduction

Network information resources defense against ex-
ternal attacks of malefactors is one of the vital problems
nowadays. The most widespread attacks at present are
DoS-attacks (Denial of Service). The main goal of such
attacks is to make a network resource inaccessible to its
intended users. Generally an attack is launched on a big
amount of hosts, i.e. an attack is distributed, or DDoS
(Distributed Denial-of-Service). The process is con-
trolled by malicious software, which is installed using
client’s workstation software or protocols vulnerabili-
ties (the most common software is a browser, its plug-
ins, Java and Flash) [1].

Defense against Denial-of-Service attacks involves
blocking a malicious traffic without obstructing a legit-
imate users’ traffic (clients’ requests and server replies).
By the term “a legitimate request” we mean a request,
which is not indented to cause a denial of system’s ser-
vice and is not sent by malefactor. So, “a legitimate cli-
ent” is a client, who sends legitimate requests. In the
case of non-distributed attack (DoS) the problem of
blocking malicious traffic is not an intricate one. It is
enough to detect an IP-address, which causes the great-
est activity, i.e. uses a wide bandwidth, has a high re-
quests frequency, a big amount of POST requests etc.

In the case of a distributed attack (DDoS) obvious
signs, which can be used for malefactor detection are
missed.

A significant amount of works is devoted to the
problem of resources defense against DDoS-attacks.
Among them are the works [8], [9], [10].

The goal of this paper is to devise the approach for

HTTP-flood DDoS-attacks detection and prevention in
telecommunication networks with a web-server as the
target attack object in which a used amount of compu-
ting resources varies depending on the difficulty of ma-
licious requests detection.

Problem definition

Let’s consider the defense system against DDoS-
attacks based on a flow analyzer (fig.1). The mixed
flow of legitimate users’ requests and malicious re-
quests comes to the system input. Ideally, a flow ana-
lyzer must make a decision of requests legitimacy and
accomplish a distinct separation of legitimate and mali-
cious requests. In the sequel, legitimate requests must
be handled with a web-server and then a response must
be sent. In the case of unsuccessful legitimacy test sev-
eral variants are possible: error code is sent to a client;
close connection without sending any response is ex-
ploited; malicious IP address is blocked with a firewall
and the connection closes.

The goal of a defense system is to determine an af-
filiation of incoming request to one of the sets – “legit-
imate requests” or “illegitimate requests” based on de-
fined set of HTTP-request attributes. It is necessary to
note, that an important value is an amount of resources,
spent by flow analyzer for the handling of a request.
This value should be minimized.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Archive of Kyiv Polytechnic Institute

https://core.ac.uk/display/47222971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 1 JANUARY ─ JUNE 2013 28

Fig. 1 – Separation of legitimate requests and malicious re-
quests

Under these conditions the problem is reduced to the
following one:

Given:
1) r – incoming HTTP-request

2) – defined set of

HTTP-request attributes, where n – the amount
of determined attributes for the i incoming
request;

3) R ={RL, RNL} – set of request classes: RL
– legitimate, RNL – illegitimate;

4) Pi – computing resources (power),
spent by a flow analyzer for one attribute check.

Find:

Algorithm

Analysis of a set of HTTP-request attributes.
Let’s consider an example of a request in a form of the
following listing (listing 1) to define a set of attributes,
which are typical for an average legitimate request:

Listing 1 – Example of HTTP-request

On the analysis of such a request it is possible to de-
termine the set of attributes, summarized in Table 1 [2]:

Table 1.

Request attributes and their signatures

Based on these attributes a flow analyzer can make a
decision of request legitimacy. A process of particular
attributes check differs according to the level of diffi-
culty. That’s why the amount of computing resources
may vary depending on requests.

Let a flow analyzer check all the defined attributes
during request handling. Then an amount of computing
resources (power) P spent by a flow analyzer during a
check of one attribute, is equal to:

As it can be seen, all the attributes are checked, re-

sources are not minimized. The resultant value of the
expression under summation will be reduced under the
two following conditions:

1) Pi values are reduced;
2) some of Pi terms are excluded from the

expression.
Values of Pi are considered to be constant values.

xi Request attribute Signature

x1
Method to be performed on the
resource identified by the Re-
quest-URI

Specified as the first parameter
in the first row

x2 Request string
Specified as the second parame-
ter in the first row

x3
Protocol of the re-
quests/protocol version

Specified as the third parameter
in the first row

x4

Version of the client software,
operating system of the host,
where client’s software is run-
ning

Header “User-Agent”

x5
Specification of certain media
types, which are acceptable for
the response

Header “Accept”

x6
Content-codings acceptable in a
response

Header “Accept-Encoding”

x7
The set of natural languages
that are preferred as a response
to the request

Header “Accept-Language”

x8
Specification of options that are
desired for a particular connec-
tion

Header “Connection”

x9 Headers order

A full list of request headers is
analyzed before receiving a
double end-of-line symbol
(CRLF)

x10 Client IP-address
Specified on network layer of
TCP/IP model and is available
on application layer

x11
Request frequency per IP ad-
dress

Specified on web-server level

x12 Presence of specific headers
From, Proxy-Connection, Via
etc.

GET /page.html HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0 (X11; Ubuntu;

Linux x86_64; rv:18.0) Gecko/20100101

Firefox/18.0

Accept:

text/html,application/xhtml+xml,appli

cation/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://www.example.com

Cookie: c1=cookie1_value;

c2=cookie2_value

Connection: keep-alive

legitimate
requests together
with malicious

Closing
connection

Handling
request with
web-server

Response to
the client’s

request
flow analyzer

V. KONONENKO, S. KRAVCHUK: MULTILEVEL INTELLECTUAL APPROACH TO HTTP-REQUESTS LEGITIMACY VALIDATION

29

Besides, obtains an ambiguity factor. For instance,
missing of User-Agent header or blank string as a User-
Agent value unambiguously signifies an illegitimacy of
the request [2].

Based on cogitation about computing resources min-
imization and attributes’ ambiguity, we propose to
make a flow analyzer as a modular multilevel non-
monolithic block (fig. 2).

Fig. 2 – Modular multilevel structure of a flow analyzer

The flow analyzer modules form a chain, and re-
quests flow comes to input of this chain. Actually the
input of the first module is the input of a flow analyzer.
At output of each module two scenarios are possible:
1. to block requests and interrupt the chain, if a

decision of request’s illegitimacy is made;
2. to transfer requests flow from output to input of

the next module for further analysis.
The output of the last module is the output of a flow

analyzer.
Each module corresponds to a certain subset of at-

tributes . In such a way the problem of mini-

mization is solved. The remaining problem is divided
into four subtasks (by the number of flow analyzer
modules):

To find an algorithm

The first three modules of a chain handle the check
of necessary, but not sufficient conditions for making
decision about request legitimacy, while conditions for
making decision of illegitimacy are sufficient.

From our point of view, modular approach has the
following advantages:

− independence of the logic of each module from
other modules in the chain;

− ability to disable particular modules;
− ability to extend a flow analyzer by adding new

independent modules to the chain.

Thin configuration of requests handling. Modern
web-servers allow intellectual agents to take a set of
preventing steps against DDoS-attacks. During the re-
search a set of request handling principles, which can
be observed with a native web-server configuration, is
formed:

1. Not to handle client requests (close
connection or return error code):
− in which header User-Agent is missing;
− in which User-Agent header value is an

empty string;
− in which the following substrings:

“bot”, “index”, “spider”, “crawl”,
“wget”, “slurp”, “libwww”, “curl”,
“wget”, “lynx”, “urllib”, “ruby”, “php”,
“perl”, “python”, “java”, “http://” are
found while checking User-Agent
header value with a regular expression.

2. To restrict an allowed request frequency per
IP.

X1 = {x4, x11} – defined subset of HTTP-request at-
tributes

Substrings = {“bot”, “index”, “spider”, “crawl”,
“wget”, “slurp”, “libwww”, “curl”, “wget”, “lynx”,
“urllib”, “ruby”, “php”, “perl”, “python”, “java”,
“http://”}

So, checking the incoming HTTP-request by this
module is handled according to the following rule:

IF (x4 is missing) OR (x4 ∩ Substrings)
OR (x11 > T) THEN r → RNL,

where T is an allowed threshold of requests frequency.

Checking the client’s ability to JavaScript code
processing. During DDoS-attack HTTP-requests are
sent through web-browser not by user, but by special-
ized intellectual agents with limited functionality. Gen-
erally they are not able to process JavaScript, Adobe
Flash, to send or accept cookies. In our view, these af-
finities may be used for testing requests legitimacy.

Common scheme of testing request legitimacy is
shown on Fig. 3.

Fig. 3 – Common scheme of testing request legitimacy

A classical request processing involves two stages:
request and response [1]. The proposed scheme con-
tains two extra stages. After receiving a client request a
server sends a code for checking request legitimacy. It
may be math calculation with JavaScript, Adobe Flash,
handling cookies or other methods intrinsic for web-

Thin
configura

tion of
request

handling

Check
of client’s
ability to
 handle

a JavaScript
code

Decision
about

request han-
dling based
on the geo-
attributes

Intellectual
decision based
on the signature

method

TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 1 JANUARY ─ JUNE 2013 30

browser. In the case of a successful code execution the
client receives the content, which has been requested
and specified in request headers [3].

Let’s denote the ability to process a JavaScript code
as x13.

X2 = {x13} – defined subset of HTTP-request attrib-
utes

A check of incoming HTTP-request by this module
is handled according to the following rule:

IF (x13 IS EQUAL TO 0) THEN r → RNL

Making decision on request processing based on
geo-attributes. In some cases it is appropriate to re-
strict a request processing based on clients belonging to
certain geographical territory. It concerns web-
resources, a core target audience of which is concen-
trated in certain geographical territory. For example, a
company, which carries on business in one or several
countries, is interested in successful access to its web-
site clients from these countries first. From this point of
view, requests from other geographical territories may
be neglected.

To implement this level of flow analyzer a GeoIP
database may be used. On the basis of this database an
IP detects a geographical location of network host. Dur-
ing a request an IP address is sent to a GeoIP database.
It is possible to receive a two-letter country code ac-
cording to ISO-3166-1 [4] as a response.

Let’s denote a belonging of client IP-address to cer-
tain geographical territory as x14.

X3 = {x14} – defined subset of HTTP-request attrib-
utes.

C ={Ci} – set of two-letter country codes, access
from which is allowed.

A check of incoming HTTP-request by this module
is handled according to the following rule:

IF (x14 C) THEN r → RNL

Intellectual decision-making based on the signa-
ture method.

Application of the signature method on HTTP proto-
col level allows us to detect an intellectual agent with a
high probability. This method of identification is based
on the matching client’s request headers to a set of pre-
defined criteria. In such a case a signature is a result of
checking headers matching the criteria, which is record-
ed in a particular order defined by the algorithm. It is
possible to identify a client, having a previously pre-
pared list of signatures.

It is necessary to notice, that one client can match
more than one signature. It is caused by different prin-
ciples of HTTP request headers generation depending
on the type of request data and a stage of a dialog with
server [2].

The length of a signature (Fig. 4) is fixed and is
equal to 48 bits, or bytes, or 12 characters in hexadeci-
mal.

Fig. 4 – Example of a signature

A signature data structure is summarized in Table 2:
Table 2.

A signature data structure

The list of criteria, which we used in the algorithm,
is sorted by bits order:

1) HTTP protocol version is not 1.0, if header
“accept” contains “text/html”.

2) Headers “host”, “connection”, “user-agent”,
“accept” are present.

3) Header “connection” contains “keep-alive” and
does not contain “close”.

4) Length of header “User-agent” is more than 16
symbols and contains “(” symbol.

5) Header “accept” contains “*/*” element, header
“accept-language” does not contain “*” and in
the case of “accept-charset” header presence,
it contains “*”.

6) Header “accept-encoding” does not contain
substrings “identity”, “x-gzip”, “te”, “keep-
alive”, “z-uidh”;

7) Header “accept-encoding” contains “gzip”
substring.

8) Header “Accept-encoding” contains “deflate”
substring.

9) At least one of the headers: “x-forwarded-for”,
“via”, “x-bluecoat-via”, “x-proxy-id”, “x-

Bits
range

Bits
count Meaning

1-8 8
Information on a client support of latest protocols,
presence of required headers and absence of mal-
formation.

9-12 4

Flags, by which a client is leveled according to the
algorithm categories (“connection via proxy serv-
er”, “mobile device”, “has strong characteristics of
an intellectual agent”).

13-16 4
Particular client attributes, specific protocols assis-
tance, data syntax etc.

17-24 8
Availability of headers from the predefined set
(from, user-agent, host, connection, accept, accept-
encoding, accept-language, accept-charset).

25-48
24, 8
to 3

Order of headers, listed above.

V. KONONENKO, S. KRAVCHUK: MULTILEVEL INTELLECTUAL APPROACH TO HTTP-REQUESTS LEGITIMACY VALIDATION

31

piper-id”, “clientip”, “proxy-connection” is
present.

10) At least one of the headers: “x-operamini-
features”, “x-operamini-phone”, “x-
operamini-phone-ua”, “x-nokia-musicshop-
version”, “x-nokia-musicshop-bearer”, “x-
wap-profile”, “x-att-deviceid”, “x-ebo-ua”,
“device-stock-ua” is present. Or header “user-
agent” contains a substring: “android”,
“bada”, “iphone”, “ipad”, “ipod”, “symbian”
or “windows ce”.

11) Header “from” or “x-goog-source” is present.
Or header “user-agent” contains substrings:
“craw”, “bot”, “slurp”, “spider”, “agent".

12) Header “User-agent” contains substrings:
“libwww”, “curl”, “wget”, “lynx”, “urllib”,
“ruby”, “php”, “perl”, “python”, “java”,
“http://”. Or the 4th ot 5th criteria is not
satisfied. Or the 10th criteria is not satisfied
and a tag “pragma” is present, or the headers
“host”, “connection” or “user-agent” are
missing.

13) Value of header “accept” is not equal to “*/*”
and does not contain “text/html”.

14) Header “accept-encoding” contains substring
“sdch”.

15) Header “connection” contains uppercase
symbols.

16) Header “accept-encoding” does not contain “ ”
(space) symbol.

17) Header “from” is present.
18) Header “user-agent” is present.
19) Header “host” is present.
20) Header “connection” is present.
21) Header “accept” is present.
22) Header “accept-encoding” is present.
23) Header “accept-language” is present.
24) Header “accept-charset” is present.
HTTP-request (example is on Fig. 1) contains head-

er User-Agent with data of client’s software and its ver-
sions. Application of the signature method gives us a
possibility to check information, specified in request
headers. Before handling the request a new-formed cli-
ent signature is compared with signatures, which meet
the software specified in User-Agent string. If a client
falsifies software, trying to send false User-Agent, a
flow analyzer detects the substitution with a high prob-
ability. On this ground the decision of request’s affilia-
tion to intellectual agent, and in the case of DDoS-
attack – to malicious client is made.

Let’s denote the client signature of incoming HTTP-
request as Sr.

 is set of database signatures, cor-

responding to the software, specified in User-Agent
HTTP header. This module checks incoming HTTP-
request according to the following rule:

IF (Sr S) THEN THEN r → RNL ELSE r → RL

Example of incoming HTTP-request check

Let’s assume that incoming HTTP request is one
from the listing 1.3. The client IP address belongs to
China, and the list of allowed countries includes only
Ukraine and Russia. The HTTP-request frequency from
the client IP is 10 requests per minute, while the con-
figured threshold is 1 request per second.

1) x4 = {“Mozilla/5.0”,“(”, “X11”,
“Ubuntu”, “ Linux”, “x86_64”, “ rv:18.0”, “)”}

Substrings = {“bot”, “index”, “spider”, “crawl”,
“wget”, “slurp”, “libwww”, “curl”, “wget”,
“lynx”, “urllib”, “ruby”, “php”, “perl”, “python”,
“java”, “http://”}
T = 1
The condition checked in accordance to the rule is
wrong, so the check passes to the next module.

2) Let’s assume that a client handles
JavaScript code successfully. Then x13=1. The
condition checked in accordance to the rule is
wrong, so the check passes to the next module.

3) x14 = {“CN”}
C = {“UA”, “RU”}

x14 C ⇒ r → RNL

The third module makes a decision of HTTP-request
illegitimacy and breaks the chain. The fourth module is
not involved in the process of checking due to the pre-
vious module decision.

Results

Combination of the obtained theoretical and experi-
mental results let us form a thin Nginx [5] and Lighttpd
[6] web-server environment.

To exaggerate the malicious client problem of de-
termination the logic of the sent JavaScript-code, a code
compilation with further obfuscation is applied on the
second level of a flow analyzer. Herewith the readabil-
ity of a script significantly deteriorates.

Maxmind GeoIP database “GeoIP Country” is used
for making decision of request handling based on geo-
attributes. Depending on specifics of defended web-
resources other versions of GeoIP may be used [7].

TELECOMMUNICATION SCIENCES VOLUME 4 NUMBER 1 JANUARY ─ JUNE 2013 32

Applying the signature method, a web-sites
www.amonis.com.ua and www.kononenko.ws visitors’
(legitimate clients and intellectual agents) signatures da-
tabase is formed. The web-sites belong to the authors of
the paper. Google, Yandex, Yahoo and Bing intellectual
agents’ signatures are shown as an example in Table 3.

Table 3.
List of intellectual agents’ signatures

To check a system’s defense the synthetic test was
carried out. An attack was performed by requests of dif-
ferent difficulty levels, taking into consideration the
logic of the system. The chart (Fig. 5) is created in a re-
al-time mode. Requests to HttpStubStatusModule were
sent with 30-seconds interval and “Active connections”
values were taken.

Fig. 5 – Web-server active connections, the requests of
which are being handled

The plot can be divided into four specific areas:
before 09:51 there is no attack. Web-

server is processing requests
in normal mode;

09:52 - 10:03 DDoS-attack is active. De-
fense system is disabled.

10:03 - 10:07 DDoS-attack is active. De-
fense system is enabled.
Gradual closing of malicious
client’s session is observed;

after 10:07 DDoS-attack is active. De-
fense system is enabled.

As we can see, the amount of active connections
during DDoS-attack with enabled defense system ex-

ceeds the same value during a normal mode. And at the
same time a defense system provides conditions, which
allow successful processing of legitimate requests.

Conclusion

In the case of distributed attack (DDoS) obvious
signs, which can be used for malefactor detection are
missing. Checking HTTP-request legitimacy is not pro-
vided by HTTP-protocol or TCP-protocol, which is
used as transport protocol. In this paper the method of
defense against DDoS-attacks is proposed. It is based
on a prior analysis of incoming HTTP-request. Due to a
multilevel structure of a flow analyzer a minimization
of resources, spent by a flow analyzer for request han-
dling, is achieved.

Malicious requests complete filtration is not
achieved. This fact is obvious from the plot, which was
built during the synthetic test. But at the same time a
defense system provides conditions, which allow a suc-
cessful processing of legitimate requests.

References

1. RFC4732: Internet Denial-of-Service Considerations:
http://tools.ietf.org/html/rfc4732

2. RFC2616: Hypertext Transfer Protocol – HTTP/1.1:
http://tools.ietf.org/html/rfc2616

3. Kononenko V.M. A defense model from failure attacks
in HTTP-flood servicing / V. M. Kononenko, S. O. Kravchuk
// Modern problems of radio engineering and
telecommunications “RT–2012”: Materials of the 8th
international youth scientific conference, Sevastopil’, April
23-27, 2012 / Sevastopil’ national technical university; ed.
J.B. Himpilevych. — Sevastopil’: Sev NTU, 2012. – p. 118.
[in Ukrainian]

4. ISO 3166-1 decoding table:
http://www.iso.org/iso/home/standards/country_codes/iso-
3166-1_decoding_table.htm

5. Nginx documentation: http://nginx.org/en/docs
6. Lighttpd documentation:

http://redmine.lighttpd.net/projects/lighttpd/wiki#Documentation
7. GeoIP databases and web services:

http://www.maxmind.com/en/geolocation_landing
8. Stephen M. Specht, Ruby B. Lee “Distributed Denial of

Service: Taxonomies of Attacks, Tools and Countermeasures”:
http://palms.ee.princeton.edu/PALMSopen/DDoS%20Final%
20PDCS%20Paper.pdf

10. Jelena Mirkovic, Peter Reiher “A Taxonomy of DDoS
Attacks and DDoS Defense Mechanisms”:
http://www.eecis.udel.edu/~sunshine/publications/ccr.pdf

11. Jelena Mirkovic “Distributed Defense Against DDoS
Attacks”: http://www.isi.edu/~mirkovic/publications/udel_
tech_report_2005-02.pdf

Received in final form April 4, 2013

Intellectual agent Signatures

Googlebot 2.1 ff33fc4e0340
Googlebot Mobile ff73fc4e0340
Google Translate 9e316d9d1a00

Google Web Preview
b73b744cd000, 9f316c86a000,
973964350000

Bingbot 2.0 ff33fc728440, ff337c72a200
Yahoo Slurp 3.0 ff317f466bd8, ff317f466bd8
YandexBot 3.0 f733fe4e5c40
YandexNews 3.0 943970458000

