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SUMMARY 
 

Driven by ever growing demands of miniaturization, increased functionality, high 

performance and low cost for microelectronic products and packaging, new and unique 

solutions in IC and system integration, such as system-on-chip (SOC) and system-in-

package (SiP), system-on-package (SOP), have been hot topics recently. Embedded 

passives will be one of the key emerging techniques for realizing the system integration. 

As an alternative to discrete components, embedded passives offer various advantages, 

including higher component density, increased functionality, improved electrical 

performance, increased design flexibility, improved reliability and reduced unit cost. 

Novel materials for embedded capacitor applications are in great demand, for which a 

high dielectric constant (k), low dielectric loss and process compatibility with printed 

circuit boards (PCBs) are the most important prerequisites. To date, no available material 

satisfies all these prerequisites and research is needed to develop materials for embedded 

capacitor applications. Conductive filler/polymer composites are likely candidate 

material because they show a dramatic increase in their dielectric constant close to the 

percolation threshold. One of the major hurdles for this type of high-k composites is the 

high dielectric loss inherent in these systems. This research designed and developed 

nanocomposites based on nanoparticles with controlled parameters to fulfill the balance 

between sufficiently high-k and low dielectric loss, which satisfied the requirements for 

embedded capacitor applications.  

This work involved the synthesis of the metal nanoparticles with different 

parameters including size, size distribution, aggregation and surface properties, and an 

investigation on how these varied parameters impact the dielectric properties of the high-



 xvii

k nanocomposites incorporated with these metal nanoparticles. The nanocomposites 

based on these varied nanoparticles were prepared using both ex-situ and in-situ 

techniques. The dielectric behaviors of the nanocomposites were studied systematically 

over a range of frequencies to determine the dependence of dielectric constant, dielectric 

loss tangent and dielectric strength on these parameters.  

Silver (Ag) nanoparticles of different size and size distribution were in-situ 

formed in a polymer matrix by appropriate selection of capping agent and the ratio of 

capping agent to Ag precursor, and then incorporated into high-k composite materials. 

Study results suggest that the size and size distribution of Ag nanoparticles in the 

nanocomposite have significant influence on the dielectric properties of the composite 

system and result in different properties over different frequency ranges. It was found that 

Ag nanoparticles of small size and narrow size distribution had a low dielectric loss 

tangent while maintaining high dielectric constant.  

The effect of high-k polymer matrix on the dielectric characteristics of polymer 

nanocomposites was also studied and the results suggest that the Ag-epoxy high-k 

polymer matrix effectively enhance the dielectric constant while maintaining the low 

dielectric loss of the high-k composites. By using an in-situ photochemical reduction 

method, uniformly dispersed Ag nanoparticles in the size of less than 15 nm were 

generated in polymer matrices. Self-passivated aluminum (Al) particles were 

incorporated into this Ag-epoxy matrix and the dielectric properties of the as-prepared 

composite materials were investigated. The composites showed more than 50% increase 

in k values as compared with an Al/neat epoxy composite with the same filler loading of 



 xviii

Al. The dielectric loss tangent of the Al/Ag-epoxy composites was below 0.1, which 

meets the requirement for embedded decoupling capacitors.  

To better utilize the commercially available Ag nanoparticles, surface 

modification of nanoparticles was employed in order to change the surface chemistry and 

physical properties of nanoparticles and therefore improve dispersion of nanoparticles in 

the polymer matrix and tailor the dielectric properties of corresponding polymer 

nanocomposites. The surface coating layer formed via surface modification of the metal 

nanoparticle improves the dielectric performance of the nanocomposites by decreasing 

the dielectric loss, enhancing the dielectric breakdown strength. The experiments 

provided information about different surface modification conditions such as surface 

modification agent type and concentration, solvent media etc., which play complex roles 

in the quality and degree of the surface modification and allow for effective manipulation 

of the dielectric properties.  

Apart from the size, size distribution and surface property effect, the effect of 

connectivity in terms of aggregation status of the metal nanoparticles on the dielectric 

properties of the nanocomposites was investigated as well. Ag nanoparticles with more 

discrete structure render much lower dielectric loss tangent compared to the 

nanocomposites with Ag nanoparticles of more aggregated structure. For an epoxy 

nanocomposite with 65 wt. % Ag nanoparticles of discrete structure, the k value reaches 

96 and the tanδ value remains as low as 0.036. 

In addition to the metal conductive filler, the composites fabricated by dispersing 

an organic material possessing very high dielectric constant, such as polyaniline (PANI), 

in a polymer matrix were found to exhibit high-k as well. The in-situ polymerization of 



 xix

an aniline salt within epoxy matrices successfully prepared PANI/epoxy composites with 

various PANI contents. A PANI/epoxy composite prepared in this fashion exhibited a 

high dielectric constant close to 3000, a dielectric loss tangent less than 0.5 at 10 kHz and 

at room temperature.  

In summary, material and process innovations were explored to reduce the 

dielectric loss sufficiently while maintain the high-k of the nanocomposites, and 

correlations were sought between the metal nanoparticles parameters such as size, size 

distribution, connectivity in terms of aggregation status, surface properties etc. and the 

dielectric properties of nanocomposites with these metal nanoparticles incorporated. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of Electronic Packaging 

Ever since the invention of silicon integrated circuits (IC), the electronic industry 

has sustainably evolved and profoundly impacted the human life by providing new 

technology and products in the computer, telecommunication, automotive, and consumer 

electronics such as notebook computers, cellular phones, digital cameras, personal digital 

assistant (PDA) and more. As electronic products continue to miniaturize, increase in 

performance, and broaden in applications, it will be necessary to improve electronic 

packaging technologies to enable tomorrow’s electronic systems. Consequently, 

electronic packaging becomes the focus of an intense development effort and the 

challenge of the microelectronics industry today.1,2 

Despite the different approaches taken to package the IC and electronic systems, 

the electronic packaging technology is, in essence, an art of interconnection, protection 

and ergonomic configuration of the system components with an aim of minimizing the 

profile and maximizing the performance of the IC and electronic system, while fulfilling  

these four major basic functions: (1) providing an electrical path to power the circuits; (2) 

distributing signals onto and off the IC chip; (3) removing the heat generated by the 

circuits; and (4) supporting and protecting the chips from hostile environments. Typical 

electronic systems are composed of several layers or levels of packaging, and each of 

them has distinctive types of interconnection devices associated with it. Figure 1-1 
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schematically represents the multi-level hierarchy of electronic packaging.3  The first 

level package establishes interconnection between an IC chip and a module. It must 

provide the required number of contacts for power and signal transmission, maintain 

thermal expansion compatibility between the chip and the second level package, and 

provide a thermal path for heat removal, while minimizing transmission delay and 

electrical noise. This is generally accomplished by three major techniques including wire 

bonding, flip-chip bonding, and tape automated bonding (TAB). The second-level 

packaging refers to the process of joining a module or packaged IC substrate with a 

circuit board or a card, the most common one being a conventional printed wiring board 

(PWB). The card contains the necessary power and signal lines to handle the 

communications between the chips and the third level package. The current second-level 

packaging technologies include pin through hole (PTH), peripheral surface mount 

technology (SMT), and surface-mount-array (SMA) technology. The third-level 

packaging is the process of placing the card onto a motherboard or interconnecting 

between PWBs. The emerging of new technology has blurred the distinction between 

different levels of packaging. For example, the chip-on-board (COB) technology, where 

an IC is directly attached onto a PCB, may be considered a level 1.5 package.4 



 3

 
Figure 1-1. Schematic representation of electronic packaging hierarchy.3 

 
The increase in transistor density of each successive generation of the 

semiconductor technology results in demands for corresponding increase of packaging 

interconnection density. To meet these demands there has been a continuous stream of 

new innovations and new developments in all aspects of electronic packaging: materials, 

processing, new designs, reliability and testing, metrology, modeling and simulation. 

Other driving forces including low cost, portability, high performance, multi-

functionality, and environmental friendliness also fuel the development and introduction 

of the important packaging concept and technology revolutions of the last several 

decades. Figure 1.2 shows the evolution of electronic packaging technology. The shift 

from traditional through-hole packages started sometime in the 1980s when dual in line 
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package (DIP) began to be replaced in select applications by surface-mount packages 

(SMPs) like quad flat packages (QFPs), in response to a need for higher density PWBs. 

The early 1990s saw the emergence of both pin-grid array (PGA) and ball-grid array 

(BGA), primarily because of their high I/O density, minimized footprint, and shorter 

electrical path length and thereby better electrical performance. The BGA package 

evolved from flip-chip technology, also referred to as controlled-collapse chip connect 

(C4), pioneered by IBM for ICs in 1960s. In the mid 1990s, the BGA concept was 

applied to a second generation packaging technology referred to as chip scale packaging 

(CSP), which can increase the IC silicon efficiency 30-40%. The most advanced 

technology in packaging is called wafer-level packaging (WLP) or wafer-level chip scale 

package (WLCSP) began in the late 1990s, which involves building power and signal 

redistributions and packaging protections onto the wafer, representing the convergence of 

front-end and back-end processes in packaging. The next generation packaging 

technology will be a system-level integrated package and 3-dimensional (3D) packaging.5 
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Figure 1-2. Evolution of electronic packaging. 
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1.2 Passive Devices 

Passive devices refer to resistors, capacitors and inductors. They are present in all 

of the electronic system to provide impedance, current-to-voltage phase angle, and 

energy storage. Unlike active components, passives components are nonswitching, have 

no gain, and can not amplify. They can, however, use their impedance to decrease the 

signal current or voltage. Impedance is not a function of signal frequency for an ideal 

resistor, but decreases for an ideal capacitor and increase for an ideal inductor with 

increasing frequency. These sorts of behaviors are useful in many applications including 

filters, energy storage, voltage modification, current control, and line termination.5   

As the total number of passives utilized increases over the years, passive 

technology switched from through-hole or “leaded” to surface-mount technology (SMT) 

components, then passive arrays, i.e. multiple passives in one surface-mount package, 

and finally, the concept of embedded passives in which the passive components are 

embedded within the board itself. In a high performance modern wireless microelectronic 

product such as cell phone, about 80 % of the electronic components are passive 

components which are unable to add gain or perform switching functions in circuit 

performance, but these surface-mounted discrete components occupy over 40 % of the 

printed circuit/wiring board (PCB/PWB) surface area, account for up to 30 % of solder 

joints and up to 90 % of the component placements required in the manufacturing 

process. Therefore, discrete passive components become the limiting factor in the form 

and mass of electronics, especially for analog and mixed-signal applications that use a 

larger number of passives than typical digital systems.5,6 
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1.3 Embedded Passives 

1.3.1 Motivations 

The ever growing demands of miniaturization, increased functionality, better 

performance and low cost for microelectronic products and packaging have been the 

driving force for new and unique solutions in system integration, such as system-on-chip 

(SOC) and system-in-package (SiP). Embedded passives, an alternative to discrete 

passives, can address the issues associated with discrete parts by reducing substrate board 

space, cost, handling, assembly time and increasing yield. Figure 1-3 schematically 

shows an example of realization of embedded passive technology by building passive 

components directly into the laminate substrates.  

Embedded Capacitors

Embedded Resistors

Micro Via
Embedded Inductors

Copper Layer

Dielectric Layer

Surface Mount Device
(BGA/CSP/FC)

Embedded Capacitors

Embedded Resistors

Micro Via
Embedded Inductors

Copper Layer

Dielectric Layer

Surface Mount Device
(BGA/CSP/FC)

 
Figure 1-3. Schematic illustration of embedded passives integrated into the laminate substrate. 

 
By removing these discrete passive components from the substrate surface and 

embedding them into the inner layers of substrate board, embedded passives can not only 

reduce the size and weight of the passives as shown in Figure 1-4, but can also have 

many other benefits such as increased reliability, improved electrical performance and 

reduced cost. Specifically, due to their simplified structure and lack of leads and contacts, 

embedded capacitors and resistors tend to have considerably less parasitic inductance 
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than their surface-mount counterparts. Also, short leads to the embedded capacitor or 

inductor can result in less parasitic resistance. As a result, electrical performance can be 

improved by employing embedded passive technology. Additional reliability advantage 

comes about because two solder joints per passive can be eliminated, which are a major 

failure point for systems with discrete components.6 
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Figure 1-4. Schematic representation of the size advantages of the embedded passives as 

compared to discrete passives. 

 
The benefits associated with embedded passives have driven a significant amount 

of research during the past decade for this technology. For instance, National Institute of 

Standards and Technology (NIST) launched its Advanced Embedded Passives 

Technology (AEPT) project in 1999 with a group of industrial partners, focusing on 

developing the materials, design and processing technology for embedded passive 

devices onto circuit board substrate. However, embedded passive technology has still not 

been commercialized for electronic packages due to materials and process issues. 

Therefore, to enable embedded passive technology it is necessary to develop materials 
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that satisfy the requirements of fabrication as well as electrical and mechanical 

performances.  

 

1.3.2 Capacitors 

All types of electronic systems are becoming more complex while simultaneously 

being required to be smaller and lighter. The number of passives per package is steadily 

increasing, and the required range of values is very wide. As stated previously, discrete 

passive component is the limiting factor in the form and mass of electronics, with 

capacitors dominanting in numbers among different types of passive component and their 

wide applications.  

The required capacitance range of capacitors in typical electronic systems is very 

wide as shown in Figure 1-5, which is an analysis of the capacitor distribution produced 

in two cell phones, two two-way radios and one global positioning system (GPS) receiver. 

5 
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Figure 1-5. Distribution of capacitor values in typical portable consumer equipments.5 
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Table 1-1 shows a wide variety of applications and properties of capacitors, 

including filtering, timing, A/D conversion, termination, decoupling, and energy storage. 

Particularly, the development of microelectronics requires decoupling capacitors with 

higher capacitance and shorter distance from its serving devices. 

 

Table 1-1. Applications and properties of capacitors. 

Application Value Range Tolerance Required Stability Required 

Filtering, timing 1 pF – 100 pF Moderate Moderate 

A/D conversion 1 pF – 10nF Very high Very high 

Termination 50 – 200 pF Low Low 

Decoupling 1nF – 100 nF Low Low 

Energy Storage 1 µF and up Low Low 

 
 

Decoupling capacitors are present in all microelectronics, especially high-power 

logic and mixed signal devices, to decrease power supply requirements, remove noise 

from power/ground planes, and prevent false triggering. In modern microprocessors, high 

current ramping rate demands to chips cause voltage polarization over inductive leads 

and wires. The solution to this problem is to place decoupling capacitors across the power 

and ground distribution conductions, physically as close to the ICs as possible, to act as a 

short-time battery charger in between cycles and provide low impedance power to chips 

that cannot otherwise be supplied by the power supply due to the low-pass filtering action 

of the parasitic inductances. They are referred to as decoupling capacitors because they 

decouple the power distribution system from the current surges required by the IC as 

shown in basic form in Figure 1-6.5 
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Figure 1-6. Power supply and power distribution system without and with a decoupling capacitor. 

 
Decoupling capacitors are generally implemented at several levels: up to 10 µF at 

the board’s power pins; up to 100 nF on the board near the chips; up to 100 pF on the 

chips. Problems with today’s discrete capacitor approach lie in that discrete components 

compete with chips for board space, their inherently inductive nature limits their ability to 

decouple at high frequencies, and the solder joints with discretes are easily to fail. As an 

alternative, the inherently low inductance of embedded capacitors and their ability to hide 

in the substrate near the chip make them ideal for this application.  

However, capacitors are the major impediment to the implementation of 

embedded passives because the materials and processes of embedded capacitors which 

must be compatible with the substrate, interconnects and interlayer insulation layers are 

still unknown. Therefore, materials and fabrication for embedded capacitor applications 

are widely under development focusing on the research of dielectric material, film 

formation methods, and capacitor topography. 
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1.4 Dielectric Mechanisms 

1.4.1 Capacitance, Dielectric Constant and Polarization 

Capacitance (C) is a measure of how much electric charge can be stored in a 

capacitor. The relationship between capacitance C and dielectric constant εr (k) is given 

by the following equation: 

t
AC rεε 0= Equation 1-1 

where ε0 is the dielectric constant of the free space (8.854 × 10-12 F/m), A is the area of 

the electrical conductor, t is the thickness of the dielectric layer, and εr is the dielectric 

constant of the dielectric layer. It is evident that the larger the dielectric constant, the 

larger the capacitance which can be realized in a given space. Therefore, materials of 

high dielectric constant are favored in practical design of embedded capacitors for 

miniaturization. Under an alternate electric field, the dielectric constant of materials can 

be expressed by complex permitivities:  

""'* 0 εεεεεε jj r −=−=      Equation 1-2 

 
where ε′ is the real permittivity and ε″ is the imaginary permittivity. 

The ability of the dielectric materials to store energy is attributed to the 

polarization, i.e. electric field-induced separation and alignment of the electric charges, 

which can result in an increase in capacitance. There are several molecular mechanisms 

associated with this polarization, including electronic, ionic, molecular (dipole), and 

interfacial (space-charge) polarization. In general, application of a field to each of these 

mechanisms in a normal state will cause a displacement of charge which results in a 

polarization in the direction of the field. This effect on each mechanism can be seen 
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schematically in Figure 1-7. For a given material, the sum of the contributions from each 

mechanism determines the net polarization, P, of the dielectric material. 

erfacialmolecularionicelectronic PPPPP int  +++=                  Equation 1-3 

 
Electronic polarization occurs in neutral atoms when the electric field displaces 

the positive nucleus with respect to the electrons around it, thus induce dipole effect 

occurs in all materials. Magnitude of this mechanism is usually very small compared to 

other polarization mechanisms since the moment arms of these dipoles are very short. 

This mechanism would result in low k, perhaps up to 2-4, and can react to very high 

frequencies around 1015 Hz.  

Atomic polarization occurs in substances made up of more than one type of 

nonionic atoms as the shifting of electron cloud toward the more electronegative atoms 

results in a permanent dipole under an applied electric field. The aligning of the 

permanent dipoles with the field creates enhanced capacitance. Therefore, k is a function 

of the material’s structure and lattice flexibility as well as its composition. The magnitude 

of atomic polarization is usually quite small (one-tenth of that of electronic polarization) 

and cannot occur at very high frequencies because of the sluggish movement of heavy 

nuclei compared to electrons, as a result, it is not observed above infra-red frequencies.  

Ionic polarization is similar to atomic polarization but involves the shifting of 

ionic species under the influence of the field. This shift can be considerable and lead to 

very high k, up to several thousand. Ionic conduction is the most prevalent mechanism at 

low frequencies but introduces losses into a system.  

Molecular or dipolar polarization occurs in substances containing permanent 

dipole moment resulted from unbalanced sharing of electrons by atoms of a molecule. 
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And the rotations of the permanent dipoles to align with the external electric field cause 

orientation polarization to occur at around 1011 Hz to 1012 Hz. 

Space charge or interfacial polarization occurs in heterogeneous systems such as 

multi-component materials or incompatible chemical substance containing materials 

when translating charge carriers are accelerated by an applied field until they are impeded 

by and trapped at the physical barriers in these heterogeneous systems. This build up of 

charge dictates the polarization of the material. Grain or phase boundaries and free 

surfaces are common barriers. The typical frequency range for this polarization is around 

10-3 Hz to 103 Hz. 

   

Figure 1-7. Schematics of four major polarization mechanisms 
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Ideally, the dielectric constant should be constant with regard to frequency, 

temperature, voltage, and time. However, each polarization mechanism has a 

characteristic relaxation frequency. Therefore, k values of most of the materials show a 

dependence on the frequency because slower mechanisms fail to respond and contribute 

to the dielectric storage when the frequency becomes large. The k values of dielectric 

materials can also vary with temperature, bias, impurity, and crystal structure to different 

extent according to materials types.6, 7 

Because embedded capacitors are planar and area-ruled, the best way to express 

their value is as specific capacitance, i.e. capacitance per unit area, as expressed in 

Equation 1-4. The value of specific capacitance depends on two parameters, one is the 

dielectric material itself (k) and another one is its form (film thickness). Factors affecting 

film thickness are more specific to the type, processibility and reliability of the materials.   

min   thicknessDielectric
885.0

cm
nFin    ecapacitanc Specific 2 µ

k
=     Equation 1-5 

 
The energy stored in a capacitor E is: 

E = ½ CV2     Equation 1-6 

 
where V is the voltage applied. The electric energy density in a dielectric material is 

limited to kEb
2/2, where Eb is the breakdown strength, both large k and high breakdown 

strength are required for large electric energy storage.8,9 

Additionally, good high frequency performance is desirable for electronic 

products operating at ever increasing transmission data rates.  

Table 1-2 shows the dielectric properties, specific capacitance and energy density 

that might be expected from some dielectric materials in attainable thickness.  
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Table 1-2. Dielectric properties, specific capacitance and energy density of some common 

dielectrics. 6 

Dielectric Dielectric 
Constant 

Dissipation 
factor (%) 

Thickness 
(µm) 

Specific 
Capacitance 

(nF/cm2) 

Energy 
Density at 5 V 

(µJ/cm2) 

Unfilled laminated 
polymer 4 0.1-1.5 25 0.14 0.002 

Ferroelectric-filled 
polymer 50 <3 25 1.8 0.023 

Spin-on BCB 2.7 0.1 2.0 1.2 0.015 

SiO2 3.7 0.03 0.2 16 0.20 

SiO 6 0.01 0.2 27 0.34 

Al2O3 9 0.4-1 0.2 40 0.50 

Ta2O5 24 0.2-1 0.2 110 1.40 

TiO2 40 2-5 0.2 180 2.30 

BaTiO3 ~ 2000 5 1.0 1800 22 

 

1.4.2 Dielectric Loss 

The dielectric loss is a measure of energy loss in the dielectric during AC 

operation, which is a material property and does not depend on the geometry of capacitor. 

Usually the dielectric loss, expressed as the loss tangent (tan δ) or dissipation factor (Df) 

can be defined as 

'2'
''tan

επ
σ

ε
εδ

f
+=

                           Equation 1-7 

where ε’, ε”, σ are the real and imaginary part of the dielectric permittivity and the 

electrical conductivity of the materials, respectively, and f is the frequency.  

In general, dielectric loss of the dielectric material is resulted from distortional, 

dipolar, interfacial, and conduction loss. The distortional loss is related with electronic 
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and ionic polarization mechanisms. The interfacial loss originates from the excessive 

polarized interface induced by the fillers and specifically the movement or rotation of the 

atoms or molecules in an alternating electric field. The conduction loss is attributed to the 

dc electrical conductivity of the materials, representing the flow of actual charge through 

the dielectric materials.10, 11   

The energy loss (W) refers to the energy dissipated in a dielectric material and is 

proportional to the dielectric loss tangent, which can be determined by the following 

equation:  

δξπε tan' 2 fW ≈           Equation 1-8 

where ξ is the electric field strength and f is the frequency.12 Therefore, a low dielectric 

loss is preferred in order to reduce the energy dissipation and signal losses, particularly 

for high frequency applications. Generally, a dissipation factor under 0.1% is considered 

to be quite low and 5% is high.6  Very low dissipation factor is desired for radio 

frequency (RF) applications to avoid signal losses, but much higher values can be 

tolerated for energy storage applications such as decoupling. 

 

1.5 Overview of Dielectric Material Options for Embedded Capacitors 

To meet the stringent materials requirements for dielectric materials to realize the 

embedded capacitor applications, considerable attention has been devoted to the research 

and development of the candidate high-k materials. To date, no one perfect dielectric 

material has yet been identified for embedded capacitor applications because they all 

compromise on certain issues including electrical and mechanical performance, or 
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processing constraints, however, a very wide range of material candidates are potentially 

available.  

1.5.1 Ferroelectric Ceramic Materials 

Ferroelectrics and paraelectrics are the two major classes of dielectric materials. 

The distinguishing feature is that ferroelectric materials do not lose all of their ionic 

polarization when the field is removed but paraelectrics do. The ions in ferroelectrics can 

be stabilized into configurations which do not revert back to the previous state once the 

field is removed because of lattice hindrances. While paraelectric materials cannot be left 

with a residual polarization once the field is removed due to the lack of mobile charged 

atoms with more than one stable lattice position.5 Ferroelectric ceramic materials such as 

BaTiO3 (barium titanate), BaSrTiO3 (barium strontium titanate), and PbZrTiO3 (lead 

zirconium titanate) etc., have been used as dielectric materials for decoupling capacitors 

because these materials possess on the order of thousands. By far the highest specific 

capacitances, exceeding 1800 nF/cm2, are achievable with these materials. BaTiO3, the 

classic example of a ferroelectric, is a cubic crystal with a lattice constant of 4.01 Å and a 

k of paraelectric characteristics at around 15-40 above to its Curie temperature of 120 oC, 

but below this temperature converts to the tetragonal form with unequal side lengths: 3.98 

and 4.03 Å, thereby with existence of permanent dipole moments and their mobile ionic 

charge resulting in a k in the thousands. 6,13 

Traditionally, high-capacitance ceramic capacitors are made of thin layers of 

ferroelectric ceramic materials placed between conductive plates. MLCC (multilayer 

ceramic capacitors) and BLC (boundary layer capacitors) are two examples of the most 

efficient geometries for attaining high-density charge storage among those dispositions of 
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electrodes and dielectrics (See Figure 1-8 (a) and (b)).14 BLC based on perovskite oxides 

such as SrTiO3 (strontium titanate) are normally processed in the reductive and particle 

oxidative atmosphere so that grains of the oxides becoming semiconducting while grain 

boundaries are insulating. 

 

Figure 1-8. (a) Diagram of an MLC capacitor: blue and yellow regions represent metallic and 

dielectric layers, respectively; (b) Diagram of a BLC capacitor: green areas represent reduced 

(semiconductor) ferroelectric grains while orange lines correspond to oxidized (insulator) grain 

boundaries; (c) Diagram of a percolative capacitor: blue and yellow regions represent metallic 

and dielectric material, respectively.14 

 
However, very high processing temperature in excess of 600 °C is required for 

sintering of these materials which make them unsuitable to process directly into low cost 

organic circuit boards. And the dielectric properties of ferroelectrics are typically a strong 

function of temperature, frequency, film thickness and bias, which results in significant 

nonlinearities in their performances. 6 

 

1.5.2 Other Ceramic Materials 

As described in the preceding section, the high dielectric constatnts can be 

sassociatd with ferroelectric properties for those oxides with the perovskite structure. 

However, the intrinsic problems of these capacitors due to strong temperature and 

frequency dependence make them undesirable for most applications. The introduction of 
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percolative capacitors with better electrical properties and simple production process 

could improve the applicability of ceramic capacitors.  

Ceramic-metal composites (cermets) are considered as one of standard candidate 

for high capacitance percolative capacitors. Experimental evidence of and increase in the 

dielectric constant in the neighborhood of the percolation threshold has been reported. 

The fact that the effective dielectric constant of the mixture is much larger than those of 

the components can be understood as that there are many conducting particles isolated by 

thin dielectric layer at the percolation threshold (See Figure 1-8 (c)).14,15  

Pecharromán et al. found BaTiO3-nickle (Ni) composites with a high and 

frequency-independent dielectric constant (εr ≈ 80,000 at the percolation threshold) and 

designed, elaborated a new kind of electronic device. The device is based on the 

percolation theory and comprises an insulating ceramic matrix (BaTiO3) and small, 

homogeneously distributed metallic particles (Ni). A high dielectric constant of 81,200 

and a relatively low loss of 0.05 (measured at a frequency of 10 kHz) was achieved at 

metal volume concentration, f, close to 0.30 once the sample was annealed above the 

ferroelectric transition. This is one of the highest values reached for ceramic capacitors 

and can only be comparable with single-crystal values of ferroelectric and relaxor 

compounds at the Curie temperature.14   

In addition, nonferroelectric and nonperovskite ceramics such as CaCu3Ti4O12 

(CCTO)16,17,18 and Li0.01SixNi0.99-xO (LSNO)19 can exhibit high-k as well which arises 

from the Maxwell-Wagner polarization (i.e. interfacial polarization) mechanism and 

thermally activated mechanism such as charge carrier transport rather than due to 

permanent dipoles. 
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1.5.3 Polymer Materials 

Most polymers used in microelectronic industry such as epoxies, silicones,                        

benzocyclobutenes (BCB), and polyimides (PI) are available for applications by spin-on 

or various coating methods followed by a moderate temperature cure. Therefore, these 

polymer dielectrics are compatible with the organic PWB manufacture. Generally 

speaking, polymers have low dielectric constant in the range of 2-5, e.g., ~ 2.5 for 

polystyrene, ~ 2.65 for BCB, ~2.7 for parylene, ~2.72 for silicone, and ~ 3.5 for epoxy 

and polyimide. These modest k values combined with relatively thick layers in 5-50 µm 

result in specific capacitances ranging from only 0.07 to 0.3 nF/cm2, which make 

polymer materials useful for embedding only the smallest valued capacitors into the 

board. It is also possible to deposit polymer dielectric layers ranging from 2 to 5 µm 

through coating and curing liquid resins, which can significantly increase their specific 

capacitance up to around 1.5 nF /cm2. 5 Since polymers are paraelectric, the resulting 

capacitance is stable with regard to temperature, frequency, and the like. And also the 

dissipation factor of polymers is also very low, usually much lower than ferroelectric 

ceramics. 

As one of the most primarily used polymers in electronic industry, epoxy resins 

have been of particular interest for embedded capacitor applications because of its 

compatibility with PWB manufacturing process. An epoxy system is basically composed 

of epoxy resin, hardener, and catalyst. The dielectric constant of epoxy can be adjusted 

by tailoring the components of epoxy system. For example, the dielectric constant of 

epoxy system can be increased significantly from 3.2 to 5.0 by proper choice of the 

catalyst such as metal acetylacetonate.20  
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Compared with conventional polymers, ferroelectric polymers can have higher k 

values, above 10, because of its polar backbone.21 For example, pure polyvinylidene 

fluoride (PVDF) polymer has a k of about 11 at 1 kHz and 25 °C.22,23 Poly(vinylidene 

fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer, a class of relaxor ferroelectric, can 

have a relatively high k around 40 at room temperature after irradiation treatment.24 As 

the irradiation process requires expensive and complicated equipment, Petchsuk et al.25 

and Yu et al. 26  synthesized polyvinylidene fluoride–trifluoroethylene-

chlorotrifluoroethylene [P(VDF-TrFE-CTrFE)] terpolymers to obtain a similar structure 

as irradiated P(VDF-TrFE) copolymer by introducing CTrFE block in the polymer. It was 

found that P(VDF-TrFE-CTrFE) terpolymer with VDF:Tr-FE:CTrFE molar ratio of 

65:35:9 exhibits a high k of about 60 (@ 1 kHz) at 33 °C,  and its dielectric loss tangent 

is about 0.1. Its dielectric constant can be as high as 320 (@ 10 kHz) 145 °C. The above 

mentioned high-k polymers have non-conjugated backbones. In the case of a conductive 

polymer with conjugated backbone, the k can be even higher. For instance, polyaniline 

(PANI) was reported to possess a k value larger than 104 in a partially crystalline system 

for which an inhomogeneous disorder model was proposed.27  

1.5.4 Ferroelectric Ceramic/Polymer Composites 

Study on ferroelectric ceramic/polymer composites with high-k has also been 

actively explored as a major material candidate for embedded capacitor applications. The 

methodology of this approach is to combine the advantages of the polymers which meet 

the requirements for the low cost organic substrate process, i.e. low temperature 

processibility, mechanical flexibility and low cost, with the advantages from the 

ferroelectric ceramic fillers, such as desirable dielectric properties.28,29,30,31,32,33,34,35,36 The 
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major advantage of this type of material lies in the processing, since the high temperature 

steps required to reach high k from the ferroelectric phase can be executed in advance of 

application to the organic substrate. Almost any high k ferroelectric material can be 

produced in quantity as submicron powders. Then these high k particles can be mixed 

with a polymer resin at up to 60 to 80% loading by volume, then screen printed, spun-on, 

or stenciled onto the substrate, and the polymer phase cured at temperatures tolerable to 

organic boards. 

 However, some challenging issues related to these polymer composites for high k 

applications remain to be solved, such as limited dielectric constants and capacitance 

density, and low adhesion strength which results in air gaps and lowers capacitance. The 

k of the final composite will be much closer to that of the low k material, which is 

generally the polymer with a k of about 3 to 5 according to the mixing rules for a two-

phase combination of two materials with different k. Accordingly, most of the k values of 

ceramic/polymer composites developed to date are between 10 to 50 at room 

temperature. The corresponding film can be made in thickness of around 8 µm pinhole 

free by screen printing and delivers specific capacitance up to about 5 nF/cm2. 

Polar polymers can increase k of the composites at low frequencies. However, the 

presence of polar groups in the polymer matrix also increases dielectric losses, 

particularly within the intermediateand high-frequency ranges.37 On the other hand, by 

employing polymer matrix with relatively high k, the k values of ceramic/polymer 

composites can be effectively enhanced because the k of polymer matrix shows very 

strong influence on the k of the final composites.29,34 For instance, Bai et al. prepared 

Pb(Mg1/3Nb2/3)O3-PbTiO3/P(VDF-TrFE) composites with k values above 200.29 Rao et 
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al. reported a lead magnesium niobate-lead titanate (PMN-PT)+BaTiO3/high-k epoxy 

system (effective k: 6.4) composite with k value about 150, in which ceramic filler 

loading as high as 85 % by volume.20 Studies have shown that the k of 0-3 connectivity 

type composite is dominated by the matrix, therefore, a relatively large volume fraction 

of high k ferroelectric inorganic phase is needed. And the high filler loading of ceramic 

powders is still the technical barriers for real application of ceramic/polymer composites 

in the organic substrate because it results in poor dispersion of the filler within the 

organic matrix, and almost no adhesion towards other layers in PWB as well due to the 

low polymer content. 

Table 3-1 summarizes the type, composition and dielectric properties (room 

temperature values if not otherwise specified) of the ceramic/polymer composite material 

candidates for embedded capacitors. 

 

Table 1-3. Summary of ceramic/polymer composite candidates. 

Materials Dielectric 
Constant 

Dissipation 
Factor Filler Size Filler 

Loading Ref. 

Pb(Mg1/3Nb2/3)O3-
PbTiO3/P(VDF-TrFE) 

~200 
 (10 kHz) 

0.1 
 (10 kHz) 0.5 µm 50 vol% 29 

PZT/PVDF 50 N/A 20 µm 50 vol% 31 

BaTiO3/epoxy 40  
(1 Hz) 0.035 100-200 

nm 60 vol% 32 

bimodal BaTiO3/epoxy 90  
(100 kHz) 

0.03  
(100 kHz) 

916 
nm+60 nm 75 vol% 36 

PMN-PT+BaTiO3/ high-k 
epoxy 

~150  
(10 kHz) N/A 900nm 

/50 nm 85 vol% 20 

CaCu3Ti4O12/P(VDF–TrFE) 243  
(1 kHz) 

0.26 
 (1 kHz) N/A 50 vol% 38 

BaTiO3/ P(VDF-HFP) 37 
 (1 kHz) 

< 0.07 
 (1 MHz) 30-50 nm 50 vol% 39 
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1.5.5 Conductive Filler/Polymer Composites 

Conductive filler/polymer composites are another approach towards ultra-high k 

materials for embedded capacitors. Ultra-high k values have been observed with 

conductive filler/polymer composites when the concentration of the conductive filler 

approaches the percolation threshold, which can be explained by the percolation theory 

for conductor-insulator percolation system.15 For conductive filler/polymer composites, 

the effective electrical properties approaching the percolation threshold are determined by 

the scaling theory, which can be described as      Equation 1-9 through     Equation 1-11: 

σ = σM (f – fc) t      f > fc       Equation 1-9  

σ = σD (fc – f) -q       f < fc     Equation 1-10 

ε = εD / | f – fc |q = εD (σM / σM)s     Equation 1-11 

where σM and σD are the electrical conductivity of conductive filler and polymer, 

respectively; f and fc is the concentration and the percolation threshold concentration of 

the conductive filler within the polymer matrix, respectively; εD is the dielectric constant 

of the polymer matrix; and q, s and t are scaling constants, related to the material 

property, microstructure and connectivity of the phases in the conductive filler/polymer 

system.15 

Sometimes the effective dielectric constant of the metal-insulator composite could 

be three or four orders higher than the dielectric constant of the insulating polymer 

matrix. This phenomenon can be interpreted in terms of a “supercapacitor network” with 

very large area and small thickness: when the concentration of the metal is close to the 

percolation threshold, large amount of conducting clusters are in proximity to each other, 

but they are insulated by thin layers of dielectric material. Furthemore, this percolative 
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approach requires much lower volume concentration of the filler compared to traditional 

approach of high-k fillers in a polymer matrix. Therefore, this material option represents 

advantageous characteristics over the conventional ceramic/polymer composites, 

specifically, ultra-high k with balanced mechanical properties including the adhesion 

strength. Various metal particles or other conductive fillers, such as silver (Ag), 

aluminum (Al), nickel (Ni), carbon black, have been used to prepare the polymer-

conductive filler composites or three-phase percolative composite 

systems.40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 High dielectric loss, low dielectric strength and narrow 

processing window are technical barriers for this category of materials. Because the 

highly conductive particles are easy to form a conductive path in the composite as the 

filler concentration approaches the percolation threshold. Currently much work has been 

focused to solve these problems of the conductive filler/polymer composites and much 

progress has been made. Details of some conductive filler/polymer composite materials 

reported in recent years are summarized in Table 1-4. 

 

Table 1-4. Summary of the conductive filler/polymer composite candidates. 

Materials Dielectric 
Constant 

Dissipation 
Factor Filler Size Filler 

Loading Ref. 

Ag flake/epoxy ~1000  
(10 kHz) 

0.02  
(10 kHz) 1.5 µm 11.23 vol% 40 

Al/epoxy 109  
(10 kHz) 

0.02 
 (10 kHz) 3 µm 80 wt% 41 

Ni-BaTiO3/PVDF 300  
(10 kHz) 

0.5  
(10 kHz) 

Ni:0.2 µm, 
BT: 1 µm 

Ni: 23 vol%, 
BT: 20vol% 42 

Ni-BaTiO3/PMMA 150  
(1 MHz) N/A Ni: 4 µm,  

BT: 1 µm 
Ni: 12 vol%, 
BT: 20 vol% 43 

Carbon black/epoxy 13000 
 (10 kHz) 

3.5  
(10 kHz) ~30 nm 15 vol% 45 
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Table 1-5 continued. 

Ag/epoxy ~300 
(1 kHz) 

0.05 
(1 kHz) 40 nm 22 vol% 46 

Ag@C/epoxy >300 
(1 kHz) 

< 0.05 
(1 kHz) 80-90 nm core 25-30 vol% 48 

 

1.5.6 All-Organic Polymer Composites 

The composites fabricated by dispersing an organic filler material possessing very 

high dielectric constant in a polymer matrix can exhibit high-k as well. Zhang et al. used 

copper-phthalocyanine (CuPc) oligomer, a class of organic semiconductor materials with 

k as high as 105, as high-k filler and dispersed in P(VDF-TrFE) matrix. The composite 

showed a k of 225 and a loss factor of 0.4 at 1 Hz.49 The high dielectric loss is due to the 

long-range intermolecular hopping of electron. Wang et al. further chemically modified 

CuPc and bonded to P(VDF-TrFE) backbone to improve the dispersion of CuPc in 

polymer matrix. Dielectric loss was reduced and dielectric dispersion over frequency was 

weakened for chemically modified CuPc/P(VDF-TrFE) composites.50 A k value above 

1000 (@ 1 kHz) has been achieved by Huang et al. in an all-polymer high-k percolative 

composite material, fabricated by a combination of conductive polyaniline (PANI) with a 

poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-

CTFE)] terpolymer matrix (k > 50). 51  The possibility of all-organic composites as 

candidate high-k material for embedded capacitor requires further investigation and 

demonstration.  
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1.6 New Concepts and Current Trend 

1.6.1 Nanocomposites 

Nanocomposite materials are multi-constituent combinations of nano-dimensional 

phases with distinct differences in structure, chemistry, and properties. These materials 

typically contain an inorganic component in an organic host or vice versa, or consist of 

two or more inorganic/organic phases in some combinatorial form with the constraint that 

at least one of the phases or feature in the nanosize. In general, nanocomposite materials 

can demonstrate unique combinations of mechanical, electrical, optical, electrochemical, 

catalytic, and structural properties compared to those of each individual component and 

their micron-size filled counterparts by taking advantage of the different structure, 

composition and properties of their constituents.52  

1.6.1.1 Nanofillers 

Nanofillers refer to those fillers of sub-100 nm size in at least one dimension. The 

primary driver for the usage of nanoparticle instead of micron-scale traditional fillers is 

the effect of particle size on their properties. The small size of the nanofillers can lead to 

unique and excellent electrical, magnetic, optical, catalytic, mechanical, chemical or 

biological properties, such as ultra-high modulus and conductivity of carbon nanotubes, 

Coulomb blockade effect of metal nanoparticles. Therefore, nanocomposite materials 

provide the possibility for enhanced functionality in contrast with their single-component 

counterparts. For example, nanocomposites with altered electrical or mechanical 

properties that retain their optical clarity can be obtained because very small 

nanoparticles do not scatter light significantly. Nanoparticles are also less likely to create 
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large stress concentrations and thereby can avoid the compromise of the material ductility 

while improve other mechanical properties.   

In addition, the small size of the fillers leads to an exceptionally large interfacial 

area in the nanocomposites. Since nanoparticles have a much higher surface area per unit 

volume than larger particles, they possess a much greater interface with their 

surroundings. The interface controls the degree of interaction between the nanofiller and 

the polymer matrix, and thus controls the properties of the nanocomposites.   

The method of synthesis often influences the size and properties of the 

nanoparticles. The nanoparticle size is dependent on the kinetics of nucleation and 

growth from a supersaturated solution as well as processes such as coarsening, oriented 

attachment, and aggregation, which tend to occur at longer times.53 Due to the reduced 

lattice constants, the large surface energy and thermodynamic instability resulted from 

the large ratio of the surface to interior atoms, it is of the great challenges to stabilize 

nanoparticles. One method to prevent the nanoparticles from growth in size is to reduce 

the surface energy by insertion, i.e. adsorption and bonding, of surface active components 

into the particle surface. In addition, synthesis of nanoparticles in confined geometries 

and structured reaction media can yield anisotropic and size-controlled nanoparticles.  

It is of paramount significance to understand, tailor and optimize properties by 

controlling the size, shape, volume fraction, interface, degree of dispersion or aggregation 

of nanoparticles to guide further development. The ability to manipulate the size, 

morphology and arrangements of nanoparticles in such a fashion that their unique optical, 

electrical and magnetic properties can be utilized for different applications remains a 

challenge.52,53,54 
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1.6.1.2 Processing of Polymer Nanocomposites 

Processing is one of the key limitations in the commercialization of 

nanocomposites. A major difficulty is proper dispersion of the nanofillers in the polymer 

matrix. Because, in the case of nanoparticles, aggregation or agglomeration occurs very 

easily due to the interparticle surface forces such as van der Waals forces, capillary forces 

and electrostatic forces, and often leads to undesirable materials properties. 

The processing of polymer nanocomposites affects the state of the arrangement of 

nanofiller in the nanocomposites, which can be understood from the distribution and 

dispersion. Distribution of nanofiller describes the homogeneity throughout the sample, 

and dispersion of nanofiller describes the level of agglomeration. Figure 1-10 

schematically illustrates the dispersion and distribution states of nanofillers as (a) good 

distribution but poor dispersion, (b) poor distribution and poor dispersion, (c) poor 

distribution but good dispersion and (d) good distribution and good dispersion. Without 

proper dispersion and distribution of the nanofillers, the high surface area which gives 

rise to unique properties of the nanofillers is compromised, and also the aggregates and 

agglomerations can act as defects and deteriorate the properties.   

 

Figure 1-9. Schematic illustration of the dispersion and distribution states of nanofillers.52 
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Figure 1-10 continued.  

 
The quality of nanofiller dispersion in the polymer matrix directly correlates with 

its effectiveness for improving mechanical, electrical, thermal, impermeability and other 

properties. The properties of a composite are also intimately linked to the aspect ratio and 

surface-to-volume ratio of the filler.55 

There are three general methods of dispersing nanofillers in polymers. The first is 

direct mixing of the nanoparticle and the polymer either as discrete phases or in solution 

phase. The second is in-situ polymerization in the presence of the nanoparticles. And the 

third is in-situ formation of the nanoparticles and in-situ polymerization simultaneously. 

The latter can result in composites called hybrid nanocomposites because of the intimate 

mixing of the two phases. 

(a) Direct Mixing 

Direct mixing of the nanoparticle and the polymer can be carried out either as 

discrete phases or in solution phase.  

Well established polymer processing techniques, melt-mixing or elastomeric 

mixing through roll mill, twin-screw extruder, Brabender high-shear mixer, or thermal 

spraying, can be used to direct mix the nanofillers and the polymer as discrete phases. 

The examples include nano silica (SiO2)/polypropylene56, nano alumina/poly(ethylene 

terephthalate)  (PET) or low density polyethylene (LDPE)57, nanoparticle-filled Nylon58 
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etc. But the rapid increase of the viscosity with the addition of significant volume 

fractions of nanofiller limits the viability of this processing method. 

Solution-phase mixing refers to dissolve or disperse the polymer and the 

nanoparticles in solution. The nanoparticle/polymer solution can be cast into a film or can 

be isolated from solution by solvent evaporation or precipitation. This allows 

modification of the particle surface without drying, which reduces particle agglomeration 

and thereby overcome some of the limitations of direct mixing. For instance, electrically 

conductive graphene/polymer nanocomposites was prepared by solution-phase mixing of 

the exfoliated phenyl isocyanate-treated graphite oxide sheets with polystyrene, followed 

by their chemical reduction. These composites feature individual graphene sheets well 

dispersed throughout the polymer matrix.55 

(b) In-situ Polymerization 

In-situ polymerization means to disperse the nanofillers in the monomer or 

monomer solution followed by standard polymerization of the resulting mixture. A few 

examples are nano SiO2/Nylon659, titania (TiO2)/polymethylmethacrylate (PMMA)60, 

calcium carbonate (CaCO3)/PMMA61. One advantage of this method is the potential to 

graft the polymer onto the particle surface. Appropriate dispersion of the filler in the 

monomer is the key to this method, which often requires modification of the nanoparticle 

surface. Because the settling process is more rapid in a liquid than in a viscous melt 

although dispersion is easier. 

(c) In-Situ Nanoparticle Processing/Formation 

Another method for producing nanoparticle-filled polymers is an in-situ 

nanoparticle processing or formation. Ceramic/polymer composites can be prepared by 



 32

an in-situ processing of the SiO2 and TiO2 in a range of polymer matrices by mixing SiO2 

or TiO2 precursor with a polymer followed by the sol-gel reaction. 

Metal/polymer nanocomposites have also been processed via an in-situ formation 

of metal nanoparticles in the polymer matrix from suitable metal precursors. The 

presence of the protective polymer can prevent the agglomeration and limit the size of the 

nanoparticles. Mayer et al. reviewed parameters which affect the size, stability and 

morphology of as-formed nanoparticle. 62  Primary parameters which control the 

nanoparticle size include the choice of metal precursor and the metal-polymer interaction. 

The nanoparticle size tends to be reduced if the polymer has a stronger interaction with 

the metal precursor because the precursors are prevented from phase separation.63 The 

nanoparticle size is affected by the rate of reduction and faster reduction methods result 

in smaller nanoparticles.64,65  

Spherical micelle formation from amphiphilic block copolymers or 

corsslinked/gelled matrices can give specific control over nanoparticle size and 

morphology. Metal precursors either penetrate into the micelles or stabilize in the micelle 

corona and therefore metal nanoparticles can form either within the micelles or in corona 

after addition of the reducing agent, resulting in various morphologies shown 

schematically in Figure 1-11. Other block copolymer morphologies such as rods and 

layers can lead to interesting nanoparticle morphologies and thereby varied properties.62 
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Figure 1-11. Morphologies of block copolymer-metal systems involving spherical micelle 

formation of the amphiphilic block copolymers: (a) cherry morphology, (b) raspberry 

morphology, (c) strawberry morphology, (d) proposed red currant morphology.62 

 
A wide range of conductive, semiconductive or magnetic nanoparticles including 

gold, silver, palladium66, platinum, semiconductors, and metal oxides67 can be formed by 

this method. It provides tremendous opportunity to tune the properties of these 

nanocomposite systems.  

 

1.6.1.3 Modification of Nanoparticle Interfaces 

The interfacial region within the polymer matrix possesses properties significantly 

different from those of the bulk polymer. The local chemistry, degree of cure, chain 

mobility, chain conformation, and degree of chain ordering or crystallinity can vary 

continuously from the filler/polymer matrix boundary to some point in the bulk 

polymer.53 An understanding of the interfacial region is essential to understand the 

significant effects nanofillers exert on polymer behavior. 
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In addition to a specified size and shape, a controlled surface chemistry of 

nanoparticles is sometimes required to realize special advanced functionalities for various 

studies and applications. Encapsulation of nanoparticles endows them with important 

properties that bare uncoated nanoparticles lack. For instance, organic or inorganic 

coatings on metal or other inorganic particles enhance compatibility with organic 

ingredients, protect particle surfaces from oxidation, and hence improve dispersibility, 

chemical stability and so on. Consequently, nanofiller interface modification is important.  

 

Figure 1-12. Schematic summary of nanoparticle modification.52 

 
(1) Organic Coatings 

Two primary methods for modifying an inorganic nanoparticle surface with 

organic molecules are either connecting a short chain molecule onto the surface via 

grafting or strong hydrogen bonding, or applying a polymer coating onto the surface via 

polymerization. In general, these coatings can provide control over the compatibility of 

the modified nanoparticles with the polymer matrix and the strength of the interaction in 

between. 
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In the first method, hydroxyl groups on the metal and metal-oxide nanoparticle 

surface can react with a silane coupling agent. The large variety of functionalities 

attached to the silanol modifies the nanoparticle surface with long or short, hydrophilic or 

hydrophobic, linear or bulky chains. Hence, the strength of the interaction between the 

filler and the polymer matrix can be controlled from covalent bonding to repulsion, 

leading to increases or decreases in glass transition temperature, modulus, or other 

properties of nanocomposites.  

Nanoparticles with controlled size and degree of aggregation are also the goal of 

many research efforts. As depicted in Figure 1-12, the coating layer with reactive sites on 

the nanoparticles could be used to bond particles together and lead to controlled 

aggregation of the nanoparticles. 

As to the polymer coatings, they can be grafted or strongly adsorbed via hydrogen 

bonding onto the surface of the nanoparticles. Monomer adsorption and subsequent 

polymerization on the nanoparticle surface have been demonstrated on micrometerscale 

filler surfaces.68 Another method involves grafting an initiator and then polymerizing a 

grafted polymer onto the nanoparticle surface.69  

Additionally, a multi-layer structure can be achieved on the nanoparticle surface 

by slef-assembled polymer layers using layer-by-layer (LbL) colloid templating strategy. 

LbL assembly possesses the advantages of simplicity, universality, thickness control in 

nanoscale, low cost and being environmentally friendly. Uniform multilayers can be 

formed by this approach on a number of 3D objects due to the conformal nature of the 

polyelectrolyte adsorption process besides the 2D surfaces. The build-up of 

polyelectrolyte multilayers on colloidal surfaces ranging in size from several micrometers 



 36

down to nanometers has been demonstrated. A frequently utilized method to create 

nanoparticle-loaded thin film coatings on colloidal particles is via LbL assembly of a 

polyelectrolyte and preformed nanoparticles of an opposite surface charge. 70  This 

approach provides a simple route to create core-shell.                           

(2) Inorganic Coatings 

Inorganic coatings have also been applied to nanoparticles via precipitation or 

deposition of the inorganic species onto the particle surfaces by a sol-gel type process. 

SiO2, TiO2, titamium nitride, and zirconia have been coated on nanoparticles, usually 

metal oxides, in this way.52 

 

1.6.2 Nanodielectrics 

With the increased enthusiasm and activity toward the research on the 

nanotechnology, a new class of dielectric material, nanodielectric, is emerging. It is 

anticipated that nanocomposites are highly promising nanodielectrics. 71  Polymer 

composite materials based on nanoparticles, one category of nanocomposites, provides a 

potential solution to meet the present and future technological demand in terms of the 

good processibility and mechanical properties of polymers combined with the unique 

electrical, magnetic or dielectric properties of nanoparticles. 72  The heterogeneous 

inclusions, even if they are nonpolar, often cause heterogeneous dielectric polarization as 

a result of the accumulation of a virtual charge at the interface of two media with 

different permittivities or conductivities. 

Additionally, nano-sized particles are preferred for high-k dielectric composite 

materials because they could help achieve thinner dielectric films leading to a higher 
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specific capacitance as shown in Figure 1-13. Therefore, more nanoparticles of ceramic, 

metallic or even organic semiconductor have been introduced to prepare high-k dielectric 

materials recently. Some of the examples can be referred to the materials candidates and 

corresponding properties as summarized in Table 1-3 and Table 1-4. 

 

                 

Figure 1-13. Schematics of composite films based on micron-sized particles and nanoparticles. 

 

1.6.3 Performance Enhancement of High-k Nanocomposites  

1.6.3.1 Filler Size Effect 

It is worth to mention that there are several issues of nanoparticle-based dielectric 

composite materials need to be addressed. Although finer particle size is required to 

obtain a thin dielectric film and to increase the capacitance density, for ferroelectric 

ceramics, extremely fine particles may lead to the change of crystal structure from 

tetragonal, which results in the high permittivity, to cubic or pseudo-cubic. Generally 

speaking, the tetragonality and hence the permittivity of ceramic particles decreases with 

the particle size. Uchino et al.73 and Leonard et al.74  found that the tetragonality of 

MMiiccrroonn--ssiizzeedd ppaarrttiicclleess NNaannooppaarrttiicclleess  
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BaTiO3 powders disappears finally when the particle size decreases to approximately 100 

nm and 60-70 nm, respectively. Cho et al. prepared BaTiO3/epoxy composite embedded 

capacitor films (ECFs) with average particle size of 916 nm (P1) and 60 nm (P2), the k 

values of ECFs made of P1 were higher than those made of P2. So the coarser particle is 

more useful than the finer particle to obtain high k of ECFs using unimodal powder in 

this case. But by adopting bimodal fillers, fine nanopariticle can effectively enhance the k 

values by maximizing packing density and removing the voids and pores formed in the 

dielectric films. A dielectric constant of about 90 was obtained at a frequency of 100 kHz 

using these two different size BaTiO3 powders (see Figure 1-14). 36 

 
Figure 1-14. Dielectric constant changes with BaTiO3 powder loading and size.36 

 

1.6.3.2 Controlled Dispersion 

Uniform dispersion of nanoparticles in nanocomposite materials is required 

because nanoparticle agglomerates will lead to undesirable electrical or materials 

properties. Therefore, dispersion of nanoparticles is an extremely important contributor 

for achieving improved dielectric properties and reproducibility.   
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In a simple way, addition of surfactant or dispersant such as phosphate esters can 

improve the dispersion of nanoparticles in polymer matrix and thereby the overall film 

quality and dielectric performance of the nanocompsites.75 

Chemical modification of nanoparticles is also a useful approach to facilitate the 

dispersion of nanoparticles. For instance, Kim et al. reported that surface modification of 

BaTiO3 and related perovskite-type metal oxide nanoparticles with phosphonic acid 

ligands leads to well-dispersed BaTiO3/polymer nanocomposite films with high dielectric 

strength. 39 This methodology is straightforward and easily adapted to a wide range of 

systems by choosing appropriate ligand functionality. Another example is related with 

CuPc as discussed in section 1.5.6. Chemically modified CuPc can improve the 

dispersion of CuPc in polymer matrix. Compared to the simple blending method, the 

CuPc oligomer particulates in grafted sample are of relatively uniformly size in the range 

of 60-120 nm, which is about 5 times smaller than that of blended composite. 

Furthermore, dielectric loss was reduced and dielectric dispersion over frequency was 

weakened.50 

 

1.6.3.3 Control of Dielectric Loss for Conductive Filler/Polymer Nanocomposites 

Conductive filler/polymer nanocomposites have been identified as a promising 

method to fulfill the material requirements for embedded capacitors. However, the 

dielectric loss of this type of materials is very difficult to control, because the highly 

conductive particles are easy to form a conductive path in the composite as the filler 

concentration approaches the percolation threshold. To solve this drawback, currently 

much work has been directed to the control of the dielectric loss of this system.  
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The direct contact of the conductive metal fillers will lead to high dielectric loss 

or even conduction for the conductive filler/polymer composites at or above percolation 

threshold. Therefore, core-shell structured filler was proposed to be utilized as fillers 

instead of using conductive filler directly because the non-conductive shell could serve as 

electrical barriers between the conductive cores to form a continuous interparticle barrier-

layer network and thus achieve high-k and low loss. The core-shell structure can be 

formed either pristinely or by synthesis.  

For instance, Al/polymer composite with low loss and relatively high k using self-

passivating Al as the filler has been developed by Xu et al.41 This approach combines the 

advantages of ceramic/polymer and metal/polymer systems. Figure 1-15 (a) shows a high 

resolution TEM micrograph of a 100 nm Al particle, which has an oxide thickness about 

2.8 nm. The self-passivated insulating aluminum oxide (Al2O3) layer on the Al metallic 

core showed significant effects on the dielectric properties of the corresponding 

composites. The nanoscale insulating oxide layer allows the Al/polymer composites to 

have a high dielectric constant as a percolation system; on the other hand, the insulating 

oxide layer confines the electrons within an Al particle, thus retaining a very low loss of 

the composites. The dielectric properties of Al/epoxy composites as a function of filler 

loading are shown in Figure 1-15 (b). A high k of 109 with low dissipation factor of 0.02 

(epoxy-baesd resin has a loss factor of 0.02) has been obtained for a unimodal 80 wt. % 

Al (3 µm)/epoxy composite. For bimodal Al/epoxy composites, a much higher dielectric 

constant of about 160 has been accomplished. 
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Figure 1-15. (a) HRTEM micrograph of a 100 nm Al particle with an oxide thickness about 2.8 

nm and (b) dielectric properties of Al composites as a function of filler loading. 

 
Most recently, Shen et al. reported a new polymer composite using synthesized 

core/shell hybrid particles with metal Ag cores coated by organic dielectric shells as 

fillers. The organic dielectric shells act as interparticle barriers to prevent the direct 

connection of Ag particles and facilitate the dispersion of fillers in the polymer matrix as 

well, leading to stable high k (>300) and rather low dielectric loss tangent (<0.05) for the 

polymer dielectric.48    

Similarly, attempts have been made to reduce the dielectric loss of the conductive 

filler/polymer nanocomposites by introducing surfactant layer coated on the metal filler 

surfaces during nanoparticle synthesis. The surfactant layer on the nanoparticle surfaces 

is expected to serve as a barrier layer to prevent the formation of conduction path to 

control the dielectric loss. For examples, Qi et al. reported a Ag/epoxy nanocomposite 

with 22 vol. % of Ag possessing a high k of 308 and a relatively low dielectric loss of 

0.05 at a frequency of 1 kHz.46 In this material system, 40 nm Ag nanoparticles coated 

with a thin layer of mercaptosuccinic acid were randomly distributed in the polymer 

matrix. As displayed in Figure 1-16, the k and dielectric loss increase with the filler 
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concentration up to 22 vol. %. The decrease of k after that point is not due to conduction, 

and this is attributed to the porosity as revealed from miscrostructure investigation. The 

introduction of porosity is possibly caused by the absorbed surfactant layer, which leaves 

space between Ag particles and the voids are not occupied by polymer. Another 

contributor could be micropores formed from solvent residue during curing, especially at 

a higher Ag content.  In addition, no rapid increase of the dielectric loss tangent values 

was observed. Therefore, the observed highest k value was not considered as a real 

percolation threshold and the formation of a conducting filler network was prevented by 

the surfactant coating layer.  

 

Figure 1-16. The dependence of dielectric constant and dielectric loss tangent values on silver 

volume fraction and frequency.46 
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1.7 Challenges for Embedded Capacitor Materials 

Past efforts, current status and recent advances in the field of high-k materials for 

embedded capacitor applications have been reviewed in previous sections. Generally 

speaking, high-k materials which meet the requirements for this application should 

possess high dielectric constant, low dissipation factor, high thermal stability, simple 

processibility, and good dielectric properties over broad frequency range. However, no 

such ideal materials that satisfy the above-mentioned prerequisites simultaneously have 

been realized till present. Polymer nanocomposite materials, arguably regarded as the 

most promising candidate material, have been studied extensively. Efforts to improve the 

overall dielectric performance of these materials have been devoted to maximize the 

dielectric constant and suppress the dielectric loss.  

New insights into the unique properties of the nanoparticle filler, filler 

modification and the dispersion between filler and polymer matrix are anticipated to be 

gained for dielectric property enhancement of hi-k nanocomposites. Specifically, the 

required knowledge and technology include: (1) optimized formulation of dielectric 

materials with high filler loading of high-k ceramics for ceramic-polymer 

nanocomposites and appropriate loading level of conductive fillers in the neighborhood 

of percolation threshold for conductive filler-polymer nanocomposites; (2) improvement 

in microstructure of dielectric materials including filler size and distribution, 

morphology, degree of aggregation, packing, and dispersion in the polymer matrix; (3) 

enhancement of k values of nanocomposites by employing high-k polymer matrix; (4) 

modification of the filler interface to facilitate dispersion in the polymer matrix and 

suppress the dielectric loss of the composite materials etc.  
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1.8 Research Objectives 

Novel materials for embedded capacitor applications are in great demands, for 

which high k, low dielectric loss and process compatibility with PCBs are the most 

important prerequisites. Dramatic increase of dielectric constant close to the percolation 

threshold observed in the conductor-insulator percolative system arouses interest of 

developing conductive filler/polymer composites as candidate materials for embedded 

capacitor applications. One of the major hurdles for this type of high-k composites is the 

associated high dielectric loss. However, the approaches to control the dielectric loss 

have not been studied thoroughly.  

Accordingly, the overall objective of this research is to design and develop 

nanocomposites based on nanoparticles with controlled parameters to fulfill the balance 

between sufficiently high k and low dielectric loss, and satisfy the requirements to be a 

feasible option for embedded capacitor applications.  

Specifically, this research involves the following aspects: 

o Synthesize the metal nanoparticles with controlled parameters including size, size 

distribution, aggregation and surface properties.  

o Prepare the nanocomposites based on these varied nanoparticles using both ex-situ 

and in-situ techniques. 

o Investigate the dielectric behavior of the nanocomposites systematically over a range 

of frequencies to determine the dependence of dielectric constant, dielectric loss 

tangent and dielectric strength on these parameters. Provide information about the 

appropriate size, size distribution and aggregate status which might impact the 
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changes of the dielectric properties and allow for effective enhancement of the 

dielectric properties of the high-k nanocomposites.  

o Employ surface modification of metal nanoparticles to change the surface chemistry 

and physical properties of nanoparticles and therefore to improve dispersion of 

nanoparticles in the polymer matrix and tailor the dielectric properties of 

corresponding polymer nanocomposites. Explore different surface modification 

conditions such as modification agents and their concentrations, solvent media etc., 

which may play complex roles in the quality and degree of the surface modification. 

o Explore an in-situ photochemical method to prepare metal nanoparticle-polymer 

composite as high-k polymer matrix in which metal nanoparticles were generated by 

photochemical reduction of a metallic precursor within the polymer matrix. The as-

prepared high-k polymer matrix can be used to host various fillers such as conductive 

metal or ferroelectric ceramic fillers to achieve both high k and relatively low 

dielectric loss. 

o Explore an approach to incorporate organic conductive element in the polymer matrix. 

Investigate the possibility of all-organic composites as a high-k material candidate for 

embedded capacitor.  
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CHAPTER 2 

EXPERIMENTAL 

 

2.1 Materials 

2.1.1 Epoxy  

To ensure low-temperature and low-cost processibility, high-k dielectric 

nanocomposites for embedded capacitor applications in this research was based on 

polymer matrices. Specifically, epoxy-based composites were the focus of this research 

because of its good compatibility with the sequential build-up processes of organic 

substrates. 

An epoxy generally refers to a molecule containing one or more reactive epoxy 

(1,2-epoxide or oxirane) groups, which are three-member ring consisting of a oxygen 

bonded to two carbon atoms. In the cured resin, all of epoxy groups may have reacted and 

it no longer contains any epoxy group, but the cured resin is still called epoxy. Most 

common epoxy resins are produced from a reaction between epichlorohydrin and 

bisphenol-A. The first commercial attempts to prepare resins from epichlorohydrin were 

made in 1927 in the United States. Because of the strained nature of the three-member 

ring, epoxies are highly reactive. The chemistry of epoxies and the range of commercially 

available variations allow them to be produced with a very broad range of properties. In 

general, epoxies are known for their excellent adhesion, chemical and heat resistances, 

good to excellent mechanical properties and very good electrical insulating properties, 
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which make them cover extensive applications including coatings, adhesives and 

composite materials such as those using carbon fiber and fiberglass reinforcements. It is 

also predominating thermosetting resin for electronic packaging. 

An epoxy is typically composed of an epoxy resin, a hardener, a catalyst, and 

some necessary additives and modifiers. 

2.1.1.1 Epoxy Resins 

The base epoxy resins are very important in that many ultimate material 

properties such as viscosity, adhesion, toughness, moisture absorption, and electrical 

properties are mainly determined by the base epoxy resins. The commonly used epoxy 

resins can be categorized in two groups: diglycidyl ether type and cycloaliphatic type. 

The chemical structures of bisphenol-A type epoxy and cycloaliphatic epoxy used in this 

research are show in Figure 2-1. 

 

Bisphenol A (EPON 828): 

C

CH3

CH3

O CH2 CH CH2

O
CH2CHH2C

O
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Cycloaliphatic (ERL 4221) 

COCH2

O

OO

 

Figure 2-1. Chemical structures of liquid bisphenol A and cycloaliphatic epoxy resins.  
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The bisphenol-A epoxy (EPON 828) with an equivalent epoxide weight (EEW) of 

187 g was supplied by Shell. The cycloaliphatic epoxy (ERL 4221) with an EEW of 134 

g was supplied by Union Carbide.  

2.1.1.2 Curing Agents 

The curing agents (hardeners, crosslinkers) are necessary to promote crosskinking 

or curing of epoxy resins to convert them into hard, infusible three-dimensional 

thermoset networks. The curing process is by either homopolymerization initiated by a 

catalytic curing agent or polyaddition/copolymerization with a multifunctional curing 

agent.76 The epoxy resin curing agents can be divided into three categories77: 

(1) Active hydrogen compounds include polyamines, polyacids such as carboxylic 

acids and anhydrides, polymercaptans, and polyphenols. Epoxy resins are cured by 

polyaddition reactions via the compound containing the active hydrogen and the terminal 

carbon of the epoxide group, with a stabilization of the epoxide into a hydroxyl group. 

(2) Ionic initiators can be subdivided into anionic initiators (such as metal 

hydroxides, secondary amines, and tertiary amines) and cationic initiators (such as metal 

halides, boron-trifluoride complexes, and coordination catalysts, i.e., metal alkoxides, 

metal chelates, and metal oxides). They initiate homopolymerization and cure an epoxy 

resin through ionic or coordination polymerization. 

(3) Hydroxyl crosslinkers, which couple through the secondary hydroxyls of the 

high molecular weight bisphenol A-type epoxy resin, are represented by a broad range of 

melamine-, phenol-, and urea-formaldehyde resins. 

In this research, a carboxylic anhydride (4-methylhexahydrophthalic anhydride, 

MHHPA, Aldrich Chemicals), a polycycloaliphatic amine (Ancamine 2167 from Air 
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Product), and an amine complex (Anchor 1040 from Air Product) were used as the curing 

agents. Their chemical structures are shown in Figure 2-2.  

H3C C

C
O

O

O     
CH2 NH2 BF3

 

(a)     (b) 

Figure 2-2. Chemical structures of curing agents (a) MHHPA and (b) Anchor 1040. 

 
Dicarboxylic acid anhydrides such as MHHPA are widely used as curing agents 

for epoxy resins. The curing reaction is characterized by a low exotherm and long periods 

at elevated temperatures to achieve full cure and the resulting low shrinkage, stress-free 

systems can provide excellent electrical insulation properties. Lewis bases such as tertiary 

amines and imidazoles are widely used as anhydride accelerators to enhance cure rates. 

The reaction mechanism of the tertiary amine-catalyzed epoxy/anhydride reaction is 

given in Figure 2-4: 
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Figure 2-3. Reaction mechanism of tertiary amine-catalyzed epoxy/anhydride reaction. 

 



 50

C

C
C

O

C

O

O

O CH CH2 NR3

+ H2C
O

CH
C

C
C

O

C

O

O CH CH2 NR3

H2C CH OO

(3)

  

Figure 2-4 continued. 

 
Amine curing agents have a reactive =N–H group, which forms a chemically 

resistant C-N bond after curing with an epoxy resin. Epoxy resins cured with an amine 

have excellent chemical resistance, adhesion, hardness, and abrasion resistance. All 

amines, including aromatic amines and aliphatic polyamines, react with the epoxide 

group by addition reaction without producing any by-products. Aromatic amine curing 

agents require elevated temperatures to accelerate reaction, but aliphatic amine curing 

agents containing primary or secondary aliphatic amine groups can react with epoxide 

group at room temperature. Figure 2-5 shows the reaction mechanism of a primary amine 

curing agent with an epoxy. 
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Figure 2-5. Reaction mechanism of a primary amine curing agent with an epoxy.  
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Ancamine 2167 has both cycloaliphatic and aromatic character. The reactivity of 

the cycloaliphatic primary amine is advantageous for heat-cure applications because of 

the lower reactivity caused in part by steric hindrance from the ring(s). Aromatic amines 

are less basic than aliphatic or cycloaliphatic polyamines, and therefore react slowly with 

epoxy resins. Typically they exhibit long pot lives and require long periods at elevated 

temperature to attain optimum properties. Accordingly, Ancamine 2167 curing agent is 

an ideal alternative to aromatic diamines for the elevated temperature cure of epoxy 

resins. 

Anchor 1040 curing agent is a liquid, chemically modified BF3 (boron 

trifluoride)-amine complex with the chemical structures shown in Figure 2-2 (b). It is a 

member of a series of Lewis acid catalysts. The mechanism of epoxy resin curing by 

amine complexes of Lewis acids (particularly boron trifluoride) is complicated. The 

common assumption is that the amine boron trifluoride adduct dissociates at a certain 

temperature and the epoxy resin is then cured by the boron trifluoride which is liberated. 

An alternative mechanism was proposed by Harris et al. that amine-boron trifluoride 

complexes may react directly with the resin or may react first to give a salt, which would 

then react according to the scheme described in Figure 2-678: 

 
Figure 2-6. Reaction mechanism of an amine-boron trifluoride complex with an epoxy proposed 

by Harris et al.78 
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2.1.1.3 Catalysts/Accelerators 

The pot-life, curing temperature and time, and processability of an epoxy system 

are mainly determined by the curing catalysts. Tertiary amines, imidzaoles, and ureas are 

the most frequently used curing catalysts. Tertiary amines, which react with epoxy resins 

at low temperature as curing agents, can also be used catalytically as accelerators in 

elevated temperature cured system, e.g. anhydride/bisphenol-A type epoxy system. 

Imidazoles are efficient accelerators for anhydrides and dicyandiamide, and can act as 

catalytic epoxy curing agents at moderate to high temperatures also. The imidazole 

catalysts used in this research are 1-methylimidazole from Aldrich Chemicals and 1-

cyanoethyl-2-ethyl-4-methylimidazole (2E4MZ-CN) from Shikoku Chemicals, whose 

chemical structures are shown in Figure 2-7. They react at the 3-N position with a 

molecule of epoxy ring to form a highly reactive alkoxide ion, which initiates rapid 

anionic polymerization of epoxy resin, as shown in Figure 2-8.76  

N NH3C    

CHC

N
C
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C N
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Figure 2-7. Chemical structure of 1-methylimidazole and 2E4MZ-CN. 
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Figure 2-8. Reaction mechanism with imidazole catalyst. 
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2.1.1.4 Fillers  

Fillers are the most common formulatory ingredient employed in the majority of 

epoxy formulations besides the resin and curing agents. Various filler type can provide a 

wide range of characteristic modifications on the properties and characteristics of epoxies 

for many applications. Some of the most important fillers and potential property 

modifications employed in epoxy formulations are summarized in Table 2-1. Despite this 

beneficial effect, fillers can cause some disadvantageous characteristics such as an 

increased density together with an increase in viscosity. 

 

Table 2-1. Typical filler types and potential property modifications in epoxy formulations. 

Filler Property modification 

Aluminum Machinability, impact resistance, thermal conductivity, mechanical 
properties, dimensional stability 

Alumina Abrasion resistance, electrical resistivity,  dimensional stability, 
toughness, thermal conductivity 

Calcium carbonate Extender, pigmentation, dimensional stability, machinability, mechanical 
properties 

Carbon black Reinforcement, pigmentation, thermal conductivity, electrical 
conductivity, thermal resistance 

Copper Electrical conductivity, thermal conductivity, mechanical properties 

Colloidal fumed 
silica 

Thixotropy 

Fibrous glass Impact strength 

Graphite Lubricity, pigmentation, thermal conductivity, electrical conductivity, 
abrasion resistance 

Mica Electrical resistance, dielectric properties, chemical resistance, toughness, 
moisture resistance, lubricity 

Quatz Electrical properties, dimensional stability, extender 

Fused silica Abrasion resistance, electrical properties, dimensional stability, extender, 
thermal conductivity, moisture resistance 

Silver Electrical conductivity, thermal conductivity 

Titanium dioxide Pigmentation, dielectric properties, extender 
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In this research, with an aim to prepare high-k conductive filler/polymer 

composite materials, the fillers incorporated in the epoxy composites are metal fillers, 

specifically Ag nanoparticles, either synthesized in our lab or supplied by nGimat Co., 

and Al particles supplied by Alfa-Aesar Chemical Co. 

2.1.1.5 Additives and Modifiers 

In addition to the main ingredients of an epoxy formulation introduced above, 

many other formulatory materials are available and frequently employed to modify the 

characteristics and properties of epoxies. For the filled epoxy systems, coupling agents 

are often used to improve the adhesion between epoxy resin and filler. In addition to 

adhesive bonding, the coupling agents have also been employed to enhance the properties 

of filled epoxy systems, such as moisture resistance, mechanical properties and so on. 

Organo-silanes, mercapton compounds, titanate, and aluminum chelates can be used as 

coupling agents, but the most popular ones are organo-silane compounds.79 Dispersing 

agents are used to effectively disperse fillers into the epoxy resin and thereby the epoxy 

resin composition thus prepared has high dispersion stability and exhibits improved 

properties. Acidic phosphate ester BYK 9010 from BYK Chemie is copolymer with 

acidic groups. 

2.1.2 Benzocyclobutene (BCB) 

Benzocyclobutene (BCB)-based polymeric materials have recently attracted 

growing attention and research interest in the area of structural and electronic 

applications because of the versatile chemistry of benzocyclobutene as well as the 

combined advantages of processability and properties such as a low dielectric constant 
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and dissipation factor, a high Tg, very low water uptake, and a high degree of 

planarization. BCB, siloxane-crosslinked polymeric materials, obtained via thermal ring-

opening at elevated temperatures (~ 200 °C) to provide reactive o-quinodimethane and 

successive 1,4 addition via Diels-Alder cycloaddtion/polymerization of the 

divinyltetramethyl-disiloxane-bis(benzocyclobutene) monomers (see Figure 2-9). BCB 

needs to be cured under nitrogen purging in a Lindberg furnace to avoid oxidation. 

C O Si

CH3 CH3

CH3CH3

 

Figure 2-9. Structure of BCB monomer. 

 
BCB has been developed as a thin film dielectric for microelectronics applications 

because it possesses many of the requisite dielectric properties.  It has a low dielectric 

loss tangent of 0.001 and a low k of about 2.7. The leakage current is low and the 

dielectric breakdown strength is found to exceed 5 MV/cm, which is about one 

magnitude higher than epoxy resins. And also it is processible pin-hole free down to a 

few nanometers. BCB (Cyclotene 3022-35) from Dow Chemical Company is used in this 

research. 

2.1.3 Polyaniline (PANI) 

The composites fabricated by dispersing an organic conductive material 

possessing very high k in a polymer matrix can exhibit high k as well. The possibility of 

all-organic composites as candidate high-k material for embedded capacitor was 

investigated in this work as well. As one of the most widely used conductive polymer, 

polyaniline (PANI) was used in this work.  
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Polyaniline was first prepared by Letheby in 1862 by anodic oxidation of aniline 

in sulphuric acid.80 PANI is regarded as one of the most promising electrically conductive 

polymers (ECP) owing to its high polymerization yield, good environmental stability 

combined with moderate electrical conductivity and relatively low cost. ECPs are able to 

conduct electricity because of their conjugated p-bond system, which is formed by the 

overlapping of carbon p orbitals and alternating carbon-carbon bond structure. In PANI, 

nitrogen pz orbitals and C rings are also part of the conjugation system. The conjugated 

double bonds permit easy electron mobility throughout the molecule due to the 

delocalization of the electrons, making the polymer electrically conductive.27 

Figure 2-10 displays general chemical formula of PANI. PANI can exist in three 

forms of oxidation states: fully reduced leucoemeraldine (x = 0, only benzenoid amine 

structures), partially reduced and partially oxidized emeraldine (x = 0.5, neutral), and 

fully oxidized pernigraniline(x = 1, only quinoid imine structures).  

H
N

H
N N N

1-x x n 

Figure 2-10. General chemical formula of PANI. 

 
The emeraldine-base (EB) form of PANI (PANI_EB) is easily processed and 

widely used. The emeraldine-based form of PANI is also the most stable of the three 

states as shown in Figure 2-11.  

 
Figure 2-11. Structural formula of undoped PANI_EB. 
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Simple acid-base chemistry can be employed to control the physical and structural 

properties of the EB form of PANI. PANI_EB can be transformed to emeraldine-salt (ES) 

form (PANI_ES) by doping them with oxidative/reductive substituents through acid/base 

protonation or by donor/acceptor radicals through charge transfer reactions.80 This 

process will increase the polymer's ability to conduct electricity because of the increased 

concentration of charge carriers.  For instance, the electrical conductivity of PANI could 

be selectively tailored from 10-10-10-8 S/cm to 10+1 S/cm, which depends on the redox 

state, the doping level, solvent and solvent vapors, and moisture content of the 

polymer.81 , 82  The conductivity can be increased because doping process can form a 

polaron/bipolaron structure which will increase PANI's charge due to increased 

delocalization. When PANI_EB is protonated with acid, the bipolaron structure is formed 

via the attachment of the hydrogen ions to the quinoid nitrogen atoms. This structure is 

highly unstable because of the high energy this structure possesses. Thus, the C=N bonds 

of the quinoid imine structure will break, transforming the quinoid ring into a more stable 

benzenoid ring with lower energy, by aromatization, creating the bipolaron structure of 

doped PANI_ES (see Figure 2-12). 

 

Figure 2-12. Bipolaron structure of doped PANI_ES. 

 
The new benzenoid ring, although more stable than the initial structure, still has 

high energy because of the repulsion force between the adjacent positive charges. In 

order to stabilize this structure, the positive charge of one of the hydrogen ions will 
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neutralize the charge by attracting electrons from the neighboring benzene ring. As such, 

two new positively charged nitrogen groups with a neutral nitrogen atom in between are 

formed. The increased distance between the two positive charges results in the isolated 

polaron structure (see Figure 2-13), which has a lower energy level than the bipolaron 

structure.  

 

Figure 2-13. Polaron structure of doped PANI_ES. 

 
One of the problems which limit the application of PANI is its poor processibility 

caused by poor solubility in the conducting emeraldine salt form. Many researchers have 

attempted to alleviate this problem by substitution of aromatic ring of PANI with -CH3, -

OCH3, -SO3, or long alkyl chain to increase its solubility in organic solvents because of 

decreased polymer chain stiffness and interaction between polymer chains. However, it is 

still difficult to dissolve PANI in the conducting ES form. Furthermore, steric hindrance 

induced by the substituents, increased interchain length and decreased conjugation length 

will cause the conductivity decreament.83 Recently, Cao et al. reported that doping PANI 

by functionalized protonic acid, like camphorsulfonic acid (CSA) and 

dodecylbenzenesulfonic acid (DBSA) etc., renders the solubility of PANI in the 

conducting ES form in common nonpolar or weakly polar organic solvents. This counter-

ion induced processability not only enables the processing of PANI_ES in common 

organic solvents, but also facilitates the preparation of PANI polymer blends in other 

bulk polymers because most commercial polymers can be codissovled in these solvents.84 
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2.2 Preparation of Nanoparticles and Nanocomposites 

2.2.1 Synthesis of Metal Nanoparticles 

Due to the extremely small sizes and large specific surface areas of nanoparticles, 

they usually exhibit exceptional electrical, optical, magnetic, physical and chemical  

properties and are potentially favored for various application such as electronic, optical 

and mechanical devices, magnetic recording media, superconductors, high-performance 

engineering materials, dyes and pigments, adhesives, drug delivery, and so on. Many 

approaches have been developed to prepare and stabilize metal nanoparticles, including 

gas evaporation, sputtering, sol-gel, hydrothermal, microemulsion, polyols, laser 

pyrolysis, photochemical or sonochemical synthesis, chemical (co-)precipitation, and so 

on. These methods could be generally divided into top-down and bottom-up approaches. 

The top-down methods broadly employed in semiconductor technology (lithography) are 

mainly based on milling of metal materials. But this method does not allow produce 

desired particle size and shape. The bottom-up methods build the nanostructures from 

atoms, molecules or atom clusters using physical deposition or chemical methods. For 

chemical methods, nanoparticles are prepared by chemical reactions from appropriate 

precursors with stabilizers, such as ionic or nonionic surfactant and polymers, in the form 

of a colloid solution. Among these reported methods, the chemical (co-)precipitation is 

considered one of the most promising one because of its simplicity and productivity.  

The chemical (co-)precipitation, i.e. homogeneous and heterogeneous nucleation 

of metal nanoparticles, is based on the super-saturation of reactant solutions comprised of 

precursors (metal salts), reducing agent, stablizers, co-stabilizers and various additives. 

The super-saturation state can be reached by the reduction in temperature to convert 
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highly soluble chemicals into less soluble chemicals. The sufficient high temperature of 

the solution initiates the chemical reaction of the reagents and forms a super-saturation of 

species in solution. Upon nucleation of primary particles, the concentration of these 

species drops below the critical nucleation concentration, and so further material can only 

add to the existing nuclei. The size distribution is determined by the time over which the 

nuclei are formed. A general scheme for preparing mono-dispersed metal nanoparticles 

requires a single, temporally short nucleation followed by slower growth on the existing 

nuclei. Polydispersity increases as a result of the second nucleation as well as Ostwald 

ripening. In the process of Ostwald ripening, the large nanoparticles grow on the expense 

of the small ones as the high surface energy of the small particles promotes their 

dissolution and the afterwards dissolved material is redeposited on the large ones. In 

general, the particle size increases with increasing reaction time and temperature. The 

particle dispersions can be stabilized and isolated from their growth solutions if the 

interaction between the capping groups and the solvent is favorable, providing an 

energetic barrier to counteract the van der Waals and other attractions between 

nanoparticles. Consequently, the particle size could be controlled by systematic 

adjustment of the reaction conditions including time, temperature, concentration and 

chemistry of reagents and stablizers.53, 85,86,87 

2.2.2 Preparation of Nanocomposites 

Two main challenges remain for the development of polymer nanocomposite 

materials after the desired nanoparticle has been selected for the polymer of interest. One 

is an interfacial interaction and/or compatibility between the choice nanoparticles with 

the polymer matrix. The other is the proper processing technique required to uniformly 
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disperse and distribute the nanoparticles or nanoparticle aggregates within the polymer 

matrix. 

In this research, varied high-k nanocomposites were prepared using both ex-situ 

and in-situ techniques. For ex-situ formation of commercially available Ag nanoparticles, 

they are processed into composites using solution-phase mixing method. An in-situ 

formation of Ag nanoparticle in a polymer matrix was also used to prepare polymer 

nanocomposite because the in-situ method could obtain smaller particle size and achieve 

better control of the dispersion of the nanoparticles in polymers compared to a simple 

mixing method. 

 

2.3 Instrumentation and Characterization Procedure 

2.3.1 Differential Scanning Calorimeter (DSC) 

The differential scanning calorimeter (DSC) can be used to investigate the curing 

profiles and glass transition temperature of polymers and polymer nanocomposites as 

polymer curing and glass transition process involve heat-related events. From DSC 

thermograph, the curing onset temperature, peak temperature, end temperature, heat 

capacity, degree of curing, and glass transition temperature can be obtained. A modulated 

DSC (Model 2920, TA Instruments) was used to obtain cure information of the polymer 

formulations and the glass transition temperature (Tg) of cured polymer and polymer 

nanocomposites. 

In DSC studies, a polymer sample of ~10 mg was placed in a hermetic DSC 

sample pan. For curing kinetics studies, the sample and a reference were heated in the 

DSC cell at a rate of 5 °C/min from room temperature to 300 °C under standard mode. 
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Heat was transferred through the disk up into the sample and reference.  The difference in 

the heat between the sample and reference was measured as differential heat flow. The 

differential heat flow as a function of time and temperature was recorded. For the study 

of the glass transition temperature of a cured formulation, the sample and a reference 

were then heated to 250 °C at a rate of 5 °C/min under modulated mode in order to 

separate the reversible and non-reversible events. N2 purging was applied during all 

experiments. The purging rate was 40 ml/min for DSC cell and 110 ml/min for 

refrigerated cooling system (RCS). 

2.3.2 Thermogravimetric Analyzer (TGA) 

A thermogravimetric analyzer (TGA, Model 2050, TA Instruments) was used to 

characterize the material mass change, either as a function of temperature, or isothermally 

as a function of time, in a controlled atmosphere. TGA can be used to characterize any 

material that exhibits a weight change due to decomposition, oxidation, or dehydration. 

In this research, TGA  was used to investigate the oxidation (weight gain) of filler 

particles, degradation (weight loss) of materials coated on filler particle surfaces, and 

thermal stability (weight loss) of cured high-k composite formulations. In a TGA 

measurement, the weight of sample, temperature, and time were recorded. A platinum 

sample pan was used for characterization of non-metal fillers and formulations; and a 

ceramic sample pan was used for characterization of metal fillers. About 20 mg sample 

was placed in the TGA sample pan and then heated from room temperature to desired 

temperature (up to 800°C) at a rate of 10°C/minute in a nitrogen or air atmosphere. TGA 

curve showed the sample mass as a function of temperature or time, from which the 
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weight change at a certain temperature can be obtained and the onset temperature of 

weight change can be defined.   

2.3.3 LCR Meter  

The capacitance and conductance of the nanocomposites in this research with 

parallel plate prototype was measured by a HP 4275 Multi-Frequency LCR Meter. The 

measurement was conducted at middle frequency range from 10 kHz to 4 MHz. The k 

values of the nanocomposites were calculated from capacitance measurements. Dielectric 

constant and dielectric loss tangent (tanδ) can be calculated from the capacitance and 

conductance measured by Equation 1-1 and Equation 2-1:                            

fC
G
π

δ
2

tan = Equation 2-1   

where C is the capacitance, G is the conductance, f is the frequency at which the 

capacitance and conductance are measured.  

2.3.4 Surface Profilometer 

In this research, the thicknesses of dielectric materials were measured by a KLA-

Tencor P-15 profilometer. The P-15 profilometer is a highly sensitive surface profiler that 

accurately measures step height up to 326 µm. Measurements were made electro-

mechanically by moving the sample beneath a diamond-tipped stylus.  The sample 

beneath the stylus was moved according to the desired scan length, speed, and stylus 

force. Surface variations caused the stylus to be translated vertically and the instrument 

detected this motion. 
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2.3.5 X-Ray Diffractometer 

X-ray diffraction (XRD) is powerful and nondestructive technique used primarily 

for crystallographic characterization of solid materials, based on the basic principles that 

the angle of reflection of X-rays from a sample is related to the crystal structure and 

composition of the material. XRD can provide structural information of bulk materials 

and thin film, and also the composition of crystallographic phases present in a sample, the 

extent of defects, size and orientation of grains, and so on. The depth of analysis is in the 

range of 100 to 1000’s Å.5 The XRD patterns of filler particles were characterized by an 

X-ray powder diffractometer (PW 1800, Philips Co.). The measurement was conducted at 

a scanning rate of 0.02°/s in the 2θ range from 10° to 110° with a Cu-Kα radiation 

(λ~0.154 nm). In this research, XRD was used to investigate the crystal structure of filler 

particles and calculate the size of particles. 

2.3.6 Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray 

Spectroscopy (EDX or EDS) 

Scanning electron microscope (SEM) analysis involves detection of secondary 

and backscattered electrons from a sample rastered with a focused primary electron beam 

and leads to a surface image with a great depth of field. In addition to revealing 

morphological characteristics of a surface, an energy dispersive X-ray spectrometer 

(EDX or EDS) attachment can detect the X-rays emitted from the sample which is 

irradiated with the primary electron beam and provide information about the chemical 

composition of a specimen. A thermally-assisted field emission (TFE) scanning electron 

microscope (SEM, Model LEO1530) was used to investigate the microstructure of high-k 

nanocomposite materials. LEO 1530 is a state-of-the-art SEM, yielding 1 nm resolution 
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at 20 kV and 3 nm at 1 kV. The SEM was used to study the dispersion uniformity of the 

filler particles, the size of the agglomerate, and the connectivity between filler particles. 

The dispersion of nanofiller particles had dramatic affect on the electric and dielectric 

properties of high-k nanocomposite. For SEM characterization, the cross section of 

samples was polished before observation. For non-conductive dielectric samples, a thin 

layer of gold was sputter coated on the sample surface in order to obtain good images.  

2.3.7 Transmission Electron Microscope (TEM) 

Transmission electron microscopy (TEM) is a microscopy technique whereby a 

beam of electrons is transmitted through an ultra thin specimen, interacting with the 

specimen as it passes through it, magnified and focused by an objective lens and 

produces an image. In this work, JEOL 100CX II transmission electron microscope, 

operating at 100 kV, was used to observe the particle size and size distribution of 

nanoparticle synthesized or nanofiller incorporated in the epoxy formulation. A JOEL 

4000EX high-resolution transmission electron microscope (HRTEM) was also used to 

analyze the particle size of core-shell particles and the thickness of the shell layer 

operating at 400 KV. The JOEL 4000 EX has a point-to-point image resolution of 0.18 

nm, and it uses a top-entry specimen stage for high mechanical stability. Spatially 

resolved EDS attached with the HRTEM was used to confirm the presence and element 

composition of a thin layer of shell around the nanoparticles after surface modification. 

2.3.8 Fourier Transform Infrared Spectroscopy (FTIR)  

Infrared (IR) spectroscopy is a chemical analytical technique which detects the 

vibration characteristics (stretch, contract and bend etc.) of chemical functional groups in 
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a sample as an infrared light interacts with the matter (mostly orgainc). Based upon the 

wavelength (wavenumber) of light, infrared light can be categorized as far infrared 

(4~400 cm-1), mid infrared (400~4,000 cm-1) and near infrared (4,000~14,000 cm-1). The 

mid infrared, approximately 30-1.4 µm in wavelength, may be used to study the 

fundamental vibrations and associated rotational-vibrational structure. In this work, the 

organo-functionalized surface chemistry of filler nanoparticles was characterized by a 

Nicolet Magna-IR 560 FTIR spectrometer. The filler particles were first dried in an oven 

at 100ºC for 2 hours, and then KBr pellets were prepared with the dried particles. The 

spectrum was collected in the range from 4000 to 400 cm-1. 

2.3.9 Ultraviolet-visible (UV-Vis) Spectroscopy 

Ultraviolet-visible spectropscopy is used to analyze compounds in the UV (200 to 

400 nm) and visible (400 to 800 nm) region of the electromagnetic spectrum. The 

absorption in these regions corresponds to electronic transitions between different 

molecular orbitals of the systems.  In particular, UV-Vis spectroscopy is of most use for 

identifying conjugated systems since transitions involving π orbitals and lone pairs tend 

to have stronger absorptions. In this work, the UV-Vis spectra of varied materials were 

recorded on a Beckman DU 520 General purpose UV-Vis spectrophotometer from the 

wavelength of 300 to 800 nm. The purpose of this characterization and sample 

preparation for different systems will be discussed in each chapter involved specifically. 

2.3.10 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS), also known as electronic spectroscopy 

for chemical analysis (ESCA), is a sensitive nondestructive analysis technique for the 
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elemental composition and chemical state of the top 5 to 100 Å of a surface with a 

sensitivity of 0.1% of a monolayer.5 It operates on the basic principle as X-ray irradiation 

of sample results in emission of photoelectrons whose energy is related to binding energy 

of the electrons, providing elemental and chemical state information of the specimen. In 

this study, XPS was employed to investigate the surface chemistry characteristics of the 

Ag nanoparticles. XPS analysis was performed on a Model 1600 XPS with 46.95 eV X-

rays from an Al Kαsource (1486.6 eV) with spectrometer resolution ~1.0 eV for 

survey scans and ~0.1 eV for high-resolution scans. It is equipped with an electron flood 

gun to neutralize charge build up and an Argon ion gun to etch and clean samples for 

depth profiling. 

2.3.11 Proton Nuclear Magnetic Resonance (1H NMR) 

Proton nuclear magnetic resonance (1H NMR) spectroscopy is a powerful method 

for determining the structure of organic compounds via their chemical shifts. The 1H 

NMR spectrum of an organic compound provides information concerning the number of 

different types of hydrogens present in the molecule, the electronic environment of 

different types of hydrogens and the number of hydrogen "neighbor" a hydrogen atom 

has. The 1HNMR spectrum of aniline salt Ani-CSA monomer was obtained on a 300 

MHz Varian Mercury Vx 300 NMR spectrometers. 
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CHAPTER 3 

CONTROL OF DIELECTRIC LOSS OF HIGH-K COMPOSITES BY 

INCORPORATION OF METAL NANOPARTICLES AND THEIR 

SIZE AND SIZE DISTRIBUTION EFFECT 

 

3.1 Introduction 

The increasing requirements for electronic circuit miniaturization and higher 

performance electronic device have driven the research and development of embedded 

passive components which possess more advantages over traditional discrete ones, 

including higher component density, increased functionality, improved electrical 

performance, increased design flexibility, improved reliability and reduced unit cost. 

Novel materials for embedded passive applications are in urgent demands, for which high 

k, low dielectric loss and process compatibility with the PCBs are the most important 

prerequisites.88 Polymer composites provide an ideal solution to combine the dielectric or 

electrical properties of the ceramic or metal fillers and the low-temperature (<250 °C) 

processability and mechanical properties of polymer matrix.  

For conductor-insulator composite percolative systems with dramatic increase of 

k close to the percolation threshold, besides the well reported metal/polymer composites, 

40,41,42,43,46,48 the carbon black (CB)/epoxy composite has also been considered as a 

candidate material for embedded capacitors due to its ultra-high k. 44,45 Carbon black was 

selected as the filler due to its large surface area and its wide range of electrical properties 
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based on its particle size and aggregate structure. The dielectric properties of CB/polymer 

composites are strongly dependent on the particle size, aggregate structure, and 

conductivity of the carbon blacks. For example, for a highly conductive carbon black, a 

high k over 13,000 (@10 kHz) was observed, and for a relatively low conductivity carbon 

black, dielectric constant in thoudsands (@10 kHz) was easy to  achieve.45  Figure 3-1 (a) 

shows the TEM micrograph of carbon black powders (CBC2), with large primary particle 

size about 70 nm and not highly aggregated structures. Figure 3-1 (b) displays the 

dielectric properties of CBC2/epoxy and CBC2/silicone composites as a function of filler 

loading. It was found that the change of polymer matrix does not have a very significant 

influence on the dielectric properties of their composites as the charge transfer between 

aggregates cause high dielectric loss and the carbon black dominates the dielectric 

properties. 

 

(a)     (b) 

Figure 3-1. (a) TEM micrograph of carbon black; (b) dielectric constant and dissipation factor of 

carbon black/polymer composites as a function of filler loading. 

 
Since the CB filler loading required to reach high k is much lower than that of 

ceramic/polymer composites, higher adhesion of carbon black composites to the 

substrates compared to that of the ceramic composites can be obtained. Although 
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CB/polymer composites can give extremely high k, the dielectric loss tangent of CB 

composites is also very high. The high dielectric loss is one key issue of this system that 

needs to be addressed for the embedded capacitor applications. 

Materials based on nano-sized metals provide a potential solution to meet the 

present and future technological demand in virtue of the novel properties (plasmon 

absorption, superparamagnetism, Coulomb blockade etc.) and unique property 

combination of metal nanoparticles.72 The Coulomb blockade effect is one of the well-

known quantum effects of metal nanoparticles. If the size of metal nanoparticle or so-

called “Coulomb island” is small, the tunneling electron creates an additional barrier due 

to the charging energy e2/2C (where e is the electron charge unit, and C is the capacitance 

of metal island) to the further transfer of electrons. When the charging energy exceeds the 

thermal fluctuation energy kBT (where KB is the Boltzman constant, and T is absolute 

temperature), the Coulomb blockade will occur, which inhibits the charge transfer 

through the small island below a certain voltage threshold and leads to an increase in 

resistance.89,90,91 Feng et al. studied the dielectric properties of Ag/PVA nanocomposites 

and found that the composite with 20-30 nm Ag particles has a higher resistivity and 

breakdown voltage than its matrix.91 Ideally, due to the Coulomb blockade effect, metal 

nanoparticles in a polymer matrix may reduce the electron tunneling and increase the 

resistivity of composites. Thus the conduction loss of the dielectric system might be 

mitigated to some extent. Tang et al. reported the effect of dispersed Ag nanoparticles on 

the dielectric properties of Ag/PbTiO3 composite films and found that the dielectric 

constant of the films increases and the dissipation factor of the films decreases with the 
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addition of Ag nanoparticles into PbTiO3 films at some loading level of Ag, but no 

mechanism were discussed.92 

On the other side, uniform dispersion of nanoparticles in the nanocomposites is 

required because clumps of particles inside the polymer matrix lead to deteriorated 

electrical or dielectric properties. However, uniformly dispersed ultrafine particles in a 

polymer matrix may not be easily achieved by incorporating pre-made nano-size particles 

into a polymer due to the easy agglomeration of nanoparticles and high viscosity of 

polymers, while the in-situ formation of metal nanoparticles in a polymer matrix could 

facilitate a more uniform dispersion of nanoparticles in polymers.72,93, 94,95 Moreover, 

much smaller particle size obtained by in-situ reduction than commercially available 

micron or nano-size Ag particles can help achieve thinner dielectric films leading to a 

higher capacitance density, and also more evident Coulomb blockade effects.90  

In this work, the in-situ formed Ag nanoparticles in a neat epoxy resin and 

Ag/CB/epoxy nanocomposites based on as-systhesized Ag/epoxy nanocomposite and 

CB/epoxy composite were investigated. The in-situ formed nanoparticles in the epoxy 

resins were characterized by transmission electron microscopy (TEM) and the 

nanocomposites were studied by scanning electron microscopy (SEM), X-ray diffraction 

(XRD) and thermogravimetric analysis (TGA). In addition, the dielectric properties of the 

nanocomposites filled with the in-situ formed Ag nanoparticles are discussed and 

correlated with the structure and morphology of the composites. The size, size 

distribution and loading level of metal nanoparticles in the nanocomposite were found to 

have significant influence on the dielectric properties of the nanocomposite system. 
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3.2 Experimental 

3.2.1 Materials 

A cycloaliphatic type epoxy resin ERL 4221E (Shell Chemicals Co.), an 

anhydride type curing agent hexahydro-4-methylphthalic anhydride (HMPA, Lindau 

Chemical Co.) and an imidazole type catalyst 1-methylimidazole (Aldrich Chemical Co.) 

were used. Silver nitrate (AgNO3) and hydroquinone (both from Aldrich Chemical Co.) 

were selected as a metal precursor and a reducing agent, respectively. Heptanoic acid 

(Aldrich Chemical Co.) was employed as capping agent. A low aggregate structure 

carbon black (Columbia Chemical Co.) was used. Acetonitrile (Alfa Aesar Chemical Co.) 

was chosen as the solvent because of its low boiling point (82 oC) and capability of 

dissolving all other chemical ingredients. 

3.2.2 In-Situ Formation of Ag Nanoparticles in an Epoxy Matrix 

A cycloaliphitic epoxy resin ERL 4221E was selected as the polymer matrix in 

the dielectric formulations due to its low viscosity and low ionic contamination, and 

moreover, the presence of carboxylate groups of this epoxy matrix might interact with the 

silver ions and atoms and thus have some beneficial effects as regards to the final silver 

particle size and dispersion. The Ag nanoparticles were in-situ synthesized in the epoxy 

matrix via chemical reduction, specifically reduction of AgNO3 with hydroquinone.93 

Epoxy resin and hardener were mixed in a 1:1 weight ratio in solvent. Different amounts 

of capping agents with respect to AgNO3 were introduced to the reaction mixture to 

prevent the Ag nanoparticles from agglomeration. Then hydroquinone and AgNO3 were 

dissolved in the mixture sequentially. The amount of hydroquinone was equivalent to 1.2 
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times the stoichiometric requirement (each mole of silver nitrate requires a half mole of 

hydroquinone for reduction). Finally the solvent was evaporated at room temperature for 

30 min using a rotary evaporator under reduced pressure. 

3.2.3 Preparation of CB/Epoxy Composite and Ag/CB/epoxy Nanocomposite 

CB/epoxy composites were prepared by adding carbon black into the mixture of 

the epoxy resin and hardener. The carbon black was dispersed in the epoxy resin by an 

ultrasonicator for 1 hr, and then further mixed through a three-roll-mill for 10 runs. The 

Ag/CB/epoxy composite was prepared by mixing the in-situ formed nano Ag/epoxy 

mixture and CB/epoxy mixture via stirring for 15 min and then ultrasonication for 2 hr. 

Variation of Ag/epoxy and CB/epoxy compositions led to Ag/CB/epoxy nanocomposites 

with different loading levels of CB and Ag. The loading levels of fillers were estimated 

from remaining amounts in TGA tests. 

3.2.4 Characterization 

A JEOL 100C transmission electron microscope (TEM) was used for analyzing 

the size and size distribution of nanoparticles. Scanning electron microscopy (SEM) 

measurements were carried out on a JEOL 1530 equipped with a thermally assisted field 

emission gun operated at 10 KeV. Spatially resolved energy-dispersive X-ray 

spectroscopy (EDS) attached with the SEM was also used to confirm the presence of 

silver.  

The X-ray diffraction (XRD) patterns of Ag/epoxy and Ag/CB/epoxy composites 

were recorded at a scanning rate of 0.02 os-1 in the 2θ range of 10 o - 80 o using an X-ray 

powder diffractometer (PW 1800, Philips Co.) with Cu-Ka radiation (λ ~ 0.154 nm). 
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XRD was used to calculate the size of Ag nanoparticles in Ag/epoxy composite and 

Ag/CB/epoxy composite by the Scherrer method.96 

Thermogravimetric analysis was conducted on a TA Instruments 2050 TGA under 

a nitrogen atmosphere. The procedure was set as heating at 100 °C for 15 min and at 

125 °C for 1 hr and with 5 °C/min ramping over the whole temperature range.  

The capacitance and dielectric loss tangent of the Ag/CB/epoxy composites were 

determined using parallel plate capacitor type test coupons. Thick film of Ag/CB/epoxy 

mixture was made onto the copper clad FR-4 board with a doctor-blade. Then the 

samples were cured in the thermal oven at 100 oC for 0.5 hr and 125 oC for 1 hr. Finally, 

a DC sputter was used to deposit a thin layer of copper as the top electrode (about 3000 Å 

in thickness and 3.4 mm in diameter) onto the cured material through a shadow mask. 

The capacitance and dissipation factor of the capacitor were then measured with a HP 

4263A LCR meter. The thickness of the dielectric film was measured with a profilometer 

(Alpha-Step Co.) and used to calculate the dielectric constant of the sample. 

 

3.3 Results and Discussion 

3.3.1 Two-Step Preparation of Ag/CB/Epoxy Nanocomposite  

An attempt to in-situ form nano Ag in a CB/epoxy mixture was made, where the 

precursor and the reducing agent with solvent were added to the mixture. From this 

attempt, however, no uniform dispersion of Ag nanoparticles but only agglomerates of 

Ag near CB were obtained, which might be due to strong adsorption nature of CB. 

Therefore, a two-step method was used to prepare Ag/CB/epoxy composites. The 
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CB/epoxy mixture and in-situ formed nano Ag/epoxy mixture were prepared separately. 

Then the Ag/CB/epoxy nanocomposites were prepared by mixing various amounts of the 

pre-synthesized Ag/epoxy and CB/epoxy mixtures. TEM, SEM and XRD results 

indicated that ultrafine Ag nanoparticles were obtained in the Ag/epoxy mixture and their 

size and dispersion were retained in the final Ag/CB/epoxy composites. Therefore, this 

two-step method was effective in preparing the desired composites and all the samples 

investigated below were prepared in this fashion.  

3.3.1.1 Preparation of a Ag/Epoxy Nanocomposite by an In-situ Reduction 

One of the conventional avenues was to form the composites by mechanically 

mixing the polymer matrix and the metal nanoparticles which were prepared separately. 

However, it is extremely difficult to achieve the homogeneous dispersion of the 

nanoparticles in the polymer matrix in this way due to the easy agglomeration of 

nanoparticles and the high viscosity of polymer. To assure the well dispersion of the 

nanoparticles in the composite which is highly required to achieve high k and low loss, an 

in-situ synthesis of metal nanoparticles in the presence of the polymer matrix was 

employed to obtain Ag/epoxy nano-composites. The Ag nanoparticles were prepared by 

hydroquinone reduction of silver precursor AgNO3 in a homogeneous mixture of epoxy 

resin, hardener and acetonitrile with appropriate capping agent. Then the solvent 

acetonitrile was evaporated at room temperature (20 oC) in the rotary evaporator under a 

reduced pressure. The size and distribution of Ag particles in obtained composite was 

observed via TEM by dispersing a small amount of composite in organic solvent.  
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3.3.1.2 Two Methods of Ag/CB/Epoxy Nanocomposite Preparation 

Two different methods were tried to introduce Ag nanoparticles into a CB/Epoxy 

composite to form a Ag/CB/Epoxy nanocomposite. A relatively easy one-pot method was 

tried initially. The in-situ formation of Ag nanoparticles was attempted by reduction of 

AgNO3 directly in a mixture of CB/epoxy composite and hydroquinone in acetonitrile. 

Then the solvent was evaporated at room temperature (20 oC) in the rotary evaporator 

under reduced pressure. However, Ag nanoparticles could not be obtained in the 

composite according to the observation of TEM micrograph of as-formed composite (see 

Figure 3-2). The reason might be that the reduced Ag failed to nuclear and grow as 

individual nanoparticles but covering the surface of CB when CB is present in the 

system. And also the re-agglomeration of CB occured in the mixture once the CB/epoxy 

composite was dispersed in the solvent. Therefore, the one-pot method is not suitable to 

obtain the ideal dispersed Ag nanoparticles as well as CB in the composites. As such, the 

preparation of the Ag/CB/epoxy composite by a two-step method was carried out. Firstly, 

the CB/epoxy composite and Ag/epoxy nanocomposite were prepared seperately. Then 

the Ag/CB/epoxy nanocomposite was prepared by mixing the as-formed Ag/epoxy 

nanocomposite and CB/epoxy composite via hand mixing and ultrasonication. Various 

loading of Ag/epoxy composite and CB/epoxy composite can lead to Ag/CB/epoxy 

nanocomposites with different loading level of CB and Ag. 
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Figure 3-2. TEM micrograph of Ag/CB/epoxy composite prepared by one-pot method. 

 

3.3.2 Effect of Capping Agent 

To obtain smaller size and better dispersion of Ag nanoparticles in the polymer 

matrix, different capping agents were incorporated during the preparation of Ag/epoxy 

nanocomposites. Silane coupling agent and carboxylic acids of various chain lengths 

were tried to prevent the Ag nanoparticles from agglomeration. The influence of capping 

agents on the size and distribution of the resulting particles was studied. 3-

aminopropyltrimethoxysilane (APS), a type of silane coupling agent, is demonstrated to 

be one of the effective capping agents for well dispersion of the Ag nanoparticles as 

compared from the TEM micrographs of obtained Ag/epoxy nanocomposite (see Figure 

3-3). The nanoparticles are in the range of 15-20 nm while the smaller ones can be down 

to 3-5 nm. The stabilization effect can be attributed to the complexation of amino groups 

in APS to Ag nanoparticles.  
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(a) 

 
(b) 

Figure 3-3. TEM micrographs of Ag/epoxy composite (a) w/ APS (1 in molar ratio w.r.t. AgNO3) 

and (b) w/o APS. 

 
Furthermore, heptanoic acid was tried as a capping agent to control the size and 

size distribution of Ag nanoparticles in the polymer matrix. The influence of the capping 

agent concentration on the size and size distribution of the resulting particles was studied 

by TEM. Heptanoic acid was found to be effective in trapping small particles and render 
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uniform dispersion of Ag nanoparticles in the epoxy matrix. The affinity of carboxylic 

acid moiety of the capping agent to the Ag nanoparticles is responsible for the capping 

effect which retards extensive agglomeration of Ag nanoparticles. 

Attempts to vary the amount of heptanoic acid relative to the silver precursor 

were made to further explore the effect of heptanoic acid on controlling the size 

distribution of Ag nanoparticles. Figure 3-4 shows the TEM micrographs of the in-situ 

formed nano Ag/epoxy mixture in the presence of a capping agent (CA) with different 

ratios to Ag precursor (R denotes [CA]/[AgNO3] ratio, i.e. the ratio of the capping agent 

to AgNO3). The size range and average size of the Ag nanoparticles are summarized in 

Table 3-1. Nanoparticles of roughly two size ranges formed in all mixtures while the 

mixtures with higher concentrations of the capping agent showed the narrower size 

distribution. In the case of R = 1 and 0.6 (see Figure 3-4 (a) and Figure 3-4 (b)), Ag 

nanoparticles in size of 1-3 nm were well-dispersed, and some larger ones in size ranging 

from 6 to 8 nm. In the case of samples with R = 0.4 and 0.2, both small and large 

particles in size of 1-3 nm and 30-45 nm, respectively, were observed simultaneously 

(see Figure 3-4 (c) and (d)). The average sizes of large particles were determined from 

the histograms to be 7.0 nm, 7.4 nm, 36.3 nm and 37.0 nm for samples with R values of 

1, 0.6, 0.4 and 0.2, respectively. This might indicate that the nucleation and growth of Ag 

nanoparticles were influenced and controlled by the presence of the capping agent which 

helps inhibit the further growth and agglomeration of nanoparticles. 
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Figure 3-4. TEM micrographs of uncured Ag/epoxy mixtures in the presence of a capping agent 

with [CA]/[AgNO3] ratio (a) R = 1, (b) R = 0.6, (c) R = 0.4 and (d) R = 0.2. 

 
 

Table 3-1. Size range of the Ag nanoparticles obtained. 

 (a) (b) (c) (d) 

R = [capping agent]/[Ag precusor] ratio 1 0.6 0.4 0.2 

Small 1-3 nm 1-3 nm 1-3 nm 1-3 nm 
Size range 

Large 6-12 nm 6-12 nm 30-45 nm 30-45 nm 

Average size of large particles 7.0 nm 7.4 nm 36.3 nm 37.0 nm 

 

3.3.3 Effect of Curing and Processing Procedure  

The curing condition for Ag/epoxy and Ag/CB/epoxy composites was set to be 

100 oC for 0.5 hr and 125 oC for 1 hr. The size and dispersion status of Ag nanoparticles 

in the composite after curing were characterized by SEM, EDS and XRD in order to 
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investigate whether high temperature curing process causes the nanoparticles to 

agglomerate and grow further. The SEM images in Figure 3-5 shows that the 

nanoparticles of ultrafine size were embedded in the polymer matrix. The EDS result 

indicated the presence of Ag nanoparticles in the epoxy matrix. 

 

Figure 3-5. SEM images of cured Ag/epoxy nanocomposite for 16.08K magnification and the 

inset for 41.85K magnification. 

 
The X-ray diffraction patterns of cured Ag/epoxy and Ag/CB/epoxy 

nanocomposites are shown in Figure 3-6. The XRD spectrum of the Ag/epoxy composite 

shows well defined four strong peaks at 2θ = 38.4, 44.3, 64.7 and 77.6°, corresponding to 

the (111), (200), (220) and (311) of the face-centered cubic (fcc) Ag phase (JCPDS No.4-

0783), respectively. By using the Scherrer's equation, the average size of the Ag 

nanoparticles of the Ag/epoxy composite with R = 0.6 was estimated to be 11 nm. 

Furthermore, no obvious narrowering of the diffraction peaks was observed for the 

sample of the Ag/CB/epoxy composite compared to Ag/epoxy composite. The average 
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size of the Ag nanoparticles of the Ag/CB/epoxy composite with R = 0.6 was estimated 

to be 13 nm. This indicates that the mixing process of Ag/epoxy composite with 

CB/epoxy composite and the thermal curing procedure did not affect the average 

crystallite sizes of the in-situ formed Ag nanoparticles significantly.  
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Figure 3-6. XRD patterns of (a) Ag/epoxy composite and (b) Ag/CB/epoxy composite. 

 

3.3.4 Estimation of Filler Loading 

Figure 3-7 displays TGA curves of neat epoxy, Ag/epoxy mixture, CB/epoxy 

mixture and Ag/CB/epoxy mixture all in uncured state initially. To estimate the 

compositions of the Ag/CB/epoxy mixtures, an isothermal and dynamic combined 

procedure was set as heating at 100 °C for 15 min and at 125 °C for 1 hr and ramping 

over the entire temperature range at 5 °C/min. The two weight loss regions at 100 °C and 

 125 °C are due to the volatilization of hardener for all mixtures and volatilization/ 
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decomposition of various chemicals including the solvent residue, the capping agent and 

benzoquinone resulted from the oxidation of hydroquinone for Ag/epoxy mixture and 

Ag/CB/epoxy mixture. It can be seen that the neat epoxy resin was almost degraded 

above 450 ºC. The residue in the CB/epoxy composite at 600 ºC was attributed to carbon 

black which accounts for 29.57 wt. %. The residues in the Ag/CB/epoxy composite at 

600 ºC can be attributed to Ag and CB and thus was used to estimate the content of Ag 

and CB in the Ag/CB/epoxy nanocomposites. 
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Figure 3-7. TGA studies of neat epoxy, Ag/epoxy mixture, CB/epoxy mixture and Ag/CB/epoxy 

mixture. 
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3.3.5 Dielectric Properties of Ag/CB/epoxy Nanocomposites 

3.3.5.1 Effect of Ag loading 

Table 3-2 and Figure 3-8 show the dielectric constants and dielectric loss tangent 

of Ag/CB/epoxy composites with different loading levels of Ag nanoparticles at 10 kHz. 

The k value increased and tanδ decreased with the increase of the loading of Ag 

nanoparticles. The k value of sample with 3.7 wt. % Ag showed a k of 2259 while the 

tanδ was maintained at around 0.43, which is much lower than the sample without Ag 

nanoparticles (k: 1560, tanδ: 0.7). The remarkable increase of k may be due to the piling 

of charges at the extended interface and/or more conducting particles based on the 

percolation theory. In general, dielectric loss of the dielectric material is resulted from 

distortional, dipolar, interfacial, and conduction loss. The distortional loss is related with 

electronic and ionic polarization mechanisms. The interfacial loss is originated from the 

excessive polarized interface induced by the fillers and specifically the movement or 

rotation of the atoms or molecules in an alternating electric field. The conduction loss is 

attributed to the dc electrical conductivity of the materials, representing the flow of actual 

charge through the dielectric materials. It is believed that the conduction loss contributes 

significantly to the high tanδ of carbon black composites especially at low frequency due 

to the conducting properties of carbon black. The decreased tanδ with the incorporation 

of metal nanoparticles might be explained as the Coulomb blockade effect. The Ag 

nanoparticles of ultrafine size might cause a high charging energy for the tunneling 

electrons and inhibit the charge transfer through the small metal island, reducing the 

conduction loss which represents the flow of charge through the dielectric materials. 

Single-electron charging effect or Coulomb bloackade transport have been observed at 
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room temperature in gold nanocluster structure97, gold nanoparticles assembled on a 

biopolymer template98. Unfortunetally, the Coulomb blockade effect is still difficult to be 

experimentally demonstrated in our system so far due to the lack of the art of experiment 

and instrument. 

 

Table 3-2. The electrical and dielectric properties of CB/Ag/epoxy nanocomosite. 

Ag loading 
loading 

k  
(@10 kHz) 

tanδ 
(@10 kHz) 

Specific Capacitance 
(nF.cm-2) 

0 1560 0.70 17.14 
1.2 % 2002 0.48 25.55 
2.4 % 2030 0.46 20.53 
3.7 % 2259 0.43 24.39 
4.2 % 2421 0.45 25.44 
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Figure 3-8. The dependence of (a) k and (b) tanδ at 10 kHz on the loading level of Ag 

nanoparticles. 
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3.3.5.2 Effect of Size and Size Distribution of Ag Nanoparticles on Dielectric properties 

of Ag/CB/epoxy Composites 

Figure 3-9 indicates that k and tanδ values of Ag/CB/epoxy composites with Ag 

nanoparticles of different size and size distribution varied considerably. For 

Ag/CB/epoxy composites containing 4.2 wt. % Ag and 19.6 wt. % CB (denoted as 

4.2Ag/19.6CB/epoxy composite, see Figure 3-9 (a)), compared with the control sample 

(~20 wt. % CB only, without Ag nanoparticles), increased k and decreased tanδ observed 

for samples in which average size of large Ag nanoparticles are 7.0 nm and 7.4 nm, while 

the tanδ values for samples in which average size of large Ag nanoparticles are 36.3 nm 

and 37.0 nm increased. This phenomenon may be due to the effect of the size and 

distribution of Ag nanoparticles on the dielectric properties of the dielectric materials. 

Smaller size and narrower size distribution of Ag nanoparticles, obtained from the 

presence of larger amounts of a capping agent, resulted in more evident single-electron 

charing by Coulomb blockade effect and thus reduced conduction loss.  

The increase of k with the increase of Ag nanoparticle concentration is monotonic 

while the decrease of tanδ was not. For Ag/CB/composites containing 6.2 wt. % Ag and 

14.6 wt. % CB (denoted as 6.2Ag/14.6CB/epoxy composites) shown in Figure 3-9 (b), no 

decreased tanδ is observed even for samples with better dispersion and narrower size 

distribution. A plausible explanation may be that the interfacial loss due to newly induced 

interface is higher than the suppressed conduction loss by incorporation of metal 

nanoparticles, therefore the overall dissipation factor is still increased for samples with a 

higher concentration of metal nanoparticles. 
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Figure 3-9. k and tanδ values of (a) 4.2Ag/19.6CB/epoxy composites and (b) 

6.2Ag/14.6CB/epoxy composites (dashed curve) with various concentrations of a capping agent 

(R= [CA]/[AgNO3]). 
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3.3.5.3 Effect of Frequency on Dielectric properties of Ag/CB/epoxy Composites 

Figure 3-10 illustrates the dielectric properties of the nanocomposites measured at 

different frequencies. The k values of nanocomposites containing Ag nanoparticles are 

larger than those of a control sample without Ag in the whole frequency range (see 

Figure 3-10 (a)). The decreased tanδ for nanocomposites containing Ag nanoparticles is 

observed in the low frequency range (10 kHz and 100 kHz in Figure 3-10 (b)) only. 

These observations might be explained as the fact that the conduction loss, which is 

related to the dc electrical conductivity of the materials, contributes to the entire tanδ 

value less significantly as the frequency increases (see Equation 3-1).  

'2'
''tan

επ
σ

ε
εδ

f
+=    Equation 3-1  

where ε’, ε”, σ are the real and imaginary part of the dielectric constant and the electrical 

conductivity of the materials, respectively, and f is the frequency. Therefore, the effect of 

metal nanoparticles on suppressing dielectric loss is not obvious at higher frequency. 

Additionally, the contribution of interfacial loss is more evident in the high frequency 

range. Accordingly, the tanδ values of nanocomposites containing Ag nanoparticles are 

higher than those without Ag nanoparticles at higher frequencies (1 MHz and 10 MHz in 

Figure 3-10 (b)).  
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Figure 3-10. (a) k and (b) tanδ  values of 5Ag/20CB/epoxy composites with various concentration 

of a capping agent (R= [CA]/[AgNO3]) at different frequencies. 
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3.4 Conclusions 

The Coulomb blockade effect of metal nanoparticles, a novel method to control 

dielectric loss of ultra high-k polymer composite materials for embedded passives was 

explored in this study. The Ag nanoparticles were in-situ formed in polymer matrix and 

then incorporated into dielectric composite materials. The size and distribution of 

nanoparticles were controlled by the appropriate selection of a capping agents and the 

ratio of capping agent to Ag precursor. The increased dielectric constant and decreased 

dielectric loss tangent were observed by the incorporation of Ag nanocomposites. The 

increased dielectric constant is due to the piling of charges at the extended interface 

which normally results in increased conductivity and higher loss. However, the reduced 

dielectric loss was observed in the high-k composite materials containing Ag 

nanoparticles in virtue of Coulomb blockade effect, the well-known quantum effect of 

nanoparticles, which reduces the electron tunneling. As such, it reduces the conduction 

loss part from the total dielectric loss of the dielectric composite systems. This Coulomb 

blockade process can be an effective approach to achieve the high dielectric constant and 

low dielectric loss simultaneously at low frequency. The size, size distribution and a 

loading level of Ag nanoparticles in the nanocomposite have significant influence on the 

dielectric properties of the composite system and supply different effects at different 

frequency range as well. 
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CHAPTER 4 

SILVER/POLYMER NANOCOMPOSITES AS HIGH-K POLYMER 

MATRIX FOR DIELECTRIC COMPOSITES WITH IMPROVED 

DIELECTRIC PERFORMANCE 

 

4.1 Introduction 

High dielectric constant (k) materials have received increasing interest in the 

recent years as they are attractive as potential materials for various applications including 

gate dielectrics 99 , high charge-storage capacitor29 and electroactive materials49. For 

instance, high dielectric constant and low dielectric loss materials are imperative to 

realize the real applications of embedded capacitor, which is one of the emerging and 

important technologies for electronic packaging to provide the advantage of size 

reduction and system performance enhancement. A wide variety of materials have been 

extensively investigated as candidates for this application, such as ferroelectric ceramic6, 

ferroelectric ceramic/polymer composite29 and conductive filler/polymer composite40. 

Conductive filler/polymer composite materials, identified as conductor-insulator 

percolative system, have been recognized as a promising method to achieve high k. 

According to the scaling theory, the effective k of the percolative composite can be 

dramatically enhanced at filler loadings approaching the percolation threshold as 

described through the  Equation 4-1.  
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=                 Equation 4-1 

where mk  is the dielectric constant of the polymer matrix; f and cf are the concentration 

and the percolation threshold concentration of the conductive filler within the polymer 

matrix, respectively; q is scaling constant, related to the material property, microstructure 

and phase connectivity of the conductive filler/polymer composites.40 And also this 

percolative approach requires a much lower volume concentration of the filler compared 

to the traditional approach of dispersing ferroelectric ceramic particles in polymer matrix 

to achieve high k. Therefore, this material option represents advantageous characteristics 

over the conventional ceramic/polymer composites, specifically, ultra-high k with 

balanced mechanical properties and good adhesion strength. Various conductive fillers, 

such as silver (Ag), nickel (Ni), carbon black, have been used to prepare the polymer-

conductive filler composites or three-phase percolative composite systems.40,42,42,43,44,46 

Although these composites were reported with high k values at the percolation threshold, 

they still cannot be considered as effective materials for embedded capacitor applications 

because of the accompanied high dielectric loss and low resistance at a high filler loading 

level due to the conductive nature of the filler. During the past few years, much effort has 

been dedicated to creating low loss dielectric materials. Some researchers use 

semiconductor fillers to achieve relatively low conductivity at the percolation threshold 

as compared to conductive fillers.100 Additionally, the inter-particle barrier layer formed 

intrinsically or extrinsically by an insulating surface coating or shell around the 

conducting metal core could effectively reduce the dielectric loss of the conductive filler-

polymer composites. It has also been demonstrated by Xu et al. that the insulating oxide 

layer outside the aluminum (Al) powders could prevent the direct contact of conducting 



 93

metal cores and thus endow the Al/epoxy composites with low dielectric loss.41 However, 

the k values of this system were limited due to the passivation layer on the conducitve 

filler. An effective attempt to reduce the dielectric loss of the conductive filler/polymer 

nanocomposites was reported by Qi et al. to introduce surfactant layer coated on the 

metal filler surfaces during nanoparticle synthesis.47 Shen et al. reported a polymer 

composite with synthesized core/shell hybrid particles using metal Ag cores coated by 

organic dielectric shells.48 

On the other hand, the k values of ceramic/polymer composites (usually below 

50) can be effectively enhanced by employing the relatively high-k polymer matrix.2,17 

For instance, using poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) 

copolymer, a class of relaxor ferroelectric with high k (~40), Bai et al. prepared 

Pb(Mg1/3Nb2/3)O3-PbTiO3/P(VDF-TrFE) composites with k values above 200.29 In 

addition to the intrinsic high-k polymer matrix, the effective k of polymer matrix can be 

increased by introducing additives with large dipoles such as β-diketone chelating agents. 

Rao et al. developed a high-k epoxy-cobalt (III) acetylacetonate matrix with effective k of 

6.4 and the lead magnesium niobate-lead titanate (PMN-PT)+BaTiO3/high-k epoxy 

system composite achieved a k value about 150.20 As the k of polymer matrix shows very 

strong influence on the k of the composites, the effective k of the conductive 

filler/polymer composite are expected to be further enhanced by increasing the k value of 

the polymer matrix according to Equation 4-1.  

 Therefore, we would like to take advantage of the high-k polymer matrix to 

achieve a simultaneously high-k and low dielectric loss conductive filler/polymer 

composite.  In this study, a uniformly dispersed metal nanoparticle-polymer composite 
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was developed as a high-k polymer matrix adopting a relatively low concentration of 

conductive Ag nanoparticles to enhance the k values while maintaining acceptable levels 

of dielectric loss. The in-situ formed metal-polymer nanocomposite can be employed as a 

high-k polymer matrix to host various fillers, such as conductive metal or ferroelectric 

ceramic fillers to achieve both high k and relatively low dielectric loss. In this case, self-

passivated Al particles were incorporated in the as-prepared Ag-epoxy nanocomposite 

with aim to prepare high k and low loss dielectric materials. Capacitor prototype was 

fabricated based on the developed materials and the dielectric properties were studied to 

find out the benefits of the incorporation of the Ag nanoparticles in the high-k polymer 

matrix. The frequency dependence of the dielectric behavior and the dielectric breakdown 

strength of the composite materials were investigated. The dielectric properties were 

correlated with the composition and the morphology of the composites and discussed in 

details. 

 

4.2 Experimental 

4.2.1 Materials 

A cycloaliphatic epoxy resin ERL-4221E (Shell Chemical Co.), an anhydride type 

curing agent hexahydro-4-methylphthalic anhydride (Lindau Chemical Co.) and an 

imidazole type catalyst 1-methylimidazole (Aldrich Chemical Co.) were used. Silver 

nitrate (AgNO3) (Aldrich Chemical Co.) and Triton-100 (formula weight: 646.85, Acros 

Chemical Co.) were selected as a metal precursor and a reducing agent, respectively. The 

metal filler used in the formulations were aluminum particles in micron size (Alfa-Aesar 
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Chemical Co.). Acetonitrile (Fischer Chemical Co.) and propylene glycol monomethyl 

ether acetate (PGMEA, Aldrich Chemical Co.) were used as received. 

4.2.2 In-situ Photochemical Synthesis of Ag Nanoparticles 

The Ag nanoparticles were in-situ synthesized in the epoxy resin through 

reduction of AgNO3. Triton-100 was used as reducing agent and nanoparticle stablizer 

simultaneously. The epoxy resin, hardener, reducing agent and silver precursor were 

dissolved in acetonitrile homogeneously and then exposed to the 295 nm UV source 

(ELC-2541 power supply with ELC-4001 light curing unit, Electro-Lite Corp.) for 30 

min. Finally the solvent was evaporated in a rotary evaporator under a reduced pressure. 

4.2.3 Preparation of Al/epoxy and Al/Ag-epoxy Composite 

The Al/epoxy and Al/Ag-epoxy composites was prepared by mixing the Al 

particles in the epoxy resin and in-situ formed Ag-epoxy matrix, respectively, for 15 min 

and sonication for 1 hr. PGMEA is added to disperse filler at high loading level for 

Al/epoxy composites. Variation of the ratio of Ag-epoxy matrix to Al powders led to 

Al/Ag-epoxy composites with different loading levels of Al and Ag. The Al/epoxy 

composites and the Al/Ag-epoxy composites were cured under a two-step curing profile: 

100 oC for 15 min then 150 oC for 90 min, and a three-step curing profile:100 oC for 15 

min then 150 oC for 30 min and finally 190 oC for 90 min, respectively. 

4.2.4 Characterization 

A JEOL 100C transmission electron microscopy (TEM) was used for observing 

the morphology and analyzing the size of in-situ formed Ag nanoparticles.  Scanning 

electron microscopy (SEM) measurements were carried out on a JEOL 1530 equipped 



 96

with a thermally assisted field emission gun operated at 10 KeV to observe the 

morphology of Al/Ag-epoxy and Al/epoxy composites. 

Thermogravimetric analysis was conducted on a TGA (TA Instruments 2050) at a 

heating rate of 10 oC/min under a nitrogen atmosphere to estimate the composition of in-

situ formed Ag nanoparticle-epoxy mixture. 

Parallel plate capacitors based on the formulated high-k composite materials were 

fabricated on a copper clad FR-4 board and copper top electrodes were coated by DC 

sputtering. First, a thick film of the high-k composites was made onto the copper clad FR-

4 board with a doctor-blade. Then the sample was cured in a thermal oven. Finally, the 

DC sputter was used to deposit a thin layer of copper (about 3000 Å) as the top electrode 

onto the cured material through a shadow mask. The capacitance and dielectric loss 

tangent (tan δ) of the capacitor were then measured with a HP 4263A LCR meter at room 

temperature. Dielectric breakdown voltage measurements of Al/epoxy and Al/Ag-epoxy 

composites were conducted through current-voltage characteristics using a KEITHLEY 

6517A high resistance meter at room temperature. Two samples with twelve data points 

for each wt. % of the composites were investigated. The thickness of the dielectric films 

was measured with a profilometer (Alpha-Step Co.) and used to calculate the dielectric 

constant and dielectric breakdown strength of the sample.  
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4.3 Results and Discussion 

4.3.1 Morphology and Composition 

The quality of nanofiller dispersion in the polymer matrix directly correlates with 

its effectiveness for improving the properties of the nanocomposites. It is believed that 

uniformly distributed metal nanoparticles within the polymer matrix are desired to 

achieve a relatively high-k and low dielectric loss matrix. Compared with ex-situ 

techniques, in-situ techniques could facilitate a more uniform dispersion of nanoparticles 

in polymers.72 And the photochemical approach provides the advantages of simplicity, 

reproducibility, versatility, selectivity and ability of larger scale synthesis. 101,102,103,104 

Therefore, the Ag-epoxy mixture was prepared via an in-situ photochemical method, in 

which Ag nanoparticles were generated by chemical reduction of a metallic precursor 

upon UV irradiation. Triton-100 in this system serves as reducing agent and capping 

agent simultaneously. The reduction of the silver ion is induced by hydroxymethyl 

radical which is generated from the photolysis of Triton-100. Stabilization of the 

nanoparticles is rendered by its capping property because of the micelle/reverse micelle 

forming ability. The exact structure of the Triton-100 in this system can be investigated 

through cryo-TEM in conjunction with small angle X-ray scattering (SAXS) technique. 

This simple process produced Ag-epoxy mixture with uniform dispersion and 

narrow size distribution of nanoparticles, which was confirmed by TEM characterization. 

Figure 4-1 displays TEM micrograph and histogram of Ag nanoparticles synthesized via 

an in-situ photochemical reduction in epoxy resin. The particle size analysis was 

performed and the results show that well-dispersed Ag nanoparticles with the size mostly 

smaller than 15 nm in polymer matrix were obtained. The average size was calculated as 
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5.2 nm. The composition of in-situ formed nanoparticles in the whole mixture was 

estimated at around 10 wt. % according to the TGA test. 
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Figure 4-1. (a) TEM micrograph and (b) histogram of Ag nanoparticles synthesized by an in-situ 

photochemical reduction in epoxy resin. 
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It has been demonstrated that the insulating oxide layer outside the Al powders 

could prevent the direct contact of conducting metal cores and thus render the Al/epoxy 

composites with low dielectric loss.41 Therefore, these self-passivated Al fillers were 

incorporated into the in-situ formed Ag-epoxy matrix. Various properties of the as-

prepared Al/Ag-epoxy composites were investigated. For comparison, Al/epoxy 

composites were also prepared and studied by mixing the Al filler in the neat epoxy 

matrix instead of Ag-epoxy matrix. SEM observation was performed on the cryogenically 

fractured surface of cured Al/epoxy and Al/Ag-epoxy composites as displayed in Figure 

4-2. There was no obvious difference in morphology between these two sets of 

composites. The size of Al fillers was in the range 1-5 microns. The in-situ formed Ag 

nanoparticles could not be seen in the SEM images of Ag/Ag-epoxy composites due to 

the ultrafine size of the nanoparticles and limited resolution of SEM. 

 

 

Figure 4-2. SEM images of cured  composites containing 70 wt. % Al filler: (a) Al/epoxy 

composite for 1 K magnification; (b) Al/epoxy composite for 5 K magnification; (c) Al/Ag-epoxy 

composite for 1 K magnification; and (d) Al/Ag-epoxy composite for 5 K magnification. 
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Figure 4-3 continued. 

 

4.3.2 Dielectric Characterization 

Dielectric behaviors of Al/Ag-epoxy composites together with Al/epoxy 

composites were studied and analyzed for comparison. For each wt.% of the composites, 

two samples with twelve data points ranging in thickness from 50 µm to 90 µm were 

investigated. The tests show good reproducibility for each data point. Figure 4-4 shows 

the dielectric properties of Al/epoxy composites and Al/Ag-epoxy composites as a 

function of Al filler loading at a frequency of 10 kHz. The Al/Ag-epoxy composites 

exhibit more than 50% increase in k values compared with Al/epoxy composites with the 

same filler loading of Al, which demonstrated that the incorporation of well-dispersed Ag 

nanoparticles in the polymer matrix delivers a huge impact on the dielectric constant 

enhancement. It is also notable that the dielectric loss tangent values (see the inset of 

Figure 4-4) for Al/Ag-epoxy composites with different Al filler loadings are all below 

0.1, which is tolerable for some applications such as decoupling capacitors. The low 
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dielectric loss can be attributed to the good dispersion of Ag nanoparticles in the polymer 

matrix together with the thin self-passivated aluminum oxide layer forming an insulating 

boundary outside of the Al particles. The results suggest that the metal-polymer 

nanocomposites via an in-situ photochemical approach can be employed as a high-k 

polymer matrix to enhance the k value of the composites while maintaining the relatively 

low dielectric loss tangent. 

The trends of the dielectric properties with the variation of filler loadings behaved 

differently for Al/epoxy composites and Al/Ag-epoxy composites. For Al/Ag-epoxy 

composites, the k values increased considerably with the increase of Al filler loading as a 

result of interfacial and space charge polarization. The k values at 10 kHz of the Al/Ag-

epoxy composites were 92, 112, 160 and 196 for samples containing 60 wt. %, 70 wt. %, 

80 wt. % and 90 wt. % of the Al filler, respectively. But for Al/epoxy composites, the k 

value decreased at a 90 wt. % Al filler loading due to voiding from imperfect filler 

packing and solvent evaporation, because solvent is required to disperse filler at high 

loading level.14 As to the dielectric loss tangent value of Al/Ag-epoxy composites, it did 

not show a monotonic increase with the Al filler loading, instead, it decreases from 0.082 

to 0.045 as the Al filler loading is increased from 60 to 80 wt. % and then increases again 

at 90 wt. %. This phenomenon can be explained in terms of the origins and mechanisms 

of the dielectric loss of the heterogeneous conductive filler/polymer composite material. 

The measured dielectric loss tangent at a given frequency can be roughly attributed to 

polarization loss and conduction loss. The polarization occurs through several 

mechanisms involving microscopic and/or macroscopic charge displacement such as 

space charge or interfacial polarizations. The conduction loss is attributed to the electrical 
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conductivity of the materials, representing the charge flow through the dielectric 

materials.10,11 The fraction of Ag, the more conductive element, in the Al/Ag-epoxy 

composites decreased with the increase of the Al filler loading. As such, a less Ag 

content leads to a lower conduction loss and thereby a lower total dielectric loss tangent 

up to 80 wt. % of the Al filler loading. In the case of 90 wt. % of Al/Ag-epoxy, the 

increase of interfacial loss induced by higher Al content might overwhelm the decrease of 

conduction loss due to the less Ag content, so the total dielectric loss tangent increased 

again.  
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Figure 4-4. Dielectric constant (k) values of Al/epoxy and Al/Ag-epoxy composites as a function 

of Al filler loading (@ 10 kHz). Dielectric loss tangent (tanδ) values of Al/epoxy and Al/Ag-

epoxy composites are displayed in the inset. 

 
The frequency dependence of the dielectric properties was investigated as well. 

Figure 4-6 (a) and Figure 4-6 (b) depict the change of k and tanδ values for Al/epoxy 

composites and Al/Ag-epoxy composites with different Al filler loading as a function of 
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frequency of the applied alternating fields ranging from 10 kHz to 1 MHz at room 

temperature, respectively. It can be observed that the frequency dependence of k as well 

as the dielectric loss tangent is stronger in the composite with higher filler loadings. The k 

values gradually decrease with the increase of the frequency for all the composites, which 

is mainly attributed to interfacial polarization in the composite. At higher frequency the 

dipole fails to respond rapidly to follow the field and dipole polarization decrease, so 

dielectric values tend to decrease. For the dielectric loss, the tanδ values for Al/epoxy 

increase monotonically with the increase of the frequency, but the tanδ values for Al/Ag-

epoxy decrease initially then increase after 100 kHz. The reason could be that the 

contribution from interfacial polarization mechanism becomes more evident while the ac 

conduction contributes less as the frequency increases. Elemental Ag induces far more 

conduction loss than polarization loss as compared to the Al. 
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Figure 4-5. (a) k and (b) tanδ values Al/epoxy composites and Al/Ag-epoxy composites with 

different Al filler loadings as a function of frequency. 
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Figure 4-6 continued. 

 
DC dielectric breakdown characteristics of Al/epoxy and Al/Ag-epoxy 

composites with different Al filler loadings were investigated and compared. A 

conventional 2-parameter Weibull distribution was used to analyze the dielectric 

breakdown strength for samples as displayed in Figure 4-7.105,106 Weibull statistics is 

considered as a popular and useful statistical method for dielectric breakdown strength 

analysis. The cumulative probability of electrical failure P can be described as: 

β
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where β is a shape parameter and E0 is a scale parameter that represents DC characteristic 

breakdown strength at 63.2 % failure probability.  
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Figure 4-7. Dielectric breakdown statistics of (a) Al/epoxy composites and (b) Al/Ag-epoxy 

composites with different Al filler loadings plotted as a Weibull distribution. 
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Table 4-1 lists E0 values of Al/epoxy composites and Al/Ag-epoxy composites 

with different Al filler loadings. For Al/epoxy composites, the dielectric breakdown 

strength decreases substantially with the increase of the Al filler loading. The dielectric 

breakdown strength of the Al/Ag-epoxy composites generally decreases as well with 

increasing Al filler loading. The reduction in dielectric strength of composites with 

increasing Al filler loading is attributed to the increased space charge accumulation.107 At 

the same Al filler loading, the dielectric breakdown strength of the Al/Ag-epoxy 

composites is lower than Al/epoxy composites. This can be explained from the Ag 

nanoparticles contained in the samples which might result in increased conduction 

electron density and/or carrier mobility. The altered charge and altered mobility has the 

potential for changes in the dielectric breakdown strength.108,109 

 

Table 4-1. DC characteristic breakdown strength at 63.2 % failure probability (E0) of Al/epoxy 

composites and Al/Ag-epoxy composites with different Al filler loadings. 

Al filler loading 
(wt. %) 

E0 of Al/epoxy composites 
(V/cm) 

E0 of Al/Ag-epoxy composites 
(V/cm) 

60 % 7818 3566 
70 % 5332 2380 
80 % 4100 2530 
90 % 3714 1862 

 

4.4 Conclusions 

An in-situ synthesis of Ag nanoparticles was successfully carried out in an epoxy 

matrix by using a photochemical method. The as-prepared Ag-epoxy nanocomposite was 

utilized as high-k polymer matrix to host fillers for preparation of Al/Ag-epoxy 

composites as embedded capacitor candidate materials. The dielectric constant values of 
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the Al/Ag-epoxy composites increased remarkably as compared with those of Al/epoxy 

composite at the same Al filler loading by introduction of Ag in the polymer matrix. 

Moreover, the dielectric loss of the Al/Ag-epoxy composites was below 0.1. The results 

suggested that the metal-polymer nanocomposites via an in-situ photochemical method 

can be employed as high-k polymer matrices to enhance the dielectric constant while 

maintaining the low dielectric loss of the high-k composites. Detailed dielectric property 

measurements revealed that the concentration of silver nanoparticles in the polymer 

matrix play a significant role in determining the electrical conduction and breakdown 

behaviors as well as the frequency dependence of the dielectric composites. At low Ag 

concentration, the dielectric behaviors of Al/Ag-epoxy composites are mainly determined 

by interfacial polarization, while conduction and electron transport of Ag dominate the 

Al/Ag-epoxy composites at higher Ag concentration.  
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CHAPTER 5 

NANO-SCALE PARTICLE SURFACE MODIFICATION FOR 

TAILORING DIELECTRIC PROPERTIES OF POLYMER 

NANOCOMPOSITES 

 

5.1 Introduction 

As stated in previous sections, dramatic increase of dielectric constant close to the 

percolation threshold observed in the conductor-insulator percolative system arouses 

interest of developing conductive metal/polymer composites as high-k dielectric 

candidate materials. According to the scaling theory, the effective k of the percolative 

composite can be dramatically enhanced at filler loadings approaching but not exceeding 

the percolation threshold. And also this percolative approach requires a much lower 

volume concentration of the filler compared to the traditional approach of dispersing 

ferroelectric ceramic particles in polymer matrix to achieve high k. Therefore, this 

material option represents advantageous characteristics over the conventional 

ceramic/polymer composites, specifically, ultra-high k with balanced mechanical 

properties and good adhesion strength. However, incorporation of the conductive fillers 

which modify the dielectric property of interest usually increases the dielectric loss and 

the breakdown strength as well. The high dielectric loss and narrow processing window 

of this system have hindered the metal/polymer composites from real applications.  
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To address this issue, the inter-particle barrier layer, i. e. an insulating surface 

coating around the conducting metal core formed either intrinsically or extrinsically, 

could effectively reduce the dielectric loss of the conductive filler/polymer composites.  

For instance, Shen et al. reported a polymer composite with synthesized core/shell hybrid 

particles using metal Ag cores coated by organic dielectric shells.48 These coating layer 

were formed in-situ during the synthesis of metal nanoparticle cores, which might 

confine the real applications of these approaches due to the limited production scale of 

the nanoparticles. Therefore, surface coating layer was targeted to the commercially 

available nanoparticles in this study. 

More recently, a new class of dielectric material with nanofillers in a polymer 

matrix for improving specific electrical properties, nanodielectric, is emerging.71 The 

molecular structure and/or modification at the nanofiller surface in the particle-polymer 

interface region are found to significantly affect the performance of nanodielectrics. The 

accordingly affected behaviors by such changes including charge 

(electrons/protons/molecular ions) transport, extended double layer structure, and space 

charge distribution are likely to be responsible for some of the unusual dielectric and 

electrical properties observed.109,110,111,112 However, few studies have elucidated the effect 

of metal filler surface chemistry and interfacial region in high-k nanocomposites on the 

dielectric and electrical properties such as dielectric constant, dielectric loss, dielectric 

breakdown strength, and few investigations have employed surface modification to tailor 

these properties. Therefore, fundamental studies of interface and its modification with 

organic molecules are of great significance to understand their effect on the dielectric and 

electrical behaviors of metal/polymer nanocomposites.  
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Functionalization or grafting of organo-silane molecules on a metal oxide surface 

is typical modification method, simple yet effective. For instance, the surface 

modification of TiO2 nanoparticles by a polar silane coupling agent could effectively 

improve both the dielectric breakdown strength and space charge distribution of 

polyethylene composites. 113,114,115 The modification is based on the chemical bonding 

between the silane group and the hydroxyl groups presented on these metal oxide particle 

surfaces. However, the effectiveness of these coupling agents on modifying metal 

nanoparticles is doubtable due to the lack of hydroxyl groups on some metal particle 

surface such as Ag prepared by certain methods. As an alternative, the atom coordination 

of certain elements in coupling agent to the metal nanoparticle surface might be 

hypothesized as an approach for chemical modification of the metal nanoparticles. 

Accordingly, it is of interest to investigate the applicability of the coupling agent to the 

metal nanoparticles and its mechanism.  

In this study, surface modification of nanoparticles was employed with aim to 

change the surface chemistry and electrical state of nanoparticles and thereby to tailor the 

dielectric and electrical properties of corresponding polymer nanocomposites. Ideally, the 

surface passivation layer coated on the nanoparticles is expected to improve the 

performance of the conventional metal/polymer composites by decreasing the dielectric 

loss, enhancing the dielectric breakdown strength and expanding the processing window. 

The surface modification agents are supposed to attach to metal filler surfaces by atom 

coordination/chemical bonding and adsorption to form a multi-layer or oligomer film on 

the metal filler surfaces. Infrared spectrum measurement of the absorption band of 

functional groups on nanoparticles was used to determine the existence of chemical 
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bonding after surface modification. High resolution transmission electron microscopy 

(HRTEM) was used to characterize the morphology of surface modified nanoparticles 

(SMN) and investigate the existence and thickness of the surface coating layer.  

Then the SMN/epoxy nanocomposites were prepared by dispersing different 

loadings of SMN into an epoxy matrix. A set of dielectric and electrical tests were 

performed to characterize the as-prepared nanocomposites and study the effect of surface 

modification on the dielectric and electrical properties of nanocomposites. It was found 

that the dielectric properties of the nanocomposites could be tailored by varing surface 

modifications of nanoparticles prior to the filler incorporation. The percolation-like 

increase of k value with the increase of filler loading was observed. Different surface 

modification conditions such as type and concentration of surface modification agent, 

solvent media etc. may play complex roles to the degree of surface modification which 

impact the changes of k and dielectric loss tangent values of SMN/polymer composites 

dramatically. Significant improvement in the dielectric breakdown strength was observed 

as well. More importantly, resistor-like behavior was shifted to be more capacitor-like 

behavior as the linearity in the current-voltage behavior of these composites. The 

improvement can be attributed to the interparticle electrical barrier layer formed via 

surface modification which prevents the metal cores from direct contact.  

 

5.2 Experimental  

5.2.1 Materials  

A cycloaliphatic epoxy resin ERL-4221E (Shell Chemicals Co.), an anhydride 

type curing agent hexahydro-4-methylphthalic anhydride (Lindau Chemical Co.) and an 
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imidazole type catalyst 1-methylimidazole (Aldrich Chemical Co.) were used. γ-

aminopropyltrimethoxy silane (APS, Crompton Co.) and γ-glycidoxypropyltrimethoxy 

silane (GPS, Crompton Co.) as surface modification agents were used as received without 

further purications. The Ag nanoparticles synthesized by the combustion chemical vapor 

condensation (CCVC) method (nGimat Co.) were used as received. The ethanol (J. T. 

Baker) and toluene (EMD Chemicals) were used as solvents without further purifications. 

5.2.2 Surface Modification of Ag Nanoparticles 

The Ag nanoparticles were surface modified by different surface modification 

agents in various ratio of Ag to these agents. Aqueous ethanol (ethanol : DI water = 95 : 5 

in volume) and dry toluene were used as solvent media for the surface modification 

process. The mixture of the nanoparticles and surface modifiers in different solvents was 

sonicated for 3 hrs and followed by centrifuge to obtain the nanoparticle solids. The 

treated nanoparticles were rinsed by solvent to remove the unreacted surface modifiers 

and then centrifuged repeatedly. Finally, the as-obtained SMNs were dried in a vaccum 

chamber for 24 hrs at room temperature. The SMNs with Ag nanoparticle to APS in 

molar ratio as 4:1, and 10:1, respectively, were noted as APS4-SMN, and APS10-SMN, 

respectively. 

5.2.3 Preparation of SMN/Epoxy Composites  

The SMN/epoxy composites were prepared by mixing the SMN particles in the 

epoxy resin and sonicating for 1 hr. The Al/epoxy composites and the Al/Ag-epoxy 

composites were cured under a two-step curing profile: 95 oC for 15 min then 150 oC for 

additional 90 min. 
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5.2.4 Material Characterization  

Fourier transform infrared (FTIR) spectra of Ag nanoparticles with and without 

surface treatment via varied modification agents in different solvent media were recorded 

on a Nicolet Magna-IR 560 spectrometer.  

A Hitachi 2000K high resolution transmission electron microscopy (HRTEM) 

was used for observing the morphology and the size of Ag nanoparticles as well as 

analyzing the result of surface modification. Spatially resolved energy-dispersive X-ray 

spectroscopy (EDS) attached with the HRTEM was also used to confirm the presence and 

element composition of a thin layer of shell around the nanoparticles after surface 

modification.  

X-ray powder diffraction (XRD) patterns of unmodified Ag nanoparticles and 

surface modified Ag nanoparticles by APS were recorded at a scanning rate of 0.04 o s-1 

in the 2θ range of 20-80 o using an X-ray power diffractometer (PW 1800, Philips Co.) 

with Cu-Ka radiation (λ~0.154 nm).  

To investigate the surface chemistry characteristics of the Ag nanoparticles after 

surface modification, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy 

studies of the samples were employed. The XPS experiments were carried out in the 

ultrahigh vacuum chamber. XPS analysis was performed on a Model 1600 XPS with 

46.95 eV X-rays from an Al Kα source with spectrometer resolution ~1.0 eV for the 

survey scans and ~0.1 eV for high-resolution scans. Raman spectrum of surface modified 

Ag nanoparticles by APS was obtained using Bruker Optics Equinox 55 FT-Raman with 

near infrared (NIR) lasers (λ=1064 nm). In a typical measurement, the laser power at the 

sample position was 300-500 mW and the resolution is 2 cm-1.  
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The glass transition temperatures (Tgs) of unmodified nanoparticle/epoxy 

nanocomposite and SMN/epoxy nanocomposites were studied by a modulated 

differential scanning calorimeter (DSC, TA Instruments model 2920) at a heating rate of 

10 °C/min under a nitrogen atmosphere. The heat treatment process was also studied by 

DSC isothermally at 150 oC for 1 hr under a nitrogen atmosphere. 

Scanning electron microscopy (SEM) measurements of the morphology of cured 

SMN/epoxy nanocomposite was carried out on a JEOL 1530 equipped with a thermally 

assisted field emission gun operated at 10 KeV. 

5.2.5 Capacitor Prototype Fabrication and Dielectric Property Measurements 

Parallel plate capacitors in MIM (Metal-Insulator-Metal) structure with the 

formulated high-k nanocomposite sandwiched between gold-coated glass substrates and 

gold top electrodes. The high-k nanocomposite films were spin-coated onto the gold-

coated glass substrates and cured in a thermal oven. A thin layer of gold (about 3000 Å) 

as the top electrode was coated on the cured nanocomposite through a shadow mask by a 

DC sputtering. The capacitance and dissipation factor of the capacitor were then 

measured with a HP 4263A LCR meter. The leakage current and breakdown voltage was 

measured using a KEITHLEY 6517A high resistance meter. The thickness of the 

dielectric films was measured with a profilometer (Alpha-Step Co.) and used to calculate 

the dielectric constant and dielectric strength of the sample. 
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5.3 Results and Discussion 

5.3.1 Characterization of Surface Modified Nanoparticles (SMN) 

The metal nanoparticles were treated with different types and amounts of surface 

modification agents, which are supposed to react with metal filler surfaces by chemical 

bonding or complex coordination to form a monomolecular layer or multi-layers on the 

nanoparticle surfaces under appropriate conditions. Infrared spectrum measurement of the 

absorption band of functional groups on metal particles was used to determine the 

existence of chemical species after surface modification. Figure 5-1 shows the FTIR 

spectra of metal nanoparticles with and without surface treatment via varied modification 

agents in different solvent media. For spectrum of metal filler nanoparticles treated with 

APS in ethanol, the FTIR band recorded at 1090 cm−1 corresponds to Si–O stretching 

vibration, which could originate from the Si-O-Si linkages formed by the condensation 

occurring between silanol groups. The small FTIR band at 2930 cm−1 corresponds to 

stretching vibration of CH2 in the silane chain. These results suggest the existence of 

organic layer on the SMN and/or the bond linkage between surface modification agent 

and the nanoparticle surface.  

However, for nanoparticles treated by GPS with epoxide end group, the 

corresponding absorption peaks were hardly detected. These results indicate that the 

functional groups of the silane agents play an important role in the degree of surface 

modification. This provides indirect evidence that the coordination of nitrogen from the 

amino group in APS to the Ag nanoparticles might play a more important role in the 

formation of coating layer on the Ag nanoparticles than the chemical bonding between 

the Si atoms to the functional groups on the nanoparticle surface. 
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The effect of the solvent media on surface modification was also studied. 

Different from the aqueous ethanol solvent, in the case of APS treated nanoparticles in 

dry toluene solvent, the FTIR peaks of Si-O-Si and CH2 groups were less obvious. It was 

likely that less amount of agents was coated on the nanofillers because less hydrolysis of 

slilane agents took place in the dry solvent. 
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Figure 5-1. FTIR spectra of untreated nanoparticles and SMN treated in different conditions. 

 

HRTEM was used to characterize the morphology of SMN and investigate the 

existence and thickness of the surface coating layer. Figure 5-2 shows the HRTEM 

micrograph of SMN. The size of nanoparticles was in the range of 20-50 nm. Well-

defined lattice structure could be observed at higher magnification. A thin layer in 1-2 nm 

thickness could be observed on the surface of metal nanoparticles. A certain mount of 

coupling agent is distributed among the metal nanoparticles as well. This layer is 
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amorphous as no lattice structure could be detected even at higher magnification. The 

attached EDS indicated the presence of Si in the surface coating layer, which originates 

from the surface modification agent. These results indicate the successful formation of a 

thin coating layer on the nanoparticle surface, i.e. a core-shell structure formed by means 

of surface modification of nanoparticles via organic agent. 

 

Figure 5-2. HRTEM micrographs of SMN. 
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XPS survey scan was conducted on the SMN. The spectrometer resolution was ~ 

1.0 eV for the survey scans and ~ 0.1 eV for high-resolution scans. Figure 5-3 displays 

XPS survey scan which showed C 1s, O 1s, N 1s and Si 2p peaks besides Ag 3p and Ag 

3d peaks. The assignment of the peaks at different binding energy (EB) is listed in Table 

5-1. The existence of oxygen and carbon, and traces of nitrogen and silicon which mainly 

originate from the silane moieties proofs the presence of the APS coupling layer on the 

surface of Ag nanoparticles.  

 

Figure 5-3. XPS general survey and high resolution scan spectra of SMN. 

 

Table 5-1. Data analysis from XPS spectra of SMN. 

B. E. (ev) 368.7 374.7 604 284 532 399 103 

Element Ag 3d 3/2 Ag 3d 5/2 Ag 3p1 C 1s O 1s N 1s Si 2p 

Atomic conc. 4.36 % 3.94 % 5.3 % 63 % 12.5 % 3.8 % 4.6 % 

 

Figure 5-4 displays X-ray diffraction (XRD) patterns of unmodified Ag 

nanoparticles and SMN by APS. Both spectra show four well-defined strong peaks at 2θ 

= 38.4, 44.3, 64.7 and 77.6°, indexed as (111), (200), (220) and (311) planes, 
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respectively, of the face-centered cubic (fcc) Ag phase. No obvious change in the peak 

positions or width could be observed for the nanoparticles after treatment, indicating that 

neither crystal configuration nor grain size changed during the treating process. No 

occurance of new peak suggests that the surface coating layer is amorphous, which is in 

agreement with the HRTEM result.  
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Figure 5-4. XRD spectra of unmodified nanoparticles and SMN. 

 

Heat treatment at 150 oC for 1 hr was conducted on unmodified nanoparticles and 

SMN to investigate the effect of surface modification as well. From the DSC isothermal 

test results of unmodified nanoparticles and SMN as displayed in Figure 5-5, an 

additional reaction peak was observed for SMN. These results suggest that further 

condensation reaction might take place during the heat treatment process. The reaction 

heat was estimated as 16.4 kJ/mol (5 wt. % APS was assumed to be present in SMN). 

After heat treatment, the color of SMN remained black, while the color of unmodified Ag 
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nanoparticles changed from black to dark grey, which is indicative as a sintering effect. 

This difference also indicates the existence of the surface coating on the SMN which 

prevents the direct contact between the nanoparticles and thereby the sintering. 
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Figure 5-5. DSC isothermal curves of unmodified nanoparticles and SMN. 

 

5.3.2 Characterization of Surface Modified Nanoparticles (SMN)/ Polymer 

Nanocomposites 

The Tgs of unmodified nanoparticle/epoxy nanocomposite and SMN/epoxy 

nanocomposites with different SMN loadings were investigated by DSC as shown in 

Figure 5-6. The Tgs of SMN/epoxy nanocomposites are lower than that of unmodified 

nanoparticle/epoxy nanocomposite. This might be due to the enhancement of polymer-

filler interaction around the filler resulted from the property change of the interface 

between nanoparticles and epoxy matrix after nanoparticle surface modification. The 

mobility of the polymer chains at the interfacial region were found to increase compared 

to the bulk material when the polymer-filler interactions are attractive, which might 
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explain the decrease of Tg of nanocomposites with SMN.109, 116   Change in the free 

volume in the interfacial region after surface modification would also result in the change 

in Tg.117 Additionally, the reaction heat of these nanocomposites was investigated as well 

from the curing profiles because changes in crosslink density would complicate the Tg of 

crosslinked system as well. The normalized reaction heat for 20 wt. % unmodified 

Ag/epoxy, 20 wt. % APS1-SMN/epoxy, and 40 wt. % APS-SMN/epoxy nanocomposite 

are calculated as 315.8 J/g, 247.5 J/g, and 231 J/g, respectively. Compared to unmodified 

Ag/epoxy nancomposite, crosslink density of nanocomposite containing surface modified 

fillers reduced, which could be another contributor to the decrease of Tg. And Tg of 

SMN/epoxy nanocomposites is further decreased with the increase of SMN loading. 
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Figure 5-6. DSC curves and Tgs of cured unmodified nanoparticle/epoxy composite and 

SMN/epoxy composites with different SMN loadings. 

 
The SEM image of a cured SMN/epoxy nanocomposite in Figure 5-7 showed that 

the nanoparticles in size of 30-50 nm were embedded in the polymer matrix. Compared 
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to the images of nanopartiles before incorporation into polymer matrix displayed in 

HRTEM micrograph (see Figure 5-2), the size of the nanoparticle was quite similar and 

no agglomeration was observed. This can be attributed to the effect of the surface coating 

which inhibits the direct contact of the nanoparticles and thus prevents the agglomeration 

which could lead to severe property degradation of nanocomposites.   

  

Figure 5-7. SEM image of cured SMN/epoxy nanocomposite. 

 

5.3.3 Electrical and Dielectric Property Measurements   

A set of dielectric and electrical tests were performed to characterize the 

SMN/epoxy nanocomposites and survey the effect of surface modification on the 

dielectric and electrical properties of these nanocomposites. 

The dependence of the dielectric properties of the composite on both SMN 

loadings and frequency was investigated. Figure 5-9 (a) and Figure 5-9 (b) display the 

dielectric constant, k, and the dielectric loss tangent, tanδ, of the SMN/epoxy 

nanocomposites containing various loadings of SWN treated with different amounts of 
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APS. APS4-SMN/epoxy and APS10-SMN/epoxy refer to nanocomposites containing Ag 

nanoparticles treated with larger and smaller amounts of modification agent, respectively. 

In both cases, the k and tanδ values increase as filler loading increases. In sharp contrast 

to the composites incorporating unmodified Ag nanoparticles for which 20 wt. % which 

is beyond the percolation, the SMN/epoxy nanocomposites didn’t exhibit a sharp and 

narrow transition near percolation. Therefore, the processing window has been much 

expanded. Furthermore, with the decrease of treatment amount of modification agent, 

both of the k and tanδ values increase significantly. The possible explanation might be 

that the treatment of fillers with larger amount of modification agent could render thicker 

coating layers on the conductive nanoparticle surface which prevent the direct contact 

and restrict the electron transfer between Ag nanoparticles. And also, the presence of Si-

O-Si bonds and the nanoparticle surface can be treated as oxygen defects which act as the 

trap sites for charge carriers.105,114 These factors could lead to a decreased dielectric 

constant and dielectric loss of the nanocomposites. That is to say, the dielectric properties 

of the composites could be tailored by surface modification of incoporated nanoparticles. 

Generally speaking, the thicker the coating is, the lower the k and loss values the 

SWN/polymer composites are. Figure 5-9 (c) depicts the effect of frequency on the k 

values of SMN/epoxy composites. It shows that the k values decrease with the frequency 

for all loadings of SMN. And the composites containing higher loading of SMN showed 

the stronger frequency dependence of dielectric constant. The relatively strong frequency 

dependence resembles other percolative composites, which suggests that the lossy metal 

core is still dominant in determining the relaxation behavior of these SMN/epoxy 

composites. 
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Figure 5-8. Dielectric properties of SMN/epoxy composites with different SMN loadings and 

different modification degree: (a) loading effects on k values, (b) loading effects on tanδ values, 

and (c) frequency effects on k values. 
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Figure 5-9 continued. 

 

The dielectric properties of SMN/epoxy nanocomposites containing SMN treated 

in different conditions were summarized in Table 5-2. Unlike the nanocomposites 

containing APS modified nanoparticles whose dielectric constant and dielectric loss was 

substantially decreased after surface modification, the dielectric behavior of 

nanocomposites containing GPS modified nanoparticles was more like composites 

containing nanoparticles without surface modification, i.e. high dielectric constant and 

high dielectric loss. With regard to the solvent media used in surface modification, the 

dielectric properties of composites containing nanoparticle treated by APS in dry toluene 

also exhibit relatively higher k and higher tanδ, indicate that the surface modification is 

more effective in aqueous media than the dry solvent. The nanocomposites incorporating 

SMN treated by APS in the aqueous solvent possess relatively lower dielectric constant 

and lower dielectric loss tangent, which is attributed to the passivation effect of the 
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coating layer on the nanoparticles incorporated in the composites. The conclusions 

inferred from the results of dielectric properties are in good agreement with those 

predicted from FTIR in terms of the effectiveness and degree of the surface modification. 

Accordingly, the possible mechanism of surface modification of Ag nanoparticles by 

APS is proposed as schematically represented in Figure 5-10. The effective surface 

coating layer on the Ag nanoparticles by APS might be due to the adsorption of APS onto 

Ag nanoparticle surface through atom coordination between nitrogen in the silane agent 

and the Ag, and the resulting layer after subsequent hydrolysis and condensation of the 

APS film. 

  

Table 5-2. Dielectric properties of SMN/epoxy nanocomposites containing SMN treated in 

different conditions. 

wt.% Agent Solvent media k tanδ 

40 APS aqueous ethanol 494 0.24 

50 APS aqueous ethanol 2247 0.80 

40 GPS aqueous ethanol 1233 1.76 

50 GPS aqueous ethanol 5035 3.47 

40 APS dry toluene 944 1.88 

50 APS dry toluene 3494 2.66 
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Figure 5-10. Schematic representation of proposed mechanism of surface modification of Ag 

nanoparticles by APS. 

 

Dielectric breakdown strength of the nanocomposites, which is defined as the 

breakdown voltage (the highest voltage which samples can withstand before electrical 

failure) divided by sample thickness, was investigated as well. The effect of coating layer 

formed via surface modification can be confirmed by the current-voltage (I-V) 

characteristic measurements as displayed in Figure 5-11. Significant improvement in the 

dielectric breakdown strength was observed after the surface modification of the metal 

nanoparticles. The higher concentration of modification agents used, the thicker the 

coating layer on the nanoparticle surface, and correspondingly higher dielectric 

breakdown strength and lower leakage current at a given voltage. For the same 20 wt.% 

filler loading, the dielectric breakdown strength of APS4-SMN/epoxy nanocomposite and 

APS10-SMN/epoxy nanocomposite is 87 kV/cm and 17 kV/cm, respectively. Despite 

that the dielectric breakdown strength of APS4-SMN/epoxy nanocomposites substantially 

decreases from 87 kV/cm to 43 kV/cm as filler loading increases from 20 wt. % to 40 wt. 

%, the effect of coating is much more conspicuous than the filler loading effect. Because 
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the addition of surface coating layer may result in modifying the carrier trapping density 

and trapping depth in the polymer, and consequently modifying the space charge 

distribution in the nanocomposites. 105,108,117 Furthermore, the surface coating layer can 

possibly serve as diffusion layer, so that the local electric field strength is reduced and the 

dielectric filed strength is increased. 
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Figure 5-11. I-V characteristics of unmodified nanoparticle/epoxy nanocomposite and 

SMN/epoxy nanocomposites with different SMN loadings and different modification degree. 

 
These dielectric and electrical property results of SMN/polymer composites are 

consistent with experimental evidence of SMN characterization. The surface passivation 

layer coated on the nanoparticles improves the performance of the conventional 

metal/polymer composites by decreasing the dielectric loss, enhancing the dielectric 

breakdown strength. Therefore, surface modification of nanofillers is believed to be an 

effective approach to adjust the electrical features at the nanofiller surface and the 
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interface between the nanofiller and the polymer matrix, and thereby tailor the 

corresponding property of interest of the nanocomposites. It is promising to achieve 

balanced dielectric properties of the nanocomposite by optimizing the degree of surface 

modification, the thickness and density of the nanoparticle surface coverage.  

 

5.4 Conclusions 

In this study, surface modification of nanoparticles was employed to change the 

surface chemistry and electrical state of nanoparticles and thereby tailor the dielectric and 

electrical properties of corresponding polymer nanocomposites. The surface coating layer 

coated on the nanoparticles via surface modification improves the performance of the 

metal nanoparticle/polymer composites by decreasing the dielectric loss, enhancing the 

dielectric breakdown strength. These performance improvements can be attributed to the 

interparticle electrical barrier layer formed via surface modification of nanoparticles 

which prevents the metal cores from direct contact, and/or the altered charge density and 

distribution around the interface of nanoparticles and polymer matrix. Surface 

modification of nanoparticles is believed to be an effective approach to adjust the 

electrical features at the nanoparticle surface and the interface between the nanoparticle 

and the polymer matrix, and thus tailor the corresponding property of interest of 

nanocomposites. It is also promising to achieve balanced dielectric properties of the 

nanocomposite by optimizing the degree of surface modification, the thickness and 

density of the coating layer on the nanoparticle surface. 
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CHAPTER 6 

THE INFLUENCE OF CONNECTIVITY ON THE DIELECTRIC 

PROPERTIES OF NANOPARTICLE-BASED HIGH-K COMPOSITE 

MATERIALS  

 

6.1 Introduction 

To solve the problems of the conductive filler/polymer composites, currently 

much work has been directed to the control of the dielectric loss of this system to 

overcome the drawbacks of this system. It is well-known that the size, shape, distribution 

as well as the connectivity, i.e. the microstructure arrangement of the component phases 

in the composite, of the fillers possess great influence on the properties of the composite 

materials. Therefore, the manipulation of the conductive filler properties has been an 

important approach to achieve this target. 

The electrical properties in terms of the percolation effects and transport 

phenomena in composite system are complicated. In specific, the type, shape and size of 

the filler in the composites are crucial, additionally, the connectivity and the resulting 

pathway and mean distance between particles or clusters also directly influence the 

charge carriers.52 The employment of nanofillers in the composites further increases the 

complexity because the change in the size of a simple nanocrystalline material can lead to 

great changes in its physical properties. As to electrical properties of composites, the 

volume or mass fraction and the structural phenomena have a large bearing on the 
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composite’s transport properties. Alternatively, the proximity (path length) and size of 

metal particles can be varied depending on the technique for adding them into the 

polymer matrix. Instead of the aggregation of metal clusters and therefore nucleation to 

form larger grain sizes, islands of metallic clusters can be formed by some deposition 

techniques. Therefore, the manner of deposition and the resulting pathway and mean 

distance between island or particles or colloids also directly influence the conduction 

process as well as the dimensionality of the charge carriers. For instance, the electrical 

conductivity of a very thin metal film can be much lower than in a bulk material caused 

by a discontinuous structure, where the metal appears as cluster of island, in the thin 

films. However, work in the field of electrical properties of the nanocomposite is still 

inadequate for in-depth knowledge and complete understanding of percolation effects and 

dimensionality when nanofilers are used in composites.118  

Similarly, it is anticipated that the feature of the fillers delivers a huge impact on 

the dielectric properties of the nanocomposites as well. However, there are even more 

deficiency in the research of this field. The effects of the size, size distribution, and 

surface property of the metal nanoparticles on the dielectric properties of the 

nanocomposites have been discussed in Chapter 3 and Chapter 5. The objective of this 

work is to investigate the impact of connectivity of nanoparticles and thereby to find an 

efficient way to enhance the dielectric performance of the high-k nanocomposites by the 

incorporation of appropriate metal nanoparticles.  

There are usually three types of geometric morphologies of the phase distribution 

in a two-phase material because the microstructure of the material changes with the 

volume fraction of one phase, i.e. dispersed structure, aggregated structure, percolation-
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like cluster structure. 119  Before the volume fraction of the minor phase reaches 

percolation threshold to form a percolation-like interconnected cluster structure, 

dispersed structure and aggregated structure as shown in Figure 6-1 will be formed.  

 

 
                           (a)                                                         (b) 

Figure 6-1. Schematic representation of geometric morphologies of the nanofiller distribution in a 

two-phase material in (a) dispersed structure and (b) aggregated structure. 

 

Different degree of assembly and connectivity of phases in the nanocomposite 

might affect the interfacial polarization and conducting property and thereby have great 

impact on the dielectric constant, dielectric loss tangent and percolation of the final 

nanocomposites. Unfortunately, it is not easy to demonstrate due to other parameters of 

nanoparticles such as size, size distribution, surface property and so on might influence 

the properties of the nanocomposites and cannot be distinguished from the effect of 

connectivity. Therefore, in this work effors were made to synthesize Ag nanoparticles of 

similar size, size distribution and surface property but with different connectivity in terms 

of aggregation status. The dielectric properties of the Ag/epoxy nanocomposites 

containing these nanoparticles were then studied to investigate this effect. The results 

revealed that aggregation status of the nanoparticles impacts the dielectric performance of 

the nanocomposite greatly. 

 



 133

6.2 Experimental  

6.2.1 Materials 

Epoxy of diglycidyl ether of bis-phenol A (Shell Chemicals Co.), an anhydride 

type curing agent (Lindau Chemical Co.) and an imidazole type catalyst (Shikoku 

Chemical Co.) were used as received. A low aggregate structure carbon black (Columbia 

Chemical Co.) was used. The silver nitrate (AgNO3), resorcinol and sodium hydroxide 

(NaOH) were purchased from Aldrich and used without further purifications. 

6.2.2 Preparation of Ag Nanoparticles with Different Morphology 

Ag nanoparticles were prepared by a method similar to those previous reported.120 

Ag nanoparticles were synthesized by the wet chemical reduction of silver nitrate using 

resorcinol in alkaline medium. Resorcinol serves as the reducing agent as well as the 

capping agent. Variation of the pH value of the reaction solution through adjustment of 

the concentration of alkaline medium was employed to prepare Ag nanoparticles with 

different connectivity in terms of aggregation status. Centrifuging the resulting 

suspension allows the solvent to be decanted and powders of nanoparticles to be isolated. 

These powders consist of the desired nanoaprticles and their intimate capping layer and 

can be re-dispersed in a variety of solvents. 

6.2.3 Preparation of Ag/Epoxy Nanocomposites 

The as-prepared Ag nanoparticles were dispersed in ethanol first and then mixed 

with a certain amount of the epoxy resin and hardener via ultrasonication.  
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6.2.4 Materials Characterization 

A JEOL 100C transmission electron microscopy (TEM) was used for observing 

the morphology and analyzing the size of Ag nanoparticles prepared.  

Fourier Transform Infrared (FTIR) was recorded on a Nicolet Magna-IR 560 

spectrometer. 

X-ray photoelectron spectroscopy (XPS) study of the samples was employed to 

characterize the surface of the Ag nanoparticles. The XPS data was collected on a Model 

1600 XPS with 46.95 eV X-rays from an Al Kα source (1486.6 eV) with spectrometer 

resolution ~ 1.0 eV for the survey scans.  

Thermogravimetric analysis (TGA) of the synthesized Ag nanoparticles was 

conducted on a TGA (TA Instruments 2050) at a heating rate of 10 C/min under a 

nitrogen atmosphere. 

Parallel plate capacitors of the nanocomposites were fabricated on glass substrate 

with DC sputtering copper layers as top and bottom electrodes. Capacitance and loss 

tangent measurements were carried out on a HP 4291A Multi-Frequency LCR meter over 

frequency range from 10 kHz to a few MHz. The thickness of the dielectric films was 

measured with a profilometer (Alpha-Step Co.) and was used to calculate the dielectric 

constant of the samples. 
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6.3 Results and Discussion  

6.3.1 Syntheisis of Ag Nanoparticles with Varied Connectivity 

The synthesis of the Ag naonparticles with different connectivity of interest was 

achieved by adjusting the pH of the reaction, which was found to play an important role 

in assembling the nanoparticles.120 In this study, different concentration of NaOH was 

applied to prepare Ag nanoparticles with varied aggregation status. The TEM images of 

the Ag nanoparticles synthesized with different concentrations of alkaline medium are 

shown in Figure 6-2. The average size of the Ag nanoparticles is around 25 nm. At a high 

concentration of [NaOH] (1 mM), small primary Ag nanoparticles form more aggregated 

structure (denoted as Ag_a). In the case of a lower concentration of [NaOH] (0.3 mM), 

the Ag nanoparticles (denoted as Ag_d) are more discrete. The formation of Ag 

nanopartilce aggregates are brought about by a hydrogen-bonding interaction of the 

resorcinol and its dimer, tetrahydroxylbiphenyl (see Scheme 6-1).120  
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Scheme 6-1. Schematic presentation of the evolution of resorcinol to its dimer.  

 

Resorcinol can act as weak acids and undergo deprotonation. Deprotonation of the 

hydroxyl group occurs more easily at higher concentration of NaOH and facilitates the 

formation of a close-pack assembly of nanoparticles. 
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(a) 

 
(b) 

Figure 6-2. TEM images of Ag nanoparticles with different morphology: (a) Ag_a and (b) Ag_d. 
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6.3.2 Characterization of Synthesized Ag Nanoparticles 

Figure 6-3 displays FTIR spectra of pure resorcinol and Ag nanoparticles 

synthesized with resorcinol as both reducing agent and capping agent. The peak at ~1606 

cm-1 and ~ 1387 cm-1 can be attributed to the C=C stretching on the phenyl ring and O-H 

vibration of the phenol moiety of resorcinol. The results revealed that the Ag 

nanoparticles are capped by the resorcinol moiety.  
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Figure 6-3. FTIR spectra of synthesized nanoparticles Ag_a (solid line) and pure resorcinol 

(dashed line). 

 
XPS survey scan was conducted on the synthesized Ag nanoparticles Ag_a. 

Figure 6-4 display XPS survey scan which showed evidence for the C 1s and O 1s peaks 

besides Ag 3p and Ag 3d peaks. The results revealed that the Ag nanoparticles are capped 

by the resorcinol moiety. 
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Figure 6-4. General survey XPS spectrum of Ag nanoparticle. 

 

The TGA curves of the Ag nanoparticles prepared with different morphology 

were displayed in Figure 6-5. The weight loss for the Ag nanoparicles could be attributed 

to the resorcinol capping layer on the Ag nanoparticle surface, which accounts for around 

7.1 wt. % and 6.5 wt. % of the total weight of Ag nanoparticles with more aggregated 

morphology and more discrete morphology, respectively.  
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Figure 6-5. TGA curves of Ag nanoparticles with different morphology. 

 

6.3.3 Dielectric Properties of Epoxy Nanocomposites Based on the Ag 

Nanoparticles with Varied Connectivity 

The nanocomposites based on the as-synthesized Ag nanoparticles were prepared 

and the dielectric properties of these nanocomposites were investigated. Figure 6-7 shows 

the k and tanδ values of the nanocomposite containing Ag nanoparticles with different 

connectivity at 10 kHz as a function of the filler loading. A moderate increase in k was 

observed when the Ag loading was below 60 wt. %. The increase of k became 

pronounced when Ag loading was beyond 63 wt. %. All these nanocomposites exhibit 

low dielectric loss tangent values below 0.06. The possible reasons contribute to the low 

dielectric loss for the composites could be the resorcinol moiety on the Ag nanoparticle 

surface inhibits the formation of a conducting filler network. As expected, the 
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connectivity of the Ag nanoparticle has great influence on the dielectric properties of 

final nanocomposite materials. There is not much difference in the k values of the 

nanocomposite containing Ag nanoparticles with different aggregation status, while the 

nanocomposite containing Ag nanoparticle with more discrete structure rendered much 

lower dielectric loss tangent. The dielectric loss mechanism in the nanocomposites is 

complicated but, in general, occurs via two main mechanisms, that is, interfacial loss and 

conduction loss. There are higher conduction loss and interfacial loss involved in more 

aggregated structures of Ag nanoparticles in the nanocomposites, which results in the 

behavior of the final nanocomposites more resistive rather than capacitive. Therefore, the 

Ag nanopaticles with more discrete structure are desirable as conductive filler in the 

nanocomposite system. For a 65 wt. % Ag_d/epoxy nanocomposite, the k value reaches 

96 and the tanδ value remains as low as 0.036. 
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Figure 6-6. (a) k and (b) tanδ values of Ag/polymer composites containing Ag nanoparticles with 

more aggregated structure (Ag_a) and more discrete structure (Ag_d). 
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Figure 6-7 continued.  

 

6.4 Conclusions 

In this study, the effect of the connectivity of the metal nanoparticle phase on the 

dielectric properties of the nanocomposites was investigated. The synthesis of the Ag 

naonparticles with varied connectity of interest was achieved by adjusting the pH of the 

reaction, which was found to play an important role in assembling the nanoparticles. 

Using this approach, NaOH of different concentrations was used to prepare Ag 

nanoparticles with varied aggregation status. The nanocomposites based on the as-

synthesized Ag nanoparticles were prepared and the dielectric properties of these 

composites were investigated. The Ag/epoxy nanocomposites based on Ag nanoparticles 

capped with organic moiety showed very low dielectric loss tangent (<0.06). Assembly of 
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the nanoparticles impacts the dielectric performance of the nanocomposite greatly in 

terms of the interfacial polarization and conducting properties. There is not much 

difference in the k values of the nanocomposite containing Ag nanoparticles with 

different aggregation status, while the nanocomposite containing Ag nanoparticle with 

more discrete structure rendered much lower dielectric loss tangent compared to the 

nanocomposites with Ag nanoparticles of more aggregated structure. 
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CHAPTER 7 

ALL-ORGANIC HIGH-K POLYANILINE/EPOXY COMPOSITES 

VIA AN IN-SITU POLYMERIZATION 

 

7.1 Introduction 

Dramatic increase of dielectric constant close to the percolation threshold 

observed in the conductor-insulator percolative system arouses interest of developing 

conductive filler/polymer composites as candidate materials for embedded capacitor 

applications. Various inorganic condutive fillers, such as metals like silver, aluminum, 

nickel, and carbon black have been used to prepare the two-phase or three-phase 

percolative composite system. This material option represents advantageous 

characteristics over the conventional ceramic/polymer composites, specifically, ultra-high 

k with balanced mechanical properties including the adhesion strength. The composites 

fabricated by dispersing an organic filler material possessing very high dielectric constant 

in a polymer matrix were found to exhibit high-k as well. Electrically conductive 

polymers such as polythiophenes, polypyrrole, polyaniline (PANI), and poly(p-phenylene 

vinylene) might be used as organic conductive element in such all-organic composites. In 

this work, the possibility of all-organic composites as candidate high-k material for 

embedded capacitor applications has been investigated. 

PANI and its derivatives are regarded as one of the most promising conducting 

polymers because of its high polymerization yield, controllable electrical conductivity, 
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good environmental stability and relatively low cost.121,122,123,124 ,125,126 PANI/polymer 

composites have attracted considerable attention because low concentration of PANI can 

make the material achieve conductive or semiconductive capabilities which enable the 

development of thin, light, flexible and inexpensive organic electronics applied in 

display, sensor, and solar technologies.27,51, 127 , 128 , 129 , 130 , 131  For instance, PANI/ 

polyurethane (PU) composite containing 8.4 wt.% of PANI was reported with a 

conductivity of 2.17 × 10-10 S cm-1.127 The electrical conductivity of PANI/PU-epoxy 

composites with 1 wt. % to 5 wt. % of PANI was in the range of 10-9 to 10-3 S cm-1.128 

PANI nanorod/liquid crystal epoxy composites showed electrical conductivity varied 

from 10-5 to 10-3 S cm-1.129 The conductivities for PANI/epoxy-amine system was in the 

range of 10-12 to 10-6 S cm-1, which was lower due to the deprotonation effect of amine.130 

Oligomeric PANI/epoxy resin composites cured with amine could be doped with protonic 

acids to achieve the electrical conductivity in the range of 10-5 to 10-3 S cm-1.131  

Besides the electrical behaviors, dielectric properties of PANI and its composites 

have been of interest as well. PANI was reported to possess a k value larger than 104 in a 

partially crystalline system for which an inhomogeneous disorder model was proposed. 

High k values ranging from 200 to 1000 were reported for a PANI/polyvinyl alcohol 

composite, where the dispersed PANI particles of submicron size were suspended in the 

insulating polyvinyl alcohol matrix.124 A PANI/polyurethane composite with a k value 

around 1120 at 1 kHz and 433 at 10 kHz was also reported.125 But no data about 

dielectric loss of this system was found. For electrocactive applications, 23 vol% of 

insulating polymer coated PANI particulates in a poly(vinylidene fluoride-

trifluoroethylene-chlorotrifluoroethylene) terpolymer matrix can reach a k value more 
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than 2000 and a dielectric loss tangent around 1.75 at 100 Hz.51 These results suggest the 

possibility of using conducting polymer as conductive elements instead of the metal 

fillers to achieve ultra-high dielectric constant and the worthwhileness of further study. 

Epoxies have been of particular interests for embedded capacitor applications 

because of its compatibility with PCB manufacturing process. However, there is limited 

information concerning PANI composites prepared within thermoset polymer matrix. 

Therefore, it is worthwhile to explore the feasibility of incorporate high-loading level 

PANI into the epoxy matrix and the properties of PANI/epoxy composites. In this study, 

camphorsulfonic acid (CSA) was chosen as a protonating agent because the PANI 

protonated with CSA has relatively high crystallinity, high electrical conductivity and 

high miscibility with another polymer matrix. 132,133 Additionally, in-situ polymerization 

of protonated aniline in the epoxy matrix was employed to prepare PANI/epoxy 

composites. Compared with traditional simple solution blending method by mixing the 

doped PANI and epoxy resin,130,133,134,135 the in-situ polymerization method rendered the 

possibility of better miscibility between PANI and epoxy resins and the higher PANI 

loading.136,137,138 

The influence of PANI loading levels and the hardener type on dielectric 

properties of PANI/epoxy composites was discussed. Frequency dependency of dielectric 

properties for PANI/epoxy composites was also presented in the range of 10 kHz to 10 

MHz. Scanning electron microscopy (SEM) was used to characterize the morphology of 

PANI/epoxy composites. The correlation of the microstructure with the corresponding 

dielectric properties was discussed.  
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7.2 Experimental 

7.2.1 Materials 

EPON 828 (Shell Chemicals Co.) was used as a matrix resin. Hexahydro-4-

methylphthalic anhydride (HMPA, Lindau Chemical Co.), Ancamine 2167 (Air Product) 

and Anchor 1040 (Air Product) were selected as anhydride, amine and amine complex 

types hardeners, respectively. 1-methylimidazole (Aldrich Chemical Co.) was employed 

as a catalyst.  Polyaniline protonated with p-toluene sulfonic acid (PANI_PTSA complex), 

aniline, camphor sulfonic acid (CSA) and ammonium persulfate (APS) were purchased 

from Aldrich Chemical Co. 

7.2.2 Preparation of PANI/Epoxy Composites by Simple Solution Mixing Method 

Firstly, polyaniline protonated with p-toluene sulfonic acid (PANI_PTSA 

complex)/epoxy composites were prepared by by simple solution mixing method. 

PANI_PTSA was first dissolved in formic acid using ultrasonication. Then epoxy resin 

was added and the blends treated by ultrasonication again. 

7.2.3 Preparation of PANI/Epoxy Composites by In-situ Polymerization Method 

Preparation of PANI/epoxy composites by in-situ polymerization method was 

carried out in two steps as displayed in Figure 7-1, i. e. syntheses of aniline salt monomer 

Ani-CSA and PANI/epoxy composites via in-situ polymerization of Ani-CSA in the 

epoxy matrix. 
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7.2.3.1 Preparation of Aniline Salt Monomer 

4.6565 g (0.05 mol) of aniline and 11.515 g (0.05 mol) of CSA were dissolved in 

a mixture of methanol and water by stirring. The aniline salt monomer Ani-CSA was 

obtained as a tan-white solid by recrystallization. 

7.2.3.2 An In-situ Polymerization of Aniline Salt within Epoxy Matrix 

1.537 g of Ani-CSA in 10 ml of chloroform was mixed with 3.5 g of epoxy in 5 

ml of chloroform. An aqueous solution of 1.426 g of APS was added into the mixture 

dropwise with stirring over 1.5 hr. The resulting mixture was stirred for another 5 hr in an 

ice bath, and then washed with distilled water until the system neutralized to remove the 

excess amount of CSA and APS. A dark green viscous 20 wt. % PANI/epoxy composite 

was obtained after storing in a vacuum oven overnight. The 8 wt. %, 15 wt. % and 25 wt. 

% PANI/epoxy composites were prepared in the same manner.  

After the addition of a hardener (if not specified, HMPA by default), the 

composites were cured at 100 oC for 0.5 hr and at 125 oC for 1 hr.  
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Figure 7-1. Syntheses of aniline salt monomer Ani-CSA and PANI/epoxy composites via an in-

situ polymerization of Ani-CSA in the epoxy matrix. 
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7.2.4 Instrumental Analysis 

Fourier Transform Infrared (FTIR) and Ultraviolet-visible (UV-Vis) spectra were 

recorded on a Nicolet Magna-IR 560 spectrometer and a Beckman DU 520 General 

purpose UV-Vis spectrophotometer, respectively.  

The 1HNMR Spectrum of aniline salt Ani-CSA monomer was obtained on a 300 

MHz Varian Mercury Vx 300 NMR spectrometers.  

The glass transition temperatures (Tgs) of materials were determined by a 

modulated differential scanning calorimeter (DSC, TA Instruments model 2920) at a 

heating rate of 5 °C/min under a nitrogen atmosphere.  

Thermogravimetric analysis was conducted on a TGA (TA Instruments model 

2050) at a heating rate of 5 °C/min under a nitrogen atmosphere.  

Scanning electron microscopy (SEM) measurements were carried out on a JEOL 

1530 equipped with a thermally assisted field emission gun operated at 10 KeV.  

Parallel plate capacitors of the formulated high k composite materials were 

fabricated on a copper clad FR-4 board and copper top electrodes were coated by DC 

sputtering. The capacitance and dissipation factor of the capacitor were then measured 

with a HP 4263A LCR meter. The thickness of the dielectric films were in the range of 

55 µm to 88 µm measured with a profilometer (Alpha-Step Co.) and used to calculate the 

dielectric constant of the sample. Electrical measurements were conducted at room 

temperature by the four-probe technique using a KEITHLEY 2000 Multimeter. 
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7.3 Results and Discussion 

7.3.1 PANI/Epoxy Composites Prepared by Simple Solution Mixing Method  

Initially, PANI-PTSA/epoxy composites were prepared by simple solution mixing 

method in cosolvant of PANI-PTSA and epoxy. Although macroscopic phase separation 

upon curing of the resin didn’t occur and the film prepared by spin-coating remained 

transparent upon thermal curing, the agglomeration of PANI salt in the epoxy matrix 

could be oberseved in the SEM image as shown in Table 7-3. Figure 7-2 displays the 

dielectric properties of PANI-PTSA/epoxy composites with different PANI contents at 10 

kHz. The dielectric constants of the blends remain at a low level due to the low 

concentrations of PANI-PTSA (less than 10 wt. %). Because of the limited solubility of 

the PANI-PTSA, more solvents are required to incorporate higher loading level of PANI-

PTSA and this may cause more brittleness and poorer mechanical properties of the 

samples. As such, higher concentration of PANI-PTSA is difficult to achieve using this 

approach. An alternative method to prepare PANI/epoxy composites by an in-situ 

polymerization of aniline in the presence of epoxy resin was tried.  
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Figure 7-2. Dielectric properties of PANI-PTSA/epoxy composites with different PANI contents 

@ 10 kHz. 

 

7.3.2 PANI/Epoxy Composites Prepared by an In-situ Polymerization Method  

Preparation of PANI/epoxy composites by an in-situ polymerization method was 

carried out in two steps. Firstly, aniline salt monomer Ani-CSA was synthesized by 

aniline with protonating agent CSA, followed by the preparation of PANI/epoxy 

composites via an in-situ polymerization of Ani-CSA in the epoxy matrix. 

7.3.2.1 Characterization of Aniline Salt Monomer 

Figure 7-3 (a) shows FTIR spectrum of the Ani-CSA monomer. Aromatic C=C 

ring stretching observed at 1600 cm-1 and C-N stretching of benzenoid amine at 1509 cm-

1 are consistent with the presence of the aniline ring. A peak at 1745 cm-1 is assigned to 

the C=O stretch of the carbonyl group in the camphor moiety. Peaks at 2640 cm-1 (N-H 

stretch), 1302 cm-1and 1180 cm-1 (S=O symmetric stretch) are also consistent with the 
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presence of the secondary sulfonamide in the Ani-CSA monomer.  These results confirm 

that CSA has been successfully attached to aniline. 
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Figure 7-3. FT-IR spectra of (a) Ani-CSA monomer and (b) in-situ formed PANI/epoxy 

composite. 

 

Figure 7-4 presents the 1H NMR spectrum of the Ani-CSA in CDCl3 which is 

found to be fully consistent with the proposed structure. The aryl proton is observed at 

7.6-7.2 ppm, as expected for the presence of the aniline moiety. The integration of other 

hydrogen is also consistent with the structure as listed in Table 7-1. It is another strong 

evidence for the successful preparation of the Ani-CSA monomer.   
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Figure 7-4. 1H NMR spectrum of Ani-CSA monomer in CDCl3. 

 
Table 7-1. 1H NMR data for Ani-CSA monomer in CDCl3. 

Hydrogen Chemical Shift 
(ppm) 

Peak 
Multiplicity Integration 

Aryl 7.6-7.2 m 5H 
H10 3.2, 2.65 dd 2H 

H5, H6 2.35, 1.5 Overlapping m 4H 
H4 1.9 m 1H 
H3 1.8 dd 2H 

Geminal CH3 0.87, 0.68 s 6H 
s = singlet, dd = doublet of doublets, m = multiplet 

 

7.3.2.2 Characterization of In-situ Formed PANI/epoxy composites 

The FT-IR result of the in-situ formed PANI/epoxy composite is displayed in Fig. 

1(b). The peak at 2640 cm-1 attributed to N-H stretching is not visible in the spectra, 
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giving the evidence of the in-situ polymerization of PANI within the epoxy matrix. Peaks 

at 1750 cm-1 assigned to the C=O stretching of the carbonyl group in the camphor moiety 

and at 1180/1300 cm-1 due to S=O symmetric stretching can be observed, indicating that 

the CSA is still attached to the PANI within the epoxy matrix.  

The UV-Vis spectrum of the green solution of an in-situ formed PANI/epoxy 

composite in dimethylsulfoxide (DMSO) is shown in Figure 7-5. An intense peak at ca. 

330 nm is attributed to the transition from π band to π* band, while the shoulder at ca. 

435 nm is the typical transition between polaron band and π* band which is generally 

observed for emeraldine salts. The broad absorption band at ca. 900 nm is assigned to the 

combination of transition from π band to polaron band and “free-carrier tail” which is 

resulted from the formation of delocalized polarons. The results indicate that the PANI 

remains its doped state and adopts a mixture of compact and expanded coil-like 

conformations in the composites.139                
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Figure 7-5. UV-Vis spectrum of an in-situ formed PANI/epoxy in DMSO. 
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The DSC thermograms of cured neat epoxy and in-situ formed PANI/epoxy 

composites with different PANI contents are shown in Figure 7-6. The Tg of the neat 

PANI is difficult to be detected by DSC. As compared to the neat epoxy, a slight decrease 

of Tg is observed for various in-situ PANI/epoxy composites with increasing PANI 

content, indicating that no obvious phase separation occurred in the composites.  
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Figure 7-6. DSC curves of neat epoxy and in-situ formed PANI/epoxy composites with different 

PANI contents. 

 

The thermal stability behavior of neat PANI and an in-situ formed PANI/epoxy 

with different PANI contents is shown in Figure 7-7. The TGA diagram of the neat PANI 

shows a certain weight loss below 200 oC, which is attributed to the loss of water and 

oligomers. The weight loss between 220 oC and 320 oC may correspond to the loss of the 
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bound CSA. This can explain the weight loss in the same temperature range for all the in-

situ formed PANI/epoxy composites. 
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Figure 7-7. TGA diagrams of in-situ formed PANI/epoxy composites with different PANI 

contents and neat PANI. 

 

7.3.3 Morphological Study of In-situ Formed PANI/epoxy Composites 

Morphologies of the composites were observed by SEM. Figure 7-8 displays 

SEM micrographs of in-situ formed PANI/epoxy composites with different PANI 

contents. In contrast to the composites prepared by simple mixing in which the 

agglomeration of PANI occurred, no obvious phase separation is observed in the in-situ 

formed PANI/epoxy composites and this observation is consistent with the DSC results. 

The fracture surface of the PANI/epoxy composite with 8 wt. % PANI resembles that of a 
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typical neat epoxy fracture surface with a few different structures as conductive salt-rich 

regions.123 The existence of the conductive salt clusters is more obvious in composites 

with higher concentrations of PANI. The morphological study suggested that the in-situ 

polymerization method to prepare the PANI/epoxy composites is useful to achieve good 

dispersion and high miscibility of PANI with the epoxy matrix. 

 

 
Figure 7-8. SEM micrographs of in-situ PANI/epoxy composites with (a) 8 wt. %, (b) 15 wt. %, 

(c) 20 wt. %, and (d) 25 wt. % PANI. 
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7.3.4 Dielectric and Electrical Property Study of In-situ Formed PANI/Epoxy 

Composites 

Dielectric and electrical properties of in-situ formed PANI/epoxy composites with 

different PANI contents were studied on samples with parallel plate capacitor 

configuration. The electrical conductivity of the composite containing 25 wt. % PANI 

was 5×10-6 S cm-1. While the resistance of the other composites with lower contents of 

PANI was beyond the range of the equipment (over 107 Ω), demonstrating conductivity 

values below 10-7 S cm-1. Compared to the values ranging from 10-10 to 10-3 S cm-1 

reported for other PANI/polymer composites, the conductivity values of these in-situ 

formed PANI/epoxy composites are reasonable as the conductive properties of these 

composites vary considerably resulting from the differences in PANI loading, doping 

state and level, molecular organization of the conductive clusters with respect to the 

polymer matrix and so on. 

The values of k and dielectric loss tangent, tanδ, at 10 kHz are listed in Table 7-2. 

The k values increase significantly with the increase of PANI contents in the composites. 

As revealed from the data, the k value increases about 300-fold from ~10 with 8 wt. % 

PANI to ~2980 with 25 wt. % PANI. The enhancement of dielectric constant of the 

composites by PANI is related to interfaical polarization as well as the easy displacement 

of the electrons under electric fields through the highly highly conjugated structure which 

leads to a high dielectric response. While another polarization mechanism, electrode 

polarization arising from the accumulation of free charges at the blend/electrode interface, 

might also contribute to the high dielectric constant of the composite. An increase in 

composite conductance due to the incorporation of conductive polymer may enhance the 
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electrode polarization effect. The elimination of PANI agglomerates and the formation of 

a fine PANI network surrounded by epoxy matrix lead to enhanced dielectric properties 

of the composites. The relatively high dielectric loss tangent is due to the motion of free 

charge carriers and interfacial polarization relaxation attributed to the conductive salt 

clusters within the composites. 

 

Table 7-2. Dielectric properties of in-situ formed PANI/epoxy composites with different PANI 

contents @ 10 kHz. 

PANI Content 8 wt.% 15 wt.% 20 wt. % 25 wt. % 

k              10 192 916 2980 

tanδ 0.08 0.48 0.55 0.48 

 

Morphological difference is obvious between the PANI/epoxy composites 

prepared by a simple solution mixing method and an in-situ polymerization method as 

shown in Table 7-3. Using an in-situ polymerization method, agglomerates surrounded 

by insulating matrix were eliminated. Homogeneous phase structure, instead of 

inhomogeous phase segregated with PANI particulates, was achieved. And the formation 

of a fine network leads to better miscibility of PANI with epoxy matrix. Therefore, PANI 

content introduced into epoxy matrix was able to be effectively increased. Together with 

the decreased size of PANI particulates and thereby increased interfacial polarization 

effect, significantly enhanced k was observed in the PANI/epoxy composites prepared by 

an in-situ polymerization method. However, aggregation of PANI is still inevitable, 

which explained its higher dielectric loss tangent with respect to copolymer matrix. 
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Table 7-3. Comparison of the morphology of PANI/epoxy composites prepared by simple 

solution mixing method and in-situ polymerization method. 

 Simple solution mixing method In-situ polymerization method 

1 µm 

  

200 
nm 

 

Figure 7-9 depicts the effect of the ac frequency on the values of k and tanδ of in-

situ formed PANI/epoxy composites with different PANI contents. It shows that the k 

values decrease with the AC frequency for all the composites, which is expected 

phenomenon as reported in other PANI/polymer composites.124,125,127 The results indicate 

that more PANI dipoles and charge carriers within the composites fail to keep up with the 

electric field of the increasing frequency. Another effect might contribute to this 

relaxation process is that the ac-conductivity exhibited at higher frequency will increase 

with frequency and thus decrease charge storing capability.128 The composite containing 



 160

the largest amount of PANI showed the strongest frequency dependency of dielectric 

properties, which might be due to its highest conductivity. In Figure 7-9 (b) which shows 

the frequency dependence of dielectric loss tangent in the experimental frequency range, 

the peaks are possibly related to interfacial polarization relaxation effects, which 

correspond to the relaxation of k value as shown in Figure 7-9 (a). 
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Figure 7-9. Frequency dependence of (a) k and (b) tanδ of in-situ formed PANI/epoxy composites 

with different PANI contents. 
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The hardener type was also found as a critical parameter for the dielectric 

properties of PANI/epoxy composites. Table 7-4 lists the dielectric properties of in-situ 

formed PANI/epoxy composites with 15 wt. % PANI cured with different types of 

hardeners. The composites cured with alkaline type hardener (amine) showed a low 

dielectric constant, and this may be due to the dedoping effect of PANI salt by amine, 

which can react with the dopant of PANI and thus leads to the deprotonation of the 

conductive salt. The color change from green to blue by the addition of alkaline hardener 

was observed for the composites throughout the mixing procedure, suggesting that a 

conversion from a conductive PANI-CSA emeraldine salt to a nonconductive PANI 

emeraldine base occurred due to the basic character of the alkaline hardener. While using 

acidic type hardeners such as anhydride and amine complex, which retain the doping 

state of the PANI salt, led to a much higher dielectric constant. The results are consistent 

with the finding that the acidic curing agents support the conductive character of PANI, 

while alkaline hardeners conflict this property.140 

 

Table 7-4. Dielectric properties of 15 wt. % in-situ formed PANI/epoxy composites cured with 

various hardeners @ 10 kHz. 

Hardener Anhydride Amine Amine Complex 

k 192 8.1 200 

tanδ 0.48 0.03 0.39 
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7.4 Conclusions 

The in-situ polymerization of an aniline salt within epoxy matrices was successful 

to prepare PANI/epoxy composites with various PANI contents. A PANI/epoxy 

composite prepared in this fashion exhibited a high dielectric constant close to 3000, a 

dielectric loss tangent less than 0.5 at 10 kHz and room temperature. The morphological 

study by SEM suggested that the in-situ polymerization method to prepare the 

PANI/epoxy composites was useful to achieve good dispersion and high compatibility of 

PANI with the epoxy matrix. The elimination of agglomerates surrounded by insulating 

matrix and the formation of a fine network led to enhanced dielectric properties of the 

composites. The hardener type was also found as a critical parameter for the dielectric 

properties of PANI/epoxy composites. Accordingly, the dielectric properties of the 

composites could be tailored by the doping level and the appropriate hardener selection. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTED DIRECTIONS FOR FUTURE 

WORK  

 

8.1 Conclusions 

Materials design, development and processing of high dielectric constant 

nancomposites for embedded capacitor applications are challenging for realization of the 

embedded passive technology. This work focuses on the study on the design, 

development and property evaluation of conductive filler/polymer nanocomposites as 

candidate material for this applicaiton. Metal nanoparticles with controlled parameters 

including size, size distribution, aggregation and surface properties were synthesized, and 

the impact of varied parameters on the dielectric properties of the high-k nanocomposites 

incorporated with these metal nanoparticles were investigated. The dielectric behavior of 

the nanocomposites was studied systematically over a range of frequencies to determine 

the dependence of dielectric constant, dielectric loss tangent and dielectric strength on 

these parameters.  

Firstly, the Ag nanoparticles were in-situ formed in a polymer matrix and then 

incorporated into high-k composite materials. The size and size distribution of 

nanoparticles were controlled by the appropriate selection of capping agents and the ratio 

of capping agent to Ag precursor. The increased dielectric constant and decreased 

dissipation factor were observed by the incorporation of Ag nanocomposites. The 

increased dielectric constant is due to the piling of charges at the extended interface 
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which normally results in increased conductivity and higher loss. However, the reduced 

dielectric loss was observed in the high-k composite materials containing Ag 

nanoparticles, presumably in virtue of Coulomb blockade effect, the well-known 

quantum effect of nanoparticles, which reduces the electron tunneling. As such, it reduces 

the conduction loss part from the total dielectric loss of the high-k composite systems. 

The size, size distribution and a loading level of Ag nanoparticles in the nanocomposite 

have significant influence on the dielectric properties of the composite system and supply 

different effects at different frequency range as well. 

In addition, an in-situ photochemical method was explored to prepare metal 

nanoparticle-polymer composite as high-k polymer matrix in which metal nanoparticles 

were generated by photochemical reduction of a metallic precursor within the polymer 

matrix. The high-k polymer matrix can be used to host various fillers such as conductive 

metal or ferroelectric ceramic fillers to achieve both high k and relatively low dielectric 

loss tangent. For example, the as-prepared Ag-epoxy nanocomposite was utilized as high-

k polymer matrix to host fillers for preparation of Al/Ag-epoxy composites as embedded 

capacitor candidate materials. The dielectric constant values of the Al/Ag-epoxy 

composites increased remarkably as compared with those of Al/epoxy composite at the 

same Al filler loading by introduction of Ag elements in the polymer matrix. Moreover, 

the dielectric loss of the Al/Ag-epoxy composites was below 0.1, which meets the 

requirement for embedded decoupling capacitors. The results suggested that the metal-

polymer nanocomposites via an in-situ photochemical method can be employed as a 

high-k polymer matrix to enhance the dielectric constant while maintaining the low 

dielectric loss of the high-k composites. The detailed dielectric property measurements 
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revealed that the concentration of silver nanoparticles in the polymer matrix play a 

significant role in determining the electrical conduction and breakdown behaviors as well 

as the frequency dependence of the dielectric composites. At low Ag concentration, the 

dielectric behaviors of Al/Ag-epoxy composites are mainly determined by interfacial 

polarization, while conduction and electron transport of Ag dominate the Al/Ag-epoxy 

composites at higher Ag concentration.  

Surface modification of nanoparticles was employed with aims to change the 

surface chemistry and electrical state of nanoparticles and thereby tailor the dielectric and 

electrical properties of corresponding polymer nanocomposites. The surface coating layer 

coated on the nanoparticles via surface modification improves the performance of the 

metal nanoparticle/polymer composites by decreasing the dielectric loss, enhancing the 

dielectric breakdown strength. These performance improvements can be attributed to the 

interparticle electrical barrier layer formed via surface modification of nanoparticles 

which prevents the metal cores from direct contact, and/or the altered charge density and 

distribution around the interface of nanoparticles and polymer matrix. Surface 

modification of nanoparticles is believed to be an effective approach to adjust the 

electrical features at the nanoparticle surface and the interface between the nanoparticle 

and the polymer matrix, and thus tailor the corresponding properties of nanocomposites. 

It is also promising to achieve balanced dielectric properties of the nanocomposite by 

optimizing the degree of surface modification, the thickness and density of the coating 

layer on the nanoparticle surface. The experiments also provided information about 

different surface modification conditions such as surface modification agent type and 
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concentration, solvent media etc., which play complex roles in the quality and degree of 

the surface modification and allow for effective manipulation of the dielectric properties. 

Apart from the size, size distribution and surface property effect, the effect of 

connectivity of the metal nanoparticles on the dielectric properties of the nanocomposites 

was investigated as well. The synthesis of the Ag naonparticles with morphology of 

interest was achieved by adjusting the pH of the reaction, which was found to play an 

important role in assembling the nanoparticles. Using this approach, NaOH of different 

concentrations was applied to prepare Ag nanoparticles with varied degree of 

aggregation. The composites based on the as-synthesized Ag nanoparticles were prepared 

and the dielectric properties of these composites were investigated. The Ag/epoxy 

nanocomposites based on Ag nanoparticles capped with organic moiety showed very low 

dielectric loss tangent (<0.06). Assembly of the nanoparticles impacts the dielectric 

performance of the nanocomposite greatly in terms of the interfacial polarization and 

conducting properties. There is not much difference in the k values of the nanocomposite 

containing Ag nanoparticles with different degree of aggregation, while the 

nanocomposite containing Ag nanoparticle with more discrete structure rendered much 

lower dielectric loss tangent compared to the nanocomposites with Ag nanoparticles of 

more aggregated structure. 

In addition to the metal conductive filler, the composites fabricated by dispersing 

an organic filler material possessing very high dielectric constant in a polymer matrix 

were found to exhibit high-k as well. The possibility of all-organic composites as 

candidate high-k material for embedded capacitor was investigated. The in-situ 

polymerization of an aniline salt within epoxy matrices was successful to prepare 
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PANI/epoxy composites with various PANI contents. A PANI/epoxy composite prepared 

in this fashion exhibited a high dielectric constant close to 3000, a dielectric loss tangent 

less than 0.5 at 10 kHz and at room temperature. The morphological study by SEM 

suggested that the in-situ polymerization method to prepare the PANI/epoxy composites 

was useful to achieve good dispersion and high compatibility of PANI with the epoxy 

matrix. The elimination of agglomerates surrounded by insulating matrix and the 

formation of a fine network led to enhanced dielectric properties of the composites. The 

hardener type was also found as a critical parameter for the dielectric properties of 

PANI/epoxy composites. Accordingly, the dielectric properties of the composites could 

be tailored by the doping level and the appropriate hardener selection. 

In summary, the research explored various approaches to reduce the dielectric loss 

sufficiently while maintain the high k of the nanocomposites, and correlations were 

sought between the metal nanoparticles parameters including size, size distribution, 

aggregate extent, surface properties and the dielectric properties of nanocomposites with 

these metal nanoparticles incorporated. Study results suggest that the size and size 

distribution of metal nanoparticles in the nanocomposite have significant influence on the 

dielectric properties of the conductive filler/polymer composite systems and supply 

different effects at different frequency range as well. Smaller size and narrower size 

distribution of Ag nanoparticles result in lower dielectric loss tangent. Furthermore, Ag 

nanoparticles with more discrete morphology render much lower dielectric loss tangent 

compared to the nanocomposites with Ag nanoparticles of more aggregated morphology. 
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8.2 Suggested Directions for Future Work  

This research work mostly focuses on the experimental trials to seek the 

relationship between the parameters of metal nanoparticles including size, size 

distribution, connectivity, surface properties and the dielectric properties of the 

nanocomposites with these metal nanoparticles incorporated. There are several topics of 

future work which may extend to improve the performance of high-k nanocomposites for 

embedded capacitor applications. To address the problems of the conductive 

filler/polymer nanocomposties as feasible candidate high-k materials, one may artificially 

passivate the metal nanoparticles to form core-shell structured nanofillers. With tailored 

thicknesses and characteristics of the shell layer, the dielectric constant, dielectric loss, 

and other electrical properties of the conductive filler/polymer nanocomposties can be 

adjusted. 

8.2.1 Modeling of Structure and Dielectric Properties of High-k Materials 

The dielectric characteristics of a composite material can be controlled by 

adjusting the material parameters of the individual phases. It is suggested to set up a 

numerical model that can precisely predict the dielectric properties of the high-k polymer 

nanocomposites and relate to the detailed structure and material parameters of the 

nanofiller including the geometry of particles, size of filler core and thickness of coating 

layer, permittivity and conductivity values of the individual phases, including core, shell, 

and polymer matrix. The moleding methodology will be of significance to serve to 

support the design, processing of the high-k nanocomposites in: (1) predicting the critical 

properties of the high-k nanocomposites such as dielectric constant, dielectric loss etc.; (2) 
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indentifying and optimizing the parameters of nanofillers to enhance the dielectric 

properties of composites.   

For a system of coated, spherical filler particles dispersed in a matrix, there are 

several models can be referred to study the bulk permittivity of a composite material. 

First one is the dipole model which assumes that the particles are sufficiently well 

separated that the electric potential in the neighbourhood of any one particle is not 

influenced by the presence of the others.141 Another one is the multipole model which 

accounts for perturbation of the electric potential in the vicinity of a particle due to its 

neighbours. This leads to greater accuracy in the result by taking interactions between the 

filler particles into consideration. Bowler reported a theoreteical investigation on how 

factors such as particle shape, orientation with respect to the applied electric field, 

thickness of coating and permittivity value of the individual phases influences the bulk 

permittivity of the composite material by the multipole model in which the filler particles 

are replaced mathematically by electric multipole sources located at their centers.142,143 

Additionally, interaction zones, an interfacial layer of several tens nm surrounded 

the nanoparticles which play a significant role in properties of nanocomposites, should be 

taken into consideration.8,117 For instance, Li et al. constructed a dielectric nanocomposite 

as a three-phase material, consisting of a polymer matrix, an interfacial phase of fixed 

thickness, and nanoparticle fillers.  

8.2.2 Core-shell Structure via Layer-by-Layer (LbL) Assembly 

A multi-layer structure can be achieved by self-assembled polymer layers using 

layer-by-layer (LbL) colloid templating strategy.70, 144  Electrostatic attraction between 

oppositely charged molecules can be a good driving force for multi-layer buildup. For 
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instance, polyanion-polycation LbL deposition process using the cyclic alternating 

adsorption of sodium salt of poly(styrene sulfonate) and poly(allyamine hydrochloride) is 

typical as schematically represented in Figure 8-1.145 

 

Figure 8-1. Schematic of the LbL film deposition process using two typical polyions, the sodium 

salt of poly(styrene sulfonate) and poly(allyamine hydrochloride).145 

 

LbL assembly possesses the advantages of simplicity, universality, thickness 

control in nanoscale, low cost and being environmentally friendly. Uniform multilayers 

can be formed by this approach on a number of 3D objects due to the conformal nature of 

the polyelectrolyte adsorption process besides the 2D surfaces. A frequently utilized 

method to create thin film coatings on colloidal particles is via LbL assembly of a 

polyelectrolyte preformed on an opposite surface charge. The buildup of polyelectrolyte 

multilayers on colloidal surfaces ranging in size from several micrometers down to 
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nanometers has been demonstrated. 146,147,148 This approach provides a simple route to 

creating core-shell structures as schematically shown in Figure 8-2.  

                             
Figure 8-2. Schematic presentation of core-shell nanoparticle system formed via LbL assembly. 

 
The chemical and physical properties like film thickness, degree of 

interpenetration between layers of PEMs are particularly sensitive to the pH and the 

concentration of the supporing poyelectrolyte solution during LbL multilayer 

assembly. 149 , 150 , 151  Using this approach, the thickness of coating layer could be 

manipulated and optimized to tailor the dielectric properties of the high-k 

nanocomposites according to desired core-shell structure of fillers suggested by modeling 

work. 

On the other hand, composite films can also be constructed by assembling multi-

layer films of prefabricated nanoparticles and other inorganic mateials with 

polyelectrolytes using LbL deposition. Several groups synthesized dendrimer-, 152 , 153 

citrate,154,155 or polyelectrolyte-stablized156 gold/platiunm nanoparticles and then formed 

colloid/polyelectrolyte films by alternating adsorption of these propertly charged and 

stabilized colloids and polymeric electrolytes. Furthermore, with in-situ synthesis 

methodology, both the concentration and size of the annoparticles would be possible to 

be varied by manipulating the multi-layer processing conditions. 157 , 158  Smaller 

nanoparticles could be obtained at higher pHs during multi-layer assembly process and 

lower concentration of bould silver cations. Cyclic repetition of the ion exchange and 

Polyanion 
Polycation 

LbL assembly 
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reduction of silver cations to zerovalent Ag nanoparticles can increase metal 

concentration in the film.157 These approaches may provide more versatility of the 

coating layer characteristics and thereby find an efficient way to enhance the dielectric 

performance of the high-k nanocomposites by incorporation of nanofiller with 

appropriate structure and property. 
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