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Entropy sampling Monte Carlo, the replica method, and the classical Metropolis scheme were
applied in numerical studies of the collapse transition in a simple face-centered cubic lattice
polymer. The force field of the model consists of pairwise, contact-type, long-range interactions and
a short-range potential based on theb-sheet definition assumed in the model. The ability to find the
lowest energy conformation by various Monte Carlo methods and the computational cost associated
with each was examined. It is shown that all of the methods generally provide the same picture of
the collapse transition. However, the most complete thermodynamic description of the transition
derives from the results of entropy sampling Monte Carlo simulations, but this is the most
time-consuming method. The replica method is shown to be the most effective and efficient in
searching for the lowest energy conformation. The possible consequences of these findings for the
development of simulation strategies for the folding of model proteins are discussed briefly.
© 2000 American Institute of Physics.@S0021-9606~00!50836-8#
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I. INTRODUCTION

The last decade has witnessed impressive progress i
development of methodologies for the computer simulat
of molecular systems. In particular, a number of new Mo
Carlo schemes have been proposed.1–6 Rather than being jus
technical improvements, many are new qualitative
proaches to the problem of computer simulations. Such c
puter simulations can be extremely helpful in understand
the complex behavior of biomolecules.7 For example, the
understanding of the molecular mechanism of protein fold
is one of the most challenging and urgent tasks of theore
molecular biology.8,9 Due to the complexity of such
systems,10 detailed all-atom simulations can cover only
small time interval11 ~which is orders of magnitude shorte
than the characteristic folding time for proteins!. Thus, it is
necessary to employ reduced models.12–17The smaller num-
ber of explicitly treated degrees of freedom in such mod
allows the investigation of some aspects of the entire fold
process. Of course, as many ‘‘essential details’’ as poss
should be included in the reduced models so that the insi
that are gained are also applicable to real systems.

In this work we examine a relatively simple polypeptid
chain model. The conformational space of the model is

a!Author to whom correspondence should be addressed. Electronic
kolinski@chem.uw.edu.pl
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stricted to an ensemble of homopolymeric chains located
a face centered cubic~fcc! lattice. The number of allowed
rotational isomeric states per chain unit of this model is co
parable to the number of conformations per residue
polypeptides. A simple, short-range potential mimics p
teinlike local conformational preferences, and the pairw
long-range potential simulates an average hydrophobic
traction between chain units. Thus, it may be expected
some of the most general features of protein chains will
qualitatively reproduced. Due to the relatively large numb
of conformations and the effects of chain connectivity a
packing, the energy landscape of this model may be su
ciently complex to mimic some aspects of the rugged ene
surface found in real proteins. When compared to the v
popular simple cubic lattice protein models,12 the present
model has several advantages: A larger number of confor
tions per chain unit, a local geometry that is closer to
geometry of real proteins, a local conformational stiffne
that is characteristic of polypeptides, and a coordinat
number~12! that is qualitatively similar to the average num
ber of side chain contacts per residue in the core of glob
proteins. Examinations of various protein sequences hav
amino-acid-dependent potentials will be addressed in fu
work. The goal of the present study is to evaluate the ap
cability of various Monte Carlo~MC! schemes to the prob
lem of protein folding. In particular, we compare three qua
tatively different algorithms with respect to both the
il:
5 © 2000 American Institute of Physics
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capability of finding the lowest energy state~the ‘‘native’’
state of the protein! as well as the computational cost
obtaining a complete thermodynamic description of the s
tem over the relevant temperature range. The first samp
method we consider is the traditional Metropolis sche
~MS!,18 which is usually used in the context of simulate
annealing procedures. The second method examined is
replica method3 ~RM! ~or the replica exchange method!, in
which several independent copies of the system sample
formational space at various temperatures. The third s
pling methodology is a version of multicanonical ensem
sampling,1 or the entropy sampling Monte Carlo~ESMC!,
scheme.2,19,20

The outline of this paper is as follows: For the reade
convenience, we first provide a brief summary of each
these sampling schemes. Then, we describe the poly
model used in the simulations. The simulation results
these three sampling procedures are used to compare
relative efficiency of these methods and their potential ap
cability to the protein folding problem. We conclude with
discussion of the implications of the present study to
more general problem of protein folding.

II. MONTE CARLO SAMPLING METHODS

A. Metropolis scheme

In the formalism of statistical mechanics, assuming
Boltzmann distribution of states, any physical quantity o
system can be written as follows:

^A&5Q21E A~x!exp~2H~x!/kBT!dx, ~1!

whereA(x) is a measurable quantity,x represents the coor
dinates in the conformational space, andQ denotes the con
figurational partition function

Q5E exp~2H~x!/kBT!dx, ~2!

whereH(x) is the Hamiltonian of the system. This formu
can be used to estimate various quantities,A(x), of a model
system by the approach proposed by Metropoliset al.18 In
the Metropolis method, a Markov process is construct
whose unique limiting distribution is the Boltzman
distribution.21 In such a Markov chain, a new state is gen
ated by a random modification of the preceding one. T
change is accepted with a probabilityp(xi ,xi 11):

p~xi ,xi 11!5min$1,p~xi 11!/p~xi !%, ~3!

wherep(xi) is the Boltzmann probability of statexi

p~xi !5exp~2H~xi !/kBT!. ~4!

Consequently, the average value ofA can be expressed as th
simple arithmetic mean

^A&>~1/M !S i 51
MA~xi !, ~5!

where:xi denotes the coordinates of thei th state of the Mar-
kov chain andA(xi) is the value of the quantityA observed
for this state.
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With decreasing temperature, the system can beco
trapped in a minimum in the energy landscape. Frequen
for a rugged energy surface, this is not the global minimu
At low temperatures, the convergence of the Markov ch
to its limiting distribution is very slow. The system is at ris
of spending a lot of time in a basin corresponding to the lo
minimum, or sampling a relatively small region of config
ration space, which leaves it wandering between two or m
local minima on the energy surface.

B. Replica method

The numerical study of multiple copies of a model sy
tem, simulated in a parallel fashion, has been described
Swedensen and Wang.3 Generally, it is a composite Markov
chain. There areN separate replicas of the model system a
a set ofN different predefined temperatures. Each replica
sampled with the Metropolis scheme as described above.
us assume that at a given moment of simulation, thei th
replica is associated with the temperatureTm , and described
by the HamiltonianH(X i), whereX i is the conformation of
the i-th replica. The Hamiltonian has the same form for
copies. Then, the composite Markov chain is constructed
follows: one of theN-1 pairs of replicas~i and j—the i th
associated with temperatureTm and j th associated withTn),
is randomly selected and replicas are swapped with proba
ity ps given by

ps5min~1,exp~2D!!

with D5~1/kBTn21/kBTm!~H~X i !2H~X j !!. ~6!

The i th replica runs at temperatureTm and the j th at Tn ,
respectively. Since the exchange probability decreases e
nentially with the temperature, only neighboring replic
need to be exchanged. For large temperature differen
transitions between distant replicas can be safely neglec
Swapping two independent replicas moves them into a n
region on the energy surface. Thus, the replicas move
only across the conformational space, but also sample v
ous temperatures. At high temperatures, the system e
overcomes energy barriers and, it is believed, uniform
samples conformational space.22 The replica exchange ste
should be attempted with a relatively low frequency, allo
ing for the equilibration of the replicas’ conformations at a
temperatures. Copies at low temperature will most likely fi
local minima of the energy. Finally, the quantityA for each
temperatureTm can be estimated according to Eq.~1!.

C. Entropy sampling Monte Carlo

With this method, described by Lee2 and later employed
in computer studies of simple proteinlike models,5,19,20,23–27

the thermodynamic properties of the model system at
temperatures of interest can be obtained from a single si
lation. During the Monte Carlo process an entropy-control
distribution of the system’s conformations is constructe
which enables a straightforward estimation of the syste
entropy as a function of its conformational energy. A tr
MC move is accepted or rejected according to probabilityps

ps5min$1,exp@2J~Ei 11!1J~Ei !#%, ~7!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where J(Ei) stands for an estimate of entropy for a giv
energy levelEi5H(xi) andEi denotes thei th energy level
~in practice,Ei is a finite energy interval, a bin of a histo
gram!. An estimate ofJ(E) is necessary to carry on th
simulations. This estimate may be obtained from the follo
ing iterative process:

~i! the initial values of the entropy histogramJ(Ei) are
set to 0 for eachi;

~ii ! A histogram, K(Ei), which stores the numbers o
conformations at particular energy levels~energy
bins! Ei , is obtained from a sub-run of the ESM
process;

~iii ! A new estimate forJ(Ei) is calculated, according to
the following formula:

Jnew~Ei !5Jold~Ei !1 ln~max$1,K~Ei !%!. ~8!

Steps~ii !–~iii ! define a single iteration of the entropy sam
pling Monte Carlo procedure. During the simulation, the s
tem is ‘‘pushed’’ by the histogramJ, updated in subsequen
iterations, into new regions of conformational space unti
finally reaches a low-energy state. The process should
repeated until the histogram,K, becomes flat, i.e., achieves
constant value that is independent of the energy. A flat
togramK means that the system achieved an artificial dis
bution of conformations~not the equilibrium Boltzmann dis
tribution!, controlled by the transition probability defined
Eq. ~7!. When converged, ESMC samples all energy lev
of the model system with the same average frequency
that point, the histogram ofJ can be treated as an estimate
the entropy of the system:

S~Ei !1const.5J~Ei !. ~9!

The free energy as a function of energy and temperatur
available from such a simulation from the formula

F~T,Ei !5Ei2TS~Ei !. ~10!

Any physical quantityA may be computed from the histo
gram acquired during the simulation by

^A~T!&5$S i 51
L a~Ei !•exp~2F~T,Ei !/kBT!%/

$S i 51
L exp~2F~T,Ei !/kBT!%, ~11!

where L is the number of bins in the histogramJ, and
a(Ei)is the average value of propertyA for states of energy
Ei .

In the sense that both the average conformational en
and the entropy are obtained from the same simulation,
ESMC method gives the full thermodynamic description
the system. Unfortunately, the method requires a la
amount of computer time before it converges.

III. DESCRIPTION OF THE POLYPEPTIDE MODEL

All of the methods outlined above have been tested o
polymer lattice model restricted to the fcc lattice. The po
mer chain consists ofN united atoms~or residues! connected
with N21 vectors. Vectorvi connects residuesi and (i
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11) and belongs to the set of twelve lattice vectors of
type @61, 61, 0#. The allowed valence angles are 60, 9
120, and 180 degrees.

To mimic the formation of secondary structure and t
conformational stiffness of polypeptides, the following de
nition of an expanded,b-type chain conformation was imple
mented. Three subsequent chain vectors are assumed to
an expanded state when the following criteria are simu
neously satisfied:

~i! The angles between vectorsvi 21 andvi and between
vectorsvi andvi 11 must be greater then 90 degree

~ii ! The dot productvi 21•vi 11 must be larger then 0.

The short range potentialUi 21,i ,i 11 depends on three
consecutive vectors in the chainv i 21 ,v i ,v i 11 . For the
b-type residues defined above,Ui 21,i ,i 1152«B ; otherwise,
Ui 21,i ,i 1150.

Each residue may have up to twelve neighbors. T
long-range potential for two nonbonded chain units is d
fined as follows:

Vi , j5H 1`, for r i , j50,

2«A , for r i , j51 ~in lattice units!,

0, for r i , j.1 ~in lattice units!.

~12!

For a chain of lengthN, the total energy is the sum of the tw
contributions

E5S i 52
N21Ui 21,i ,i 111S i 51

N S j Þ i 51
N Vi , j . ~13!

Two kinds of local chain modifications were used in a
three Monte Carlo processes. The first micromodification
volved a randomly selected displacement of the chain en
The second employed a table of two-bond configurations.
old configuration was substituted with another configurat
that fit into the remaining portions of the chain. A single st
of the sampling scheme consists ofN/2 attempts to make
these two-bond moves and two attempts at chain-end mo

IV. RESULTS AND DISCUSSION

For purposes of illustration, we have selected a single
of parameters~fixed for all simulations! to describe the
model chain. The chain lengthN564 for the fcc lattice~co-
ordination numberz512) has a large number of possib
conformations, and the problem of finding the global min
mum is nontrivial. However, to check the correctness of
algorithm and convergence of all methods, test simulati
were also performed for a smaller system comprised oN
532 units. The values of the force field parameters («A

51.0, «B54.0) mimic the situation of a semiflexible poly
mer, with a persistence length similar to that estimated
polypeptide chains.

A. Application details of the replica method

In order to optimize the replica method, RM, the thr
following points should be addressed:

~1! How many replicas must be used?
~2! What set of temperatures should be used?
~3! How frequently should the replicas be exchanged?
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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These parameters are mutually dependent. The wider
temperature range is, the more replicas are necessary. H
ever, a larger number of replicas demands a greater num
of replica exchanges. At the same time, the exchange
replicas should not be too frequent, as the system shoul
able to relax at its new temperature. Thus, if there are
many replicas, then the cost of finding the global minimu
may increase. In order to select an optimal, or reasonable
of control parameters, the approximate temperature of
phase transition needs to be known. Such an estimation
be obtained from a fast-simulated annealing MS simulati
The selected temperature range should contain the trans
midpoint. In the simulations described above, the range
replica temperatures was selected such that the trans
temperature was approximately in the center of the rang
temperatures sampled.

The temperature difference between replicas need
necessarily be constant. Two types of the replica tempera
sets were considered: one having an exponentially chan
temperature increment and a linear set with a constant t
perature increment. The number of replicas and the temp
ture range were optimized in a preliminary iterative proc
dure. A series of short test simulations were performed
various ‘‘reasonable’’ sets of the control parameters. Fr
each run, the lowest observed energy was extracted. Wh

FIG. 1. Energy as a function of temperature from ESMC~thicker solid line!,
the replica method~dotted line with squares!, and the Metropolis scheme
~dashed line with triangles!.

FIG. 2. Heat capacity as a function of temperature from ESMC~solid line!,
the replica method~dotted line with squares!, and the Metropolis scheme
~dashed line with triangles!.
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given series of simulations for a given set of control para
eters was finished, the average value of the minimal ene
was computed. The averages from these various series
compared. The parameters leading to the lowest ave
value of the lowest energy were selected for the produc
run. For our model, the following conditions seem to
close to the optimal CPU time needed to reach the low
energy state:

~i! Number of replicas: 5
~ii ! Temperature range: 1.25–2.75
~iii ! Frequency of replica exchange: every 1000 steps.

The number of replicas is identical to the number of te
perature points at which the system properties can be c
puted in a straightforward fashion. However, in order to o
tain temperature profiles of the various parameters of
system over a wider temperature range, ten replicas w
taken and the temperature range was extended to 1.0–3

B. Collapse transition by various MC procedures

From the ESMC simulations, the entropy of the syste
as a function of the energy of various states was obtain
The resulting estimate of the partition function enables
calculation of various physical properties, including the a
erage energy,E, the heat capacity,CV , the mean-square
radius of gyration,S2, and the percentage of residues
b-type conformations as a function of temperature. The c
responding data have also been obtained using the metr
lis scheme and the replica method and the set of results
compared in Figs. 1–4. The error bars for the last two me
ods were obtained from the numerical data from six indep
dent runs. Since the final estimation of the system’s prop
ties from ESMC was obtained via analytical expressions@see
Eq. ~11!#, the results are continuous and are marked in
plots by thicker solid lines. The accuracy of the results fro
this method should be the best when convergence of
ESMC method is indeed achieved. While our simulatio
reached a flat distribution on the energy histogram, sugg
ing the convergence of the process, some of the lowest
ergy states seen by the replica method were never visite
the ESMC sampling~see the next section!. However, the

FIG. 3. Mean-square radius of gyration as a function of temperature f
ESMC ~solid line!, the replica method~dotted line with squares!, and the
Metropolis scheme~dashed line with triangles!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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resulting systematic error of various properties is most lik
negligible. This seems to be true even in the very lo
temperature range, where the lack of very low-energy st
could potentially have important effects on the partiti
function. Nevertheless, the method is not very efficient
finding the energy minima, at least not in its most straig
forward implementation.

All simulations clearly indicate a collapse transitio
from the expanded random coil state to the dense glob
state. This is clearly demonstrated by the plot of the aver
chain dimensions against temperature~see Fig. 3!. The tran-
sition is rather smooth. The conformational energy chan
gradually ~Fig. 1!, and the heat capacity peak~Fig. 2! is
rather broad. Thus, the cooperativity of the transition is m
ginal. The collapse transition is accompanied by a large
crease of the content ofb-type structure. Representativ
snapshots of the chain conformations are shown in Fig. 5
T51.25, 2.0, and 2.75, respectively. The continuous cha
ter of the collapse~or folding! transition can be ascribed t
the homopolymeric character of the model polypeptide.
temperatures well below the midpoint of the transitio
simple Metropolis simulations~MS! tend to get trapped in
the local minima of the energy landscape. This results i
substantial deviation of various estimated properties from
values obtained by both ESMC and the replica method.
ESMC and RM, the problem of local energy barriers is n
so acute. ESMC can easily overcome any energy bar
Likewise, in the replica method, a trapped copy of the s
tem can be exchanged for a new one. As a result, the p
erties of the system, even at very low temperatures, can
calculated with good accuracy. The results obtained from
replica method have a small systematic error that can be
in the low temperature range. The average energy is slig
larger than that obtained from ESMC, and the average c
tent of low energy conformations is slightly smaller. This
a result of the ‘‘contamination’’ of average properties at
given temperature by exchanging copies of the system
tween different temperatures.

As mentioned above, two different temperature sets w
compared in the replica sampling protocol: The linear set
the exponential one. The temperature profiles of average
ergy, heat capacity, and the mean square radius of gyra

FIG. 4. Fraction of beta-type conformations as a function of tempera
from ESMC ~solid line!, the replica method~dotted line with squares!, and
the Metropolis scheme~dashed line with triangles!.
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were very similar for both sets. Although still in the range
the statistical error, the largest differences were observed
the heat capacity curves, as shown in Fig. 6. Somew
larger values of the statistical error~for essentially the same
simulation time! can be observed for the exponential set
temperatures.

C. Finding the lowest energy state

The ESMC method is expected to be an excell
method in searching for the lowest energy state. When c
verged, it finds states whose energy is at least equal t
lower than the best found by the simple Metropolis schem
Unfortunately, ESMC requires a lot of computer time, and
would be more efficient to perform some MS runs first,
order to generate a conformational pool that can be use
speed up convergence. For short chains, RM was the
protocol in that the lowest energy state forN532 chains
were generated in a much shorter time than when the o
two variants of the Monte Carlo method were used. In t
case the same energy minimum was found by all samp

re

FIG. 5. The snapshots of three example conformations of the model c
obtained by replica method.~a! The most frequently obtained ‘‘folded’’
structure,E52373, atT51.25.~b! a representative conformation near th
transition temperature,T51.85.~c! an expanded random coil conformatio
at the temperature well above the transition,T52.75.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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procedures. However, forN564, which has a more comple
search problem, a substantially lower energy state was fo
by the replica method. The difference in the computatio
cost of the various schemes is related to the fundamenta
these methods. When the temperature decreases, the cla
Metropolis scheme, or its replica implementation, tends
visit a series of states with decreasing average energy, a
vast majority of the high-energy states is neglected. In c
trast, ESMC must visit a substantial part of conformatio
space in order to achieve convergence of the entropy h
gram. The longer the chain and/or larger the number of
grees of freedom in the system, the more acute this dif
ence becomes. To partly overcome the problem of s
convergence, a conformational pool, generated in a prev
ESMC iteration, can be used to occasionally restart the
tem trajectory at various energy levels~with a uniform
probability!.25 Therefore, the simulation produces more u
form sampling, the entropy barriers are easily surmoun
and convergence is greatly improved.

For the replica method and Metropolis sampling, mi
mal energy values obtained from ten independent exp
ments were examined. The replica method found the low
energy conformation. The results of the search for the low
energy state by various methods are compared in Tab
The table also provides a comparison of the cost of com
tations on a 500 MHz Pentium II processor. Two types
globular structures in the low-energy region were found
this model. The first is a seven-strandedb-barrel with an

FIG. 6. Heat capacity as a function of temperature, comparison betwee
linear ~dotted line with squares! and exponential temperature set~dashed
line with triangles! of replicas in the RM method. In both cases, the sim
lation time was the same.
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energy of2373. A number of very similar structures wit
the same energy (E52373) were observed in the simula
tions. The second type of the low-energy structuresE
52374) resemble an elongated torus or an 8-stran
b-barrel, with a small opening in the center~see Fig. 7!. This
structure better optimizes the short-range interactions~char-
acterized by a lack of narrow turns! for the cost of somewha
worse packing. Implementation of different flexibility or se
ondary structure propensities along the chain should br
this kind of degeneracy.

Did any of these methods find the lowest energy conf
mation for the system? There is no proof that this is the ca
Nevertheless, the fact that the states withE52373 andE
52374 were visited by the simulation process quite oft
suggests that the simulations do reach the lowest en
states. It is worth noting that for a smaller system (N532
and the same interaction scheme! all three sampling method
~including ESMC! detected the same lowest energy state

In summary, the replica method finds much lower e
ergy states~possibly the lowest! than the two other method
for a comparable amount of computer time. The difference
10 kBT in the system’s energy~see Table I! has a qualitative
meaning. The number of states~that were never visited by
ESMC or MS! in this range of energy is large. For mor
complex models of proteins, the discussed differences of
performance of various MC methods might even be m
dramatic.

V. CONCLUSIONS

In this series of simulations, we demonstrated that
replica method is much faster and more accurate than
classical metropolis scheme in finding the energy minim
The most complete estimation of the system’s properties
be achieved by the ESMC method. This is because
method provides a straightforward measure of the entr
and energy over the entire relevant range of temperature
contrast to the Metropolis scheme or the replica method,
tropy Monte Carlo sampling is quasi deterministic—
subsequent iterations provide a better estimation of the
tropy. As observed in the energy plot~Fig. 1!, the average
energy obtained from the replica method is slightly high
than the energy derived from the ESMC method. Due to
replica exchange process, small systematic errors occur

ESMC provides a description of the system’s thermod
namics over the entire range of temperatures. However,

he
onte

g, RS,
pling
TABLE I. Comparison of the simulation times and ability to find the low-energy states for classical M
Carlo, RM, and ESMC search schemes.a

Method
Temperature

set
Number of
iterations

Computer
time

Average of ten runs of
the minimum energy
~standard deviation!

Lowest
observed energy

MS linear 1.1* 108 1 h 57 min 2349.3~62.067! 2362
RM linear 108 2 h 14 min 2368.2~60.783! 2373
RM exponential 108 2 h 20 min 2369.7~60.789! 2374
ESMC n.a. ;109 ;20 h 2364 2364

aTen independent simulations were performed for classical Metropolis sampling, MS, and replica samplin
while only one independent simulation was done for the entropy sampling Monte Carlo, ESMC sam
scheme.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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convergence of ESMC is too slow when the goal is find
the lowest energy state. The replica method gives good
mations of the system parameters over a wide range of t
peratures in a reasonable amount of CPU time. It reaches
basin of low energy states in the shortest CPU time. Th
RM seems be the most useful tool for minimization. Inte
estingly, the two sets of replica temperatures—linear a
exponential—compared in this work led to very similar r
sults.

In the forthcoming work, we will apply Monte Carlo
methods to find a minimal model that reproduces the m
essential features of globular proteins, i.e., a unique struc
of the folded state and a cooperative, all-or-none fold
transition. A number of sequences will be investigated, a
the replica method will be used to find its lowest ener
conformations. For those sequences that have a un
ground state, the other parameters of the model will be o
mized to reproduce an all-or-none folding transition. T

FIG. 7. The lowest energy state,E52374, obtained by the replica metho
at a temperature of 1.25.
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folding thermodynamics will be investigated in detail by th
ESMC method.
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