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The processes of useful signal formation in the short-range radar systems constructed on the heterodyne, homodyne and auto-

dyne principles are considered. The mathematical fundamentals of the fulfilled analysis are described in brief. It is shown that 

the autodyne configuration is much more complicated for the examination compared to the heterodyne and homodyne configu-

rations due to the necessity of taking into account its own re-reflected signal. To simplify the theoretical analysis, the examina-

tion of the autodyne effect is performed under an assumption of reflected signal smallness. The comparison results of the con-

sidered configurations, which show that the homodyne and autodyne signal processing in the usual Doppler short-range radar 

turns out similar, are given. However, the autodyne short-range radar configuration itself has its own specific peculiarities, 

which should be taken into consideration in practice. It is proved that in the autodyne configuration one can meet the accompa-

nying frequency modulation of the probing oscillation. It appears even at the absence of the forced frequency modulation, 

which is widely used to improve the short-range radar noise immunity. It is found out that this accompanying frequency modu-

lation at weak reflected signals does not affect noticeably on the autodyne converter operation. The main theoretical conclu-

sions of this paper are in the good conformity with the published results. 

Introduction 

The short-range radar (SRR) systems [1 4] repre-

sent a specific class of radar devices operating at very 

small distance to the target or to the object under ex-

amination. They can be used in the measuring mode 

where the object under examination is in immediate 

vicinity of SRR, for example, at the measurements of 

substance parameters placed into the device resonator. 

Such measuring SRR can be conditionally considered 

as the radar because they are very close to the conven-

tional radar by the structural construction as well as by 

the principle of signal generation and processing. The 

measuring SRR is widely used to determine the sub-

stance properties, the motion velocities and the other 

parameters of the various objects [5 8]. 

The radar belongs to the second class of SRR, which 

radiates the probing signal towards the object under 

examination and receives the signal reflected from the 

target. The SRR systems have the distinctive features 

compared to the long-range radars. 

In SRR, the distance between radar and the target 

(object under examination) is often comparable to the 

geometric dimensions of both the radar and the target. 

In this case, the target is located in the near zone of the 

radar antenna where it is extremely difficult to analyze 

the electromagnetic fields with account of the peculiari-

ties of electromagnetic wave generation, reflection and 

diffraction. 

In SRR, the mechanism of prolonged data accumula-

tion, which is typical for long-range radar, is really ab-

sent. At solution the tasks of missile guidance or the 

space apparatuses landing, where time of flight (time of 

interaction) is extremely small while the solution should 

be made extremely fast and reliable, it is impossible to 

use the conventional pulse mode of radar operation 

since the working distance corresponds exactly to the 

usual dead-zone. Therefore, the continuous wave (CW) 

mode is used in SRR that essentially changes the radar 

structure. 

Owing to the small distance to the target, the re-

flected signal in SRR has essentially larger intensity 

than in the conventional long-range radar. Even under 

the strong dispersion of the reflected signal, its ampli-

tude level may constitute the units of percents in respect 

to the radiated signal level. It means that not every re-

flected signal can be considered as a small one. 

Some SRR, due to the operation conditions, for in-

stance, at the artillery shot and at shell flight, are sub-

jected to extremely large acceleration up to 10,000g. 

This essentially increases demands to SRR construction 

durability that can be achieved by means of dense pot-

ting of the UHF and RF units with special rigid com-

pounds. The last measure does not permit to make the 

SRR final adjustment and it is very uncomfortable at 

mass serial production. 

Besides these difficulties, which essentially compli-

cate the development, alignment and implementation of 

SRR, the SRR technology has a number of other prob-

lems. Some of them relate to the necessity of non-

standard power source application, the non-standard 

antennas with specific forms of pattern etc. 
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However, the most difficult problem is to achieve 

the maximal simplicity of UHF unit simultaneously 

with the high technical performances of SRR as a 

whole. One of the ways to solve this problem is the use 

of homodyne configuration of the SRR receiver. The 

improvement of the SRR performance can be achieved 

by integration of the probing signal oscillator (a trans-

mitter) and the frequency converter (an input unit of 

receiver) in the one unit. This unit is called an autodyne 

[2, 4, 9 12]. The autodyne, which is linked with the 

SRR antenna by means of reciprocal circuit, generates 

the probing signal and simultaneously converts the re-

flected signal on the frequency. Such function integra-

tion in the one unit essentially complicates the devel-

opment, designing and implementation of a combined 

device. Along with this, the theoretical analysis of such 

combined device is also very complicated. 

It is known [2, 4] that the autodyne represents the 

non-linear self-oscillating system coupled to the two-

way antenna and being affected by its own delayed sig-

nal. The slightest variations of its mode influence im-

mediately the radiate signal structure, which changes 

the parameters of the signal reflected from the target. 

Considered autodyne features essentially complicate the 

development of the well-composed scientific theory and 

the approaches to SRR engineering design. 

SRR development inseparably relates to the solution 

of the most complicated tasks of the theory, designing 

and adjustment of various types of SRR. Increasing re-

quirements to the SRR performance lead to the neces-

sity of provision the further theoretical research     

towards the implementation of the compact transceiver 

devices with high-accuracy signal processing. 

        

One of the ways for these tasks’ solution is the use 

of autodyne configuration principles for SRR UHF unit. 

Its main element is the autodyne: non-linear self-

oscillation system coupled to two-way SRR antenna by 

means of the reciprocal circuit. If inside the SRR oper-

ating area there is the moving target, then the reflected 

signal received by antenna will be offset in the fre-

quency for Doppler amendment, which is usually much 

smaller of the carrier frequency. In the simple single-

frequency autodyne the forced frequency modulation 

mode is absent. The strong radiated signal and the weak 

reflected signal are interacting on the non-linear auto-

dyne structure. Due to this so-called an autodyne effect, 

all parameters of autodyne (the amplitude of UHF oscil-

lations, a power, the DC currents, an auto-bias voltage) 

will have the amplitude modulation or AC component 

with Doppler frequency. This is exactly the output 

autodyne result, which can be sensed in the power sup-

ply circuits or may be extracted by the amplitude detec-

tor of UHF oscillations. 

Task setting 
 

The goal of this paper is to present the research re-

sults of peculiarities of converted (in frequency) signal 

formation in SRR using the homodyne (or standard su-

per-heterodyne) and the autodyne configurations, and to 

consider in detail the condition of output signal genera-

tion for the simplest frequency converter, which does 

not use the forced frequency modulation; and for the 

weak reflected signals to examine the attendant fre-

quency modulation caused by the autodyne effect and, 

as a rule, not-examined in the published papers. 
 

Heterodyne and homodyne configurations 

Let us consider consecutively the several different 

cases, beginning from the situation, when any reflecting 

object is absent in the SRR operation area [2]. Then, the 

probing signal generated by the transmitter can be pre-

sented as 
 

( ) cos( )prob prob prob probu t U t ! " # ,            (1) 
 

where , ,prob prob probU ! #  are an amplitude, a frequency 

and a phase of the radiating (probing) signal. 

In the absence of the target in the operating area, the 

radiated probing signal is not reflected (in an explicit 

form) and is not received by an antenna. For the consid-

ered homodyne or super-heterodyne receiver a mixer is 

an ideal multiplier. At its output, there is RF filter sup-

pressing the fundamental frequency of the probing RF 

signal and all higher harmonics. At that, some part of 

the radiated signal power is acting at the heterodyne 

input of the mixer. At the second input of the mixer 

there is an input noise only, which may contain the 

noise components located near the carrier frequency. 

As a result, the differential (low-frequency) signal is 

formed at the mixer (or homodyne) output, which con-

tains only the interaction products of heterodyne signal 

and a noise, which frequency is near the carrier fre-

quency. In the upshot, the noise components only are 

present at the mixer output, and there are no any de-

pending on time signal components. 

Thus, in the considered simple case of the target ab-

sence, the amplitude of the differential converted signal 

is equaled to zero and the regular converted signal is 

absent. The converted signal is equal to zero even if due 

to some reasons the amplitude of the probing signal will 

have some low-frequency modulation. In practice, 

however, the mixer is not a simple signal multiplier, but 

a non-linear (for both inputs) element. Therefore, the 

signal  will obtain some parasitic amplitude 

modulation (PAM). When detected, this parasitic com-

ponent will distort the converted low-frequency signal. 

)(tU prob
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So, in the simple situation, when any reflecting tar-

get is absent in the SRR operation area there is no the 

useful signal at the mixer output. 

In this case, when the spectrum transfer is fulfilled 

into the low-frequency range, the situation in the homo-

dyne slightly differs from the super-heterodyne con-

figuration, when the spectrum transfer is fulfilled into 

an intermediate frequency. 

Now let us examine the case when there is the fixed 

reflecting object inside the SRR operation zone. Here, 

the reflected signal appears which can be presented in 

the form: 
 

( ) cos( ),ref ref ref refu t U t ! " #                   (2) 
 

where  are its amplitude, frequency and 

phase, respectively. In this case, the reflected signal 

frequency exactly equals the probing signal frequency 

(the Doppler effect is absent). To obtain the expression 

for the converted signal of the homodyne we will take 

into account the multiplier property of the mixer. Then 

we can define prob ref . Substituting (1) 

and (2) into this expression and carrying out the trans-

formation we find 

, ,ref ref refU ! #

( )conu t ( ) ( )u t u t 

 

( ) {cos[( ) ]con prob ref prob refu t D t ! " ! " # " # "  

cos[( ) ]}prob ref prob reft" ! $! " # $ # , 
 

where ; con prob ref  is the amplitude 

of the converted signal. Neglecting the first RF compo-

nent of this expression (we consider it as a filtered one) 

we get the following equation for determination of the 

converted signal: 

2/conUD  U U U 

 

( ) cos[( ) ]con prob ref prob refu t D t ! $! "# $# , 
 

where ; con  is the amplitude of the con-

verted signal. For the situation when  this 

equation is transformed into 

2/conUD  U

prob ref!  !

 

( ) cos( )con prob refu t D # $ # .                 (3) 
 

In accordance with equation (3) after RF component 

filtering, the direct voltage appears at the mixer output. 

This voltage is determined by the value of conU  that 

takes into account the attenuation at radiation, reflection 

from the target, and reception, and depends on the 

phase difference . prob ref

If the low-frequency amplitude modulation (useful 

or spurious) of the heterodyne signal takes place, the 

modulated signal is detected due to the mixer non-

linearity, and spurious signal of modulation appears at 

the mixer output. This signal has no any relations with 

the target, is not defined by target parameters and can-

not consider as useful. 

# $ #

Thus, at fixed reflecting object presence in the SRR 

operation zone, the signal at mixer output represents the 

DC voltage depending on the phase difference of prob-

ing and reflected signals. Appearance of this DC volt-

age at the mixer output indicates merely the presence of 

the fixed object and does not carry any useful informa-

tion. 

Let us suppose now that the object is moving with 

non-zero radial velocity inside the SRR operation zone. 

This velocity will cause the Doppler variation in fre-

quency. In this case, the reflected signal appears with 

the time delay % , which determines by propagation 

time of the electromagnetic wave from radar to target 

and back, i.e. %  is the function of the doubled distance 

to the target. If during propagation time of the electro-

magnetic wave the delay does not change or has the 

small changes, then it can be represent in the following 

form: 

2 /r c%  ,                                 (4) 
 

where r  is the distance from observation point to the 

target,  is the propagation velocity of the electromag-

netic wave. If the radial velocity of the target does not 

change in time (

c

constradV  ), then denoting the named 

velocities relation as /radV c&  , we get from (4) 
 

2 t%  & .                                 (5) 
 

As follows from (5) the delay at long time intervals 

depends linearly on time, although it can have the small 

variation during the propagation time. Because the 

value &  is extremely small, the actual variation of % , in 

accordance with (5), occurs during the large time inter-

vals only. 

Let us determine the Doppler amendment to the fre-

quency of the received signal. As it follows from (1), 

the probing signal is pure sine. The reflected signal is 

delayed for the time of % . Then 
 

( ) cos[ ( )ref ref ref refu t U t ]$ %  ! $ % " # .         (6) 
 

It follows from (5) and (6) that 
 

2ref ref t t! %  &!  ' ,                      (7) 
 

where '  is Doppler frequency defined by the follow-

ing expression: 
 

2 ref'  &! .                               (8) 
 

Combining (6) and (7), we get: 

( ) cos(ref ref ref refu t U t t )$ %  ! $' " # .         (9) 
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As follows from (9), in the discussed case, the fre-

quency of the reflected signal is shifted on the Doppler 

amendment with respect to frequency of probing signal. 

If the radial velocity of target is varied in time (e.g., due 

to the target foreshortening change), then the Doppler 

frequency is changed as well. That, of course, influ-

ences the radar efficiency. If the target flights beside the 

radar, then its radial velocity passes through zero and 

changes the sign. This phenomenon can be used to de-

termine the minimal distance from SRR to the target. 

Let us examine the conversion of the reflected signal 

for the scenario, when there is the Doppler variation in 

frequency. Taking into account that the reflected signal 

is delayed we obtain from (1) and (9) 
 

( ) [cos( )cos( )]con con prob prob ref refu t U t t t ! " # ! $' " # .
 

This equation can be rewritten in following form: 
 

( ) {cos[( ) ]con prob ref prob refu t D t ! "! $' " # " # "  

cos[( ) ]}prob ref prob reft" ! $! "' " # $ # . 
 

Neglecting here the first term because of its small-

ness as a result of RF components filtration we finally 

obtain the following expression for the converted sig-

nal: 

( ) cos[( ) ]con prob ref prob refu t D t ! $! "' " # $ # . (10) 
 

Assuming that DC components of probing and re-

flecting frequencies are equal, we get from (10): 
 

( ) cos( )conu t D t ' " ( , 
 

where prob  is the phase difference, which is 

constant in time. 
ref(  # $ #

As follows from equations (6) (10) the signal at 

mixer output (after filtering the RF components) repre-

sents the single-frequency Doppler signal. Hence, in 

this case, the type of SRR is the Doppler one and can 

determine the value of radial velocity of target. To gate 

the converted signal on velocity after its amplification, 

this signal runs through a filter tuned to Doppler fre-

quency defined by equation (8). 

So, in the considered case, the spectrum of the con-

verted signal has one component on the Doppler fre-

quency. 

Let us determine the spectrum of the RF reflected 

signal. As it follows from previous consideration, the 

signal on the mixer second input has the component on 

the offset probing frequency '$prob! . At that, the 

sign of '  depends on the direction of target motion in 

respect to SRR. 

Let us examine the case, when amplitude of hetero-

dyne oscillations is modulated by the sine signal, which 

frequency m'  is much more than the Doppler fre-

quency. Then, the expression for the converted signal 

can be written as: 
 

( ) (1 cos )cos( )con con a m prob probu t U m t t " ' ! " # )  

cos( )ref reft) ! " # , 
 

where a  is the coefficient of amplitude modulation of 

the converted signal. 

m

Taking into account that  we get ref prob!  ! $'
 

( ) (1 cos ) [cos( )con con a m prob probu t U m t t " ' ) ! " # )  

cos( )]prob reft t) ! $' " # . 
 

This expression can be written in alternative form 
 

( ) (1 cos ){cos[(2 )con a m probu t D m t t " ' ! $' "  

] cos( )}prob ref prob reft"# " # " ' " # $ # . 
 

Neglecting here the term  cos[(2 )prob probt! $' " # "
]ref"# because of its smallness as a result of RF com-

ponents filtration we obtain: 
 

( ) cos( ) cos cos( )con a mu t D t Dm t t ' " ( " ' ' " ( . 
 

Carrying out the transformation of this relation we 

finally obtain the following expression for the con-

verted signal: 
 

( ) cos( ) ( / 2)con au t D t Dm ' " ( " )  

{cos[( ) )] cos[( ) )]}m mt t) ' $' $( " ' "' " ( . (11) 
 

As follows from (11) in the considered case the con-

verted signal has the one previous Doppler component 

and two components on frequencies m' $'  and 

m' "' . There are no signal components on the ampli-

tude modulation frequency. 

Hence, the homodyne (heterodyne) SRR configura-

tion for the continuous wave signal without frequency 

modulation can be used as a Doppler SRR measuring 

the target velocity or indirectly the range to the target 

through variation of Doppler frequency for the known 

trajectory. 
 

Autodyne configuration of short-range radar 

without frequency modulation 
 

If there is no target in the SRR operation zone, the 

signal formed by the autodyne and radiated by an an-

tenna has a form (1). If the target is absent, the probing 

signal is not reflected and received by the receiving an-

tenna. If the signal falling into the bandwidth of the op-

eration frequencies does not influence autodyne, then 

no autodyne effect occur. At that, there are no any use-

ful variations in the RF signal envelope and in the auto-

bias DC voltage depending on the time phase (or fre-
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quency) variations. On the amplitude detector or in the 

bias circuit there is only output noise which can contain 

all the noise components including those which fre-

quency spectrum is located near the carrier. 

Thus, no useful signal is forming at the autodyne 

output when target is absent like in the homodyne con-

figuration. 

If there is a fixed reflecting object in the SRR opera-

tion zone, the reflected signal will appear in antenna 

defined by equation (2), where the reflected signal fre-

quency is exactly equal to the probing signal frequency 

(Doppler effect is absent). However, unlike the homo-

dyne configuration, the analysis of the converted signal 

in the autodyne represents the serious difficulties. We 

can suggest the following approach to find out the con-

verted signal in the autodyne. In accordance with this 

approach, the solution of the full differential equation of 

the autodyne can be replaced by the analysis of the sys-

tem of three “abbreviated” differential equations having 

the form [2]: 
 

( , )
cos

refoc
nat

oc oc

kIG U E GdU
T U
dt G G

$
 " ! % ;     (12) 

( , )
sin

refoc
nat

oc oc

kIB U E TGd
TU U

dt G G

$ *#
 $ ! % ;  (13) 

ememextem REUJEE
dt

dE
T ),($$ ,         (14) 

 

where  is the amplitude of the autodyne controlling 

voltage; 

U

E  is DC auto-bias voltage; , ),( EUG ( , )B U E

)! +

 

are active and reactive components of the averaged 

conductance of the active element;  is the 

time-constant of autodyne oscillating circuit; ocG  is the 

active conductance of the oscillating circuit; 

0nat  is the detuning of the natural frequency in 

respect to the reference frequency 0! ;  is the feed-

back factor; ref  is the amplitude of antenna current 

caused by the reflected signal; ext  is the voltage of the 

external bias source; em  is non-linear DC current 

through the 

02 / (T  

k

*  ! $!

I

E

J

RC -circuit of auto-bias; ememem  is 

the time-constant of emitter auto-bias circuit; +  is the 

damping factor. First two equations (12), (13) are the 

equations of the HF circuits but the third one (14) is the 

auto-bias circuit equation. 

CRT  

The examination of equations (12) (14) shows the 

following. 

At reflected signal absence ( ), the first two 

equations describe exactly the autonomous mode of an 

oscillator. Equation (12) corresponds to transient mode 

for stationary amplitude, and the second equation de-

scribes the transient process for phase relationships in 

oscillator, i.e. the oscillation frequency. If the active 

element is inertia-free (

0 refI

0 B

I

), it follows from (13) that 

the natural frequency of the oscillation circuit is equal 

to the frequency of autonomous oscillations ( ). 0*  
When the auto-bias circuit is present, the first equa-

tion should be considered together with the third equa-

tion. The joint solution of equations (12), (14) allows to 

determine steady-state parameters and to study the tran-

sients  and . )(tU )(tE

The presence of the signal reflected from the object 

under examination at the autodyne input, can be mod-

eled by the appearance in the first two equations of the 

additional terms with ref , representing the external 

time functions. Addition of these terms into the oscilla-

tor non-linear equations transfers it to the non-

autonomous mode. With account of (7), these additional 

components will have the form of the harmonic func-

tions of the Doppler frequency: 
 

cos cos
ref ref

nat

oc oc

kI kI
t

G G
! %  

)

. '

 

The examination of (12) (14) shows that the re-

flected signal is not included into the explicit form in-

side the auto-bias equation. As equations (12), (13) 

show, the reflected signal appearance in the auto-bias 

circuit happens due to occurrence of the autodyne sig-

nal in the RF voltage amplitude U  as well as in the fre-

quency 0/ (d dt t#  ! $!  where  is the autodyne 

frequency depending on time. Autodyne amplitude in-

crement from (12), being substituted into equation (14) 

for the auto-bias voltage, defines the autodyne bias sig-

nal. Therefore, the mechanism of autodyne auto-

detecting occurs. 

( )t!

Determination of the converted and high frequency 

signals appearing in the autodyne is one of the most 

complicated problems of SRR theory. Equation (12) is 

principally non-linear one in respect to the varying in 

time amplitude. It describes the particularly non-linear 

process of exciting and developing of oscillations. The 

solution of such non-autonomous and non-linear equa-

tion with the right part in the form of the sine function 

of Doppler frequency is enough complicated. The solu-

tion complexity is defined also by the fact that the right 

part of equation initially contains the signal delayed in 

time. As a result, this equation has a structure of differ-

ential equation with the retarded argument. 

Factually, the solution of equation (12) may be es-

sentially simplified assuming that the reflected signal 

amplitude is much less than the probing signal ampli-

tude. In this case the process of solution obtaining can 

be divided into two stages. Assuming that the reflected 
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signal amplitude is equal to zero, we find out at the first 

stage the general solution of the autonomous equation. 

This equation is well-known in the oscillator theory. It 

allows the determination of the autonomous amplitude 

value U  and then the auto-bias voltage value . 0 0

At the second stage, we can take into account the 

earlier assumed supposition about smallness of the re-

flected signal. For this, we find out the partial solution 

of the non-autonomous equation considering that the 

non-autonomous solution differs a little from the 

autonomous values:  and 

0

E

0( ) ( )U t U t " ,
( ) ( )E t E t " -  at 0  and 0U,.. E- .. . Here, ,  and 
 are small increments depending on time, which 

represent the autodyne signals of amplitude and 
auto-bias voltage. Using the conditions of small-
ness of  and , we can linearize the non-linear equa-

tions (12) (14) around the point of so-called stationary 

autonomous mode. Let us illustrate this approach on the 

example of a single auto-bias circuit. 

-

, -

It follows from the equations for the steady-state 

autonomous mode that 
 

ocGEUG  ),( 00 ; 

extemem EREUJE  " ),( 000 . 
 

We find out the well-known equations of so-called 

diagrams of skip and bias for the single-tuned oscillator. 

Having solved them (analytically, graphically, or nu-

merically), we obtain the unknown parameters of the 

steady-state mode  and 00U E . Having calculated then 

the function 0 , we find out  from (13) 

for , i.e. the frequency in autonomous mode. If 

, then this frequency does not coincide with ref-

erence frequency

), 0E(UB /d dt#
0 refI

0/B
. 

Now we can proceed to the search of the partial so-

lution of the non-autonomous system (12) (14). At 

first, we examine equations (12) and (14) with the pur-

pose of  and  obtaining, and then we determine 

from (13) the frequency increment. 

( )t, ( )t-

For this we expand the non-linear terms of equations 

(12) and (14) into Tailor series in orders of ,  and - : 
 

0 0
0

( , )( , ) ( , )
[

oc oc oc

G U EG U  G U E
U U U

G G U G

0
 "

0
],"  

2
2

2

( , ) 1 ( , )
[ ] [ ]

2oc oc

G U E G U E
U U

E G GU

0 0
" - "
0 0

, "  

2
2

2

1 ( , )
[ ]

2 oc

G U E
U

GE

0
"

0
...- "                 (15) 

Neglecting here the second and higher orders of the 

increments due to their smallness, substituting (15) in 

(12) and excluding the equations of steady-state mode, 

we find out the first linearized differential equation of 

the autodyne: 
 

0 0 0 0 cos
ref

oc oc oc

kIU G U Gd
T t
dt G U G E G

0 0,
 ," - " '

0 0
, 

 

where  is the function value in the autonomous 
point. 

0G

This equation may be rewritten in the following 

form to be more suitable for the future consideration: 
 

' sk

d
T
dt

,
cosF t" ," 1 -  ' ,               (16) 

 

where 0 0' / [( / )( / )]ocT T U G G U $ 0 0

( / ) / ( / )G E G U

 is the reduced 

time constant of the oscillation circuit; 

0 0sk1  $ 0 0 0 0

( / ) / [ ( / )(ref oc oc

 is a parameter defining 

by the slope of the skip diagram in the autonomous 

point; 0 0 / )]F kI G U G G U $ 0 0  is the 

reduced amplitude of the reflected signal. 

We can see that all terms in (16) have the voltage 

dimension. Two unknown increments are included into 

this equation. To find out the solution, one additional 

equation should be added to it, which can be obtained 

from the equation of the auto-bias circuit. Having lin-

earized the non-linear terms in equation (14), we get 
 

0 0
0 0( , ) ( , ) ...em em

em em

J J
J U E J U E

U E

0 0
 " ," - "

0 0
(17) 

 

Having substituted (17) into (14) and excluding the 

equation of steady-state mode for the auto-bias circuit, 

we obtain the second unknown equation 
 

0 0em em
em em em

J Jd
T R R

dt E U

0 0-
 $- $ - $ ,

0 0
.      (18) 

 

Equation (18) can be rewritten also in the reduced 

parameters: 
 

1
'em

bi

d
T

dt

-
" - " ,  

1
0 ,                    (19) 

 

where '
0/ [1 ( / )]em em em emT T R J E " 0 0

bi

 is the reduced 

time constant of auto-bias circuit; !  is the slope of 

bias diagram in the autonomous point. We can see that 

all terms in equation (19) have the voltage dimension. 

Expressions (16) and (19) represent together the si-

multaneous system of two linearized equations of the 

autodyne. The first (high-frequency) equation (16) con-

tains the reflected signal and has a non-autonomous 

character. The second equation (19) is an autonomous 

equation of auto-bias circuit. This system describes the 

behavior of the autodyne signals for amplitude ( )t,  and 

auto-bias voltage ( )t-  at different amplitude and fre-
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quency of the reflected signal for the various values of 

the mode parameters defining by the values of deriva-

tives of functions  and mG  eJ . The simultaneous sys-

tem of two linearized equations considered can be re-

written in the matrix form in respect to two autodyne 

 

t2
3
4

.      (20) 

ste of the autodyne linearized 

equ

he 

equ

ions on the as-

sum

d by equation by means of the 

ter

signals: 

'

1 ' cos

01 / 1

pT t F5 2 , '5 2 5
)  6 3 6 3 61 " 7 4 77 4

( )

( )t-

m 

 

sk

pT

" 1

 the high-frequency

bi em

 

Let us analyze the sy

ations (20). 

1. It can be seen, that (20) is the second-order sys-

tem of the differential equations because it contains the 

first-order derivative in the abbreviated equation of the 

single tuned circuit and the first-order derivative in t

ation of the single RC-chain of auto-bias voltage. 

2. The system (20) is linear in respect to increments 

(i.e. autodyne signals) since it is obtained by lineariza-

tion of the autodyne non-linear equat

ption of reflected signal smallness. 

3. The auto-bias equation of system (20) does not 

contain the reflected signal. Autodyne mode is de-

scribe

m cosF t' . 

The analysis of the system of equations (20) allows 

to make the following conclusions in respect to the 

autodyne converted signal. 

As the solutions of (20) the signals ( )t,  and ( )t-  

consist of two components. The first one (autonomous) 

defines the initial transient of the autodyne output sig-

nal at 0 F , when the autonomous values of incre-

ments are equal to zero. At the transient end, due to in-

crements absence (the absence of the autodyne signals), 

the autodyne ode of waiting for reflected 

sig

passes to the m

nal. 

These autonomous components of the signals ( )t,  

and ( )t-  can be described by

'

sk

pT
6 3

' )

 the following m

equation for th ents: 
 

            (21) 

e 

autonomous (free ode) oscillator follows fro
 

 ,           (22) 

wh

atrix 

e increm

1 '5

m

')(1" "

( )
0

( )1 / 1

pT t

t

" 1 2 ,5 2
)  6 3-1 " 7 4

.
bi em7 4

 

The well-known characteristic equation of th

m (21): 

(1 / 0pT pT $1 1em sk bi

 

ere p  is the index of exponential solutions. 

Quadr icat  ch equation (22) has two solu-

tions for 

aracteristic 

p  

0 1p( )t p 2( ) [ex exp( )]t, " .p t  ,  

If the autonomous mode is stable, the autonomous 

solutions for the increments ( )t,  a hand ( )t- ve the de-

caying behavior in accordance with equation (22). 

 

The second component of the solution of equation 

(20) represents the autodyne signal arising at 0/F . 

Because the right part of equation (20) is the harmonic 

function of Doppler frequency, the solution of the non-

autonomous equation in the form of an increment 

(autodyne signal) is the harmonic function as well: 
 

( ) cos( )aut t t ,,  , ' " ( , 
 

where ,  is the amplitude of the voltage autodyne signal 

( )aut t, ; ,(  is its phase. Substituting the obtained solu-

tion into equation (19) for auto-bias DC voltage incre-

ment, we get the non-autonomous equation with the 

pure harmonic right part and hence, the increment ( )t-  

takes the following form: 
 

( ) cos( )aut t t --  - ' " ( , 
 

where -  is the amplitude of the auto-bias autodyne sig-

nal ( )aut t- ; -(  is its phase. The amplitudes of the auto-

dyne signals can be expressed via the autodyne parame-

ters. 

Let us consider a spectrum of the autodyne con-

verted signal in the case when the target is moving. We 

assume that the auto-bias signal is used as an output 

autodyne signal, and the auto-bias autodyne signal is 

caused, as usual, by the own detector properties. It can 

be shown that it is the Doppler harmonic signal super-

imposed onto DC bias voltage. 

Thus, the converted signal spectrum can be dis-

played on the frequency scale by the single spectral line 

on the Doppler frequency. At that, the signal phase -(  

does not affect the autodyne features. 

For effective application of theoretical investigations 

in the designing of SRR it is necessary to consider in 

detail the case when the increment of HF voltage ampli-

tude is used as the useful autodyne signal. This incre-

ment can be extracted with the help of an amplitude 

detector with followed filtering of HF components. 

Then the HF autodyne voltage can be expressed in the 

following form: 
 

( ) [ cos( )]prob probu t U t , " , ' " ( )  

cos( )prob probt) ! " # .                 (23) 
 

It follows from previous analysis that HF voltage 

represents the pure AM signal. It means that the HF 

signal spectrum consists of the carrier frequency and 

two symmetrical collateral lines shifted in respect to the 

carrier on the Doppler frequency. The single Doppler 
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component will be generated at the amplitude detector 

output after filtering the HF components. It is obvious 

that such signal spectrum occurs at the ideal (linear) 

detector. For the real detector, due to the non-linearity 

of its characteristics, the higher harmonics of Doppler 

frequency may occur in the autodyne signal spectrum. 

Thus, we see another result on the spectrum struc-

ture for the autodyne without FM compared to the ho-

modyne (heterodyne) configuration. To compare these 

situations we assume the spectra identity of both the 

output signal of the autodyne and the converted signal 

of the homodyne (heterodyne). Then the received signal 

spectrum in the homodyne configuration has a single 

component (the carrier frequency shifted on the Dop-

pler frequency), but in the autodyne besides the carrier 

frequency two Doppler components are added: one 

from each side (left and right) from the carrier. 

To determine the cause of this difference we must 

consider the structure of HF autodyne signal more accu-

rately. After reception of the first reflected signal, the 

carrier frequency generated by the autodyne acquires an 

amplitude modulation with Doppler frequency ' , hav-

ing a very small modulation factor under usual condi-

tions. Now towards the target the AM signal is emitted 

in contrast to the homodyne cascade. Then the probing 

signal acquires the form that is described by the expres-

sion (23). Assuming that the reflected signal received 

by an SRR antenna has the time delay of % , we obtain: 
 

( ) { cos[ ( ) ]}ref ref refu t U t ,$ %  " , ' $ % " ( )  

cos( )ref reft t) ! $' " # .                  (24) 
 

Although %  is small compared to the period of the 

HF signal, it can not be neglected for near systems. The 

whole principle itself of the autodyne and homodyne 

conversions with determination of the Doppler fre-

quency is based on this assumption. But the delay can 

be considered as negligible compared to the Doppler 

period. In this case we can neglect the appropriate delay 

in the equation (24). As a result, equation (24) is re-

duced to the following expression: 
 

( ) [ cos( )]ref ref refu t U t ,$ %  " , ' " ( )  

cos( )ref reft t) ! $' " # . 
 

In this case, the initial autodyne equations (12) and 

(13) acquire in the right parts the following terms: 
 

cos ;nat8 ! %  cos nat$8 ! % , 
 

where / [1 cos( )].ref oc refkI G t ,8  " , ' " (  

If the reflected signal ref  may be considered as a 

small and weakly varying the free oscillator mode (i.e. 

the increment 

I

ref,  and  are the values of the same 

order), then the product 
refI

refI ref,  has the next order of 

smallness and we can neglect it in the autodyne equa-

tions. Thus, the radiation HF carrier modulated in am-

plitude by the signal with Doppler frequency does not 

result in the noticeable variation of HF autodyne signal 

spectrum obtained above. 
 

Accompanying frequency modulation 

in a single-frequency autodyne
 

The formation of autodyne response of both the am-

plitude and the auto-bias voltage was considered above 

in detail for the usual autodyne in case when frequency 

modulation (FM) is absent. The spectra of HF and con-

verted signals were analyzed in the autodyne and the 

homodyne configurations. 

The analysis of (12) (14) shows that equation (13) 

for frequency in the first-order approximation can be 

examined after the analysis of equations for oscillations 

amplitude and auto-bias voltage. From these equations 

it follows that for the single-frequency autodyne, in the 

first-order approximation, the frequency does not influ-

ence amplitude in spite of the explicit system non-

isochronism at 0/B . 

Nevertheless, more accurate consideration of the 

autodyne signal formation requires taking into account 

the components resulted from the frequency variation. 

Let the moving object be acting in the SRR operation 

zone and the autodyne signals are considered in the 

analysis not only in amplitude and the auto-bias volt-

age, but in frequency. Having determined the autono-

mous features of single-tune oscillator and then the 

autodyne increments ,  and , we can obtain from 

equation (13) the time function , i.e. the incre-

ment of the oscillation frequency. Having applied the 

previous analysis procedure to equation (13), we obtain 

the autonomous equation ( ) in the following 

form: 

-

ref

/d dt#

0 I

 

( ,B U ) oc

oc

E TGd
TU U

dt G

$ *#
.                 (25)  

 

It follows from (25) that in the steady-state mode 

( , ) 0ocB U E TG$ *   or  0 0 oc

Now in (13) we introduce the autodyne increment 

for phase 

/ ( ).B TG!  ! "nat

( )t9  in accordance with the following equa-

tion 0( ) ( )t t(  ( " 9 , where  is considered to be 

small in respect to the stationary values. Let us linearize 

equation (13) in respect to the autonomous point with 

account of the phase increment . Having excluded 

the steady-state equations from the linearized equation 

for phase, we obtain: 

( )t9

(9 )t
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0 0 0
0 ( ) sin

ref

nat

oc oc

kIU B Bd
TU

dt G U E G

0 09
 ," - $ !

0 0
% .    (26) 

 

It should be noted that the autodyne signals , and -  

have the same order of smallness as a value ocref  

Then, all components in the right part of (26) after re-

ducing the similar terms are forming the pure harmonic 

function with the Doppler frequency. Therefore, the left 

part of equation (26) is also the harmonic function in 

time. Exactly, the equality  is the 
condition for the oscillations frequency to be the 
harmonic function 

GkI / .

/d dt9  /d# dt

 

( ) cos( )prob natt !!  ! " : ' " (t ,            (27) 
 

where : ,  are the amplitude and the phase of the 

autodyne signal of frequency. 
!(

It is interesting to consider the usual single-

frequency autodyne when moving target is present in 

the SRR operation zone and the oscillator is non-

isochronous in the steady-state mode (i.e. B  depends 

on  or U E ). Then the autodyne signal appears in the 

oscillations frequency as well. This indicates that the 

autodyne signal can be detected by means of the fre-

quency or phase detector even when it has the same 

smallness order as the amplitude autodyne signal. 

Thus, the reflected signal almost does not depend on 

the internal autodyne amplitude modulation. An influ-

ence estimation of the accompanying frequency modu-

lation on the reflected signal is not simple and that re-

quires the special investigation. 

As the reflected signal frequency acquires the Dop-

pler modulation of (27) type, the probing signal in the 

single-frequency autodyne can be expressed as 
 

( ) [ cos( )]prob probu t U t , " , ' " ( )  

cos{[ cos( )] }nat probt t!) ! " : ' " ( " # .       (28) 
 

It follows from (28) that the reflected signal is ex-

posed to the amplitude and frequency modulations on 

the Doppler law. Hence, taking into account both the 

attenuation and the time delay on %  the reflected signal 

received by the antenna can be presented in the form:  
 

( ) ( cos )ref ref refu t U ,$ %  " , ; )  

cos[( cos )( ) ]nat reft!) ! " : ; $ % " # ,         (29) 
 

where ; . [ ( ) ]t, ,;  ' $ % " ( [ ( ) ]t!;  ' $ % " (!

The examination of (29) shows that due to smallness 

of  compared to the Doppler period, we can also ne-

glect the term with  in the amplitude factor. The sig-

nal part in (29) contains the fundamental carrier 

%
%

natt!  

and the fundamental Doppler component nat . 

The both amplitude and phase in expression 

t! %  '

cos ( )t!: ; $ %  depend on the autodyne parameters. 

The total phase of the reflected signal (29) is defined as  
 

( , ) ( )nat natt t t< %  ! $! % " : $ % )  

cos[ ( ) ] reft !) ' $ % " ( " # , 
 

from which we can determine the reflected signal fre-

quency 
 

( ) / [cosref natt d dt !!  <  ! $' " : ; $

]

 

cos ( )(1 )sint! !$= ; $' $ % $ = ; ,          (30) 
 

where / nat=  ' ! . Equation (30) can be rewritten in 

more suitable form: 
 

( ) [cosref natt !!  ! $'" : ; $  

2cos (1 ) sin ].t! !$= ; $' $ = ;              (31) 
 

It should be noticed that all terms in both equations 

(30) and (31) have the dimension of frequency. As the 

amplitude of the autodyne signal of frequency :  has 

the first-order of smallness in respect to ref , and a 

value of 

I

:=  has the next smallness order, we obtain 

from (31): 
 

( ) (cos sin )ref natt t! !!  ! $' " : ; $' ; . 
 

Thus, in the first approach, the reflected signal fre-

quency is differed from the probing signal frequency on 

the value of ' . It means that in the case of the moving 

target, the accompanying frequency (or phase) modula-

tion arising due to Doppler effect does not influence the 

formation of all autodyne signals. Certainly, this con-

clusion is right in the case of the absence of forced fre-

quency modulation and at the small reflected signals. 
 

Conclusions
 

The homodyne and super-heterodyne conversions (at 

mixer presentation as an ideal multiplier with the output 

high frequency filter) and the autodyne conversion un-

der similar assumptions lead to the similar representa-

tions for the converted signals. At slow changes of the 

Doppler frequency, the resulting converted signal at the 

output of both the homodyne and the autodyne has the 

only one spectral component at the Doppler frequency. 

The similar results concerning both homodyne and 

autodyne signal processing are typical in the millimeter 

short-range radar systems constructed on the Gunn di-

odes [9]. The theory of microwave and millimeter wave 

autodynes is far from full completion. Many problems 

in the field of short-range radar implementation require 
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the theoretical and practical investigations. Here the 

problems of the combined modulation application of the 

probing signal (for example, the simultaneous ampli-

tude and frequency modulation), and the digital ap-

proaches to modulation and signal processing should be 

included [11!15]. The problems of high-speed per-

formance analysis of the autodyne systems and the top 

speed of the probing signal modulation are of consider-

able interest [15, 17, 18]. It is very important now to 

increase essentially the short-range radar noise immu-

nity, for instance by means of the application of com-

plicated noise-type modulation. The problems of forma-

tion and examination of near electromagnetic fields are 

not solved now. The solution of these extremely com-

plicated problems enables the creation of the novel ra-

dio engineerin

s [16, 19]. 

It is expedient to attract an attention of readers to 

discussion of the mentioned problems related to the 

theory and construction of the short-range radar sys-

tems. These problems may be attributed to one of the 

most interesti
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