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SUMMARY 

This thesis presents an exact mathematical formulation 

of the mixed integer air freight model. A proposed solution 

approach is also discussed, but no exact solution is given. 

The air freight model includes many features that, even 

though separate developmental work has been done, when 

combined,present quite a complex problem. An unlimited fleet 

size and composition using various type of aircraft is 

permitted. Routing and scheduling aircraft between the 

designated cities of the system must also be accomplished. 

Cargo introduced into the network must be identified by 

origin-destination designation to assure the correct multi-

commodity flow. A time constraint on the amount of time an 

item has in which to reach its destination location exists 

also. Freight routing includes the ability to transfer 

between aircraft at intermediate locations and even to remain 

in ground storage at such a location where a "best" routing 

construction results from such action. Finally, aircraft 

schedules by type of aircraft are required to repeat at 

predetermined intervals. 

The mathematical statement of the model seeks to 

minimize the cost of aircraft operation and fleet costs 

plus the freight inventory and transfer costs incurred subject 

to several constraints. First, the amount of cargo placed 
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on an aircraft cannot exceed the aircraft's cargo capacity. 

Second, the number and type of aircraft operating in the system 

is limited to the size and composition of the fleet available. 

Third, all the freight entering the system must reach its 

destination within the stated time limits by utilizing 

combinations of the aircraft routes to be flown. 

An early assumption presented in an effort to outline 

a solution approach is the fixing of the fleet size and 

composition. Next, a decomposition procedure utilizing a 

time window within which all freight movement is feasible 

is presented. Using this smaller time window, a linear 

relaxation approach is developed using a column generation 

scheme. This scheme allows the implicit evaluation of non-

basic flight routes and schedules, and freight paths along 

those routes. However, in order to use such a scheme the 

costs of the path must be assignable to each of the arcs 

along the path. Freight transfer costs cannot be so assigned. 

Thus two cases are developed; one for zero transfer costs and 

the other for non-zero transfer costs. 

Other special characteristics of the air freight model 

require modifications to the shortest path procedure of 

implicitly evaluating the non-basic routes and paths. Three 

algorithms are developed to handle these special conditions. 

The first identifies the shortest path for freight movement 

from any node to a group of selected destination nodes 

where transfer costs are fixed at zero. Second, a flight 



path algorithm is described to find the least cost path 

across the time window. Finally, a special algorithm for 

non-zero transfer costs is presented. 
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CHAPTER I 

INTRODUCTION 

In the realistic world of air freight operations the 

total problem of routing and scheduling of aircraft in order 

to assure the processing of multicommodity items through the 

system within critical time constraints has not yet been 

evaluated from an optimality standpoint. This thesis 

approaches the overall problem by first formulating the model 

and then proposing a heuristic algorithm based upon the exact 

formulation. 

General Problem Statement 

Movement of freight using aircraft is a highly 

competitive market and operational costs can be very critical 

especially in light of recent fuel price increases. As a 

result of this competition some companies have been forced to 

use commercial airlines to carry the majority of the cargo. 

However a few firms have held firm to the concept of an 

internal fleet of aircraft. This thesis is concerned 

entirely with such unimodal independent transportation 

systems; unimodal in that only aircraft are used without 

ground augmentation, and independent in the aspect of trying 

to meet cargo demand requirements only and not passenger 

demands or timetables. Firms falling into this category are 
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sensitive to area supply and demand requirements, servicing 

only cities that can generate sufficient cargo movement to 

justify being included. Usually, only twenty to twenty-five 

cities or areas are serviced at any one time. In routing 

aircraft between cities there are no restrictions on the 

path to be taken such as highways or rail lines. The actual 

path can be from any one city to any other city under 

consideration. This results in a large combination of possible 

routes that a plane can take in fulfilling the shipping 

requirements. If the fleet were allowed to be as large as 

needed, then a plane might be obtained for every possible 

combination. Even though it may be possible to lease an 

essentially unlimited variety of aircraft, the acquisition 

cost for such a fleet would be enormous. Thus the problem 

seeks to minimize the fleet size and associated operating 

cost for the aircraft. Another of the operating costs that 

has a direct impact on the routing problem is the fact that 

landing fees must be paid at each location where the plane 

lands. The routing must also assure that at specified cycle 

lengths routes are repeated so that, if not the same plane, 

then at least one of the same type copies the same route on 

the same schedule each cycle period. 

Scheduling of the routes, once they have been deter­

mined, is a critical part of the problem. Departing from 

many delivery and scheduling schemes, each location can 

operate as origin, destination and holding point at the same 
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time. The air freight cargo is also permitted to transfer 

its cargo between planes. The cargo may thus be permitted 

to wait in inventory at an intermediate point before being 

reloaded on a plane. Thus new routes for an item of cargo 

can be created simply by an adjustment of schedules to allow 

an arriving plane to land and transfer the cargo to a plane 

waiting to depart. Such scheduling changes cannot be made 

as freely as desired since the cargo remaining on the plane 

must also reach its destination. 

Emphasis must be placed on the cargo reaching its 

proper final destination. This is not simply a single 

commodity network or warehousing problem. When a company 

comes to an air freight firm with its item, say a motor, it 

expects that same motor to be delivered at the destination 

specified. No substitution of another motor or different 

item is permitted. Thus, the origin-destination aspects of 

each item forces the model into a multicommodity classifi­

cation. In actuality, commodities destined for a common 

location may be considered as a single item originating at 

various other locations. Once a procedure has determined 

the commodity routing for this single item from each of the 

origin points to the common destination, then the specific 

individual commodity designation can be reassigned. 

Cargo within the system will be considered to have 

uniform density. This standardization of commodity weight 

and volume characteristics prevents the consideration of any 
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revenue aspects of the system but focuses directly on opera­

tional costs. Also items of common origin and common 

destination are usually grouped together in a unitized cargo 

pod to facilitate easier handling and transfer of the items 

while in the system. Aircraft in the fleet carry integer 

quantities of these cargo pods. The model for ease of concep­

tualization will consider the cargo commodity values as 

continuous and not as integer amounts. In addition, commodity 

flow units will be considered in terms of these cargo pods. 

Perhaps of most importance to an outside company 

utilizing an air freight system is the time it takes to 

deliver the item in question. High priority is usually 

attached to every item and over-night delivery required. 

This tight time restriction places another constraint on the 

model. The actual physical time requirement may not always 

be fixed and will generally vary between 6-12 hours. Also, 

periods of peak demands such as the evening hours before 

midnight occur while other periods such as the corresponding 

morning hours are noted for lack of input. These cycles 

do not affect the model, but the longer cyclical pattern of 

recurring commodity flows provide a basis for planning the 

repetitive schedules. These longer patterns repeat themselves 

approximately every week. 

The problem can be seen as an effort to minimize cost 

subject to limiting constraints with the assurance of an 

integer solution on all flight schedule variables. Cost 
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includes aircraft variable and fixed acquisition costs, 

including maintenance, fuel, landing costs, and commodity 

costs including inventory and transfer costs. Major 

constraints to be observed are as follows: aircraft capacity 

limits; cyclic repetition of the routing schedule; minimum 

ground time requirements for unloading; loading and transfer 

of cargo; critical nature of individual commodity identifi­

cation and time in the system. 

One of the cost components in flight routing and sched­

uling that will not be considered in this thesis is flight 

crew scheduling and positioning. This has been well developed 

in the literature. The emphasis of this thesis is on 

commodity movement and flight arrangement to minimize both 

commodity and flight costs. 

Related Literature 

The initial impetus of this thesis was generated by 

the Air Force's search for a optimality based model to the 

LOGAIR problem. Fetter and Steorts [15] first developed an 

approach that begins with known demand and a fixed set of 

routes and then solves the multicommodity linear program to 

assign cargoes. Adjustments to the routing system are then 

made by experienced personnel and the problem is solved 

again. This cooperative man-machine approach continues 

iteratively until the "best" solution is achieved. Demmy 

and Brant [12] describe the development of a routing scheme, 
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but still the man-machine iterative process continues as a 

vital part in the solution algorithm. 

Other published research indicated specialized develop­

ment in each of the areas composing the air freight problem, 

but very little progress in the combining of the methods in 

an optimal solution search. 

Commercial air transport problems have concentrated 

on scheduling and routing aspects of the air freight problem 

and have achieved much progress in obtaining efficient 

algorithms. Burger and Rice [7] present an algorithm 

involving scheduling aircraft over fixed routes. Levin [27] 

examines both routing and scheduling for individual aircraft 

over fixed system routes in order to minimize fleet size. 

Other works, such as Peters [33] examine aircraft rotation 

and routing for a passenger airline. None of the approaches 

consider multicommodity or transfer of passengers in the 

modeling. Etschmaier [13] in his survey of current mathemati­

cal programming applications in the realm of commercial air 

transport system notes that the current approach to designing 

the system involves first selecting routes, next assigning 

frequencies, and then scheduling departure times. 

Truck routing problems, such as the vehicle dispatch 

problem by Cillett and Miller [21] , and combining of truck 

trips by Gavish [19] provide some insights into the air 

freight network. Differences, however, do exist in the 

following areas: routes are more channelized over fixed 
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physical systems, transfer of cargo is not usually considered 

or if considered not on a repetitive basis, and scheduling 

is most often considered separate from routing. 

In a similar manner job shop scheduling literature 

promises much in the type of aircraft scheduling that is 

desired; but must have a fixed routing scheme as a prerequisite. 

Perhaps the best developed model similar to the air 

freight problem is the tanker scheduling model. The routing 

and scheduling of tankers over sea lanes is similar to air 

routing. Initial work was performed by Dantzig and Fulkerson 

[10]. The model's objective was to minimize the fleet size 

of a set of identical tankers carrying a single commodity 

between ports with no transfer of cargo permitted. Bellmore, 

et al. [2,3,4] through the course of several papers expanded 

the model to include non-homogeneous vessels with varying 

costs, a range of acceptable delivery dates instead of 

required dates, and a fixed charge for putting a tanker into 

service. A single commodity and lack of the ability to 

transfer cargo continue to limit its relevance. Applegren 

[1] continues the development of the model using a multi-

commodity formulation but not allowing partial unloadings nor 

transfer of cargo and restricting the fleet size. Extending 

the original Dantzig-Fulkerson model, Briskin [6] assumes 

homogeneous vehicles, known demand, supply, travel times and 

routes, and then by clustering groups of demand ports permits 

in effect partial unloadings. 
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Finally, McKay and Hartley [30] present a generalized 

problem model including varying capacity vessels and multiple 

commodity products. Much emphasis is placed on the freedom 

of routing and scheduling but in the end a "good" solution 

over a limited range of feasible routings is all that is 

obtained. The multi- commodity accountability and ability to 

transfer cargo, once again, escapes inclusion in the model. 

Thus, the published literature has not been able to 

tie all the aspects of the air freight problem together. 

Principal issues of routing, scheduling and multicommodity 

flows have been dealt with separately, but they should be 

unified if an optimality-based procedure is to be developed. 

One issue never discussed in the literature, in the context 

of an optimality-based procedure, is the concept of commodity 

transfer which is one of the distinguishing features of- the 

air freight model. 

The remaining portions of this thesis provide a develop­

ment of the problem and a procedure that unifies the various 

elements of the air freight problem. First, the model 

formulation is constructed in individual pieces and then 

placed together to show how the components are interrelated. 

Then, a heuristic approach is introduced in an effort to 

reduce the problem to a manageable size and still retain an 

optimality basis. Finally, extensions and application of the 

results are proposed for work beyond the scope of this thesis. 
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CHAPTER II 

MODEL FORMULATION 

In the formulation of the air freight problem, 

relevant concepts will be developed individually before the 

complete model is presented. Reviewing the problem, the 

objective function calls for the minimization of the fleet 

acquisition and operating cost, and commodity cost in the 

system. Limiting constraints enforce the commodity shipment 

to be less than or equal to the capacity of the aircraft 

used, the movement of the commodity through the network from 

its origin to its destination within a limited time, and the 

development of repetitious routes. There are no limitations 

on fleet size or composition among various capacity vehicles 

and transfer of commodities is permitted. 

To develop a mathematical programming formulation of 

this problem, concepts which are needed in the model formula­

tion will be intuitively and logically developed separately. 

All the concepts will be unified in a complete air freight 

model stated at the end of the chapter. To facilitate easy 

reference by the reader, all notation used is summarized in 

the nomenclature appendix at the back of the thesis. The 

convention of using capital letters for constant terms and 

lower case letters for variable terms is adopted throughout. 
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Time Space Network 

Everything in the air freight model has a time factor 

associated with it. Planes take off and land at specific 

times. Commodities enter the system at specified times and 

must have reached their destination within a time limit. 

The additional fact that every location can become an origin, 

destination, and transfer point within the same period of 

time complicates the picture of the model. If the network 

was based on space parameters alone, then labelling of the 

graph would become an unmanageable and confusing task. Thus 

for the formulation below the network has been expanded to 

include a node for each city at each discrete epoch in time 

from 1 through T, the time at which schedules begin to repeat. 

The cyclical nature of commodities, as was stated before, 

will be the period length at which schedules and routes will 

repeat. Cycles may develop within this period among cities, 

but the entire flight structure must be tied together again 

at time T to insure the system repeats itself. This system 

repetition is of a much longer period than the time require­

ment to move a commodity through the network. 

A discrete time epoch approach limits the number of 

state changes that can occur at any single moment. Two types 

of arcs, horizontal and diagonal ones, describe the states 

permitted. Horizontal arcs represent the idea of remaining 

at the same location over time allowing unloading, loading, 

transfer and holding of commodities. Horizontal arcs are all 
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of length one and go directly to the next epoch. Diagonal 

arcs, on the other hand, represent the movement between two 

different locations over time and the length of the arcs are 

determined by travel distance. Vertical arcs are not permitted 

as that would imply travel between locations in zero time. 

Figure 1 illustrates the structure of the time space network 

and the type of arcs permitted. 

Commodity Management 

Close attention to commodity management is required. 

As noted in Chapter I, the problem is of a multicommodity 

nature and not just a multiple transportation problem as the 

literature has handled. Since a commodity enters the system 

at a fixed time and location, a specific origin node can be 

assigned to it. However, a commodity may exit the network 

at one of several nodes, all of which are at the same location 

or destination. It is then possible to designate a commodity 

by its origin node and destination location. Such a unique 

designation will permit recognition at any point within the 

network. By inclusion of its origin node value, the length 

of time the commodity has been in the system can be readily 

determined and thus the maximum time permitted for the 

commodity to remain in the system can be enforced. Also, any 

path from a prospective set of destination nodes can have 

origin nodes at every node of the path and each commodity can 

be individually identified. An example can be seen in Figure 1 



Figure 1. Time Space Network 
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where if location 3 is the destination node and node (1,1) 

is the origin, the commodity can be designated as (1,1),3. 

The arc from node (1,1) to node (2,2) is a diagonal 

arc, as is the arc from node (1,2) to node (3,4). The first 

is one epoch in length while the second requires two epochs 

to reach its destination. Note that all nodes at the same 

location, such as from node (1,1) to (1,2) and from node 

(1,2) to (1,3), have horizontal arcs. The dashed lines 

indicate connection of the nodes and are distinguished from 

arcs representing a plane's movement across the network. 

Although this adaptation increases the number of nodes and 

the size of the network, the simplicity in manipulation and 

ease of conceptualization provides for greater benefit. 

Instead of having only twenty-five nodes and all its over­

lapping arcs, the model now has twenty-five nodes at every 

epoch, in other words for a ten epoch network, there would be 

250 nodes for the arcs to connect instead of just twenty-

five. The network will definitely decrease in its density 

of arcs using the time space network. 

The special structure of the network and associated 

arcs, flights and paths results in an acyclic network or one 

without any cycles. This type of network lends itself to 

very straightforward methods of computing shortest or least 

cost paths across the network from source to sink. The 

statement of no cycles is not exactly correct, as at time 1 

and time T the routing of flights may form a cycle and all 
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flight arcs at time t and time t + T must be identical. 

However, a cycle is not the only way to create repetitious 

routes since a plane of the same type is all that is required. 

Flights and Commodity Paths 

Consider the time space network of the air freight 

model where the nodes and arcs are designated as follows: 

(i,t) as the node at location i at epoch t, 

(i,t,j,s) as the directed arc from node (i,t) to 

(j ,s) where t < s. 

A horizontal arc is defined where i = j and s = t+1. 

Defining a diagonal arc is simply where i f j and s - t+L^.. . 

L^j represents the time distance of the arc from location 

i to j . 

A super source serving as the initiation point of 

commodities entering the system destined for location u 

is designated by SS^. Also, the super sink serves as the 

collection point from a group of destination nodes or sink 

nodes, u, is designated as S . The arcs connecting these 

super nodes with the rest of the network are considered 

horizontal arcs and designated by ordered triples, SS u,(i,t) 

and (i,t),S U. 

A path within the network is constructed of a sequence 

of arcs (o,g,d,h), ...,(b,m,u,r) where if the K th arc is 

(i,t,j,s) then the K+l arc is (j,s,k,v). Thus, the path is 

from node (o,g) to (u,r), including the initial arc from 
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the super source, SS u,(o,g) and the final arc to the super 

sink, (u,r),S u, the path for commodity (o,g),u. A cycle is 

defined when the same path both starts and ends at the same 

node within the network. As stated before, this can occur 

only at one point in the network, that is when schedules and 

routes repeat at time T. 

Both aircraft movement and commodity movement occur 

along paths in the network. To separate the terminology 

between the two types of paths, airplane routing through the 

network is called a plane flight. The term commodity path 

will be used to describe commodity movement through the network. 

Special Characteristics of Flights 

Since we are associating flight with planes then every 

plane requires a flight path and a flight must extend across 

the entire network from time 1 to T. Also, a flight can 

occupy only one location at any epoch. In between airborne 

travel, a plane must remain at the same location at least one 

epoch for cargo loading, unloading, refueling, and required 

maintenance purposes. Thus, horizontal arcs must be included 

between diagonal arcs of the flight. 

Every combination of diagonal and horizontal arcs that 

constitutes a continuous path across the time space network 

will be identified as a separate flight. Designate: 

A p = {(i,t,j,s): (i,t,j,s) is part of flight f} 
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It can be readily seen that the number of flight 

possibilities is very large since any one arc can be included 

in several flights. Figure 2 illustrates some possible flight 

combinations. 

Flight 1 consists of the arcs A^ = { (1,1,1, 2) , (1,2,3,3), 

(3,3,3,4)}. Another example is flight 2 consisting of 

A 2 = {(1,1, 2, 2 ) , (2, 2, 2,3), (2, 3,2,4)}. 

Special Characteristics of Paths 

The only method of moving a commodity from one 

location to another is by placing it on a plane and flying 

it. Thus a commodity path diagonal arc must be associated 

with a flight diagonal arc. However, at one location across 

a horizontal arc a commodity may be associated with one plane, 

remaining on board, or transferred to another plane, or not 

associated with any plane, simply waiting in holding inventory. 

In order to transfer a commodity between planes, time is 

required and it is assumed in this model that only one epoch 

is needed. The effect of this restriction, as in the case of 

a flight, is to intersperce horizontal arcs between every 

diagonal arc in the path of the commodity. 

Commodity paths, unlike flights, enter the system at 

various specified points, and can leave the system at 

several different time space nodes. Each commodity must 

reach that destination within a specified time. Early 

arrival is beneficial, but late arrival is not permitted. A 



Flights • 

Commodity Paths <p> 

Figure 2. Airplane Flight and Commodity Path 
Examples 
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permitted path then, will not exceed the commodity time 

requirement. 

Every permissible combination of diagonal and 

horizontal arcs between the origin node and destination 

location that can occur within the commodity time limit in 

the system is identified as a separate ordered commodity 

path and designated: 

r p = {(f,i,t,j,s): if f > 0, path p takes flight f 

along arc (i , t, j ,s) ; 

if f = 0, then i = j and path p 

holds at location i in ground 

storage. } 

Since a single location is represented by several 

nodes in the network, a set of paths for a single commodity 

may reach its destination or sink at different points in 

time. The use of arcs from these different sink nodes u to 

the super sink S^ for that commodity insures that all flow 

possibilities are permitted. This special structure creates 

further complications in solving the problem that will be 

explained as the model is unified later. Figure 2 illustrates 

the path structure of a single commodity. 

Two paths are shown in the figure for commodity 

(1,1)3. The first remains on the same flight, -

{(0,1,1,1,2),(1,1,2,3,3)}. The other path transfers from flight 
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2 to 3 at location 2, 

T 2 = {(2,1,1,2,2),(0,2,2,2,3),(3,2,3,3,4)}. 

Flight Costs 

Two types of costs, fixed and variable, comprise the 

total flight costs. Fixed costs include the fixed charge 

aspects of plane acquisition, maintenance personnel and space, 

administrative costs. Of course, fixed cost will vary with 

different capacity type aircraft, but it is assumed that the 

fixed cost for the same type of aircraft will remain constant. 

Variable costs depend upon the actual flight time of the 

aircraft and the number of stops. Costs prorated over time 

for in-flight requirements such as fuel are combined with 

landing costs such as landing fees, ground personnel, and 

equipment. It is assumed that these variable costs hold 

constant regardless of quantity of commodity carried, even 

though in the case of fuel costs this may not be entirely 

accurate. Diagonal arcs contain the variable cost assignment 

and are simply the cost per unit time times the length of 

the arc. Fixed cost charges are assessed either at the first 

or end of the flight, and horizontal arcs have no cost. 

Thus, the exact cost of a given flight can be determined as 

follows: 
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(itj s)eX 
[(s-t)K (a £) + L 

In words, this equation takes the fixed acquisition 

cost for the type of airplane flying this flight and adds 

the sum of the cost of variable in-flight time costs plus 

the landing cost at the end of every diagonal arc. 

a commodity from its source to one of its sink nodes, commodity 

cost becomes a concern. Of critical interest is the time it 

takes to arrive at the destination. The inventory cost and 

transfer cost are the two principal factors. Measuring the 

charges for processing in and out of the system as well as 

handling charges over the length of time the commodity is in 

the system, the inventory cost corresponds to the fixed 

charge portion of the flight cost. Changes in the inventory 

cost to occur corresponding to the length of the path or time 

spent in the system. 

Commodity Path Cost 

Once arcs are established to form feasible paths for 

I P = Maximum {s} - Minimum {t} 
(f,i,t,j,s)er p (f,i,t,j,s)eT p 

Transfer costs are quite independent of time and truly 

represent the most difficult of the charges to deal with in the 

solution. In the transfer of cargo from one plane to another 
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handling, equipment, and personnel costs are incurred. If 

this is simply averaged out over all commodity handling 

costs, then it can be included in the inventory cost above. 

However, if costs are markedly higher for transfer of cargo 

and such costs are to be identified and minimized, then the 

number of such transfers and the locations must be recorded 

for accurate charging rates. This really implies that one 

path for a commodity might have a lower inventory cost than 

another, but that because of transfer cost additions the 

second path would actually be the better or least cost of 

the two. Thus, the total unit commodity path cost is the 

sum of the inventory costs and the total of the transfer 

costs at each location where a transfer occurs. 

R = I + Z H-; p p - - - - i {(o,i,t,i,t+1)ET : there exists 

(f,j,s,i,t)er with f > 0} 

Model Formulation 

A mathematical formulation based upon the concepts 

previously discussed is now presented. 

Decision Variables 

Two decision variables are required in the model. A 

0-1 integer variable is used to indicate whether a'particular 

plane flight, f, is used or not. 
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f l if flight f consisting of the set is used, 
y f 1 

10 otherwise. 

The second decision variable is continuous and is the 

amount of flow in the commodity path. 

Wp = the amount of commodity shipped along 

path p, where p consists of the set r . 

Objective Function 

Minimization of the sum of the two cost areas of 

flights and commodity paths forms the objective function 

equation 

Minimize z = E C r yr + £ R w . 
£ f f p P P 

Problem Constraints 

Three constraint equations restrict the range of 

feasible solutions. First of all, the amount of total 

commodity placed upon a plane cannot exceed its cargo 

capacity. Also implied is the fact that only actual flights 

can carry cargo. These constraints apply at every epoch in 

the time space network. 

Z W p 
{p: (f,i,t,j,s)crD> 

- A a y £ V£,V (i,t,j ,s)er £ 

with i^j 
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where A is the capacity of the aircraft of type a. a 
Second, the fleet size, although unlimited, represents 

the availability of a plane for a flight. Thus the number of 

flights must equal the number of planes or the fleet size 

at each epoch in the netivork. 

Ey £ < N a ya; yr. 
{f: a £ = a; (i,t,j,s)eX £ with t<r<s} 

Third, the sum of flows along the commodity paths 

connecting the origin node and destination location for a 

commodity must equal the amount of the commodity, to be 

shipped through the system. 

£w p = Q r , s V(i,t) ; V u , 
± > T- t<r<;W+tnu,r 

where Q. . is the set of all commodity paths originating at 
1 , u 

node (i,t) and A is the set of all commodity paths ending 
u, r 

at node u,r and Q,. > is the amount of commodity origi-
U » ) u 

nating at node (i,t) destined for location u, and W is the 

time constraint on commodities in the system. 

Finally, the routing and scheduling of flights must 

be repetitive. The same arcs must be repeated again every 

period length of the cycle. 
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Z y £ = E y £ 

{f:a £ = a; (i , t ,j , s) e A £} {£:a £ = a; (i,t+T,j,s+TeA £} 

Va; V(i ,t, j ,s) 

In this form, the model appears quite simple, but 

actual identification and evaluation of the many flight 

possibilities that are contained in the scope of all A £ and 

in turn the many paths generated in all present a complex 

solution procedure, as will be seen in the next chapter. 
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CHAPTER III 

MODEL BASED SOLUTION SCHEMES 

The model, as developed in the last chapter, seeks to 

minimize the sum of both commodity path costs and fleet 

flight costs. One constraint on the model is that cargo 

capacity between two locations in the system is limited to the 

capacity of the aircraft flying that arc. Other constraints 

limit the number of flights at any one time to the number 

of aircraft in the fleet and require that scheduled routes 

repeat for similar type aircraft. Finally, all the commodities 

entering at their origin time-space node must move along 

permissible paths to reach their appointed destination within 

a specified length of time. 

Proceeding from this basic formulation of the model, 

solution approaches will be proposed in this chapter. 

Structural characteristics of this model present opportunities 

and obstacles requiring special procedural techniques that hope­

fully do not widely depart from an optimality based solution, 

but do reduce the problem to a more manageable dimension. 

Fixed Fleet Size and Composition 

An initial, reasonable assumption is that the fleet 

of aircraft available is fixed both as to the total number 

and composition by various types of aircraft. Perhaps planes 
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could be leased on short notice or purchased on a long term 

need, but most operations and associated costs work on a 

fixed fleet basis. Of course, this assumption does not 

prohibit other fleet size and combination mixtures from 

being considered. Other options are simply deferred until 

the problem has been solved under the existing fixed conditions. 

Experienced personnel, capital budgeting constraints, 

and other external sources provide excellent information on 

fleet requirements and near optimal starting points. Well 

defined levels of acquisition costs for each additional 

aircraft and type tend to identify local optimum points 

rather than a continuous space of feasible solutions. Thus, 

if fleet composition was entirely variable, a limited number 

of applications of a solution approach at different levels 

and mixtures of aircraft in pre-specified regions would 

likely lead to an adequate solution. 

On the other hand, the assumption of a fixed fleet 

permits better definition of many areas within the model. 

Once an operational fleet size is fixed, the number of reserve 

aircraft and maintenance and availability requirements are 

also fixed. More importantly the number and aircraft mix 

of all flights across the time space network is fixed so 

that design of flight routes and commodity paths can be 

carried out within a defined domain. 
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Time Window 

Also, by using the fixed fleet assumption, a method 

of dividing the domain of plane flights and commodity paths 

into smaller time segments appears via the concept of a time 

window. Such a concept considers only a limited time span 

of the entire network at any given point in the optimization. 

In other words, instead of trying to evaluate an overall 

network of 250 epochs, the window would look at perhaps only 

10 epochs at any one time. The window is optimized locally 

and then by a predetermined process is reapplied across the 

entire network. 

With the fleet size and composition fixed, much of 

the problem linkage between time windows is eliminated. The 

driving constraints of the remaining problem center on the 

need to move commodities from origin to destination within 

the allowable time frame. This time frame is much smaller 

than the cycle period for flights. Thus, the time window 

concept can be reasonably applied with this relatively short 

window length. By maintaining feasibility for commodity 

movement, the time window's local solution hopefully loses 

very little to an overall optimal solution. However, the 

small size of the reduced window yields a much simpler and 

more easily managed problem. 

Another interesting facet of the time window is the 

flexibility in width. It does not have to remain at a fixed 

number of epochs, but can expand and contract as conditions 
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dictate, as long as it never grows smaller than the time 

movement constraint limits for commodities. Expansion of 

the time window can occur in the instance of late morning 

or early afternoon arrival of items in the system that are 

not required at their destinations until the next morning. 

The smallest time window occurs late at night for arrivals 

that must still be delivered the next morning. Changes in 

the width of the time window will be controlled from external 

sources outside the model but will not affect the internal 

solution procedure. 

The management of repeated solution of the time 

window problem so that a satisfactory feasible solution 

results for the entire problem can be accomplished in several 

ways. This thesis adopts a backwards logic method similar 

to dynamic programming. The initial window application will 

be at the last time period of the flight cycle, i.e. T. 

Once the optimal solution for flights and commodity movement 

within that window have been computed, then the window is 

moved one time epoch backwards (toward the cycle starting 

time 1) and resolved. This process is continued one epoch 

at a time until the leading edge of the window reaches time 1. 

At this point flights begin to repeat as do commodity flow 

patterns. The window may be applied on into the previous 

cycle at time T, to insure satisfactory wraparound charac­

teristics at the ends of the flight period. 

By moving the window only one epoch at a time, much 
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of the optimal flight routing and commodity movement deter­

mined in the previous window will provide a good feasible 

starting point for this window. Optimal commodity movement 

that occurred prior to the edge of the last window, will 

probably remain optimal within the new window. Similarly, 

flights will still carry the same cargo across the major 

portion of the window now that they did before. Additions and 

changes at the edges of the new window will be required, but 

the major effort of attaining feasibility has already been 

established. 

Maintenance of feasibility across the same window must 

remain as an essential factor. Feasibility requires that all 

commodities regardless of the time or location at which they 

enter, must reach their respective destinations before the 

end of the window. Early entering cargo, for example, has 

many more possible paths to reach its destination than does 

late entering cargo. For example, a commodity entering the 

window at the first epoch has more than twice as many 

feasible paths to reach its destination than does a commodity 

entering in the middle of the time window having the same 

destination. 

Maintenance of feasibility and the method of moving 

the time window forces the establishment of intermediate 

nodes for commodities. That is, once a commodity path is 

determined and the window moved, then that portion of the path 

beyond the window boundary is fixed and must be utilized. 
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Thus, where a commodity path crosses the edge of the window, 

an intermediate node is established. These intermediate 

nodes now perform the function of destinations. 

An example can be seen in Figure 3. The original 

commodity destination is at location 3 but the arc of the 

path that reaches location 3 is outside the window. Node 

(2,3) is assigned as the intermediate node and the commodity's 

destination node within the window. The least cost path to 

node (2,3) is now the objective of the new window, but node 

(2,3) must be reached in order to place it on arc (2,4,3,5) 

to its final destination. Note that the next time window 

edge will occur between epoch 2 and 3 and the intermediate 

node assigned will be the origin node, thus the commodity 

need no longer be considered. 

Because of the boundary conditions imposed on the 

commodities a new constraint is imposed. The amount of 

commodities crossing the edge of the window must be reassigned 

to the intermediate node which in turn identifies a sink node. 

1 W P = q(i,t),(k,r) V p 
P £ n(i,t) A'(k,r) 

where ^ i ^ ) ^ i s ^he amount of commodity originating at 

node (i,t) and destined for intermediate node (k,r) and v is 

the window boundary time and A'(k,r) is the set of all commodity 



Figure 3. Time Window Boundary Conditi 
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paths ending at node (k,r) for r < v, or defined as follows: 

A(k,r) ~ { p : C.o,lc,r,kr+l)erp and r = v; or 

(f,k,r+l,j,s)eT with f^o, k^j, and 
P 

r+1 < v < s} 

The constraint notes the fact that if the path crosses 

the edge of the window on a diagonal arc that the commodity 

must arrive at the intermediate destination one epoch before 

it departs. 

Similar boundary constraints apply for airplane flights 

as well, but are already included in the model where the sum 

of flights across any one epoch cannot exceed the number of 

operational aircraft by type in the fleet. In the last 

example, if the arcs are now considered flights instead of 

commodity paths, the boundary node is the same, node (2,3). 

Thus, in optimizing flights across the window an aircraft 

of the same type as that flying arc (2,4,3,5) is required to 

terminate at node (2,3) within the window. 

A Linear Relaxation Approach 

Even with the reduction of the problem size via the 

time window concept, the resulting mixed integer problem 

remains unmanageably large. A common heuristic approach, 

which seems appropriate in the air freight problem is to 

solve the linear programming relaxation of the mixed integer 
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problem and then use a rounding procedure. Use of linear 

programming permits the solution of much larger and more 

complex problems than an integer approach. The constraint 

that y £ be either zero or 1 is relaxed to become a continuous 

variable between zero and 1. Commodity values are already 

continuous variables. Large scale specialized linear 

programming approaches, such as column generation schemes, 

can now be applied and a solution found. A solution of the 

LP relaxation may end up with partial flight values and more 

basic flights than the mixed integer solution allows. 

Thus, some rounding of the linear solution will be 

required to achieve integer feasibility. However, the fact 

that such a solution derives from an optimal solution, 

retains the model's optimality based approach sought in this 

thes is. 

It appears the development of a satisfactory rounding 

heuristic would not be difficult. Solution values already 

at zero or 1 present no problem. Also, within the time window 

concept the only areas of concern occur at the boundaries. 

The leading edge is of concern only as time 1 is 

achieved and flights must start repeating. Across the middle 

of the window, the flights need only provide feasible 

commodity paths for flow. These values might also change as 

the window is shifted in time, and there is no immediate 

need to force them to integer values. However, the trailing 

edge of the window must have integer values, for once having 
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left an epoch, that epoch is fixed for both flights and 

commodity movement. In the example of the last section, the. 

boundary conditions established termination nodes for each 

flight. To obtain boundary feasibility, the number of flights 

ending at any node must be forced to equal the (integer) 

number of flights which depart across the time window. Thus, 

if two fractional flights entered node (2,3), say via arcs 

(1,1,2,3) and arc (3,2,2,3) and only one flight departed, a 

round off procedure must be implemented. A reasonable round 

off rule could eliminate that flight that cost more or the 

one that was less utilized in terms of aircraft capacity. 

Once a flight is removed, the new solution could be checked 

for integer feasibility. If partial values still occur, 

the round off rule must be applied again until only integer 

solutions remain at the boundary. 

A Column Generation Approach 

The principle ingredient in the linear relaxation 

approach to be proposed is a column generation scheme. Ford 

and Fulkerson [16] first proposed a similar column generating 

approach in solving a maximal multicommodity network flow 

problem. They employ an arc-path formulation with multi-

commodity flow requirements similar to the above air freight 

model. Tomlin, in a paper entitled "Minimum-Cost Multi-

commodity Network Flows" [42] , applies the Ford and 
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Fulkerson concept to a minimum cost network flow instead of 

a maximal flow problem. Both node-arc and arc-path formulations 

are shown to decompose to the same series of subproblems. 

Jarvis [23] shows how the node-arc formulation becomes the 

same subproblem as Ford and Fulkerson presented in the arc-

path model of maximal flow in a multicommodity network. 

Wollmer [44] expands the approach of the previous mentioned 

writers to include joint capacity constraints in which the 

upper bound on an arc is assigned to some linear combination 

of the arc flows for certain subsets of arcs. 

An initial step in understanding what the column 

generation approach does is to understand its composition of 

various columns. The LP relaxation begins by writing the 

air freight model with its boundary condition constraints in 

the standard linear programming format. 

Minimize z = Z C J T y r + H R w 
£ f £ p P P 

Subject to: ^ ^ ^ • n a ( . > t ) - N a ( 1 , tjV (i.t) ;va, 

{p: (?,i,t,j,s)eiy C a f > / f C f , i , t f J > s ) 

Vf V(i,t,j ,s) with 
t or s < v and i^j , 
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LjfP A, + g(i,t)(k,r) = «(i,t),(k,r) V(i,t) v(k,r) 

2 w p g f. . = Qi. . V (i,t) VU, 

t<r<min{v,W+t} 

where y r . is the set of flight arcs fixed across the window 1 (i,t) 
boundary, similar to A-/ and QJ-. is the amount of 

k , r ^ i , r j u 
commodity originating at (i,t) destined for u that cannot 

use a path that crosses the window boundary. 

In the format n & ^ ^ represents the aircraft type 

artificial variables, x r r . . . N represents the arc slack 
(f,i,t,;j,s) 

variables, and g r- c v N and g f . represent the 
l 1>Ljl.K,rj (. 1 , T. j U 

commodity artificial variables. A row exists for every arc, 

each boundary node of each aircraft type, and each commodity 

demand. Thus, a column is essentially the column of the 

arc-path matrix for the underlying network, with artificial 

arcs enforcing boundary and demand constraints. 

An example is shown in Figure 4. One commodity is 

introduced at node (1,1) destined for location 3. Two 

aircraft types are used and 3 flights are flown across the 

window. Flights 1 and 2 are the same type of aircraft, while 

flight 3 is of a different type. There are 12 arcs shown on 

the network. As stated the matrix has sixteen rows, 12 arc 

capacities plus 3 aircraft type boundary nodes, plus 1 
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Flight Path Arc Artificial Variables 
1 2 3 1 2 Slack Variables Commodity Flight 

(S,l, 1) 1 1 -1 Q(i 

(1,1, 1,2)1 1 1 00 

(1,1, 2,2) 1 1 1 A l 
(2,1, 2,2) 1 1 00 

(3,1, 3,2) 1 00 

(1,2, 1,3) 1 00 

(1,2, 3,3)1 1 1 A l 
(2,2, 2,3) 1 1 1 1 00 

(3,2, 3,3) 1 00 

(1,3, 1,4) 1 00 

(2,3, 2,4) 1 1 00 

(2,3, 3,4) 1 1 1 A 2 
(3,3, 3,4)1 1 00 

(2,4, s x ) 1 -1 1 
(3,4, s x ) 1 -1 1 
(3,4, s 2 ) 1 -1 1 

c . - z . 
3 3 

C f R 
P 

7T a n b 

,1)3 

Figure 4. Linear Relaxation Basis 
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commodity constraint. The objective function remains 

separate. Note that with 3 flights and 2 commodity paths, 

the number of columns is 21. For each commodity path column, 

the arcs along which the commodity travels are indicated by 

placing the value 1 in that row, including the artificial 

arc from the source to the origin. Path 1 provides an 

example. The arcs in the network used by path 1 are noted 

in the matrix by l's in rows (S,1,1), (1,1,1, 2 ) , (1,2,3,3). 

Flights are similarly noted as in flight 1 whose arcs and 

rows are indicated as (1,1,1, 2) , (1, 2 , 3 , 3) , (3, 3 , 3 ,4) , (3 ,4 , S-̂ ) . 

For flights, the destination nodes are grouped by similar 

aircraft type. Thus the arc (3,4,S^) is for flights ending 

at node (3,4) and of type 1. 

Though the full constraint matrix is easily visualized 

for a small problem like that of Figure 4, explicit statement 

of the matrix for even a moderate size problem would be an 

impossibly large task. However, in the simplex procedure 

only variables in the basis need be identified explicitly. 

These variables define the basis inverse illustrated in 

Figure 4 by the columns of the slack and artificial variables. 

This means that the use of a method of implicitly evaluating 

the flights and commodity paths as incoming nonbasic variables 

can eliminate the need to explicitly enumerate the full 

constraint matrix. 

The second basic element in a column generation approach 

is the rule by which a candidate to enter the basis is 
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selected. The normal simplex procedure identifies a 

candidate to enter as one that possesses a negative Cj-Zj in 

the objective function row. Those factors comprising the 

Cj-Zj for a flight or commodity path are related to values 

on arcs. The Zj portion of this term is comprised of a sum 

of simplex multipliers over constraints in which the variable 

appears. Designate by it,. . s those multipliers for the 
li>t,jsj 

arcs in the network; by n r. s the simplex multipliers 
a£Ij> s J 

for the artificial variables and arcs of the boundary node 

for each aircraft; and by a,. t\ the simplex multipliers 

for the artificial variables and arcs of the commodity 

constraints. The multipliers n ( r- s and ar. . v are 
l a £ U >sJ I1> t j u 

quite distinct from each other. The aircraft type simplex 

multiplier is involved in flight path Cj-Zj as the principle 

negative value. The commodity path multiplier plays the 

same role in the Cj-Zj term for commodity paths. 

A simplex multiplier has a value of zero until its 

row is capacitated. In the case of a diagonal flight arc 

this capacity is the capacity of the aircraft. Artificial 

arcs for commodities are capacitated when all the cargo has 

been assigned to paths connecting source and sink nodes. 

Artificial arcs for aircraft types reach capacity when the 

correct number of flights exist. Note, however, that 

horizontal arcs are assigned an infinite capacity and thus 

will never have a simplex multiplier value other than zero 

and will never be a candidate to enter the basis. Thus, 
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these arcs can be removed from the basis leaving a smaller 

problem. Figure 5 shows an example of this reduction for 

the example in Figure 4. Only 7 rows and 7 corresponding 

simplex multipliers remain from the 16 used before. 

The c- values of the c--z. term are basically the arc 3 3 3 
costs. For example, the Cj value of flight 1 is the sum of 

the arc costs along arcs (1,1,1,2), (1,2,3,3), (3,3,3,4). 

Thus, the Cj - Zj for any path is the sum of the difference 

between the cost and the simplex multiplier on each arc along 

the path. For flight 1 above, this is 

( c(l,1,1,2)^(1,1,1,2) } + C cCl,2,3.,3D" 7 rCl,2,3,3) : ) + 

( c(3,3,3,4)" T r(3,3,3,4) ) = V \ ' 

One method of treating arcs separately and a group of 

feasible paths implicitly is by using a shortest path 

algorithm. The algorithm identifies the shortest permissible 

path from every node to the source node. The length of a 

path is £(c,. . >,-tt^. t • c O . Implicit evaluation of 

all paths is accomplished by identifying only the shortest 

path as the incoming nonbasic column. 

There exist some complications in the air freight 

model that prevent the usual shortest path procedure from 

being accepted as just outlined. First of all every path 

must be a column that can enter the basis if the shortest 
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Slack Artificial 
Variable Variable 

Flight 
1 2 3 

Path 
1 2 Arc 

Commodity Flight 

(S,l,l) 1 1 -1 12 

(1,1,2,2) 1 1 1 10 

(1,2,3,3) 1 1 1 10 

(2,3,3,4) 1 1 1 10 

(2,4,5^) 

(3,4,5^) 

(3,4,5^) 

1 

1 

1 

-1 

-1 

-1 

1 

1 

1 

c -z. Cf R 
P 

a r\ b 

Figure 5. Reduced Basis 
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path procedure is always to yield an entering column. All 

paths are not feasible flights or commodity paths in the air 

freight model. The model requires a horizontal arc between 

two diagonal arcs in any flight or commodity path. This 

prevents two consecutive diagonal arcs from constituting a 

feasible path. This is illustrated in Figure 2 of Chapter II 

in which the path consisting of arcs (1,1,2,2), (2,2,3,3) is 

not permissible, but path (1,1,2,2), (2,2,2,3), (2,3,3,4) 

is feasible. Thus, modifications of the general algorithm 

must be made. 

One of the basic concepts for this column generation 

approach is the ability to assign all variable costs to the 

arcs independently. The air freight model introduces a 

contradiction to this that transfer costs cannot be associated 

with arcs. As long as transfer costs have positive value, 

this cannot be accomplished. As illustrated in Figure 6, the 

same commodity path through the same sequence of nodes can 

have different costs depending on transfers. In part (a) 

no transfer occurs and all is in order. Part (b), however, 

requires a transfer between flights and thus, incurs a 

transfer cost. The transfer cost cannot be assigned to 

either the diagonal or horizontal arcs involved. Because 

of this complication, two cases will be discussed. Transfer 

costs will be considered to be equal to zero, thus, avoiding 

any unassignable cost and retaining the ability to transfer 

commodities. Also, an approach allowing transfer costs to 



Figure 6. Transfer Cost not Associated with Arcs 
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be positive is presented. 

Besides the commodity path aspect of the column 

generation approach, the plane flight columns must be treated 

separately. Separate in the fact that the source and sink 

nodes of plane flights differ fundamentally from commodity 

path nodes. A flight has one sink node and many possible 

origin nodes while a commodity path has a single origin node 

and many possible sink nodes. Since flight costs can be very 

easily assigned to arcs, a modified shortest path algorithm 

is applicable in identifying non-basic candidates to enter 

the basis. The modification is similar to that for commodity 

paths. 

Separate treatment, however, does not limit the 

advantage gained by the fact that both types of paths share 

the same arc simplex multiplier values. Thus, a change in a 

flight can change TT ,. . . s values in such a manner as to 

make several commodity path changes. The reverse effect 

also holds true. If this complimentary effect could be 

manipulated, an optimal solution to the LP relaxation approach 

could perhaps be more quickly reached. The ability to iterate 

between flights and commodity paths can be developed in many 

ways, but pursuit at this time is beyond the scope of this 

thesis. 

Another basic point in this iterative process, is 

that without commodities to impose demand on the system, 

the airplane flights would consist of horizontal lines across 
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the network and the trivial optimum fleet size would be zero. 

Thus, commodities generate the need for flights. In fact, 

the Cj-Zj for a flight will be nonnegative until some path 

using the flight is basic. This means that the network used 

to generate incoming commodity paths must be allowed to 

extend beyond the one of existing flight arcs upon which to 

place demand. The open graph concept provides the extension 

required. 

An open graph is defined as the network in which all 

feasible arcs between nodes are included in the network. An 

example is shown in Figure 7. Note that it requires two 

epochs to travel from location 1 to 2 and an arc at every 

epoch node of location 1 connects it to location 2. The 

reverse applies in travelling from location 2 to 3. It 

takes three epochs to travel from 2 to 3. No direct flight 

arc exists between locations 1 and 3 in the example. This 

can occur when the range of the aircraft is inadequate to 

connect the two locations. Conversely a closed graph would 

contain only selected arcs from the open graph. For instance, 

in travelling from location 1 to 2 only arcs (1,2,2,4) and 

(1,4,2,6) are permitted while from 2 to 1 only arc (2,3,1,5) 

is permitted. All of the previous networks illustrated were 

closed graph systems. Both the open and closed graph con­

cepts for the air freight model include horizontal arcs 

between the nodes. 

The open graph in Figure 7 is an illustration for one 



Figure 7. Open Graph, Single Aircraft Type 

Type 1 
_ . _ Type 2 

Type 3 

Figure 8. Open Graph, Multiple Aircraft Type 
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type of aircraft only. When, in the air freight model, the 

fleet is comprised of several aircraft types,an arc is 

required for each type. This is because each aircraft type has 

different capacity and even perhaps a different flight time 

requirement between locations. Figure 8 shows the simplest 

two location network with three aircraft types. Two aircraft 

have the same speed and range but different cargo capacities. 

The third aircraft has a different capacity as well as flying 

speed. The number of arcs has been tripled in this example 

from the same open graph with only one aircraft type. In 

order to simplify the examples illustrating each of the 

algorithms developed in the column generation approach only 

one aircraft type is assumed in the fleet. In reality there 

could be several more but the algorithm will probably be as 

effective on the larger network of arcs as it is on the 

smaller. 

Summarizing,the linear programming relaxation approach 

proposed will include a column generation approach in which 

the nonbasic variables are implicitly evaluated over an open 

graph. First, commodity paths are evaluated to identify 

those flight arcs of greatest benefit. Flight algorithms 

then are applied introducing new flow capabilities for the 

commodities. This system iterates between the commodity 

paths and airplane flights until no further changes can be 

made. Finally the round-off procedure insures that integral 

valued flights exist at the boundary points of the time 
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window. The central problem of this approach, i.e. efficient 

implicit generation of columns for flights and commodity 

paths, is the subject of the next chapter. 
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CHAPTER IV 

IMPLICIT APPROACHES FOR SELECTING ENTERING PATHS 

One of the elements of the column generating approach 

discussed in the last chapter, was the need to implicitly 

determine a nonbasic column to enter the basis. In the air 

freight model, an airplane flight and a commodity path can 

both be considered columns. Simple, efficient shortest path 

approaches must be developed before any implicit investiga­

tions of flights or commodity paths can be done. The problem 

of transfer costs not being associated with arcs, forces the 

examination of two cases; one case without transfer costs and 

the second with positive transfer costs. But, first of all, 

a basic understanding of shortest path procedures is required 

before specific algorithms can be proposed. 

The general structure for the shortest path algorithm 

on the air freight time-space network begins by selecting a 

sink as a starting point and labeling it zero. The remaining 

nodes are labeled at positive infinity. The main process 

then begins, changing labels so that if 

6(i,t) + *(i,t,j,s) " &(j,s) 

V 
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then 6,. ^ is replaced by 6,. + + . % . Here fir. . s (j,s) ^ 7 (i,tj (i,t,j,s) (i,t) 
is the label showing the shortest path to the sink from node 

(i,t) and . . s is the length of the arc connecting 11 f t, j , s) 
(i,t) to (j,s). Continuing this process until no more 

changes can be made, the resulting labels indicate the shortest 

path from each node to the sink. Thus, by noting labels and 

arc lengths, a shortest path from source to sink can be found. 

Each of the approaches to be developed below is a 

modification of this general shortest path algorithm. 

Several fundamental concepts apply to all the algorithms. 

First of all, the air freight network is acyclic. The 

acyclic structure eliminates any concern over the formation 

of negative cycles since no cycle can be formed. It also 

enables the evaluation procedure at each node to be accom­

plished in a one-pass, dynamic programming manner. The 

procedure progresses through the network evaluating a node 

once, and once evaluated the values established for that node 

never change. 

Second, not all directed arc combinations are permitted 

in constructing a path. Commodities and flights must remain 

in the same location at least one time epoch before moving 

to a different location. Thus, a special labeling at each 

node must be developed to keep two consecutive diagonal arcs 

from being considered without a horizontal arc in between. 

This double label will be represented as an ordered pair. 

The first value indicates the shortest path to the super 
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sink from node (i,t) leaving along a diagonal arc: <5 ̂  t) 1" 

The second of the ordered pair values is the label of the 

shortest path to the super sink from node (i,t) leaving 

along a horizontal arc: <5 ̂  t) 2' u s e these labels 

is explained more fully in each of the algorithms. 

Third, and most complicating, the network can have 

multiple sources and sinks. Commodities destined for a 

common location can be considered as a single commodity 

originating at several nodes at different locations and 

ending at several nodes at the same location. General 

shortest path algorithms are designed to find the shortest 

distance to a single node from every other node. In order 

to create a single sink situation, a super sink, S , that 

has arcs to it from each of the multiple sinks is introduced. 

A super source, S S u , is also introduced having arcs from it 

to each origin node. In the case of commodity paths, the 

sink to super sink arcs have infinite capacity and the super 

source to origin nodes are capacitated below by the flow 

requirements of that commodity. The opposite is the case in 

the plane flight alignment. Here, the source arcs have 

infinite capacity and the sink to super sink arcs are 

capacitated by flow of flights through the sink node. In 

Figure 9, a simple illustration of each of these formats is 

provided. Part (a) of the figure shows a commodity path 

construction where the super sink has an arc to it from 

each sink node in the destination group at location 3. Each 
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Super 
s ink 

(a) Commodity Paths 

(b) Airplane Flights 

Figure 9. Super Sources and Sinks 
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of these arcs has infinite capacity. The corresponding super 

source, SS^, is connected to those origin nodes with desti­

nation at location 3. The lower bound on these arcs are the 

flow requirements of the commodity, such as the 7 units of 

the commodity originating at node (2,1) indicated on arc 

(SSj,2,l). In the flight case, part b of the figure, the 

arcs from (SS 1,1,1), (SS 1,2,1), (SS 1,3,1) have infinite 

upper bounds. The sink arcs to the super sink, S^, have 

fixed lower bounds as shown for arc (3,5,S^) whose lower 

bound is two flights of type 1 aircraft. 

Note that the super source and sink are not connected 

to every origin node or sink node in the network at the same 

time. This is because of the multicommodity property of the 

model. What the super sink can do is connect those nodes 

that serve as a common sink for a commodity. And, since 

commodities destined for the same location actually share the 

same sink nodes, several commodities can be evaluated at the 

same time. Thus, in Figure 9 each of the commodities 

destined for location 3, namely (1,1),3; (1,3),3; and (2,1),3 

could be evaluated implicitly, all at the same time. No 

commodities destined for another location could be examined, 

but must wait their group of nodes turn to be attached to 

the super sink. 

The boundary constraint imposed upon commodity flow 

that requires feasibility within the window creates still 

another type of commodity condition. By adopting intermediate 
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destinations, flow is required to reach the intermediate node 

by the best feasible path. Unlike the original destination 

conditions of having several possible destination nodes, the 

intermediate destination is the only node permitted. Thus, 

intermediate destination nodes constitute a group of one 

node attached to the super sink and the only commodities 

evaluated are those whose destination is that node only. 

This is shown in the example of Figure 9(a) as intermediate 

node ( 3 , 4 ) . The super sink is attached to it alone, thus, 

the designation 4 ) - As well, the only super source arc 

is to the commodity destined for the intermediate node 

( S S ^ 4~j , ( 2 , 1 ) ) since (2,1), ( 3 , 4 ) is the only commodity 

involved. 

Flights can be grouped together over a single aircraft 

type as seen in the example. This is possible because an 

aircraft type can be considered as a single commodity. A 

different type of aircraft constitutes a different commodity, 

thereby, prohibiting the evaluation of more than one type 

at a time. As above, a single type of aircraft can group 

the boundary nodes for that type of aircraft together and 

evaluate them all at the same time. This is shown in Figure 

9 by having two aircraft type, type 1 and type 2 and estab­

lishing separate super sources SS-̂  and S S 2 , and separate 

super sinks, S-p S 2 > to evaluate the network. Separate 

evaluations are required, one for type 1 and one for type 2 

aircraft. With these clarifications made, the development 
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of each type of algorithm required can be begun. 

Shortest Path Approach Without Transfer Costs 

As long as all costs can be assigned to arcs inde­

pendently the implicit search for entering paths by a 

modification of the shortest path algorithm can be used in 

a column generation approach. When transfer costs are set 

at zero, all remaining costs can be independently allocated 

to arcs. A zero transfer cost assumption is problably not 

that difficult to make, because transfer costs are likely to 

be small relative to others and most of the costs associated 

with transfers are fixed parts of ground operations. Ground 

crew size and equipment investment could be assigned as an 

overall inventory cost. Intermediate commodity storage space 

can be included in general overhead. Even loading and 

unloading activities can be balanced out over the costs 

assigned at entering and destination locations. 

A change in the arc labeling system for a commodity 

path in the original air freight model from Chapter II must 

occur. First of all, summing over the zero flight arcs 

where transfers occur can be discontinued. Transfers can 

still occur, but the concern over which arc or how often they 

occur is no longer necessary. 

Second, instead of keeping track of the exact flight 

arc being used between locations, the only requirement now 

is to be able to distinguish airplane types. Thus, the arcs 
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in this algorithm will be written as (a,i,t,j,s) where a is 

the plane type of the arc. This simplicity is essential, 

since the commodity path algorithm will be using an open 

graph network; specific flights are not recorded. 

The next major change is the commodity inventory cost 

allocation. This cost depends on the length of time it 

takes for a commodity to reach its destination and not on 

the specific path. Thus, inventory cost can be collected 

at one arc leaving the others without a cost. The only arc 

with a cost will be between the destination node and the 

super sink. This is illustrated in the example to follow 

in Figure 10. 

Once the group of nodes (or single node in the case 

of an intermediate destination), u, is selected; the 

appropriate super source, SS^, and super sink, S , arcs can 

be connected. These arcs are considered as horizontal arcs 

in the labeling and evaluation rules of the algorithm. This 

means that at the sink nodes, the evaluated double label 

will be ( w , c r c ) , and the super source label can select (u,s) , S U

J 

the minimum of either the diagonal or horizontal label at 

the origin node. 

The algorithm's rules are now presented. 

Commodity Path Algorithm 

Step 0. Initialization: Set all label values at every 

node, except the super sink, at infinity. The 
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Figure 10. Commodity Path Algorithm 
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super sink label value is zero. The first node to 

be evaluated is the sink node with the largest 

epoch time and then the largest location value. 

(i,t) = Maximum {Maximum (i,t)}, 
i teu 

where u is the group of sink nodes. 

Step 1. Node Evaluation: Evaluate both labels at the node 
as follows: 

a. Diagonal Arc Label, 6 ^ t)l : From a H diagonal 

arcs the smallest sum of the length of the arc 

plus the horizontal label at the destination 

node of the arc. 

6(i,t)l • ^ {< c(a,i,t,j,s)- , r(a,i,t,j,s)> + 

6 U , s ) 2 } ' 

where 3 ^ ^ is the set of diagonal arcs 

departing from the node (i,t). 

b. Horizontal Arc Label, 6 r. From the 
(_ I , t j z 

horizontal arc leaving the node (i,t), select 

the minimum of the ordered pair of labels at 

node (i,t+1). 
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6(i,t)2 = M i n i m u m ^ ( i . t + D i ' ^ i . t + i ^ 1 

For the labels where i = u, a sink node, the 

label is 

S(u,t)2 = = ( U ) t ) S u 

where cr is the inventory cost over the (u,t)S u
 7 

arc to the super sink, S . 

Step 2. Node Sequence: Repeat Step 1 for another node 

(i,t)' according to the following priorities: 

a. The next node in the same epoch: 

(i,t) ! = (i-l,t); if i-1 = 0 check rule b. 

b. The largest location in the next epoch: 

(i,t)' = (Max i,t-l); if t-1 = 0 check rule c. 

c. Since both i and t - 0, all nodes have been 

evaluated. Continue on to Step 3. 

Step 3. Shortest Path Determination: Once all nodes have 

been examined, the super source is all that remains. 

Find the shortest path to the super source: 
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6 S S U - Min ^ l nC«(i,t)l»«CI,t)2 ) + aCi,t)u> 
^ 9 J u 

where is the set of origin nodes with destination 

within group u, and a r- is the dual variable 
^ 1 , t j u 

of the commodity (i,t)u. 

Step 4. Nonbasic Candidate: 

a. If the shortest path in Step 3 is negative, i.e. 
6gg < 0, then by retracing the labels the 

u 
candidate commodity path is found. 

b. If the shortest path in Step 3 is equal to or 

greater than zero, i.e. 6 Q Q ^ 0, then stop. 
b u 

No nonbasic commodity path to this sink group 

can enter the basis. 

If a candidate has been found by the algorithm, then 

a simplex procedure can be followed to enter the path. If 

not the algorithm stops. Every group must be evaluated 

including intermediate destination nodes. The procedure for 

selecting groups is arbitrary. 

A simple example problem is presented in Figure 10. 

For ease of conception, a single aircraft type is shown. 

The only change in adding aircraft types would be to add 

more arcs to the open graph. Basic flight arcs are repre­

sented with solid lines while the non-basic flight arcs are 

noted by dotted lines. All arc lengths are shown in 

parenthesis and have been computed as (c,., . ^ . N - T T , . , . ^ . 

(l,i,t,j ,s) (l,i,t,j , 
The length of the dotted diagonal arcs are fixed at 20. A 
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separate table is included for the final label values at 

each node. The entire example will not be explained but 

key points in the algorithm will be pointed out. 

Once the group of nodes at location 3 have been 

selected, the super sink and super source are connected to 

the network. Arcs (3 , 2 , S ̂ ) , (3 ,3 , S ̂ ) , (3, 4 , S ̂ ) and (3,5,Sg) are 

added at commodity cost 2,3,4,5, respectively. This 

corresponds to increasing inventory cost the longer the 

commodity stays in the network. Next, the super source 

connects to origin nodes (1,1), (1,3) and (2,1) with the 

associated dual multiplier costs, a ^ t)3* °^ '^ 9 ~20, -15. 

Initialization of the network sets all label valves at 

infinity, except the super source which is set at zero. 

Beginning at the first evaluation node (3,5), it is recognized 

as a sink node and Step lb assigns the labels (<»,5). Step 2 

next selects node (2,5). Applying Step 1 on node (2,5) 

causes no changes and the labels remain at (oo,<») . The same 

thing occurs at the next node (1,5). Step 2 now designates 

node (3,4) as the next to be evaluated. This process 

continues. At node (1,2) for instance, the diagonal label 

evaluation in Step la compares the diagonal arcs (1,2,2,3) 

and (1,2,3,3). The equations show: 

(c (1,1,2,2,3)^(1,1,2,2,3) )+6 (2,3)2 =20+14=34 

6 (1,2)1 = Minimum 
(c (1,1,2,3,3) "(1,1,2,3,3) (3,3)2 =8+3=11 
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Thus, the value of the label 6 ^ 2)1 "*"S 1 1 # Note that the 

double diagonal arc (1, 2 ,2,3), (2 , 3,3,4) was not considered 

because only the horizontal label at node (2,3) was utilized. 

Thus, only proper air freight commodity paths are evaluated. 

Finally, when the super source is evaluated the equations 

show: 

r M i n c 5ci,Di,*ci,iD2> + 8(i,i)3 = n - y • 4 

5 S S 3 • M i n i f f l™< M i n< f i(l,3)l' 4Cl,3)2> + f l lCl,3)3 = 1 9 " 2 0 = " 2 

^ M l n ( 6(2,l)l' 5(2,l)2 ) + aC2,l)3 = n " 1 5 " " 

The shortest path to the super source is a -4 and thus, 

commodity (2,1),3 will provide a new non-basic path to enter 

the basis. The path is simply identified by retracing 

through the network using labels and arc lengths. 

To prove that the algorithm actually finds the shortest 

path through the network to the super sink, it must be shown 

that the final double labels at each node do indeed correspond 

to the shortest path from that node. First of all, the 

nodes directly connected to the super sink are obviously 

labeled correctly. Now assume that the double labels are 

correct for all nodes with time components greater than that 

for a given node (i,t), (i.e.: all nodes to which this node 

can lead). A path or flight in the air freight network that 

departs node (i,t) along a diagonal arc must next follow a 



63 

horizontal arc at its next stop. Thus, clearly the minimum 

sum of the length of all possible diagonal arcs leaving node 

(i,t) plus the horizontal arc label at the destination of 

those arcs must be the length of the shortest path via a 

departing diagonal arc. This is exactly the rule for 

selecting the diagonal arc label at node (i,t), 

6(i,t)l - Minimum " <* ( i ft.j ,s) + 6(j,s)2>> 

where 3 ^ ^ is the set of destination nodes for diagonal 

arcs leaving (i,t). 

At the destination end of a horizontal arc leaving 

node (i,t) either a diagonal or horizontal arc may be taken. 

Thus, the shortest path to (i,t) is clearly the minimum of 

the diagonal and horizontal arc labels at the destination 

end of the horizontal arc. Once again, this is the exact 

rule for selecting the horizontal arc label at node (i,t) 

6(i,t)2 = M i n i m u m <«(i,t+l)l' 6(i,t+l)2) 

Thus, both labels at (i,t) have set at the shortest path to 

the super sink, leaving node (i,t) on the diagonal and 

horizontal arcs. 

In assuring the shortest path from the super sink, the 

network nodes have been shown to be correct and the arc 

length from the super source to each origin node (i,t) is 
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known a (i,t)u* Since a commodity entering the system at a 

node can depart, either on a diagonal or horizontal arc, the 

shortest path is simply the minimum sum of all the arc 

lengths from the super source to the origin nodes plus the 

minimum of both labels at the origin node reached. This is 

the rule applied in the application: 

where o*u is the set of all origin nodes with destination u. 

The shortest path from super source to super sink is in 

fact the one found by applying the rules in the algorithm. 

Shortest Path Approach for Airplane Flights 

Airplane flights are the only means of moving commodi­

ties through the network. And, as discussed before, flights 

would tend to be horizontal lines if the commodity path 

algorithm were not solved on an open graph in order to intro­

duce new diagonal flight arcs into the basis. Thus, the 

network for this algorithm is also an open graph. The arc 

lengths will be different than in the commodity path 

algorithm. Variable flight costs do depend on the route 

flown, causing costs to be associated with individual arcs 

instead of lumped together as in commodities. This means 

that the C r • • s will have a value greater than zero on 

all diagonal arcs. Simplex variables TT r • . . ^ are the 

6g S = Minimum {MinimumC<$ -ni'^fi t)2^ + a 

u (i,t)ea I f ) I t ) (i,t)u }, 
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same as for the commodity path algorithm since the same rows 

are involved. 

The major difference between the two algorithms is 

the source and sink node structure. As illustrated in Figure 

9 and discussed in that section, flights have a single sink 

node and many possible origin nodes. This is the exact 

opposite of commodities. Sink nodes are the boundary 

condition nodes for a particular flight and source nodes are 

found in the first epoch of the window at every location. In 

the case of flights only one aircraft type can be evaluated 

at a time over all the boundary nodes where aircraft of that 

type terminate. This is similar to commodity destination 

groups, but more flexible in that all locations can be grouped 

together. Note, also, that no intermediate destination nodes 

are required because the flight extends entirely across the 

window. The number of arcs in the open graph is also reduced 

to only those of the aircraft type being considered. 

Once the aircraft type has been selected and the 

relevant boundary nodes identified, the super sink can be 

connected. The arcs are directed from each sink node to the 

super sink. The arc cost is zero, since the costs cannot be 

bundled as in the commodity case. The sink arcs correspond 

to commodity source arcs in that lower bounds on flow are 

placed on the arc to force flow in the system. Integer 

valued, these lower bounds represent the number of aircraft, 

of the type being considered, that are supposed to terminate 
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at the node within the window. The fact that a lower capacity 

is forced also means that the dual variable for the flights 

terminating at this node is applied to the sink arc. On 

the commodity case the dual variable was applied at the source 

arcs. Thus, the arc length c, f ^Q .-n r- is simply 
(.a, (.u, z) S>UJ a(.i,tj 

the negative dual variable ~ T ) A ^ ^ since the cost is zero. 
At the other end of the window, all of the location 

nodes in the first time epoch are now source nodes. The 

connection to the super source is across a zero cost arc 

with infinite capacity. Thus, no arc length is assignable 

to the source arcs. 

Once the super source and sink nodes are connected to 

the network, only minor changes in the rules that applied 

in the commodity path algorithm need be made in formulating 

the airplane flight algorithm. These are easily understood 

as occurring at the sink and source nodes. 

Airplane Flight Algorithm 

Step 0. Initialization: Set all label values at every node, 

except the super sink, at infinity. The super sink 

label value is zero. The first node to be evaluated 

is the sink node with the largest epoch time and 

then the largest location node within that epoch. 

(i,t) = Maximum {Maximum (i,t)} 
i (i,t)eu 
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where u is the group of sink nodes. 

Step 1. Node evaluation: Evaluate both labels at the node 

as follows: 

a. Diagonal Arc Label, 6 ^ t)l : F r o m a H diagonal 

arcs leaving node (i,t), select the smallest 

sum of the length of the arc plus the horizontal 

label at the destination node of the arc. 

5(i,t)l • " j 1 ™ ; { ( c(a,i,t.j,s)- 1'Ca,i,t,js)> + 

S(j,s)2 }> 

where ^ is the set of diagonal arcs departing 

from the node (i,t). 

b. Horizontal Arc Label, 6 ^ ^)2 : ^ r o m t n e n o r i " 
zontal arc leaving node (i,t), select the minimum 
of the ordered pair of labels at node (i,t+l) 

6(i,t)2 = M i n i m u m ^Ci,t +l)l' 6(i,t +l)2 ) 

For the labels where (i,t)eu, a sink node is 

evaluated, the label is 

5(i,t)2 2 " V i . t ) 
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where n r • ^ is the dual variable for the node a(i ,t) 
(i,t) and aircraft type a. 

Step 2. Node Evaluation Sequence: Repeat Step 1 for another 

node (i,t) according to the following priorities: 

a. The next node in the same epoch: 

(i,t)' = (i-l,t); if i-l=0 check rule b. 

b. The largest location in the next epoch: 

(i,t)' = (Maximum i,t-l); if t-l=0 check rule c. 

c. Since both i and t are equal to zero, all nodes 

have been evaluated. Proceed to Step 3. 

Step 3. Shortest Path Determination: Once all the nodes 

have been examined, the shortest path to the source 

is easily found. Select the minimum of all the 

labels in the source node epoch: 

6 Q Q = Minimum {Minimum (6 c • n i , 6 r 

oo^ ^ 11,1)1 11,1)1 

where the first epoch of the window equals 1. 

Step 4. Non-basic Candidate: 

a. If the shortest path in Step 3 is negative, i.e. 

6QQ < 0, then by retracing the labels, the 
b b a 

candidate airplane flight is found. 

b. If the shortest path in Step 3 is equal to or 

greater than zero, i.e. 6 g s > 0, then stop. 
a 

No nonbasic flight for this aircraft type can 

enter the basis. 
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If a candidate is found, it can be entered into the 

basis. All of the aircraft types must eventually be evalu­

ated. Once no more candidates can be found for each of the 

aircraft types, the flight network is optimal. The procedure 

can now iterate back to the commodity path algorithm or if 

that is optimal as well, the round off procedure would be 

applied next. Note that fewer arcs are included in this 

network than in the complete open graph of the commodity path 

algorithm. Also, the flight algorithm need be applied only 

once for each type of aircraft instead of several times over 

different sink groups. Thus, the iteration process between 

the algorithms would probably spend more time in flight 

algorithm as it would probably generate optimal solutions 

more quickly than the commodity path algorithm. 

As the window reaches the true time 1 in the overall 

network, the source node conditions change. Similar type 

aircraft flights are required to repeat. This actually 

reduces the possible source node locations to those nodes that 

were sink nodes when the window included time T as its 

boundary condition epoch. The source arcs also now have 

lower bound capacities and dual variable values that must be 

considered in the algorithm. These additional conditions 

can be easily implemented. The rule for determining the 

shortest path to the super source, Step 3, simply adds the 

fact that the source arcs have a length. The minimum of the 

smallest label at a node plus the arc length to the super 
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source still can be bound and identified as the overall 

shortest path. Thus, the repeating flight aspects of the 

model can be readily handled. 

An example network is illustrated in Figure 11. Only 

those basic flight paths and arcs with negative length are 

drawn as solid lines. Dotted lines are used to denote the 

other arcs in the open graph for this aircraft type. For 

simplicity, the lengths of the dotted arcs are assumed to 

be 15. The same procedure as in the commodity path algorithm 

with the modifications made for flights results in the labels 

and shortest path as seen in the figure. Infeasible paths 

are still not permitted by the algorithm. The shortest path 

characteristics and evaluative steps for the flight shortest 

path are the same as in the commodity path algorithm. 

Differing sink and source arc costs between the two approaches 

does not effect the procedural similarities. Thus, the proof 

of convergence for the commodity path algorithm applies 

equally well for the airplane flight algorithm. 

Shortest Path Approach with Transfer Costs 

Sometimes the circumstances surrounding commodity 

handling will not permit the cost of transferring commodities 

at an intermediate location to be considered zero. Exceptional 

labor cost, additional administrative attention and a premium 

placed on storage space could easily force a positive transfer 

cost to be assigned at each location. Thus, the assumption 
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of the previous section is not permitted. 

Once again, the fact that transfer costs are not 

assignable to arcs prevents us from utilizing the previously 

developed algorithm. The solution can be found in being 

able to remember the costs for certain commodity path-flight 

matchings at a location or node. This was illustrated in 

Figure 6. If at node (2,3) the path length to the super 

sink was the same for both flights 1 and 3, but longer for 

flight 2, then at node (2,2) with zero transfer cost either 

flight 1 or 2 could be chosen and the optimal guaranteed. 

However, with positive transfer costs, this is no longer 

true. To select flight 2 incurs a transfer cost and thus, is 

longer than the path when flight 1 is chosen. A way of 

remembering what the cost on all three flights from location 

2 is needed. In other words, labels are required that show 

what the length of the path from node (2,2) to the super sink 

is, given cargo leave that node on flights 1 or 2 or 3. Thus, 

when a decision comes to choose the diagonal arc for flight 

1 or 2, the paths are easily distinguished. Either stay on 

flight 1 or 2 or transfer from 3 to 2. To stay on 1 is 

less costly than staying on 2. To pay and transfer from 

flight 3 to 2 is more than staying on flight 1. Thus, flight 

1 is chosen. 

The label system required can be developed around a 

table. The axis of the table are locations along one side 

and flight along the other. The shortest path for a commodity 
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from location 2 to the super sink at the present time, given 

that it arrives on flight 3, the next time it arrives at 

location 2, is placed at the intersection of flight 3 and 

location 2. An example is presented in Figure 12. On the 

table, at the intersection of flight 3 and location 2, i.e. 

e^2> the quantity 10 is given. This means that at node 

(2,t) if flight 3 were arriving the shortest path on to the 

super sink is 10. No matter what flight the commodity takes 

leaving location 2, as long as it arrives on flight 3, the 

shortest path remains 10. Actually to arrive on flight 2 

is the shortest path with a value of 9. However, because of 

path costs and transfer costs, the cost of arriving on flight 

3 is higher. 

When this table is used in conjunction with the double 

labeling procedure developed earlier an optimal path can be 

determined. Some rule changes are required, however. First 

of all, fix the double labels at the node being examined and 

change other node labels based on it rather than labeling 

it based on other node labels. The label values may change 

several times before being evaluated, but during the evalua­

tion, and thereafter, the labels are fixed. 

Another change is that diagonal labels are no longer 

changed without regard to the flight across that diagonal 

arc. The path across that arc is the sum of the arc length 

and the table entry of the particular flight and location 

pair considered. Major table changes occur at horizontal 



Locations = i 

Flights = 

1 2 3 M 

1 16 15 e 1 3 
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Figure 1 2 . Flight -Location Table 



75 

label evaluations. This is natural since transfer costs are 

incurred during horizontal arcs. The shortest path of the 

table entries for that location is chosen as the horizontal 

label for the node at the next epoch, t-1. The transfer 

cost is added to this value and then compared to the table 

entries. If the existing entries at that location for each 

flight are less than the shortest path plus transfer cost 

then no changes are made. For every entry at that location 

larger than this sum, it is replaced by the smaller of the 

two. Thus, if it is cheaper not to transfer at this location, 

none is made but, if a transfer can be made at a lesser 

expense, it is done. 

Because of fact that shortest paths must be remembered 

in the context of a particular airplane flight, the concept 

of an open graph can no longer be used. The open graph 

dealt only with feasible aircraft type arcs that were blended 

into flights by the airplane flight algorithm. Since a 

closed graph is the only solution, the next question is that 

of selecting "good" flights for the graph. A "good" set of 

flights would be those already close to optimal in feasi­

bility and requiring minor commodity changes due to transfer 

cost influences. Here an earlier application of the algorithm 

without transfer costs could provide the needed "good" 

flights. How many to select or when is a question beyond 

the scope of this thesis. 

Once the closed graph has been determined the 
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procedures become similar to the commodity path procedure 

previously developed. First a group of sink nodes are 

selected (including the intermediate destination nodes, as 

before). The super source and super sink nodes are connected 

next. The sink node labels are determined as before. 

The transfer cost algorithm rules can be stated as 

follows. 

Transfer Cost Algorithm 

Step 0. Initialization: Set all labels values and table 

values, except the sink nodes and super sink at 

infinity. The super sink value is zero. The sink 

node labels will both be set at the cost of the arc 

to the super sink. 

6(u,s)l = 6(u,s)2•= c(u,s,S u) (u,s)eu' 

where u is again the group of sink nodes. The first 

node to be evaluated is the largest location node 

in the largest epoch of the group of destination 

nodes. 

(j,s) = Maximum {Maximum (j,s)}. 
j (j>s)eu 

Step 1. Diagonal Arc Evaluation: If no diagonal arcs 

enter the node being evaluated, (j ,s), then proceed 
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to Step 2. Otherwise, for each diagonal arc 

(f,i,t,j,s) arriving at node (j>s): 

a. Change the table entry at location i and flight 

f to the minimum of either the present entry 

value or the sum of the table entry at location 

j for flight f plus the length of the arc 

(f,i,t,j ,s) . 

e r. = Min {e.c-,er-+c rr . . . ^-Tirr • *. • > 
£ l (i,t) £*(j,s) £ l fJ C£,i,t,js) (f.l.t.JS) 

where 4> ̂  ^ is the set of departure nodes for 

all diagonal arcs arriving at node (j,s). 

b. Change the diagonal arc label at each node 

(i,t) to the minimum of either the current label 

value or the table entry value just computed 

in Step la. 

6 ( i , t ) i = M i n ( 6 c i , t n > e f i ) 

Step 2. Horizontal Arc Evaluation: If the node is from the 

group of destination nodes proceed to Step 3. 

Otherwise: 

a. Set the horizontal arc label for the node 

Cj,s-1) at the minimum of the horizontal and 

diagonal labels of the node being examined, 

(j,s). 

b. Reevaluate the entire column of table entries 
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for location j. For each flight entry f in 

column j select the minimum of the present 

table value and the horizontal label determined 

in Step 2a, plus the transfer cost at location 

J,Hj. 

e £ j = Minimum ( e £ j , 6 ( j ? g . 1 } fH.) 

Step 3. Node Examination Sequence: Repeat Steps 1 and 2 for 

another node (i,t) f according to the following 

Priorities : 

a. The next node in the same epoch: 

(j,s) f = (j-l,s) if j-l=0, check rule b. 

b. The maximum node in the next epoch: 

(j,s) T = (Maximum j,s-l); if s-1-0, check rule c. 

c. Since both j and s are equal to zero, all nodes 

have been evaluated. Proceed to Step 4. 

Step 4. Shortest Path Determination: Once all nodes have 

been examined the super source is all that remains. 

Find the shortest path to the super source: 

* S S u = U ? S U { M i n i m U m C a(j,s)l' sCj,s)2>"(j,s)u> 

where a u is the set of origin nodes with destination 

within the group u, and ar . N is the dual variable 
(j , s) u 
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of the commodity (j,s)u. 

Step 5. Non-basic Candidate: In determining a nonbasic 

candidate the length of the shortest path to the 

super source in Step 4 must be known. 

a. If the shortest path in Step 4 is negative, 

i.e. 5gg < 0, then by retracing the labels, 
u 

the candidate commodity path is found. 

b. If the shortest path in Step 4 is equal to or 

greater than zero, i.e. Sgg > 0, then stop. 
u 

No candidate exists. 

Once the algorithm finishes with the group of destina­

tion nodes u, then the same procedure as before is implemented. 

Either a candidate is found and entered into the basis, or 

no candidate exists and a new group of sink nodes must be 

chosen. Once all of the groups fail to find a candidate 

then the network is optimal over the closed graph. No 

iteration with the flight algorithm is possible since no 

nonbasic flight arcs exist in the closed graph. The rounding 

procedure can now be applied and the window moved another 

epoch toward time 1. 

Figure 13 and Table 1 show how the same example 

problem as presented for the commodity path algorithm is 

solved using the transfer cost algorithm. One of the first 

things noticeably different is the number of arcs in the 

network. As stated, the closed graph uses only "good" 

flights generated in the first phase of the procedure. 



Figure 13. Transfer Cost Algorithm 
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Table 1. Transfer Cost Algorithm 

Algorithm Node Node , 
Step Evaluated Changed L a b e l Changes Table Changes 

0 All Set at Infinity Set at Infinity 
Su (3,5) (5,5) None 

(3,4) (4,4) None 
(3,3) (3,3) None 
(3,2) (2,2) None 
(3,1) (1,1) None 

1 (3,5) (1,4) 6 ( 1 , 4 ) 1 = 5 + 1 6 = 2 1 e 4 1 - 2 1 
(3,5) (2,4) 6 ( 2 , 4 ) l = 5 + 9 = 1 4 e 2 2 = 1 4 

1 (2,5) (3,4) No Change 
2 (2,5) (2,4) No Change e 1 2 = e 3 2 = e 4 2 = 1 9 

2 (1,5) (1,4) No Change e l l = e 2 1 = e 3 1 = 2 S 

1 (3,4) (2,3) 6 ( 2 , 3 ) , l = 4 + 7 = 1 1 e 3 2 = U 

2 (2,4) (2,3) 6 ( 2 , 3 ) 2 = 1 4 e 1 2 = e 4 2 = 1 6 

2 (1,4) (1,3) 6 C 1 , 3 ) 2 = 2 1 No Change 

1 (3,3) (1,2) 6 ( 1 , 2 ) 1 = 3 + 1 8 = 2 1 e u - 2 1 
2 (2,3) (2,2) 6 ( 2 , 2 ) 2 = 1 1 No Change 
2 (1,3) (1,2) 6 ( 1 , 2 ) 2 = 2 1 No Change 

1 (2,2) (1,1) 6 ( l , l ) l = 1 4 + 6 = 2 0 e n = 2 0 
2 (2,2) (2,1) 6 ( 2 , l ) 2 ~ n No Change 

1 (1,2) (3,1) No Change No Change 
2 (1,2) (1,1) 6 ( 1 , 1 ) 2 = 1 9 e 3 1=24 
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Table 1 (cont.) 

Algorithm Change or Action 
Step 

4a 6 s ( 1 ) 3 ) = 21 + (-17) - 4 

6s(l 1) = 2 0 + (~20) H -1 - Minimum 
6s(2,l) * 1 + ^ = 1 

4b 5 M n is a candidate 
s(1,1) 

5 (2,1,1, 2,)-(2,2,2,2,3)-(2,2,3,2,4)-

(2,2,4,3,5) is the candidate path. 
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Transfer costs at each location are also introduced at this 

time. Construction of the flight vs. location table as seen 

in the figure is also required. Once all of these ingredients 

are ready and the sink nodes selected, the application of the 

algorithm can begin. 

Initialization, as in all the others, begins by setting 

all node label values at infinity. The super sink is initial­

ized at zero. Next, the sink node labels are set and are 

never changed but must still be evaluated. Both labels of 

each node are set at the same value, that of the arc length 

from that sink node to the super sink. Once this has been 

done, the first node evaluated is determined as in the other 

algorithms. Beginning at node (3,5), the first node changed 

is node (1,4). The diagonal arc label at node (1,4) is now 

set at 6 ^ 4 ^ = 21, and the table entry for flight 4 from 

location 1 is set at e ^ = 21, also. The next diagonal arc 

into node (3,5) originates at node (2,4) and is flight 2. 

Label changes are made 6 ^ 4 ) 1 = ^+9 = 14, and the correspond­

ing table change made = 14. No horizontal label or table 

changes are made since horizontal arcs have no significance 

at the sink nodes. These steps completed, the next node can 

be evaluated. 

Node (2,5) has one diagonal arc along flight 1 from 

the sink node (3,4). Applying Step 1, no change is made 

since the labels are already at lower levels. At this point, 

note that no table entries exist for the destination location 
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of the problem. The horizontal label remains at infinity 

since no shortest path yet exists. A major table column 

change is, however, in order. The minimum entry is ~ I 4 • 

The others are thus changed to this minimum plus a transfer 

cost of 5. For this location column in the table, the 

entries now have values of = 19, ~ 14, e32 = 19 = e ^ 

Note, also, that by basing the evaluation system on flights 

only feasible paths are investigated. 

After evaluating node Cl»2) the evaluation of nodes 

can be terminated since no forward looking changes can be 

made from the first epoch of the window. The implementation 

of Step 4 is exactly comparable to Step 3 in the commodity 

path algorithm. This time the equations for the path to the 

super source look like this: 

r M i n C 6 ( 1 > 1 ) 1 , 6 ( 1 > 1 ) 2 ) . « ( 1 1)3-20+(-21)-]] 

^ M i n ( 6 ( 2 > l ) l ' 6 C 2 > l ) 2 ^ a ( 2 ) l ) 3 = 1 1 + C - 1 0 ) = 1 

« = M i n i n i u a < M i n ( a ( l j 3 n , 6 ( 1 ) 3 ) 2 ) + « ( l j 3 ) 3 - 2 1 + C - 1 7 ) - 4 

Thus, a candidate non basic path has been identified and by 

retracing the path through the network from node (1,1) it 

can be found. 

The effect of transfer costs can be seen at node 

(2,3). The labels identify flight 3 as the shortest path 

leaving location 2, 6 ^ 3 ^ = However, the table shows 

that to say on flight 2 is cheaper than incurring a transfer 
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cost of 5, = 14. The shortest path thus, stays on flight 

2 instead of transferring to flight 3 as was done in the 

example of the commodity path algorithm without transfer 

costs. 

To prove that the transfer cost algorithm also finds 

the shortest path through the network, it must be shown that 

the double labels at each node do indeed correspond to the 

shortest path to the super sink from that node. Those nodes 

connected directly to the super sink are certainly correctly 

labelled. Now assume that the double labels are correct for 

all nodes with time epoch components greater than that for 

a given node (i,t) (i.e. all nodes to which this node can 

lead). Also, the flight-location table entries are assumed 

correct. After traversing the horizontal arc leaving node 

(i,t), a path can select either a diagonal or horizontal arc 

from node (i,t+l). Clearly, then, the shortest path along 

this horizontal must be the minimum of both labels at node 

(i,t+l). This is exactly the same rule as used in the 

algorithm only viewed in the opposite order, 

6 r = Minimum (6 r. , x n i i r 4.^-1 >»o). (i,t)2 (i,t + l)l* (i,t+l)2^ 

With the horizontal label as now set, table entry changes 

must be evaluated. The entire column at location i must be 

checked to insure that no shortest path along a flight 

arriving at location i is longer than the absolute shortest 
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path just set plus the transfer cost at location i. This 

insures that the diagonal arc labels will be shortest paths 

also. 

Paths along diagonal arcs must be associated with 

flights when transfer costs are positive. This means that 

the arc length plus shortest path to the super sink, based 

on the table entry values at the time the destination node 

was evaluated, is the shortest path from node (i,t) along that 

flight arc. To find the diagonal arc label at (i,t), simply 

select the minimum of the diagonal arc shortest paths 

+ = Minimum Hr - p A + A + $n ^ r } , 
( l ' t n (j,s)cB(i,t) (f,i,t,j,s) (j,s)£ 

where <5^ s ^ is the shortest path table entry value at 

location j for arriving flight f at time epoch s. The table 

value for this equation is written in this form because the 

table value presently may be different. Only at node (j,s) 

could the table entry be guaranteed as the shortest path to 

the super sink. As the result of selecting the minimum of 

these shortest paths, the diagonal arc label, is the 

shortest path from (i,t) to the super sink. 

Once each node has been evaluated, the path from super 

source to super sink is obtained in the same manner as in the 

commodity path algorithm. Select the minimum sum of the dual 

variable for the arc from super source to origin node plus 



the minimum of both labels at the origin node 

6 S S = Minimum ( a ( . > t ) u + M i n i m u m ( 6 ( . > t ) 1 , 6 ( . > t ) 2 ) } , 
v. > j u 

where a y is the set of origin nodes with destination u. 

The shortest path from super source to super sink is 

definitely obtained by applying the transfer cost algorithm. 



88 

CHAPTER V 

CONCLUSIONS AND EXTENSIONS 

The objective of this thesis is to formulate an exact 

model of the air freight problem and then to propose 

solution schemes, based on this model, for approaching the 

problem at a reduced, more manageable level. Of the 

heuristic procedures proposed, none introduces a major 

obstacle in efforts to maintain an optimality based solution 

procedure. The next step to be taken is the actual solution 

of the air freight problem. Further development of the 

solution approach proposed in this thesis is required. 

The model formulated in Chapter II, while not being 

the only approach, does present a logical, intuitive unifi­

cation of all the major components of the air freight problem. 

The arc-path formulation permits the scheduling and routing 

components to be combined into a single problem of selecting 

a single airplane flight from among all of the feasible 

combinations. Multi-commodity flow is also easily conceptual­

ized as moving along paths from origin to destination. Most 

importantly, the construction of these airplane flights and 

commodity paths in a manner permitting commodity transfer and 

the resulting path structure complications is possible in the 

air freight model presented. 
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Inclusion of commodity transfer in the model formula­

tion is a major addition to this area. Neither tanker 

scheduling, truck routing, nor air passenger routing 

literature had included this aspect. Complications do occur, 

as explained in Chapter III, when commodity transfer is 

permitted and continue to increase if transfer costs are 

considered positive. 

A reduction of the problem solution approach to a more 

manageable size is proposed in several logical steps. First, 

the ability to fix the fleet size and aircraft mix is assumed 

to be a reasonable approach. Knowledgeable sources and other 

operational constraints can limit the feasible combinations 

to the point that within a few iterations of the fixed fleet 

concept, a best solution can be selected. 

Once the fleet is fixed, the second step looks at 

smaller pieces of the time space network. Here, the time 

window concept is introduced and becomes the lower limit on 

problem size since commodity flow feasibility within time 

restrictions must be maintained. A repetitive procedure for 

utilizing the time window is presented that hopefully loses 

very little to an overall optimal view of the system, since 

the commodity time in the system is the binding constraint 

in the model in this approach. 

Finally, a linear relaxation approach to the mixed 

integer problem at each time window is proposed to allow 

further simplification of the still complex problem. This 
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relaxation approach utilizes an optimal basis. Since it 

is a linear programming method, round off procedures are 

used to return to the mixed integer solution required. 

A column generation approach to the linear relaxation 

concept allows the implicit evaluation of all the nonbasic 

columns as long as the column costs can be associated with 

the individual arcs in the column. If this is possible, then 

a criteria for an entering column into the basis can be 

determined and an optimal solution achieved. Shortest path 

procedures provide efficient methods of identifying candidate 

columns to enter the basis. 

The major complication to applying this in the air 

freight problem appears in the commodity transfer cost. It 

is not allocable to arcs. When transfer costs are combined 

with the other commodity costs and no longer considered 

separate, the commodity path with transfers can be adapted 

to the column generation approach. 

Another factor that must be recognized in the same 

column generation approach is that even though plane flights 

and commodity paths are included in the same problem, they 

must be handled separately. In addition, the only way new 

flights are generated is by commodity flow changes and 

demands. This required the problem to be solved over an open 

graph in order to insure that commodities are not limited to 

existing basic plane flight arcs. 

Finally, modifications to the general shortest path 
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procedure for use in the column generation approach are 

presented. An algorithm for commodity paths, in which 

transfer costs are not separate, and an algorithm for 

airplane flights are developed. In addition, an algorithm 

to handle commodity paths with identifiable transfer costs 

illustrates the complications involved as a result of transfer 

costs not being able to be associated with arc costs. The 

bookkeeping aspect of the algorithm expands and the number 

of feasible flights in the network contracts. 

Pursuing the solution procedure proposed to a final 

answer will require additional work. Only approaches to 

various parts of the solution procedure are presented. Deeper 

involvement with the algorithms, column generation approach, 

and time window concept is required. For example, if the 

same destination node group is to be reused in the algorithm 

after finding a candidate path, a method of updating the 

network might be developed instead of starting over from Step 

0. Even the iterative process of selecting the destination 

node group must be investigated. Rules for switching 

between a commodity path algorithm and a plane flight algo­

rithm are needed to take advantage of the characteristics of 

each process. If transfer costs must be considered, the 

decision of how many and which flights to be included in the 

closed graph can have a definite affect on the answer and 

length of time to reach that answer. 

The time window problems must be answered as well. 
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Retaining as much information as possible between windows 

might reduce start up time in computations. The time spent 

at any one window might be limited to prevent getting delayed 

at any one point in the solution. In the same context, 

the accuracy of the solution is a question that must be 

answered early in the design of the solution procedure. 

Time trade-offs might generate a good solution in less time. 

Even once an answer for a fixed fleet is obtained, a 

form of gradient search approach locally applied might be 

developed in looking for the final fleet size and mix of 

aircraft types. 
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APPENDIX 

NOMENCLATURE 

A a cargo capacity of aircraft type a 

C £ total cost of flight f 

F f s fix acquisition cost of aircraft type a used 
l a f J on flight f 

H. unit transfer cost at location i 1 

I unit inventory holding cost of commodity path p P 

Maximum {s} - Minimum {t} 
(f,i,t,j ,s)er (f,i,t,j >s)er p 

K r >. unit operations cost of aircraft type a used on 
i a f J flight f 

L. r >. landing cost at location j for aircraft type a 
3 i a f J used on flight f 

M number of locations in the system 

N number of aircraft of type a operating flights a 
N f. .X number of aircraft of type a operating flights 

u , t J that include node (i,t) 

Q r. . N amount of commodity with o-d designation (i,t)u 11»t) u 
Of., amount of commodity with o-d designation (i,t)u 

^ u that cannot use a path crossing the window 
boundary 

Rp total unit cost of commodity path p: 

I + Z H. P i 
{Co ,i , t, i , t+1)eT : there exists 
(f,j,s,i,t)er with f > 0} 
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S u super sink connected by arcs from sink nodes u 

SS super source connected by arcs from it to origin 
u nodes of commodities with destination u 

T period length of repeating flight cycles 

W width in time epochs of time window 

a aircraft type used in the fleet 

a^ aircraft type used on flight f 

b right hand side values in the linear relaxation 
bas is 

c , r . . . ^variable cost associated with the arc on flight 
>i> ,3,sj£ Q r a i r c r a £ - t type a from node (i,t) to node 

c ^>s) 
(a,i,t,j ,s) 

(u,t)Sii arc cost associated with the sink arc from sink u node (u,t) to super sink S u 

e f . table entry for flight f at location i: The 
1 shortest path to the super sink for flight f 

arriving at location i 

f a flight of a single aircraft type connecting 
locations in a continuous path from time 1 to T 

& r • -f-̂  r v "\ a n artificial variable for the commodity flow 

or 
g(i,t)u 

(i,t) node at location i at epoch t 

(i,t,j,s) arc from node (i,t) to node (j ,s) 

(f,i,t,j,s) flight f on arc from node (i,t) to (j,s) 

^ff • t " ") lenS"th °^ t n e a r c o n flight f or aircraft type a 
>i> , : ) , s j f r o m node (i,t) to node (j ,s) 

or 
£(a,i,t,j,s) 
n a fi tl a n a r t l f l c i a l variable for the airplane flight 

' ' flow constraint in the linear relaxation 
formulation 
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a commodity path connecting an origin node 
(i,t)efi with a destination ueA, with a set of 
arcs defined in that does not exceed the time 

amount of commodity carried from the sink node 
(i,t) to the super sink 

group of destination or sink nodes 

time window boundary time epoch value 

amount of commodity carried on commodity path P 

a slack variable for the diagonal arc capacity 
constraint in the linear relaxation formulation 

1 if flight f, consisting of the set A £ , 
is used 
0 otherwise 

objective function value 

set of all commodity paths ending at node (j ,s) 
set of all commodity paths ending at intermediate 
node (k,r): 

p: (o ,k,r,k,r+l)er and r = v 

and r+1 < v < s 

set of arcs comprising the commodity path p: 

{(f,i,t,j,s): if f > 0, path p takes flight f 

constraint on com! movement 

along arc (i,t, js) ; 

if f = 0, then i = j and path p 

holds at location i in ground 

storage.} 
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set of arcs comprising the flight path for flight 
f: 

{ (i,t,j,s) : (i,t,j,s) is part of flight f} 
set of flight arcs crossing the window boundary 
such that 

f: Ci , v,i,v+l) eA f or 
(i,t+l,j,s)eA£ with i f j 

and t+1 < v < s 
set of all commodity paths originating at node 
(i,t) 
longest basic path for commodity with o-d 
designation ((i,t),u) 
set of all destination nodes for diagonal arcs 
departing node (i,t) 
shortest path to the super sink from node (i,t) 
by departing on a diagonal arc 
shortest path to the super sink from the node 
(i,t) by departing on a horizontal arc 
shortest path from the super source to the 

a super sink using destination nodes from group 
u or aircraft type a 

length of basic flight f terminating at node (i,t) 
simplex multiplier for arc (i,t,j,s) 
set of all departure nodes for diagonal arcs 
arriving at node (j,s) 
set of all origin nodes for commodities destined 
for location u 
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