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Abstract— Spatial alarms are personalized location-based trig-
gers installed by mobile users to serve as a reminder of a
location of interest to be encountered in their future trips.
Unlike continuous spatial queries, spatial alarms do not require
immediate processing and periodic reevaluation upon installation.
Thus, a critical challenge for efficient processing of spatial
alarms is to determine when to evaluate each spatial alarm,
while ensuring the demanding requirements ofhigh accuracy
and system scalability. In this paper, we compare alternative
approaches for evaluation of spatial alarms:periodic evaluation,
safe period-based processing and safe region-based processing.
We argue that the safe region-based approach provides highly
efficient processing of spatial alarms at the server. Furthermore,
it reduces wireless communication costs and energy consump-
tion on the client side by reducing the number of location
updates to be transmitted to the server without sacrificing
accuracy of spatial alarm evaluation. We develop safe region
computation techniques based on different heuristics, namely,
Maximum Perimeter Rectangular Safe Region (MPSR), Largest
Component Rectangles Safe Region (LCSR) and Bitmap Encoded
Safe Region (BSR) approach, and present anin-depth study on
trade-offs involved in the selection of an appropriate safe region
computation strategy. Our experimental evaluation shows that
the best optimization strategy requires an approach which adapts
to changing system load conditions and resource constraints, as
none of the safe region computation techniques outperforms the
others on all relevant evaluation metrics. Experimental evaluation
also validates our conjecture that safe region-based processing
offers close to optimal performance in terms of CPU load on the
server and wireless communication costs at the mobile clients.

I. I NTRODUCTION

With the advent of mobile communication technology
and continued price reduction of location tracking devices,
location-based services (LBSs) are widely recognized as an
important capability of the future computing environment [6].
Spatial alarms are one of the fundamental functionality for
many LBSs. In this paper we present safe region-based opti-
mization techniques for efficient processing of spatial alarms
in a client-server based architecture.

Spatial alarms extend the idea of time-based alarms to
future events that do not have a definite time of occurrence
associated with them but are sensitive to spatial locations
which mobile users may travel to in the future. Just as time-
based alarms are set to remind us of the arrival of afuture
reference time point, spatial alarms are set to remind us of
the arrival of aspatial location of interest. However, unlike

time-based alarms, the future time instance associated with the
occurrence of this event is not definite. Thus, spatial alarms
can be modeled as location-based triggers which are fired
whenever a mobile user enters the spatial region of the alarms.
Spatial alarms provide critical capabilities for many location-
based applications ranging from real time personal assistants,
inventory tracking, to safety warning systems.

Spatial alarm processing requires meeting two demanding
objectives:high accuracy, which ensures no alarms are missed,
and system scalability, which guarantees that the alarm pro-
cessing system scales to large number of spatial alarms and
growing base of mobile users. A simple approach to similar
problems involves periodic evaluations at a high frequency.
Each spatial alarm evaluation can be conducted by testing
whether the user is entering the spatial region of any of her
relevant alarms. High frequency is essential to ensure thatnone
of the alarms are missed. Though periodic evaluation is simple,
it can be extremely inefficient due to frequent alarm evaluation
and the high rate of irrelevant evaluations. This is especially
true when the mobile user is traveling in a location that is
distant from all her location triggers, or when all her alarms
are set on spatial regions that are far apart from one another.

Spatial alarms can be processed using server-based infras-
tructure, client-based architecture or a cooperative architecture
where the server and client share the responsibility of alarm
processing. A server-based approach must allow optimizations
for processing spatial alarms installed by multiple mobile
clients, whereas a client-based approach focuses more on
energy-efficient solutions for evaluating a set of spatial alarms
installed on a single client. We discuss server-centric ap-
proaches for scalable processing of spatial alarms, aimed
at optimizing the conventional approach of periodic alarm
processing. We show that a cooperative approach where the
server computes a safe region for the client and the client
monitors its position within this safe region outperforms other
server-based processing techniques.

In this paper, we propose the idea of safe region-based
processing of spatial alarms and discuss different techniques
for safe region computation at the server. Concretely, we
propose theMaximum Perimeter Rectangular Safe Region
(MPSR), Largest Component Rectangles Safe Region (LCSR)
and Bitmap Encoded Safe Region (BSR)approach. We com-
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pare the performance of these techniques with periodic alarm
processing, safe period-based processing and display thatall
safe region-based approaches outperform other processing
techniques. On the server side, safe region-based approaches
provide scalability by reducing the computational load on the
server. This is a direct result of the reduction of number of
location updates required by the server to process alarms with
high accuracy. On the client side, this reduction in number
of transmitted location updates results in significant savings
in terms of energy and wireless communication costs. These
improvements are obtained at the cost of simple computation
by the client to monitor its position within the safe region
determined by the server. We provide a detailed study which
considers the trade-offs involved in selection of an appro-
priate safe region computation approach. Our experimental
evaluation shows that the best strategy requires a flexible
and adaptive approach that can dynamically take into account
changing system load conditions and resource constraints in
its optimization decision, as none of the developed techniques
outperform all other safe region computation approaches for
all relevant evaluation metrics. We also show that the perfor-
mance obtained using safe region-based processing is closeto
anoptimal solutionin an unconstrained environment where the
client has complete knowledge of all spatial alarms installed
in the vicinity of its current position. To the best of our
knowledge, this is the first work that not only demonstrates the
advantage of safe region-based optimization over periodicand
safe period-based approaches but also provides a comprehen-
sive study of various alternative safe region-based techniques
for efficient processing of spatial alarms.

The rest of the paper is outlined as follows. Section II
provides a brief overview of the different alarm processing
algorithms. The safe region-based alarm processing techniques
are introduced in Section III. We present the algorithms
for safe region computation for the MPSR approach, LCSR
approach and the BSR approach. Our experimental evaluation
is presented in Section IV. The related work is presented in
Section V and we conclude the paper in Section VI.

II. SPATIAL ALARM PROCESSINGALGORITHMS

A spatial alarm expresses a location-based information need
of a subscribers ∈ S around alocation of interest. The alarm
trigger requires that the subscriber be informed as soon as
she enters a spatial regionR around the location of interest
and the non-spatial constraints associated with the trigger are
satisfied. Spatial alarms can be categorized asprivate, shared
or public alarms depending on the scope of subscribership of
the alarm. Private alarms are relevant to a single subscriber
authorized to install or remove the alarm. A subscriber may
install an alarm on the neighborhood grocery store reminding
her to purchase groceries when she is within a one mile radius
of the store and special discounts are available on her desired
items. Shared alarms are installed by a subscriber of the alarm
and may be shared with a group of users; for example, in the
above scenario the subscriber may wish to share the alarm on
the grocery store with other members of her household. Public

Algorithm 1: Safe Period-based Processing
forall ( ~ps(t), s ∈ S) do1

if (t < sp(s)) then2

drop( ~ps(t)); //client does not transmit update3
end4
else5

process( ~ps(t));6
forall (aj ∈ As, j ∈ [1...|As|]) do7

ap(s, aj) = calcApproachPeriod(s, aj);8
end9
sp(s) = min1≤j≤|As|(t + ap(s, aj));10

end11
end12

alarms are relevant to all subscribers in the system; examples
of such alarms are warning notifications against hazardous
road conditions.

Different approaches may be deployed in order to pro-
cess spatial alarms. Aperiodic evaluationapproach processes
alarms as and when location updates are received from sub-
scribers. We do not consider the update strategy adopted by
the system for periodic processing; for example, subscribers
may be required to provide an update to the system every five
seconds or they may update their location after travelling every
100m using dead reckoning [21]. Irrespective of the update
strategy adopted, this approach suffers from two problems.
Firstly, the alarm miss rate is unpredictable as it is impossible
for the system to determine the ideal location update period.
Even with a very high frequency of updates, the system may
not be able to achieve 100% success rate. Secondly, this
approach processes a large number of unnecessary updates
which causes system scalability to suffer.

In order to deal with the deficiencies associated with the
periodic processing approach, we introduce a safe period-
based approach. A safe period is computed for each subscriber
such that no relevant alarms can be triggered for a subscriber
before the expiry of its safe period. The algorithm for safe
period-based alarm processing is outlined in Algorithm 1
below. Each location update~ps(t) for subscribers is processed
as follows. The timestamp associated with the updatet is
checked to determine if the safe periodsp(s) for the subscriber
has expired. All updates received by the system before the
expiry of the subscriber’s safe period are dropped (lines 2-
4). Preferably, the server communicates the safe period to
each subscriber which does not report any location updates
to the server before the expiry of its safe period in order
to conserve energy and bandwidth. As soon as an update
from subscribers with timestampt >= sp(s) is received,
the system processes the location update against the set of
stored spatial alarms to determine if any relevant alarms need
to be triggered (line 6). The system also computes anapproach
period ap(s, aj) for each relevant alarmaj ∈ As, whereAs

is the set of alarms relevant to the subscribers (lines 7-9).
The approach period is based on a distance measure between
the subscriber position and the spatial alarm regionR(aj) and
an estimation of the subscriber motion over this time period.
The safe periodsp(s) for subscribers is calculated as the
minimum time required by the subscriber to approach any



of its relevant alarms (line 10). The cost of calculating the
safe period for each subscriber is an additional cost associated
with safe period-based processing. However, the savings on
alarm processing cost far outweigh the additional cost of safe
period computation as shown by our experimental evaluation.
Further, in order to control this cost the client may calculate
the approach period only for relevant alarms in the vicinity
of its current position; for example the server may limit the
calculation of the approach period for alarms within a one mile
radius of the subscriber position. A disadvantage associated
with this approach is that it demands pessimistic estimations
related to the motion of the subscriber in order to guarantee
100% success rate for alarm triggers. Pessimistic estimations
again lead to unnecessary updates being transmitted by the
clients and processed at the server. More optimistic motion
estimations lead to alarm misses which is unacceptable for
our alarm processing system. For more details on safe period-
based processing we refer interested readers to our technical
report [3].

As discussed above, even the safe period-based approach
relies on pessimistic assumptions related to the motion of the
subscriber which makes it inefficient. In Section III, we further
introduce safe region-based approaches which compute a safe
region for each subscriber. As long as the subscriber remains
inside its safe regionξs, the probability of any relevant alarms
being triggered is zero. The server computes a safe region
for each subscriber and communicates this safe region to the
subscriber. The subscriber is responsible for monitoring its
position within the safe region. Once the subscriber moves
out of its safe region it provides a location update to the
server which performs alarm processing and recomputes the
safe region.

III. SAFE REGION

In this section, we first discuss the basic concepts associated
with our safe region computation techniques. We introduce
a grid-based framework for limiting the extent of the safe
region which controls the computation costs. Next, we present
the MPSR algorithm for computing rectangular safe regions
around the client location. This approach limits the safe region
shape to a rectangular region, thus computing smaller safe
regions. However, the downstream bandwidth costs of broad-
casting the safe region to the clients and client computational
costs for safe region containment detection are low. A simple
modification, termed as the LCSR approach, enables us to
calculate more complex shaped larger safe regions for the
client. This further reduces the wireless communication costs
for the client. However, the downstream bandwidth and client
computational costs increase due to more complex shaped
safe regions. We further introduce BSR techniques for safe
region computation which can express larger safe regions
using a simple bitmap. This technique is shown to save on
communication costs for broadcasting from the server to the
clients for low alarm density regions. A simpleGrid Bitmap
Encoded Safe Region (GBSR)approach fails to compute safe
regions efficiently and accurately. An extension to this ap-

proach using apyramid[18] data structure, termed asPyramid
Bitmap Encoded Safe Region (PBSR)approach, allows for
more efficient and accurate safe region computation. Last but
not the least, this approach provides flexibility by allowing
clients to adjust the granularity of their safe region expanse
depending on their computing capability.

A. Safe Region Representation

The safe regionξs for any subscribers may be defined as
the region within which the probability of any relevant alarms
being triggered is zero. In its simplest form safe region for
any subscriber comprises of the region covered by the entire
Universe of Discourse (or map)U except the relevant alarm
regions. However, such a definition for safe region would
amount to communicating information for all relevant alarms
to the subscriber which proves to be prohibitively expensive.
We now introduce a grid-based framework which allows us
to limit the defined safe region to the vicinity of the current
subscriber position.

Definition 1: In our framework, we map the Universe of
DiscourseU = Rect(x, y, w, h) onto a gridG of cells.{x, y}
represents the bottom-left corner andw, h represent the width
and height ofU. Formally, a grid corresponding to the universe
of discourseU can be defined asG(α, β) = {Ci,j : 1 ≤ i ≤
M, 1 ≤ j ≤ N , Ci,j = Rect(x + i · α, y + j · β, α, β),M =
dw/αe, N = dh/βe}. Ci,j is an α × β rectangular area
representing the grid cell that is located in theith column
and jth row of the gridG.

Considering our above definition of a grid we can define
a mapping from any point~p = (px, py) in the Universe of
Discourse to the Grid,f : U ⇒ G.

Definition 2: Let ~p = (px, py) be any point in the Universe
of DiscourseU. Let Ci,j denote a cell in the gridG(α, β).
f(~p) is a position to grid cell mapping, defined asf(~p) =
C

d px−x
α

e,d
py−y

β
e

where (x, y) denotes the bottom-left corner

of U.
Our safe region approaches utilize this grid-based frame-

work to efficiently calculate the safe region for each subscriber.
The grid-based framework can be used to limit the safe region
computation to an area comprising of the current cell of a
subscribers. We define themonitoring regionψs inside the
current grid cell below and proceed to describe our algorithms
for safe region computation.

Definition 3: Monitoring Regionψs for any subscribers
located in cellCk,l may be calculated as,

ψs = Ck,l −

|Arel
s |⋃

i=1

R(s,Ai), (1)

whereR(s,Ai) defines the spatial alarm regions relevant to
subscribers intersecting the current subscriber cellCk,l.

B. Maximum Perimeter Rectangular Safe Region Computation

In this section, we devise an approach to compute a rectan-
gular safe region for a subscriber. The goal of the algorithm
described here is to compute a rectangular safe region with
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Fig. 1: Maximum Perimeter Rectangular Safe Region Computation

maximum perimeter; for a convex shaped safe region the
amortized costof location updates over time is minimized if
perimeter is maximized [9]. A rectangular shape also allows
clients to conveniently detect their location with respectto the
safe region.

We present our algorithm for computing the maximum
perimeter rectangular safe region in algorithm 2 below. The
algorithm accepts the current position vector~ps for subscriber
s and the current grid cellC(~ps) in which the subscriber
resides as inputs. The set of relevant alarmsArel

s for safe
region computation is calculated as the set of installed alarms
As for subscribers intersecting the grid cellC(~ps) (line 1).
In case no alarms intersecting the grid cell are present, the
current subscriber cell is returned as the safe region (lines
2-4). Otherwise, the algorithm partitions the cellC(~ps) into
four quadrants with current subscriber position{px, py} as the
origin. We define a set ofcandidate points(cP tQuads) and
a set of tension points(tP tQuads) for each quadrant (line
6). The candidate points form the set of points which can
potentially form a corner point of the rectangular safe region.
Tension points are obtained from candidate points by ensuring
that only points that form a rectangular region not overlapping
any alarm regions are selected.

Algorithm 2: Maximum Perimeter Rectangular Safe Region
Computation

Input : ~ps, C( ~ps)
Output : ξs

Arel
s = C( ~ps) ∩As;1

if (Arel
s == φ) then2

return C( ~ps);3
end4
else5

initialize(cP tQuads, tP tQuads);6
cP tQuads = getQuadrants(Arel

s );7
cP tQuads = trimCandidatePoints(cP tQuads);8
tP tQuads = getTensionPoints(cP tQuads);9
ξs = getSRfromCR();10

end11

The set of candidate points is determined as follows (line 7).
Firstly, each alarm corner is assigned as a candidate point in its
appropriate quadrant. For alarms which do not completely lie
inside the cellC(~ps) the intersection points of the cell and the
alarm are also considered as candidate points. Secondly, for
alarms which intersect the x-axis or y-axis of the coordinate
system with origin at{px, py}, we also consider points of

intersection of the alarms with the axes as candidate points.
The algorithm trims the set of candidate points in the next step
(line 8). Firstly, in case multiple candidate points in a quadrant
intersect the x-axis (or y-axis), all candidate points other than
the point on the x-axis (or y-axis) closest to the origin are
removed fromcPtQuads. If no intersection points are present
on the x-axis, the point of intersection of the x-axis and the
cell is added to the candidate points set. Further, we remove
points whichdominateany other point from the candidate set.
A point p1 is said to dominate pointp2 if p1.x > p2.x andp1.y
> p2.y. Finally, the points are sorted according to increasing
distance of the x-coordinate from the origin. Points with the
same x-coordinate are arranged in order of decreasing distance
of y-coordinate from origin.

The set of candidate points is then processed in the fol-
lowing manner to obtain the set of tension points (line 9).
Each tension pointTQi, whereQ ∈ {1, 2, 3, 4} represents the
quadrant the point belongs to, has the same x-coordinate as the
corresponding candidate pointCQi. The y-coordinate ofTQi

is the same as that ofCQi−1, or TQi−1 if TQi andTQi−1 have
the same x-coordinate. The y-coordinate ofTQ1 is set as either
the top bound of the cell or the y-coordinate of a candidate
point intersecting the y-axis if any. The set of tension points
form the opposite corner (opposite to the origin) of the set of
candidatecomponent rectanglesin each quadrant. The final
safe region is composed of the intersection of the component
rectangles from each quadrant (line 10). The MPSR approach
and the LCSR approach described in the next section differ
on the heuristic used to determine the composition of the
safe region from the component rectangles. We describe the
composition of the safe region for the MPSR approach here.
The algorithm adopts a greedy heuristic in which the quadrant
with a component rectangle with the largest perimeter is
selected first. Quadrants are further selected in a clockwise
order, at each step the component rectangle which forms a safe
region with the largest perimeter is selected. The algorithm
continues until all four quadrants are processed. As opposed
to a solution which enumerates every possible combination of
component rectangles thus taking quartic time, this approach
performs only four greedy decisions.

Figure 1 shows an example of the MPSR computation
approach. The candidate point sets for the given scenario are as
shown in Figure 1(a). The darkened points represent the can-



didate points whereas the hollow dots represent points which
are trimmed from the candidate point set as explained above.
Figure 1(b) displays the set of tension points obtained from
the candidate point set as explained in the above algorithm.If
one imagines an elastic band laid around the candidate points,
the tension points can be obtained by stretching this elastic
band to obtain arectilinear polygonalshape which does not
overlap any of the alarm regions. Figure 1(c) displays the
component rectangles formed by selecting a few of the tension
points. The component rectangle in Quadrant I forms the
component rectangle with the largest perimeter; thus, Quadrant
I is selected as the initial quadrant. The algorithm proceeds to
select the next quadrant in a clockwise manner; Quadrant IV is
selected. Addition of the component rectangle at tension point
T44 provides a safe region with larger perimeter compared to
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T23

T34

T13,T14

T41,T42

T44

T31,T32

Fig. 2: MPSR from Component
Rectangles

the safe region
obtained by adding
component rectangle
with tension point at
T41, T42. Finally, the
component rectangles
with tension points at
T34 in Quadrant III
and T23 in Quadrant
II are selected. The
final safe region
composed out of the
component rectangles
is as shown in

Figure 2.
The above approach for safe region computation has two

advantages: (i) the number of updates sent to the server
are drastically reduced compared to a periodic processing
approach, and (ii) the subscriber can easily determine her
position with respect to the safe region by performing a
single computation. However, the procedure for calculating
the MPSR for each subscriber proves expensive. Secondly,
we show that it is possible for a subscriber to easily monitor
her position within a larger safe region if the rectangular
shape constraint is removed. The LCSR approach described
in the next section provides a complex shaped safe region
which further reduces the wireless communication costs for
subscribers by requiring even fewer location updates be sent
to the server.

C. Largest Component Rectangles Safe Region Computation

The LCSR approach requires determination of candidate
points and tension points in a similar manner as described
above for the MPSR approach. It uses a different heuris-
tic from the MPSR approach for determination of the safe
region from the component rectangles. In stead of using
a complicated heuristic to determine a simple rectangular
safe region, this approach uses a much simpler heuristic
to determine a complex but larger safe region. This results
in reduction of safe region computation load on the server.
The LCSR approach scans each quadrant to determine the

largest component rectangle in each quadrant. The safe region
comprises of the union of the largest component rectangles in
each quadrant. The region may be represented by a set of five
points only, comprising of the origin{px, py} and the four
opposite corners of the largest component rectangle in each
quadrant. This results in a 150% increase in the downstream
bandwidth consumption for communicating a safe region to
the client when compared to the MPSR approach. Further, it
may require up to four times the computational costs at the
client to determine the position of the client within the safe
region. It is possible to select even more component rectangles
in each quadrant to determine larger safe regions; however,the
component rectangles in each quadrant would overlap in such
a scenario providing minimal increase in safe region area at
the cost of additional load on the downstream bandwidth and
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Fig. 3: LCSR from Component
Rectangles

the client. Note
that the selection
of only the largest
component rectangle
in each quadrant
results in non-
overlapping regions
being selected in
each quadrant which
significantly increases
the area under the
safe region with
minimal increase
in complexity of

safe region representation. Figure 3 displays the safe
region composed by selecting the largest component
rectangle in each quadrant represented by the set of points
ξs = {O, T13, T23, T34, T41} .

The above two approaches for safe region computation
lack the flexibility to support heterogeneity among client
computational capabilities. The same amount of computation
is required on the part of each client to determine its position
within the safe region. Our BSR approaches introduced below
support client heterogeneity by computing more complex safe
regions for clients with higher computational capacity. Each
client may specify its level of computational capability tothe
server and the serverpersonalizessafe region computation in
accordance with the client capability.

D. Bitmap Encoded Safe Region Computation

In this section, we introduce the BSR computation ap-
proach which provides flexibility in safe region computation
by providing larger, complex safe regions for clients with
higher computational capacity. The safe region computation
for each client can be personalized according to its capability.
Figure 4(a) displays the monitoring region for subscriber at
point P with four relevant alarm regions intersecting the grid
cell. The server may compute the safe region for the client
as the monitoring region and communicate this region to the
client. Note that the server is virtually pushing the relevant
alarms onto the client in this scenario by providing this safe
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region. Each alarm region may be represented by the bottom-
left and top-right corner point locations. We consider this
as anoptimal approachfrom the client perspective as the
client has complete knowledge of all alarms in its vicinity in
such a scenario. However, this approach may not be feasible
from the point of view of communication costs incurred while
broadcasting safe region to the clients. Additionally, forareas
with high density the server may push a large number of
alarms onto the client. For weak clients it may not be possible
to handle a large number of alarms. To counter this problem,
we now develop the concept ofBitmap Encoded Safe Regions
which provides an estimation of the actual safe region using
a bitmap.

Definition 4: A bitmap encoded safe region represents a
safe regionξs for subscribers using a bitmapB of lengthn. A
bit value of 1 indicates that a predefined region (cell) belongs
to the safe region; whereas a 0 bit indicates the negation.

We first describe aGrid Bitmap Encoded Safe Region
(GBSR) computation technique and exhibit its inability to
accurately and efficiently represent safe regions. An extension
to this approach using aPyramid Bitmap Encoded Safe Region
(PBSR)approach allows us to represent safe regions accurately
as well as efficiently. BSR techniques exhibit the following
advantages: (i) for low alarm density regions, it allows for
reduction of location updates from the clients to the server
when compared to the MPSR and LCSR approach, (ii) it
supports different granularity of safe region computations
for different subscribers thus supporting heterogeneity among
client capabilities, and (iii) clients can determine theirposition
with respect to the safe region using a predefined (worst case)
number of computations.

E. Grid Bitmap Encoded Safe Region Computation

The safe region for a subscribers can be represented by the
set of grid cells as shown in Figure 4(b).

Proposition 5: We use a grid bitmap scheme to represent
the safe region within the monitoring region shown in Fig-
ure 4(a). The cellCk,l is represented by a single bitB(Ck,l).
If Ck,l

⋂
Σ

|As|
m=1R(s,Am) = ∅ we setB(Ck,l) = 1 denoting

that the entire cellCk,l belongs to the safe regionξs, else
we setB(Ck,l) = 0 and split Ck,l into U × V smaller
equi-sized cells. The same encoding procedure is used for
each smaller cell. This bitmap encoding technique provides
a compact representation for safe regionξs.

Figure 4(b) shows the safe region representation for the
safe region of Figure 4(a) using a bitmap encoding scheme.
No alarm regions intersect the three darkened cells which
are represented by 1’s; other cells intersecting with alarm
regions are represented by 0’s. The safe region is represented
using a simple bitmapB = 0000011010 which represents
the cell bit values in a raster scan fashion. The first zero
bit corresponds to the entire cell, indicating that the cell
does not belong to the safe region and has spatial alarms
intersecting with it. As visible from Figure 4(b), this safe
region representation is able to represent only a small portion
of the monitoring region thus providing a poor estimate of
the actual safe region. Figure 4(c) presents a 9×9 split of
the cell at a finer resolution which allows for more accurate
representation of the safe region. However, this approach is
inefficient in representing safe regions for the following two
reasons: (i) it unnecessarily uses a much larger bitmap than
required to represent the safe region, and (ii) different regions
will have different alarm densities thus making it difficultto
select a uniform grid cell size. Our PBSR approach allows for
more accurate representations of the safe region while keeping
the bitmap size small.

F. Pyramid Bitmap Encoded Safe Region Computation

The pyramid representation splits cells in thebase grid
(level L=0) with B(C0

i,j) = 0 only into U × V smaller cells,
whereU ,V are system defined parameters. The process may
be further repeated for several iterations to form smaller cells
at each level thus forming a pyramid data structure of heighth.
As shown using a pyramid structure with h=2 in Figure 4(d),
by further splitting cells withB(C0

i,j) = 0 into a 3×3 grid we
obtain a much more accurate representation for the safe region.
Compared to the grid-based approach which either does not
represent the safe region accurately (3×3 grid in Figure 4(b))
or computes a much larger bitmap (9×9 grid in Figure 4(c)),
the PBSR approach provides flexibility in computation of the
safe region. For example, the GBSR approach requires 82
bits, 1 bit for the entire cell and 81 bits for the 9×9 grid,
to represent the safe region in Figure 4(c). In comparison the
PBSR approach requires only 64 bits, 1 bit for the entire cell, 9
bits for the cells at level 1 and only 54 bits for the cells at level
2, to represent the same safe region as shown in Figure 4(d).

The algorithm for safe region estimation using PBSR is
given in algorithm 3 below. It accepts as inputs the base grid
cell of the subscriber’s current positionC0

k,l, maximum height



Algorithm 3: Pyramid Bitmap Encoded Safe Region Computa-
tion

Input : C0
k,l, h, U , V , Arel

s
Output : B
C0 ← {C0

k,l};1
B = null; L = 0;2
while (L < h) do3

CL+1 ← SPLIT (CL, U, V );4
L = L + 1;5

end6
L = 0;7
while (L ≤ h) do8

for (i = (k − 1) · UL + 1; i ≤ k · UL; i + +) do9
for (j = (l− 1) · V L + 1; j ≤ l · V L; j + +) do10

if ((L = 0) ‖ ((L 6= 0) && (B(CL−1

bi/Uc,bj/V c
) = 0)))11

then
if (CL

i,j

⋂
Arel

s = ∅) then12
B(CL

i,j) = 1;13
else14

B(CL
i,j) = 0;15

end16
B = B || B(CL

i,j);17
end18

end19
end20
L = L + 1;21

end22

h of the pyramid, splitting parametersU, V of the base grid
cell and the set of alarmsArel

s relevant to the subscriber within
the grid cell.

The bitmapB is initially assigned anull value and current
level L of the pyramid is set to zero (line 2). The pyramid
representation of the base cells is constructed for heighth by
splitting cells iteratively intoU × V cells (lines 3-6). This step
can be performed offline by the server thus providing a pre-
computed pyramid representation for safe region computation.
Next, starting from the base cells (levelL = 0) we determine
if each cell intersects any relevant alarmsArel

s (line 12). Cells
not intersecting with any relevant alarm regions are assigned
a bit valueB(CL

i,j) = 1 indicating that they are a part of the
safe region; else a cell is assigned bit value 0 (lines 12-16).
For cells at each levelL− 1 (L ≤ h) which have an assigned
bit value 0, we consider the relevantU × V children cells at
Level L and assign a bit value 0 or 1 considering intersection
of the cell with relevant alarms at each level of the pyramid
(lines 8-22).

Proposition 6: The PBSR approach for safe region repre-
sentation allows us to represent the safe regionξs in terms
of a bitmap of size|B|. The height of the pyramidh allows
us to control the accuracy of representation of the safe region
at the cost of computing a larger bitmap for more accurate
representations.

We now defineCoverageand Bitmap Sizewhich allow us
to control the quality of the safe region representation forour
BSR computation techniques.

Definition 7: The coverage of a safe region representation
ξs, denoted byη(ξS), is defined as the ratio of area of the
safe region using the BSR representation to the area of the
monitoring region.

η(ξs) =

h∑

L=0

k·UL∑

i=(k−1)·UL+1

l·V L∑

j=(l−1)·V L+1

α · β

(U · V )L
·B(CL

i,j)

ψs

,

(2)
whereα, β defines the size of a base grid cellC0

k,l of the
pyramid.

Definition 8: The bitmap size for safe regionξs, denoted
by ϑ(ξs), is defined as the number of bits in the BSR
representation of the safe region.

ϑ(ξs) = 1+

h−1∑

L=0

k·UL∑

i=(k−1)·UL+1

l·V L∑

j=(l−1)·V L+1

(1 −B(CL
i,j)) · U · V

(3)

In practice, we want to achieve high coverage with as small
bitmap size as possible. Each client may specify the maximum
height of the pyramid used for the PBSR representation of its
safe region. In the worst case scenario, the client may need to
determine its position relative to the safe region at each level
of the pyramid data structure.

For the BSR approach, safe region for a client needs to be
recomputed only when the client moves out of the grid cell.
Note that a client may move out of its safe region without
triggering any relevant alarms even while it is inside the grid
cell. No recomputation of safe regions needs to be performed
in such situations for the BSR approach. In case the client
triggers an alarm on moving outside its safe region but stays
within the cellC0

k,l corresponding to the safe region, the safe
region can be quickly updated by considering the triggered
alarm to be a part of the safe region. Additionally, BSR
approaches can be optimized by precomputing the bitmap at
each pyramid level for public alarms. Our experimental results
do not consider this optimization for the BSR approaches, in
stead performing bitmap computations on the fly.

1) Client Safe Region Containment Detection:The MPSR
and LCSR approaches demand that the client monitor its
position within rectangular shape safe region(s) which requires
simple computations on part of the client. For the PBSR
region approach, the client needs to determine its position
with respect to the safe region from the bitmap|B|. The client
determines its position at each level of the pyramid in order
to determine if it is within the safe region or not. In the worst
case scenario, the client needs to performh computations,
one at each level of a pyramid of heighth; on an average it
will perform much fewer thanh computations. Algorithm 4
outlines the client safe region containment logic requiredfor
the PBSR approach.

The algorithm accepts as input the bitmapB and the
position vector~ps for subscribers. The algorithm returns the
containment detection resultCDR indicating a value true if
client lies inside safe region or false if client lies outside safe
region. Initially the levelL of the pyramid is set to zero. The
algorithm also identifies the start indexLStartIndex and end
indexLEndIndex for bitmap values inB related to levelL.



Algorithm 4: PBSR Client Safe Region Containment Detection
Input : B, ~ps

Output : CDR ∈ {true, false}
L = 0; LStartIndex = 0; LEndIndex = 0; posIndex = 0;1
numFalsePrevL = 0; numFalsePrevLPosIndex = 0;2
while (LStartIndex 6= |B|) do3

if (B[posIndex] == true) then4
return true;5

else6
L = L + 1;7
for (i = LStartIndex; i ≤ LEndIndex; i + +) do8

if (B[i] == false) then9
if (i < posIndex) then10

numFalsePrevLPosIndex + +;11
end12
numFalsePrevL + +;13

end14
end15
cellid = getRelCellPos( ~ps, L);16
LStartIndex = LEndIndex + 1;17
LEndIndex+ = (numFalsePrevL · U · V );18
posIndex = LStartIndex + cellid +19
(numFalsePrevLPosIndex · U · V )− 1;
numFalsePrevL = 0; numFalsePrevLPosIndex = 0;20

end21
end22
return false;23

We define the set of bitmap values from start to end index for
any levelL as ablock. The bitmap index concurrent to the
cell the client currently belongs to is indicated byposIndex
(line 1). Additionally, the algorithm needs to keep a count of
the number offalse bits numFalsePrevL in a block and
the number of false bitsnumFalsePrevLPosIndex before
the posIndex in a block (line 2). The algorithm checks for
each levelL, if the bitmap value istrue indicating that client
location lies within the safe region (lines 4-6). Otherwisethe
algorithm increments the levelL and maintains the count of
number of false values in previous block and the number
of false values beforeposIndex in previous block of the
bitmap (lines 8-15). These values are used to determine the
LStartIndex, LEndIndex andposIndex in the new block
corresponding to the next level of the pyramid in the bitmap
(lines 16-19). This computation is repeated for each levelL
of the pyramid to determine if the subscriber lies within the
safe region (lines 6-21).

In order to facilitate installation of new alarms, the server
maintains a main memory grid index on the safe region of all
clients. Location updates are required of all clients whosesafe
region intersects the new spatial alarm region. Spatial alarm
information is indexed using a disk resident R-tree structure.
We use a 3-dimensional R-tree which indexes the subscriber
relevance information for private, shared and public alarms as
well as the bottom-left and top-right points of the safe region
minimum bounding rectangles (MBRs).

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our safe
region computation techniques using four different sets of
experiments. The first experiment is aimed at gaining an
understanding of the functioning of the MPSR and LCSR
approaches. The second set of experiments performs an eval-

uation of the two BSR approaches: GBSR and PBSR. The
third set of experiments compares the performance of our safe
region approaches. The final set of experiments provides an
evaluation of the safe region techniques compared to periodic
processing (PRD), safe period-based (SP) computation and
an optimal (OPT) approach. The optimal approach does not
consider any restrictions on resource availability and assumes
all relevant alarms within the monitoring region are pushed
to the client, which implies the client is fully aware of all
relevant alarms in its vicinity. We measure the performanceof
all approaches based on four different evaluation metrics:
CPU Load/Capacity: This factor measures the scalability
of the system. It is measured as the ratio of the amount of
CPU time used by the system to perform alarm processing
and safe region or safe period computations to the amount of
time available to the system to perform this processing. CPU
load/capacity of> 100% indicates the failure of the system
to scale to the desired configuration.
Wireless Communication Cost: This is measured by the
number of updates sent to the system by the mobile clients.
We measure this parameter as a ratio of the communication
costs required by a particular approach to the communication
costs incurred by periodic alarm processing at a frequency
high enough to trigger all relevant alarms.
Bandwidth: This is the downstream bandwidth (in Mbps)
required by the system to communicate the safe region (or
alarm information) to the clients for the safe region (or
optimal) approaches.
Client Computation Cost: This metric indicates the cost
incurred by clients to check their position relative to the safe
region in terms of average number of computations performed
per client per second.

We do not measure alarm trigger accuracy as the parameters
adopted for each processing approach ensure 100% of the
alarms are triggered in all scenarios. The sequence of alarms
to be triggered is determined by a very high frequency trace
of the motion pattern of the vehicles. We briefly describe the
experimental setup used to evaluate our system below.

A. Experimental Setup

Our simulator generates a trace of vehicles moving on
a real-world road network using maps available from the
National Mapping Division of the U.S. Geological Survey

Fig. 6: Road Network for At-
lanta and Surrounding Areas

(USGS [2]) in Spatial
Data Transfer Format
(SDTS [1]). Vehicles
are randomly placed
on the road network
according to traffic densities
determined from the traffic
volume data in [8]. The
simulator simulates the
motion of vehicles on
roads with appropriate
velocity information; at

intersections, vehicles may move in any direction with
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Fig. 5: Performance of MPSR and LCSR Approach

attached probability values. We use a map of Atlanta and
surrounding region as shown in Figure 6, which covers an
area around 1000km2 in expanse, to generate the trace.
Our experiments use traces generated by simulating vehicle
movement for a period of one hour, results are averaged over
a number of such traces. Default traffic volume values allow
us to simulate the movement of a set of 10,000 vehicles.
Each vehicle generates a set of position parameters during
the simulation which are evaluated against the generated
spatial alarm information. Default values require each vehicle
to generate updates with a period of less than a second for
periodic processing. The default spatial alarm information
consists of a set of 10,000 spatial alarms installed uniformly
over the entire map region. We vary the fraction of private,
shared and public alarms installed in the system to vary the
number of alarms relevant to each client. This simulator setup
allows us to the test the robustness of our framework under
realistic mobility patterns.

B. Experimental Results

1) Performance of MPSR and LCSR Approach:The first set
of experiments compares the performance of the MPSR and
LCSR approach. The experimental setup uses default values
as defined in Section IV-A. We vary thefraction of public
alarms (abbreviated as FPA in Figure 5) in the system from
0.01 to 0.2, thus increasing the number of alarms relevant to
each subscriber. Private and shared alarms are installed inthe
system in the ratio 2:1. Note that with increasing fraction of
public alarms, the effective density of relevant alarms foreach
subscriber in the system increases. The size of the monitoring
region is varied by varying the number of rows/columns in the
grid-based framework. Results are displayed for FPA valuesof
0.1 and 0.2 to avoid clutter. Figure 5(a) displays the wireless
communication cost as a fraction of the communication costs
incurred for corresponding periodic alarm processing. Three
trends are to be observed from Figure 5(a). Firstly, as we
decrease the size of grid cells comprising the monitoring
region (increase number of rows/columns) the wireless com-
munication costs increase. Smaller monitoring regions imply
smaller safe regions; hence, a client moves out of its safe
region more frequently and provides more frequent updates to
the server. Secondly, as we increase the density of relevant
alarms by increasing the fraction of public alarms wireless

communication costs increase. Again, in presence of larger
number of relevant alarms smaller safe regions are computed
and the client needs to update its position more frequently
in this scenario. However, the increase in communication
costs is non-linear; from FPA 0.01 to FPA 0.2, when the
average number of relevant alarms for each client increases
by almost 20 times, the increase in wireless communication
costs is only three times or lower. Last but not the least, the
LCSR approach requires around 10% lower communication
costs compared to MPSR approach for larger grid cell sizes
(5 or 10 rows/columns in the figure). For smaller grid cell
sizes (20 or 50 rows/columns in the figure) the gap between
the two approaches reduces; across different FPA values
similar trends are observed. The downstream bandwidth for
broadcasting safe region from the server to the clients also
increases with decreasing grid cell sizes as can be observed
from Figure 5(b). This is a direct result of the increase in
number of updates being processed at the server resulting
in more frequent safe region computations. The bandwidth
consumption is reasonably low, not larger than 400 Kbps
for 10,000 clients for the LCSR approach in the worst case
scenario. As expected the LCSR approach has around 2.5
times the bandwidth consumption incurred by the MPSR
approach due to larger safe region representation size. The
CPU load/capacity numbers in Figure 5(c) display that the
system load is reasonably low except for the largest grid
cell size which implies infeasibility of using such large grid
cells. As expected, with higher FPA values the computational
load on the server increases due to higher number of relevant
alarms being processed for each client. Secondly, we observe
that the CPU load decreases with decreasing grid cell sizes.
As we decrease the size of the grid cell for a particular
FPA value, the safe region computation costs decrease. As
fewer alarms are considered for each computation, the cost
of performing a single safe region computation decreases.
Even though safe region computations will be performed more
frequently with decreasing grid cell size, the net effect results
in reduction in safe region computation costs. However, the
alarm processing costs rise with decreasing grid cell size
due to larger number of location updates being processed
by the alarm processing server. The appropriate number of
rows/columns can be observed to be around 20 to 50, as the
total CPU load is lowest with this setting. Another trend that
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Fig. 7: Performance of BSR Approach

can be observed here is that the LCSR approach incurs around
5% lower costs compared to the MPSR approach due to lower
number of location updates being processed and a relatively
simpler safe region computation approach.

2) Performance of BSR Approach:This set of experiments
is designed to evaluate the performance of the BSR approach.
We vary the height of the pyramid fromh = 1 (for GBSR)
to h = 7 and observe the performance as shown in Figure 7.
Figure 7(a) displays the wireless communication costs incurred
as we increase the pyramid height fromh = 1 to h = 7. It can
be observed that the GBSR approach is highly inefficient as
it limits safe region computation to a very high granularity.
The safe region computed using this approach provides a
very coarse representation of the actual safe region forcing
the clients to frequently update their location as a result of
which GBSR approach incurs high communication costs. As
we increase the pyramid height, more accurate safe region
representations can be computed and consequently wireless
communication costs experience a sharp drop. Another obser-
vation is that BSR approaches display high sensitivity to alarm
density levels; the performance deteriorates sharply for higher
FPA values. On the other hand, the bandwidth required by the
server to broadcast the safe regions to the clients increases with
pyramid height (Figure 7(b)). For higher level pyramids, larger
bitmaps are required to represent the safe region and hence
higher bandwidth is required. For pyramid heighth = 7, with
high alarm density the downstream bandwidth requirement
goes up to 3.2 Mbps, but forh = 5 this value remains below
250 Kbps even when fraction of public alarms is increased to
0.2. Figure 7(c) displays the average number of computations
performed per client per second to determine its position
within the safe region. Clients need to perform the safe region
containment detection check as described in Section III-F.1.
For the GBSR approach the clients need to perform an average
of 2-3 computations per second. This cost does not experience
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Fig. 8: Performance Comparison of Safe Region Ap-
proaches

a significant increase with pyramid height for low FPA values.
For higher FPA values the costs rise to 6-7 computations
per second for a pyramid of heighth = 7. As seen from
Figure 7(d), for low pyramid height, safe region computation
costs are low as relatively simpler computations are involved.
On the other hand, alarm processing costs are high as a large
number of updates are received from clients. On increasing
pyramid height alarm processing costs drop due to fewer client
position updates. The safe region computation costs increase
due to high complexity of safe region computation. Even
despite the fewer number of safe region computations being
performed at higher pyramid height, the increase in cost of
a single safe region computation is such that a net increase
in safe region computation load is experienced. However, this
cost can be significantly offset by using precomputed bitmaps
for public alarms as described earlier. Forh = 4 or h = 5, the
overall CPU load is at its lowest point. With increasing FPA
values the system experiences an increase in CPU load.

3) Performance Comparison of Safe Region Approaches:
This section provides a performance comparison of the various
safe region computation techniques developed in this work,
MPSR, LCSR, GBSR and PBSR (forh = 3 and h = 5),
with varying alarm density levels. As can be observed from
Figure 8(a), the GBSR approach incurs heavy communica-
tion costs due to the inaccurate nature of computed safe
regions. The MPSR, LCSR and PBSR approaches perform
well even at higher alarm density levels. For low FPA values
the PBSR approach outperforms both the MPSR and LCSR
approach; whereas for higher FPA values the MPSR and
LCSR approaches perform better. As far as the downstream
bandwidth consumption is concerned, we observe from Fig-
ure 8(b) that the PBSR approach forh = 3 performs better
than the MPSR approach at all alarm density levels. The
PBSR approach withh = 5 performs better than the MPSR
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Fig. 9: Performance Comparison of Safe Region with Other
Approaches

approach for all alarm density levels except for FPA value of
0.2. The GBSR approach performs the best on this metric;
however, the approach is not competitive from point of view
of wireless communication costs as well as CPU load/capacity.
Figure 8(c) displays the client computation costs incurred
by the different approaches. The MPSR approach requires
the lowest computation costs for client containment detection
and the cost does not vary with the alarm density. Other
approaches experience an increase in this cost at higher alarm
density levels. The PBSR approach experiences significant
increase in computational costs with increase in the fraction of
public alarms. The client computation cost for this approach
are higher than MPSR approach but lower than the LCSR
approach. Figure 8(d) displays the CPU load experienced by
each of the safe region approaches. The MPSR (MP in figure),
LCSR (LC in figure) and the PBSR approach withh = 3 and
h = 5 (denoted as P3 and P5 in the figure) have low CPU load
whereas the GBSR approach (GB in the figure) fails to scale to
this configuration. The alarm processing costs with the GBSR
region approach are prohibitively high as alarm processinghas
to be performed on a large number of client location updates.

4) Performance Comparison of Safe Region with Periodic,
Safe Period and Optimal Approach:Now we compare the
performance of the safe region approaches with periodic
processing, safe period-based processing and the optimal ap-
proach. As can be seen from Figure 9(a), the safe region
approaches incur very low wireless communication costs.
Periodic processing requires clients to transmit each location
update to the server incurring a wireless cost of 1 and is not
shown in the figure. The safe period approach experiences
significantly higher communication costs, approximately 2-3
times the cost incurred by the safe region approaches. This is
largely due to the pessimistic assumptions required to ensure
that the safe period approach triggers all alarms with a 100%

success rate. The MPSR and LCSR approach incur around
40% higher communication costs compared to an optimal
approach even for FPA value 0.2. For lower alarm density
levels the gap between the optimal and safe region approaches
is much lower. The optimal approach would require clients
to transmit updates only when the spatial constraints for one
or more relevant alarms are met. Figure 9(b) displays the
downstream bandwidth consumed by the system to broadcast
safe regions or relevant alarms (in case of OPT approach)
to the clients. Safe period approach would also require that
a computed safe period be broadcast to each client; how-
ever, we exclude the bandwidth incurred for this approach
from these results. As expected the safe region approaches
incur much lower bandwidth expense when compared with
an optimal solution. PBSR (h = 5) performs the best for
low FPA values (low relevant alarm density); for higher FPA
values the performance of the PBSR approach declines and is
worse than that of the MPSR approach. However, the PBSR
approach always performs better than the LCSR approach on
this metric. Not surprisingly, client computational costsfor
the optimal approach are significantly higher than the safe
region approaches (Figure 9(c)) as the optimal solution is
based on the assumption that clients have high computational
capability. PBSR, MPSR and LCSR approaches require lower
client computational costs especially at higher alarm density
levels. The CPU load experienced by each approach is as
shown in Figure 9(d). Periodic approach (PR) has much higher
alarm processing costs as each update needs to be processed
by the client and the CPU load does not scale. The processing
load does not rise much at higher alarm densities as each
update is processed by this approach for all FPA values. The
MPSR and LCSR approaches experience lower CPU load
due to much lower alarm processing load. With increasing
FPA values, the safe region computation as well as the alarm
processing load rises; however, the total load incurred by
the system is much lower than the periodic approach for all
configurations. The PBSR approach again shows similar trends
as the MPSR and LCSR approaches; however, the CPU load
incurred by this approach at higher FPA values are higher
than MPSR and LCSR approaches. The safe period (SP)
approach experiences much higher CPU load compared to the
safe region approaches. This is a direct result of the larger
number of updates that need to be processed by the safe period
approach. Results for the optimal approach are plotted to show
that the safe region approaches do not incur much higher CPU
load except for the highest FPA values.

V. RELATED WORK

An event-based location reminder system has been advo-
cated by many human computer interaction projects [14],
[19], [7], [15], [12]. In the realm of information monitoring,
event-based systems have been developed to deliver relevant
information to users on demand [13], [4]. In addition to
monitoring continuously changing user information needs,
spatial alarm processing systems also need to deal with the



complexity of monitoring user location data in order to trigger
relevant alerts in a non-intrusive manner.

A large body of work exists on monitoring continuous
queries assuming known movement trajectories [10], [20]. A
second category does not make any assumptions on movement
patterns. [23], [25] propose the idea of returning moving
query results with a validity scope. Periodic reevaluation
approach is commonly used for continuous monitoring of
moving objects [11], [16], [17], [24]. Incremental reevaluation
for range and kNN queries was also proposed in [16], [22].
Spatial alarms differ from this work as they do not demand
periodic evaluation or reevaluation like continuous queries; in
stead they require one shot evaluation which should result in a
trigger when the alarm trigger conditions are satisfied. Much
of our work is focussed on determining the opportune moment
for evaluating spatial alarms relevant to a client.

Safe Region computation techniques have been developed
for continuous queries in [17], [5], [9]. None of the previous
work except [9] presents clear algorithms for safe region
computation. Our work differs from [9] as we present safe
region computation for spatial alarms. Further, the algorithms
presented in [9] do not consider scenarios with overlapping
query regions, query regions overlapping multiple grid cells
and query regions intersecting the axes of the coordinate
system with the client position at the origin. Our MPSR
and LCSR computation algorithms are able to handle such
scenarios. Algorithms presented in previous work also fail
to consider an environment supporting heterogeneous client
capabilities. Our BSR techniques explore possibilities for
supporting client heterogeneity and present flexibility ofcom-
puting more complex safe regions for clients with higher
computational power.

VI. CONCLUSION

We have presented a safe region-based processing tech-
nique and different safe region computation algorithms for
ensuring accurate, scalable processing of spatial alarms.This
paper makes three important contributions towards supporting
efficient processing of spatial alarms. First, we introducethe
concept of safe region-based alarm processing to enhance the
scalability of the system. We develop three techniques for
safe region computation, namely the MPSR approach, LCSR
approach and the BSR approach. Second, we provide an in-
depth study that evaluates the various heuristics behind our
safe region computation techniques. A detailed experimental
evaluation is conducted for the proposed safe region computa-
tion algorithms. We obtain two important insights. First, none
of the safe region computation algorithms can outperform all
others over all evaluation metrics. It is essential to take into
account dynamically changing load conditions and resource
constraints for a region when deciding on an appropriate
safe region computation technique. Last but not the least, our
framework supports heterogeneous environments with varying
server load and resource conditions and heterogeneity of client
capabilities. For instance, the Bitmap Encoded Safe Region
(BSR) approach supports client heterogeneity by computing

different granularity safe regions for each client according
to their computational capacity. Our experimental evaluation
shows that the safe region techniques outperform other existing
spatial alarm processing techniques like periodic evaluation,
safe period-based approach, and offer close to optimal perfor-
mance for different alarm distribution scenarios.
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