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The information densities of perfect and real images are defined based upon classical 

information theory. This definition accounts for image dynamic range, noise, dropouts, false alarm, 
diffraction effects and image aberrations. The functional form of these theoretical equations for 
information density is found to be similar to the general form of the empirically derived image 
quality equations that predicts the interpretability of imagery. This functional similarity suggests 
that interpretability of images and the lidar detection, recognition and characterization of objects 
within those images may be directly related to the information density of the image. 
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Introduction: Image Information Density Definition 
The mean information density can be defined as the total information content of 

the image divided by the total, geospatial area of the image or 

Total

Total

A

I
K = , (1) 

where K  is the mean information density in bits per square meter, TotalI  is the total 
information content of the image, and TotalA  is the total physical area covered by the 
image in square meters.  

If a digitized image is considered in the context as a message to be communicated 
and each pixel contains the same amount of information, then the total information 
content of that image can be expressed as 

( )XHNITotal ´= , (2) 
where N  is the number of pixels in the image, ( )XH  is the Shannon entropy [1] of 
the random variable X  which can be interpreted at the intensity of an individual 
pixel. In this context, each pixel may be regarded as a symbol in the message. 

The total area can be expressed as 
2GSDNATotal ´= , (3) 

where GSD  is the mean ground sampling distance in meters and all other terms are 
as previously defined. In this context, the GSD  is the distance between the centers of 
adjacent pixels when projected to object space.   

By substituting (2) and (3) into (1), it is obvious that the mean information density 
( )

2GSD
XH

K = . (4) 

 
Information Density of Perfect Imagery 
If all values of each symbol are completely independent of the value of any other  
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symbol, the signal does not contain any noise and there are no dropouts, then the 
Shannon entropy of a continuous signal may be expressed as 

( ) ( ) ( )dxxpxpxHSource 2logò
¥

¥-

-= , (5) 

where x  is the individual values that the random variable can assume, ( )xp  is the 
probability that the random variable will take on the value x  and all other terms are 
as previously defined. If the image is digitized so that x  can take on only a finite 
number of discrete values, then the information may be expressed as 

( ) ( ) ( )å
=

-=
n

i

xpxpxH
1

2log , (6) 

where n  is the number of possible discrete values that each pixel may take on and all 
other terms are as previously defined. 

If the digitized imaging system is perfect, then all of the information will be 
preserved and the mean information density of the image will be given by 

( ) ( )
2

2
1
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GSD

xpxp
K
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i
å
=
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where all terms are as previously defined. The information density has units of bits 
per square meter. 

 
Information Density of Real Imagery 
Unfortunately, noise, dropouts and false alarms corrupt real images. The 

intensities and textures of real images are spatially correlated and the imaging system 
is limited by diffraction, aberrations, scattering and other imperfections. All of these 
effects must be considered in order to determine the information density of a real 
image. 

First, noise introduces uncertainty in the measured value of the signal. Noise 
causes the measurement (i.e., equivalent to the reception of a transmitted 
communications signal) to be different from that of the source (i.e., transmission). 
Noise results in a reduction of the information received. If the source intensity is 
known, this reduction in information is known as equivocation. If the measurement is 
known but the source is not, the information loss is known as uncertainty. The two 
formulations are equivalent. It fact, it can be shown that [1] 

( ) ( ) ( ) ( )yHyHxHxH xy -=- , (8) 

where ( )xH  and ( )yH  are the entropy of the source and the received signal, 
respectively, ( )xH y  is the equivocation and ( )yH x  is the uncertainty. 

Second, dropouts also reduce the information content of the image, but their 
effect is different from noise. While noise corrupts the information in an unknown 
way, dropouts result in missing pieces of information, but the omission is known. 
Consequently, dropouts reduce the information of the source and reduce the 
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corrupting effects of noise proportionately. The probability of detection then becomes 
a coefficient to the source entropy and to the entropy of uncertainty. 

Third, false alarms further reduce the information content of the image by 
introducing totally spurious detection events that are not correlated with any element 
of the signal generated by the source. “Snow” in a video image is one manifestation 
of false alarms. Unlike dropouts, these spurious detections cannot be identified a 
priori. They also reduce the information content of the image, but not in a 
deterministic manner. This reduction in the information is given by [1] 

( ) ( ) ( )xpxpXH fa

n

i
fafa 2

1

logå
=

-= , 
(9) 

where ( )XH fa is entropy of the false alarms associated with the random variable X , 

( )xp fa  is the probability of a false alarm having the value of x  and all other terms are 

as previously defined.   
Fourth, imperfections, whether from diffraction, aberrations or scattering, in the 

optical systems will result in image blur. The intensity associated with an individual 
pixel is not independent of the intensity of adjacent pixels. This also results in a loss 
of independence in the actual measurements. When a symbol transmitted by a 
communications channel depends, in some fashion, on the symbols that preceded it, 
the communications channel is said to have memory.  

Fifth, the intensities in the image are not independent. Real images, just like 
messages composed in real languages, contain redundancy [1].   

As a result, the entropy of a measured image is less, possibly considerably less, 
than the entropy of the original source. The resulting image entropy is given by 

( ) ( ) ( )[ ] ( )XHPXHXHPXH fafaYSourced --= , (10) 

where dP  is the probability of detection, faP  is the probability that a false alarm will 

occur and all other terms are as previously defined.   
By substituting (10) into (2), it can be seen that the mean information density of a 

real image may be expressed as 
( ) ( )[ ] ( )

2GSD

XHPXHXHP
K fafaYSourced --
= , (11) 

where all terms are as previously defined.  
 
Comparison of Information Density and Image Quality Equations 
The original General Image Quality Equation (GIQE) developed for visible 

imagery is given by [2] 

SNR
G

J
GSD
RER

NIIRS --÷
ø
ö

ç
è
æ+= 48.1log32.381.11 10 , (12) 

where NIIRS  is the image quality rating assigned in accordance with the National 
Image Interpretability Rating Scale, RER  is the relative edge response, J  is the 
mean height overshoot caused by edge sharpening, G  is the noise gain resulting from 
edge sharpening and SNR  is the signal to noise ratio. The original GIQE used the 
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symbol “ H ” for the height overshoot. Shannon also used the same symbol to 
represent the information entropy and the same symbol is used here in deference to 
Shannon’s symbology. The symbol “ J ” has been substituted here in the GIQE to 
avoid confusion with the Shannon Entropy.  

This form of the GIQE was entirely empirically derived. It has been refined [3] 
and extended [4] to other imaging technologies, but the basic form has remained 
largely the same.  

Studies have shown good, but not perfect, correlation between NIIRS predicted by 
the GIQE and trained analysts’ assessments (i.e., correlation coefficients greater than 
0.9). Images used in these studies had been optimized for dynamic range and 
contrast, and had been processed to sharpen edges within the image.   

The high correlation between predicted and assessed NIIRS  values suggests that 
the terms included in the GIQE are important to the interpretability of an image, but it 
is not conclusive. The strongest functional dependencies are for SNR  and RER , both 
of which are logarithmic. With respect to the underlying engineering parameters, the 
correlation is much lower. In fact, these same studies have shown more than an order 
of magnitude dispersion between the predicted and assessed NIIRS  values. 

Noting that SNR  is just the peak signal (i.e., measured intensity) divided by the 
root of the variance of the signal and that xx 102 log32.3log = . Equation 12 can be 
rewritten as 

max

2 48.1loglog81.11
S
G

JGSDRERNIIRS
s

---+= , (13) 

where maxS  is the peak signal, s  is the standard deviation of the signal (i.e., the 
square root of the variance), and all other terms are as previously defined. The RER  
is actually just a measure of how quickly the intensity in the image can change. It is 
therefore a measure of the correlation of the signal. 

If the contrast has been optimized for a human observer in a real image, all 
intensities will have nearly equal probability. A human typically has the ability to 
discern approximately 32 (i.e., 25) shades of gray. If the image contains 32 shades of 
gray and the intensity of each pixel in the image is independent of all others, then 
each pixel will contain 5 bits of information. Likewise, false alarms may be expected 
to take on the same range of values. Each false alarm can be expected to subtract 5 
bits of information from the total information content of the image. 

Unfortunately, the intensity of each pixel in an image is not independent of the 
intensity of adjacent pixels. The RER  is the average (in x and y) slope of the response 
of one pixel to the next. It is measured using a step function input and is, therefore, a 
measure of the information redundancy introduced by the optical system. Each pixel 
contains only 2RER  new and independent information. Consequently, the 
information of each pixel or a contrast-enhanced image is given by 

( ) bits 5
32
1

log
32
1 2

2

32

1
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=

RERRERXH
i

, (14) 
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where all terms are as previously defined. This does not account for the fact that the 
intensity and its mean are locally correlated. This is the phenomenon of texture. 
Consequently, real images will have less information per pixel that indicated by (14), 
which should be regarded as an upper bound on the information present in a single 
pixel. 

If the noise is Gaussian, then the uncertainty is given by 
( ) eXHY ps= 2ln , (15) 

where all terms are as previously defined. By substituting (14) and (15) into (11), it 
can be shown that 

[ ]
2

2 52ln5

GSD

PeRERP
K fad -ps-´
= , (16) 

where all terms are as previously defined.  By taking the logarithm to the base of 2 of 
both sides of (16), rearranging yields 

[ ]{ } GSDPeRERPK fad 2
2

22 log252ln5loglog --ps-´= , (17) 
where all terms are as previously defined. The original GIQE and its subsequent 
revisions did not consider either the probability of detection or the probability of false 
alarm on the interpretability of an image. The similarity between the GIQE and the 
logarithm of the information density is obvious. Although, the functional dependence 
upon the standard deviation of the intensity is different. 

 
Conclusions 
The similarity between the functional form of the GIQE that predicts the NIIRS  

value of an image and the logarithm of the information density suggests that both 
may be related to image interpretability. However, the information density includes 
more quantifiable image characteristics that do previous GIQE’s and include 
alternative functional forms for previously included parameters. Incorporation of 
these new characteristics and functional forms may improve the reliability of 
interpretability predictions. 
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