
TECHNIQUES FOR FPGA NEURAL MODELING

A Thesis
Presented to

The Academic Faculty

by

Randall K. Weinstein

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Interdisciplinary Bioengineering Program, School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2006

TECHNIQUES FOR FPGA NEURAL MODELING

Approved by:

Professor Robert H. Lee,
Committee Chair
Biomedical Engineering
Emory University

Professor Steven P. DeWeerth
Biomedical Engineering
Georgia Institute of Technology

Professor Robert H. Lee, Adviser
Biomedical Engineering
Emory University

Professor Vijay K. Madisetti
Electrical and Computer Engineering
Georgia Institute of Technology

Professor Robert J. Butera
Electrical and Computer Engineering
Georgia Institute of Technology

Professor Eberhard O. Voit
Biomedical Engineering
Georgia Institute of Technology

Date Approved: December 2006

ACKNOWLEDGEMENTS

These past four years have been an incredibly rewarding experience for me and I am grateful

to everyone who has helped and supported me throughout this process. I would like to first

thank Dr. Allen Tannenbaum, my undergraduate research advisor. and Dr. Ming-Ju Ho,

my colleague at Agere Systems, both of whom inspired me towards higher education.

I am thankful to Dr. Robert (Bob) Lee, my advisor, for his unwavering support for my

research since he first offered me a position in his laboratory. For never letting me fail, even

if I wanted to give up, and always having the confidence in me that I can achieve anything

I work hard towards, I am forever grateful.

I am very thankful to my Ph.D. thesis committee for their insistence on quality and

assisting me to produce a thesis that I can be proud of. I am particularly thankful to Dr.

Stephen DeWeerth for continuously providing helpful and astute advice, without overreach-

ing pressure. I want to thank Dr. Robert Butera for his leadership of the Bioengineering

program and his helpful comments and advice for my thesis. To Dr. Eberhard Voit, I

am grateful for ensuring a strong mathematical basis to my thesis and for your detailed

comments that substantially improved this document. Finally, to Dr. Vijay Madisetti, I

am thankful for you and your class which provided the initial inspiration for the hardware

generation in Dynamo.

I am honored and thankful to have worked with both Sarah Jones and Nick Shapiro

since the very beginning. You are both great researches, great colleagues, and great friends

to me. I am looking forward to celebrating both of your graduations very soon.

I am thankful to Chris Church for his constant advice, occasional criticism, frequent

coffee breaks, and for being a great sounding board for new ideas. I am looking forward

to our future work together on Dynamo. I would like to thank the additional people who

have worked on Dynamo, including Steve Feng, Jamie Meyers, Melissa Freedenberg, and

Bejean Mosher. Dynamo is a true collaborative effort and I thank you all for your hard

iii

work and effort towards making this tool a reality. I also want to thank and acknowledge

Dr. Michael Sorensen for his helpful counsel during the last few months of this process and

I anxiously look forward to our continued future work.

I am thankful to all the other past members of the Lee Group, Dr. Autumn Schumacher,

William Boatin, Estelle Graas, and Phillipe Karam. Autumn, thank you in particular, for

your always helpful insight and wisdom, and for being the lab nurse when weve been down.

I would like to acknowledge and thank the additional members of our group, Cassie

Mitchell, Brock Wester, Matt Sowd, and Jamie Lazin. I hope we continue our all-you-can-

eat sushi trips for a long time.

I am thankful to those who have helped expand my research into wet electrophysiol-

ogy, including my former REU student and now graduate student, JoAnna Todd. I am

particularly thankful to Dr. Kacy Cullen for his support during our collaborative efforts.

I am thankful to Dr. Michelle LaPlacas group, including Sarah, Chris, Kacy, Gustavo,

Ciara, Hillary, Crystal, and Varad for always making me feel like a part of your lab group,

even through I never figured out how to mix a solution.

I would like to thank Richard Blum for not only introducing me to the laboratory,

but also for being my brother through this process. I am forever grateful for all of your

friendship since freshman year together at Georgia Tech.

I would like to thank and acknowledge Kate Williams and Maxine McClain who would

always be there for me whenever I needed sympathy and or just needed to complain.

To my parents, thank you for your unending confidence and your unconditionally love,

for without that, I would have never been able to reach this milestone. To my sister Michelle,

thank you for your constant support and of course for throwing all of those great parties.

Et je suis reconnaissant envers ma copine, Aurélie, pour ton encouragement et ta gen-

tilesse. Tu mas aidé à atteindre mes buts. Merci beaucoup, mon amour.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

II BACKGROUND AND SIGNIFICANCE . 6

2.1 Field Programmable Gate Arrays . 6

2.2 Neural Modeling Technologies . 6

2.2.1 High Performance Neural Modeling 7

2.2.2 Neural Simulation Tools . 9

2.2.3 FPGA Compilers . 10

III MANUAL ART MODEL CONSTRUCTION 12

3.1 Introduction . 14

3.2 Methods . 14

3.2.1 Motoneuron Model . 14

3.2.2 Design Flow . 15

3.3 Hardware Design . 17

3.4 Results . 18

3.5 Conclusion . 18

IV MANUALLY ENGINEERED MODEL CONSTRUCTION 21

4.1 Introduction . 23

4.2 Methods . 23

4.2.1 FPGA Hardware . 23

4.2.2 FPGA Building Blocks . 24

4.2.3 Look-up Tables . 25

4.2.4 Arithmetic Performance . 26

4.2.5 External Interfacing and Data Collection 30

4.3 The Base Architecture . 31

v

4.3.1 FitzHugh-Nagumo . 31

4.3.2 Generating the Data-Path . 32

4.3.3 ODE to Difference Equation . 32

4.4 Single Model, Single Unit Case . 34

4.4.1 Multi-cycle Architecture . 34

4.4.2 Single-cycle Architecture . 38

4.5 Multiple Model, Single Unit Case . 40

4.5.1 Pipelining the Data-path . 41

4.5.2 Pipelining the States . 43

4.5.3 Shared vs. Unique Parameters . 43

4.6 Coupled, Multiple Unit Case . 46

4.7 Discussion . 47

4.7.1 Precision Determination . 48

4.7.2 External Interfacing . 50

4.7.3 FPGA Constraints . 51

V ASSISTED ENGINEERED MODEL CONSTRUCTION 53

5.1 Introduction . 55

5.2 Background . 55

5.3 Methodology . 57

5.3.1 Co-simulation . 58

5.3.2 Parameter Database . 58

5.4 Auto-generation of the Infrastructure . 60

5.4.1 State Generation . 61

5.4.2 Parameter Generation . 63

5.4.3 Output Generation . 66

5.5 Generating the Model . 68

5.5.1 Neuron Model . 69

5.5.2 Ion Channel Construction . 71

5.5.3 Synapses . 74

5.6 Results . 74

5.7 Conclusion . 78

vi

VI FULLY-AUTOMATED MODEL CONSTRUCTION 80

6.1 Introduction . 82

6.2 Compiler Design . 83

6.2.1 Front-end . 84

6.2.2 Intermediate Lambda-Calculus . 91

6.2.3 Back-end . 92

6.3 General Optimizations and Heuristics . 94

6.3.1 Tree Pruning . 94

6.3.2 Operation Analysis . 95

6.3.3 Derived-Parameter Generation . 99

6.3.4 Redundancy Elimination . 101

6.4 Hardware Back-end Specific Analysis . 102

6.4.1 Lookup-table Generation . 103

6.4.2 Precision Analysis . 106

6.4.3 Timing Analysis . 114

6.4.4 Operation Correlation Table . 120

6.5 Software Back-end . 124

6.5.1 Matlab . 125

6.5.2 C/Java . 130

6.6 Hardware Back-end . 132

6.6.1 Dynamic Resource Table . 137

6.6.2 Hardware Scheduler . 139

6.6.3 Scheduler Analysis . 148

6.6.4 Generic Netlister . 150

6.6.5 Area Estimation . 157

6.6.6 System Generator Output . 163

6.7 Results . 164

6.8 Validation . 181

6.9 Future Work . 183

VII CONCLUSION . 185

vii

VIII DISCUSSION . 187

8.1 Contributions of this Thesis . 187

8.2 Discussion of the Dynamo Compiler . 188

8.3 Impact of this Thesis on Neural Modeling Applications 191

APPENDIX A DYNAMO MODELING LANGUAGE BNF 194

APPENDIX B BOOTH, RINZEL, & KIEHN DYNAMO MODEL 199

REFERENCES . 204

VITA . 212

viii

LIST OF TABLES

1 Peak performance of operations (Virtex-II) 30

2 Single model architecture design comparison 40

3 Calculations to determine range values per operation type 49

4 pre-Bötzinger Complex model parameters 70

5 Look-up tables parameters for gating variables in PBC model 73

6 Quantization error in look-up tables for PBC model 74

7 Performance results of PBC implementation 77

8 Lookup-table heuristics . 106

9 Precision propagation for n-ary operations 109

10 Precision propagation for unary operations 113

11 Timing analysis—pipeline stages per operation 120

12 Correlation table generation . 121

13 DIF properties by number system . 126

14 BRK model operation counts . 138

15 BRK dynamic resource table . 140

16 Example resource table and schedule . 142

17 Cost function metric weightings . 144

18 Area estimation comparison . 158

19 Dynamo performance comparison . 166

ix

LIST OF FIGURES

1 Platform comparison table . 3

2 Research progression and publications . 5

3 Reconfigurability of Simulation Platforms 7

4 Cartoon of 10 compartment motoneuron . 15

5 Top-level view of motoneuron model . 16

6 Real-time motoneuron model output . 19

7 Motoneuron model performance comparison 20

8 Example expression trees . 25

9 Area vs. performance tradeoff . 28

10 Block diagram of FN intermediate calculations 35

11 Block diagram of FN state calculations . 37

12 Top-level view of the FN model . 40

13 Block diagram of a multiple-unit model . 44

14 Output traces of multiple FN models . 45

15 Auto-generated state-storage subsystem . 61

16 Auto-generated state read subsystem . 63

17 Auto-generated parameter subsystem . 65

18 Auto-generated output-selector subsystem 67

19 Schematic of pre-Bötzinger Complex population model 68

20 State-driven implementation of gate variable 72

21 Synaptic current summing network for PBC model 75

22 Output data from PBC neuron model . 78

23 Derived parameter transformation . 100

24 Expression tree to DFG . 102

25 Lookup-table examples . 105

26 Plot of supported unary functions . 111

27 Plot of a reciprocal partial function . 112

28 Adder/Subtracter timing analysis . 117

29 Multiplier timing analysis . 119

x

30 Correlation table plot of five Hodgkin–Huxley models 123

31 Correlation table plot of a Booth, Rinzel, and Kiehn motoneuron model . . 123

32 Correlation table plot of a heterogeneous neuron population 124

33 DynGui Interface . 128

34 DynPlot Interface . 129

35 Java GUI screen capture of BRK model output 131

36 Java GUI screen capture of BRK model setup 132

37 Pipelined back-end performance . 135

38 Schematic of typical netlisted operation . 152

39 Adder/Subtracter area analysis . 160

40 Multiplier area analysis . 161

41 FN pipeline depth vs. number . 168

42 HH pipeline depth vs. number . 169

43 HHX pipeline depth vs. number . 170

44 FN average cycles vs. number . 171

45 HH average cycles vs. number . 172

46 HHX average cycles vs. number . 173

47 FN schedule statistics vs. number . 174

48 HH schedule statistics vs. number . 175

49 HHX schedule statistics vs. number . 176

50 FN resources utilization vs. number . 177

51 HH resources utilization vs. number . 178

52 HHX resources utilization vs. number . 179

xi

SUMMARY

Neural simulations and general dynamical system modeling consistently push the limits

of available computational horsepower. This is occurring for a number of reasons: 1)

models are progressing in complexity as our biological understanding increases, 2) high-

level analysis tools including parameter searches and sensitivity analyses are becoming more

prevalent, and 3) computational models are increasingly utilized alongside with biological

preparations in a dynamic clamp configuration. General-purpose computers, as the primary

target for modeling problems, are the simplest platform to implement models due to the

rich variety of available tools. However, computers, limited by their generality, perform

sub-optimally relative to custom hardware solutions. The goal of this thesis is to develop a

new cost-effective and easy-to-use platform delivering orders of magnitude improvement in

throughput over personal computers.

We suggest that FPGAs, or field programmable gate arrays, provide an outlet for dra-

matically enhanced performance. FPGAs are high-speed, reconfigurable devices that can

implement any digital logic operation using an array of parallel computing elements. Al-

ready common in fields such as signal processing, radar, medical imaging, and consumer

electronics, FPGAs have yet to gain traction in neural modeling due to their steep learning

curve and lack of sufficient tools despite their high-performance capability. The overall

objective of this work has been to overcome the shortfalls of FPGAs to enable adoption of

FPGAs within the neural modeling community.

We embarked on an incremental process to develop an FPGA-based modeling envi-

ronment. We first developed a prototype multi-compartment motoneuron model using a

standard digital-design methodology. FPGAs at this point were shown to exceed software

simulations by 10× to 100×. Next, we developed canonical modeling methodologies for

manual generation of typical neural model topologies. We then developed a series of tools

xii

and techniques for analog interfacing, digital protocol processing, and real-time model tun-

ing. This thesis culminates with the development of Dynamo, a fully-automated model

compiler for the direct conversion of a model description into an FPGA implementation.

Dynamo includes a fully-custom programming language for describing model mecha-

nisms and construction. After processing through a minimal intermediate representation,

the model equations undergo a variety of algebraic optimizations and reductions, floating-

point to fixed-point conversion, timing analysis, and hardware scheduling. The Dynamo

compiler provides the core technology for a fully-integrated FPGA-based neural modeling

environment.

xiii

CHAPTER I

INTRODUCTION

Our collective understanding of physiological mechanisms has been growing while our system-

level understanding is still in its infancy. Improved experimental techniques have enabled

experimentation with an enhanced degree-of-precision, targeting individual proteins and

cellular mechanisms. At a higher-level, physiologists often study complex systems through

construction of phenomenological models. A new challenge is emerging—to combine our

experimentally-determined sub-cellular insight and our phenomena-based explanations of

physiologic behavior into a unified modeling paradigm.

This objective has numerous challenges. First, our understanding is never complete.

Models will continuously be tuned and enhanced as necessary to encompass future discov-

eries. Next, models are often under-specified as known behaviors are often depicted across

multiple parameter sets [33, 64]. Finally, from an engineering perspective, the performance

achieved by simulation technology has consistently lagged behind simulation demands. His-

torically, personal computers have been the standard means for model simulation spurred

by ever increasing processing power and low costs. For some example applications, costly

IBM (International Business Machines Corporation) supercomputers [2, 62] and computer

clusters [56, 68, 30] have provided a significant performance advantage to modelers. With

the exception of these few applications, high-speed modeling tools have not been able to

fully penetrate the market.

Our particular question of interest involves the study of how neurons work. We study

lumbar α-motoneurons due to their large size, accessibility in animal preparations, and

extensive dendritic arborization. The adult-cat model, utilized for over a hundred years,

heralded discoveries including the neuron, proprioceptive feedback pathways, afferent/ef-

ferent distribution in the spinal column, and in vivo intra-cellular recordings, among other

innovations [54, 74, 75, 14]. Within the last few decades, our understanding of motoneuron

1

function has transformed from that of a passive integrator of synaptic input to a non-linear,

complex system including persistent inward currents [71], bistability [41], slow amplification

[53], and most recently amplification of fast Ia-dominated synaptic input [45].

Our laboratory has explored the behavior of motoneurons through modeling studies

(Shapiro and Lee, unpublished results) and continued experimental work. The model is

a multi-conductance, multicompartment topology whose implementation exceeds 200 dif-

ferential equations. One particular 10-compartment model simulated one second of neural

activity in three seconds using a custom-designed software simulator. While simulations

across multiple protocols and various parameter sets can be time consuming, they are still

tractable. For a different question—for example, the role of single-neuron emergent behav-

ior on force production in a motor pool—the model would have to be drastically expanded.

A typical cat motoneuron medial-gastrocnemius (MG) motor-pool has approximately 280

motor units [17]. Not including a muscle model, a simulation of all motor units will increase

the processing time to 14 minutes per second. A typical voltage-clamp ramp protocol sim-

ulates 11 seconds of time, requiring over 2.5 hours per simulation. Excessive simulation

times reduce the practicality of modeling studies.

The role of observed single-cell phenomena in a larger physiologic system motivated re-

search into high-throughput modeling alternatives. The Graas et al. comparison of personal

computers, digital signal processors (DSPs), and field-programmable gate arrays (FPGAs)

exposed a wide performance-gap between FPGAs and other low-cost simulation technolo-

gies [36, 37]. FPGAs, as reprogrammable devices capable of arbitrary computation using an

array of parallel digital logic primitives, are shown to provide performance improvements up

to 75× over general-purpose computers. This study confirmed the performance advantage

of FPGAs, but highlighted the difficulty in utilizing these devices for neural modeling.

Neural modelers use a variety of platforms for their simulations. Each simulation plat-

form has clear trade-offs (see Figure 1 for a comparison). General-purpose computers, the

most common neural modeling platform, has a wide variety of software modeling tools

written for it and has been validated as a capable simulation platform in thousands of

publications. It has never been the highest performing simulation platform as that honor

2

Speed Rate Size Ease Cost Accuracy

Computer ! ! - !! !! !

Cluster !! !! ! - ! !

Supercomputer !! - !! ! !! !

Analog Circuit !! !! - !! !! !

FPGA !! !! !! !! ! -

!!!! - !! BetterWorse

Figure 1: This platform comparison table highlights the trade-offs and limitiations inherent
in each possible simulation platform. Here, speed refers to overall simulation throughput,
rate is a measure of the latency of the simulation platform, size refers to limits in the overall
complexity either based on the computation or memory limitations, ease combines multiple
factors including the available of modeling tools and required custom programming, cost
refers to the full system cost including design revisions, software, etc., and accuracy is a
measure of numerical accuracy.

has generally been reserved for computer clusters and supercomputers. Computer clusters

and supercomputers typically require custom software solutions and expensive hardware

to make neural modeling viable. Therefore, the ease of developing a model on a standard

computer is generally preferred over the raw performance found on other platforms.

Some researchers have proposed the use of analog VLSI devices to simulate neurons.

Implementing neurons directly in an analog circuit on a silicon device can enable very high

performance and would be ideal for neural interfacing applications. However, these devices

are exceedingly difficult to develop even for analog design engineers. As a result, many

costly revisions are often required until the device performs as expected.

FPGAs share the high performance characteristics of computer clusters, supercomput-

ers, and analog circuits along with the interfacing capabilities of analog VLSI. FPGAs

disadvantages are three fold. First, limited resources (memory and parallel algebraic op-

erations) available on an FPGA make large model development difficult. Second, FPGAs

are difficult to program and require special training in digital design. As a result, FPGAs

historically have been exclusively within the domain of electrical engineers for vertical mar-

ket applications including radar, medical imaging, military equipment, and cellular base

3

stations. Finally, FPGAs perform optimally when calculating using a fixed-point number

system over a floating-point number system. Floating-point is a mainstay of other computer

platforms and provides very high relative accuracy even when numbers change by orders

of magnitude. Fixed-point, on the other hand, provides high absolute accuracy and is not

well suited for changes in values over orders of magnitude. This is a concern since neural

modelers have naturally come to expect numerically accurate simulations. We initiated

research into neural model development on FPGAs to overcome these accuracy concerns as

well as the size and ease-of-use concerns raised in Figure 1.

This thesis began with an initial high-performance neural models manually designed

based on the “art” of digital system design. This effort culminated in an example ten-

compartment motoneuron model that is described in Chapter 3. The development of this

model exposed the need for reusable and canonical model constructions. Research was refo-

cused around simple models to explore various methods of building small and fast models as

well as populations of models (see Chapter 4). This research provided a basis for a prototype

set of tools to aid in model construction. As part of a collaboration with Michael S. Reid, we

built a 40-neuron population from a simplified Pre-Bötzinger Complex model. This model

included 1600 synapses interconnecting each neuron. Model construction, simulation, and

interaction via this assisted design flow is elaborated in Chapter 5.

In parallel to these efforts, work was underway to build a fully-automated environment

from neural model construction to simulation. We dubbed this research and development

effort Dynamo, and the result is a software compiler incorporating lessons learned from

the manual design of neural models. The Dynamo compiler required considerable research

into generalizing the construction of models, as inputs into this system were not guaranteed

to take on any particular structure. Assumptions made in our manual model development

trials were revisited, often requiring novel solutions. A complete look into the research and

results of the Dynamo compiler can be found in Chapter 6. This overall design progression

is shown in Figure 2.

The overriding objective of this research is to enable FPGA model development as a

viable and accessible platform for the neural modeling community. This thesis provides a

4

Manual

Construction

Engineered

Development

Assisted Flow

Automated

Generation

Hodgkin-Huxley,
Booth-Rinzel Models
(Graas et al., 2004)

FitzHugh-Nagumo
Model (Weinstein &

Lee, 2006)

Pre-Bötzinger
Complex model

(Weinstein, Reid, &
Lee, in press)

DYNAMO Dynamical
System Compiler

(Weinstein, Church, & Lee,
Provisional Patent filed)

Ten Compartment
Motoneuron Model

(Weinstein & Lee, 2005)

Figure 2: This illustration depicts the four phases of this thesis. The first phase was
the manual art or manual construction phase where models were built using typical digital
design principals. The second phase utilized an engineered approach specific to neural
models. The third and fourth phases introduced an automated flow for model development
on FPGAs.

guide for the manual implementation of neural models on FPGAs as well as the description

and results of our Dynamo compiler. We have successfully shown that our developed tools

incorporating our novel algorithms provide neuroscientists with a powerful environment for

realizing their own neural models on FPGAs with significant performance gains.

5

CHAPTER II

BACKGROUND AND SIGNIFICANCE

2.1 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are specialized integrated circuits that made up

of reconfigurable computational primitives capable of implementing arbitrary calculations

and logic. They are widely used in consumer and industrial products for accelerating proces-

sor intensive algorithms. Engineers designing networking, radar, wireless communications,

video processing, aerospace, military, and test equipment, medical imaging, and other com-

putationally intensive applications often utilize FPGAs as hardware co-processors [63, 92],

DSP processors [46, 86], or stream processors [47, 50].

FPGAs have been less commonly used in bio-related fields, with several exceptions.

Protein [59] and DNA [15] sequencing are starting to use FPGAs to reduce processing time.

Real-time processing, registration and other image analyses from confocal microscopy are

enabled by FPGAs [16, 66]. Most modeling applications on FPGAs have been limited to

studying neural networks consisting of reduced neurons [7, 11, 21, 60].

2.2 Neural Modeling Technologies

Advances in both analytical tools and desired model complexity have pushed the computa-

tional requirements of simulations past the realm of personal computers. Large scale models

can execute as slow as 1 simulation day per 1 second model time. Analytical tools, such as

parameter searches, might require thousands of iterations before converging on a solution.

The scope of neural modeling should not be held hostage to current limits to computational

efficiency.

FPGAs are both well performing and reconfigurable. The performance can exceed both

computers and digital signal processors (DSPs) while being reconfigurable within the scale

of hours. This is contrasted with analog VLSI (very large scale integration) circuits which

are high performance but require custom manufacturing to produce or modify (see Figure 3).

6

!"""""Q

#$%$&'()$&''

*$%$&'()$&''

!+

,-./!01+2

,-.

!"""""Q

!+

,-.

!"""""Q!"""""Q!"""""Q!"""""Q!"""""Q!"""""Q

$&'$&34'$&35'$&36'$&37'$&38'$&39'

$&3:'

4
/6

I$&35'

w$+(&35'

u;+(&<

u;+=4(&<

>
34

>
34

>
36

>
34

>
36

“Recompile” Time

,?@1%+0A

!BC

DCEF

GHIBJ

Seconds Minutes Hours Months

Figure 3: Depiction of the relative reconfigurability of the primary platforms for neural
modeling. This graph illustrates the increasing time for reconfiguration beginning with
adjusting a computer simulation to redeveloping a custom analog circuit.

The following subsections detail the different aspects of performance-sensitive neural

modeling. Existing high performance neural applications are described and compared to

FPGA implementations. An overview of existing neural simulation platforms and a survey

of existing methodologies for FPGA development is provided. By themselves, none of the

platforms or methodologies described are sufficient to provide high performing, reconfig-

urable neural modeling solutions that are accessible to the greater neuroscience community.

2.2.1 High Performance Neural Modeling

Other performance-critical applications utilize clusters [91, 8] or supercomputers [62] for

their high complexity modeling efforts. IBM and the EPFL in Switzerland have partnered

to simulate a neocortical column, thought to be the smallest neural unit to exhibit com-

plex functionality. Some 10,000 neurons make up this model with 10M to 100M synapses.

The IBM supercomputer is a BlueGene/L with estimated peak performance of 22.8 ter-

aflops (IBM/EPFL Press Release), scalable to 360 teraflops, the performance of the fastest

BlueGene/L machine and supercomputer in the world (www.top500.org).

These custom designed supercomputers, while beneficial to those laboratories that have

access to them, are not generally available to the broader neuroscience community due to

their high cost. It does illustrate the need for high performance computing solutions that

not only set performance records, but also are highly accessible and cost effective.

7

Graas, in her seminal FPGA work [37], found that by utilizing off-the-shelf FPGA

hardware, the Xilinx Virtex-II Evaluation Kit (Avnet Design Services), she was able to

emulate Hodgkin–Huxley neural models [40] at up to 16× the rate of her desktop computer.

Graas found a 72× improvement in performance for a motoneuron model developed by

Booth & Rinzel [9]. The development board, currently available from Avnet for $279 (US$,

less commercial software costs), showed that order of magnitude performance gains can be

realized for low costs.

While FPGAs have rarely been used for cellular level neural models, there have been

many cases where neural networks have utilized programmable hardware. Examples of

implementations of single neurons have been suggested [23, 24, 60], which are generally of

an integrate and fire nature with sigmoidal activation. A compiler that can target VHDL, a

hardware description language, has been implemented for these simple models [29]. Snider,

et al., considered more complex neural models that include basic ionic conductances with

a threshold function for spiking for the purpose of generating a neural model of the cricket

circi [80]. Networks of these simple neurons have been shown for artificial neural networks

[84, 11, 21, 67] and specifically for image processing applications [86].

Physiologically relevant models have found a place in analog VLSI, (very large scale in-

tegration), or custom analog integrated circuits. One example is a motoneuron model that

features a configurable recruitment threshold and a current modulated firing rate [13]. Ex-

tensions to this work have been offered, but not beyond the complexity of a basic Hodgkin–

Huxley [40] type model [31]. Other work has been done to implement reconfigurable neural

systems in an aVLSI (analog VLSI) at a higher level of granularity [34] whereby the user

can utilize the model without the domain knowledge of the circuitry.

Still, little work has been done to date in utilizing FPGAs for studying cellular level sys-

tems. Current neural models rarely have the structure inherent in artificial neural networks

(ANN) or other idealized models. These models can contain ionic conductances based on

Hodgkin–Huxley [40] type kinetics or Markov models (as an example, Kuo and Bean’s Na+

model [48]). Calcium, a second messenger implicated in a host of cellular processes and

ligand-gated ion channels, is often included in physiological relevant models, but has not

8

been implemented as of yet in an FPGA or in an aVLSI device. The scope of this work

targets these and other arbitrary mechanisms for FPGA modeling efforts.

2.2.2 Neural Simulation Tools

The neuroscience community has a variety of effective modeling tools at their disposal.

While some modelers implement models directly in a traditional programming language,

such as C or Delphi (Borland Software Corporation, Cupertino, CA), others utilize tra-

ditional modeling environments (Matlab/Simulink, Mathworks; LabView, National Instru-

ments; Mathematica, Wolfram Research, Inc.) or dedicated neural simulation platforms

(NEURON [39], GENESIS [12], or NCS (NeoCortical Simulator) [91]).

These modeling tools operate on varying levels of abstraction and require different sets

of domain knowledge to utilize. The traditional programming languages provide maxi-

mal flexibility and the potential for optimal performance. These come at the expense of

increased development time as these environments often lack library routines desired by

modelers (ODE solvers, data structures, etc.). High level neural modeling tools provide a

rich set of resources and model construction tools that can allow for rapid model generation.

Often, some flexibility is lost, but scripting tools built-in to these modeling environments

can compensate. Other tools try to extract the benefits of both, such as a neuromuscu-

loskeletal translation package to convert a model from the construction tool to Simulink

for simulation [25]. The Dynamo compiler is more similar to a traditional modeling envi-

ronment in providing the library functions to perform modeling, but not encompassing the

neuroscience domain knowledge directly.

The above mentioned tools in the base forms are limited to general purpose computer

architectures, with the exception of NCS, which is targeted towards cluster computing. The

Dynamo compiler, with its direct-to-FPGA capability, complements these existing tools by

targeting modeling environments with its Matlab and C back-end and dedicated hardware

with its FPGA back-end. Current collaborations with Michael Hines of the NEURON

group will allow for integration of Dynamo with the NEURON environment to allow a

NEURON-to-FPGA flow.

9

2.2.3 FPGA Compilers

Since the advent of FPGAs and high density digital ASICs (Application Specific Integrated

Circuits), hardware engineers have looked for higher level representations for their designs.

Early microprocessor designs, such as the Intel 4004, were implemented in layout at the

transistor level. Following the development of CMOS processes, mini-cells, or standard

cell libraries, emerged, allowing design of basic building blocks, boolean logic, latches, and

flip-flops. This “gate” level design methodology quickly became cumbersome as transistor

counts accelerated. Synthesis tools such as Design Compiler (Synopsys, Inc.) simplified

digital development by supporting RTL, or register transfer logic, an approach to describing

synchronous logic in VHDL or Verilog. Within the digital design community, there have

been various attempts to create higher level languages, such as SystemC or SystemVerilog,

with limited success. These methodologies to design take a bottom-up approach, whereby

the target device guides the design decisions at the higher levels.

In parallel, there has been much work in adapting either sequentially executed soft-

ware targeting general purpose computers or algorithm descriptions in Matlab to parallel

hardware. Professor Prithviraj Banerjee at Northwestern University has made impressive

seminal progress in this area for over a decade. Beginning with original work with the

PARADIGM tool translating sequential Fortran code to run in distributed memory com-

puters in the early to mid 1990’s [4], Banerjee refocused his efforts towards heterogeneous

distributed systems of FPGAs, DSP processors, and general purpose processors with a

Matlab compiler dubbed MATCH [6]. MATCH, later adapted to SoC (System-on-a-Chip)

with the PACT compiler [44], incorporated SYMPHANY, a scheduling algorithm capable

of exploiting parallelism at various levels of granularity [73]. SYMPHANY scheduled at the

device resource level, using a lazy scheduling algorithm and linear programming to optimize

the allocation of code to DSP, FPGA, and other processing units. As modern day FPGAs

take on characteristics of DSPs and include processors, such as a PowerPC in the Xilinx

Virtex4 or Virtex-II Pro architectures, the concepts behind the SYMPHANY scheduler are

applicable to technology today.

Co-founded by Banerjee, AccelChip (Milpitas, CA) provides a commercially available

10

Matlab to FPGA design flow [38, 5]. These tools overcome traditional hurdles by providing,

for example, utilities to help convert floating point to fixed point numerics [3]. The target

audience for these tools remains DSP algorithm designers with a strong domain knowledge

of hardware design. The tools require meta-commands and an incremental design flow to

guide the compiler towards a desired outcome, making it unsuited for physiologists and

modelers who would rather be shielded from the compilation process. The FREEDOM

compiler [95], marketed by another company co-founded by Banerjee, BinaChip (Glenview,

IL), aims to avoid interactive flow via a direct translation of DSP binaries. The performance

to date has been limited to 5× improvement. Cardoso and Neto have similarly developed

a byte code to FPGA compiler [20].

Other commercial vendors have produced custom language extension to C, enabling a

modified C-to-FPGA design flow. Mitrion C (Mitrionics AB, Sweden) and its customizable,

highly parallel virtual soft-core processor are geared towards the supercomputing market.

The Handel C language (Celoxica, Oxfordshire, UK) uses additional language constructs

to explicitly mark parallelism in the code. Celoxica’s product has made inroads into the

neural network community [67, 61]. Impulse C (Impulse Accelerated Technologies, Kirk-

land, Washington) requires no additional custom language extension for FPGA translation,

though the output is highly dependent on the specific coding style and therefore requires

optimal code for best results [83]. The XPRES Compiler (Tensilica, Inc., Santa Clara, CA)

approaches the problem uniquely by generating a custom processor/instruction set archi-

tecture (ISA) based on sample C/C++ code. The resulting processor comes equipped with

a C compiler and debugger.

These commercial offerings are all capable of implementing the neural models of interest;

however, each commercial offering requires domain knowledge in FPGA development, digital

design, numerical differential equations solvers, etc. There is yet to be a product that focuses

the design flow towards a modeling paradigm, enabling neurobiologists or neurophysiologists

to work within their own domains of knowledge.

11

CHAPTER III

MANUAL ART MODEL CONSTRUCTION

Preface:

As the first step towards realizing neural models on FPGAs, we embarked on a test case

to develop a multi-compartment model using a standard digital design methodology. We

termed this as the manual art model construction approach as there were no documented

techniques for implementing neural models on an FPGA. Where existing digital design

practices were limited, an intuitive design approach was adopted. Our overall objective was

to use this test case to garner greater insight into performance bottlenecks and potential

difficulties in implementation.

We had three specific goals for this study. First, we wanted to implement the first

multi-compartment, multi-conductance neuron model on an FPGA. Previous work has been

limited to neural models with few conductances that readily fit within the constraints of

the FPGA [37]. Second, we intended to demonstrate the execution of the neural model at

real-time. Finally, we wanted to investigate and assess the overall performance capability

of the FPGA for neural models.

We successfully implemented a ten-compartment and seven-conductance motoneuron

model on the FPGA. When executing on an FPGA, we were able to achieve a 33 MHz clock

frequency. With a 40 cycle sample period (40 clock cycles for one time-step of the simulation)

and a 5 µs time step, the model executed at greater than 3× real-time. Additionally, through

adjustment of the clock frequency and time-step, we altered the model to run at exactly real-

time. We were then able to use an experiment-based data-acquisition system to stimulate

and record from the model motoneuron.

The performance of the model was less than expected. There were two contributors

to the reduced performance. First, the critical timing path in the design limited the clock

12

frequency to 33 MHz. It was expected that the fastest clock, driving only embedded multi-

pliers, would achieve a clock frequency of greater than 100 MHz. Second, a 40 cycle sample

period was deemed excessive for a ten-compartment, pipelined model implementation, given

the low clock frequency.

This manual art approach to model construction was successful in terms of implementing

a faster than real-time multi-compartment, multi-conductance neural model. However, we

found that this approach was very time consuming and error prone. Timing, or synchroniza-

tion, errors were common and often very difficult to track down. Precision determination,

or the process in which a model is converted from a floating-point representation to a fixed-

point representation, was done by trial and error, requiring many iterations before reaching

a desired numerical accuracy. We additionally found that any significant modifications to

the design required considerable development effort and would often create additional errors

in the design. This test case inspired the work in the next chapter, the design of the first

general neural-modeling framework.

13

3.1 Introduction

Neural model complexity has steadily increased as more underlying processes are discov-

ered and evaluated. These complex models require reconfigurable, high-speed simulations

to tune and evaluate model characteristics. Based on original work in this laboratory[37],

we have utilized FPGAs to generate a physiologically based implementation of a medial gas-

trocnemius motoneuron. This state-of-the-art model consists of somatic and initial segment

compartments coupled to eight dendritic compartments. The motoneuron representation/-

computer model includes voltage sensitive ionic conductances enabling sodium, potassium,

and calcium currents. A Xilinx Virtex-II XC2V3000 FPGA provides a simulation platform

capable of greater than 4 times real-time performance.

3.2 Methods

3.2.1 Motoneuron Model

The motoneuron model implemented was based on a custom neural software simulator.

The motoneuron is divided into 10 compartments consisting of a soma, an initial segment,

and a single 8-part dendrite oriented proximal to distal (see Figure 4). Spatial separation

of dendrites is a necessary requirement for the voltage gradients, or plateau potentials,

that underlie many active dendrite phenomena. A highly excitable, tightly coupled initial

segment serves as the origin of somatic spiking.

Various ionic conductances emulating sodium, potassium, and calcium channels were

distributed throughout the 10 compartment model. Sodium channels were implemented

as 12-state Markov models with voltage-gated activation and non-voltage dependant inac-

tivation. These channels, as described by Kuo and Bean[48], required deactivation, or a

repolarization below activation threshold, before complete inactivation. These channels, at

depolarized potentials, provide persistent current, a key requirement in generating plateau

potentials[71, 51].

Two potassium channels were implemented with sigmoidal activation functions and a

voltage-sensitive time constants. A faster delayed-rectifier channel provided for a fast after-

hyperpolarization (fAHP) while a second slower activating conductance limited firing rate

14

Figure 4: Cartoon of the 10 compartment motoneuron model depicting a sampling of
channels and receptors. Channels depicted in the dendrites can exist in all compartments.

following successive spikes. An h-channel provided inward current at hyperpolarized poten-

tials limiting AHP depth. Two calcium channels with sigmoidal activation functions and

voltage-independent time-constants were included for completeness but had little functional

role in the model.

3.2.2 Design Flow

Redevelopment from a software-based model to an FPGA required a conversion from se-

quentially executed program instructions to parallel executed hardware modules. On an

FPGA, these hardware modules additionally require manual manipulation to ensure syn-

chronous behavior. Additionally, all calculations were translated from floating-point types

to fixed-point, an integer-based number system, for efficient processing on the FPGA. We

chose to implement the model using Xilinx System Generator v6.2, an add-on toolkit for the

Simulink modeling environment within Mathworks Matlab R14. The toolkit additionally

enabled co-simulation, or the concurrent simulation of a portion of the model in the FPGA

hardware and the remainder simulating in software.

The resulting design was targeted towards a Xilinx XtremeDSP Development Kit-II

based on a Nallatech BenONE carrier board consisting of one DIME-II module slot and

populated with a Nallatech BenADDA expansion board. The BenADDA is preconfigured

with a Xilinx Virtex-II XC2V3000 FPGA, 2 14-bit 65 MS/s analog to digital converters

(ADC), 2 14-bit 160 MS/s digital to analog converters (DAC) and one megabyte of on

15

!
"
#
$
%&
'

$
&
(
%)
*
+,
-
.

$
&
(
%*
/0
''
0
1
2

!
"
#
$
%&
'

$
&
(
%)
*
+,
3
.

$
&
(
%*
/0
''
0
1
4

!
"
#
$
%&
'

5
&
$
)
*
+,
-
.

6$
7
#
%/
'&
86
8%
0
$
9
&
/0
''
0
1

!
"
#
$
%&
'

:
)
*
;
0
(
+,
<
.

:
/*
;
0
(

=
&
8&
%

>
6$
?
&
(:
+$
,<
./
@
0

:
+$
,<
./
A

:
/!
:
0
$
$
&
B

!
"
#
$
%&
'

5
&
$
)
B&
0
C+
,2
.

5
&
$
/B
&
0
C/
0
''
0
1

!
"
#
$
%&
'
5
&
$
)
>
'&
8%
+,
-
.

>
'&
8%
/0
''
0
1

+5
&
$
/'
&
D
&
'8
0
B/
7
"
%&
$
%6
0
B.

>
;
+$
.

=
&
8&
%

>
;
+$
E
4
.

>
;
/F
%0
%&

>
;
+$
,4
G
.

>
;
/F
&
B&
9
%H

>
;
+$
,I
.

>
;
/F
&
B&
9
%J

>
;
+$
,I
.

>
;
/F
&
B&
9
%-

>
;
+$
,I
.

>
;
/F
&
B&
9
%3

>
;
+$
,3
.

>
;
/F
&
B&
9
%<

>
;
+$
,J
.

>
;
/F
&
B&
9
%I

>
;
+$
,-
.

>
;
/F
&
B&
9
%2

>
;
+$
,-
.

>
;
/F
&
B&
9
%4

>
;
+$
,-
.

>
;
/F
&
B&
9
%

,K
G

>
B"
L

=
&
8
&
%

M
"
L
&
',
"
$
,=
&
8&
%/
+%
8/
?
6D
/4
G
.N
K

!
"
#
$
%&
'

@
0
>
4
-
)
*
;
0
(
+,
<
.

@
0
>
4
-
/*
;
0
(

!
"
#
$
%&
'

@
0
>
4
2
)
*
;
0
(
+,
<
.

@
0
>
4
2
/*
;
0
(

=
&
8&
%

>
6$
?
&
(

@
0
>
4
-
+$
,<
.

@
0
>
4
O-
/!
:
0
$
$
&
B

=
&
8&
%

>
6$
?
&
(

@
0
>
4
2
+$
,<
.

@
0
>
4
O2
/!
:
0
$
$
&
B

!
"
#
$
%&
'
@
0
)
B&
0
C+
,2
.

@
0
/B
&
0
C/
0
''
0
1

!
"
#
$
%&
'

5
&
$
)
P
$
0
+,
I
.

@
0
/@
&
'$
8%

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/K

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/H

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/J

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/-

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/3

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/<

QR

M
'"
?
+T
U
+,
<
..

S
#
B%
67
B1
/(
<
/I

QR

M
'"
?
+T
U
+,
<
..

S
#
B%
67
B1
/(
<
/2

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/4
<

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/4
I

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/4
2

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/4
4

Q R

M
'"
?

S
#
B%
67
B1
/(
<
/4
G

QR

M
'"
?
+T
U
+,
<
..

S
#
B%
67
B1
/(
<
/4

Q R

M
'"
?

S
#
B%
67
B1
/(
<

!
"
#
$
%&
'

A
?
'2
)
*
;
0
(
+,
<
.

A
?
'2
/*
;
0
(

=
&
8&
%

>
6$
?
&
(A
?
'2
+$
,<
.

A
?
'2
/!
:
0
$
$
&
B

!
"
#
$
%&
'

A
?
')
*
;
0
(
+,
<
.

A
?
'/
*
;
0
(

=
&
8&
%

>
6$
?
&
(

A
?
'+
$
,<
.

A
?
'/
!
:
0
$
$
&
B

!
"
#
$
%&
'

A
)
B&
0
C+
,2
.

A
/B
&
0
C/
0
''
0
1

!
"
#
$
%&
'

5
&
$
)
P
C+
,I
.

A
/@
&
'$
8%

V/
+&
(
%&
'$
0
B.

V0
7
7

V0
7
7
/F
"
;
0

"
#
%

'8
%

!
"
#
$
%&
'4

=
&
8&
%

>
6$
?
&
(

!
0
>
4
I
+$
,<
.

!
0
>
4
I
/!
:
0
$
$
&
B

!
"
#
$
%&
'

!
0
>
4
I
)
*
;
0
(
+,
<
.

!
0
>
4
I

=
&
8&
%

>
6$
?
&
(

!
0
>
4
2
+$
,<
.

!
0
>
4
2
/!
:
0
$
$
&
B

!
"
#
$
%&
'

!
0
>
4
2
)
*
;
0
(
+,
<
.

!
0
>
4
2

!
"
#
$
%&
'
!
0
)
B&
0
C+
,2
.

!
0
/B
&
0
C/
0
''
0
1

!
"
#
$
%&
'

5
&
$
)
P
9
0
+,
I
.

!
0
/@
&
'$
8%
/,
/W
P
S
M
X
=
Q
=
Y

T,
4

(
/-
OK
4
K
//

!
S
#
B%
4

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
K

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
H

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
J

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
-

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
3

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
<

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
I

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
2
<

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
2
2

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
2
4

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
2
G

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
2

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
K

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
H

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
J

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
4
-

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
4
3

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
4
<

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
I

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
2

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
4

(
B0
?
?
8#
Z

0
E
Z

0 Z0 Q
?
?
F
#
Z
4
G

(
B0
?
?
8#
Z

0
,Z

0 Z0 Q
?
?
F
#
Z
4

(
B0
?
?
8#
Z

0
,Z

0 Z0

Q
?
?
F
#
Z

=
&
8
&
%

@
"
68
&

Q
[
*
@
/F
"
#
'9
&

!
"
#
$
%&
'

5
&
$
)
!
+,
2
.

/V
$
D
&
'8
&
/!
0
7
/Q
''
0
1
/+
#
$
86
5
$
&
?
.4

4

!
;
?

>
6$
?
&
(
+$
,K
.

5
&
$
/V

*
0
%&
8

!
"
#
$

%
+&
,'
(
.

!
!
#
''
&
$
%8

!
"
#
7
B6$
5

!
#
''
&
$
%

(
)*
\

+ ,-
#
.

"
%]
/
"

&
"
F
%0
%&

+ 0
"
1

F
ig

u
re

5:
T
op

-l
ev

el
vi

ew
of

th
e

m
od

el
.

X
ili

nx
bl

oc
ks

ar
e

co
lo

re
d

lig
ht

bl
ue

w
it

h
a

w
hi

te
X

lo
go

,
su

bc
om

po
ne

nt
s

(c
ha

nn
el

s,
gl

ue
lo

gi
c,

et
c.

)
ar

e
co

lo
re

d
bl

ue
,

st
at

e
va

ri
ab

le
s

ar
e

co
lo

re
d

cy
an

,
pa

ra
m

et
er

an
d

L
U

T
s

(l
oo

ku
p

ta
bl

es
)

ar
e

co
lo

re
d

ye
llo

w
,

si
gn

al
de

m
ul

ti
pl

ex
or

s
ar

e
co

lo
re

d
gr

ee
n

an
d

m
ul

ti
pl

ie
rs

ar
e

co
lo

re
d

or
an

ge
.

16

board SRAM. Using a function generator, somatic current input was applied via an ADC

channel to perform simulations. Voltage potentials were recorded through the on-board

DACs using standard data acquisition hardware (16-bit, 100 kS/s).

3.3 Hardware Design

The motoneuron model was developed as a fully synchronous design consisting of a 10-

stage pipeline corresponding to the number of simulated compartments. Each channel

was implemented once in hardware and executed 10 times (once per compartment) per

simulation time step as shown in Figure 5. When a channel was unused in a compartment,

conductance was set to zero. All state variables were computed using Euler integration and

executed synchronously.

All combinational logic paths were constrained to run within 10 cycles. Certain blocks,

such as the multiplier required 4 cycles to execute. To reduce the impact on the logic

pipeline, multiplication operations involving two variable operands were implemented as

hardware multipliers using a multicycle approach, running at 4 times the pipeline clock

rate for 4 cycles, resulting in one pipeline delay per use. As a result, the fastest clock in

the system was 40 times faster than the simulation timestep, fanning out only to hardware

multiplier units.

Fixed-point precision was empirically chosen to minimize hardware usage while main-

taining numerical integrity. Upper and lower bounds for quantities were applied when

determining the number of integer bits avoiding overflow conditions.

All parameters were set static in the simulation. When a parameter was constant, e.g.

channel constants, across all compartments, the value was folded into the next arithmetic

block. Most parameters were varied per compartment and were stored in circularly refer-

enced 10 deep read-only memory (ROM) blocks. The ROM was initialized as to provide

the correct delay in the parameter corresponding to the insertion stage of the pipeline,

mitigating the need for additional synchronizing registers providing delay. At each cycle,

the parameter value corresponding to the appropriate compartment was produced on the

output of the circular ROM.

17

Certain costly functions, such as sigmoids and exponentials, were implemented as look-

up tables (LUTs). All LUTs were voltage dependent and had an addressability of 11-bits.

3.4 Results

The synthesized design resulted in a Xilinx equivalent gate count of 2.6M. 39% of flip-flops,

or registers, were utilized while 40% of the base combination logic elements, or 4 input

LUTs, were employed. The model used all 96 hardware multiplier resources available in

the Virtex-II FPGA. Roughly 1/3 of the block RAMS were used and configured as function

LUTs or parameter ROMs.

The critical path, or the longest single cycle propagation time, was found to be 30 ns,

implying a maximum 33 MHz clock. Within 40 cycles, 10 compartments were computed,

enabling a computation rate of 8.25M compartments per second. With the time step fixed

at 5 s, over 4× real-time performance was achieved.

For the purposes of testing, the model was slowed down to real-time by decreasing

the time step to 2 s and reducing the clock rate to 20 MHz. Additionally, a noise source

consisting of additive Gaussian noise (< 10 kHz) was added to the model to emulated

realistic physiological recording conditions. A five second ascending and descending current

ramp was applied to the input while the soma and most distal dendrite potential were

recorded (see Figure 6). We found the model produced action potentials at an increasing

frequency as the input current increased. Additionally, the model exhibited hysteresis,

a result of the activation of dendritic originating persistent inward currents, as found in

vivo[52].

3.5 Conclusion

The resulting model output is not yet fully characteristic of motoneuron output. Many

deficiencies can be remedied by tuning the parameters and perhaps altering mechanisms

modeled, neither of which is constrained by the implementation in hardware. Despite the

discrepancies in output, the model demonstrates a level of neural complexity not previously

modeled in FPGAs. The hardware demonstrates a high degree of flexibility and can readily

be adapted to any reasonable evolution in the motoneuron model.

18

!"# $# %&'()# *+,-.#/0"0# 01'2!3045# # ,60#1!402# (-04# 722# 89#

67"4/7"0# 1(2)%'2%0"# "0-!(":0-# 7;7%27<20# %&#)60# =%")0>?@@#

ABCD5# # E!(F623# GHI# !J#)60# <2!:K# EDLM# /0"0# (-04# 7&4#

:!&J%F("04#7-#J(&:)%!&#*+,-#!"#'7"710)0"#ENL-5#

,60#:"%)%:72#'7)6.#!"#)60# 2!&F0-)#-%&F20#:3:20#'"!'7F7)%!&#

)%10.#/7-#J!(&4#)!#<0#IO#&-.#%1'23%&F#7#17>%1(1#II#LPQ#

:2!:K5##R%)6%&#$O#:3:20-.#GO#:!1'7")10&)-#/0"0#:!1'()04.#

0&7<2%&F# 7# :!1'()7)%!&# "7)0# !J# S5TUL# :!1'7")10&)-# '0"#

-0:!&45#R%)6#)60#)%10#-)0'#J%>04#7)#U#V-.#!;0"#$>#"072?)%10#

'0"J!"17&:0#/7-#7:6%0;045#

A!"#)60#'("'!-0-#!J#)0-)%&F.#)60#1!402#/7-#-2!/04#4!/&#

)!#"072?)%10#<3#40:"07-%&F#)60#)%10#-)0'#)!#T#V-#7&4#"04(:%&F#

)60# :2!:K# "7)0#)!# TO# LPQ5# # D44%)%!&7223.# 7# &!%-0# -!(":0#

:!&-%-)%&F#!J#744%)%;0#C7(--%7&#&!%-0#WXGO#KPQY#/7-#74404#

)!#)60# 1!402#)!# 01(27)04# "072%-)%:# '63-%!2!F%:72# "0:!"4%&F#

:!&4%)%!&-5# #D# U# -0:!&4# 7-:0&4%&F# 7&4# 40-:0&4%&F# :(""0&)#

"71'# /7-# 7''2%04#)!#)60# %&'()# /6%20#)60# -!17# 7&4# 1!-)#

4%-)72# 40&4"%)0# '!)0&)%72# /0"0# "0:!"404# W-00# A%F5# IY5# # R0#

J!(&4#)60#1!402#'"!4(:04#7:)%!&#'!)0&)%72-#7)#7&#%&:"07-%&F#

J"0Z(0&:3#7-#)60# %&'()#:(""0&)# %&:"07-045# #D44%)%!&7223.#)60#

1!402# 0>6%<%)04# 63-)0"0-%-.# 7# "0-(2)# !J#)60# 7:)%;7)%!&# !J#

40&4"%)%:#!"%F%&7)%&F#'0"-%-)0&)#%&/7"4#:(""0&)-.#7-#J!(&4#!"#

$!$%[9\5###

#
A%F5#I5#E072?)%10#:7')("0#!J#!()'()#J"!1#ABCD#67"4/7"0#/%)6#7#

F0&0"7)04#:(""0&)#%&'()#WU-#('H4!/&#"71'Y5##=!2)7F0#)"7:0#J!"#-!17#7&4#

1!-)#4%-)72#40&4"%)0#%-#%22(-)"7)045#

=5!]N^]*+M@N^#

,60#"0-(2)%&F#1!402#!()'()# %-#&!)#30)# J(223#:67"7:)0"%-)%:#

!J#1!)!&0("!&#!()'()5##D&3#40J%:%0&:%0-#:7&#<0#"0104%04#<3#

)(&%&F#)60# '7"710)0"-# 7&4# '0"67'-# 72)0"%&F# 10:67&%-1-#

1!40204.# &0%)60"# !J# /6%:6# %-# :!&-)"7%&04# <3#)60#

%1'2010&)7)%!&# %&# 67"4/7"05# # _0-'%)0#)60# 4%-:"0'7&:%0-# %&#

!()'().#)60#1!402#401!&-)"7)0-#7#20;02#!J#&0("72#:!1'20>%)3#

&!)# '"0;%!(-23# 1!40204# %&# ABCD-5# # ,60# 67"4/7"0#

401!&-)"7)0-#7#6%F6#40F"00#!J#J20>%<%2%)3#7&4#:7&#"074%23#<0#

747')04#)!# 7&3# "07-!&7<20# 0;!2()%!&# %&#)60# 1!)!&0("!&#

1!4025###

,60# '0"J!"17&:0# "0'!")04# %&#)6%-# '7'0"# %-# <7-04# !&# 7&#

(&!')%1%Q04# ABCD# %1'2010&)7)%!&5# # # R%)6!()# 0>)0&-%;0#

!')%1%Q7)%!&-.#)60# 1!402# /7-# :7'7<20# !J# F"07)0"#)67&# SL#

:!1'7")10&)-H-0:!&4# !"# $># "072?)%10# /%)6# 7#)%10?-)0'# !J#

U1-5##,6%-#20;02#!J#'0"J!"17&:0#%-#-%F&%J%:7&)#7-#!("#:(-)!1#

-!J)/7"0# -%1(27)!"# 0>0:()0-# 7)# 7''"!>%17)023# O5I># "072?

)%10# 7-# %22(-)"7)04# %&# A%F5# $5# # A(")60"1!"0.# !("# ABCD#

%1'2010&)7)%!&# :7&# <0# "0J%&04# (-%&F# -0;0"72#)0:6&%Z(0-.#

J!"# 0>71'20.# 17&(72# "0<727&:%&F# !J# "0F%-)0"-# 7:"!--#)60#

'%'02%&05# # D44%)%!&7223.# 1(2)%'2%0"# '0"J!"17&:0# :7&# <0#

4"%;0&#)!# !;0"# GOO# LPQ# 0&7<2%&F# 744%)%!&72#)6"!(F6'()#

0&67&:010&)5# # R0# 0>'0:)# 7# GO># %1'"!;010&)# %&#

'0"J!"17&:0# %-#/%)6%&# "07-!&# <"%&F%&F#)60# -3-)01#)!# $O>#

"072?)%105#

#P7"4/7"0# 40-%F&# !J# 1!402-# %-# -(<-)7&)%7223# 1!"0#

4%JJ%:(2)#)67&# -!J)/7"0# 40-%F&.# <()# :7&# <0# 1740# 07-%0"#

)6"!(F6#)60# (-0# !J#/022# 40J%&04# 67"4/7"0# '"%1%)%;0-# 7&4#

2%<"7"3#:022-5##N("#40-%F&#%-#<7-04#!&#"0(-7<20#:!1'!&0&)-#

0&7<2%&F# J7-)# 744%)%!&-#!"# :!""0:)%!&-#)!#)60#1!4025# #,6%-#

'7'0"# 401!&-)"7)0-# ABCD# 1!402%&F# 7-# 7# -!2()%!&#)!#

'0"J!"17&:0# :!&-)"7%&04# -%1(27)%!&-# !J# :!1'20># &0("72#

1!402-#!"#43&71%:72#-3-)01-5#

D]`^NR*a_CaLa^,#

,6%-#/!"K#/7-# -(''!")04# <3#)60#P(17&#b"7%&# B"!c0:)#

;%7# ^@^_M.# ^@LP# 7&4# ^@b@b# W^MO$9SUIY# 7&4# <3#

^@^_M#W^MO$UG88Y5#

EaAaEa^]aM#

&'(#)*#+*#,-.//0#1*#+*#,-%2"0#3*#4.567-0#."8#9*#3*#:7;77-<=0#>+#5!6!?%"#

@%876#%A#."#.8.B<!"/#@%<%"7C-%"0>#B-757"<78#.<#D111#D"<7-".<!%".6#

9E@B%5!C@#%"#F!-?C!<5#."8#9E5<7@50#GHHG*#

&G(#1*#I*#J-..50#1*#+*#,-%2"0#."8#K*#4*#I770#>+"#L3J+MN.578#.BB-%.?=#

<%#=!/=M5B778#5!@C6.<!%"#%A#?%"8C?<."?7MN.578#"7C-%"#@%87650>#

O7C-%!"A%-@.<!?50#$%6*#G0#BB*#D"#3-7550#GHHP*#

&Q(#F*#F*#RC%#."8#,*#3*#,7."0#>O.S#?=.""765#@C5<#87.?<!$.<7#<%#-7?%$7-#

A-%@#!".?<!$.<!%"0>#O7C-%"0#$%6*#'G0#BB*#T'UMGU0#'UUP*#

&P(#3*#F*#9?=2!"8<#."8#;*#1*#F-!660#>3-%B7-<!75#%A#.#B7-5!5<7"<#!"2.-8#

?C--7"<#!"#"%-@.6#."8#V1+M!"W7?<78#@%<%"7C-%"50>#)%C-".6#%A#

O7C-%B=E5!%6%/E*0#$%6*#PQ0#BB*#'XHHMGP0#'UTH*#

&Y(#K*#4*#I77#."8#F*#)*#47?Z@."0#>1557"<!.6#-%67#%A#.#A.5<#B7-5!5<7"<#

!"2.-8#?C--7"<#!"#.?<!%"#B%<7"<!.6#!"!<!.<!%"#."8#?%"<-%6#%A#-=E<=@!?#

A!-!"/0>#)%C-".6#%A#O7C-%B=E5!%6%/E*0#$%6*#TY0#BB*#PXGMY0#GHH'*#

&[(#K*#4*#I770#)*#)*#RC%0#*#F*#)!."/0#."8#F*#)*#47?Z@."0#>D"A6C7"?7#%A#

+?<!$7#:7"8-!<!?#FC--7"<5#%"#D"BC<M]C<BC<#3-%?755!"/#!"#9B!".6#

\%<%"7C-%"5#D"#^!$%0>#)#O7C-%B=E5!%60#$%6*#TU0#BB*#GXMQU0#GHHQ*#

#

" # $" $# %" %# &" &# '"

!"#$%&'(

()*+

,-./0123!,45671/4-8

)*+,%-.//$01%23#4%56$7.1"+0%!"#$%&88%'$7+09'(

#
A%F5#$5#C"7'6#40'%:)%&F#)60#-%1(27)%!�>0:()%!&#)%10#<0)/00&#!("#

:(-)!1#-%1(27)%!�&;%"!&10&)#7&4#)60#1!402#7-#%)#"(&#!&#ABCD5##

,60#-!J)/7"0#1!402#%-#:!1'%204#:!40#%1'2010&)%&F#;7"%7<20#)%10?-)0'-#

J!"#'0"J!"17&:05##@)#/7-#0>0:()%&F#!#B0&)%(1#$.#I5T#CPQ#/%)6#T#Cb#

EDL5##,60#ABCD#%-#7)#)60#:(""0&)#17>%172#J"0Z(0&:3#!J#II#LPQ#7&4#7#

-%1(27)%!&#-71'20#"7)0#!J#TOO#KPQ5#

9:"

9'"

9%"

"

%"

;
3
5
<
21
8
3
!=
-
7/
1
>
3
!?
5
=
@

$"A:'%"

B453!?C3D@

$"

A

:

'

%

E
6
22
3
8
/!
?8
+
@

!,-51!=-7/1>3!
!F4C/17!F38G24/3
!E62238/!H15I

Figure 6: Real-time capture of output from FPGA hardware with a generated current
input (5 s up/down ramp). Voltage trace for soma and most distal dendrite is illustrated.

19

Figure 7: Graph depicting the simulation execution time between our custom simulation
environment and the model as it run on an FPGA. The software model is compiled code
implementing variable time-steps for performance. It was executing on a Pentium 4, 3.2 GHz
with 2 GB RAM. The FPGA is at the current maximal frequency of 33 MHz and a simulation
sample rate of 200 kHz.

The performance reported in this chapter is based on an unoptimized FPGA imple-

mentation. Without extensive optimizations, the model was capable of greater than 8M

compartments/second or 4× real-time with a time-step of 5ms. This level of performance is

significant as our custom software simulator executes at approximately 0.3× real-time as il-

lustrated in Figure 7. Furthermore, our FPGA implementation can be refined using several

techniques, for example, manual rebalancing of registers across the pipeline. Additionally,

multiplier performance can be driven to over 100 MHz enabling additional throughput en-

hancement. We would expect a 10× improvement in performance is within reason bringing

the system to 40× real-time.

Hardware design of models is substantially more difficult than software design, but

can be made easier through the use of well defined hardware primitives and library cells.

Our design is based on reusable components enabling fast additions or corrections to the

model. This chapter demonstrates FPGA modeling as a solution to performance constrained

simulations of complex neural models or dynamical systems.

20

CHAPTER IV

MANUALLY ENGINEERED MODEL CONSTRUCTION

Preface:

The previous chapter introduced a multi-compartment and multi-conductance model

as a test-case for the purpose of learning strategies for successful implementation of neural

models on FPGAs. We found that our first attempt produced a well performing model with

throughput greater than 3× real-time. However, we also recognized limits in performance

and ease of use. It was apparent that our initial attempt at using standard digital design

techniques and intuition was insufficient when implementing neural models on FPGAs.

This chapter utilizes the lessons learned and describes an engineered framework for which

a neural modeler can readily implement their models.

The manual engineered approach described in this chapter was driven by three goals.

First, we wanted to develop a set of rules and heuristics to guide the construction of models

on FPGAs. Next, we wanted to evaluate the suitability of three generic types of neural

models for implementation on an FPGA: a Hodgkin–Huxley-type model [40], a population

of single-compartment models, and a multi-compartment model similar to the model of

the previous chapter. Finally, we wanted to generate strategies for maximizing the overall

performance of the FPGA-based model.

This chapter describes the first generalized framework for the manual construction of

neural models. This consisted of a basic set of techniques for implementing generalized

systems of first-order differential equations. Next, we proposed three candidate archictures

covering a minimal model, an unconnected population of neurons, and an interconnected

neural model which includes population models with synapses and multi-compartment mod-

els. Finally, specific operation optimizations were developed to improve the performance of

each mathematical operation within the model.

This chapter as published [89] became the first amalgamation of rules, heuristics, and

21

techniques enabling neural modelers to utilize FPGAs. The candidate architectures de-

scribed here cover a large swath of actively-research neural models. Furthermore, the per-

formance optimizations performed at both an architectural level and at a per-operation

level successfully boosted clock frequencies upwards of 100 MHz.

This chapter still left some questions unanswered. For example, the approach described

here did not offer much support for reducing design errors. Trial and error fixing of design

flaws still constitutes a large portion of the model development process. Finding ways to

reduce the propensity of mistakes will be examined in the following chapter. Addition-

ally, how data should be digitally transferred between the FPGA and a personal computer

remains a question after these studies. This too will be addressed in later chapters. Fi-

nally, a method for floating-point to fixed-point precision determination was only partially

addressed in this work. More progress on this question is forthcoming in later chapters.

22

4.1 Introduction

Recently, in our laboratory, several implementations of conductance-based neural models

have emerged including Hodgkin–Huxley [40] and Booth–Rinzel [9] models [37], and a ten

compartment motoneuron model [88]. However, each of these designs was somewhat specific

to the model being implemented. This chapter expands on those efforts by describing

generalized algorithms and architectures that provide a migration path for current software-

based neural models into FPGA-based implementations.

4.2 Methods

4.2.1 FPGA Hardware

All designs were targeted towards a Xilinx XtremeDSP Development Kit-II based on a

Nallatech BenONE carrier board consisting of one DIME-II module slot and populated

with a Nallatech BenADDA expansion board. The BenADDA is preconfigured with a

Xilinx Virtex-II FPGA (XC2V3000-4fg676), two 14-bit 65 MS/s analog to digital converters

(ADC), two 14-bit 160 MS/s digital to analog converters (DAC) and one megabyte of on

board SRAM.

All model designs were constructed using System Generator (ver. 6.3i), an add-on toolkit

for Mathworks Simulink (ver. 6.2). System Generator provides a library of blocks that can

be converted into an HDL (hardware description language) for synthesis. For simple blocks

such as multiplexors, logic gates, and registers, the tool does a direct translation into the

HDL. For more complex structures such as memories, multipliers, and adders, the tool

relies on the Xilinx CORE Generator (CoreGen). CoreGen combines user specified design

constraints (bit width, depth, etc.) with timing constraints (latency) and area constraints

(parallel vs. serial). The Xilinx ISE Foundation 6.3i package was utilized for synthesis,

place and routing, and generation of a bitstream for programming. For certain results,

Synplicity’s Simplify Pro (ver. 7.0), an alternative 3rd-party synthesis tool was employed

for comparison.

System Generator provides a unique interface for FPGA digital design through its rich

library of synthesizable blocks. Clocking is implicitly defined through the setting of sample

23

periods (of arbitrary units) for each block. Reset states are easily defined through the

interface. Additionally, automated support for buses and explicit declaration of fixed-point

type format simplify what would take a considerable amount of effort when programming in

a traditional HDL. System Generator combines both an interface helpful to the traditional

hardware designer while hiding underlying details to the neural modeler.

4.2.2 FPGA Building Blocks

The vast majority of processing within the data-path involves four blocks: addsub, mult,

cmult, and lookup tables. The former three encompass the arithmetic operations (addition,

subtraction, multiplication, multiplication by a constant) and the latter is for all other

operations. Division is absent from this list as there is yet to be a high-speed, low latency

implementation. The disadvantage is minimal as divisions can generally be mapped to a

multiplication of the inverse of the denominator. (The denominator is very often a constant

or parameter in neural models, making for a trivial implementation.)

Each block, when mapped into the FPGA, can take on a number of different forms, each

with its own tradeoffs. Each block can be characterized by its throughput, latency, area,

bit width, and sign format. The throughput is a measure of the number of operations that

can be performed by the unit in a given amount of time. The latency of an operation is the

delay represented as a maximum number of cycles the block requires to propagate an input

to an output. When a block is pipelined (i.e. broken into multiple suboperations each of

one cycle duration) or capable of completing one operation per cycle regardless of latency,

there is often a negative correlation between throughput and latency. Resources within an

FPGA are utilized in varying ways depending on the parameters of the block. Additional

pipeline stages require additional registers per block, while a wider data-path requires more

logic. Different architectures can save area while sacrificing performance, such as in the

case of a sequential multiplier using a single accumulator to sum of partial products [94].

Optimally, the data-path will exploit as much parallelism in the model as possible. In

the simple equation ab + cd, the multiplication of a and b can occur in parallel to the

multiplication of c and d. Then the addition of the two terms can follow. The metric used

24

fb c a dk e

cmult

z
-4

mult

z
-2

add

z
-1

add

z
-1

add

z
-1

add

z
-1

y

(a) Operation balancing

fb c a dk e

cmult

z
-4

mult

z
-2

add

z
-1

add

z
-1

add

z
-1

add

z
-1

y

(b) Latency balancing

Figure 8: Example expression trees for the equation a+bc+d+ke+f where k is constant.
Two operand multiply operations are shown with two units of delay while constant multiplies
have four units of delay. All adders are given one unit delay. Additional pipeline registers
can be added arbitrarily to each operation. a) The tree is balanced with respect to the
number of operations per path. b) The tree is balanced with respect to the number of
cycles of latency per path.

for determining parallelism is not simply the number of operations. Instead, the latency of

the operation has to be considered. In the equation y = a + bc + d + ke + f where k is

a constant, the multiplication of b and c, the constant multiplication, and a pairwise sum

are done in parallel (see Figure 8). Additional arithmetic steps are done biased towards

the paths of lesser latency. If each of the addition operations have a latency of one cycle,

then the skewing of the addition steps away from the multiplies enables a balanced tree of

3− 5 cycles of latency per path. If the number of operations was the metric for balancing

expression trees, the additions can be rebalanced shifting the latency per path range to

between 2 cycles (a → y) and 6 cycles (k, e → y).

4.2.3 Look-up Tables

Often, the neural models require computations that are difficult, either resource heavy or

too slow, for use in a neural model simulation. These can be trigonometric functions,

exponentials, square roots, or any other trancendental function. When the difficult to

evaluate expression is a function of a single input, a lookup table provides an area efficient

and high performance way to estimate the output of the function. For an example, the

steady state of a gating variable can be estimated via a sigmoid or Boltzmanns equation as

25

defined by:

m∞ =
1

1 + exp
(

Vmem−θ
σ

) (1)

where θ is the half activation voltage of the gate, σ is a measure of the slope of the sigmoid,

and Vmem is the membrane potential. This equation is difficult to solve directly for two

reasons. First, the exponential, as a trancendental function, has no simple closed form

solution that is efficient on an FPGA. Second, the inverse function is as difficult as a

division, which is generally solved iteratively, not directly like a multiplication. Division by

can be simplified by reframing the expression as multiplication by a new parameter, 1
σ .

Since Eq. (1) is difficult to evaluate directly in hardware, it is a good candidate for a

lookup table. A ROM indexed by Vmem can produce a suitable estimation of m∞, thus

removing the need for any of the arithmetic operations within the equation. A simple

mapping is required to convert the Vmem input to an address for the ROM. For the general

case:

addr(x) = (x−min(x)) · 2n − 1
min(x) + max(x)

(2)

where n is the number of bits of addressability in the lookup table. The implementation

requires a subtraction block and a multiplication by a constant to perform the linear trans-

form. The output of this multiplication should be set to saturate to avoid overflows when

addressing the table. This mapping can be shared for multiple lookup tables that use the

same input.

In a Virtex-II FPGA, lookup tables are chosen to utilize SelectRAM, or block RAM

within System Generator. A XC2V3000 FPGA contains 96 SelectRAM of which each

contains 18 kbits of configurable RAM. Each SelectRAM can be configured as 512 x 36-

bits, 1k x 18-bits, 2k x 9-bits, 4k x 4-bits, 8k x 2-bits, or 16k x 1-bit. Partial SelectRAMs

are wasted, so each lookup table can expand to fill the full RAM. In general, lookup tables

fit within the 1k x 18-bit configuration.

4.2.4 Arithmetic Performance

Generating optimal models often requires tradeoffs between pipeline depth and clock rate.

In general, a deeper pipeline enables high clock rates. In cases where the logic is fully

26

utilizing the pipeline, a deeper pipeline should translate to higher performance, up until the

point area on the FPGA becomes limited. In the case where the overall execution latency

is to be minimized independent of the number of clock cycles, the clock rate is no longer

the determinate of performance, but rather the timing delays through the pipeline. This

delay is calculated as the product of the clock period (T) and one plus the pipeline depth

(1 + d). This is a conservative estimate as it assumes that the operation uses the entirety

of the clock period prior to and after the internal pipeline.

In order to determine the influence of latency on operation throughput and area, each

operation was synthesized and mapped in the target Xilinx FPGA, and is shown in Figure 9.

Daisy chained logic blocks (arbitrary length chain of 6 blocks) were utilized to obtain average

performance results per operation. To mitigate any performance hit (by wire or logic delay)

caused by interfacing the inputs and outputs of the operations, double-buffered registers

were used to map directly to input and output pins. All operations were set at 14-bit 2s

complement signed numbers with the fixed point set at the 13th bit. This allows a range

of ±1 with approximately four decimal places of accuracy. Synthesis was performed with

the standard Xilinx Synthesis Technology (XST) built into ISE. Following place and route

and generation of a bitstream, area utilization was assessed and the critical path from the

log files was noted. The inverse of the critical path period was used as the peak clock

frequency and is shown in Figure 9, plot a. The area per operation was split into two

components, registers, or flip-flops, and look-up tables (LUTs). Each value plotted (see

Figure 9, plot b) is the average area per operation; the base overhead (from the double-

buffering of data converters) was subtracted from total utilization of registers and LUTs

and the result divided by six to obtain the average.

System Generator provides an optimization flag, Pipeline to Greatest Extent Possible

which was set for the adder operations but not set for the constant multiplier and stan-

dard multiplier tests. We did performance comparisons for each operation with this flag

set and unset and found negligible differences. When set, however, the tool restricts the

range of latencies that are programmable, in this case, limiting to at least three cycles for

multiplications and one cycle for additions.

27

250
200
150
100
50
0

N
um

be
r o

f F
Fs

543210
Cycles per Operation

200
150
100
50

N
um

be
r o

f L
U

Ts 200
150
100
50
0C

lo
ck

 F
re

q
(M

H
z)

543210
Cycles per Operation

50
40
30
20
10
0

O
p

D
el

ay
 (n

s)

a

b

c

d

 Adder Cmult Mult (logic) Mult (HW)

Figure 9: Area vs. Performance tradeoff. a, b) Performance and c, d) area utilization of
basic arithmetic operations. The benchmarks were performed with 14-bit operands and 14-
bit output. The inputs and outputs were double buffered and assigned to external pins on
the FPGA. All performance results are derived post synthesis and place & route. a) Clock
frequency is found as the maximum operating frequency when synthesized at for each cycle
latency and operation. b) The operation delay here is shown as the delay (in ns) for an
output to adjust following a change in an input. c, d) Area utilization is split between
flip-flops and lookup tables, whereby two of each make a slice. The enlarged markers
designate the proposed delays for each block to minimize the area vs. performance tradeoff.
These plots also demonstrate the performance and area advantage to using adders and
hardware embedded multipliers vs. constant multipliers and logic-based multipliers. When
throughput is to be maximized above all else, than adders and logic-based multipliers are
preferred.

28

Table 1 summarizes the results for optimizing to two different design goals (peak through-

put and minimum latency) post synthesis and place & route. Area is depicted as the number

of slices utilized, In the Virtex-II architecture, the logic fabric is broken up into CLBs, or

Configurable Logic Blocks. Essentially, each CLB can output 8 bits of information. Within

each CLB, there exists four slices and two tristate buffers. Each slice contains two 1-bit

registers, two 1-bit lookup tables (LUTs), and dedicated arithmetic carry chains and SOP

(sum of products) logic. Each LUT can be configured as one 4-bit addressable lookup

table, one 16-bit RAM, or 16-bit shift register. (the XC2V3000 has 3584 CLBs). These

slices may be partially utilized in this design but may be shared between multiple oper-

ations in a resource-constrained design. The slice count in table 1 shows the sum of all

fully and partially utilized slices. This data shows that performance can be optimized for

either throughput or latency depending upon the requirements, and that different design

choices will have a large impact on overall model performance. When the resources and

model architecture allow for a deep pipeline, each operation can be heavily pipelined maxi-

mizing throughput, where the frequency is the maximum operating frequency based on the

critical path period. When pipelining is not desired (see Single-Cycle Architecture), peak

performance is achieved with no cycle latency and minimal delay per operation. The block

option flag Pipeline to Greatest Extent Possible had no noticeable effect on performance

under these conditions and was disabled.

While we have not repeated this study for data widths greater than 14-bits, it is ex-

pected that similar trends will follow. Throughput performance is generally maximized

when using larger pipelines. It is expected that the optimal throughput would be found

when latency is set to higher values as the bit width increases. Area becomes especially con-

strained when data-paths become wider. The Resources Estimation Tool, included as part

of System Generator is an invaluable resource for the FPGA modeler when implementing

area-constrained designs [77].

We can utilize a formal approach for defining each operation as a discrete-time transfer

function based on the cycle latency from input to output. Based on the timing results

depicted in Figure 9, each operation can be represented by the following expressions, where

29

Table 1: Peak performance of operations
Target Max Throughput Min Latency

Adder

Depth 2 cycles 0 cycles
Frequency 211.2 MHz -

Delay 9.5 ns 2.9 ns
Area 14 slices 6 slices

CMult

Depth 4 cycles 0 cycles
Frequency 120.9 MHz -

Delay 33.1 ns 12.4 ns
Area 98 slices 59 slices

Mult

Depth 5 cycles 0 cycles
Frequency 169.7 MHz -

Delay 29.5 ns 10.5 ns
Area1 135 slices 0 slices

x, y are intermediate values, states, or parameters, α is a constant, and p is the stage in

the execution pipeline.

Add(x[p], y[p]) = x[p− 1] + y[p− 1]

Sub(x[p], y[p]) = x[p− 1]− y[p− 1]

CMult(k, x[p]) = k · x[p− 4]

Mult(x[p], y[p]) = x[p− 2] · y[p− 2]

(3)

These mappings redefine arithmetic operations for an FPGA implementation taking into

account operational delay. The multiplier delays are valid for bit widths 18 (the size of the

built in multipliers). Alternative mappings are defined for addition and subtraction based

on particular architecture and design constraints.

4.2.5 External Interfacing and Data Collection

FPGA models execute at extremely high throughputs. Roughly speaking the performance

level (defined as simulated time/execution time) is timestep multiplied by the number of

models and the FPGA clock frequency then divided by the pipeline depth. This number is

maximized only when the FPGA is completely utilized.

All of the models presented here are intended as examples and as such are not very

complex. Consequently, they all have on-chip execution times of less than one millisecond

30

(even if they were all placed on the chip simultaneously.) Thus, for the sake of convenience,

the data presented here is generally from emulation of the FPGA directly in Simulink.

4.3 The Base Architecture

4.3.1 FitzHugh-Nagumo

For ease of presentation we will present the architecture as an example implementation

of a simple neuron model. However, the ideas can be applied to any neuron model. The

FitzHugh–Nagumo model [32, 58] is a reduced, dimensionless representation of the Hodgkin

and Huxley model [40]. This model makes the following assumptions: 1) the activation gate

of the sodium channel has extremely fast kinetics and therefore reaches the steady state

value instantaneously, and 2) the potassium channel gate has similar, but reverse kinetics

(time-scale and gate characteristics) to the inactivating gate of the sodium channel. The

Hodgkin and Huxley equations centred around four ordinary differential equations of voltage

(Vmem), sodium activation (m), sodium inactivation (h), and potassium activation (n) can

be reduced to a simple potential state and a recovery state. When non-dimensionalized,

the following coupled differential equations emerge:

du

dt
= u− 1

3
u3 − w + I (4)

dw

dt
= ε (b0 + b1u− w) (5)

where u is the potential of the system and w is the recovery state. The parameters ε, b0,

and b1 modulate the shape of the spike and I is the input (in a dimensionless current) to

the system.

This model, despite being drastically simplified, has characteristics that make it stereo-

typical of neural circuit models. Each equation is a first-order ordinary differential equation

with Eq. (4) having a nonlinear term. The equations are coupled and cannot be solved

analytically. This system enables a demonstration of our techniques for FPGA model de-

velopment in an easy to understand example.

31

4.3.2 Generating the Data-Path

Differential equations of the standard form can be split into two terms: the differential

term or the time varying state variable, and the intermediate calculation, or equation for

the rate of change of the state variable. In Eq. (4) and Eq. (5), relative to the equal sign,

the left-hand side is the differential term and the right-hand side is denoted the intermediate

term. It is the intermediate term that will be converted into a data-path for calculation.

Defining the functions f and g from Eq. (4) and Eq. (5), respectively, as follows:

f(u,w) = u− 1
3
u3 − w + I

g(u, w) = ε (b0 + b1u− w)
(6)

makes clear the delineation between the state and the intermediate; the generated data-path

becomes independent of any particular numerical solving techniques. First- and higher-

order, fixed time step and variable time step solvers can be implemented around the data-

path without any modification to the design. Additionally this isolates the data-path from

any particular simulation or protocol requirements, such as starting, stopping, and resetting.

As will be described later in this chapter, this separated data-path provides a general case

for rapid mapping into various architectures including population and multicompartment

modeling.

4.3.3 ODE to Difference Equation

Each equation defined in the continuous time domain must be mapped to discrete time

for numerical analysis. Simulation on a general-purpose computer can utilize the following

discrete time representation by means of forward-Euler integration, where n is the iteration

step:

u[n + 1] = u[n] + ∆t

(
u[n]− 1

3
u[n]3 − w[n] + I

)
w[n + 1] = w[n] + ∆t · ε (b0 + b1u− w)

(7)

The above equations can readily be calculated in a general-purpose processor where

instructions are executed sequentially for each iteration of the loop. These equations are

32

not explicit with respect to processing in an FPGA, where each operation has timing re-

quirements that must be considered. Additionally, there is no explicit parallelism defined.

Utilizing the commutative and associative property of addition and subtraction, we reorder

the arithmetic operations to enable parallelism based on operation latency as described in

the expression tree in Figure 8.

f(u, w) =
[
((u− w) + I)−

(
(u · u) ·

(
1
3
u

))]
g(u, w) = [ε · ((b0 − w) + (b1 · u))]

(8)

In general, multiplications should be performed as early as possible in the calculation as

the latency is greatest. This will skew the resulting expression tree to force faster additions

and constant multiplications outside of the maximum latency path, when possible. To

formally define the above expressions in the operation space of the FPGA, we can use the

mappings defined in Eq. (3) to the redefined functions f and g and obtain:

f(u[p], w[p]) = SUB(ADD(SUB(u[p], w[p]), I[p]),MULT(MULT(u[p], w[p]),CMULT(1/3, u[p])))

g(u[p], w[p]) = MULT(ε[p],ADD(SUB(b0[p], w[p]),MULT(b1[p], u[p])))
(9)

Evaluating these mappings yields Eq. (10). This representation is useful to describe the

overall delay through the data-path, in this example, 6 cycles. Since there is a skew between

the shortest latency paths and the longest latency paths (from 1 cycle to 6 cycles), additional

pipeline registers can be added in the shorter delays without increasing the pipeline depth,

possibly enabling increased throughput with a faster clock rate. Additions and subtractions

are set to have no latency, but this can be readily changed by reindexing the parameters

and states by the additional delay.

f(u[p], w[p]) = ((u[p− 1]− w[p− 1]) + I[p− 1])−
(

(u[p− 6] · u[p− 6]) ·
(

1
3
u[p− 4]

))
g(u[p], w[p]) = ε[p− 3] · ((b0[p− 3]− w[p− 3]) + (b1[p− 6] · u[p− 6]))

(10)

These equations define the required cycle latency for the input to reach the output

synchronously. Once implemented, this data-path can be used for well-performing imple-

mentations of single-compartment models, multi-compartment models, population models,

etc. The data-path can be constructed identically in all of the above cases. Figure 10 shows

33

the System Generator data-path corresponding to Eq. (10). For these different architec-

tures, only the implementation of the state variables will change as is expounded upon in

the following sections.

4.4 Single Model, Single Unit Case

4.4.1 Multi-cycle Architecture

The general model simulator will execute a single version of a model according to a set

protocol. The modeler will often run simulations to manually tune parameters, trying to

replicate a particular behavior. Sometimes this model will have particular performance re-

quirements such as real-time execution. For these cases, we developed a general architecture

for running a series of differential equations with arbitrary delay as a multi-cycle processor.

We employed two synchronous clock domains, one providing a slower outer loop to interface

with the outside world and a faster inner loop for the data-path processing. In this way, it

is very much like a multi-cycle computer architecture, overclocking the internal pipeline in

a hidden fashion from the outside.

The original equations for the state variables, u and w can be expressed as difference

equations around the functions f and g. We use forward-Euler integration as a numerical

solver due to its ease of implementation. Additionally, numerical accuracy can be improved

with smaller step sizes, a reasonable tradeoff given the high performance of an FPGA.

This architecture is easily extendable to higher order ODE solvers including Runga-Kutta,

Predictor-Corrector, or even variable time-step solvers if desired.

du

dt
= f(u, w) → u[n + 1] = u[n] + ∆t · f(u[n], w[n])

dw

dt
= g(u, w) → w[n + 1] = w[n] + ∆t · g(u[n], w[n])

(11)

Eq. (11) representing the state calculation can be combined with the data-path formu-

lation in Eq. (10) to generate the full expression for the model. The data-path needs to

be modified to include the time-step multiplication adding another 2 to 4 delays to the

data-path. The total delay for the data-path is increased to 7 clock cycles. The translation

of the state equation into hardware is only a single register clocked at the slower clock rate.

34

1

f(u[p],w[p])

xladdsub

z-1
a-b

a

b

a

Sub1

xladdsub

z-1
a-b

a

b

a

Sub

xlmult

z-2

a

b

(ab)

Mult2

xlmult

z-2

a

b

(ab)

Mult1

xlmult

z-2

a

b

(ab)

Mult

xladdsub

z-1
a+b

a

b

a

Add

0.33349609375

1 over 3

3

I

2

w[p]

1

u[p]

Fix_12_8

Fix_12_8

Fix_12_7

UFix_8_6

Fix_11_7

UFix_11_8

Fix_11_9

Fix_12_8

Fix_10_7

UFix_11_11

(a) f(u, w) block diagram

1

g(u[p],w[p])

xladdsub

z-1
a-b

a

b

a

Sub xlmult

z-2

a

b

(ab)

Mult1xlmult

z-2

a

b

(ab)

Mult

xladdsub

z-1
a+b

a

b

a

Add

5

u[p]

4

e

3

b1

2

w[p]

1

b0
Fix_11_8

Fix_17_13

Fix_12_8

UFix_8_5

Fix_12_8

Fix_9_8

UFix_8_5

UFix_8_7Fix_12_8

(b) g(u, w) block diagram

Figure 10: Simulink block diagram of intermediate calculations a) f(u, w) and b) g(u, w).
Each operation is identified by the label on the block. All fixed-point data types are labeled
on the wires interconnecting the blocks, where the first portion (Fix/UFix) defines the
value to be signed or unsigned, respectively. The second term is the number of total bits in
the representation and the last term defines the number of fractional bits, or the number
of bits to the left of the decimal place. Data ports for the subsystem are the numbered
oval blocks, where the inputs are parameters or states and the output is the intermediate
calculation. Delays through the system are expressed in the z domain where the superscript
is the latency in cycles from output back to input. Constants are shown with additional
significant digits to illustrate the affect of quanitization.

35

Eq. (12) are the combined data-path and state expression where n is the iteration of the

outer, slower clock and p is the iteration of the pipeline, or faster clock.

u[n + 1, p] = u[n, p] + ∆t ·
[

((u[n, p− 2]− w[n, p− 2]) + I[n, p− 2])− · · ·(
(u[n, p− 7] · u[n, p− 7]) ·

(
1
3
u[n, p− 5]

))]
w[n + 1, p] = w[n, p] + ∆t ·

[
ε[n, p− 3] · ((b0[n, p− 3]− w[n, p− 3]) + · · ·

(b1[n, p− 6] · u[n, p− 6]))
]

(12)

In this architecture, a simplification emerges enabled by the slower clocked state. All

execution paths within the data-path must settle by the time the next value is clocked into

the state register. Therefore, for paths of fewer cycles than the critical path (in this case,

the path with the longest latency), there is no difference if the inputs arrive earlier than

required. Therefore, all paths can receive their input on the previous outer cycle and latch

the new value at following outer cycle. All timing requirements of the pipeline with respect

to insertion delay in the pipeline become unnecessary. The new equations follow from the

simplification:

u[n + 1] = u[n] + ∆t ·
[
((u[n]− w[n]) + I[n])−

(
(u[n] · u[n]) ·

(
1
3
u[n]

))]
w[n + 1] = w[n] + ∆t · [ε · ((bo[n]− w[n]) + (b1[n] · u[n]))]

(13)

The forward-Euler method is relatively simple to implement within System Generator,

taking only four blocks as shown in Figure 11(a). The state at each iteration is stored in

a single register clocked at the output rate. We use a combination of an up sample and

down sample block (the clock multiplier/divider is set to the maximum delay through the

data-path, including any calculation within the state). The up sample block is configured

to copy the value from each input period to all corresponding output periods. This is not

necessary for hardware generation, i.e. it does not translate directly to hardware, but does

allow the software to verify correct clocking of data through the system. The down sample

block is configured to copy the last frame of the input to the output, which in hardware is

a register clocked at the output rate.

36

2

u[p]

1

u[n]

0.1015625

ts
xlusamp 7

Up Sample

xlmult

z-2

a

b

(ab)

Mult

xldsamp 7
z-1

Down Sample

xladdsuba+b

a

b

a

Add

1

f(u,w)
Fix_10_9

Fix_12_8

Fix_12_8

Fix_10_7

UFix_8_8

Fix_12_8

(a) Mult-cycle state approach

1

u[n]

0.1015625

ts
xlregisterz-1d q

Register

xlmult
a

b
(ab)

Mult

xladdsuba+b

a

b

a

Add

1

f(u,w)
Fix_10_9

Fix_12_8

Fix_10_7

UFix_8_8 Fix_12_8

(b) Single-cycle state approach

Figure 11: Simulink block diagram of state calculations for single unit models. a) The
multi-cycle approach to single unit forward-Euler integration. The intermediate calculation
is scaled by the time constant and added to the previous state. The output of the state,
u[n] is clocked once for every seven cycles of u[p]. The Up Sample block is set to copy the
slower clocked samples across all seven fast clock cycles while the Down Sample block is
implemented as a register at the slower rate. b) By removing the delays within the pipeline,
up and down sampling becomes unnecessary, requiring only a register to store state between
iterations. There is only one clock rate in this scenario.

37

The remainder of the state consists of a multiplier block at the output of the data-path to

scale the function by the time step and an adder to add to the previous value. The previous

value is at the output of the up sample block. More complex integration algorithms can be

implemented as an extension to this base case. The multiplication by the time step can also

be incorporated within the data-path depending on the particular integration algorithm

possibly saving a multiplication step. This can be shown for the function g(u, w) where

the constant multiplication of ε can be substituted by the constant multiplication of the

product ε ·∆t. This is only possible in the trivial case of Euler integration with fixed step

sizes.

4.4.2 Single-cycle Architecture

The multi-cycle architecture enables a reduction in state registers while still utilizing a

fully-pipelined data-path. It provides a means of integrating a pipeline of arbitrary depth

into an integration state subsystem producing only one output per time step. There are

three drawbacks with this approach: wasted area, reduced performance, and high power

consumption.

First, area is not utilized efficiently as pipeline delays within the intermediate calcula-

tions use registers that could be used for additional logic or extra data storage. Each delay

requires a number of registers equal to the bit width of that calculation. Significant area

savings can be realized by removing those extra delays.

Second, performance is reduced for two reasons: 1) Extra delays contribute an additional

time delay in the form of a setup and hold time. The register setup time, or the minimum

amount of delay between the data becoming stable prior to the edge of the clock signal, for

an XC2V3000 speed grade −4 FPGA is 370 ps. The hold time, or the minimum duration

following the clock edge for the data to be ready to read is 90 ps. The sum of those

values constitutes a window around the clock edge where data must be stable and is wasted

within the sample period. Long pipelines can accumulate this 460 ps dead-time in the

period for each delay in the path. 2) The overall delay through the pipeline is equal

to the product of the depth and cycle period. Ignoring setup and hold times, the delay

38

through the pipeline is ideally the sum of all the arithmetic combinatorial logic delays.

If the total logic can be equally distributed (delay-wise) between an arbitrary number of

registers, then latency/throughput is independent from the pipeline depth. Practically, the

period is a function of the longest combinatorial path between registers. Therefore, shorter

combinational paths must execute within larger clock periods, reducing efficiency. As the

number of pipeline registers increase, the more difficult it is to maintain symmetry between

combinatorial path delays.

Third, power consumption and clock frequency are directly proportional for a given

model design. The power consumption of a device is not generally an issue for the modeler,

but does constrain the design of the device itself; the peak clock frequency of an FPGA

is partially constrained by the limits of heat dissipation as power consumption increases.

Achieving the same or increased throughput at a slower clock rate is generally preferred.

Therefore, to utilize minimal area and power while achieving peak performance requires

the reduction of the pipeline depth to the minimum achievable. The majority of neural

models can be modified to execute in a single cycle per time step iteration by changing

all latencies to zero. (Note that one register always remains due to integration, resulting

in the “single-cycle” designation.) For multiplier blocks, the “Pipeline to Greatest Extent

Possible” flag must be unchecked. This change can be made to all arithmetic blocks. Then

the up-sample and down-sample blocks can be changed to a single register to complete the

single-cycle design approach.

The results of a comparison between the two design approaches are shown in Table 2

with the area utilization and performance results determined post synthesis and place &

route targeting an XC2V3000-4fg676 FPGA. The top-level design depicted Figure 12 was

used for testing and synthesizing the single-cycle and multi-cycle model. In the single-cycle

version, the entire data-path is executed within each clock cycle and requires only 17 ns to

complete. When delays are distributed in the multi-cycle, a total of 7 for the longest paths,

the latency is tripled. The maximum clock frequency is increased by almost 2.5 times,

not enough to compensate for the additional cycles required per iteration. The maximum

frequency supported by the XtremeDSP-II Development Board is 120 MHz capping the

39

b0

w[p]

b1

e

u[p]

g(u[p],w[p])

g(u,w)

u[p]

w[p]

I

f(u[p],w[p])

f(u,w)

0.1015625

e

g(u,w)

w[n]

w[p]

dwdt

f(u,w)

u[n]

u[p]

dudt

1.5

b1

k =2

b0

Scope

xlcastforce

Reinterpret1

xlcastforce

Reinterpret

xlregisterz-1d q

Register3

xlregisterz-1d q

Register2

xlregisterz-1d q

Register1

xlregisterz-1d q

Register

1.5

I

DAC2

DAC1

System
Generator

UFix_8_6

Fix_10_7

UFix_8_5

UFix_8_5

UFix_8_7

Fix_9_8

Fix_12_8

Fix_12_8

double

u

double

w

Fix_12_11

Fix_12_11

Fix_12_8 Fix_12_8

Fix_12_8 Fix_12_8

Fix_12_8

Fix_12_8

Figure 12: Top-level view of the FitzHugh–Nagumo model. Parameters are defined in
Xilinx constant blocks (on the left) moving into the intermediate calculation. The states
are evaluated next, with feedback paths to the inputs of the intermediate calculations. The
outputs, u and w are double-buffered for performance and scaled for analog output via the
on-board data converters (on the right).

Table 2: Single model architecture design comparison.

Frequency Output Frequency Latency Area
(MHz) (MHz) (ns) (Slices)

Single-Cycle 58.9 58.9 17.0 94
Multi-Cycle 143.6 20.5 48.7 143

peak multi-cycle model throughput.

In this example, the single-cycle model enables a 187% improvement in performance with

a 34% reduction in area over the multi-cycle model. In general, the single-cycle method is

preferred over the multi-cycle method when all the blocks within the data-path can be set

to zero latency. When that is not the case, the multi-cycle method is a suitable fallback

technique.

4.5 Multiple Model, Single Unit Case

Deep pipelines allow for multiple simultaneous processes executing within the data-path,

where the number of processes equals the depth of the pipeline. In other words, if the

data-path requires a latency of 10 cycles until the first output appears, 10 simultaneous

40

models can be executed without a loss of performance. The data-path would produce

the 10 models interleaved at the inner, faster clock rate. In contrast, within the single-

model, multi-cycle architecture, the pipeline produces an output at the outer, slower clock

frequency. Ultimately, the throughput of each model does not change, each output for the

same model will be at the slower frequency, but the aggregate bandwidth of the system will

substantially improve.

Two scenarios are common candidates for a multiple model, single unit simulation: 1)

There are a set number of models of interest to simulate, for example, all the neurons in a

particular nucleus or circuit or 2) when the number of simultaneous simulations are flexible

and more is better, such as in automated parameter searching or population modeling. The

first scenario applies more constraints to the model and produces a deterministic output.

Only the available area on the FPGA limits the second scenario. Within these architectures,

a change in the number of models simulated requires a straightforward modification to the

model design.

4.5.1 Pipelining the Data-path

The structure of the arithmetic operations in the data-path in the multiple model case is

identical to that of the single model case. The differences lie in distributing latencies and

managing the parameters in the pipeline.

Latencies, or additional clock cycle delays, are inserted to maximize throughput of the

system. As the longest combinatorial path between any two registers is the sole determinate

of clock frequency and therefore model throughput, care must be taken to distribute the

delay as uniform as possible throughout the pipeline. The following algorithm describes an

approach to distributing the latency within the data-path:

1. The target number of simultaneous models will set the depth of the subsequent pipeline

generated.

2. The longest, weighted arithmetic path is isolated and delays are judiciously added

such that the total delay does not exceed the depth of the pipeline. The longest,

weighted arithmetic path is defined as starting from a single endpoint (parameter of

41

the system or a state) and terminating with the completion of the differential of the

state.

(a) Delays are added in an initial pass providing a ratio of 4:2:1 cycles (see Eq. (3))

of latency to constant multipliers, hardware multipliers, and additions/subtrac-

tions, respectively. Non-hardware embedded multipliers have similar delay re-

quirements to constant multipliers.

(b) Add an additional delay for each operand of a multiplier that is greater than

18-bits.

(c) Tables, both ROM (read-only memory) and single- and multi-port RAM (random

access memory) blocks require one unit of delay regardless of bit-width or ad-

dressability when fit into one SelectRAM. Additional glue logic is required when

more then one SelectRAM is required which could benefit from an additional

delay.

(d) When the number of delays in the pipeline exceeds the number of simultaneous

models, remove delays evenly throughout the path until the number of delays

equals the number of models.

3. Repeat on all other paths taking care to never use more latency cycles then the critical

path. Adding extra delays such that all paths are balanced are not necessary and will

waste FPGA resources.

This algorithm post-processes the expression trees making up the data-path solving the

intermediate calculation, as defined above, with the timing information required to interface

with the state solvers and parameter subsystems. The leaves of these expression trees are

the parameters and the state inputs. Each leaf has an insertion delay associated with

it defined as the sum of the delays along the path from the leaf to the root of the tree,

including any calculation that may occur within the state solver (ex. multiplication by the

time constant). For example, in Figure 8(b), k, a, b, c, d, e, and f , are mapped to k[p− 5],

a[p−3], b[p−4], c[p−4], d[p−4], e[p−5], and f [p−4], respectively. Synchronization of the

42

paths within the expression trees is therefore accomplished by providing delayed version of

states and parameters to the leaves consistent with the insertion delay of the particular leaf

node.

4.5.2 Pipelining the States

Executing n models simultaneously requires the continuous storage of n sets of information

within a pipeline that is n stages deep. In previous work [37], all information was stored

within the pipeline via delay blocks, requiring careful synchronization of the expressions.

States were implemented as a simple delay block with n cycles of latency. This architecture

recognizes the states and parameters as forming a basis set of model information. All

intermediates can be shown to be a function of the states and parameters. Therefore, only

the states must be explicitly stored within each time step.

The delays of the previous work are replaced with a chain of n registers. This has two

benefits: First, each register can now contain an initial value for the state that can be unique

for each model simulated. By convention, the tail of the chain (last output) contains the

initial state of the first model and the head register of the chain stores the state for the last

model. Second, the outputs of the n registers represent the set of all delayed versions of the

state. These outputs are now accessible to be routed back into the expression trees at the

delay required for the particular operation. For example, if a change on a particular state

leaf of the expression tree has an insertion delay of 6 cycles, then the input of that state

should be tapped 6 registers deep in the state pipeline. This allows the state information

to follow cycle by cycle the intermediate logic within the expression tree. This algorithm

applied to the FitzHugh–Nagumo model is shown in Figure 13.

4.5.3 Shared vs. Unique Parameters

When executing a set of models, parameters can be either static across all models or ar-

bitrarily varying across all models. In the simple case where a parameter is static, it can

be represented as a System Generator constant block and has no particular timing require-

ments. Unique parameters per model can readily be exploited through the use of a circular

buffer of length n counting through each parameter per cycle. These parameters must be

43

u state

w state

u intermediate

w intermediate

Pipeline Stage

012345678910

du/dt =f(u,w)= ((u-w)+I)-1/3*u^3

dw/dt =g(u,w)= e*((b0-w)+b1*u)

2

g(u[n,p-2],w[n,p-2])

1

f(u[n,p-2],w[n,p-2])

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1z-1 z-1

xladdsuba+b

a

b

a

w integrate

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1z-1 z-1

xladdsuba+b

a

b

a

u integrate

0.1015625

ts1

0.1015625

ts

xladdsub

z-1
a-b

a

b

a

Sub2

xladdsub

z-1
a-b

a

b

a

Sub1

xladdsub

z-1
a-b

a

b

a

Sub

xlmult

z-2

a

b
(ab)

Mult6

xlmult

z-2

a

b
(ab)

Mult5

xlmult

z-2

a

b
(ab)

Mult4

xlmult

z-2

a

b
(ab)

Mult3

xlmult

z-2

a

b
(ab)

Mult2

xlmult

z-2

a

b
(ab)

Mult1

xlmult

z-2

a

b
(ab)

Mult

xladdsub

z-1
a+b

a

b

a

Add2

xladdsub

z-1
a+b

a

b

a

Add

.333496094

1 over 3

4

e[n,p-4]

3

b1[n,p-7]

2

b0[n,p-6]

1

I[n,p-4]

u[n,p]

u[n+1,p]

w[n,p]

w[n+1,p]

Figure 13: Simulink block diagram of a multiple-unit model. Ten iterations of the
FitzHugh-Nagumo model are run simultaneously through the constructed 10 stage pipeline.
All blocks are depicted to be in scale with respect to cycle latency. Since the data path
requires only 7 cycles per iteration, the state register chain must be at least 7 stages within
this architecture. It was chosen to be 10 for this example.

synchronously available relative to the target model at the correct insertion point within

the model.

Given an input I, delayed by d cycles, as represented in the difference equation as

I[p− d], within a pipeline of depth n, the circular buffer must be initiated with parameters

forward rotated by n− d steps in order to maintain synchronization. Therefore, after n− d

increments of the pipeline, the parameter I will be inserted into the pipeline such that d

cycles later, the output for that model will appear at the root of the expression tree.

In System Generator, this circular buffer is implemented as a count limited counter

ranging from 0 to n− 1 addressing a ROM with the parameter values pre-initialized. The

pre-rotation of the circular buffer can be accomplished in two ways, either through a change

in the initial value of the counter or by a rotation in the initial values in the ROM. The former

method requires a dedicated counter per unique parameter set in the model. Therefore, the

44

Multicycle Model Output

Figure 14: Output traces from a cycle-accurate, fixed-point simulation within Simulink of
10 concurrently executing Fitzhugh-Nagumo models. The traces were generated from the
model shown in Figure 13. All parameters were kept constant with the exception of I, which
was varied from 0.99 to 2.97 with a step of 0.22 illustrated from top trace to bottom trace.
The first 3000 points are shown. Note that this simulation would execute in approximately
0.25 ms on the FPGA, and 50 such designs could run concurrently for a total of 500 models.

latter method is preferred as a rotation in the ROM requires no extra resources allowing

one counter to be shared for all parameter tables. This approach was used for the “current”

input I, for the traces illustrated in Figure 14.

The ROM macro in System Generator becomes synthesized as a synchronous memory

such that the output is registered. Rotating the buffer by n− d− 1 indices compensates for

this one-cycle latency. When n is relatively small (n < 15), it is advisable to use distributed

RAM resources when available. In distributed RAM, each slice can store up to 32-bits of

data. When n is large or when logic resources are limited, these parameter tables can be

kept in block RAM. The decision to use block RAM or distributed RAM largely depends

on the particular limiting resource constraint in a model.

45

4.6 Coupled, Multiple Unit Case

Coupled, multiple unit models are a straightforward extension to the isolated multiple

model, single unit case. Coupling can occur between compartments in a morphologically

complex neuron model, as electrical connection between neurons in the form of gap junc-

tions, or as chemical connections, or synapses within a population. This case deals exclu-

sively with homogenous populations of neurons or neural compartments with some form of

coupling or real-time interaction. A particular example of a ten-compartment motoneuron

designed in this manner is described in previous work within this laboratory [88].

A coupling is defined as a state variable from one unit acting as a term or factor of an

intermediate calculation of a different unit. A unit can be coupled to all other units of a

model in the case of a fully interconnected population model. In contrast, a unit might only

be coupled to its neighbours in the case of a linear multi-compartment chain. These two

cases are considered the general cases of unit coupling, where there is regularity between

the connections.

When modeling non-general cases where few connections are created, it is often simpler

to map the scenario back into a general case when possible. This may not turn out to

be the most optimal implementation. For example, in a model of 20 neurons such that

each neuron is coupled to another to form pairs of half-center oscillators, each neuron will

take input from only one other neuron and output to only one neuron. If adjacent neurons

within the pipeline are coupled, then odd neurons will couple to the next neuron and even

neurons will couple to the previous neuron. The following describes two such approaches

to generating this coupling logic.

The first approach is a literal conversion of the coupling algorithm into System Generator

blocks. An even-odd test can be accomplished by using the LSB (least significant bit) of the

parameter set address counter as a select line into a 2:1 multiplexer. The counter will go

from 0 to 19 in this example, toggling the LSB at each cycle. The inputs of the multiplexer

will be state from the adjacent unit. Following the convention where the first model is at the

tail of the register chain, when the multiplexer select line is 0, the unit is odd and requires

the state from the following unit. The state used will be tapped from the state register

46

chain at the point of the insertion delay of the leaf node plus one. When the multiplexer

select line is one, then the unit is even, and the previous units state is used, which will be

tapped at the insertion delay minus one. Any parameters acting on the coupled state can

be processed as usual with a 20 element ROM.

The second approach generalizes the coupling and removes the multiplexer from the

implementation. This approach provides for two inputs to each model, one from the previous

unit and one from the next unit. Very often neural models have an intensity parameter in

the form of a maximal current or conductance. These parameters can be set to zero for the

cases where there is no coupling and the proper value when there is coupling. Two parameter

tables will be required, one for the even units and one for the odd. This approach, while

wasteful in resources, simplifies design as only the standard arithmetic blocks are required.

Models requiring full interconnection between all units are reasonable and straightfor-

ward to design but are generally resource constraining. In the case of synapses for a fully

interconnected population of n neurons, given recurrent connections, the logic requirements

include n2 synapses with n implementations of the synaptic mechanism including at least n

state solvers, n parameter tables of n depth hold the synaptic weights, and n−1 adders in a

tree with log2(n) levels to sum the synaptic input. As n becomes larger, the synapses take

on an ever-increasing percentage of FPGA resources, quickly limiting the scale of popula-

tion models. Future work is needed to consider alternative design approaches for increasing

the size of neural population models.

4.7 Discussion

This chapter serves to provide the methods for implementing stereotypical neural circuit

model elements in an FPGA. While designing a model in itself is straightforward, there are

some key limitations and areas of future work to make it as easy to use as a software sim-

ulation. This discussion documents the challenges of converting floating-point calculations

to fixed-point representations, interfacing the model to external systems, and the limits of

scalability within an FPGA.

47

4.7.1 Precision Determination

System Generator provides no means for handling real, or floating-point numbers. Instead,

all parameters, states, and intermediate calculations utilize fixed-point numbers, defined by

a sign, number of total bits, and number of fractional bits. Before executing in hardware, it

is necessary to set each operation to have sufficient precision to avoid overflows, underflows,

or functional mismatches due to quantization errors. Excessive precision should be avoided

as area utilization and performance will suffer.

Optimal precision for all operations is a difficult if not an impossible goal and is still an

active area of research and is revisted again in later chapters. Ignoring an optimal result,

the number of bits required to guarantee full precision continuously increases after each

operation. (Full precision here means precision based on the argument precisions rather

than the arguments themselves). Full precision for a multiplication, as implemented in

System Generator, is the sum of the number of bits of each operand. An addition has full

precision when the number of integer bits of the output is the maximum of the integer bits

of each operand. Similarly, the number of fractional bits of the output is the maximum of

the number of fractional bits of each operand. This is a worst-case, pessimistic approach

to determining precision through the pipeline by assuming that all the full range of values

are valid for each operation and that maximum fractional precision is always necessary. As

an example, a 17-bit multiply (17-bit unsigned or 18-bit signed inputs) requires just one

embedded multiplier. A 34-bit multiply requires 4 embedded multipliers to calculate the

partial products and adders to sum the two partial products. When moving to a 51-bit

multiplier, the resources jump to 9 embedded multipliers [77]. Excess precision will require

additional latency to maintain the same throughput and waste logic resources that could

be used for additional parallel operations.

We have found several techniques to reduce the required precision but have yet to

report on a general algorithm for determining the optimal precision. First, we can reduce

the number of integer bits per operation by bounding the parameters and states within

practical ranges. For example, for a particular neuron firing, the membrane potential might

range from -70.00 mV to 30.00 mV requiring one sign bit, seven integer bits, and a number

48

Table 3: Calculations to determine range values per operation type. Division assumes that
the range of the inputs does not cross zero.

R′ = R1 ©R2 High Range Value (H ′) Low Range Value (L′)
‘+’ H1 + H2 L1 + L2

‘-’ max(H1 − L2, L1 −H2) min(H1 − L2, L1 −H2)
‘×’ max(L1 · L2, L1 ·H2,H1 · L2,H1 ·H2) min(L1 · L2, L1 ·H2,H1 · L2,H1 ·H2)
‘/’ max(L1/L2, L1/H2,H1/L2,H1/H2) min(L1/L2, L1/H2,H1/L2,H1/H2)

of fractional bits to achieve the desired resolution. Those signed seven integer bits allow

a range of -127 to 126. Full precision uses the full range of the fixed-point representation,

but in reality, only the usable range is required. Given S denoting a signed number (vs.

an unsigned, positive only value) and Ri = (Li,Hi), where Li and Hi are the low and high

values of the usable range of the i-th leaf node. When Li and Hi are of different signs or

both negative, the number is signed and requires an extra bit to denote the sign. Formally,

the sign, Si and the number of integer bits, Zi, given a range Ri is determined by:

Si =



1 Li < 0

1 Hi < 0

0 otherwise

(14)

Zi =


blog2(maxint) + 1c maxint > 0 (maxint = max (b|Li|c, b|Hi|c))

0 otherwise
(15)

Using the range notation, Ri, instead of the full precision to represent each value, the

number of integer bits, Zi, required throughout the pipeline is generally reduced. We

recalculate these range values at the output of each operation using the expressions in

Table 3. Without further a priori knowledge of the range of intermediate values within

the pipeline, this provides an approach to determining the number of integer bits required

throughout the data-path, avoiding any overflow conditions.

Underflow conditions are more difficult to optimize around. An underflow occurs when

the fraction precision of an output of an operation is truncated from full precision such that

49

a small number is represented as zero. Underflows may or may not cause any discrepancies

in a simulation, depending on where in the data path they occur. In the case of a Hodgkin–

Huxley style potassium channel with n4 kinetics, given an activating gate with f fractional

bits of precision, the output via two cascading multiplications will require 4 · f fractional

bits when utilizing full precision. Realistically, fourth-order kinetics requires no additional

precision over a first-order expression, in which case an underflow would be acceptable. An

adder tree combine all currents calculated per channel would also be a possible candidate

for allowing underflows as very small currents are diminished by larger transients or leakage

paths. Other calculations, such as scaling by the time step when performing integration,

must be free from underflows to maintain functional behaviors.

The remaining class of errors, quantization errors, is substantially more difficult to

reason through intuitively and require a more rigorous approach. This can be through error

analysis techniques such as propagating relative and absolute error through the data-path.

The inherent feedback in the system via the integration steps makes this analysis exceedingly

difficult. Alternatively, simulations can help isolate the differences between floating- and

fixed-point representations of the model. There is still considerable work to be done in

investigating ways of analyzing fixed-point neural models to minimize quantization error.

4.7.2 External Interfacing

By utilizing the techniques described in this text, a modeler can readily implement a cus-

tom data-path on an FPGA. A challenge still remains in controlling and monitoring the

simulations, capabilities common in publicly available simulations environments. System

Generator provides limited capabilities for interfacing via a co-simulation option. In this

mode, dedicated input and output ports are accessible to the Simulink environment via a

hardware/software wrapper created by System Generator. In order for states and intermedi-

ates to be monitored, System Generator must retain cycle-level control over the simulation,

in effect, single-stepping through the simulation to access each value. No buffering is done

on-board, greatly limiting the performance of the system.

Alternatively, the FPGA hardware can be executed via a free-running clock. When in

50

this mode, the FPGA will be at full performance levels, but the software will not be able to

keep up with the throughput requirements, dropping data regularly. When the FPGA de-

velopment board contains analog data converters, inputs/outputs can be transferred to the

FPGA at full speed. The slower, register based access to the FPGA via System Generator

can be used for modifying parameters on the fly.

Future work is needed to maximize digital transfer rates to and from FPGA models. In

the case of our development board, the Virtex-II XtremeDSP II, data must be buffered and

transferred via DMA (direct memory access) over the PCI (peripheral component intercon-

nect) interface. In other development boards where a processor is accessible either in the

fabric (PowerPC hard core, MicroBlaze soft core, etc.) or external to the FPGA, additional

interfaces become reasonable, including USB, Firewire (IEEE 1394), Ethernet, IDE, etc.

These are possibilities that could potentially be exploited with future hardware/software

co-development work.

4.7.3 FPGA Constraints

Software and hardware implementations of neural models deal with increased complexity

in different ways. In a traditional software model, an increase in complexity causes a pro-

portional increase in processing time and memory usage. On an FPGA, an increase in

complexity will not cause an increase in processing time if the following conditions are met:

The addition to the model can be processed in parallel to the rest of the model (e.g. adding

another ion channel) and there are sufficient logic resources available to implement the ad-

ditional complexity. When there are not sufficient resources available for additional parallel

data-paths, existing data-paths must be modified to add additional pipeline stages. In this

case, processing time and memory usage scales linearly much like software implementations.

Limitations arise when the current FPGA cannot support an increase in the depth of the

pipeline. While increasing the depth does not increase the area requirements of the data-

paths, it does linearly increase but the number of states, thereby register-constraining the

design. When all models are interconnected, for each additional model simulated, additional

logic is required allowing for full integration of that model into the system. This can

51

quickly grow the requirements of the model, limiting the number of simultaneously simulated

models. In general, tens to potentially a hundred models are possible to implement using the

described techniques in this chapter. However, future work is needed to find the techniques

to enable hundreds to thousands of simultaneous systems to run.

52

CHAPTER V

ASSISTED ENGINEERED MODEL CONSTRUCTION

Preface:

The previous chapter illustrated a generic methodology for constructing neural models.

We termed this a manual engineered approach as it described an unassisted procedure for

the modeler to design for an FPGA. While this did enable the eventual construction of their

neural models, the process was often mired by difficulties. This process was time consuming,

error-prone, and made for difficulty when interfacing to a computer. The objective of this

work was to design a methodology for rapid construction of relatively complex models.

The model chosen as a test-bed was a 40 neuron population emulating the Pre-Bötzinger

Complex [18, 19]. This work was a collaboration with Michael S. Reid where my relevant

contribution is the assisted-flow design methodology. The methodology was utilized for

the construction of the model required by Michael’s research. It should be noted that the

description of the model in this chapter was written primarily be Michael.

There were three primary goals for the research highlighted in this chapter. First, we

wanted to create a semi-automated methodology optimized for models with a high degree

of regularity. These models include population and compartmental models. Next, based on

our assumption that the majority of model modifications following initial development was

of two categories, the alteration of the model size or the tuning of a parameter, we sought a

flexible design methodology requiring minimal changes to the model. Finally, we intended

to build an interface for the purpose of logging data with minimal or no performance impact.

For the first goal, we built an infrastructure consisting of a database of model parameters

and specifics, along with a series of tools to aid in the construction of those portions of

the model that are not model-specific. These structures within the model were clearly

delineated by the work in the previous chapter. The second goal was intended to aid the

modification of models once they were built. This was successfully implemented through

53

two enhancements, a memory-mapped parameter tuning system for adjusting parameter

values on-the-fly and a series of techniques and methodologies incorporated into user tools

capable of altering the number of repetitive structures implemented, e.g. the number of

neurons in a population. Finally, we explored means to transfer data at high-rates from the

FPGA for processing on a computer. We settled on an auto-generated system to selectively

inspect any predetermined quantity in the model and route that signal to a high-speed

analog output. We settled on this approach since a high-performance digital interface was

exceedingly difficult to implement.

Overall, this approach was highly successful as we were able to build a 40 neuron model

with 1600 synapses and over 2000 parameters. Despite this success, the implementation

of this model was very challenging. For example, timing and precision errors consistently

stymied the design process. We found that partial automation tools could never fully prevent

user mistakes or oversight, which ultimately cause timing errors to emerge. Additionally,

as this model was particularly stiff, we gained considerable insight through the process

of precision determination. In particular, we learned that precision within approximation

functions was often the critical factor in determining whether or not a model would emulate

the full range of output behaviors. The considerable difficulty still faced by modelers when

implementing their own simulations provided the impetus to continue to work towards a

fully automated design methodology, as described in the next chapter.

54

5.1 Introduction

FPGAs have been previously shown to be a high-performance platform for neural-modeling

applications [37, 88, 55, 81]. Given this fact, our recent research has been focused on

addressing and reducing the development time. FPGA implementation is not simply an

enumeration of the model’s equations in a programming language. Instead, a variety of

transformations must be made to work within the confines of the FPGA architecture.

These transformations include numerical-precision conversion, operation substitutions, and

resource-constrained expression folding. Although these architectural confines can be over-

come, they nonetheless frustrate and extend the design process and often introduce errors

throughout the design flow.

In this chapter, we present a new process utilizing auto-generated scripts and run-time

interaction tools to further enhance the use of FPGAs as neural-modeling platforms. This

process is demonstrated via the construction of a fully interconnected population [18, 19] of

pre-Bötzinger complex (PBC) neuron models, each containing three Hodgkin–Huxley (HH)

conductances [40].

5.2 Background

The implementation of a model, using conventional software modeling tools or an FPGA,

can be divided into a structural design phase and a parameter tuning phase. For mechanistic

models, the structural design phase consists of building components (ion channels, synapses,

etc.) that are then combined into a neural-membrane model [43, 39]. This process is

repeated, generating multiple neurons and synapses in a population model. Morphological

models are structurally grown by linking multiple adjacent membrane models via coupling

conductances [72, 85].

Once constructed, the resulting model must be tuned for the desired outputs. Parameter

sets can be found by automated search tools or by hand tuning. Often, experimentation

on the model requires frequent adjustment of parameter sets. Structural changes, such as

insertion or deletion of ionic currents, are less frequent.

55

First-generation FPGA implementations of neural models [37] were “handcrafted,” one-

of-a-kind designs that required weeks to months for each design iteration and hours for

parameter updates. This generation of models involved direct translation from a Simulink-

based continuous-time, variable-time step, floating-point precision model into a System

Generator (Xilinx, San Jose, CA) blockset-based discrete-time, fixed-time step, fixed-point

precision model. This process was enhanced through pipelining, a methodology by which

multiple models can be executed simultaneously utilizing the inherent delays of the sys-

tem [37]. This model was groundbreaking in that it first introduced FPGAs to mechanis-

tic neural modeling, but it required significant effort for design generation and iterations.

However, this approach based directly off the Simulink model was not optimal for hardware

generation, utilizing excessive resources for limited performance and offering little flexibil-

ity once implemented. Furthermore, this generation limited the complexity of models that

could be implemented. Specifically, this design methodology lacked a clear paradigm for

model generation and required a new development cycle as the model changed.

Based on the lessons learned from the handcrafted designs, second-generation FPGA

implementations first formalized [88] then generalized [89] the design process. This “en-

gineered” approach made a clear distinction between the computational components (the

data-path) and memory-based components (the states). In short, for each simulated time

step of the model, the data-path computes the next state of each differential equation, the

results of which are then stored back into memory (implemented as a shift register). This

distinction between the computational and memory components eliminated the need for

reworking the data-path when changing, for example, the number of neurons. Furthermore,

the memory-based components were developed independently according to a set of rules

and heuristics. Rules for choosing operation latency (the number of cycles required for

computing a result per operation) and precision were suggested, easing the design process.

Structural modifications with the handcrafted approach required weeks to months com-

pared to days for the engineered approach. While this has been a significant savings in

time, further improvements are desirable. Parameter adjustment effort remains somewhat

constant, often taking hours for a recompilation of the system. This chapter presents

56

the third-generation approach to developing FPGA-based neural models. This “assisted”

approach offers a number of advantages over the previous architectures, for both the con-

struction of the model and the interaction with the implemented model. This approach

consists of design tools that offer the ability to make many structural changes within hours

and parameter adjustments on-the-fly.

5.3 Methodology

The methodology we use is described in the following paragraphs. In short, we utilize an

off-the-shelf FPGA development board interfaced through Xilinx (San Jose, CA) System

Generator, a graphical front-end development environment that is a component of Matlab

and Simulink. This chapter explains a series of algorithms implemented as Matlab scripts

that partially auto-generate design components.

Specifically, this design flow utilizes System Generator v8.1 within Matlab v7.1. System

Generator is a Simulink blockset that provides a set of library blocks directly translatable

into hardware constructs. These library blocks include math operations such as addition,

subtraction, multiplication, logic operators including multiplexors, and various forms of

memory, such as single-bit registers, shift registers, logic-based RAM, and block RAM.

System Generator translates the model into VHDL code and executes the associated

Xilinx ISE v8.1i tools. The VHDL code is synthesized into the primitives on the FPGA, then

placed, routed, and finally converted into a bitstream. This bitstream is programmed on

the FPGA, providing its unique configuration for that particular model. System Generator

then constructs a harness for simulating the model within Simulink. This entire process

takes tens of minutes to hours, depending on model complexity.

The work described in this chapter utilizes the Xilinx XtremeDSP series of Virtex-II

and Virtex-4 development boards. The XtremeDSP development board is a repackaged

Nallatech (Glasgow, UK) BenONE PCI carrier board containing a BenADDA module. The

module contains the user programmable FPGA, either a Virtex-II XC2V3000 or a Virtex-4

XC4VSX35, dual 105 MSPS analog-to-digital converters, and dual 160 MSPS digital-to-

analog converters. Note that these particular development boards and design tools undergo

57

version changes over time requiring minor revisions in our design flow.

5.3.1 Co-simulation

The simultaneous execution of a model using both Simulink blocks and directly on the

FPGA is termed co-simulation. The co-simulation environment is provided as a means for

interacting with the model while it is executing. There are two different clocking modes—a

full-speed, free-running clock that can be set to a number of standard clock frequencies

and a slower, simulator-controlled, single-cycle clock. In general, the free-running clock

will provide enhanced performance; extracting data at the maximal data rate via software,

however, is difficult. In contrast, having Simulink control the clock provides full interaction

and observability albeit at a loss of performance.

Several blocks are available for use with co-simulation. The Gateway In and Gateway

Out blocks provide one input or output, respectively, to the system. In single-cycle mode,

the clocks are synchronized such that inputs are immediately available to the system at

the next clock cycle and outputs are immediately available without delay. In free-running

mode, data is transferred by best effort often with significant loss of data.

With the release of System Generator v7.1, Shared Memory blocks were introduced as an

improved means of transferring large quantities of data. With Shared Memory blocks, a link

is generated at run-time between a block of RAM on the FPGA and an associated memory

buffer implemented in software. This allows the continuous monitoring and overwriting of

values within the memory buffer. Two modes are available—a locked mode allows block

transfers to and from the buffers via DMA and a standard mode makes no guarantee with

respect to contention. The approach described in this chapter utilizes shared memory in

the standard mode for low-speed parameter updates while the FPGA is free-running.

5.3.2 Parameter Database

The assisted approach presented here requires a new abstraction to describe the components

and quantities within the model. In general, neural models fit a basic framework consisting

of a system of first-order nonlinear differential equations. Each of these equations is made

up a state variable (i.e., memory-based component) and the data-path (i.e., computational

58

component); the data-path is a function of other states, parameters, and global constants

within the system. In certain cases, a single differential equation is divided into intermediate

calculations whereby a transient quantity is calculated for use in the same time step in a

successive state or intermediate calculation.

We have generated a simple database within the Matlab environment to track these

identifiers (names of variables in the system) and quantities of interest (parameter values,

state initial values, etc.). Four main categories are represented: states, intermediates,

parameters, and constants. A variety of information is appended to each entry in the

database. This central repository of pertinent model information enables the simplification

of the System Generator model. Since parameter values and initial values of states are

stored in the database, a particular System Generator model does not have to store these

values locally. In effect, the “construction” details are clearly separated from the “model”

details. Further gains are made via auto-generation, which is described in Section 5.4.

In addition to parameter values and initial values of states, other model and entry-

specific quantities are stored. For example, type information is stored in the form of fixed-

point notation, specifying the sign, the number of total bits, and the number of fractional

bits. Parameters, in particular, have several flags associated with them:

• adjustable: the quantity is adjustable via the parameter subsystem (see Section 5.4.2)

• visible: the parameter is adjustable by the user rather than an internal control signal

• dependent : the parameter is adjustable via one or more “visible” parameters

These flags allow the definition of multiple classes of parameters of the system, some of

which are left hidden from the user. Many parameters, such as a maximal sodium con-

ductance, ḡNa, can be adjustable and visible, implying that it is a quantity used directly as

an operand in the FPGA and is tunable by the user. In contrast, the output subsystem

(see Section 5.4.3) uses the parameter subsystem to provide control signals to dictate which

variable in the system is routed to an analog output (a feature of the XtremeDSP Devel-

opment Board series). These control signals are not modeler-tunable parameters, but can

59

be modified using a special software routine. In this case, the output select parameter will

be described in the database as adjustable but not visible.

The derived parameter is another special case. For example, membrane capacitance,

Cmem, should be tunable by the user, but since it appears in the denominator of the

membrane-voltage equation and is not in a form that can be computed efficiently on an

FPGA (would require a reciprocal), that parameter should not be adjustable in the param-

eter subsystem. Instead, the parameter 1/Cmem is a dependent, adjustable, but not visible

parameter while Cmem is a visible, but neither an adjustable nor a dependent parameter.

Full support, in the form of functions for all of these derived parameters, is further enabled

by the database.

As shown in previous work [37, 89], models are often pipelined to increase the utilization

of an implemented data-path. For example, in a particular model, a 20-stage pipeline for

the voltage state corresponded to 20 compartments or 20 neural models. The voltage state

in this case can be thought of as a vector quantity consisting of 20 initial values. This

work also suggested the use of circular buffers to store parameter values. Our parameter

database, however, enables both states and parameters to take on vector quantities to

ease the implementation. These circular buffers are preloaded with parameter values offset

by addresses based on the total insertion delay in the pipeline. The database stores the

appropriate offset value to aid in construction of these buffers.

5.4 Auto-generation of the Infrastructure

By using the parameter database, a large portion of the infrastructure can be readily auto-

generated, freeing the modeler to focus on the modeling task at hand. A variety of tools

were generated in Matlab focusing on three particular components—the state subsystems,

the parameter subsystem, and an output subsystem to interface the analog outputs. These

subsystems are created as dynamically linked Simulink subsystems, such that when the

database is altered, a simple command will automatically update the library blocks and the

affected models.

60

D Q D Q D Q D Q

clk

in state

state[n-2]state[n-1]state[n] state[0]state[1]

Figure 15: Schematic of the auto-generated state-storage subsystem. The lightly shaded
blocks represent a register chain and are built using System Generator Register blocks. The
darkly shaded blocks represent Simulink From blocks which will link with the corresponding
Simulink Goto blocks in the state read subsystem. For the described N = 40 neuron model,
there are N registers and N + 1 From blocks.

5.4.1 State Generation

As described in our previous work [89], multiple ways are possible to design the states and

the differential-equation solver depending on the requirements. When multiple models are

reusing the same data-path, we suggested to implement the states as a sequence of registers

and to add “taps” to connect the registers to the inputs of other portions of the data-

path. In an alternative case where the simulation contained only one model of interest, one

register is used and clocked at the slower overall sample period. Both of these scenarios are

auto-generated by the tools.

The PBC neural population [18, 19] described in this chapter consisted of 40 neurons.

Therefore, a 40-stage pipeline was chosen, and all states were defined as vectors of length

40. Auto-generation of the states consisted of the creation of two library blocks per state.

One library block is used for the storage of the stages as shown in Figure 15. The state-

storage subsystem can optionally include the Euler-integration circuitry or those options

can be relegated to the user-defined data-path. The other library block is a compile-time

configurable tap into the shift register (see Figure 16).

The state-storage system is simply a shift register of length equal to the number of

simultaneous models (40 in this case). A shift register could be made from a single 40-cycle

latency Delay block. While area efficient, this approach has two drawbacks. First, System

Generator does not allow initial values to be stored in the delay block, causing additional

initialization logic to be required. Second, internal states are not accessible within a shift

61

register; data is instead only available at the output of the chain. The solution was to form

a shift register based on individual Register blocks. These registers can be initialized and

allow each output to be accessible. The drawback of this approach is the significant area

resources required for each register. For example, a 40-stage pipeline with a 20-bit wide

state variable consumes 30 slices using Delay blocks and 400 slices using Register blocks.

The auto-generated state-read subsystems are designed to tap a particular position in

the shift register. Each state-read block is parameterized by an offset value which is chosen

to be equivalent to the total delay (latency in clock cycles) from the input, or leaf of the tree,

to the output, or root of the tree (see Figure 20 where the h and the Vmem state-read blocks

have an offset of 3 and 15 cycles, respectively, corresponding to the total delay from the

state-read block to the state-storage block). This value is equal to the sum of the latencies

of each operation that a particular input must propagate through to reach the output. By

carefully designating these delays for each input, multiple models can be simulated in lock

step without interference. Note that at each clock cycle, every model that simultaneously

uses the data-path is accounted for within the system. Each instance of the model is delayed

from the root of the tree, which subsequently decreases per cycle, eventually returning to

the end of the queue for the next cycle.

The read subsystem utilizes a multiplexor (see Figure 16), a primitive that chooses the

appropriate output according to the select input. This is determined at compile-time, i.e.

before synthesis. Since the synthesis tool recognizes that the select line of a multiplexor is

a constant, the block is reduced to a single bus connecting input with output. Therefore,

no resources are used in the instantiation of this block.

System Generator places a hard limit of 32 on the number of inputs to a multiplexor.

To accommodate pipelines exceeding 32 stages (for models with over 32 units utilizing the

same data-path and up to 322 = 1024 units), a two-level multiplexor scheme is employed.

A total of Nmux = dd/32e first-level multiplexors are generated and fed into an Nmux-input

multiplexor. The select line of each multiplexor becomes a function of the compile-time

parameter dictating the appropriate latency at the leaf of the tree.

This auto-generated state subsystem is a valuable contribution to the modeling process

62

state[n-1]

state[n]

state[0]

state[1]

state

select

Figure 16: Schematic of the auto-generated state read subsystem. This library subsystem
block is unique per state and is instantiated for each read of the state throughout the
model. The lightly shaded block represents a System Generator Mux block, which selects
the appropriate state. The select line of the multiplexor is set at run-time and corresponds
to the insertion delay required at the read block. Each darkly shaded block corresponds to
a Simulink From block which is linked to a Goto block in the state-storage subsystem.

as it eases a common class of construction-related model modifications. Often, more or less

models are desired in a simulation, i.e., the neuron pool is enlarged as the population size

increases, the dendritic tree is enlarged or further subdivided, or a neural circuit model

grows in complexity. Assuming the model does not shrink such that the total number of

models is less than the maximum latency through the data-path, the number of models

can be adjusted via a change in the parameter database and a regeneration of the state

subsystems, with no change required to the actual user developed data-path. Additional

changes to the parameters will also likely be necessary, but will similarly require little or

no user modification to the model.

5.4.2 Parameter Generation

The parameter generation tools provide the full infrastructure to handle on-the-fly param-

eter tuning within the model. Based on a memory interface, they also allow for optional

control registers to set internal states of the model and, for example, allow the model to

start, stop, and reset. The parameter subsystem (see Figure 17) utilizes a System Generator

Shared Memory block to store every quantity requiring dynamic modification.

63

A memory map is first created constituting each scalar and vector quantity in the sys-

tem. For the model described in this chapter, the memory map contained 1882 parameters

(47 vectors of length 40 plus 2 scalars) for this subsystem. The majority of those parame-

ters, 1600 in total, represented the synaptic weights. Four conductance vectors representing

the maximal ionic conductance of a fast inactivating sodium current, a persistent sodium

current, a potassium current, and a leak current for all 40 neurons accounted for 160 pa-

rameters. Individual leakage reversal potentials and excitatory/inhibitory synaptic reversal

potentials per pre-synaptic neuron accounted for 120 parameters. In addition, two internal

parameters stored in the memory map were used in the analog output subsystem.

The data-path does not directly read from this large memory, but instead reads from

local registers that are constantly updated by this RAM. A counter asynchronous to the

data-path continuously cycles through every address in the memory. Simultaneously, a

single token is propagated through a circular shift register of length equal to the depth

of the RAM. This token becomes an enable for one of two storage elements. In the case

of a scalar value, this token feeds the enable of a register that will be updated with the

value from the RAM. For a vector, more circuitry is employed to refresh a dual-port RAM

with depth equal to the length of the vector (32 in this example). This token will trigger a

counter (from 0 to 31) and the write-enable signal of one port of the dual-port RAM. The

token will stay active for 32 cycles, sufficient for all values to be updated within the vector

RAM.

Since all parameters are not of the same size or type, logic must be added for System

Generator to ensure that the correct types are used in synthesis. The Shared Memory block

(in Figure 17) output type is set as an unsigned integer with width equal to the widest

parameter value. Each integer representation, Z is initialized by

Z =


round(x · 2f), x ≥ 0(
!
(
round((−x) · 2f)

)
+ 1

)
&(2n − 1), x < 0

(16)

where x is the real-valued number, f is the number of fractional bits, n is the total number

64

Shared
Memory

depth L

ShMem
Counter
0 .. (L-1)

Pipeline
Counter
0 .. (N-1)

z-1 z-Nz-1 z-1z-N

Vector
Counter
0 .. (N-1)

en

addr1

param 4

addr2

Vector
Counter
0 .. (N-1)

en

addr1

param 3

en

param 2

en

param 1

Reg

en

param M

Vector
DP-RAM

depth N

Vector
DP-RAM

depth N

RegRegdata
in

Figure 17: The parameter subsystem. This auto-generated subsystem enables the on-the-
fly tuning of scalar and vector parameters via a Shared Memory block. A total of L values
representing a combination of M scalar and vector parameters are supplied to a N -stage
pipeline. The lightly shaded blocks at the top represent the token ring structure consisting
of a bit-wide register/delay chain. Delays are either a single cycle for a scalar quantity or
a N -cycle delay for a vector quantity. The darkly shaded blocks represent counters in the
system. Thin traces represent control signals such as enables to the vector counters and a
write enable to the first port of the dual-port vector RAM. Medium traces indicate address
busses to each of the RAMs. The thick traces depict those busses containing parameter
data.

65

of bits, and the round function rounds the real number to the closest integer. Negative

numbers must be first negated, then converted to an integer, whereby the 2’s complement

(inversion of all bits marked by ! unary-operator plus 1) is masked (AND binary-operator

indicated by &) by a sequence of n-digit binary sequence of 1’s. The output must go through

a conversion phase before reaching the input port of the register or RAM. This consists of a

System Generator Convert block changing the type to an unsigned integer at the appropriate

number of bits for the parameter, cascaded with a System Generator Reinterpret block to set

the signedness and the fractional point of the parameter. The Convert block can change a

value while the Reinterpret block can only alter the representation of the signal. In this case,

the Convert block acts to truncate the unused most significant bits. The auto-generation

tools will only place these blocks as necessary for the parameter.

The outputs of this parameter subsystem feed the data-path. For scalar values, a reg-

ister enables the data to always be available. For vectors, the situation is a little more

complex. The other port of each dual-port vector RAM is addressed by a counter equal to

the vector, or pipeline, length. This counter is kept synchronized with the sample period of

the entire data-path. Since parameters need to be delayed to correspond to their relative

insertion points within the data-path, the vectors are initialized and continously refreshed

in a sequence that is circularly rotated by the number of cycles equal to the desired offset

(see [89] for more on circular buffers supplying parameter values to a pipelined data-path).

The parameter RAM suffers high fanout as it supplies the input of every vector RAM

and scalar register in the parameter subsystem. While neither implemented nor required

in the past, the high fanout can readily be remedied through the use of a register tree to

balance the signal. The initial value of the token can then be changed to align with the

delays added to the data signal.

5.4.3 Output Generation

The output subsystem is the third of the three auto-generated components (see Figure 18).

This system links the outputs of the data-path with the analog outputs available on the

XtremeDSP development board. This subsystem generator overcomes two main limitations

66

DACMux
#3

Mux
#1 x10

x100

output 6

output 7

output 1

output 2

output 3

output 4

output 5

Config
ROM

depth 7
OutSel

Mux
#2

Figure 18: The output selector subsystem. A stereotypical structure is depicted with 7
variables. Outputs 1 and 2 are scaled by a factor of 10, outputs 3–5 are scaled by a factor
of 100, and outputs 6 and 7 are unscaled. The OutSel signal, driven by the parameter
subsystem, has a range of 0− 6 and sets the address line to the configuration ROM. In this
example, the ROM outputs a 5-bit signal, of which one bit is dedicated to Mux #1, two
bits are routed to Mux #2, and the remaining two bits connect to Mux #3. Mux #1 and
#2 make up the first-level multiplexors, and Mux #3 is the sole second-level multiplexor.

within the included System Generator DAC blocks: 1) only two analog output channels

are available although more signals are often wished to be viewed, and 2) analog outputs

require a signed type of 14 total bits with 13 fractional bits.

Variables are designated and assigned to a particular analog output in the parameter

database. The subsystem generator constructs a two-level multiplexing scheme to route the

appropriate variable to the analog output. The multiplexors that comprise the first level are

separated by type. Since the variable type might not align with the required type (signed,

14 total bits, 13 fractional bits), those variables with the same type are grouped and scaled

collectively at the output of the multiplexor. Two scaling modes are supported: a zero

hardware power of 2 and a power of 10, which requires the use of multiplier blocks. Each

scaled or non-scaled output is then selected via a second-level multiplexor (see Figure 18).

Control logic is required to select the appropriate input per multiplexor. The outputs

are enumerated and a control signal specifying the desired variable to be routed to the

output is assigned as an input to the system. Two additional adjustable, but not visible

parameters (DACSelA and DACSelB) are added to the parameter database so that the

existing infrastructure can aid in run-time configuration of the output subsystem. The

67

Analog
Output

Model
Parameters

I
Leak

Leak

Nap

Na

K

Syn

I
NaP

I
Na

I
K

I
syn

dhdt

dndt

dsdt s

n

h

Auto-generated

State
Generation

Auto-generated Auto-generated

VmemdVmemdt

Figure 19: Schematic of the PBC population model generated via the assisted flow method-
ology. The three darkly shaded block comprise the auto-generated components—the pa-
rameter subsystem, the state subsystem, and the analog output selector. The lightly shaded
blocks indicate those systems that are manually generated. The dark feedback line indi-
cates state information propagating back into the data-path. Although only one model is
depicted, many models are being simulated simultaneously through the pipeline.

output select signal per analog output is used as an address into a configuration ROM

(read-only memory), which drives each of the select lines for all of the multiplexors in

the subsystem. In particular, System Generator Slice blocks are used to separate the

appropriate subset of signals within the configuration ROM (see Figure 18) output, which

is then routed to the multiplexors.

5.5 Generating the Model

We generated a 40-neuron, fully interconnected model of the PBC as a case study in us-

ing the assisted approach to FPGA model development (see Figure 19). In many ways,

this model fits within the standard paradigm: a deep pipeline of characteristic, identical

components based solely on a system of differential equations. In other ways, this model

has required some custom engineered solutions to overcome architectural or systemic limi-

tations. Within Figure 19, those components that are auto-generated are marked as such

while all other blocks are manually generated based on our previously published data-path

design methodology [89].

68

5.5.1 Neuron Model

A computational model of the PBC model [18] that we implemented is based on a single-

compartment HH formalism [40], and its dynamics are described completely by a set of

autonomous differential equations. The transmembrane current, Ic, is defined as

Cmem
dVmem

dt
= −(ILeak + INaP + INa + IK + Isyn) (17)

where Cmem is the whole cell capacitance (21 pF), Vmem is the membrane potential, and

t is time. The intrinsic currents include a passive leakage current (ILeak), a persistent Na

current with slow inactivation (INaP), a fast Na current (INa), and a delayed-rectifier K

current (IK). The subthreshold currents are ILeak and INaP, and the spiking currents are

INa and IK. The extrinsic current is the sum of the synaptic currents (Isyn) from the other

N − 1 neurons. This endogenously bursting neuron does not require external stimulation.

Voltage-dependent activation and inactivation variables regulate the conductances of

the ionic currents (INaP, INa, IK), and the dynamics of a single gating variable, x, is given

by

dx

dt
= (x∞ − x)/τx, (18)

x∞ =
(
1 + exp(Vmem−θx

σx
)
)−1

, and (19)

τx = τ̄x/ cosh (
Vmem − θx

2σx
). (20)

A sigmoidal, steady-state, voltage-dependent (in)activation function of x with a slope that

is inversely proportional to σx (also referred to as a slope voltage) and a half-(in)activation

at Vmem = θx (also referred to as a half maximal voltage) is given by x∞. A bell-shaped

voltage-dependent time constant that has a maximal value τ̄x at Vmem = θx and a half-

width determined by σx is given by τx.

69

Table 4: Canonical model parameters separated by type—intrinsic currents and gating
variables.

Intrinsic Currents Gating Variables
i Ei (mV) ḡi (nS) x θx (mV) σx (mV) τ̄x (ms)

Leak -65 2.8 h -48 6 10,000
NaP n/a 2.8 n -29 -4 10
Na 50 28.0 m∞ -40 -6 n/a
K -85 11.2 q∞ -34 -5 n/a

The intrinsic currents, Ii for i ∈ {Leak,NaP,Na,K}, are defined as

ILeak = ḡLeak · (Vmem − ELeak) (21)

INaP = ḡNaP ·m∞ · h · (Vmem − ENa) (22)

INa = ḡNa · q3
∞ · (1− n) · (Vmem − ENa) (23)

IK = ḡK · n4 · (Vmem − EK) (24)

where ḡi is the maximal conductance and Ei is the reversal potential. Four gating variables

are required (h, n, m∞, q∞), and two of them (m∞, q∞) activate instantaneously. Note

that IK does not have an inactivation term, and the activation of IK and the inactivation

of INa use the same gating variable, n. Table 4 specifies the published, or canonical, model

parameters [18]. The following should be noted from the table: (1) The model has a fast

time constant (10 ms) and a slow time constant (10 s), which represent two state variables

(n and h, respectively). Vmem represents a third state variable; (2) Activation (inactivation)

is represented by σm < 0 (σm > 0); (3) The two instantaneous activation time constants

and the two activation exponents are not considered as model parameters.

The synaptic current to neuron j, Isyn(j), from the population of N neurons is defined

as

Isyn(j) =
N∑

i=1

(ḡsyn(i, j) · s(i)) · (Vmem(j)− Esyn) (25)

where ḡsyn(i, j) is the maximal synaptic conductance (values determined experimentally),

s(i) is the synaptic gating variable, and Esyn is the synaptic reversal potential. The model is

a half-center oscillator whereby each half consists of an equal number of neurons. An all-to-

all connectivity scheme in the neural population was implemented—all ipsilateral neurons

70

made excitatory connections (Esyn = 0 mV) and all contralateral neurons made inhibitory

connections (Esyn = − 80 mV).

The dynamics of a single synaptic gating variable from neuron i, s(i), are defined by

the following equations [19]:

ds(i)
dt

=


[1− (1 + kr) · s(i)]/τs Vmem(i) > θs

[−kr · s(i)]/τs Vmem(i) ≤ θs

(26)

where kr = 1, τs = 5 ms, and θs = −10 mV are fixed for all synapses. These equations have

been simplified from their original form by making the following assumptions about s∞(i):

for Vmem(i) > θs, the growth rate assumes s∞(i) = 1, otherwise the decay rate assumes

s∞(i) = 0. Note that s(i) is a piecewise function of Vmem(i) and has N values.

5.5.2 Ion Channel Construction

We used a state-driven, pipelined architecture to implement the FPGA-neuron model [89].

For each of the four state variables (Vmem, h, n, s), N pipelined calculations are performed

each sample period, where τ = 10 µs is the integration time step (System Generator

requires that τ/N be a rational number). The minimum possible N for the network was

determined by the latency of the longest algebraic pathway in the pipeline. Figure 20 shows

the implementation of the h state variable, where h is defined from Eq. (18), Eq. (19), and

Eq. (20). For this example, the longest latency in the pipeline is 15, the algebraic sum of

the delays for Vmem. The synchronization of these signals throughout the system is critical.

Note that only one address needs to be calculated for the two look-up tables, which are

required for the nonlinear calculations for h∞ (shown as hss in the figure) and ∆T/τh

(shown as dt
th

in the figure). The n gate was similarly designed and implemented.

Six nonlinear calculations from the PBC model required look-up tables—four sigmoidal

functions for the steady-state activation and inactivation values (m∞, h∞, q∞, and n∞)

and two hyperbolic cosine functions for the time constant values (τh and τn).

The inequality of latency within the two look-up tables marks a departure from the

standardized model generation introduced in our previous work [89]. In that architecture,

we would have duplicated the Vmem read-state block with varying offsets and the multiplier

71

(n-0)dhZ-3

Z -9

Z-1

Z-2

Z-10 Z-0

h STATESMULTIPLY ADD

(n-2) (n-0)

SUBTRACT (n-2)

hss - h

LOOKUP TABLE

(n-3)

(n-3)
(n-3)

hss

h

h STATE

Vmem STATE

(n-12)

(n-12)

(n-15)Vmem(n-15)

LOOKUP TABLE

MULT & ADD

address

h
dt
th

Figure 20: State-driven implementation [89] of the h state variable. The lightly shaded
blocks represent the mathematical operations (addition, subtraction, multiplication, and
look-up tables), and the pipeline delays are given in these blocks. The two medium-shaded
blocks represent the pipelined state variables, Vmem and h. The one darkly shaded block
represents the state-holding register. The numbers in parenthesis represent the pipeline
delay of the signal.

and adder used for address generation. In this case, resources are saved by reusing the

multiply and add circuitry and simply adding an additional eight and nine cycles of delay

to the hss and dt
th

look-up table blocks, respectively, in Figure 20. This combination was

used across all the look-up tables in the model.

The number of block RAMs used by one look-up table is given by the following:

of block RAMs =
⌈

bitsoutput

18

⌉
× 2address lines−10. (27)

As a good tradeoff between quantization error and resource usage, we implemented these

tables with 16384 entries (14 address lines) and used 18-bit precision with each output.

Therefore, we used 24 block RAMs for each look-up table for a total of 96 block RAMs.

In addition, the intrinsic model variables that were designated as parameters within the

FPGA (ELeak, ḡLeak, ḡNaP, ḡNa, and ḡK) each required one block RAM, and the N2 maximal

synaptic conductances (ḡsyn(i, j)) required N block RAMs.

To determine the inputs of the look-up tables, the following quantities were first defined:

φx(Vmem) =
Vmem − θx

σx
(28a)

φx(Vmem) =
Vmem − θx

2σx
(28b)

where Eq. (28a) is the argument of the exponential function in Eq. (19) and Eq. (28b) is the

argument of the hyperbolic cosine function in Eq. (20). The range of Vmem for all look-up

72

tables was defined between −70 mV (address 0) and +30 mV (address 16383). The address,

as a linear function of Vmem, is given by the following:

address = 163.83 · Vmem + 0.7 · 16383 + 0.5. (29)

The additional offset of 0.5 was required because the quantization flag of the adder was set

to truncate, and the overflow flag was set to saturate. Note that only one address calculation

was necessary because all of the six look-up tables required the same address, which saved

resources.

Table 5 gives the first and last elements of the arrays of inputs required for each of the

look-up tables, and the magnitudes of the step sizes of each of the arrays are given by:

|step size| = |φx(−70)|+ |φx(+30)|
16383

. (30)

In addition, to increase the accuracy of the look-up table for τh, the output was first

multiplied by 211, to place the maximum value of the table in the 0.5 to 1.0 range, and later

an 11-bit shift operation was used to adjust the result back to the correct value.

Table 5: First and last elements of the look-up tables for the gate kinetics calculations.
φx(−70) φx(+30)

Sigmoidal Functions
m∞ 5.0 −11.6
h∞ −3.6 13.0
q∞ 7.2 −12.8
n∞ 10.25 −14.75
Hyperbolic Cosine Functions
τh −1.83 6.5
τn 5.125 −7.375

We also used Matlab to analyze the quantization error for different sizes of the LUTs.

We randomly picked 105 values of Vmem for −70 ≤ Vmem ≤ + 30 and compared the

actual value of the sigmoidal or hyperbolic cosine function to the quantized FPGA value

and recorded the mean errors for each of the LUTs in Table 6. As expected, a doubling of

the size of the look-up table roughly corresponded to a fifty percent decrease in the mean

quantization error in the table.

73

Table 6: FPGA-Neuron Model—mean quantization errors for different look-up table sizes.
Look-Up Table Inputs Mean Quantization Error

210 20e−5

211 10e−5

212 6e−5

213 3e−5

214 2e−5

5.5.3 Synapses

Because of controllable maximal conductances (including synaptic weights), only one FPGA

architecture was required to be implemented, and this flexible design resulted in the maxi-

mum number of possible neural connectivity configurations for a given number of neurons—

an all-to-all connectivity scheme was implemented resulting in N2 connections. Note that

the N synaptic weights that corresponded to the connections from and to the same neuron

were always set to 0 nS. Since N2 >> N , the number of connections in our network was

a much more important factor than the number of neurons. The synaptic weights were

independent of the spiking frequency and were not implemented with distant-dependent

delays (i.e., long-distance connections were not be applicable).

The hierarchical synaptic network that implements Eq. (25) is shown in Figure 21. For

clarity, the figure is only shown for N = 8, but the synaptic network is easily scalable.

Each ḡsyn parameter contains N values; for example, the second element of ḡsyn(1) is the

weight of the synapse from Neuron 1 to Neuron 2. Two Esyn parameters are required—one

implements inhibitory connections and one implements excitatory connections. One of the

N registers is updated every cycle with a new value of the s state variable and is held

constant for N cycles; the counter, relational, register, and constant blocks implement this

scheme to update the state variable on the proper line. Note that an encoder is effectively

created from the constant and relational blocks in the dashed region.

5.6 Results

The above model equations were implemented as the data-path in the full-model implemen-

tation (see Figure 19). The data-path was made up of a small number of System Generator

74

(n-2)

Z-1

MULTIPLY

ADD

Vmem STATE

(n-3)Vmem
(n-3)

MULTIPLY

MULTIPLY

ADD

MULTIPLY

ADD

(n-3)

Esyn1 PARAMETER

Esyn1 (n-3)

SUBTRACT

MULTIPLY

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

MULTIPLY

ADD

MULTIPLY

MULTIPLY

ADD

MULTIPLY

ADD

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

Vmem STATE

(n-3)Vmem
(n-3)

(n-3)

Esyn2 PARAMETER

Esyn2 (n-3)

SUBTRACT

Z-1

MULTIPLY

Z-1

ADD

Z-1

(n-5)

gsyn1 PARAMETER

gsyn1 (n-5)

(n-5)

gsyn2 PARAMETER

gsyn2 (n-5)

(n-5)

gsyn3 PARAMETER

gsyn3 (n-5)

(n-5)

gsyn4 PARAMETER

gsyn4 (n-5)

(n-5)

gsyn5 PARAMETER

gsyn5 (n-5)

(n-5)

gsyn6 PARAMETER

gsyn6 (n-5)

(n-5)

gsyn7 PARAMETER

gsyn7 (n-5)

(n-5)

gsyn8 PARAMETER

gsyn8 (n-5)

REGISTER

d

en

s STATE

(n-6)

RELATIONAL

a = b
a
b

CONSTANT

0

COUNTER

(n-3)

(n-4)

(n-4)

(n-4)

(n-4)

(n-3)

(n-2)

(n-1) (n-0)

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

1

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

2

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

3

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

4

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

5

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

6

REGISTER

d

en

RELATIONAL

a = b
a
b

CONSTANT

7

(n-5)

(n-5)

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

Z-1

(n-6)

(n-5)

(n-5)

(n-5)

(n-5)

(n-5)

(n-5)

Isyn

ENCODER

Figure 21: Implementation of synaptic current summing network. The lightly shaded
blocks represent the mathematical and data operations (addition, subtraction, multiplica-
tion, counter, relational, register, and constant), and the pipeline delays are given in these
blocks. The three medium-shaded blocks represent the pipelined state variables, Vmem and
s. The medium-shaded ovals represent the pipelined variables, ḡsyn and Esyn. The numbers
in parenthesis represent the pipeline delay of the signal.

75

building blocks—arithmetic blocks such as adders, subtractors, and multipliers, memory

blocks (ROM block configured to use BlockRAMs) for the construction of look-up tables,

relational and conditional blocks for implementation of piece-wise functions. Additional

blocks were utilized sparingly for custom design requirements, such as Register, Delay, and

Counter blocks.

The parameter subsystem and state subsystems were auto-generated from a description

of the model in the described parameter database (see Section 5.3.2) and was used unmod-

ified. The output-select subsystem was auto-generated, but since the model did not require

the use of analog outputs, it was manually modified for digital transfer via co-simulation.

The output subsystem instead down-sampled the Vmem states by a factor of 10 and drove

a time-division multiplexed signal through a System Generator Gateway Out block. Post

synthesis, each neuron’s voltage output was saved directly to a Matlab binary data file for

post-processing.

The performance on the PBC model described is summarized in Table 7. The 40-neuron

population with its all-to-all synaptic connections was analyzed with respect to performance

and resource utilization. The performance numbers provided are based on post place-and-

route targeting the Virtex4 XC4VSX35-fg676-10 device. The tools were allowed to auto-

constrain with respect to clock frequency. The resulting critical path time, Tc (maximum

propagation from one clock edge to the next clock edge taking into account clock skew

and jitter), was used as the basis for the maximal performance numbers in Table 7. These

performance numbers are meant as upper limits to what is possible. If the analog outputs on

the XtremeDSP-IV Development Board are utilized, performance approaches the theoretical

limit, dependent on the generation of the exact required clock frequency. If co-simulation is

used, performance is degraded substantially from the theoretical. Nonetheless, both modes

are a substantial improvement over software-only implementations.

In Table 7, Ts, the iteration period, is computed by

Ts = N · Tc (31)

for an N -neuron size population. By factoring in the Euler-integration time-step, τ , a

76

Table 7: Performance and resource-usage results for a varying population size.
of Performance Resources

neurons (N) Ts RTfactor Slices Multipliers
16 0.38 µs 26.4 8,327 (54%) 111 (58%)
24 0.68 µs 14.8 10,374 (68%) 135 (70%)
32 1.01 µs 9.9 12,052 (78%) 159 (83%)
40 1.15 µs 8.7 13,840 (90%) 183 (95%)

real-time factor can be established as

RTfactor =
τ

Ts
. (32)

This real-time factor is theoretical and implies that the system clock is given by

fclk =
1
Tc

. (33)

The actual real-time factor is a function of the available system clock frequencies for the

FPGA.

The resource utilization counts in Table 7 were determined from the mapping report in

the standard Xilinx implementation flow. The total counts included only the model and not

the co-simulation infrastructure. The resource utilized for the infrastructure was minimal

compared to the model definition. The FPGA contained 15,360 slices and 192 DSP blocks

(each DSP block contains a multiply–accumulate circuit).

Varying the number of models simulated required a number of minor changes to the

design. The parameter database was adjusted such that vectors of conductances reflected

the increasing number of neurons in the simulation. Additional vectors describing the

synaptic activity were required for each incremental neuron added. Finally, the hierarchical

synaptic adder tree was modified to handle the increased number of synapses. Further

scalability was limited by available FPGA resources. Deviations from this architecture,

such as the use of BlockRAMs for state information or reductions in precision throughout

the model, might have increased the total number of implemented models.

A typical neuronal output gathered via co-simulation is depicted in Figure 22. The

time-step, τ , used in simulation was 0.01 ms. The output was downsampled by a factor of

77

! " #! #" $! $" %!
!&!

!"!

!'!

!%!

!$!

!#!

!

#!
()*+,-./+0,1./20)3/)4./4.50)4/64/789/7)75*,+6)4

:63./;<.1)4=<>

(
)
*+
,
-
.
/;
3
(
>

?@' ?@& ?@? A A@$
!&!

!"!

!'!

!%!

!$!

!#!

!

#!
9*)<./57/)2/)4./B50<+

:63./;<.1)4=<>

C 8

Figure 22: Output data from one of the 40 neurons within the PBC population model.
Pane A depicts a 30-second simulation of characteristic bursting. Pane B shows a close-up
view of the first of four bursts. This model was simulated on the FPGA in a single-cycle
co-simulation mode with a 0.01 ms time step and downsampled by a factor of 10. A System
Generator Gateway Out block was utilized to save the data directly into a file. All 40
neurons were captured in this one simulation.

10, for an output rate of 10 kHz. Typical simulations were run for 30 seconds producing

N · 300, 000 data points for an N -neuron population.

5.7 Conclusion

The results of this study confirm that the construction of significantly complex HH conductance-

based neural models, including population models, is well within the capabilities of existing

FPGA design techniques. Furthermore, these designs can be readily modified in a reason-

able time frame, and parameters can be adjusted on-the-fly. More complex models with

increased numbers of conductances and varied kinetics can be implemented in this archi-

tecture with a possible reduction in the total number of neurons.

The success of any developmental effort is often linked to the capabilities of the available

design tools. This belief continues to drive the construction of tools that aid in auto-

generation. Inevitably, auto-generation tools are limited when a model has unforeseen

characteristics. In particular, the PBC model implemented offered unique challenges such as

precision issues, synaptic interconnections, and data throughput requirements. All of these

limitations were overcome and the auto-generation tools were enhanced where possible.

78

By spending additional effort initially, neural modelers can utilize FPGAs for high-

performance neural modeling. With the use of these auto-generated sub-components,

construction-based changes are easily accomplished requiring just hours of effort. The PBC

model in particular was developed initially with 16 interconnected models but was increased

easily to 40 interconnected models. Second, the parameter updating system allowed for the

running model to very quickly change parameters and re-run simulations, enabling a very

rapid sweep of behavior over the parameter space.

79

CHAPTER VI

FULLY-AUTOMATED MODEL CONSTRUCTION

Preface:

The previous three chapters described a progression from a fully manual procedure

for implementing neural models using digital design methods to an assisted flow technique

where user tools help to not only build a model but also a simulation engine. The experience

and lessons learned from these sections played a large role in initiating the research behind

the efforts described in this chapter. Here we detail the fully-automated design flow based

around the Dynamo compiler. Much of the development of Dynamo has been done in

collaboration with Christopher T. Church. Those sections that he was primarily responsible

for are labeled as such in the text.

The work described in this chapter was guided by three overriding goals. First, we

wanted to enable modelers to utilize FPGAs for their neural simulations without any par-

ticular knowledge of FPGAs required. Second, we were interested in building a universal

compiler capable of arbitrary model descriptions, for example, without any of the reg-

ularity requirements as seen in the previous chapter. Finally, we strove to design this

fully-automated flow with high-performance at the forefront.

To achieve the first goal, we designed a custom modeling language with specific syntax

useful for describing neural equations via systems of differential equations. This language

was coupled to a hardware compiler through a simple programming language or intermediate

representation. The full conversion from model description to hardware execution engine is

fully automated, freeing the modeler from directly developing on the FPGA. Next, through

the use of the generic modeling language and the intermediate representation, models of ar-

bitrary structure can be described and passed from the front-end language to the back-end

hardware compiler. Finally, while the performance of a completely auto-generated flow may

80

not always exceed that of a manually-tuned model, the Dynamo compiler produced perfor-

mance improvements exceeding 20× the performance achievable from a software compiler.

The Dynamo compiler, now in its third major revision since its inception, has con-

stantly been in a state of flux. New techniques, heuristics, methodologies, and features

have consistently been added to extend the range of translatable models, improve the per-

formance, and enhance the overall experience of the modeler. At the time of this writing,

the usability, flexibility, and performance goals have all been achieved.

81

6.1 Introduction

We have made considerable progress in enabling FPGA technology for neural modeling ap-

plications. FPGAs have already been shown to be a high-performance, functional platform

for generic neural models [37]. This performance advantage came at a cost—a complex,

error-prone design flow requiring months of effort for successful design realization. This

difficulty provided the inspiration to develop a series of methods and techniques to aid in

the model construction process, reducing the time of realization from months to weeks to

days to hours.

We have taken a multi-step methodical approach to streamlining the FPGA design

process. First, we have developed an engineered approach to the manual construction of an

FPGA model equation by equation, piece by piece. That work is summarized in Chapter 4

and in print [89]. Next, we utilized the experience gained from manual construction of

models to create a set of tools to automate the development of repetitive constructs. This

included the integration of the state variables and infrastructure corresponding to tuning

parameters and data-transfer. This design methodology, termed assisted-engineered flow,

reduced the time for construction of models to weeks, structural changes to hours and tuning

of parameters to seconds as summarized in Chapter 5.

While the assisted-engineered flow greatly improved usability of FPGAs for the neural

modeler, it did not isolate the modeler from the intricacies and specifics of digital system

design on FPGAs. Instead, it required the modeler to be comfortable with the fixed-point

number system, synchronous timing, and digital logic. Thus, the need arose to develop a

fully automated approach to the development of neural models on FPGAs. Such a system

would work in the domain of the neural modeler eliminating or drastically reducing the

requirement for background knowledge in digital development on FPGAs.

This chapter details the efforts and successes to date of a fully automated approach to

model development. Through my efforts along with Christopher T. Church, M.S. (2006),

we have built the Dynamo compiler, a tool for the compilation of model descriptions into

a tightly coupled, synchronous execution loop for direct synthesis on an FPGA. Dynamo

has been built to be as generic as possible with minimal user intervention to be powerful,

82

flexible, and easy to use. Limitations in the compiler, design choices, and future efforts will

be explained throughout this chapter.

6.2 Compiler Design

The Dynamo compiler takes a traditional approach to compiler architecture. Suppose that

a software compiler was to be written for m multiple languages (Java, C++, SML, etc.)

and targeting n multiple architectures (Intel, PowerPC, ARM, etc.). One solution could be

to write m ∗n compilers for each possibility. This would be time consuming and inefficient.

Instead, each of the languages can be sub-compiled into an intermediate representation

(IR), each becoming a front-end. Similarly, each of the n targets can be written from

the intermediate representation, or a back-end. This will require m + n unique programs,

a drastic reduction from the m ∗ n number when using multiple languages and multiple

targets. Two passes would be required to convert a particular language to a particular

target through the IR. This total reduction of required software programs requires careful

planning and development of a complete and unambiguous IR.

We chose to develop Dynamo as a two-pass compiler to create a more scalable long-term

development platform. This approach has allowed us leeway to experiment with different

language features and develop multiple back-ends, including software back-ends targeting

C and Matlab. The intermediate representation chosen is based on lambda-calculus, a

functional, Turing-complete language representation well suited for mathematical evaluation

[49, 26, 22]. Turing-complete implies that the lambda-calculus can describe any computable

function.

The compiler was initially based off the MRCI system [65], a dynamical system com-

piler targeting dynamic-clamp applications. Following a full-rewrite, the second genera-

tion compiler, dubbed Dynamo, first delineated the front-end and the back-end, with the

lambda-calculus IR. An additional full-rewrite of the compiler produced the present day

Dynamo modeling language (DML) and its current feature set including modularity and

vectorization. While possible to implement in the previous lambda-calculus, the current IR

was optimized for that purpose, increasing its suitability for modeling applications. The

83

implementation of the IR was accomplished in its entirety by Christopher T. Church, but

is included in this document for completeness.

6.2.1 Front-end

The front-end language, or DML, is a functional and modular language for describing both

the equations representing the mechanisms of the model and the construction of the model

from the underlying mechanisms. The DML was not designed specifically for neural mod-

eling, despite the intended purpose. This was deliberate as to force the general problem to

the forefront over the specific relating to neural models. We decided on this path to provide

the most flexibility for implementing future models with likely dissimilar characteristics.

As a result, there are no specific built-in constructions in the language relating to neural

modeling. Nonetheless, an extensive user-defined library can provide specific functions and

constructions for a particular modeling application.

Because flexibility was the primary design goal, less attention was placed on making the

language easy to use. While this is a current, minor shortcoming, we have been proposing

to enable application specific languages as a subset of the full DML, aiding the modeler

in their particular domain. This enhancement would fit well within the two-pass compiler

architecture as a new specific modeling language will not affect any of the back-end features.

More on this and other future directions can be found in the Discussion in Chapter 8.

The DML features a variety of constructs present in modern programming languages

and some powerful features rarely available in traditional languages. The common features

include modularity, objects, library linking, and unit testing. More advanced features in-

clude a fully functional paradigm, built-in primitives for specifying first-order differential

equations, and a type system designed for dynamical system modeling. Standard data-

types include states, parameters, intermediates, constants, inputs, and outputs. Each of

these features are described by example in the following subsections.

6.2.1.1 Modeling-specific Constructs

Unique to Dynamo, program flow is implicitly defined to occur within a loop, mimicking the

standard iterative approach to numerically solving differential equations. The computations

84

performed on each execution loop must be identical, enabling the construction of a single

computation engine that can simulate any iteration. In the case of an FPGA back-end, this

requirement forces each iteration to take an equal amount of execution time, maintaining a

fully synchronous implementation (see Section 6.6). Future versions might allow for multiple

execution engines, controlled by a state-machine.

While a standard programming language might contain such data-types as integers,

booleans, and strings, the DML instead defines data-types specific to dynamical system

modeling. The central data-type is the STATE. Identifiers marked as a STATE are stored

explicitly each iteration. For example, a typical model might include a membrane potential,

Vmem, which will be integrated each iteration. Vmem is therefore defined as a STATE. A STATE

does not need to be part of a differential equation. For a value to be saved and output to

the user, it must be declared as a STATE. Otherwise, algebraic optimizations might hide the

computation of the value within other calculations (see Section 6.3). States must have an

initial value defined when used within an integration algorithm.

For quantities that the user wishes to be tunable at run-time, the PARAMETER data-

type provides for user-adjustable quantities in the model. For example, ionic maximal

conductances are often defined as PARAMETER data-types, but any quantity in the system

can be made tunable. Setting each quantity as a PARAMETER comes at a cost as additional

hardware is required to implement each parameter. For those quantities that do require

user-adjustment, the PARAMETER data-type provides a useful construct to the modeler.

When quantities do not require run-time tuning, the value can either be explicitly defined

within an equation or specified with the CONSTANT data-type. The following specification

of a sodium current, INa, will be handled identically in the compiler:

CONSTANT E_Na = 55;

I_Na = g_Na * (V_mem - E_Na);

or

I_Na = g_Na * (V_mem - 55);

In the above example, INa, is not an explicitly declared data-type. Instead, it is implicitly

85

defined as an intermediate result, with its name lost in the translation into the IR. By

removing the variable name, the compiler is free to perform algebraic optimizations around

this calculation.

The DML defines INPUT and OUTPUT for streaming run-time inputs into the system

and outputs from the system, respectively. Inputs can include current injection, voltage

commands, synaptic input trains, or any other continuous sampled sequence of values.

Similarly, outputs often include membrane potentials but can also include any other value in

the system for debugging purposes. Inputs are declared explicitly by name, while wildcards

(* matches 0 or more characters, ? matches one character) are enabled to select multiple

outputs. Since identifiers are not explicitly written but instead are evaluated based on the

wildcard symbols, the OUTPUT keyword requires all variables be enclosed in quotes as shown

below:

INPUT Iapp;

OUTPUT "Vm", "m", "h", "n"; // explicitly matches these outputs

OUTPUT "Neuron*.V?"; // matches Neuron1.Vs, Neuron15.Vd, but not Neuron.Vmem

Parameters and states have to be explicitly declared in the system for Dynamo to

provide additional compilation specific information. Each variable labeled as PARAMETER

and STATE must include an initial value and a range. A initial value for a STATE is required

for every variable labeled as such, but is used in simulation only for numerically computing

differential equations. Parameters labeled with the PARAMETER keyword additionally require

initial values.

States, parameters, inputs (specified by the INPUT keyword), and literals (includes values

and constants) are termed read nodes of the system. Every computed quantity in the

system is a function of the read nodes of the system. If each equation is represented by

a tree where the new computed variable, or the root, is a write node, the read nodes are

the leaves. In order to determine fixed point precisions (see Section 6.4.2), we propagate

user-defined range and step information from the read nodes throughout the expression tree

representing the computation. The range is expressed as a high and low value representing

86

the possible ranges of the evolution of a state, the tuning range of a parameter, and the

span of an input. The step value corresponds to the granularity for tuning and is related

to the relative level of precision required for the quantity.

PARAMETER gNA = 120 (0 to 120 by 0.2);

STATE Vmem = -65 (-90 to 60 by 0.001);

INPUT IappS (0 to 30 by 0.1),

IappD (0 to 30 by 0.1);

Differential equations are specified with unique syntax, the function d(), to indicate

the use of an implicit numerical solver. The particulars of the integration are specified

by a reserved function name, integrate. Our tests have been limited to forward-Euler

integration, but the system is intrinsically not tied to only that method.

FUN euler_integrate (dt, t, state, eq) =

state + dt * eq(t);

FUN integrate (dt, t, state, eq) =

euler_integrate (dt, t, state, eq);

STATE m = 0.1 (0 to 1 by 0.001);

d(m) = (m_inf - m) / m_tau;

In the above example, the time step is specified by defining dt as a PARAMETER or

a CONSTANT. As a PARAMETER, it can be changed as any other parameter in the system.

At this point, a true variable-time step solver is not possible (see Section 6.9 for more

information). All differential equations in a system must use the same integration function

and an identical time-step.

6.2.1.2 Modularity

The DML provides multiple means for developing a modular model description. At the

lowest level, implicitly declared intermediate calculations enable long equations to be broken

up into its representative parts. Functions are available in the DML for expressions that

are reused often. An example follows where a power function is mapped from a binary

87

function to cascaded unary operations. This illustrates how functions can work to increase

the functionality of the language.

FUN pow (x, y) = EXP(y * LN(x));

sqrt_x = pow(x, 1/2); // example of the pow function

Functions are considered first-order quantities in this language. A first-order quantity

can be manipulated in the same fashion as a variable. It can be duplicated, passed as a

parameter, or redefined. This is a common feature of functional languages, such as SML,

Lisp, or mathematical languages such as Mathematica (Wolfram Reasearch, Champaign,

IL).

For the simplest neural models, an enumeration of the equations is generally sufficient.

A simple model such as the Fitzhugh-Nagumo two-state oscillator [32, 58] can easily be

expressed in one module. At the other extreme, a multi-conductance, multi-compartment,

neural population model might need many levels of modularity to remain tractable to the

modeler. In this example, the population can be a module instantiating neural modules,

whereby each instantiates neural compartment models, down to the modules describing

the mechanisms present in each ionic conductance. The following illustrates the syntax for

instantiating a module, termed a SYSTEM.

% Instantiation of my_neuron as a Fitzhugh-Nagumo model

SYSTEM my_neuron = new fn(integrate, dt, Iapp);

% Definition of another system - the Fitzhugh-Nagumo model

DEFSYSTEM fn(CONSTANT integrate, CONSTANT dt, DYNAMIC I)

FUN cube (x) = x * x * x;

PARAMETER b0 (1 TO 4 BY 0.01) = 2,

b1 (1 TO 4 BY 0.01) = 1.5,

e (0.01 TO 0.3 BY 0.01) = 0.1;

88

STATE u (-4 TO 4 BY 0.001) = 1;

STATE w (-4 TO 4 BY 0.001) = 1;

d(u) = u - cube(u) / 3 - w + I;

d(w) = e * (b0 + b1*u - w);

ENDSYSTEM fn;

In the previous example, my neuron, was instantiated with three parameters. The first

two are required for the numerical solver, where integration is the function describing

the integration method and dt is the time-step. An additional parameter is passed to

the new system, Iapp, which can be a constant, parameter, state, input, an intermediate

calculation, or even a function. The Fitzhugh-Nagumo system definition is the model that

would be instantiated by the SYSTEM command above. The parameters of fn are labeled

CONSTANT if the quantity does not change and DYNAMIC if it can change, such as the input

current. The current need not have the same name in the system definition and the system

instantiation—it is instead matched by parameter order. At the scope of my neuron, each

state can be referenced by my neuron.u and my neuron.w.

DEFSYSTEM hh_list (CONSTANT integrate, CONSTANT dt, CONSTANT num_neurons)

STATE placeholder (0 TO 100 BY 0.0001) = 0;

FUN hh_current i = i/num_neurons * 20; % Current range from 0 to 20 nA

SYSTEM neurons = for 1 num_neurons 1

(HH(i) = new hh [integrate, dt, hh_current(i)]);

ENDSYSTEM hh_list;

This modular structure is not only helpful for encapsulating parts of the design. It

can additionally be used to aid in construction. The previous code segment describes

the construction of an arbitrary number of Hodgkin-Huxley models [40]. This number is

determined at compile-time and set as num neurons. The for function returns a list of

neurons indexed from 1 to num neurons by 1 with an current that is a function of its index.

89

Whitespace is ignored in the DML, so even though the system instantiation of neurons is

over two lines, it is treated as one statement.

This example further shows the inherent vectorization built into the DML. Quantities

are not limited to scalars. Instead, vectors or lists of elements can be manipulated in a

seamless fashion. This makes the arbitrary construction of n neurons or m compartments

simply within the DML.

6.2.1.3 DML Library

A large effort was made by the Dynamo development team to create a powerful and flexible

modeling language. This enabled many new features to be incorporated into the language

through a library, rather then in the compiler itself. We have concentrated many of these

functions into a library that is always interpreted prior to parsing the DML model descrip-

tion file. These functions are all written in DML and represent many common tasks in

model building or general programming. For example, numerous functions are available for

list manipulation, such as head, tail, and length. Standard functional language constructs

such as map (which applies a function to each element of a list, returning a list), foldl

(which applies a function iteratively across a list, returning a scalar result), and tabulate

(which with a parameter n, generates a list from 0 to n− 1). Users are fully empowered to

generate their own functions based on the powerful included DML primitives.

6.2.1.4 Unit Testing

As models get larger, as the number of conductances grow or the size of the population

increases, there is a need to test and qualify the model. We developed a unit testing

paradigm for the Dynamo compiler to verify each system. A Dynamo model can be split

into many files, one for each system declaration (DEFSYSTEM). The IMPORT statement can

be used to inline include additional files. Each DEFSYSTEM can be tested individually if the

file contains a MAIN code segment. The MAIN code is similar to a main function in C or in

Java. All MAIN routines except in the top-most DML file are ignored during compile-time.

90

6.2.2 Intermediate Lambda-Calculus

The DML is compiled first into an intermediate representation before the translation into

the backend begins. We chose a lambda-calculus representation, which has a number of

advantages. First, it is the basis for functional programming which in turn forms the

basis for common mathematical expressions and relationships. For example, in a Hodgkin–

Huxley model, the membrane potential, Vmem, is generally studied as a voltage trajectory,

Vmem(t), a functional representation. A numerical approximation of a differential equation

is similarly represented as the next solution as a function of the previous solution and the

independent variable. Lambda-calculus basic unit is a function and therefore represents

mathematical functions simply and elegantly. Second, lambda-calculus can be unrolled

readily into expression trees with straightforward algorithms, where an expression trees is

rooted in the output and has leaves for all the parameters, constants, or other inputs. Other

representations can be converted into trees, but lambda-calculus does it with simplicity and

ease. Next, lambda-calculus is a general-purpose language and is Turing-complete, implying

any computable operation can be encoded in lambda-calculus. Finally, it is a canonical,

simple representation. If a compiler should have the shape of an hour glass, where the

front-end is complex, the back-end is complex, the connection should be basic and easily

understandable.

Other mathematical environments such as Matlab and Mathematica (Wolfram Re-

search, Champaign, IL) utilize functional paradigms. In Matlab, function handles enable

functions to be first-class operators. Additionally, the @ operator allows for anonymous

functions, the basis of lambda-calculus. Mathematica offers the & function operator with

the # symbol to represent parameters. A full suite of common functional constructs such

as map and apply hint at functional and lambda-calculus underpinnings.

The lambda-calculus IR produces a series of three tree structures representing a flattened

model description, a type table identifying each identifier, and a listing of all inputs and

outputs of the system. The three trees generated by the IR are the run tree, the parameter

tree, and the state initialization tree. In this data structure, the root of the tree is a write

node and the leaves are all read nodes.

91

The run tree is the primary tree for the simulation and includes the calculations required

for each iteration. No recurrent connections are allowed as this would limit the ability of

the simulation to be bounded in time. The write nodes are the states that are written on

each iteration. The read nodes are inputs, parameters, constants/literals, or states from

the previous iteration.

The parameter and the state initialization trees represent the expressions for the initial

values of the parameters and states, respectively. In the example below, ENa is defined

to be the literal 55. In the parameter tree, this is simply represented as a read node,

the literal, feeding a write node, the parameter, ENa. The following example shows how

constants, R, T , n, and F , can be evaluated to return the parameter NernstConstant. The

algebraic simplification to reduce this to a single literal is not performed in the IR, so instead

the parameter tree includes the entire expression. The final example shows how the state

initialization tree would include the Vmem as a write node fed by the constant evaluated to

be −65 as the read node.

PARAMETER ENa (45 TO 65 BY 1) = 55;

PARAMETER NernstConstant = (R * T) / (n * F);

CONSTANT Vrest = -65;

STATE Vmem (-90 TO 60 by 0.001) = Vrest;

The IR produced type table provides a means for the system to classify each identifier as

a state, constant, input, parameter, or derived parameter (see Section 6.3.3). A enumeration

of the inputs and outputs of the system complete the model specific information sent to the

back-end. Additional information such as command-line arguments and sampling rates are

passed to the back-end for varied use depending on the target.

6.2.3 Back-end

The back-end of the Dynamo compiler refers to all operations and manipulations from the

tree output of the lambda-calculus IR to the ultimate generation of the simulation-ready

output. There are multiple back-ends developed in Dynamo. They include the FPGA

back-end targeting System Generator, a Matlab backend that supports fixed-point and

92

floating-point simulations, and a C based back-end also supporting fixed-point and floating-

point simulations. While the original intent of Dynamo was to produce an FPGA compiler,

it has become useful to maintain additional software back-ends for testing purposes and for

testing smaller neural models. Additionally, the capability of a floating-point back-end

provides a useful comparison verifying fitness compared to the fixed-point back-end on the

FPGA.

The back-end contains numerous components, each of which will be explained in further

detail below. These components fit into various categories. General optimizations are

utilized for all back-ends and include algebraic optimizations, pruning unused logic, and

eliminating redundancy in the tree and graph representation. These optimizations promise

performance increases independent of the desired back-end.

When computing on an FPGA, precision analysis is performed to estimate fixed-point

precisions per operation. A timing analysis is performed to estimate latencies through

operations as a function of precision. Finally, lookup tables are generated for all those

functions that are not directly or efficiently computable using the available FPGA blocks.

Software back-ends can then convert the manipulated and annotated graphs into code

for execution in Matlab or C. The software back-ends can either evaluate with or without

fixed-point precision and/or lookup tables. Timing information is not simulated in the

software backends, i.e. cycle-accurate simulations are not performed.

Specific hardware back-end manipulations are then performed including hardware re-

source estimation and allocation, resource scheduling, area estimation and resource-usage

refinement, and a variety of schedule optimizations. The resulting accepted schedule is

netlisted into a generic, internal netlist format. The infrastructure allowing tunable param-

eters, outputs, inputs, and flow control of the model is auto-generated and netlisted as well.

The top-level netlist containing the full model and infrastructure is then mapped to System

Generator blocks and a run script is generated to programmatically build the design and

compile it in System Generator and Simulink.

Any change in the front-end language, assuming it can pass through the IR to produce

the set of input graphs for the back-end, will require no changes to any of the back-ends.

93

This creates a very modular and easily maintainable code-base for the future. While some

revisions of the language require propagated changes to the entire system, such as the

addition of the INPUT type, many enhancements to the system only affect a small module.

6.3 General Optimizations and Heuristics

The general optimizations and heuristics described in this section provide back-end inde-

pendent performance enhancements. Each of these optimizations, tree pruning, operation

analysis (algebraic optimizations), derived-parameter generation, and redundancy elimina-

tion are described in greater detail. The development of this code base has been primarily

done by Christopher T. Church, while the underlying algorithms have been jointly devel-

oped.

6.3.1 Tree Pruning

The outputs of the model, e.g. membrane potential, ionic currents, etc., can either be

explicitly specified by the modeler or implicitly specified to include every state of the system.

When the outputs are explicitly specified, it is possible that certain trees within the run

tree forest are not required for the generation of the output. If a population of independent

neurons is described in the DML model but only one membrane potential output is specified,

the additional, independent neurons can effectively be pruned from the system, with no loss

to the desired output.

The tree pruning optimization finds all trees in which the root node, or the write node

is not included in the list of desired outputs. This candidate list of trees to be pruned is

cross-referenced against all the read nodes of the trees that directly supply outputs. If a

read node matches a write node of the candidate list, then that tree is indirectly required

for an output and is removed from the list. The remaining trees on the candidate list are

pruned. Warnings are displayed to the user specifying which states are pruned, as this can

very often be a result of a modeling error.

94

6.3.2 Operation Analysis

The operation analysis component provides for all the tree-based algebraic optimizations.

These include constant folding, strength reduction, and manipulation by algebraic laws and

properties [57]. The operation analysis rules shown make up all the rules that are currently

implemented and will be discussed in more depth below. In these rules, xn represents

arbitrary expressions while kn represents literals in either real or integer number formats.

An operation in all caps (ADD, SUB, etc.), represents an operation that is passed on for

future evaluation while infix binary or unary operations are computed as part of the rule.

The run forest is evaluated across each tree (rooted at a write node) via a pre-order traversal.

Identity rules are the simplest of the algebraic rules (see Eq. (34)). These reduce addition

by zero and multiplication by one to a single argument.

ADD(0, x1) → x1 (Rule add0)

MULT(1, x1) → x1 (Rule mulby1)
(34)

The commutative and associative arithmetic laws allow for reordering of operands in

certain operations (see Eq. (35)). In this case, the rules are implemented for scalar addition

and multiplication. The commutative property allows the two operands of a binary opera-

tion to be flipped and are formally described in rules #2 and #4. The associative property

allows for the two binary operations required to compute a three-operand operations to

be reordered. The last three rules reorder operations based on the associative property to

simplify the application of other rules.

ADD(x1, k1) → ADD(k1, x1) (Rule #2)

MULT(x1, k1) → MULT(k1, x1) (Rule #4)

ADD(x1,ADD(x2, x3)) → ADD(ADD(x1, x2), x3) (Rule #7)

MULT(x1,MULT(x2, x3)) → MULT(MULT(x1, x2), x3) (Rule #8)

MULT(k1,MULT(x1, x2)) → MULT(MULT(k1, x1), x2) (Rule prop lit)

(35)

95

Distributive transformation enable an outer operation to propagate to the operands of

the inner operation. In the first two transformations (see Eq. (36)), a multiplication by a

constant is propagated through an addition or subtraction to produce two inner multipli-

cations by a constant. This is not always desirable and highlights the fact that algebraic

transformations do not always produce the most desired result. The latter three trans-

formations force the negation operation to go to the leaves, where it can potentially be

removed via a derived parameter (see Section 6.3.3) or constant folded (see below).

MULT(k1,ADD(x1, x2)) → ADD(MULT(k1, x1),MULT(k1, x2)) (Rule #13)

MULT(k1,SUB(x1, x2)) → SUB(MULT(k1, x1),MULT(k1, x2)) (Rule #15)

NEG(ADD(x1, x2)) → SUB(NEG(x1), x2)

NEG(MULT(x1, x2)) → MULT(NEG(x1), x2)

NEG(DIV(x1, x2)) → DIV(NEG(x1), x2)

(36)

Constant folding combines multiple literals into one literal for reduced processing. This

removes the need for the FPGA to compute the same value every cycle, wasting resources

in the process. These rules are expressed in Eq. (37). The trivial constant folding rules deal

with binary operations with only literals as its arguments. The more complex rules deal

with two level functions whereby operands in both levels are combined and reduced. Certain

transformations such as rule #10 provide obvious benefit, reducing two multiplications into

one multiplication. Other transformations such as rule #11 has questionable benefit as the

number of operations are equal even with a partial result pre-computed.

96

ADD(k1, k2) → k1 + k2 (Rule #1)

MULT(k1, k2) → k1 · k2 (Rule #3)

SUB(k1, k2) → k1 − k2 (Rule #5)

DIV(k1, k2) → k1/k2 (Rule folded const div)

NEG(k1) → −k1

MULT(k1,ADD(k2, x1)) → ADD(k1 · k2,MULT(k1, x1)) (Rule #11)

MULT(k1,DIV(k2, x1)) → DIV(k1 · k2, x1) (Custom Rule)

ADD(ADD(k1, x1), k2) → ADD(k1 + k2, x1) (Rule #9)

MULT(k1,MULT(k2, x1)) → MULT(k1 · k2, x1) (Rule #10)

(37)

Operation strength reduction occurs when an more difficult to compute operation is re-

placed with simpler operations. Specific to an FPGA architecture, divisions are more com-

plex to compute then multipliers, which are more complex then additions or subtractions.

Often fewer calculations are performed as a result of a strength reduction transformation.

The first transformation (see Eq. (38)) reduces a multiply by −1 to a unary negation oper-

ation. The second removes an outer negation of a subtraction by a simple reordering of the

terms. The third removes two cascaded negations. Finally, the last operation transforms a

division by a literal into a multiplication by the inverse of the literal.

Many other operations are possible in this area. For example, a shift is a trivial operation

to compute on an FPGA. A shift, however, produces either a multiplication or division by

a power of 2. A proposed transformation can remove multiplication or division by these

constants into a zero-resource shift. This technique can be extended to multiplication by

constants such as 10, which is equivalent to the sum of the argument left shifted by 1 and

by 3.

97

MULT(−1, x1) → NEG(x1) (Rule mulby-1)

NEG(SUB(x1, x2)) → SUB(x2, x1)

NEG(NEG(x1)) → x1

DIV(x1, k1) → MULT(x1, 1/k1) (Rule div-inv)

(38)

The operation analysis portion of the Dynamo back-end can substitute computable

operations for functions defined in the front-end language. Current, the square and cube

operations are remapped to multiplications as shown in Eq. (39). The operation analysis in

this way can act to enlarge the library of functions by mapping them to know computable

constructs.

SQR(x1) → MULT(x1, x1)

CUBE(x1) → MULT(MULT(x1, x1), x1)
(39)

The operation analysis phase can provide increased performance for software and hard-

ware targets. Based on domain knowledge of FPGA computation, additional hardware-

based optimization can be performed. The current implementation can be augmented with

additional rules to further improve performance, such as strength reduction of multiplica-

tions and divisions to shifts.

Our current implementation converts the tree to a sum-of-products representation. This

occurs primarily due to the rules following the distributive laws, producing multiple terms

of factors. This may not be ideal on an FPGA since multipliers are more costly than

additions. A future version of the operation analysis routines should look at product-of-

sums representations. This requires factoring terms into its representative factors. Example

subset of proposed rules follows:

98

x1x2 + x1x3 → x1 (x2 + x3) (Proposed Rule #1)

x1x2 − x1x3 → x1 (x2 − x3) (Proposed Rule #2)

x2
1 + 2x1x2 + x2

2 → (x1 + x2)
2 (Proposed Rule #3)

x2
1 − x2

2 → (x1 + x2) (x1 − x2) (Proposed Rule #4)

(40)

Proposed rules #1, #2, and #4 reduce two multiplications to one multiplication. Pro-

posed rule #3 reduce four multiplications to one multiplication. These are just a small

subset of the rules that can aid in reducing multiplier dependency on the FPGA.

Other rules based on recasting [69], might be helpful to alter and remove difficult to

compute functions. For example, an exp function is not directly computable on an FPGA

and instead requiring a lookup-table. In its place, a simple differential equation can be used

calculate the exp function:

exp(x1) → x2,

{
dx2

dt
= x1, x2(0) = exp(x1(0))

}
(41)

While this approach adds an additional differential equation, it removes a lookup-table.

Another example can be found for trigonometric functions such as the sin function.

sin(x1) → x2,

{
dx2

dt
= x3,

dx3

dt
= −x2, x2(0) = sin(x1(0)), x3(0) = cos(x1(0))

}
(42)

These approaches require additional effort to implement and understand from precision and

stability perspectives. A general rule for performing these recasting transformations will

require enhanced algebraic and analytical differential capabilities in the Dynamo compiler

and thus can not be completed at this stage of development.

6.3.3 Derived-Parameter Generation

The operation analysis routines additionally generate quantities we refer to as derived pa-

rameters. These derived parameters are generated by the system to have reduced compu-

tational overhead over the original parameter set. Each derived parameter is a function of

the other parameters and literals in the model. For example, neural models often evolve

membrane potential according to

dVmem

dt
=

Iapp − ΣI

Cmem
. (43)

99

V
mem

V
mem

1
C

mem dt !I

V
mem

V
mem

!I
Derived

Param

Figure 23: Example of a derived parameter transformation replacing a reciprocal of a
parameter, Cmem, scaled by an additional parameter, dt. Two multiplications and a division
in the first tree are replaced by a single multiplication via this transformation. The derived
parameter, DP , is now determined by DP = (Cmem)−1dt.

In this equation, Cmem is a parameter representing membrane capacitance. As a result

of algebraic optimization rule div-inv, the division by the parameter is transformed into

multiplication by the inverse, 1
Cmem

. Performing this calculation on every iteration of the

model will become unnecessary as this quantity only changes when Cmem changes. This

expression becomes an ideal candidate to become a derived parameter.

When the model is executing, a change in Cmem will trigger the software infrastructure

to compute the inverse. This new parameter is sent to the system, freeing the computation

engine from computing 1
Cmem

. On an FPGA, this is particularly beneficial since the recipro-

cal operation would require a lookup table to implement. An example taken from a model

compiled through Dynamo is shown in Figure 23. Here, two parameters, Cmem and dt,

and three operations were compressed into one derived parameter and one multiplication

operation.

Specifically, a number of tree operations are performed to generate derived parameters.

A pre-order traversal of the run tree at each node flags all preceding leaf nodes that are

literals/constants and parameters as candidates for collapsing. Leaf nodes that are states,

inputs, or of the input–avail type are not candidates for collapsing. When all predecessor leaf

nodes are flagged as collapsible, that tree is pruned from the system at that node, replaced

with a uniquely indexed derived parameter read node. The pruned tree is then added into

the parameter initialization tree with the write node set to the previously generated derived

100

parameter index.

6.3.4 Redundancy Elimination

Redundancy elimination attempts to find identical expression within the run tree forest and

replace with a single representation. The first step in this process is the conversion of the

data structures from a tree representation to a directed flow graph (DFG). A DFG lacks

the clear structure inherent in a tree. In a tree, the root node is preceded by unique nodes

which are preceded by other unique nodes until the leaf nodes are reached. In contrast,

a DFG node can precede multiple other nodes removing a clear structure. Therefore, a

pre-order traversal from a DFG node can double-count preceding nodes as multiple paths

can utilize these nodes.

A comparison between the tree form and the DFG is show in Figure 24. While these two

data structures represent the same expression, m3, there are significant differences between

the two representations. An expression tree can be trivially traversed, reaching each node

exactly one time. A DFG is not as obviously traversed as multiple paths might include

the same node. Additionally a DFG can contain cycles, or loops where a path originating

at a node can return to the same node. This would amount to there being an algebraic

loop within the graph itself, such as the equation, a = a + b, might produce. This is not

allowed unless a is a state variable, in which a would then become a write node. Dynamo

instead uses a subset of the DFG representation, a directed acyclic graph (DAG) which

allows no inner loops. For the remainder of this chapter, DAG and DFG will be considered

interchangeable in the context of Dynamo.

The graph shown in Figure 24(b) is a directed graph due to the arrows indicating pro-

gram flow. These arrows are termed edges of the graph. While a tree data representation

will take the form of a linked list, a sparse matrix is often used to represent a DFG. This

transformation to a DFG is required to perform redundancy elimination. The resulting

graphs will take the form of Figure 24(b) where identical expressions within the graph are

consolidated and edges redrawn to the root node of the new expression.

Redundancy elimination works on a larger scale than the m3 expression example. The

101

m m

m

m3

(a) Expression Tree

m3

m

(b) Directed
Flow Graph

Figure 24: Illustration of the expression m3 in both the tree form and the directed flow
graph (DFG). The DFG representation is able to link a single read node for the quantity
m to both multiplication operations. The arrows show the directional flow of data through
the graph.

graph is traversed from the bottom nodes, those nodes with no successors. Sub-expressions

are compared recursively and edges redrawn to remove duplicate computations. This is

operation is costly in terms of compiler performance but still finishes in polynomial time,

approximately O(n3). Despite the compiler cost, this optimization free the modeler from

having to simplify and collect sub expressions.

The optimizations in this section all work to enable the modeler to work in their own

domain, describing the model in such a way that is clear for them. The Dynamo compiler

works to improve the computational effectiveness of the target by simplifying algebraic

expressions, removing static calculations from the data-path, and eliminating redundant

computations.

6.4 Hardware Back-end Specific Analysis

This phase of Dynamo is designed to optimize the model around a hardware/FPGA back-

end. At this point, the model consists of three DFGs: the run graph, the parameter graph,

and the state initialization graph. There are additional data structures available, such as the

type table, command line arguments, inputs, outputs, and output rate which are generally

not used in these analysis. The output of this step consists of four graphs where the run

graph is marked up with precision and timing information. The fourth graph contains

expressions that can not be approximated or are optimized out in the back-end. This graph

102

is referred to as the lookup-table graph.

6.4.1 Lookup-table Generation

In a general-purpose computer, there are built-in ALUs (algebraic logic units) and libraries

available for almost any type of computable function. For example, a processor might have a

built-in adder/subtracter, multiplier, and divider. Other functions such as a square root or

exponential function are often calculated via an iterative algorithm [42]. Thought is rarely

given as to the computational overhead of such an algorithm as computers are generally

considered to be “fast enough.”

To maximize performance on an FPGA, we have developed our architecture to be syn-

chronous and to utilize maximal pipelining (see Section 6.6 for more information). There-

fore, none of our blocks utilize internal loops, instead enabling one operation to complete

per clock cycle (the operation latency can still be greater than 1, where the internal registers

become the pipeline). Iterative operations are difficult to implement in this architecture

since the loops must be unrolled prior to evaluation. To remain synchronous, the num-

ber of iterations must be known at compile time. Increased accuracy often requires more

iterations. For many operations, the resources required to compute would use a dispropor-

tionately large set of resources on the FPGA. Therefore, we consider these operations to be

difficult to compute and make them candidates for lookup-table approximations.

Lookup-tables are large storage elements implemented as Block RAMs within the Xilinx

architecture. A simple transformation linearly maps the input into a address for the Block

RAM according to the following relationship:

addr(x) = (x−min(x)) · 2n − 1
min(x) + max(x)

(44)

where x is the input, n is the addressability of the RAM, and the functions min() and

max() represent the range of the input value. These tables often have between 1k (1024)

and 4k words, which provides a suitable approximation for a function. No interpolation or

extrapolation is performed. The inputs are set to saturate at the minimum and maximum to

avoid wrapping the addresses of the table if out of range. In total, an adder and multiplier

103

are required for the address translation along with the Block RAM to complete the lookup

table structure.

Lookup-tables are only applicable to unary functions. The division operation is difficult

to compute, however it can not be directly converted into a lookup-table since it is a binary

operation. Instead, the division has to be reformulated as a multiplication by a reciprocal.

x1

x2
→ x1 ·

(
1
x2

)
(45)

For a similar reason, an arbitrary power can not be evaluated. Instead, this binary function

must be converted to unary operations as in this example.

xx2
1 → exp (x2 · ln(x1)) (46)

The lookup-table algorithm can only replace sub-expressions that have one variable input.

In the example illustrated in Figure 25, the Boltzmann equation,

x∞ =
1

1 + exp
(

Vmem−θx
σx

) , (47)

contains both a reciprocal and an exponentiation. Since both of these operations are

not computable in the hardware, they both require a lookup-table approximation. In

Figure 25(a), the Boltzmann equation is shown with two shaded blocks, representing the

functions that must be converted to lookup-tables. In this minimal algorithm, only the

non-computable functions are approximated. In the next pane, a greedy algorithm is il-

lustrated whereby one lookup-table is enlarged to cover as many operations as possible.

Three operations are now encompassed by the lookup-table. This is preferred as the total

resource requirements are dramatically reduced. Two lookup-tables, each with an adder

and multiplier and the inner addition operation are required for the transformation shown

in Figure 25(a). In Figure 25(b), one lookup-table is required with its one adder and mul-

tiplier. Two adders, a multiplier, and a Block RAM are saved. Finally, in Figure 25(c),

we consider the case where θx and σx are constants and not parameters. In this possibil-

ity, an additional two operations, a subtraction and a multiplication, were absorbed. This

illustrates how the resource cost of setting a value as a CONSTANT is reduced relative to a

PARAMETER.

104

1

θxVmem

x∞

1

exp

DP =
1
σx

(a) Minimal Algorithm

1

θxVmem

x∞

1

exp

DP =
1
σx

(b) Greedy Algorithm

1

θxVmem

x∞

1

exp

DP =
1
σx

(c) Greedy Algorithm with
Constants

Figure 25: Three possibilities for defining a lookup-table from a Boltzmann equation
Eq. (47). The proposed lookup-tables will encompass the shaded blocks within the graph.
a. This examples employs a minimal algorithm which requires two lookup-tables for this
expression. b. In this case, a greedy algorithm reduces two lookup-tables to one lookup-
table. c. If the parameters, θx and σx, are each defined as a CONSTANT instead of a
PARAMETER, the expanded greedy tree covers an additional two operations. Note that the
trees depicted in the figure are DFGs.

A future enhancement could execute the derived parameter routines for a second pass.

The addition of the linear mapping circuitry in front of the lookup-table memory structure

can potentially be combined with the parameters to form new derived parameters likely

saving the subtraction and multiplication operations in Figure 25(b).

The algorithm, written by Christopher T. Church, starts by iterating through each

node of the run graph. At each node, a sub graph is found by expanding out through its

predecessor nodes to encompass as many operations as possible, according to the greedy

algorithm illustrated in Figure 25(b). Each sub graph is evaluated into an operation cost.

The costs are summarized, non-exhaustively, in Table 8. If the total sum of the costs per

operations encompassed by the sub-expression exceed 29, than the table is generated. The

value 29 along with the costs in Table 8 are fairly arbitrary and have been tuned to achieve

our desired output. With these heuristics, raising a quantity to the 5th power would cause

a multiplier-only implementation. Increasing that to the 6th power would switch it to a

lookup-table. These can continuously be tuned as the requirements evolve.

The sub-expression that is targeted for a lookup-table is extracted and added as a tree

105

Table 8: Lookup-table heuristics

Operation Cost
EQ 1
ADD 2
SUB 2
NEG 2
MULT 5
SQR 5
CUBE 10
DIV 30
EXP 30
SIN 1000

in a new lookup-table graph. The root of this tree becomes a new write node with a table

ID value. In the run graph, the subexpression is replaced in this phase with a custom

lookup-table function and an adder/multiplier for addressing during the precision analysis

phase. At this point, the four graphs are passed on to the precision analysis phase.

Lookup-tables are not always the ideal solution to handling these non-computable func-

tions. Table size increases exponentially as the precision requirement increases. With finite

FPGA resources available for block memory, additional approaches need to be explored.

Future enhancements to lookup-table generation can be found in Section 6.9.

6.4.2 Precision Analysis

The majority of neural models are simulated using the floating point number system. A

floating-point number consists of three components, a sign, an exponent, and a mantissa.

Commonly used in simulation tools such as Matlab, the IEEE double precision format

utilizes [1] a 64-bit word, where the first bit is the sign, the next 11 are the exponent,

and the final 52 bits are the fraction. This number system provides an extremely large

range of values, from ± 10323.3 to 10308.3. Effectively, the exponent provides for the order

of magnitude, while the relative precision on the value is determined by the size of the

mantissa.

Computations with a floating-point representation are made efficient on general-purpose

processors through dedicated hardware blocks capable of computing these operations at high

106

speed. These blocks are generally custom-designed integrated circuits specifically for high

speed computation. While these arithmetic logic units (ALUs) can run at a very high

frequency, performance is often lagging for a number of reasons. First, a processor is often

limited to one to several arithmetic processors. Second, because of the memory architectures

utilized in these processors, it is very difficult to maintain a high level of utilization for these

execution units.

An FPGA processor can not run at the same clock rate as the specialized execution

units in a general-purpose processor. What it lacks in raw throughput, it compensates by

instantiating numerous execution units that can be executed in parallel. In addition, since

Dynamo builds what amounts to a unique instruction set architecture based on the model

description, significant utilization can be achieved more readily.

Dynamo has been designed to not use floating-point numerics because of the signifi-

cant resources required to implement them efficiently. This would limit the total number of

operations we can implement in the FPGA, effectively reducing the degree of parallelism.

Instead, we have adopted fixed-point numerics to replace floating-point. Fixed-point oper-

ations are as computational intensive as integers with the capacity to represent fractional

quantities.

6.4.2.1 Fixed-point Computation

In fixed-point computations, the operands are predefined to have a set number of integer

bits and fractional bits along with an optional sign bit. For example, the int32 type in C

is a form of a fixed-point number with one sign bit, 32 total bits, and zero fractional bits.

An 8-bit signed integer might have a range from −128 to 127. The same 8-bit number in

the form of Fix8 3, referring to a signed number with three fractional bits and eight total

bits, would have a range of −16.0 to 15.875.

Fixed-point numbers utilize a two’s complement format to encode signed numbers de-

fined as

negation→ (−x) =!(x) + 1 (48)

where the ! operator performs a bitwise NOT operation on x. Overflow bits are ignored when

107

negating. The sign of a number is readily determined by the most significant bit (MSB).

This notation is very useful for generating compact hardware addition and subtraction

units. A simpler cascaded adder, or a ripple adder, is made of a cascaded set of bitwise

full adders. A full adder has three inputs, A, B, and Cin, and two outputs, S and Cout,

representing the sum of the inputs and the carry-in bit, Cin. The carry-out bit, Cout,

becomes the input to the carry-in bit of the successive full adder. The gate level logic is

defined as

S = A⊕B ⊕ Cin

Cout = A ·B + A · Cin + B · Cin

(49)

where ⊕ is the exclusive OR (XOR) operator, + is the OR operator and · is the AND

operator. All adders made from these full adder building blocks are sign agnostic. Because

of the two’s complement representation, both signed and unsigned numbers can be added

with no additional circuitry. Subtraction requires minimal circuitry. The subtraction A−B

is evaluated as A + (−B). In practice, B undergoes a bitwise negation and the least

significant Cin bit is set to a one to complete the two’s complement negation.

When two fixed-point numbers are summed or subtracted, the decimal places are pre-

aligned with no changes other alterations to the structure. Floating-point addition is very

costly in hardware since an alignment step must occur prior to the computation. This

requires a addressable shift-register, which for wide bit-widths can be extremely costly

and contributes to the majority of used resources. This is the primary reason for the use of

fixed-point numerics. Since multiplication does not require any pre-alignment, floating-point

multiplication units utilize marginally more resources than their fixed-point equivalents. A

mixed floating-point, fixed-point design is not practical as conversion between the number

formats will require the costly addressable shift-registers.

6.4.2.2 Precision Estimation

The DML specification requires each PARAMETER, STATE, and INPUT to be defined with the

precision in the form of a low value, a high value, and a step size. For example, the DML

statement

108

Table 9: Table of range propagation rules for n-ary operations

low (L∗) high (H∗) step (S∗)
x1 + x2 L1 + L2 H1 + H2 min(S1, S2)
x1 − x2 min(L1 −H2,H1 − L2) max(L1 −H2,H1 − L2) min(S1, S2)
x1 · x2 min(L1L2, L1H2,H1L2,H1H2) max(L1L2, L1H2,H1L2,H1H2) S1S2

x1?x2 : x3 min(L1, L2) max(H1,H2) min(S1, S2)

PARAMETER I_in (0 TO 40 BY 0.1) = 20;

defines an interval [0, 40] with a step of 0.1. We define this precision to mean that each

value defined within the interval of [all 401] value should be representably with a fixed-

point resolution within a tolerance of 50% the step value. For literals of the system, we

quantize the literal to minimum precision to preserve the value with 1% precision. For

example, the number x = 0.1 can be represented as a UFix9 9 number. When quantized,

x ' 0.099609375 = 9b.000110011.

The range and step information is propagated in a single pre-order traversal through

the run graph. This range and step information is determined by a unique algorithm per

operation type and is based on operands. For example, an addition of a variable by a

constant will result in a shift of the range by the constant and no change to the step.

However, the addition of two variables will expand the range beyond both operands as well

as adjust the step size.

Rules for the propagation of range and step information through the run graph for binary

and ternary operations are summarized in Table 9. These rules were generated primarily

to remove the possibility of overflow. Overflow is condition by which the value exceeds the

bounds of the representation. On the FPGA, the most significant bits are lost and the

value is wrapped, causing systemic miscalculations. Overflows are catastrophic failures—

the simulation can not continue after an overflow condition. Underflows occur when the

fixed-point representation is insufficient to represent a very small number. In this case, the

value reverts to zero. This is undesired as small values can be important depending on the

particulars of the model. However, the absolute error of the misrepresentation is very small,

109

despite the relative error being 100%.

Overflows are also easier to determine and correct for. The addition of two numbers

cannot exceed the sum of the maximums of the operand ranges. A similar rule holds

for multiplication, the largest product of a multiplication is the maximum of the inner

products of the ranges. It is more difficult to make a general rule for the step size through

an operation. It can be argued that an addition operation should propagate the maximum

of the operand step sizes. This would imply that the operand with the reduced fractional

precision would negate any additional procession in the smaller value. However, in certain

operations where small numbers are accumulated, such as in an integration, the step size

must follow the more precise operand. The resulting rule uses the conservative approach

and propagates the smaller step through an addition and subtraction. For multiplication

operations, the full precision is preserved only when the new step size is the product of

the step sizes of the operands. This is highly conservative. For example, the cubing of

the m activation gate requires two multipliers. It can be argued that the precision of m3

is no different than the precision of m, since both represent the same activation function.

The compiler does not have the information to make that distinction. While this is not

an optimal approach—excessive resources are required for larger multipliers, precision is

preserved through multiplications.

The IF operation simply passes on the worst-case precision of its dual operands. Other

operations, such as logical operators and comparison operators work solely on binary values

and therefore do not propagate precision information.

Dynamo defines numerous unary operations each of which must propagate precision.

These operators are illustrated in Figure 26 and in Figure 27. The functions depicted in

these plots are commonly found in neural models or are representative of other functions

that might be used. For example, a shape of a hyperbolic cosine/secant function can be used

for modeling the slowing of a time constant around a gate activation. Exponentials are often

used for modeling activation functions and synapses. Functions where the range is bounded,

such as in a hyperbolic secant (see Figure 26(c)) and hyperbolic tangent (see Figure 26(d)),

are preferable for conversion into fixed-point as they span few orders of magnitude. A

110

-5 -2,5 0 2,5 5

2,5

5

7,5

(a) exp(x)

-5 -2,5 0 2,5

2,5

5

(b) cosh(x)

-4 -3 -2 -1 0 1 2 3 4

0,5

1

1,5

(c) sech(x)

-2,5 0 2,5

-1,2

-0,8

-0,4

0,4

0,8

1,2

(d) tanh(x)

Figure 26: Plots of the four continuous functions that are supported and processed through
the precision analysis phase.

hyperbolic cosine function (see Figure 26(b)) or an exponential (see Figure 26(a)) with a

large domain will quickly span many orders of magnitude requiring excessive precision to

describe the function.

The equations representing the rules for propagating ranges through the unary functions

are summarized in Table 10. The negation operator simply inverts the domain where the

low becomes the high and the high becomes the low. The step remains unchanged. The

square root operation is currently set to simply take the square root of the elements of the

domain to determine the output range. This is an approximation based on being a one-to-

one function for all positive real inputs. Additionally, since a square root grows sub-linearly,

we have found that less precision is required for its representation.

This can be contrasted with an exponential function, f(x) = exp(x) which can quickly

grow by orders of magnitude as x increases. For x < 0, the exponential function approaches

zero, which potentially requires significant fractional precision. This makes determination

of precision through an exponential particularly difficult to reason through. When the

111

-5 -2,5 0 2,5 5

-2,5

2,5

Figure 27: Plot of a reciprocal partial function. The discontinuity of at x = 0 makes this
is a special case as it is not a total function across the real domain.

minimum input domain is small as determined by the exponential of the minimum compared

with the step size, the function is approximated to have an output range leading with zero.

The max output range is readily found by exp(H) while the step size remains constant.

This is to balance the need to increase the step size for x > 0 and decrease the step size for

x < 0. It is a compromise but has worked sufficiently well to date.

The hyperbolic functions in the table are all processed in different ways based on their

varied classifications. All three functions have all real numbers as their domain. The range

for a hyperbolic cosine function is [1,∞). If the input range crosses zero, the minimum

is set to 1, otherwise the largest and smallest hyperbolic cosine evaluations make up the

output range. The step size is set such that the number of unique inputs equals the number

of unique outputs. A similar process is followed for range determination of a hyperbolic

secant function which has a range of (0, 1]. In this case, the maximum output range is set

to 1 based on the zero crossing. The minimum output, L∗, and step, S∗, are computed

by a similar method as described above. The hyperbolic tangent function as a one-to-one

function is readily determined by the same method as the square root. However, for this

operation, the output step size does not have to be computed since the hyperbolic tangent

function is approximately linear for small inputs.

The reciprocal function, or a constant divided by a variable, is valid across two domains,

the set of all positive real numbers or the set of all negative numbers. The domain cannot

span across zero. When this happens, it becomes no longer possible to reason on the

output range as it spans (−∞,+∞). This underlying condition occurs when processing the

112

Table 10: Table of range propagation rules for unary operations. The O-times symbol,
⊗, is true when the input range of the function crosses zero. The comparison operator,
(cond)?(iftrue) : (iffalse), is borrowed from C for brevity. Each of these are functions
of one variable except for the division operation whereby the numerator is an arbitrary
constant, k, and the denominator is the unary operand.

low (L∗) high (H∗) step (S∗)
−x −H −L S√

x
√

L
√

H
√

S
exp(x) (exp(L) < S)?0 : exp(L) exp(H) S

cosh(x) ⊗?1 : cosh(min(|L|, |H|)) cosh(max(|L|, |H|)) cosh(max(|L|, |H|)) S
H−L

sech(x) 1
cosh(max(|L|,|H|)) ⊗?1 : 1

cosh(min(|L|,|H|))
S

H−L

tanh(x) tanh(L) tanh(H) S

k/x min(k/L, k/H) max(k/L, k/H) S H∗−L∗

H−L

Hodgkin–Huxley model as described in Section 6.4.2.3.

After the range information is propagated through all operations within the run graph,

the data structure adjusts to include precision information. Each range is converted to a

precision based on the 50% of the step rule described above. Lookup-tables defaults, in

this version, to utilize a maximum of 18-bits. Other operations can grow to arbitrary bit

widths unless constrained by the bitwidth compiler option. This option can cap the total

number of bits for any operation. This is helpful and often required as bit-widths tend to

grow rapidly as the ranges propagate through the graph structure. A maximum bit-width

is a useful heuristic that can partially offset the conservative slant utilized in estimating

precision. The final step adds the addressing circuitry and appropriate bit-widths to the

graph in the new data structure denoted as the precision run graph.

6.4.2.3 Precision Challenges

The precision algorithm implemented to date is not a perfect algorithm. There has yet to

be an ideal or proven algorithm to convert a floating-point simulation to a fully equivalent

fixed-point simulation (see Chapter 8 for more detailed analysis of this issue). Despite

being able to readily convert the majority of simple mechanistic models (ion channels, for

example), the sum of the parts does not necessarily imply the production of an identical

model. This can be because of an oversimplified model definition or might even require

113

numerical imperfections.

For an example of the latter, consider the generally accepted form for an α activation

function for a sodium channel in a Hodgkin–Huxley model. The α function often has the

form of

αm =
Vmem+40

10

1− exp
(
−(Vmem+40)

10

) (50)

which describes the forward rate of m-gate activation as a function of Vmem. This expression

should be valid for all physiologically-relevant membrane potentials, but instead exhibits a

discontinuity at Vmem = −40. This discontinuity is caused by the denominator of Eq. (50)

crossing zero when Vmem = −40. The α function does not approach infinity as the denomina-

tor approaches zero since the numerator also approaches zero. This 0/0 condition is known

as a removable singularity and refers to a point, x∗, where the lim
x→x∗−

f(x) = lim
x→x∗+

f(x),

but where f(x∗) is undefined.

This condition is often not a problem because it is unlikely that Vmem = 40 given that

these simulations often uses double precision floating point. It becomes a significant concern

for fixed-point simulations where the minimum precision is utilized to maximize simulation

performance. It is likely that the original formation is not tied directly to the physiology

as a removable singularity can not occur in cell, but is instead an undesired artifact of the

curve fit function.

Precision determination remains an open area of research and will likely remain that

way for some time to come. There appear to be no fool-proof methods to consistently

convert floating-point to fixed-point. It is further likely that it might never be possible to

fully convert between representations. Despite this, fixed-point is a advantageous number

system and might find itself as a target at the onset of future model development.

6.4.3 Timing Analysis

In a sequentially executed architecture, such as on a general-purpose computer, instructions

or commands are evaluated serially. If a particular operation requires additional time, or

clock cycles, to complete, the processor pipeline feeding the execution engine stalls. This

114

causes no issues as a processor is generally not a real-time1 device (certain software platforms

can provide some real-time capability to a processor). When multiple execution units are

present, such as in a reconfigurable device, it is critical to properly time operations to

maintain synchrony.

All operations instantiated on the FPGA have a sample period of 1 cycle. This means

they are able to produce a new output every cycle of the simulation. Each operation also

has a latency associated with it, defined as the number of cycles in which a change in the

input would cause a change in the output. The delays within an operation are known as

pipeline stages. More pipeline stages allow a greater number of simultaneous computations

propagating through the operation although a maximum of one output per cycle is possible.

In this analysis phase, the number of cycles of latency per operation is determined based

on the properties of each operation.

Previous work has been done in estimating optimal latencies through operations. In one

study, we generated a six-deep cascaded operation chain where we incrementally increased

the latencies and recorded the post-place & route critical path time. We found that increas-

ing latency linearly improved the maximum clock frequency until a point where the curve

flattened and the maximum frequency was achieved. This suggested that if, for example,

2 cycles of delay were sufficient to get 90% of maximal performance, utilizing additional

FPGA resources to increase the latency will yield marginal benefit. This work was repeated

for four operations, addition, subtraction, multiplication, a constant multiplication, or a

scaling operator. More information can be found in Chapter 4.

Operations over larger bit widths require more resources to implement and therefore

often require additional cycles of latency to maintain a high throughput rate. The previously

described study utilized bit widths of 14-bits and 28-bits. Many precisions grow to larger

than 28-bits using our precision estimation algorithm. Therefore, we embarked on a more

exhaustive study of performance as a function of precision of its operands.

We utilized the Xilinx Core Generator (7.1i) software package to generate operation

macros for addition, subtraction, addition and subtraction dual-use, and signed/unsigned

1Real-time is defined here to refer to a definite time evaluation.

115

multiplication. The core generator was configured to create a performance optimized core

for a given bit width. A performance optimized core will have a sample period of one

clock cycle (i.e. will utilize no internal overclocking), and have sufficient pipeline stages to

maintain high clock throughput. Exactly how this algorithm chooses the number of stages

is proprietary to Xilinx. Nonetheless, we were able to use this information as guidelines for

our own latency selection analysis.

We ran the Core Generator tool for all combinations of inputs between 2 and 64 bits.

We assumed that the operands are commutative, for example, a 10-bit input summed with

a 20-bit input is equivalent to a 20-bit input summed with a 10-bit input. We found that the

results for adders, subtracters, and mixed-use adders/subtracters, have approximately the

same performance. For this reason, only the adder/subtracter combination is illustrated,

although the results are similar for the single-user operations.

Each adder was set to have a delay of 2 cycles to generate baseline data across all adder

sizes. This allowed for a chain of registers at the inputs and the outputs. For addition

and subtraction, we found that consistently fast cores were generated for all bit widths (see

Figure 28(a)). Maximum clock frequencies, defined as the inverse of the critical path delay,

went from 200 MHz to almost 500 MHz corresponding to approximately 5 ns down to 2 ns,

respectively.

For the Dynamo timing analysis routines, we chose to implement summing operations

with one cycle of delay if the output bit width is less than or equal to 32-bits and two for

the remainder of cases. We use the following expression to define the lat as a function of

the bit-width, n.

lat = dn/32e (51)

The cut-off, 32, is chosen arbitrarily and is currently used as a place holder. The resulting

latencies are plotted in Figure 28(b). The extra delay was primarily added in deference to

longer wire delays that can exist as operations become larger.

It should also be noted that this timing analysis is performed for the case where an adder

is generated using Xilinx slices and not the pre-built Xilinx DSP blocks, which consist of

a multiply–accumulate operation and three multiplexers. Future enhancements can take

116

10 20 30 40 50 60

10

20

30

40

50

60

2

2.5

3

3.5

4

4.5

(a) Critical path delay (ns)

2

22

10 20 30 40 50 60

10

20

30

40

50

60

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(b) Pipeline stages

Figure 28: Adder/Subtracter contour plots showing a) minimal critical path delay and b)
number of internal pipeline stages, as a function of bit widths of the operands. Plot a) is
in units of ns and plot b) refers to the total latency of the operation as it is implemented
in Dynamo. All analysis are performed with two pipeline stages.

117

advantage of these internal adders.

Multipliers are not built from slices but instead from DSP blocks. Each DSP block

can compute an 18-bit by 18-bit signed multiplication generating a 35-bit signed product.

Alternatively, a 17-bit by 17-bit unsigned computation will generate a 34-bit unsigned prod-

uct. Core Generator was tasked to produce each combination of 2−64 bit wide inputs with

a latency of one cycle. Both signed and unsigned multiplications were tested with similar

results. The resulting critical path time is shown in Figure 29(a) where the maximal op-

erating frequency ranges from approximately 40 MHz to almost 160 MHz. This result is

not typical as additional pipeline stages can be added to reduce the latency. The purpose

instead was to ascertain the role of increased bit widths on period without compensation.

Core Generator suggests a pipeline depth to maximize performance. The number of

cycles of latency was found to follow the following relationship

opA = b(a− 1)/17c

opB = b(b− 1)/17c

lat = 4 + opA + opB + opA · opB

(52)

where a and b are the bit widths (minus the sign bit) of the A and B inputs, respectively (see

Figure 29(b) for a graphical depiction). A multiplier with 64-bit inputs would require 19

latencies according to Eq. (52). Since the Dynamo precision analysis component routinely

forces multipliers to this size, register usage can get fairly constrained. Instead, we use a

more conservative relationship described by

lat = da/17e+ db/17e. (53)

This removes the extra latencies caused by the cross products of opA and opB and reduces

the base 4 stages required for all multipliers. The ceiling function is used to compensate

for small multipliers. In practice, this is sufficient to remove the critical timing path from

multipliers.

Other operations are determined by a table of operations and latencies as summarized

by Table 11. Most operations require relatively small footprints and therefore include only

one level of registers. This is less for the performance of operations but more to mitigate

118

10 20 30 40 50 60

10

20

30

40

50

60

10

15

20

25

30

35

40

(a) Critical path delay (ns)

5

5 6

6

6

7

77

7

7

99

9

9
9

11

11

11

11

1212

12

15

15

15

19

10 20 30 40 50 60

10

20

30

40

50

60

6

8

10

12

14

16

18

(b) Pipeline stages

Figure 29: Multiplier contour plots showing a) minimal critical path delay and b) number
of internal pipeline stages, as a function of bit widths of the operands for a signed multi-
plication. Plot a) is in units of ns and plot b) refers to the total latency of the operation
as suggested by the Xilinx Core Generator. All analysis are performed with one pipeline
stage.

119

Table 11: Table of pipeline stages for each operation type.

Operation Latency
ADD see Eq. (51)
SUB see Eq. (51)

MULT see Eq. (53)
NEG 1
NOT 1
GT 1
LT 1
GE 1
LE 1
EQ 1
NE 1

AND 1
OR 1
IF 1

SQR see Eq. (53)
CUBE 2× Eq. (53)
TABLE 1

wire delay and provide the synthesis tool with additional registers to maximize overall

performance.

The timing information is compiled per operation and appended to the graph structure

to create a new precision and timing expression graph (PTEGraph). Timing analysis is the

final stage of processing prior to reaching the target back-ends. The output, the PTEGraph

is therefore the final graph output and is utilized throughout the software and hardware

back-ends.

6.4.4 Operation Correlation Table

While many of the neural models of interest show significant regularity, the back-end graph

representation is devoid of structure. The hardware back-ends can take advantage of reg-

ularity if there was a way to propagate this type of information without the structure in

tact. We employed a operation correlation table as a means to encode regularity for the

benefit of the back-end.

This table contains correlations between each operation within Dynamo. For operations

120

Table 12: Correlations by operation over the four passes of the correlation determination
algorithm. The first pass is the intial pass, followed by a forward pass, a backward pass,
and an additional forward pass. This example only shows correlations between the two
equations in Eq. (54). Correlations within each equation are zero and therefore ignored in
this example.

Operation Pair Before Pass #1 Pass #2 (F) Pass #3 (B) Pass #4 (F)
(×1,×2) 0 1 1 3 3
(×1,+2) 0 0 0 0 0
(+1,×2) 0 0 0 0 0
(+1,+2) 0 1 2 2 5

that are of different types, for example an addition and a multiply, the correlation is zero.

Due to the large number of zeros, the table was built as a sparse matrix where only the

non-zero correlations were specified. The correlation table was built along three passes, an

initial pass, a forward pass, and a backward pass.

The initial pass iterates through each node in the graph. For every other node with

the same operation type, an initial correlation of one was set in the table. At the end of

this pass, all addition–addition pairs had a correlation of one, all multiplier–multiplier pairs

had a correlation of one, etc. The forward pass sums correlations of predecessor nodes. If

predecessor nodes are correlated, the current nodes are increased by the same amount. In

the following two expressions,

a1 ×1 b1 +1 c1

a2 ×2 b2 +2 c2

(54)

after the initial pass, the multiply operations (×1,×2) and the addition operations (+1,+2)

are correlated with a value of one. In the second pass, the addition operations are each

preceded by correlated multiplier operations. Therefore, the addition correlations are in-

creased to a value of two. In the third pass, the correlations are backward-propagated such

that the multiplication correlations are increased to three. The final forward pass increases

the addition correlation to five.

With the corr csv Dynamo command line option, a comma-delimited file is generated

that contains cross-correlations for the write nodes. At each write node, all predecessor

121

nodes to the leaves of the graph are extracted. Each combination of two write nodes is

evaluated by computing the inner cross-correlations of each node within each tree. These

cross-correlations are summed to determine a graph wide correlation.

We have plotted the write node cross-correlations for three models, a five neuron Hodgkin–

Huxley model[40] (see Figure 30), a single Booth, Rinzel, and Kiehn[10] (see Figure 31),

and a heterogeneous population consisting of two Booth, Rinzel, and Kiehn models, two

Hodgkin–Huxley models, and three FitzHugh-Nagumo models[32, 58] (see Figure 32). Each

of these plots were normalized such that the correlation is one for highly-correlated states

and zero for non-correlated states. The diagonal, or a state’s correlation with itself, is forced

to be one.

Five Hodgkin–Huxley models are depicted in Figure 30. The strongest correlations are

shown for the voltage terms. The gates are also highly correlated with like gates. It is also

telling to see how dissimilar gates show some correlation. Despite being different gates,

they share a significant amount of structure.

The Booth, Rinzel, and Kiehn model shown in Figure 31 is an example of a multi-

compartment model with an assortment of non-regular ionic conductances. This model

additionally contains two states that track Ca2+ concentrations. Despite each state having

non-identical structure, correlations did emerge that show clear similarities. The N-type

and L-type activation and inactivation gates in the soma and dendrite compartments (mnD,

hnD, ml, mnS, and hnD) showed the most significant cross correlations as their structures

are most similar. Very strong correlations emerged between the K+ activation gate and

the Na+ inactivation gate. Weaker, but still significant correlations emerged between Ca2+

concentration in the soma and dendrite, but little correlation was found between the two

measured membrane potentials, Vs and Vd. These correlations illustrate how the Dynamo

compiler can take advantage of regular structure in seemingly non-regular models.

In the final example, a heterogeneous model consisting of two Booth, Rinzel, and Kiehn

models, two Hodgkin–Huxley models, three FitzHugh-Nagumo models, and a time state is

illustrated in Figure 32. This plot shows almost no correlations exist between these unique

models. This is not particularly surprising since the Booth, Rinzel, and Kiehn model uses

122

Figure 30: Plot of the correlation table for five Hodgkin–Huxley neuron model[40]. The
plot is 20 by 20 consisting of each 4-state neuron model. Higher correlations are indicated
by red and lower correlations by blue. Correlations are normalized to go between zero and
one.

Figure 31: Plot of a single Booth, Rinzel, and Kiehn model[10] cross-correlations. Higher
correlations are indicated by red and lower correlations by blue. Correlations are normalized
to go between zero and one.

123

Figure 32: Plot of the correlation table for two Booth, Rinzel, and Kiehn models, two
Hodgkin–Huxley models, and three FitzHugh-Nagumo models[32, 58] and a time state.
Higher correlations are indicated by red and lower correlations by blue. Correlations are
normalized to go between zero and one.

Boltzmann equations for computing ionic conductances verse α–β terms in the Hodgkin–

Huxley model. Cross-correlations within each model type clearly emerge as indicated by

the parallel lines to the diagonal that are present.

6.5 Software Back-end

The Dynamo compiler began as an off-shoot of MRCI [65], a compiler for the translation

of dynamical systems to a C-based, real-time Linux platform. While the compiler has been

completely rewritten at least twice since MRCI, the concept of a software back-end has

always been present. We have developed the software back-ends for two primary reasons:

1), to provide an easy to use and fast-compile floating point execution engine for our models

written in the DML and 2), to provide a debugging platform for the hardware back-end

and the internal components of the compiler.

The software back-end has two primary flavors, a Matlab back-end that exploits the

mathematical capabilities already present in that development environment and a more

124

recently developed C-based back-end to allow for high-performance, platform-independent

software simulations for interaction with our Java-based modeling toolkit.

In general, the software back-ends generate a test bench with three main functions.

First, the test bench provides an interface to set model parameters (defined in the DML)

and simulation parameters (such as duration, input sequences, output selection). Next, the

test bench performs the numerical approximation of the evolution of differential equations

making up the model definition. Finally, the test bench provides the means to save data

from the simulation for post processing.

The input portion and the output portion are particular to the back-end target, while

the core simulation engine is fairly similar (less slight semantic differences). The simulation

engine is built by iterating through each of the graphs rooted by the write nodes in the run

graph. Each write node indicates a quantity that must be saved per iteration, such as a

state or an intermediate value that is set in the DML as an output. Each graph is traversed

post-order such that the preceding nodes are evaluated prior to evaluating the current node.

Evaluation of a node consists of converting the operation, value (if literal), or variable name

(if read node) to a string representation based on the particular back-end’s syntax.

Both the C and the Matlab back-ends execute their simulations using double-precision,

floating-point numerics. At the time of this publication, the Matlab back-end can generate

a fixed-point simulation engine with optional implementation of lookup-tables. This back-

end has been critical as a tool for studying the implication of fixed-point precision algorithms

on model output. The fixed-point back-end utilized the Fixed-Point Toolbox in Matlab,

which provided an extremely flexible environment for simulation, but very poor performance

relative to the floating-point simulation engine. The C fixed-point back-end is currently

in development and will utilize arbitrary length integer libraries to perform fixed-point

simulation.

6.5.1 Matlab

The Matlab development environment (Mathworks, Natick, MA) provides a powerful plat-

form for analyzing, processing, and visualizing large sets of data. As a general-purpose

125

Table 13: Information stored in DIF file fields as a function of the type of number system.

DIF Property Floating-Point Fixed-Point
Inputs Name Name, Range, Precision
Outputs Name Name, Precision
Internal Params Name, Equation Name, Equation, Precision
External Params Name Name, Range

programming language, models can be developed in the Matlab language and readily

simulated numerically. The combination of a full programming language suited for mathe-

matical evaluation and a suite of high-level analysis tools makes Matlab an ideal platform

for a software back-end target.

We have additionally exploited System Generator, a custom blockset for Simulink, as a

target for the FPGA back-end. Maintaining a common platform for the hardware back-end

and a software back-end has allowed us to develop a substantial library of tools to interact

with both targets. This infrastructure that we developed consists of a custom file format

containing relevant Dynamo information from the generation phase and from the original

DML model description, a dynmodel class to coordinate the interfacing to the software and

hardware model, and a set of graphical interfacing tools for user control of the model.

6.5.1.1 Dynamo Information File (DIF)

The Dynamo Information File, or DIF, is generated by Dynamo along with the simulation

engine and contains all the information required for interacting with the simulation engine

above. This includes global model information, such as model name, platform (software

or FPGA), output rate, and time-step. The DIF file additionally compiles information

on inputs, outputs, internal parameters, and external parameters. The data per type is

dependent on whether the target simulation is to be performed in fixed-point or floating-

point as shown in Table 13.

Inputs are the basis for protocols (a methodology by which a model is evaluated and

metrics are deduced) and provide the means for stimulating the model. Neural models

typically have inputs that can be injected currents, command voltages (for a current clamp),

126

or synaptic events. For floating point simulations, inputs are referenced by name only. For

a fixed-point simulation, the input must be coupled with a range to avoid an overflow

condition from occurring, and a fixed-point precision to properly quantize the input signal.

Outputs can either be a state or an intermediate value to be saved by the system. The

DIF format enumerates the outputs and specifies precision information in the case of a

fixed-point simulation engine. Outputs (and inputs) are also influenced by an output rate

property in the DIF which downsamples (and upsamples) by a specified factor.

Parameters are all those quantities defined in the DML to be adjustable by the modeler.

Parameters are split into external and internal parameters as a consequence from generating

derived parameters (see Section 6.3.3). External parameters are those quantities that are

adjustable directly by the modeler, they have external relevance. Internal parameters are

evaluated as a function of the external parameters and provide for direct input into the

FPGA. The separation of internal parameters from external parameters removes static

calculations from the execution loop. In the case of membrane capacitance, Cmem would be

the external parameter while 1
Cmem

is the corresponding internal parameter.

For fixed-point simulations, the DIF file has additional fields for both internal and

external parameters. For internal parameters, since they are user defined, a range is required

to keep the model within normal operating conditions. External parameters require a

precision and are quantized since they directly feed the software or hardware simulation.

6.5.1.2 “Dynmodel” Object Framework

To communicate with low-level hardware or a basic software interface within a user-approachable

modeling environment requires the use of a driver. A driver is a software interface to trans-

late domain-specific commands, e.g. inject a 5 second current ramp, into the low level

commands, e.g. prepare a 50,000 point quantized vector and assign to the Iapp input. In

the Matlab interface, a common driver is utilized for software and hardware simulations.

The driver is written as Matlab class, dynmodel. The dynmodel class is instantiated

with a argument specifying the DIF file. An additional command loads the simulation

into working memory. Additional class methods are used for querying the inputs, outputs,

127

Figure 33: Screen capture of the DynGui package depicting the DynParam parameter
adjustment tools and the analog input and output system. The analog interfaces are for
hardware simulation only and will be described in more detail in Section 6.7).

parameters, ranges, etc. and to set new values for parameters, define vectors for inputs,

and select outputs for logging. Simulations are executed by an additional command which

goes through all processing necessary for running the simulation in software or hardware.

Output data is then made accessible in the class for plotting or further analysis.

6.5.1.3 Matlab Graphical Interfacing

Once a driver was constructed in Matlab, we developed a prototype graphical interface

to interact and begin model development using Dynamo. Graphical interfaces were first

developed for a version of the hardware back-end that utilized the analog interfaces on the

Xilinx XtremeDSP-II/IV development boards. This version multiplexed all desired outputs

on the two embedded analog data converters. This is depicted in the screen capture shown

of DynGui in Figure 34.

This interface was the first to demonstrate the use of slider bars to modify all the

parameters of the system interactively. The slider bars and edit box were bounded by the

parameter ranges. This same parameter adjustment interface was incorporated into the

128

Figure 34: Screen capture of the DynPlot package showing a capture of a spiking two
neuron Hodgkin–Huxley model. This data was captured using the digital FPGA interfaces.
This tool is identical to what is used for software-based simulations in Matlab.

digital version of DynGui called DynPlot (see Figure 34).

DynPlot interacts with both the software and hardware back-ends as a traditional mod-

eling environment. Simulations are run according to a set duration after which the selected

outputs (via the pull-down menus) are plotted on each graph window. Plots can be held

frozen, added to with additional traces, or replaced following each re-execution of the simu-

lator. An arbitrary number of graph windows can be added to investigate numerous outputs.

Plots can also be further analyzed by opening a separate plot window or by saving to the

workspace.

These tools provided a useful base environment on which to develop and refine the

Dynamo compiler. The latest features have not been ported to DynPlot, namely the use of

inputs. Due to its close interaction with the dynmodel class, those models without inputs

should be fully accessible to DynPlot with minor modifications. Despite this, development

has shifted to the next generation interfaces based on C and Java, as described in the

following subsection.

129

6.5.2 C/Java

Based on the original Matlab interface and the development of a prototype C back-end,

we have embarked on a quest to improve the C back-end to the equivalent feature level

of the FPGA back-end. An equivalent feature level would include the ability to perform

numerically identical simulation as on the FPGA. This C back-end is intended to be a

replacement for the Matlab back-end. Primary development for the C back-end has been

undertaken by Steve Si Jia Feng, but is included here for completeness.

There are several motivating factors for moving to a C-based back-end. First, C is

known as a high-performance computing environment with little overhead. It is considered

an unsafe programming environment due to the propensity of run-time errors to occur,

however autogeneration mitigates much of this risk. Next, fixed-point simulations can

be performed efficiently utilizing integer types for calculations under 64-bits. For larger

fixed-point operations, 3rd-party public-domain libraries are readily available that optimize

method based on size of operands. Third, while Matlab requires approximately 8 bytes

of storage space per value (discovered via inspection within Matlab), large vectors can

be efficiently pre-allocated saving substantial memory and improving performance. Next,

compilation of C code can be performed using the freely-available GNU C compiler (gcc) and

does not require any commercial products to generate nor execute the simulation engine.

Finally, the C back-end can be readily incorporated into a larger framework to develop user

interfaces, such as the .NET framework on the Windows platform, XCode for an Apple

platform, or Java for platform independence.

We have chosen to develop the C back-end to interface with a Java user application (see

Figure 35 and Figure 36). Java is a flexible, object-oriented language with an extensive

library of built-in functions and a robust framework for graphical application building.

Additionally, it is platform independent. This feature is very important as we develop on a

Linux platform while the user base would be primarily on a Windows platform.

The Java to C interface is generated via the Java Native Interface (JNI). This provides

the ability for native execute of machine code within a Java application. Once native code

is incorporated into Java, some of the benefits of Java are compromised. For example,

130

Figure 35: Screen capture of Java GUI depicting the somatic and dendritic voltage trajec-
tories in a Booth, Rinzel, & Kiehn model [10] given a constant input current. The interface,
written in Java, utilizes a C-based auto-generated C simulation engine and JNI-based in-
terfacing.

platform independence is lost, but this is mitigated by the fact that the C output can be

compiled cross platform. Garbage collection is not possible across the JNI, instead buffers

must be released on the heap following usage. Finally, common C runtime errors such

as pointer overruns can cause the Java application to crash. This becomes an additional

challenge for the development of this C back-end.

The C back-end is in the prototype/development stage. More will be known as the de-

velopment progresses including performance of the C back-end through the Java interface.

It is expected that this JNI-based interface can be extended to other applications beyond

simple plotting and parameter tuning. For example, high-level analysis tools such as param-

eter search routines or sensitivity analysis tools can utilize the same interface independent

of Dynamo.

131

Figure 36: Screen capture of a three-pane dialog box for configuring models’ ports and
parameters. This screen allows inputs to be mapped to protocol inputs, e.g. a voltage-
command signal mapping to the somatic voltage state. Outputs are selectively set to be
logged while all tunable parameters are accessible through a pull-down menu for run-time
tuning.

6.6 Hardware Back-end

The Dynamo compiler was researched and developed to automate the translation of dynam-

ical systems to a tightly-coupled, high-performance hardware-targeted implementation. The

previous sections of this chapter dealt with general compiler transformations, optimizations,

and analyses. This section is instead focused on the particular transformations, algorithms,

and heuristics that are used in the hardware generation phase.

Our current hardware back-end has undergone three full rewrites. The first version

was a simple translator, i.e. each operation represented in the run graph was translated

to an equivalent System Generator block. This back-end was known internally as the tree

back-end since it was a direct translation from the graph/tree data structure. For models

that exceed the number of available resources, the compiler fails. For one Hodgkin–Huxley

model, this method is sufficient, but in general, as models grew in size, this back-end became

inadequate.

The first-generation implementation took the form of a multi-cycle processor, each op-

eration was identical where the instruction takes a set number of cycles to compute one

iteration of the numerical solution. A multi-cycle architecture is not efficient as only one

132

cycle of the total cycles per sample period is used for computation. Pipelining is one method

processors use to improve the efficiency of a data-path. In a pipelined processor, multiple

instructions are processed simultaneously as if moving along an assembly line. As an in-

struction moves from one stage to the next (via a clock edge), the previous stage is occupied

by the next instruction. If a pipeline is fully utilized, the overall efficiency rises by factor

equal to the number of stages.

Our previous modeling efforts described as the manual art, manual engineered, and

assisted flow methodologies all employ fully utilized pipelines as their core execution engine.

In each case, the model chosen had a highly regular form. In the manual art example, a ten-

compartment motoneuron model was constructed with a ten-stage pipeline. Likewise, in the

assisted flow example, a 40-neuron population model emulating the pre-Bötzinger Complex

was constructed with a 40-stage pipeline. For the redesign of the hardware back-end, the

question was, how close to a pipelined architecture is possible when the implementation is

auto-generated?

There are three main reasons why we would not want to fit the model into a pipelined

architecture. First, there is no guarantee that the model will contain enough regularity to

form a pipeline of sufficient depth to build a data-path containing all the desired opera-

tions. Next, even if there was regularity, the conversion from the front-end language format

through the IR removes all hierarchy in the system. The hierarchy of the system would

have to be rebuilt accurately to form identical sets of operations that can be pipelined.

Finally, for smaller models that are replicated many times, it is not always advantageous

to form a single, conventional pipeline. Instead multiple pipelines would provide enhanced

parallelism and performance.

We instead worked towards a hybrid multi-cycle/pipeline approach. This approach at-

tempts to find similar structure in sub-expressions such that parts of the data-path would be

internally pipelined wrapped in a multi-cycle architecture (more on these two architectures

can be found in Chapter 4). We termed this approach partial pipelining. Pipelining in the

past has been limited to multiple models or multiple compartments. With partial pipelining,

regularity can be found between ion channels or other model mechanisms. Heterogeneous

133

networks of neurons can be combined in ways that are not necessarily obvious to the digital

designer developing via the manual art approach (see Chapter 3). This new methodology

provides a means to handle arbitrary models with arbitrary levels of regularity.

The next version of the hardware back-end was the first attempt to implement the

partial pipelining algorithm. A resource table was initially generated such that there was

one resource for every operation in the described in the run graph. The operations were

scheduled to the resources and an area estimation was performed. If the design fit within

the target device, the schedule was returned, otherwise, like resources in the resource table

were folded and the an additional scheduling was attempted. This was iteratively performed

until the resulting schedule was complete. Algorithms for scheduling operations onto appro-

priate resources were simple and often did not follow an engineer’s intuition when manual

scheduling.

While the performance of the scheduler was a significant improvement over a software

simulation, there was room for improvement. The blue diamonds in Figure 37 are mono-

tonically increasing which is to be expected. As more models are simulated, the possiblity

for additional parallelism and reuse will drive up the per model performance. The real-time

(RT) performance data only shows part of the picture. Additional information can be gar-

nered by looking at the resulting pipeline depth. This represents the total number of clock

cycles required for one iteration of the model and provides a helpful metric to characterize

the quality of the schedule.

The pipeline depth for one, two, three, and five neurons is equal to 22, 22, 28, and

36 cycles, respectively. We can see that from one to two neurons, there was no required

increase in the number of stages. This implies that two full representations of the Hodgkin–

Huxley model fits within the area resources of the FPGA. The real-time factor does not

quite double as would be expected. This is due to a slight increase in the critical path time

as is often the case when FPGA resources are heavily utilized.

The deficiencies in the schedule become evident when the third Hodgkin–Huxley model

is added. Here, the addition increased the number of stages to 28, a 6 stage increase.

Theoretically, third model could have utilized a previously instantiated model offset by

134

Figure 37: Plot of the real-time performance factor as a function of the number of
Hodgkin–Huxley models implemented. Real-time performance is normalized per model.
The time step is set at 0.01 ms. Real-time performance is calculated according to the
methodology described in Chapter 5. The secondary y-axis depicts pipeline depth as the
number of models increase.

135

one cycle yielding 23 total cycles. Similarly, the fourth model could have used the second

instantiated model requiring no increase beyond 23 total cycles. The fifth would have had

to been scheduled after the first and third or the second and fourth to increase to a total of

24 cycles. Instead, the jump from three models to five models required 8 additional stages,

not the one predicted. This one stage per additional model increase is based on the sample

period of one cycle in a pipelined architecture, and the lack of this increase implies a poorly

performing schedule algorithm.

This scheduler attempted to use heuristics to decide whether two operations should be

scheduled on the same resource. In practice, many more factors must be taken into con-

sideration if the scheduler is to have the “intelligence” to generate an optimized output.

Since the pipelined simulink back-end did not meet expections, a full redesign was under-

taken. At the center of this new scheduler lies a cost function that balances 14 suitability

metrics to find the best fit for each operation. Each of these metrics has been adjusted by

a weighting, which was tuned by trial and error to provide the best results. The details

of which are outlined in the following five subsections. This new and improved scheduler,

called the cost-function scheduler has been successful in dramatically increasing the size of

models that can be auto-generated.

The new scheduler is separated into five components. First a dynamically adjusting

resource table is generated based on a profile of the model. The model is then scheduled

in the resource table according to the cost function. Multiple optimizations are executed

across the scheduler reducing the overall hardware footprint. The resulting design is fully

netlisted with the entire infrastructure (see Section 6.6.4 for details). This netlist format is

not unlike a typical hardware description language but is used internally as an intermediate

representation. The netlist is evaluated a second time for area utilization. If the design

exceeds the available resources, the process is repeated by adjusting the parameters of the

initial dynamic resource table. The final schedule is then translated into System Generator

blocks for generation within Simulink.

136

6.6.1 Dynamic Resource Table

The previous generation hardware back-end based on the pipelined simulink scheduler uti-

lized a large resource table with unique resources per operation. If the resulting schedule

went beyond the area resource limitations on the FPGA, the resource table was “folded”

back on itself, reducing the size and attempting again. In the latest scheduler, the resource

table is preconfigured with resources representative of the model such that the resulting

scheduler should fit within the constraints of the FPGA.

The first step involves generating statistics of the model. Each operation of the model is

placed into bins based on the operation type (ADD, SUB, MULT, etc.) and latency/delay

(z−1, z−2, etc.). The total operations per type of a Booth, Rinzel, and Kiehn (BRK) model

[10] are summarized in Table 14. Adders/subtracters will have a latency of either one or

two cycles and multipliers can range from 2 to 8 cycles, depending on size. Most other

operations will have a latency of one cycle. Latencies are used for binning as they provide

comparable bit width operations and contribute directly to the overall performance of the

design.

A simple area estimation algorithm is used to count the number of multipliers, block

RAMs, and what we term as general-area primitives (GAPs, which include registers and 4:1

function lookup-tables) per resource bin. This is not as exhaustive as the post-scheduling

area estimation routines, but provides an approximation. The BRK model was estimated

at its original form to consume 12 block RAMs, 6587 GAPs, and 305 multipliers. Since the

area estimation is only based on the operations and not on the additional control logic and

routing circuitry that are required, a area scaling function is used to reduce the number of

available resources. The default scaling factors are 0.7 for RAMs, 0.8 for GAPs, and 0.95

for multipliers. These scales are user adjustable on the command line and are automatically

refined if the scheduled design exceeds the area constraints of the FPGA. With these scaling

factors, the FPGA has 135 RAMs, 25,600 GAPs, and 183 multipliers.

The design is multiplier-constrained as 305 multipliers blocks are required when only

183 are available. It should be noted that while a total of 85 multiplier operations are in the

model, multiplier primitives on the FPGA are limited to 18-bit by 18-bit signed operations,

137

Table 14: Counts of each operation sorted by type.

Node Type Count Latency
READ 45 z−0

WRITE 12 N/A
MUL 85 22@z−2, 31@z−3, 6@z−4, 17@z−5, 7@z−6, 2@z−8

ADD 28 13@z−1, 15@z−2

SUB 37 17@z−1, 20@z−2

NEG 0 z−1

GT 0 z−1

LT 2 z−1

EQ 0 z−1

GE 0 z−1

LE 0 z−1

NE 0 z−1

IF 3 z−1

AND 0 z−1

OR 0 z−1

LITERAL 15 z−0

TABLE 0 8 z−1

TABLE 1 1 z−1

TABLE 2 1 z−1

TABLE 3 2 z−1

138

often requiring several multiplier blocks per operation. In the BRK model, multipliers

are the constrained resource. The number of multipliers required must be reduced. An

equitable algorithm was chosen to reduce proportionally across all the bins that utilize the

constrained resource. Both multipliers and block RAMs (whereby the width is greater than

18-bits in the Virtex architecture) require the use of the 305 DSP blocks. The number of

multipliers at each latency value along with block RAMs are reduced. This will allow a

broad range of resources to be available to the scheduler proportional to its needs within

the model as opposed to a only small bit-width or large bit-width multipliers.

The multipliers and RAMs are slowly rescaled over multiple iterations until a new re-

source table is built that fits within the constraints. The final resource table utilizes 9

RAMs, 6,803 GAPs, and 182 multipliers as summarized in Table 15. Those operations

that were reduced in the final resource table are indicated with parenthesis showing the

original total. Operation types with more instantiations are preferentially reduced in this

algorithm. This is done as those operations are more likely to be ones that follow a regular

structure. This is an unintended benefit from rounding up fractional resource counts during

each compression cycle (eight compression cycles were required to reduce the table to one

that fits within the resources).

This resource table is termed a dynamic resource table (DRT) as the resources have

yet to be configured. At this stage, no precision information has been assigned as this

will be determined during scheduling. Additionally, operations might take on multiple

purposes. For example, an ADD operation can readily perform additions or subtractions

or just subtractions. Flexibility is built into this stage to morph as necessary according to

the scheduler algorithm.

6.6.2 Hardware Scheduler

This subsection described the process by which the Dynamo compiler schedules the oper-

ations comprising the neural model into the resource table. Briefly, the scheduler iterates

through each node of the design, determines the compatible resources, and assigns based

139

Table 15: Counts of each operation sorted by type and latency in the dynamic resource
table. Previous counts before compression of the DRT are shown in parenthesis.

Node Type Count Latency
MUL 9 (22) z−2

MUL 11 (31) z−3

MUL 4 (6) z−4

MUL 9 (17) z−5

MUL 5 (7) z−6

MUL 2 z−8

ADD 13 z−1

ADD 15 z−2

SUB 17 z−1

SUB 20 z−2

LT 2 z−1

IF 3 z−1

TABLE 0 5 (8) z−1

TABLE 1 1 z−1

TABLE 2 1 z−1

TABLE 3 2 z−1

on a multi-metric cost function. This scheduler operates on a single pass, it does not back-

track, de-assigning operations. Instead, it is designed in such a way for the schedule to be

optimized on additional passes, described in the next subsection.

The decision making process of the scheduler requires the algorithm to decide if node n

should be assigned to resource r. To the circuit designer, the answer is often, “it depends.”

There does not appear to be an algorithm that can deterministically produce the optimal

scheduled result. The optimal result occurs when the model simulates at the highest rate

possible on the hardware itself, an extremely difficult quantity to directly reason about. For

example, the fewest number of clock cycles per iteration, or sample period, is one metric by

which to judge performance. However, complex routing and multiplexors to achieve that

might substantially increase the critical path, forcing a slower clock period. A balance has

to be found between many different criteria when developing a schedule.

The scheduler is purposely absent of heuristics based on rules. This is simply because we

do not know the rules, nor do we believe that these rules can be easily expressed. Instead,

we treat the scheduler as a multicriteria optimization problem. As such, we evaluate all the

140

criteria that goes into a scheduling a resource such as compatible bit-widths, decimal point

alignment, latency, successor and predecessor nodes, etc. These criteria are weighted and

summed as a cost function. The lowest cost resource r is then assigned the node n.

We believe this approach is preferred over rules since the cost function enables tuning

from the outside of metric weights. Different classes of models (isolated vs. population,

homogeneous vs. heterogeneous, etc.) might require vastly different heuristics to perform

suitably. This approach pulls customization of the scheduler from internal to the compiler

into a series of numerical weightings.

6.6.2.1 Determining Compatible Resources

The expression graphs are scheduled in order that they appear in the list of write nodes,

i.e. unsorted. We initially believed that larger trees should be scheduled prior to smaller

trees, where the size of the tree was determined to be the longest latency path from a leaf

node to the root node. This had the unexpected consequence of assigning all the resources

prematurely. For example, for ten Hodgkin–Huxley models, the largest trees were the

ones rooted at the write of Vmem. In this example, all the voltage expression graphs were

scheduled leaving few resources available to the gate variables, m, h, and n. By leaving the

graphs unsorted, each neuron is fully scheduled before moving onto the next, enabling a

more fair distribution of resources per unique expression.

The graphs are traversed pre-order, such that the read nodes are scheduled prior to

the write node. The earlier computed operation is always before the later. The rules for

selecting compatible resources varied per node type, where a compatible resource consists

of both a resource entry in the DRT and a time point. Multiple compatible resources can

be possible for a given resource entry if it is compatible at different time points.

There are two criteria that must be true for a node to be compatible to be assigned to

a particular resource. First, the operation type must either be identical or convertible. If

a node is a multiply operation and the target is a multiply resource, than it is compatible.

The scheduler also considers operations that can have dual-use functions, for example, an

adder. Addition resources can readily be converted into dual-purpose addition/subtraction

141

Table 16: Example resource table showing six resources and ten cycles. Assigned nodes are
depicted with the • symbol. The ? marks those resource/time pairs where a multiplication
with operands available in cycle three can be scheduled.

Cycle Time
Resource Operation 0 1 2 3 4 5 6 7 8 9

1 + • • • • •
2 + • •
3 − • • •
4 × • • • ? • ?
5 × • • ? • ?
6 × • • • ?

resources. Therefore an addition operation would be considered compatible with a sub-

traction resource, although not necessarily a good choice. The second criteria requires the

latency of the node to be less than or equal to the latency of the resource. A multiplication

that requires four cycles to compute a result should not be assigned to a resource that only

allows two cycles. If it were, all operations would need to acquire the longer latency which

could potentially disrupt a previously assigned node.

Multiple time points can be considered for a given resource. In the example schedule

shown in Table 16, a multiply is to be scheduled in the resource table. Assigned resources/-

time pairs are denoted with a • symbol. There are three compatible resources numbered

4−6. Assuming the operands are generated no later than at time three, the question marks

(?) denote those positions in the table that the operation can be scheduled. The algorithm

chooses all available times directly following a previously assigned node if the times are

greater than the minimal times. The algorithm also always returns the minimal time if

available. In this case, a total of five resource/time pairs will be available to the scheduler

as compatible resources.

Future enhancements can take into account additional convertible resources, such as

comparison operations and subtracters. Additionally, commutativity of operations can also

be considered such that the addition of a+ b can be considered along with b+a as separate

compatible resources. Other changes to operation analysis (see Section 6.3.2) can mitigate

the benefits of this feature.

142

6.6.2.2 Scheduler Cost Function

Each compatible resources is evaluated for fitness. For example, in a model of 10 neurons,

a multiplication operation that is identical in each neuron would be a good fit to share

the same resource. The fixed-point bit-width would likely be identical, and if the predeces-

sor and successor nodes were assigned to common respective resources, fan-in and fan-out

between operations would be minimized. The challenge is in how to determine that the

multiplication operation is the same across operations. Since no heuristic or rule is con-

sidered fool-proof, a weighted cost function is utilized to balance many, often competing

factors.

The cost, Cj , of a given resource, r, is found as the sum of the weighted sum of N metrics

as shown in Eq. (55). Each metric returns a fitness value such that lower values imply

improved compatibility. Each metric is multiplied by a weighting that is user-adjustable

via the Dynamo command line. The current weightings are listed in Table 17. Metrics

are prefixed by either Inp, Out, or Op for input-specific metrics, output-specific metrics, or

general operation-specific metrics, respectively. Output- and operation-specfic metrics are

computed once per compatible resource while the input-specific metrics are computed per

operand. For a unary input operation, 14 metrics are summed, while a binary operation

will have 20 metrics. The minimum cost C∗ is returned from the function and the node is

assigned the DRT entry with the most compatible resource.

Only operations and write nodes are scheduled. When the DRT is generated, literals

and read nodes are pre-populated. These nodes are considered static across every cycle of

the resulting pipeline. Therefore, the read nodes and literal nodes are pre-assigned to cycle

zero.

Cr =
N∑

i=1

Wi ·Mi

C∗ = min(Cr) ∀r ∈ R

(55)

If a resource is not yet assigned, it is flagged as such for the metrics to evaluate. A

resource does not acquire a fixed-point precision until the first node is assigned to it. This

143

Table 17: Listing of each metric and its default weighting

Metric Weight
InpWidth 1
InpFrac 1
InpSign 1
InpType 1
InpUniqueSrcs 15
InpDly 1
OpCycleTime 4
OpScheduled 1
OpLat 10
OpType 1
OpLimRsrcs 0
OpCorrelation 5
OutNumSinks 1
OutSinkType 1

way, the scheduler has maximum flexibility to initially populate a resource at any bit-width.

A special isAssigned flag is propagated to the metrics such that special rules take hold. If

additionally scheduled resources require more precision, the resource is updated to reflect

the increase. Convertible operations also dynamically change along with assignment. The

adjustment of the resource table during scheduling gives the table its dynamic distinction.

InpWidth This metric compares the total number of bits in the predecessor node to the

corresponding input pin of the resource. The ideal case occurs when both widths are

equal. For that case, there is no cost. When the predecessor node bit-width is less

than the resource, the resource is not fully utilized. The cost in that scenario is equal

to the number of bits of difference. When the resource must expand by, for example,

n bits, to accommodate the node, this action is discouraged by assigning a cost of 2n.

If the resource has not been assigned, there is no cost for the first assignment.

InpFrac Similar to the InpWidth metric, this metric charges no cost of an unassigned

resource or a resource with an identical number of fraction bits. Additionally, like

the InpWidth metric, there is a unit cost for each fraction bit that is not utilized

in the resource and a two unit cost for each bit that the resource must expand to

144

accommodate the node.

InpSign This metric compares the signedness of the inputs to the resource with the inputs

to the node. It is not ideal to use a signed resource when an unsigned resource will

suffice and vice-versa. Therefore, there is a unit cost for dissimilar signedness and no

cost for the same signedness or for an unassigned resource.

InpType This metric assigns a cost if the predecessor operations are dissimilar. For iden-

tical operations or if the resource is not assigned, there is no cost. If any of the

predecessor resources are of the same type, but not identical, there is a unit cost.

This would occur if, for example, a read node has been assigned to an input and the

current node’s input is also a read node. Predecessors that are convertible operations

are additionally assigned a one unit cost. Completely dissimilar inputs are assigned a

cost of two. For example, if the current node is a multiply, the metric is evaluating the

first operand, and if the multiply from (a1 +b1) ·c1 is already assigned to the resource,

than a compatible node with structure (a2 + b2) · c2 will have no cost, (a2 − b2) · c2

will have one unit cost, and (a2 · b2) · c2 will have a cost of two units. This metric is

important if there is a significant amount of regular structure in expressions.

InpUniqueSrcs This metric counts the number of sources presently assigned to a node

that are from unique resources. In a perfectly scheduled implementation, an input

would only have one source despite being active throughout the pipeline. If the ad-

ditional source is unique, a larger multiplexer is required to choose the appropriate

input. In the Virtex architecture, one LUT is required for a 2-input multiplexer, one

slice for up to a 4-input multiplexer, two slices for an 8-input multiplexer, 1 config-

urable logic block (CLB) for a 9- to 16-input multiplexer, and 2 CLBs for multiplexors

between 17 and 32 inputs. Because the additional resources do not scale linearly, the

cost for additional unique sources parallels the increases in area. When the input has

already been assigned or the resource has yet to be assigned, the multiplexer does not

need to grow or be created and thus the cost is zero. For the second unique input, a

multiplexer is required and the cost is 4 units. The third input have a cost of only

145

2 units due to the still small size of the multiplexer. For the fifth inputs, the cost

increases again to 4 units since the size of the multiplier is now getting relatively

large. The ninth and seventeenth input cost 8 units and 16 units respectively due to

the excessive size of the multiplexers. When the multiplexer resources do not change,

the cost is one unit for the fourth, sixth, seventh, eighth, tenth, etc. inputs. This

metric is exponential in its cost to discourage multiplexers from being used, instead

allowing deep pipelines to emerge.

InpDly Similar to the InpUniqueSrcs metric, this metric is designed to discourage the

use of delays whenever possible. If the scheduling of a node at a particular time point

requires a long delay from the predecessor node, this metric will assign a high weight

to that node. As in the previous metric, increases in cost are not linear and instead

follow increases in area utilization. Delays are built using SRL16 primitives in the

Xilinx architecture which utilize the LUTs in each slice2. These are shift registers that

are up to 16 elements deep. SRL16 primitives require a register at the head such that a

17-cycle latency shift register requires half the primitives of a slice. A 33-cycle latency

shift register can be built in a single slice. If the resource is already assigned with the

same source, any delay can be reused, yielding zero cost. The first register required

has a cost of three units. The first SRL16 required adds an additional three units,

with one unit of cost per additional delay. After 17-cycles of delay, the second SRL16

costs an additional eight units, with now two units of cost per additional delay. Even

though no additional hardware is required for certain increases in delay, a small cost

is incremented to keep the schedule as packed as possible. Scheduler optimizations

can correct long delays as will be explained in the following section.

OpCycleTime Ultimately, performance is tied to the sample period of the overall data-

path generated. This metric works to reduce the sample-time by preferentially select-

ing resources and cycles that occur earlier. The cost returned becomes exponentially

larger as the cycle time increases. The relationship, determined empirically, is set to

2Half of available slices, the SLICEM primitives, are capable of becoming an SRL16

146

cost = round(0.2 · cycle1.5).

OpScheduled All metrics up to now do not penalize for using a resource that has not

been assigned. If a resource has not been assigned, it can be used in later scheduler

iterations when another operation is not a good fit for any other resource. This

metric assigns a unit cost if the resource is not yet assigned. For highly regular small

footprint models, this metric can be set to a low weighting to encourage heavy use

of available parallel resources. For large, heterogeneous models, a high weighting can

aid late-to-schedule trees by preserving untouched resources.

OpLat This metric compares the latency of the resource with that of the node. The

compatible resources list has already been constrained such that only resources with

equal or longer latencies were included. A cost of one unit for the difference in the

latency between the resource and the node is returned by this metric. Equal latencies

return a zero cost.

OpType This metric compares the operation type of the resource with the node. If they are

identical, the metric returns a cost of zero. If the operation types are different, which

would occur only for a convertible operation (ADD/SUB), a unit cost is returned.

A high weight on this metric can effectively stop these convertible operations from

forming.

OpLimRsrcs This metric is not currently implemented but is kept as a place-holder for

future enhancements. When the number of resources of a given type that are not

assigned is dwindling and when there are classes of nodes that have not been scheduled,

this metric should increase the weight of assigning a new resource. This is somewhat

redundant to the OpScheduled metric with more global knowledge on the structure

of the trees that still must be scheduled. Given that this global information is required,

this metric will have to wait until the scheduler is enhanced to produce this data.

OpCorrelation This metric utilizes the correlation matrix generated in a previous step and

described in Section 6.4.4. The correlations are determined between the node to be

147

scheduled and the previously assigned nodes. The maximum of the these correlations

is scaled such that the largest and smallest correlation in the table is equal to a cost

of ten for the least correlated pair of nodes and zero for the most correlated pair of

nodes. This value between zero and ten becomes the cost of this metric. This is the

one metric that takes into consideration global properties of the model.

OutNumSinks While the InpUniqueSrcs metric attempts to reduce fan-in to opera-

tions, this metric reduces fan-out. Extensive fan-out from an operation can lead to

extensive wire delays reducing performance. Every unique successor node to the cur-

rent node to be scheduled is counted to have a cost of two units. This is summed

with the number of successors of the already assigned nodes. However, if there are no

additional sinks, there is no additional cost. When comparing successor nodes, to be

exact, the successor node and the pin has to be unique. The pin is not considered in

this computation based on the assumption that the pins of a successive resource will

be co-localized and contribute little to overall delay.

OutSinkType Perhaps more significant than the previous metric, this output sink type

metric assigns a high cost when the successive node is of a different type than the

previously assigned nodes’ successors. For example, if all of the assigned nodes drive

a multiplier resource, then an additional node that drives the write of a state would

be return a high cost. The cost is 4 units for each additional type of sink.

Following the scheduling of all nodes, the data structure based around the DRT is

converted into a new data structure for easier analysis. While the DRT was based around

the resources and a list of assignments, the new data structure, termed the schedule is

based on a matrix with one axis representing the resource and the other axis representing

the cycle time.

6.6.3 Scheduler Analysis

The scheduler data structure built following the scheduling of each node of the run graph

now undergoes a series of optimizations. In this new matrix data structure, movement of

148

nodes is trivial and does not require the generation of a new data structure after every

change. The schedule undergoes four optimization passes, with additional passes planned.

After each optimization pass, the following statistics are gathered across the schedule: num-

ber of entries, percent utilized, pipeline depth, total delays, and percent resources over

utilized.

The number of entries is simply calculated as the number of assignments across the

entire resource table. This includes every read node, write node, literal and operation in

the graph. Percent utilized describes the portion of the schedule’s total slots for operations

that are assigned. Since read nodes, write nodes, and literal nodes only exist once by

definition, they are not included in this calculation. A percent utilization of 100% implies

a fully utilized resource schedule. Models with a high degree of regularity tend to have

a larger percent utilized than models with a lack of regularity. For example, the Booth,

Rinzel, and Kiehn model in one execution of Dynamo had a pipeline depth of 71 cycles and

a utilization of 2%. If instead, 40 Hodgkin–Huxley models are implemented in Dynamo,

the resulting pipeline depth is 62 cycles with a utilization of 8%. This is still not significant,

and a source of future expected performance enhancements.

When the operands of a particular operation are generated prior to its use, delays need

to be added for synchronization. Total delays are computed as the sum of the number of

cycles of latency per delay required by the schedule. A smaller number of delays constitutes

a “tighter” schedule. The currently implemented optimizations work to reduce the number

of delays in the system, which directly affects area consumption.

If an input of a resource is driven from multiple sources for use in different cycles of the

schedule, a multiplexer is required to properly route the appropriate input at the appropriate

time. In a well implemented schedule, few multiplexers should be required as resources are

reused across the regular structures. The percent resources over utilized statistic returns

the percentage of resource inputs that require a multiplexer.

Scheduler optimization pass #1 reassigns and duplicates all parameter, state, and literal

reads such that no delays are required for synchronization. Since state reads (which are

ultimately implemented as registers) and literals are static throughout the schedule, there

149

is no requirement for delays. This optimization simplifies the netlister by not having to

differentiate between inputs that are static and inputs that are dynamic. For parameters,

this optimization is required for optimization pass #4.

Scheduler optimization pass #2 is tasked with reducing unnecessary delays between

operations within the data-path. Starting with the latest cycle and working towards cycle

zero, scheduled nodes are evaluated for delays from their predecessor nodes. If a predecessor

node can be shifted forward in the schedule to reduce a delay taking into account other sinks

for that node, the predecessor is reassigned to a later clock cycle. As this algorithm iterates

through to cycle zero, the nodes undergo a forward in time shift in the schedule, freeing up

open schedule slots in the early cycles. Following this, optimization pass #3 repeats the

optimization in pass #1 to reflect the new positions of many operations. The combination

of optimizations 1− 3 typically remove greater than 90% of the delays in the schedule.

The final optimization pass reassigns all parameters that source a pin of an resource

into a special parameter resource. Multiple parameters sourcing a pin can be handled more

efficiently by utilizing random-access memory (RAM) elements instead of registers and mul-

tiplexers. An additional pass can be done for literals in the same manner, however, modern

synthesis tools are often able to reduce the logic by constant folding, so that optimization

is not performed.

Additional unimplemented optimizations can effectively wrap operations performed later

in the schedule to early cycles if there are no conflicts. This optimization can bring the

scheduled back-end closer to the performance of manually-generated fully pipelined neu-

ral models. The utilization should increase dramatically as the pipeline depth decreases.

Further work at this stage can also reassign reads and writes of states into larger granular

memory elements such as distributed RAM and block RAM. This will have the benefit of

increasing the size of models that can be implemented on the FPGA.

6.6.4 Generic Netlister

After the final optimizations have been completed, the scheduler undergoes a transformation

into an internal netlist format. A netlist is a module that contains a listing of instantiations

150

of primitive operations (the base operations in the hardware) and other modules, nets

describing the connections between the operations, and ports for top-level connections.

Since a netlist can instantiate modules which are netlists, a hierarchical structure can readily

be generated.

The internal netlist format is an intermediate representation and is not tied to any

particular hardware description language. A common set of features make translation into

Verilog, VHDL, or System Generator blocks trivial. As an intermediate representation, all

hardware details are present, including bit widths on the ports of all modules and primitives,

latencies for every block, and quantized initial values for all registers and memory structures.

The netlister creates a top-level module consisting of a run block containing the data-

path, a parameter block for tuning and setting of parameters for input into the data-path,

an input block to receive streaming inputs for simulations, an output block to capture

streaming data from the run block for digital transfer, and associated control logic. Each

of these blocks are built independently and connected in the top-level module.

The control logic includes a cycle counter, enable logic, and a termination condition.

First, the counter is count limited from 0 to d − 1, where d is the pipeline depth. This

cycle counter is accessible to all blocks of the top-level. The enable logic logically ANDs

an external enable set by the interfacing tools, a ready flag from the input block, and a

ready flag from the output block. Finally, the termination condition utilizes a comparator to

compare the required STATE t with an externally set stop time and an SR-register (set–reset

flip–flop) to indicate a stopping condition has been met. Input ports include an external

enable, an external reset, and the stop time. The termination condition and debug ports of

output variables are designated as output ports.

6.6.4.1 Run Block

The run block contains the data-path, or the core execution unit, of the model. Generation

of the run block requires both the DRT and the schedule data structures. The DRT contains

the detailed information of each resource while the schedule is a convenient representation

for manipulating operations. Since node assignments do not move from one operation to

151

Figure 38: Schematic illustration of a typical operation. The operation in this example
is a 4-cycle latency multiplier where the first input is driven by a 2-input multiplexer and
the second input is driven by a 3-input multiplexer. Ports 2, 3, and 5 have synchronization
delays with specified latencies. All clocked elements are tied to a global enable signal. A
synchronous reset signal is included in every component but not required in this example.

z-4

en

A

B

P

Convert
Type

Reinterpret
Type

Convert
Type

Reinterpret
Type

Mux
#1

Mux
#2

input 1

input 2

input 3

input 4

input 5

enable

reset
N/C

Config
ROM

depth p

Config
ROM

depth p

counter

result

Delay

z-1

Delay

z-5

Delay

z-3

another, the operation portion of the DRT remains synchronized with the schedule.

The generation algorithm iterates across each resource in the DRT. The resource is

converted into a module that incorporates all necessary multiplexing, delays, control logic,

type conversion, etc. that is operation specific. There is a global counter signal available

to all resources that counts through the cycles for use by any of the control logic. An

additional clock enable and reset signal (both synchronous) are available to each operation

module. A typical operation is shown in Figure 38.

In this example, a multiply operation is shown with all its associated circuitry. The

multiply is configured with a precision for its input and output pins. To ensure inputs have

the appropriate precision, two bit manipulation blocks are provided in series, a reinterpret

block that casts the input with the appropriate signedness and fractional point while the

convert block adjusts the number of bits by either truncating or sign-extending the inputs.

These conversion blocks are added only when necessary to generate the appropriate input

precision.

The conversion blocks are optionally driven by multiplexers when the source of input

must change at different cycles. Both operands do not need to have multiplexers with the

same number of inputs. In this case, the first operand has two possible sources while the

152

second operand has three unique sources. Some of the sources in this example require delays

for synchronization. Control logic, in the form of select signals for each multiplexer, utilizes

a read-only memory (ROM) addressed by the cycle counter. If the operation is convertible,

an additional control ROM is generated to produce a function code.

All blocks with internal registers use a global enable signal to control the execution of

the simulation. For protocols to be executed on the hardware and for data transfer with

asynchronous interfaces, an enable signal allows the pausing or throttling of the model. For

data to not be corrupted after a pause, all registers within the data-path must become

quiescent. In the above example, the multiplier and the delays are all clocked and therefore

have an enable signal.

For other blocks such as write nodes, a control ROM addressed by the cycle counter

produces a write enable signal for the register storing the state. That write enable is

combined with the global enable by a logical AND to produce the register enable signal.

State read nodes act as a pass-through from write nodes while parameter reads are directly

tied to input ports. Literals are implemented simply as constant blocks in the generic netlist

format.

The port names for each operation module are built off unique resource ID numbers

assigned in the DRT. The port names are automatically wired together by like names with

a built-in function. The inputs of the run-block consist of each parameter resource and a

global enable and reset signal. The outputs include all variables specified as such in the

DML.

6.6.4.2 Parameter Block

The parameter block provides the capability for tuning and distributing the parameters to

the run block. The structure has many similarities to the parameter block explained in

Chapter 5. The parameters act as a memory mapped structure to the software driver. In

the shared memory system, each parameter is stored as a 32-bit unsigned integer equivalent.

On the FPGA, this parameter memory is implemented as a dual-port RAM where one port

is accessible to the hardware while the other port is accessible to the software interface.

153

The parameters are not read by the run block directly from the parameter memory.

Instead, the parameters are either loaded from registers or from a second tier of smaller

RAM elements. When a single parameter is utilized by a operation throughout the entire

sample period, a register is used to store the parameter value. When multiple parameters

are required at various cycles, a RAM is configured with each parameter value. This RAM

is addressed by an additional control logic RAM to select the appropriate address as a

function of the cycle counter.

The registers and multi-parameter RAMs are updated continuously and asynchronously

to the run block. The parameter memory is addressed by a counter that cycles across

the entire depth of the RAM. A shift register of the same delay with a single propagating

high bit provides a rotating enable signal to each register and multi-parameter RAM. This

enable is used as a write enable signal to update the contents of the RAM. Additional

logic is required to make this viable, including counters to generate the write addresses

that are controlled by SR flip-flops, and conversion/reinterpretation blocks to produce the

appropriate precision for each parameter. Registers and RAMs are continuously updated

regardless of whether or not the values have changed.

While it might be simpler to update parameter values only after a change, limitations

in System Generator motived our design decisions. System Generator does not allow direct

access to the write enable and address lines on the driver portion of the parameter dual-port

memory. Overall, very little area is required to implement the additional logic, relative to

the remainder of the parameter system and data-path.

6.6.4.3 Input/Output Blocks

The primary means for data transfer in this iteration of the Dynamo compiler is via high-

speed digital interfaces. The current development board, the ML402, offers a co-simulation

mode within System Generator whereby digital data can be block transferred via a custom

protocol over Gigabit Ethernet. Simply, this digital interface is built from a single read

FIFO (First-In, First-Out) for inputs and a write FIFO for outputs. These digital interfaces

allow inputs and outputs to be selectively enabled or disabled. Additionally, resampling is

154

supported to reduce the data transfer requirements.

A FIFO is a memory element for implementing a queue. There is an input port and

an output port where the input port is written to upon assertion of a write enable and the

output port is read from when a read enable is asserted. Reading and writing of the FIFO

is independent and can be driven off different clocks. However, a FIFO cannot be read

when empty nor written to when full. The status signals empty and full are available from

FIFOs to prevent those conditions from occurring.

Since a computer is not a real-time device, input streams can not be guaranteed to be

available in the input FIFO for the data-path. Similarly, it can not be expected that the

output FIFO will never become full. Therefore, the FIFO empty and full flags are important

in providing an asynchronous interface to a general-purpose computer. An empty or full

condition on the respective FIFOs tied directly into the global system enable, such that

on assertion, the entire data-path stalls until a FIFO is either filled or emptied as needed.

This can slow down an FPGA simulation, but it ensures that all data is transfered without

corruption.

Performance is improved by upsampling inputs and downsampling outputs. Often, the

time-step required for integration is smaller than that needed for processing. In vivo and

in vitro electrophysiology experiments often sample at no more than 25 kHz (40 µs) while

the time-step is often 10 µs or less. This discrepancy can accommodate up/down sample

ratios of 10 or more.

The frequency content of the input and output is often orders of magnitude less than the

frequencies required for integration. Therefore, simple resampling circuits can be utilized

instead of complex and resource intensive interpolation and decimation filters. In practice,

experimental electrophysiology protocols often make use of resampling over more complex

methods.

Multiple signals are transferred per FIFO by interleaving. Interleaving, or time-division

multiplexing, allocates periodic time slots to each input and output. Since a FIFO block size

and granularity are one word, an arbitrary number of slots can be dynamically generated

and extracted. This is in contrast to a memory with a set depth. For example, if 16 streams

155

are stored in a 1024 element RAM, there will be 64 elements per stream at any given time.

If instead there were 17 streams, there will not be a uniform number of elements per stream,

either requiring offsets to properly address or unusable elements in the RAM. Since a FIFO

has no beginning or end, it is the ideal structure for variable length input streams.

Both inputs and outputs can be selectively activated through the user interface. A

reduction in the number of inputs or outputs can have the affect of improving performance

by reducing transfer overhead. Outputs can selectively be set to be streamed via the FIFO.

This is performed by setting a one-bit enable bit in an additional Shared Memory structure.

This memory has one element for every output in the system. For System Generator (v8.2)

targeted models, undocumented internal restrictions require Shared Memory blocks must

be at least 3 elements deep and no less than 2-bits wide.

All variables declared as “outputtable” are accessible to the output block from the run

block. These n outputs are resampled at the output sample rate. The total number of

outputs, N , possible in this architecture is equal to the product of the pipeline depth,

d, and the output sample ratio, R. The most significant 16-bits (user configurable by a

compiler flag) of each output is extracted per output and fed into an n-input multiplexer.

A count-limited counter from 0 to N − 1 with two comparators and SR-registers produces

control signals to signify the counter is between 0 and n− 1. This in-range count provides

both the addressing for the output select Shared Memory block and for the select line in

the multiplexer. The data out from the output select memory becomes a write enable for

the output FIFO while the multiplexer provides the data.

Inputs are similarly processed with an added complication. While an output can be

configured to not have a sink to drive, an input must have a source. The DML defines a

boolean field, Inp.isReady, such that the modeler can define the behavior of the simulation

with and without the presence of a particular input. This input feature not only provides the

option for default values, but also for mode changes based on the particular command input.

For example, a neural model can selectively be in a current-clamp mode or a voltage-clamp

mode based on the activation of current-command or voltage-command inputs.

The active inputs are serially loaded into the FIFO. An identical counter, comparator,

156

and SR-register structure as described above is used to bin each input read from the FIFO.

The FIFO’s read enable pin is asserted according to the output of the corresponding input-

select Shared Memory block. The output of the FIFO drives the input of a demultiplexer

where the select line is the input-select memory block output. Each output of this demuli-

plexer is registered and available to the run block. Each input-select is also registered and

accessible to the run block as a boolean variable.

6.6.5 Area Estimation

After the full implementation, including the run block, parameter block, input block, and

output block, is netlisted, an area estimation algorithm verifies that the design fits within the

constraints of the target device. The algorithm iterates across each component in the netlist,

ignoring ports and nets. The total area returned is intended only to be an approximation,

the final area is not unknown until after the design is placed by the implementation toolkit,

in this case Xilinx ISE v8.2.

The resources of the FPGA are split into four bins: luts, ffs, rams, mults. A lut is a

4-input function generators that can implement a 16 element RAM, a 16-stage shift register,

a 1-bit addition/subtraction (in theory but not in practice), a 2:1 multiplexer, or any other

2-input logic function. A ff is a single-bit register used either for storage of state information

or internal stages in a pipelined operation. Each RAM is an 18 kbit memory element while

the mult bin refers to the embedded 18x18-bit signed multipliers on chip.

These bins are loosely connected and are a simplification of the Xilinx architecture.

In a Virtex-4 device, resources are split into three bins: configurable logic blocks (CLBs),

XtremeDSP blocks, and Block RAMs[93]. Each CLB includes two SLICEM and two SLI-

CEL blocks. Within each slice there are two lookup-tables and two registers which corre-

late to the luts and ffs bins above. The XtremeDSP block contains a multiply–accumulate

(MAC) operation with built-in multiplexers and registers, but roughly correlates to the

mults bin. The Block RAM is functionally identical to the rams bin.

While there are similarities between the bins used for area estimation and the actual logic

resources available in the Xilinx architecture, there are differences that partially account

157

Table 18: Compares the performance estimation of Dynamo with the built-in performance
estimation tool in System Generator and the post-MAP phase following synthesis.

Model Bin Dynamo Est. SysGen Est. Map

FN

luts 688 408 2375
ffs 1501 1051 2533
rams 3 0 15
mults 10 10 10

HH

luts 4418 3055 3315
ffs 9232 9334 5441
rams 15 10 27
mults 101 101 98

BRK

luts 10933 8216 9716
ffs 17445 16134 8866
rams 11 8 23
mults 140 138 123

for discrepancies. For example, related logic is often grouped in the same slices and CLBs.

Unrelated logic is not generally combined in the same slice unless resource limitations require

it. No checking is done to verify related logic is grouped together. Another difference is that

only lookup-tables in the SLICEM primitive support the alternate RAM or shift-register

configuration while all luts can be configured as such. The additional resources within the

XtremeDSP blocks are ignored with respect to area estimation. The synthesis tool might

group an addition and a multiplication together, but it is not done automatically as a MAC

is not an primitive operation in Dynamo. Finally, co-simulation within System Generator

adds overhead that is not included in the estimate as it is not generated by Dynamo.

For certain operations, great care was taken to accurately represent the resource uti-

lization. We performed parametric tests across all combinations of bit-widths from 2- to

64-bits for addition/subtraction blocks and multiplication blocks. The results in Figure 39

show that the luts and ffs utilization grow linear with the maximum bit-width, b of any

input. The plots were curve-fitted and found to be

luts = d1.500 · b + 2.754e

ffs = d2.000 · b + 4.000e
(56)

with an R2 value of 0.99 or greater. The number of ffs is shown for a latency of one.

158

For each additional cycle of latency required, an output bit-width flip-flops are added to

the estimate. This formula is used for all adders, subtracters, combined adder/subtracters,

relational operators, and negation.

Multipliers are implemented differently depending on the target architecture. For a

Virtex-4 architecture, arbitrary size multipliers are built exclusively in XtremeDSP blocks.

The number of XtremeDSP blocks is a function of the bit-width, b, and sign, s, of each

input.

XtremeDSP =
⌈

bA − sA

17

⌉
·
⌈

bB − sB

17

⌉
(57)

This expression is found empirically from executing a place and route on every combination

of inputs as shown in Figure 40(a). Multiplications on an FPGA are done by summing

partial products, similar to the way multiplication is performed manually. In a Virtex-4,

the partial products utilize the internal adders in the XtremeDSP blocks. Registers utilize

a portion of the logic space and is equal to the sum of the two input widths (ffs = bA + bB)

as shown in Figure 40(b).

In a Virtex-II architecture, the adders used in multiplication are instead built out of

logic elements on the device. The algorithms for determining the numbers and sizes of these

partial adders is based on schematics from Xilinx[93]. The inner product adders,

Ninner adds =
⌈

bA − sA

17
− 1

⌉
·
⌈

bB − sB

17
− 1

⌉
, (58)

are built as 35-bit output width adders with inputs of 35-bits each. An additional adder

large adder is built for the final outputs of each of the inner additions. This adder, the

outer-adder, has a bit-width equal to the output-width of the multiplier.

Logical operations such as AND, OR, XOR, etc., each consume one lut per bit while

bit-width multiplied by the latency yields the number of ffs consumed. Shift operations

consume no luts but require ffs at the rate of bit-width times latency. Generally, shift

operations should have no latency as they consume no logic. Multiplexers use luts at the

rate of

luts = b ·
⌈

N

2

⌉
(59)

159

9
10

12
13

15

16 18

1921 222425

27

27

28

28

30

30

31

31

33

33

34

34

36

36

37

37 39

39
4040 42

42

43

4343

45

4545

46

4646

48

4848

49

4949

51

5151

52
52

52

54
54

54

55
55

55

57
57

57

58
5858

60
60

6060

61
61

6161

63
63

6363

64
64

6464

66
66

6666

67
67

6767

69
69

6969

70

70

7070

72

727272

73

737373

75
75

7575

76
76

767676

78
78

787878

79
79

797979

81
81

818181

82
82

828282

84
84

848484

85
85

858585

87
87

878787

88

88

88

8888

90
90

909090

91
91

91

9191

93
93

93

9393

94
94

94

949494

96
96

96

969696

97
97

97

979797

10 20 30 40 50 60

10

20

30

40

50

60

10

20

30

40

50

60

70

80

90

(a) Lookup-table usage

14161820 22
24

26

2830

32
34

36

36

38

38

40

40

42

42

44

44

46

46

48

48

50

50

52

52

54

54 5656

58

5858

60

6060

62

6262

64

6464

66

6666

68

6868

70

7070

72
72

72

74

7474

76

76

76

78

7878

80

80

8080

82

82

8282

84

84

8484

86

86

8686

88

88

8888

90
90

9090

92

92

9292

94
94

9494

96

96

9696

98
98

9898

10
0

100

100100

102
102

102102

10
4

104

104104104

106
106

106106106

10
8

108

108108108

11
0

110

110110110

11
2

112

112112112

114
114

114114114

116
116

116116116

118
118

118118118

12
0

120

120120120

122

12
2

122122122

124
124

124124124

12
6

126

12
6

126126

128
128

12
8

128128128

13
0

130

13
0

130130130

10 20 30 40 50 60

10

20

30

40

50

60

20

40

60

80

100

120

(b) Flip-flop usage

Figure 39: Adder/Subtracter contour plots showing the post place and route utilization
of a) 4-input lookup-tables and b) flip-flops as a function of the bit-widths of the operands.
Each combination was built by Core Generator and then synthesized in a minimal Verilog
wrapper.

160

2

2

3

3

3
4

44

4

4

66

6

6

8

8

8

8

99

9

12

12

12 16

10 20 30 40 50 60

10

20

30

40

50

60

2

4

6

8

10

12

14

(a) XtremeDSP usage

6 78

91011
12

13

14151617

18

1920

21

2223

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

31

31

32

32

33

33

34

34

35

35

36

36

37

37

38

38

39

39

39

40

40

40

41

41

41

42

42

42

43

43

43

44

44

44

45

45

45

46

46

46

47

47

47

48

48

48

49

49

49

50

50

50

51

51

51

52

52

52

53

53

53

54

54

54

54

55

55

55

55

56

56

56

56

57

57

57

57

58

58

58

58

59

59

59

59

60

60

60

60

61

61

61

61

62

62

62

62

63

63

63

63

64

64

64

64

10 20 30 40 50 60

10

20

30

40

50

60

10

20

30

40

50

60

(b) Flip-flop usage

Figure 40: Multiplier contour plots showing the post place and route utilization of a)
XtremeDSP blocks and b) flip-flops as a function of the bit-widths of the operands. Each
combination was built by Core Generator and then synthesized in a minimal Verilog wrap-
per. 161

where b is the output bit-width and N is the number of inputs. The ffs utilized are calculated

identically as the above logical operations.

Registers consume the number of ffs equal to its bit-width. Set–reset flip-flops are by

definition one-bit and consume only one ff. A down-sampling operation requires a register

clocked at the lower clock rate. Therefore the consumption of a down-sampling operation

is equal to that of a register. An up-sampling operation can be interpreted as being clocked

at a higher rate, so therefore, it requires no resources. Similarly, type conversion and

reinterpretation blocks are estimated to require no logic. Delays utilize the 16 element

deep shift-register primitives (SRL16) for the excess delays greater than one. The total luts

required is equal to

luts = b ·
⌈

l − 1
16

⌉
(60)

where b is the bit-width and l is the latency. A delay always utilizes one ff per output bit.

Counters are approximated as a register of an equal number of bits and a logical operation

of an equal number of bits with no latency.

Memory on a Virtex FPGA is split into distributed and block RAM. Distributed memory

utilizes selectRAM on the FPGA, using one lut for each 16-bits of single-port RAM or 8-bits

of double-port RAM. The utilization for a single port RAM of depth d, output bit-width b,

and latency l is

luts = b ·
⌈

d

16

⌉
ffs = b · l.

(61)

A dual-port RAM uses a similar calculation except for twice the number of luts.

Block RAMs are used for large tables of values, shared memories, or FIFOs and can be

configured in the following ratios: 512 × 36, 1k × 18, 2k × 8, 4k × 4, 8k × 2, and 16k × 1.

Multiple RAMs can be cascaded to create larger memories. For bit-widths greater than

18, a mult resource is required to obtain the additional routing resources. For the Virtex-4

architecture, the first cycle of latency is built into the block RAM while additional cycles

each require b-ffs. A small number of luts are used for cascading and are ignored for

simplicity.

162

If the total memory utilized is greater than the resources available on the target device,

Dynamo clears the entire DRT and schedule and begins the process again. In the next

iteration, the DRT scaling factor is reduced to generate a smaller DRT. If the number of

GAPs are exceeded, the initial GAP count is reduced by 40%. If MULTs are exceeded, this

count is reduced by 5%. Finally, the RAM count is reduced by 20%, if exceeded. Up to five

iterations of the scheduler are executed after which the compiler fails returning an error.

It is possible that the implemented model can not fit within the target device, i.e. the

design was estimated incorrectly. In this case, the user can readily determine the final

DRT scaling factors and adjust those factors from the command line, forcing the compiler

to schedule with less resources. An iterative approach in that manner should enable most

models to pass through unmodified to the FPGA.

6.6.6 System Generator Output

The resulting netlist that is estimated to fit within the target device is passed onto the last

stage of the compiler, the generation of System Generator output. System Generator, as a

blockset with Simulink, can be programmatically generated with add block and add line

Matlab commands. The System Generator output code generates a Matlab script to

build component-by-component and net-by-net the model.

The Matlab script builds a module (over-writing if one already exists) of the model

with all necessary blocks for generation. The includes a System Generator token in which

the settings for the target architecture are predefined, as well as default inputs for the

enable, reset, and stop condition signal. At this point, debug outputs are defined for all

“outputtable” variables. This will be removed in a later version when all data is transferred

through the FIFOs. Using a call-back defined within the System Generator token or a

Matlab command, synthesis and implementation scripts are automatically built by the

tool, initiating the compilation sequence. Depending on the size of the model, performance

of the machine, and available memory, this process usually takes between 30 minutes and

2 hours. A library is generated which includes a co-simulation Simulink block which then

is manually copied into a user-developed test-bench with the corresponding FIFO blocks

163

and basic infrastructure to control the model. It is hoped that soon this entire process is

automated, but in the meantime, the current implementation serves our purpose better as

a debugging platform.

The build script as the final step defines a DIF file (see Section 6.5.1.1) for use with the

dynmodel interface. This provides all the pertinent information on the system, including

parameters, inputs, outputs, and all necessary fixed-point precisions and ranges. The time-

step is also included to generate appropriate input sequences for the model. Identifiers for

each of the shared-memory/FIFO structures is provided in the DIF file as well.

System Generator provides two means for transferring data. Shared Memory blocks

implemented in the hardware use unlocked memory. These memory interfaces provide

random access and transfer one word at a time, similar to an I/O interface. A Matlab

class called “shared memory” will instantiate an object when passed the unique string

identifier for the memory. Memory can be modified by indexing the object, which is zero-

indexed unlike other vectors in Matlab. The FIFO interfaces have two means for data

transfer. Corresponding FIFO blocks are available with all the same controls available as

in the hardware, including empty flags, full percentages, read/write enables, etc. While

these blocks make for simple interfacing, they transfer data slowly, at a rate of one word

at a time. A vector based transfer method is also available to transfer frames of data. For

example, in a 1023 word FIFO (always one less element available than the size of underlying

memory block), a block size of 600 words might provide a good balance between a large

block transfer and minimal pipeline stalling if the FIFOs become full/empty. Unfortunately,

these vector-based transfer methods are not particularly flexible and offer many challenges.

Despite difficulties, we have used them for sustained transfer rates across a PCI interface

of 8 MBps.

6.7 Results

This section summarizes the results of the third-generation Dynamo compiler utilizing the

cost-function based hardware scheduler. From a performance perspective, we define positive

164

results to include both a significant increase in simulation throughput and an architecturally-

reasonable outcome. This application requires these metric terms to be notably vague. The

Dynamo compiler has already undergone drastic revisions with more planned. In each

iteration, we have witnessed a performance increase and expose new ways of enhancing

the capabilities and/or performance of the compiler. These results are a snapshot into the

current workings of the compiler and do not reflect previously witnessed performance nor

should they fully define future performance.

The first requirement was that the simulation must undergo a significant throughput

enhancement. We are defining a significant performance enhancement to be at least an order

of magnitude. We used the NEURON simulator[39] v5.8 distributed by Yale University

as our control platform. It is the standard neural simulation package and with over 600

publications utilizing the tool at the time of this writing. The NEURON package was

executed on a Pentium 4, 3.2 GHz with 2 GB RAM running Redhat Enterprise Linux

WS3 with all graphics disabled. We utilized our C software back-end as a second control

and correlated that to NEURON running with a fixed dt. Our C generated code was

compiled using the GCC 3.2.3 optimizing compiler and executed on the identical machine

as NEURON. The FPGA back-end produced default precision values and was compiled

targeting the Xilinx ML402 development board with an XC4VSX35-fg676-10 device. The

results of the simulations for a FitzHugh–Nagumo (FN), Hodgkin–Huxley (HH), a Hodgkin–

Huxley with all-to-all except recurrent synaptic connections[90], and the Booth, Rinzel, and

Kiehn model. Only the Hodgkin–Huxley models were implemented on NEURON, but all

were generated and tested via the C back-end. Both the 10-neuron and 40-neuron Hodgkin–

Huxley models were additionally tested with a fixed time-step in NEURON. The results are

summarized as real-time performance in Table 19.

Real-time performance is generated based on the following relationship:

×real-time =
dt

d · tc
(62)

where d is the pipeline depth and tc is the critical path latency. The critical path is the

reciprocal of the maximum clock frequency. Actual clock frequency is dependent on any

165

Table 19: Real-time performance comparison between Dynamo targeting an FPGA, Dy-
namo targeting the C software back-end, and NEURON v5.8 using a variable time-step
solver and fixed time-step solver.

Model Total Ops FPGA C Neuron Neuron (fixed dt)
FN 16 521,105 1,315,800
HH 91 24.3 5.2 2.65

HH10 900 13.6 0.51 0.89 0.48
HH20 1800 10.5 0.23 0.51
HH30 2700 8.28 0.15 0.36
HH40 3600 0.10 0.28 0.13

HH10X 1980 8.97 0.26 0.42
BRK 183 12.8 5.52

available clocking circuitry and but can often be generated to be close to the maximum

clock frequency. All real-time factors are in units of s/s where values greater than one

indicate greater than real-time performance.

In Table 19, it is evident that not all models enjoy significant performance increase.

Smaller, non-repetitive models are often hampered in their ability to produce impressive

performance results. In the case of the FitzHugh–Nagumo model (FN), the performance

was reduced over 50% from the C back-end to the FPGA implying the model was too small

to take advantage of the parallelism offered on an FPGA. The single Hodgkin–Huxley model

offered a 4.7× performance over the C back-end and a slightly more impressive 9.2× boost

over the comparable model in NEURON. The Booth, Rinzel, and Kiehn model also produced

sub-optimal performance improvements of 2.3× the C back-end. When multiple models

were evaluated in the case of the Hodgkin–Huxley model, more dramatic improvements

were witnessed. For ten, twenty, and thirty Hodgkin–Huxley models, performance gains

over NEURON equaled 15.3×, 20.6×, and 23×, respectively. Finally the interconnected

ten-neuron population (HH10X) with 90-synapses enjoyed a 21.4× improvement.

The second criteria for a positive results is an architecturally-reasonable outcome. This

implies that the model in its implementation was “intelligent,” i.e. the Dynamo compiler

algorithms produced an expected, suitable output. For example, the number of cycles in the

data-path pipeline should be commensurate with the complexity of the model and should

166

scale along with the size of the model. Area utilization will ideally be close to maximal to

ensure the most parallelism. Multiplexers should be used sparingly as a optimally developed

pipeline would not require multiplexers as sources and sinks of operations will overlap. These

are fuzzy criteria and necessary as such since the cost-function does not necessarily produce

the optimal result in all conditions. Since the performance as shown in Table 19 has satisfied

the first criteria, this is meant more as an internal progress report as to how the Dynamo

compiler performs internally and if there is still room for future growth in performance.

Pipeline depth is a key determinate of overall performance as it is equivalent to the

sample period of the system. For every increase in the depth of the pipeline, an additional

clock cycle is required. As the model increases in complexity, it is expected that the pipeline

depth slowly increase to handle the additional computational overhead. A successful algo-

rithm will have either a linear response with a slope representing a small nominal increase in

time per additional neuron simulated. In the following plots for a FitzHugh-Nagumo pop-

ulation (Figure 41), a Hodgkin–Huxley population (Figure 42), and a fully-interconnected

Hodgkin–Huxley population (Figure 43), the depth rises linearly with the increase in units

simulated. For the former two, the unit is the number of neurons. In the latter model, as

the number of synapses increases, the pipeline depth scales less with the population size

and more with the total number of synapses. Linear fits are performed for each plot and

the R2 values are included in the plot.

To further analyze the results of an increase in pipeline depth as the complexity increases,

the cycle count was averaged over the total population size or synapse count. As the number

of models increases, it is expected that the average cycles per model will asymptotically

approach a limit at which performance is maximized. The optimal outcome occurs when

where every resource is assigned corresponding operations across the models (as in the

architectures demonstrated in [37, 88, 89, 90]). An additional model to a pipeline should

result in only one additional cycle. If the model is small enough such that multiple pipelines

can form, than the an additional model will on average result in less than one cycle. If the

model is too big to be instantiated as a flat model, such as in the Booth, Rinzel, and Kiehn

model, an additional model will require more than one additional cycle.

167

0 20 40 60 80 100 120 140 160 180
15

20

25

30

35

40

45

50

R2 = 0.858757

FN Population Sample Period

Number of models

P
ip

el
in

e
de

pt
h

(c
yc

le
s)

Figure 41: Plot of the pipeline depth for increasing numbers of FitzHugh–Nagumo models.

168

0 5 10 15 20 25 30 35 40
30

35

40

45

50

55

60

65

70

75

80

R2 = 0.995068

H&H Population Sample Period

Number of models

P
ip

el
in

e
de

pt
h

(c
yc

le
s)

Figure 42: Plot of the pipeline depth for increasing numbers of Hodgkin–Huxley models.

169

0 10 20 30 40 50 60 70 80 90
30

35

40

45

50

55

60

65

R2 = 0.916409

H&H Interconnected Population Sample Period

Number of synapses

P
ip

el
in

e
de

pt
h

(c
yc

le
s)

Figure 43: Plot of the pipeline depth for increasing numbers of interconnected Hodgkin–
Huxley models.

170

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18

20
FN Cycles per Model

Number of models

A
ve

ra
ge

 n
um

be
r

of
 c

yc
le

s

Figure 44: Plot showing the asymptotic average cycle count as the number of FitzHugh–
Nagumo models increased.

We analyzed the average cycles per model for the FitzHugh-Nagumo model (Figure 44),

the Hodgkin–Huxley model (Figure 45), and an interconnected Hodgkin–Huxley model as

a function of the number of synapses (Figure 46). In each plot, a characteristic reciprocal

form emerged implying a steady-state increase in cycles for each additional model.

As described in Section 6.6.3, a number of statistics are gathered by the Dynamo com-

piler after each schedule optimization. These statistics provide a useful window into the

operation of the scheduler, helping to understand how close the auto-generated result is

to an equivalent manually-generated model with a fully-utilized pipeline. In particular,

the pipeline depth is compared against the percent utilized (proportion of the scheduler

operations’ time-slots that are assigned) and the percent multiplexed (proportion of oper-

ation inputs requiring multiplexors). In a manually-generated pipeline, according to our

previously published methodologies, the percent utilized would be 100% and the percent

multiplexed would be 0%. As evident in the following figures, these optimal cases are

171

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35
H&H Cycles per Model

Number of models

A
ve

ra
ge

 n
um

be
r

of
 c

yc
le

s

Figure 45: Plot showing the asymptotic average cycle count as the number of Hodgkin–
Huxley models increased.

172

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18
H&H Interconnected Cycles per Synapse

Number of synapses

A
ve

ra
ge

 n
um

be
r

of
 c

yc
le

s

Figure 46: Plot showing the asymptotic average cycle count as the number of intercon-
nected Hodgkin–Huxley models increased.

173

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

Number of models

P
ip

el
in

e
de

pt
h/

P
er

ce
nt

ag
e

FN Population Scheduling Statistics

Depth
Utilization
% Muxed

Figure 47: Statistics retrieved from the scheduler showing percent schedule utilized and
resources over utilized (% muxed) along with pipeline depth as the number of FitzHugh–
Nagumo models increases. For resources over scheduled, % muxed refers to the percentage
of operation inputs that require a multiplexer to select among multiple signal sources.

not reached, yet the compiler is clearly making good decisions to produce positive results.

For the three model types demonstrated, schedule statistics are illustrated in Figure 47,

Figure 48, and Figure 49.

Further clues can be garnered from the resource utilization statistics gathered from

the area estimation analysis. The Dynamo compiler fails when a particular resource gets

constrained to the point where it can not be reduced in any way. This often happens

with register resources. As the number of state variables increases, many of the available

registers in the system are reallocated to store state values and not for internal pipelining

stages in the operations. This has the negative affect of reducing the number of operations

that can be instantiated freeing up ffs and luts. A reduction in the number of operations

causes the creation of many multiplexers to handle the increased utilization per operation.

174

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

Number of models

P
ip

el
in

e
de

pt
h/

P
er

ce
nt

ag
e

H&H Population Scheduling Statistics

Depth
Utilization
% Muxed

Figure 48: Statistics retrieved from the scheduler showing percent schedule utilized and
resources over utilized along with pipeline depth as the number of Hodgkin–Huxley models
increases.

175

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

Number of synapses

P
ip

el
in

e
de

pt
h/

P
er

ce
nt

ag
e

H&H Interconnected Population Scheduling Statistics

Depth
Utilization
% Muxed

Figure 49: Statistics retrieved from the scheduler showing percent schedule utilized and
resources over utilized along with pipeline depth as the number of interconnected Hodgkin–
Huxley models increases.

176

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4
x 10

4

N
um

be
r

of
 u

til
iz

ed
 p

rim
iti

ve
s

FN Estimated Slice Utilization

4:1 LUTs
Registers
Maximum

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

Number of models

N
um

be
r

of
 u

til
iz

ed
 p

rim
iti

ve
s

FN Estimated Core Macro Utilization

Block RAMS
Embedded Multipliers
Maximum

Figure 50: Plots showing increases in luts, ffs, mults, and rams as the number of FitzHugh–
Nagumo models increases. The dashed line indicates the maximum resources for the target
FPGA.

Multiplexers consume large portions of the newly available luts. Eventually, the device’s ffs

and luts reach a critical level and the compiler must abort without a solution.

Disjointed segments in the resource utilization plots indicate where the compile has

been forced to reallocate resources based on over utilization. In the FitzHugh–Nagumo plot

(see Figure 50), mults were initially the constraining resource, but later shifted to ffs until

the lack of available luts eventually caused the compiler to cease after 165 models. For

the Hodgkin–Huxley population (see Figure 51) and interconnected model (see Figure 52),

both were initially constrained first by ffs and then by luts. This highlights that a major

improvement can be possible through the use of more granular memory structures for state

variables.

The Dynamo compiler reached a maximum number of 165 FitzHugh–Nagumo models.

The pipeline depth was 46 cycles to evaluate all 165 models. The average cycle count,

177

0 5 10 15 20 25 30 35 40
0

1

2

3

4
x 10

4

N
um

be
r

of
 u

til
iz

ed
 p

rim
iti

ve
s

H&H Estimated Slice Utilization

4:1 LUTs
Registers
Maximum

0 5 10 15 20 25 30 35 40
0

50

100

150

200

Number of models

N
um

be
r

of
 u

til
iz

ed
 p

rim
iti

ve
s

H&H Estimated Core Macro Utilization

Block RAMS
Embedded Multipliers
Maximum

Figure 51: Plot showing increases in luts, ffs, mults, and rams as the number of Hodgkin–
Huxley models increases. The dashed line indicates the maximum resources for the target
FPGA.

178

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5
x 10

4

N
um

be
r

of
 u

til
iz

ed
 p

rim
iti

ve
s

H&H Interconnected Estimated Slice Utilization

4:1 LUTs
Registers
Maximum

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

Number of synapses

N
um

be
r

of
 u

til
iz

ed
 p

rim
iti

ve
s

H&H Interconnected Estimated Core Macro Utilization

Block RAMS
Embedded Multipliers
Maximum

Figure 52: Plot showing increases in luts, ffs, mults, and rams as the number of intercon-
nected Hodgkin–Huxley models increases. The dashed line indicates the maximum resources
for the target FPGA.

179

0.28, meant that approximately four simultaneous pipelines were developed, although not

exactly. From looking at Figure 41, it is evident that up to 15 models were instantiated in a

non-overlapping configuration. We know that no resources were used more than once since

in Figure 47, the multiplexer utilization remained zero up through 15 models. Therefore,

15 pipelines should have been able to emerge. With 15 pipelines, an additional 150 models

should have required 10 additional stages, reducing the pipeline depth to 29 cycles. In

practice, this is not possible as ffs became constrained as shown in Figure 50. This is a

minor criticism of the scheduler showing room for future performance enhancement. Despite

the sub-optimal outcome, a hand-generated version would have likely required 165 cycles

for computing all models, almost four times the cycles as in the auto-generated case.

The Hodgkin–Huxley population model without synapses enjoyed a near linear rise in

depth for an increase in the number of models (see Figure 42). The first two models were

able to fit flat in the FPGA (as evidence by the 0% multiplexer utilization and that the

pipeline depth and overall percent utilization stay constant across one and two models.

An increase to 40 neurons should have required 53 cycles if the two pipelines were always

instantiated. Similar to the FitzHugh–Nagumo case, limitations in ffs led to a rescaling of

the DRT size at 20 neurons and two rescalings at 40 neurons. At 40 neurons, the percent

multiplexed reached 62%, a value high, but understandable as the number of resources

available for the models were shrinking (see Figure 48). Overall, the addition of 39 models

after the first caused an increase in 41 cycles, or almost 1 cycle per model. This is similar

with what would be accomplished in a manually-generated Hodgkin–Huxley population

model.

The interconnected Hodgkin–Huxley population model could be built with up to 10

neurons before exhausting available resources. The pipeline depth was not linear with

respect to the number of neurons, but was linear (R2 ≥ 0.9) with respect to synapses as

shown in Figure 43. For an n neuron model, n(n−1) synapses linked each neuron with every

other neuron. The number of pipeline stages asymptotically averages to less than one per

each additional synapse. Percent utilization rose continuously, but the percent multiplexed

reached a high of 60% (see Figure 49). The limiting resource were the luts where the limit

180

was reached following a rescaling based on ff overage (see Figure 52).

The results show that models of a sufficient complexity can benefit from execution on

an FPGA utilizing the Dynamo compiler. Models that are too small do not benefit from

the parallelism of the FPGA. Very large models, at this point, are beyond the reach of

Dynamo as the storage of states in registers is the limiting constraint. For a large class

of neuron models (approximately 100 to 3000 operations), an auto-generated FPGA design

flow has been shown to provide at least a 10× improvement in performance. Future growth

in performance is evident by careful examination of the results from compiling populations

of neural models.

6.8 Validation

For the Dynamo compiler to find utility amongst neural modelers, the compiler must be

able to produce comparable results to standard sofware-based neural modeling tools. We

know that FPGAs can be used to successfully develop and utilize models [37, 87, 81, 89].

This section describes our approach to validating models produced with Dynamo. A vali-

dated model implies that the FPGA implemented version produces qualitatively comparable

results as a software simulation.

A robust validation process would ideally extract a series of behavioral metrics from

both the FPGA implementation and software implementation with a statistical analysis

to show correlating behaviors. This is not to suggest that parameters and output metrics

are quantitatively equal, but rather that general behaviors are replicated. For example, a

bursting neuron population must exhibit bursting on the FPGA and in software while the

specific bursting period need not be exactly equal. Results are not expected to be equal as

simulations are different with respect to fixed-point precision, integration algorithms, and

function estimations.

Dynamo utilizes conservative algorithms for precision determination (see Section 6.4.2).

This provides a reasonable first-pass attempt to build a functional implementation. If the

Dynamo compiler does not produce desired results, there are a number of options built-in

to enable manual interaction with the tool. For example, the Matlab software back-end

181

optionally produces a fixed-point back-end with statistics logging. These statistics include

overflows and underflows per operation and minimum and maximum step per integrated

state variable. Overflows are considered a fatal error and must be corrected as an overflow

will cause wrapping. Underflows might not be fatal and have to be individually investi-

gated. States where the minimum integration is equal to zero might imply an underflow

is inhibiting the state from properly evolving over time. The statistics option produces a

table of results along with fixed-point precision settings. Options within Dynamo enable

a two-pass compilation mode whereby a precision file is generated on the first-pass which

includes each expression and fixed-point precision. On the second-pass, Dynamo can op-

tionally read in an annotated version of that file adjusting precision values internal to the

compiler to reflect the changes. This way, the user can hand-tune underflow errors from the

system.

We have anecdotal evidence to suggest that a majority of precision errors are a result of

under-sized lookup-tables. This is often manifested by visible stair-stepping in an output

state implying limited precision at one or more operations within the expression graph.

Maximum depth and width of lookup-tables defaults to 1024 elements deep and 18-bits

wide, respectively. These limits are adjustable on the command line. Increases in table

size have resulted in improved results, such as in the Booth, Rinzel, and Kiehn (BRK)

model. When implemented with standard memory configurations for lookup-tables, calcium

concentration in the dendritic compartment remained constant at zero. When an additional

4-bits of addressability were added (increasing depth to 16384 elements) and by allowing

up to 36-bit width, the BRK model integrates its states as expected.

The Dynamo modeling language (DML) provides extensive flexibility with respect to

describing models. For example, bounded iterative approximations described in the DML

can be a substitute for automatic lookup-table generation. Adjustments to the lookup-table

heuristic on the Dynamo command line can increase or decrease the propensity for tables

to form. Additionally, the precision analysis routines return warnings for inappropriate

ranges, such as a denominator of a division crossing zero. These warnings often precede

functional errors in simulation. Algebraic reformulations in the DML can help to alleviate

182

these warnings.

When the auto-generation algorithms are not valid across all cases, Dynamo provides

a wide range of configuration options to tweak the resulting model implementation. This

way, the user can take part in adjusting and tweaking to ensure their neural model is

appropriately validated.

6.9 Future Work

While the Dynamo compiler is highly capable in its current state, future work can enable

larger models, enhanced performance, and improved usability. An improved modeling lan-

guage with possibly more neural-specific constructs can aid the modeler in developing their

models. The basic assumption of one execution engine forming the run tree to the run graph

to the run block can be enhanced to allow for multiple execution engines, implementing a

state machine. Additional numerical integration algorithms can be considered in future

iterations including higher-order solvers as well as variable time-step solvers.

Fixed-point generation is a constant focus of research and will likely continue to be

for some time. There is yet to be a general algorithm to predict precision requirements

for highly nonlinear, coupled systems of differential equations providing identical results.

This algorithm might never exist. Incremental improvements are nonetheless possible with

additional research effort. Anecdotal evidence has shown that lookup-tables in particular

are a major source of precision error in the system. Inclusion of additional estimation

constructs, such as bipartite tables [27] and polynomial approximations can offer improved

precision at a cost of additional logic.

The previous iteration of the Dynamo compiler incorporated the generation of the

this System Generator build-script directly into the scheduler. By developing this clear

delineation between the System Generator output and the scheduler in the form of the

generic netlist format, additional back-ends are possible. Preliminary, exploratory work

has gone into building a purely Verilog back-end. Verilog was chosen over VHDL based on

familiarity, its flexible type system, and its simplified syntax. Synthesizable parameterized

modules have been built for delay, adder, subtracter, and multiply blocks. For a complete

183

Verilog back-end to emerge, the remaining blocks need to constructed as parameterized

modules. Additionally, a infrastructure that does not rely on System Generator to provide

the co-simulation interface has to be developed.

These and other enhancements can make the Dynamo compiler even stronger as an

auto-generation platform for neural modeling applications. In its current incarnation, Dy-

namo is a capable platform for translating and compiling neural model descriptions through

an intermediate representation into an FPGA-based execution engine.

184

CHAPTER VII

CONCLUSION

The overriding goal of this thesis has been to develop a methodology to utilize an FPGA

for neural modeling applications. FPGAs have incredible parallel processing capabilities

which bodes particularly well for the iterative numerical evaluations required when solving

systems of differential equations. Their drawback has typically been in ease-of-use, often

requiring dedicated electrical engineers to develop for FPGAs. This thesis bridges the gaps

of understanding between engineers, physiologists, and modelers, allowing the scientific

community to embrace FPGA technology without the required domain knowledge.

There have been four phases, as described in the previous four chapters, in generating

this thesis. First, FPGAs had to be shown to not only be capable of describing neural mod-

els, but also to provide a substantive benefit. Two publications [37, 88] demonstrated the

successful implementation of neural models including a Hodgkin–Huxley squid giant axon

model[40], a Booth–Rinzel model simplified motoneuron model [9], and a multi-conductance,

multi-compartment motoneuron model. In each case, performance increases from 10× to

72× were demonstrated. These performance increases mark a revolutionary increase in

computational capability; however, the implementation was time-consuming and difficult

to tune or rework. Despite of these difficulties, these models served as a proofs-of-concept

for the project.

The next phase was a study into the “how” of model construction. We knew that model

implementation on FPGAs could be done with positive results, but in this step, we looked for

design rules, algorithms, and methodologies to aid modelers in developing their own neural

models. The first efforts were aimed to develop candidate architectures for simple models

(i.e., single compartment, single neuron) to multi-compartment or neural populations. A

clear design approach was developed whereby the integration of the differential equations

was computed using a standardized approach, and the data-path, or the calculation of the

185

flow field was custom built according to a set of simple rules. Guidelines for conversion to

fixed-point were explored and suggestions offered. Timing considerations were described,

and simple algorithms for properly synchronizing a design were developed and explained.

This set of algorithms makes up the core design guide for neural model development on

FPGAs and was subsequently published in the Neural Engineering journal [89].

Following the development of the model construction methods as described in Chapter 4

suggesting a canonical form for neural models, we investigated means to ease interaction

with the model. This third phase result was a set of tools to aid the modeler in designing for

and interacting with an FPGA. These tools allowed the auto-generation of the integration

module, run-time parameter tuning, and multiplexing of two analog outputs for debugging.

These tools provide assistance to modelers by allowing them to focus on the data-path

portion (the equation component) of the model without focusing on the FPGA particulars.

This design approach enabled a collaborative effort with Michael S. Reid that resulted in the

development of a 40 neuron population model implementing an all-to-all synapse network

with a total of 1600 synapses. The system was a reduced Pre-Bötzinger Complex (PBC)

network and provided Reid with a high-performance platform for his modeling studies. The

assisted flow methodology with applications to the construction of the PBC network has

been published in IEEE Transactions on Neural Systems & Rehabilitation [90].

The final phase of this thesis has taken the development of neural models one step fur-

ther towards a fully-automated design flow. The assisted-flow methodology still required

significant domain knowledge in digital design principles. We required an automated de-

sign flow was capable of providing the most accessible and simplest process to translate

a model from a dynamical system description to a high-performance execution core on an

FPGA. The project, known as Dynamo, has consumed the bulk of effort within this thesis.

Dynamo has been built from over 50,000 lines of code in a dense functional language and

has enlisted the efforts of multiple developers. As a prototype environment, Dynamo has

clearly demonstrated the feasibility of automated FPGA development by providing a full

front-to-back translation and compilation.

186

CHAPTER VIII

DISCUSSION

8.1 Contributions of this Thesis

The overriding goal of this thesis has been to investigate the use of FPGAs for neural

modeling. Prior to this research, we found that FPGAs were heavily utilized for high-

performance applications, particularly as reprogrammable DSP processors. We further

recognized that numerical solutions of differential equations, the base operating means for

neural model simulations, share very similar mathematical characteristics to the difference

equations that underlie many DSP algorithms. We hypothesized that neural models in the

general case can be implemented on FPGAs with substantial performance gains.

Developing example models for an FPGA would not be enough to create a significant

impact on the neural modeling community. FPGAs had several drawbacks that made

modeling difficult, and unless they were overcome, use of these devices would be minimal.

If we were successful in the implementation of these FPGA models, this research would

still be constrained by several requirements. First, as models can grow in size, a means

for handling large models must be found. Next, accuracy concerns for utilizing fixed-point

numerics must be minimized. Lastly, this whole process must be easy to use for the modeler.

Without these three conditions, FPGA neural simulations would not be practical for many

modelers.

The real significance of this thesis is that we were able to overcome these drawbacks.

These drawbacks were gradually overcome through each iteration as described in chapters

3–6. We solved the size issue for specific cases through our pipelining methods described

in Chapter 4 and for the general case in Chapter 6. We diminished the numerical preci-

sion concerns of modelers through our floating-point to fixed-point algorithms and success-

fully demonstrated our approach on a numerically-stiff Pre-Bötzinger Complex model (see

187

Chapter 5). We engineered a fully automated design flow for the conversion of neural mod-

els into a simulation engine running on an FPGA, introducing the first platform for neural

modelers to utilize FPGAs as a generic simulation coprocessor. This final contribution, the

Dynamo compiler, encompasses the previous two contributions, a host of additional novel

technologies, and innovated applications of existing technology (provisional patent filed

covering the internal representation of the compiler, the dynamical system specific sched-

uler, and the front-to-back application of technology for neural modeling). This integrated

system, we believe, will likely enjoy the largest impact in the neural modeling community.

8.2 Discussion of the Dynamo Compiler

In particular, the Dynamo compiler has several key capabilities that separate it from other

solutions that warrant more discussion. First, the Dynamo modeling language (DML)

has been designed as a language for describing both the construction and the mechanism

of models. Inspired by a wide range of programming languages and modeling environ-

ments including Mathematica, XPP, NEURON, and MRCI, the DML has a rich feature-

set including objects (encapsulation and inheritance), modularity, functional/mathematical

paradigm, and syntax for domain-specific features including differential equations, integra-

tion routines, sampling rates, parameter manipulation, embedded range information, and

untyped data-types. As the third-generation modeling language, a primary goal has always

been flexibility as we cannot predict today what form future models might take.

These language features are unprecedented in the realm of currently available direct-

to-hardware description programming languages. A variety of languages are available for

describing hardware, such as Verilog and VHDL, yet both operate at an RTL (Register

Transfer Logic) level. This mode of operation requires the modeler to be fully aware of bit-

level operations and register timing. Higher level tools abstract the RTL effectively creating

a short-hand means of hardware design. This category includes Xilinx System Generator,

Mentor Graphics FPGA Advantage, and National Instruments LabView FPGA. These tools

aid experienced hardware engineers in realizing and/or prototyping their designs in less time;

however, underlying domain knowledge is still required. Still other tools currently exist for

188

Matlab (Xilinx AccelChip), C (Celoxica), or Simulink (Mathworks HDL Coder) direct con-

version. These tools are challenged from the onset as these languages were not designed for

a hardware target and thus have to make performance trade-offs to accommodate software

assumptions. Additionally, none of these have the language features specific to modeling

thus requiring the modeler to build a custom harness to interact with their model.

Dynamo does not merely translate the equations into an FPGA output, but instead

refactors it by performing various optimization routines. For example, Dynamo automati-

cally propagates constant values, removes static computations from the execution loop, and

removes redundant calculations. These features allow the modeler to express the model

in a convenient form while ignoring performance implications without consequence. Few

tools, with the exception of optimizing C compilers, have the capability to algebraically

manipulate the equations for performance benefits.

Floating-point to fixed-point conversion is built-in to the Dynamo compiler in a par-

tially automated fashion. This step has proven itself to be the most challenging aspects of

producing an automated flow. The systems of non-linear differential equations that typi-

cally characterize neural systems are often stiff, lack analytical solutions, and are victims

of the simulation environment’s choice of integration algorithm and numerical precision.

Accordingly, neural models cannot be expected to perform identically when the simulation

platform changes drastically. In particular, a continuous-time numerical solver with double

floating-point precision on a computer and a fixed time-step solver with fixed-point precision

executing on an FPGA are sufficiently different such that modelers should expect different

results. An additional source of error, approximation functions, complicate the validation

further.

The different sources of error can be controlled and mitigated in unique ways. First,

fixed time-step solvers often utilize time-steps that are simple to represent in decimal, such

as 0.1, 0.01, or 0.001, but cannot be represented in binary. On a double-precision computer

processor, 52-bits are utilized for the mantissa providing a suitable approximation. While

in hardware, 52-bits can be allocated to the storage of this constant, it is fairly wasteful and

not generally necessary. If a full 52-bits are not used, the solution will invariably drift in

189

a fixed-point system. A work-around would be to use a value that is exactly representable

with a minimal number of bits, such as 0.125 (2−3), 0.0078125 (2−7), or 0.0009765625

(2−10).

Second, quantization error is a significant source of discrepancies in simulations and

is difficult to fully quantify. One class of quantization errors, underflows, occurs when a

non-zero value is quantized to zero. When this happens for the error term of an integration,

this can inhibit slow time-scale processes from proper emulation. Quantization errors can

generally be avoided with sufficient precision, but high-precision is costly in terms of area

utilization. Low-precision operations are preferred for performance, at a cost of increased

quantization error. As such, the minimization of quantization error is still an active area

of research. Shi and Brodersen at University of California, Berkeley, have lead the field in

automated algorithms to determine fixed-point precision. Their algorithms utilize a multiple

objective optimization that is specific to the algorithm [76, 78, 79]. For example, a QAM

(quadrature amplitude modulation) modulator might be able to use bit-error rate (BER)

to quantity error. An algorithm for a neural model would likely need specific metrics to

evaluate fitness, for example, spike rate or bursting period. Requiring a particular fitness

function from the modeler deviates from the fully-automated design philosophy but might be

required. Even with this fitness function, identical behavior cannot be assured. According

to Shi, removing quantization effects is not possible for all cases, especially in non-linear

systems with feedback, such as differential equation modeling [79].

The third class of precision errors occurs when approximations are used in place of

accurate iterative calculations. Dynamo utilizes look-up tables for all difficult-to-compute

expressions, including exponentiation, trigonometric functions, and reciprocals. The first

FPGA-based physiological models utilized look-up tables of 1024 elements [37, 88] which

appeared sufficient for those models. The PBC network required look-up tables of 4096

elements (12-bit addressable) [90]. Current work with a Booth, Rinzel, and Kiehn model

[10] suggests tables with 14-bit addressability might be required to enable full functionality.

This implies that future work should explore alternatives to static look-up tables such as

multi-partite tables, variable-order approximation functions, or other pipelined techniques

190

to reduce the memory footprint required [70, 82, 27, 28]. Some of these techniques, such as

bi-partite table approximations, are possible to implement in the DML, though a compact

and optimized form would require Dynamo enhancements.

The hardware scheduler is one of the key differentiating features of the Dynamo com-

piler. When designing a system in a typical hardware description language such as Verilog

or VHDL, care has to be taken to ensure the resulting implementation fits within the avail-

able resources of the FPGA. Larger designs require more expensive FPGAs with additional

resources. The target Virtex-4 FPGA (XC4VFX35) could accommodate no more than two

Hodgkin–Huxley models. The typical modeler is often interested in models of significantly

more complexity. The hardware scheduler has been the key innovation employed in Dy-

namo to handle substantially larger models. By effectively rebuilding hierarchy in a flat

expression graph, Dynamo intelligently groups similar expression sub-graphs on common

resources not unlike manually generated FPGA models described in this thesis.

The hardware schedule works closely with an FPGA resource estimation, another unique

feature of Dynamo. The internal resource estimation tools provide the scheduler with the

physical constraints of the target device. By iteratively producing a schedule until a design

is estimated to fit, the likelihood of a resulting implementation passing through place &

route is dramatically improved.

The technology in Dynamo is not limited to a System Generator design flow. We use

System Generator because it provided built-in support for fixed-point data types and fea-

tured a co-simulation mode for digital data-transfer. We have spent considerable effort in

exploring alternatives to System Generator. We built a limited library of Verilog-based

fixed-point operations and successfully built a FitzHugh–Nagumo model solely using Ver-

ilog. A replacement co-simulation platform was more difficult and would have required

considerable engineering effort beyond the scope of this thesis.

8.3 Impact of this Thesis on Neural Modeling Applications

Prior to the generation of this thesis, FPGAs were no more than a curiosity for neural

modelers. Today, FPGAs are a realistic platform for high-performance, complex neural

191

modeling applications. We believe that FPGA usage is highly correlated with ease of

use. As the Dynamo compiler becomes accessible to the general modeling community, we

expect to see a surge in FPGA designs. Initially collaborative works are beginning to come

to fruition.

We expect Dynamo to be embraced across within multiple fields of neuroscience. The

dynamic-clamp community utilized neural cellular or mechanistic models along with a tra-

ditional “wet” electrophysiology experiment to study a hybrid system. This community can

benefit from FPGAs real-time characteristics and high-performance for complex models.

For smaller models, such as the Hodgkin–Huxley model, parameters were gleaned from

experimental data and mechanisms were based on curve-fit approximations. As the size and

complexity of models continues to increase, there is a growing realization that parameters

can not fully be specified by experimental data alone. This was found through the study of

the non-uniqueness question: can multiple, unique parameter sets produce similar output

behavior? Foster et al. utilized a stochastic search to find numerous ionic maximal conduc-

tances to support a target firing range [33]. Prinz et al. expanded this field by generating a

large scale database of parameters for a six conductance model [64], her results supported

previous work that suggested averages of experimentally determined conductances do not

necessarily produce the desired output [35]. This growing disconnect between experimen-

tally determined parameter sets and functional output suggests that parameter sets found

through iterative searches of the parameter space can lead to physiologically-relevant mod-

els. For larger models, the parameter space becomes under-determined, whereby exact

values for parameters based on experimental results is no longer a precondition to con-

structing a model. This “backward” approach to modeling, starting with the behaviors and

working back towards the parameters requires sophisticated searching algorithms and often

thousands of simulations. Executing numerous iterations of a complex model is an ideal

application of a high-performance, FPGA-based modeling platform.

The ability to execute a model at real-time (1 second per second) gives an experi-

mental quality to the simulation. Contrary to the automated search algorithm described

192

above, manual manipulation of the model with instantaneous feedback allows the neurosci-

entist/neurophysiologist to perform “what if” analysis. For example, the blocking of an ion

channel can be accomplished by zeroing a conductance value, not unlike pharmacological

channel blockers. The intuition of an experimentalist can be used to tune model parameters

to produce a desired output. Personal computers are not fast enough except for the simplest

models and computer clusters can not provide low-enough latency for real-time tuning.

FPGAs are positioned to make a substantial impact in the neural modeling community

by their high-throughput, low-latency, and real-time characteristics. Models from simple

two-state oscillators to more complex sets of hundreds of differential equations can be gen-

erated by manual-means or automated with Dynamo. While some effort still remains for

the modeler to work within the fixed-point confines of the FPGA, the benefit is significant,

providing a one to two orders-of-magnitude performance improvement. Planned incorpora-

tion with the NEURON modeling tool [39] will instantly make Dynamo accessible to the

wider neuro-modeling community.

193

APPENDIX A

DYNAMO MODELING LANGUAGE BNF

dynamomain : := t o p l e v e l d e f l i s t [main]

t o p l e v e l d e f l i s t : := { t o p l e v e l d e f }

t o p l e v e l d e f : := ’IMPORT’ s t r i n g ’ ; ’

| cons tde f

| funcde f

| systemdef

main : := ’MAIN’ ma i nd e f l i s t ’ENDMAIN’ ’ ; ’

systemdef : := ’DEFSYSTEM’ id ’ (’ s y s a r g l i s t ’) ’ d e f l i s t ’ENDSYSTEM’ id ’ ; ’

s y s a r g l i s t : := { s y s i d l i s t }

s y s i d l i s t : := sysargtype id { ’ , ’ s y s i d l i s t }

sysargtype : := ’CONSTANT’

| ’DYNAMIC’

| ’SYSTEM’

d e f l i s t : := { de f }

ma ind e f l i s t : := maindef {maindef}

194

maindef : := de f

| output ra tede f

| i nputde f

| outputdef

inputde f : := ’INPUT’ r i d l i s t ’ ; ’

r i d l i s t : := r i d { ’ , ’ r i d }

r i d : := id ’ (’ lambda ’TO’ lambda ’BY’ lambda ’) ’

outputdef : := ’OUTPUT’ ou t pu t l i s t ’ ; ’

ou tput ra tede f : := OUTPUTRATE r e a l ’ ; ’

o u t pu t l i s t : := output { ’ , ’ output}

output : := outmask

outmask : := s t r i n g

de f : := systemdef

| funcde f

| parde f

| cons tde f

| s t a t e d e f

| s y s i n t d e f

| equat ion

195

funcde f : := ’FUN’ id ’ (’ i d l i s t ’) ’ ’= ’ lambda ’ ; ’

parde f : := ’PARAMETER’ r a s g n l i s t ’ ; ’

c on s tde f : := ’CONSTANT’ a s g n l i s t ’ ; ’

s t a t e d e f : := ’STATE’ r a s g n l i s t ’ ; ’

s y s i n t d e f : := ’SYSTEM’ a s g n l i s t ’ ; ’

equat ion : := ’d ’ ’ (’ id ’) ’ ’= ’ lambda ’ ; ’

| id ’= ’ lambda ’ ; ’

a s g n l i s t : := asgn { ’ , ’ asgn}

r a s g n l i s t : := rasgn { ’ , ’ rasgn }

asgn : := id ’= ’ lambda

rasgn : := id ’ (’ lambda ’TO’ lambda ’BY’ lambda ’) ’ ’= ’ lambda

lambda : := lambdaapp

| ’ IF ’ lambda ’THEN’ lambda ’ELSE’ lambda

| lambda ’AND’ lambda

| lambda ’OR’ lambda

| ’NOT’ lambda

lambda l i s t : := lambda ’ , ’ lambda { ’ , ’ lambda}

196

lambdaapp : := lambdaapp aexp

| lambdaapp ’ (’ l ambda l i s t ’) ’

| aexp

| lambdaapp ’ [[’ lambda ’]] ’

| lambdaapp ’ . ’ ’ isReady ’

| lambdaapp ’ . ’ id

| lambdaapp ’+ ’ lambdaapp

| lambdaapp ’− ’ lambdaapp

| lambdaapp ’∗ ’ lambdaapp

| lambdaapp ’/ ’ lambdaapp

| lambdaapp ’ˆ ’ lambdaapp

| lambdaapp ’% ’ lambdaapp

| lambdaapp ’ : : ’ lambdaapp

| lambdaapp ’< ’ lambdaapp

| lambdaapp ’<=’ lambdaapp

| lambdaapp ’> ’ lambdaapp

| lambdaapp ’>=’ lambdaapp

| lambdaapp ’= ’ lambdaapp

| lambdaapp ’ != ’ lambdaapp

| ’{ ’ c ond i t i on s ’} ’

| ’− ’ lambdaapp

cond i t i on s : := lambda ’WHEN’ lambda ’ , ’ c ond i t i on s

| lambda ’OTHERWISE’

aexp : := r e a l

| i n t e g e r

| s t r i n g

197

| ’#t ’

| ’#f ’

| ’ (’ lambda ’) ’

| id

| ’ (’ ’FN’ ’ (’ i d l i s t ’) ’ ’= ’ lambda ’) ’

| ’ (’ ’RFUN’ id ’ (’ i d l i s t ’) ’ ’= ’ lambda ’) ’

| ’LET’ va l s ’ IN ’ lambda ’END’

| ’RLET’ va l s ’ IN ’ lambda ’END’

| ’ [’ l ambda l i s t ’] ’

| ’ [’ lambda ’] ’

| ’ [’ ’] ’

v a l s : := { value }

value : := ’VAL’ id ’= ’ lambda

i d l i s t : := id { ’ , ’ id }

198

APPENDIX B

BOOTH, RINZEL, & KIEHN DYNAMO MODEL

/∗

Booth , Rinzel , Kiehn − 1997 − Compartmental Model o f Vertebrate

Motoneurons f o r Ca2+ Dependent Spik ing and Plateau Po t en t i a l s Under

Phy s i o l o g i c a l Treatment

$Id : brk . dyn , v 1 .1 2006/10/19 13 : 45 : 25 randyweinste in Exp $

$Source : /opt/ cvs /RandyThesis/ Support ing /brk . dyn , v $

∗/

DEFSYSTEM brk (DYNAMIC dt , DYNAMIC t , CONSTANT in t e g r a t e)

FUN sqr (x) = x ∗ x ;

// The time range (s) during which Iapp w i l l be app l i ed to the system

PARAMETER t on (1 TO 500 BY 1) = 1;// ”Beginning time f o r Iapp ” ;

PARAMETER t o f f (1 TO 20000 BY 1) = 2;// ”Ending time f o r Iapp ” ;

PARAMETER I s t ep (0 TO 30 BY 0 .01) = 11 ;

PARAMETER Icons t (0 TO 30 BY 0 .01) = 5 ;

PARAMETER Iramp (−40 TO 40 BY 0 .01) = 0 ;

// Conductances (mS/cmˆ2)

PARAMETER GNa (0 TO 200 BY 0 . 1) = 120 ;

PARAMETER GK dr (0 TO 200 BY 0 . 1) = 100 ;

PARAMETER GCa NS (0 TO 50 BY 0 . 1) = 14 ;

199

PARAMETER GCa ND (0 TO 10 BY 0 .01) = . 0 3 ;

PARAMETER GK CaS (0 TO 100 BY 0 . 1) = 5 ;

PARAMETER GK CaD (0 TO 100 BY 0 . 1) = 1 . 1 ;

PARAMETER GCa L (0 TO 10 BY 0 .01) = 0 . 3 3 ;

PARAMETER gleak (0 TO 10 BY 0 .01) = 0 . 5 1 ;

// S t a t i c Parameters

PARAMETER C (0 .5 TO 2 BY 0 .01) = 1 ;

CONSTANT gc = 0 . 1 ; // coup l ing conductance (mS/cmˆ2)

CONSTANT p = 0 . 1 ;

CONSTANT Kd = 0 . 2 ; // uM

CONSTANT f = 0 . 0 1 ; // percent f r e e to bound Ca

CONSTANT alpha = 0 . 0 0 9 ; // mol/C/um

CONSTANT kca = 2 ; // Ca removal r a t e

// Hal f Act ivat ion vo l t ag e s in mV, S lopes in MV, Time Constants in m i l l i s e c ond s

PARAMETER Vhm (−50 TO −10 BY 0 . 5) = −35;

PARAMETER Sm (−10 TO −3 BY 0 .1) = −7.8;

PARAMETER Vhh (−50 TO −10 BY 0 .5) = −55;

PARAMETER Sh (3 TO 10 BY 0 .1) = 7 ;

PARAMETER Vhn (−50 TO −10 BY 0 .5) = −28;

PARAMETER Sn (−20 TO −3 BY 0 .1) = −15;

PARAMETER VhmN (−50 TO −10 BY 0 .5) = −30;

PARAMETER SmN (−10 TO −3 BY 0 .1) = −5;

PARAMETER VhhN (−50 TO −10 BY 0 .5) = −45;

PARAMETER ShN (3 TO 10 BY 0 .1) = 5 ;

PARAMETER VhmL (−50 TO −10 BY 0 .5) = −40;

PARAMETER SmL (−20 TO −3 BY 0 .1) = −7;

CONSTANT TaumN = 4 ;

200

CONSTANT TauhN = 40 ;

CONSTANT TaumL = 40 ;

// Reversa l p o t e n t i a l s in mV

CONSTANT ENa = 55 ;

CONSTANT EK = −80;

PARAMETER ECa (60 TO 200 BY 1) = 80 ;

PARAMETER Eleak (−80 TO −60 BY 1) = −60;

// State Var iab le Dec la ra t i on

STATE Vs (−90 TO 60 BY 0.001) = −60;

STATE Vd (−90 TO 60 BY 0.001) = −60;

STATE h (0 TO 0.999 BY 0.0001) = 0 . 9 ;

STATE n (0 TO 0.999 BY 0.0001) = 0 ;

STATE mnS (0 TO 0.999 BY 0.0001) = 0 ;

STATE hnS (0 TO 0.999 BY 0.0001) = 0 . 9 ;

STATE mnD (0 TO 0.999 BY 0.0001) = 0 ;

STATE hnD (0 TO 0.999 BY 0.0001) = 0 . 9 ;

STATE ml (0 TO 0.999 BY 0.0001) = 0 ;

STATE CaS (0 TO 0.999 BY 0.000001) = 0 ;

STATE CaD (0 TO 0.999 BY 0.00000001) = 0 ;

// I s t im i s 1V during the s p e c i f i e d time range (t on −− t o f f) ,

// 0V otherw i se

Iapp = { I s t ep WHEN t > t on AND t < t o f f ,

201

0 OTHERWISE}

+ Icons t

+ { Iramp ∗ t WHEN t < t o f f ,

0 OTHERWISE} ;

// Steady s t a t e va lue s

Tauh = 30/(exp ((Vs+50)/15)+exp(−(Vs+50)/16)) ;

Taun = 7/(exp ((Vs+40)/40)+exp(−(Vs+40)/50)) ;

minf = 1/(1+exp ((Vs−Vhm)/Sm)) ;

h i n f = 1/(1+exp ((Vs−Vhh)/Sh)) ;

n i n f = 1/(1+exp ((Vs−Vhn)/Sn)) ;

mnSinf = 1/(1+exp ((Vs−VhmN)/SmN)) ;

hnSinf = 1/(1+exp ((Vs−VhhN)/ShN)) ;

mnDinf = 1/(1+exp ((Vd−VhmN)/SmN)) ;

hnDinf = 1/(1+exp ((Vd−VhhN)/ShN)) ;

ml in f = 1/(1+exp ((Vd−VhmL)/SmL)) ;

INaS = GNa∗minf∗ sqr (minf)∗h∗(Vs−ENa) ;

IKS = (GK dr∗ sqr (sqr (n)) + GK CaS∗CaS/(CaS+Kd))∗ (Vs−EK) ;

ICaS = GCa NS∗mnS∗mnS∗hnS∗(Vs−ECa) ;

I l e akS = gleak ∗(Vs−Eleak) ;

I coup l ingS = gc/p∗(Vs−Vd) ;

IKD = GK CaD∗CaD/(CaD+Kd)∗ (Vd−EK) ;

ICaD = (GCa ND∗mnD∗mnD∗hnD+GCa L∗ml)∗ (Vd−ECa) ;

I leakD = gleak ∗(Vd−Eleak) ;

Icoupl ingD = gc/(1−p)∗ (Vd−Vs) ;

// D i f f e r e n t i a l Equations

d(h) = (hinf−h)/Tauh ;

d(n) = (ninf−n)/Taun ;

202

d(mnS) = (mnSinf−mnS)/TaumN;

d(hnS) = (hnSinf−hnS)/TauhN ;

d(mnD) = (mnDinf−mnD)/TaumN;

d(hnD) = (hnDinf−hnD)/TauhN ;

d(ml) = (mlinf−ml)/TaumL;

d(CaS) = f ∗(−alpha ∗ICaS−kca∗CaS) ;

d(CaD) = f ∗(−alpha ∗ICaD−kca∗CaD) ;

d(Vs) = 1/C∗(Iapp−INaS−IKS−ICaS−I l eakS−I coup l ingS) ;

d(Vd) = 1/C∗(−IKD−ICaD−IleakD−Icoupl ingD) ;

ENDSYSTEM brk ;

MAIN

FUN eu l e r i n t e g r a t e (dt , t , s ta te , eq) =

s t a t e + dt ∗ eq (t) ;

FUN in t e g r a t e (dt , t , s ta te , eq) =

e u l e r i n t e g r a t e (dt , t , s ta te , eq) ;

STATE t (0 TO 1000 BY 0 .001) = 0 ;

PARAMETER dt (0 . 001 TO 0.1 BY 0 .001) = 0 . 0 1 ;

t=t+dt ;

SYSTEM neuron = new brk [dt , t , i n t e g r a t e] ;

OUTPUT ”neuron .V?” , ” t ” ;

ENDMAIN;

203

REFERENCES

[1] “IEEE 754: Standard for binary floating point arithmetic,” Tech. Rep. P754, IEEE,
New York, 1985.

[2] Allen, F., Coteus, P., Crumley, P., Curioni, A., Denneau, M., Donath, W.,
Eleftheriou, M., Fitch, B., Fleischer, B., Georgiou, C., and others, “Blue
Gene: a vision for protein science using a petaflop supercomputer,” IBM Systems
Journal, vol. 40, no. 2, pp. 310–327, 2001.

[3] Banerjee, P., Bagchi, D., Haldar, M., Nayak, A., Kim, V., and Uribe, R.,
“Automatic conversion of floating point MATLAB programs into fixed point FPGA
based hardware design,” in Field-Programmable Custom Computing Machines, 2003.
FCCM 2003. 11th Annual IEEE Symposium on, pp. 263–264, 2003.

[4] Banerjee, P., Chandy, J., Gupta, M., Hodges, U., J.G., H., Lain, A.,
Palermo, D., Ramaswamy, S., and Su, E., “An overview of the PARADIGM com-
piler for distributed-memory multicomputers,” IEEE Computer, vol. 28, Oct 1995.

[5] Banerjee, P., Haldar, M., Nayak, A., Kim, V., Saxena, V., Parkes, S.,
Bagchi, D., Pal, S., Tripathi, N., Zaretsky, D., Anderson, R., and Uribe,
J., “Overview of a compiler for synthesizing MATLAB programs onto FPGAs,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 12, pp. 312–324,
2004.

[6] Banerjee, P., Shenoy, N., Choudhary, A., Hauck, S., Backmann, C., Hal-
dar, M., Joisha, P., Jones, A., Kanhare, A., Nayak, A., Periyacheri, S.,
Walkden, M., and Zaretsky, D., “A MATLAB compiler for distributed, heteroge-
neous, reconfigurable computing systems,” in Field-Programmable Custom Computing
Machines, 2000 IEEE Symposium on, (Napa Valley, CA), pp. 39–48.

[7] Blake, J. J., Maguire, L. P., McGinnity, T. M., and McDaid, L. J., “Using
xilinx FPGAs to implement neural networks and fuzzy systems,” Neural and Fuzzy
Systems: Design, Hardware and Applications (Digest No: 1997/133), IEE Colloquium
on, p. 1, 1997.

[8] Boatin, W., “Characterization of neuron models,” Master’s thesis, Georgia Institute
of Technology, 2005.

[9] Booth, V. and Rinzel, J., “A minimal, compartmental model for a dendritic origin
of bistability of motoneuron firing patterns,” Journal of Computational Neuroscience.,
vol. 2, no. 4, pp. 299–312, 1995.

[10] Booth, V., Rinzel, J., and Kiehn, O., “Compartmental model of vertebrate mo-
toneurons for ca2+-dependent spiking and plateau potentials under pharmacological
treatment,” J Neurophysiol, vol. 78, no. 6, pp. 3371–85, 1997.

204

[11] Botros, N. M. and Abdul-Aziz, M., “Hardware implementation of an artificial neu-
ral network using field programmable gate arrays (FPGA’s),” Industrial Electronics,
IEEE Transactions on, vol. 41, no. 6, p. 665, 1994.

[12] Bower, J. and Beeman, D., The Book of GENESIS: Exploring Realistic Neural
Models with the GEneral NEural SImulation System. New York: Springer-Verlag,
second ed., 1998.

[13] Bragg, J., Brown, E., Hasler, P., and DeWeerth, S., “A silicon model of an
adapting motoneuron,” IEEE International Symposium on Circuits and Systems, vol. 4,
pp. IV–261–IV–264, 2002.

[14] Brock, L., Coombs, J., and Eccles, J., “Action potentials of motoneurons with
intracellular electrodes,” Proc. Univ. Otago Med. School, vol. 29, pp. 14–15, 1951.

[15] Brown, B. O., Yin, M. L., and Cheng, Y., “DNA sequence matching processor
using FPGA and JAVA interface,” Engineering in Medicine and Biology Society, 2004.
EMBC 2004. Conference Proceedings. 26th Annual International Conference of the,
vol. 2, p. 3043, 2004.

[16] Budge, S. E., Mayampurath, A. M., and Solinsky, J. C., “Real-time registra-
tion and display of confocal microscope imagery for multiple-band analysis,” Signals,
Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Con-
ference on, vol. 2, p. 1535, 2004.

[17] Burke, R. E., “Motor units in cat muscles: anatomical considerations in relation to
motor unit types,” Advances in Neurology., vol. 36, pp. 31–45, 1982.

[18] Butera, Jr., R., Rinzel, J., and Smith, J. C., “Models of respiratory rhythm
generation in the Pre-Bötzinger complex. I. Bursting pacemaker neurons,” J Neurophys,
vol. 82, no. 1, pp. 382–397, 1999.

[19] Butera, Jr., R., Rinzel, J., and Smith, J. C., “Models of respiratory rhythm gen-
eration in the Pre-Bötzinger complex. II. Populations of coupled pacemaker neurons,”
J Neurophys, vol. 82, no. 1, pp. 398–415, 1999.

[20] Cardoso, J. and Neto, H., “Compilation for FPGA-based reconfigurable hardware,”
Design & Test of Computers, IEEE, vol. 20, pp. 65–75, 2003.

[21] Changjian, G. and Hammerstrom, D., “Platform performance comparison of
PALM network on Pentium 4 and FPGA,” Neural Networks, 2003. Proceedings of
the International Joint Conference on, vol. 2, pp. 995–1000, 2003.

[22] Church, A., The calculi of lambda-conversion. Princeton University Press, 1941.

[23] Coric, S., Latinovic, I., and Pavasovic, A., “A neural network FPGA implementa-
tion,” in Neural Network Applications in Electrical Engineering, 2000. NEUREL 2000.
Proceedings of the 5th Seminar on, pp. 117–120, 2000.

[24] Coric, S., Latinovic, I., and Pavasovic, A., “Design, implementation and compar-
ison of three general-purpose neurons,” in Proceedings of 23rd International Confer-
ence on Microelectronics (MIEL 2002), 12-15 May 2002, vol. vol.2, (Nis, Yugoslavia),
pp. 601–4, 2002.

205

[25] Davoodi, R., Brown, I., Lan, N., Mileusnic, M., and Loeb, G., “An integrated
package of neuromusculoskeletal modeling tools in SIMULINK,” in 23rd Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society, Oct
25-28 2001, vol. 2, (Istanbul, Turkey), pp. 1205–1208, 2001.

[26] de Bruijn, N., “Lambda-calculus notation with nameless dummies: a tool for auto-
matic formula manipulation with application to the Church-Rosser theorem,” Indag.
Math, vol. 34, no. 5, pp. 381–392, 1972.

[27] de Dinechin, F. and Tisserand, A., “Multipartite table methods,” Computers,
IEEE Transactions on, vol. 54, pp. 319–330, Mar. 2005.

[28] Detrey, J. and Dinechin, F., “Table-based polynomials for fast hardware func-
tion evaluation,” in Application-Specific Systems, Architecture Processors, 2005. ASAP
2005. 16th IEEE International Conference on, pp. 328–333, Jul. 2005.

[29] Diepenhorst, M., van Veelen, M., Nijhuis, J. A. G., and Spaanenburg, L.,
“Automatic generation of VHDL code for neural applications,” in International Joint
Conference on Neural Networks(IJCNN’99), vol. 4, p. 2302, 1999.

[30] Drewes, R., “Modeling the brain with NCS and brainlab,” Linux Journal, vol. 2005,
no. 134, 2005.

[31] Farquhar, E. and P., H., “A bio-physically inspired silicon neuron,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 52, pp. 477–488, 2005.

[32] FitzHugh, R., “Impulses and physiological states in theoretical models of nerve mem-
brane,” Biophys J, vol. 1, pp. 445–466, 1961.

[33] Foster, W., Ungar, L., and Schwaber, J., “Significance of conductances in
hodgkin–huxley models,” J Neurophysiol, vol. 70, pp. 2502–2518, 1993.

[34] Girau, B., “FPNA: interaction between FPGA and neural computation,” Interna-
tional Journal of Neural Systems., vol. 10, no. 3, pp. 243–59, 2000.

[35] Golowasch, J., Goldman, M. S., Abbott, L., and Marder, E., “Failure of
averaging in the construction of a conductance-based neuron model,” J Neurophysiol,
vol. 87, pp. 1129–1131, Feb. 2002.

[36] Graas, E., Exploration of Alternatives to General-Purpose Computers in Neural Sim-
ulation. PhD thesis, Georgia Institute of Technology, 2003.

[37] Graas, E., Brown, E., and Lee, R., “An FPGA-based approach to high-speed sim-
ulation of conductance-based neuron models,” Neuroinformatics, vol. 2, no. 4, pp. 417–
435, 2004.

[38] Haldar, M., Nagrajshenoy, A., Choudhary, A., and Banerjee, P., “FPGA
hardware synthesis from MATLAB,” in 14th International Conference on VLSI De-
sign (VLSI DESIGN 2001), Jan 3-7 2001, Proceedings of the IEEE International
Conference on VLSI Design, (Bangalore, India), pp. 299–304, 2001.

[39] Hines, M. L. and Carnevale, N. T., “The NEURON simulation environment,”
Neural Comp., vol. 9, no. 6, pp. 1179–1209, 1997.

206

[40] Hodgkin, A. and Huxley, A., “A quantitative description of membrane current and
its application to conduction and excitation in nerve,” Journal of Physiology, vol. 117,
pp. 500–544, 1952.

[41] Hounsgaard, J., Hultborn, H., Jerspersen, B., and Kiehn, O., “Intrinsic mem-
brane properties causing a bistable behaviour of alpha-motoneurons.,” Experimental
Brain Research, vol. 55, no. 2, pp. 391–4, 1984.

[42] Ito, M., Takagi, N., and Yajima, S., “Efficient initial approximation and fast con-
verging methods for division and square root,” arith, vol. 00, p. 2, 1995.

[43] Johnston, D. and Wu, S., Foundations of Cellular Neurophysiology. Cambridge,
Massachusetts: MIT Press, 1995.

[44] Jones, A., Bagchi, D., Pal, S., Tang, X., Choudhary, A., and Banerjee, P.,
“PACT HDL: a C compiler targeting ASICs and FPGAs with power and performance
optimizations,” in International Conference on Compilers, Architecture and Synthesis
for Embedded Systems, Proceedings of the 2002 international conference on compilers,
architecture, and synthesis for embedded systems, (Grenoble, France), pp. 188–197,
ACM Press, 2002.

[45] Jones, S. M. and Lee, R. H., “Fast Amplification of Dynamic Synaptic Inputs in
Spinal Motoneurons In Vivo,” J Neurophysiol, p. 00537.2006, 2006.

[46] Kamalizad, A. H., Pan, C., and Bagherzadeh, N., “Fast parallel fft on a re-
configurable computation platform,” Computer Architecture and High Performance
Computing, 2003. Proceedings. 15th Symposium on, p. 254, 2003.

[47] Krishnamurthy, R., Yalamanchill, S., Schwan, K., and West, R., “Architec-
ture and hardware for scheduling gigabit packet streams,” High Performance Intercon-
nects, 2002. Proceedings. 10th Symposium on, p. 52, 2002.

[48] Kuo, C. C. and Bean, B. P., “Na+ channels must deactivate to recover from inac-
tivation,” Neuron, vol. 12, no. 4, pp. 819–29, 1994.

[49] Landin, P., “A correspondence between ALGOL 60 and church’s lambda-notation,”
Communications of the ACM, vol. 8, pp. 89–101, 65.

[50] Lee, D. C., Harper, S. J., Athanas, P. M., and Midkiff, S. F., “A stream-
based reconfigurable router prototype,” Communications, 1999. ICC ’99. 1999 IEEE
International Conference on, vol. 1, p. 581, 1999.

[51] Lee, R. H. and Heckman, C. J., “Essential role of a fast persistent inward current in
action potential initiation and control of rhythmic firing,” Journal of Neurophysiology.,
vol. 85, no. 1, pp. 472–5, 2001.

[52] Lee, R. H., Kuo, J. J., Jiang, M. C., and Heckman, C. J., “Influence of ac-
tive dendritic currents on input-output processing in spinal motoneurons in vivo,” J
Neurophysiol, vol. 89, no. 1, pp. 27–39, 2003.

[53] Lee, R. H. and Heckman, C. J., “Adjustable amplification of synaptic input in the
dendrites of spinal motoneurons in vivo,” J. Neurosci., vol. 20, no. 17, pp. 6734–6740,
2000.

207

[54] Liddell, E. and Sherrington, C., “Reflexes in response to stretch (myotatic re-
flexes),” Proc R Soc Lond B Biol Sci, vol. 96, pp. 212–242, 1924.

[55] Mak, T., Rachmuth, G., Lam, K. P., and Poon, C.-S., “Field programmable gate
array implementation of neuronal ion channel dynamics,” Neural Engineering, 2005.
Conference Proceedings. 2nd International IEEE EMBS Conference on, pp. 144–8,
2005.

[56] Moraru, I., Schaff, J., Slepchenko, B., and Loew, L., “The Virtual Cell: An
Integrated Modeling Environment for Experimental and Computational Cell Biology,”
Annals of the New York Academy of Sciences, vol. 971, no. 1, p. 595, 2002.

[57] Muchnick, S., Advanced compiler design and implementation. San Francisco: Morgan
Kaufmann, 1997.

[58] Nagumo, J., Arimoto, S., and Yoshizawa, S., “An active pulse transmission line
simulating nerve axon,” Proc. IRE, vol. 50, pp. 2061–2070, 1962.

[59] Oliver, T., Schmidt, B., Maskell, D. L., and Vinod, A. P., “A reconfigurable
architecture for scanning biosequence databases,” Circuits and Systems, 2005. ISCAS
2005. IEEE International Symposium on, p. 4799, 2005.

[60] Omondi, A. R. and Rajapakse, J. C., “Neural networks in FPGAs,” Neural Infor-
mation Processing, 2002. ICONIP ’02. Proceedings of the 9th International Conference
on, vol. 2, p. 954, 2002.

[61] Pearson, M., Gilhespy, I., Gurney, K., Melhuish, C., Mitchinson, B., Ni-
bouche, M., and Pipe, A., “A real-time, FPGA based, biologically plausible neural
network processor,” in Artificial Neural Networks: Biological Inspirations - ICANN
2005: 15th International Conference, vol. 3697, (Warsaw, Poland), 2005.

[62] Peck, C., Caglar, S., Kozloski, J., Rao, R., and Cecchi, G., “Large-scale
neocortical simulation on BlueGene/L,” in Society for Neuroscience, (688.5), 2006.

[63] Pradeep, R., Vinay, S., Burman, S., and Kamakoti, V., “Fpga based agile
algorithm-on-demand coprocessor,” Design, Automation and Test in Europe, 2005.
Proceedings, p. 82, 2005.

[64] Prinz, A. A., Billimoria, C. P., and Marder, E., “Alternatives to hand-tuning
conductance-based models: Construction and analysis of databases of model neurons,”
J Neurophysiol, vol. 90, pp. 3998–4015, Aug. 2003.

[65] Raikov, I., Preyer, A., and Butera, R. J., “MRCI: A flexible real-time dynamic
clamp system for electrophysiology experiments,” Journal of Neuroscience Methods.,
vol. 132, Jan 2004.

[66] Resat, M. S., Solinsky, J. C., Wiley, H. S., Perrine, K. A., Seim, T. A.,
and Budge, S. E., “3-d multispectral monitoring of living cell signaling using confo-
cal imaging and fpga processing,” Biomedical Imaging: Macro to Nano, 2004. IEEE
International Symposium on, p. 680, 2004.

208

[67] Ros, E., Ortigosa, E. M., Agfs, R., Carrillo, R., Prieto, A., and Arnold,
M., “Spiking neurons computing platform,” in Computational Intelligence and Bioin-
spired Systems: 8th International Workshop on Artificial Neural Networks, vol. 3512,
(Barcelona, Spain), p. 471, June 2005.

[68] Saldaña, R. and Yu, W., “Cellular automata explorations on a beowulf cluster
computer,” Proceedings of Cellular Automata Symposium, 2001.

[69] Savageau, M. and Voit, E., “Recasting nonlinear differential equations as s-systems:
a cononical nonlinear form,” Math. biosci., vol. 87, no. 1, pp. 83–115, 1987.

[70] Schulte, M. and Stine, J., “Approximating elementary functions with symmetric
bipartite tables,” IEEE Transactions on Computers, vol. 48, pp. 842–847, Aug. 1999.

[71] Schwindt, P. C. and Crill, W. E., “Properties of a persistent inward current in
normal and TEA-injected motoneurons,” Journal of Neurophysiology., vol. 43, no. 6,
pp. 1700–24, 1980.

[72] Segev, I., Fleshman, J. W., J., and Burke, R. E., “Computer simulation of group
ia epsps using morphologically realistic models of cat alpha-motoneurons,” Journal of
Neurophysiology., vol. 64, no. 2, pp. 648–60, 1990.

[73] Shenoy, U., Choudhary, A., and Banerjee, P., “Symphany: A system for au-
tomatic synthesis of adaptive systems,” Tech. Rep. CPDC-TR-9903-002, Center for
Parallel and Distributed Computing, Northwestern University, Mar 1999.

[74] Sherrington, C., “On the anatomical constitution of nerves of skeletal muscles;
with remarks on recurrent fibres in the ventral spinal nerve-root,” J Physiol, vol. 17,
pp. 211–258, 1894.

[75] Sherrington, C., Integrative Action of the Nervous System. New Haven, CT: Yale
Univ. Press, 1906.

[76] Shi, C. and Brodersen, R. W., “An automated floating-point to fixed-point con-
version methodology,” in Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference on, vol. 2, pp. 529–532, 2003.

[77] Shi, C., Hwang, J., McMillan, S., Root, A., and Singh, V., “A system level
resource estimation tool for FPGAs,” in International Conference, Field Programmable
Logics and Its Applications, 2004.

[78] Shi, C., “Statistic method for floating-point to fixed-point conversion,” Master’s thesis,
University of California, Berkeley, 2002.

[79] Shi, C., Floating-point to Fixed-point Conversion. PhD thesis, University of California,
Berkeley, 2004.

[80] Snider, R. K., Lukes, A. J., Zhu, Y., and Miller, J. P., “A digital methodology
integrating experimental and theoretical neuroscience,” in Neural Engineering, 2003.
Conference Proceedings. First International IEEE EMBS Conference on, pp. 376–379,
2003.

209

[81] Sorensen, M., Functional Consequences of Model Complexity in Hybrid Neural-
Microelectronic Systems. PhD thesis, Georgia Institute of Technology, 2005.

[82] Stine, J. and Schulte, M., “The symmetric table addition method for accurate
function approximation,” Journal of VLSI Signal Processing, vol. 21, 1999.

[83] Thibault, S. and Pellerin, D., “Optimizing impulse C code for performance,” Tech.
Rep. IATAPP-102, Impulse Accelerated Technologies, 2004.

[84] van Daalen, M., Jeavons, P., and Shawe-Taylor, J., “A stochastic neural ar-
chitecture that exploits dynamically reconfigurable FPGAs,” in FPGAs for Custom
Computing Machines, 1993. Proceedings. IEEE Workshop on, pp. 202–211, 1993.

[85] Vetter, P., Roth, A., and Hausser, M., “Propagation of action potentials in
dendrites depends on dendritic morphology,” J Neurophysiol, vol. 85, no. 2, pp. 926–
937, 2001.

[86] Waldemark, J., Millberg, M., Lindblad, T., Waldemark, K., and Becanovic,
V., “Implementation of a pulse coupled neural network in FPGA,” International Jour-
nal of Neural Systems., vol. 10, no. 3, pp. 171–7, 2000.

[87] Weinstein, R. K. and Lee, R. H., “Computationally intensive motoneuron modeling
in FPGAs,” in Society for Neuroscience, (San Diego, CA), 2004.

[88] Weinstein, R. K. and Lee, R. H., “Design of high performance physiologically-
complex motoneuron models in FPGAs,” in Neural Engineering, 2005. Conference Pro-
ceedings. 2nd International IEEE EMBS Conference on, (Washington DC), pp. 526–
528, 2005.

[89] Weinstein, R. K. and Lee, R. H., “Architectures for high-performance FPGA im-
plementations of neural models,” Journal of Neural Engineering, vol. 3, pp. 21–34,
March 2006.

[90] Weinstein, R., Reid, M., and Lee, R., “Methodology and design flow for assisted
neural-model implementations in FPGAs,” IEEE Transactions on Neural Systems &
Rehabilitation, in press expected March 2007.

[91] Wilson, E., Harris, F., and Goodman, P., “Implementation of a biologically real-
istic parallel neocortical-neural network simulator,” in Proceedings of the Tenth SIAM
Conf. on Parallel Processing for Scientific Computing, 2001.

[92] Xiaoyang, Z., Chao, C., and Qianling, Z., “A reconfigurable public-key cryptog-
raphy coprocessor,” Advanced System Integrated Circuits 2004. Proceedings of 2004
IEEE Asia-Pacific Conference on, p. 172, 2004.

[93] Xilinx, Virtex-4 User Guide, Mar. 2006.

[94] Yao, H. H. and Swartzlander, E. E., J., “Serial-parallel multipliers,” Signals, Sys-
tems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar
Conference on, p. 359, 1993.

210

[95] Zaretsky, D., Mittal, M., Tang, X., and Banergee, P., “Overview of the FREE-
DOM compiler for mapping DSP software to FPGAs,” in Field-Programmable Custom
Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, pp. 37–
46, 2004.

211

VITA

Randall K. Weinstein received his B.S. in Computer Engineering for the Georgia Institute

of Technology in 2001. Throughout college, he worked as a design engineer co-op for Atmel

Corporation designing structured ASICs. Post-graduation, he was employed as a digital

design engineer for the Wireless Communications and Networking Division of Agere Sys-

tems. In January 2003, he began his graduate work and is pursuing a Ph.D. degree in the

Interdisciplinary Bioengineering program at the Georgia Institute of Technology.

212

