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SUMMARY 

 

Existing therapies for the treatment of glioma remain problematic while the 

incidence of malignant gliomas is growing, leading to an increasing demand for more 

effective treatment options.  Currently, patients diagnosed with malignant brain tumors 

have a very poor prognosis with a median survival rate of less than one year and an 

overall 5-year survival rate as low as 34.1%.  Brain tumors continue to be a challenge to 

treat because they are inherently diffuse, highly invasive, and non-localized.  For these 

reasons, it is imperative that treatments for brain and nervous system cancers are 

improved. 

Liposomal nanocarriers offer much promise in the delivery of chemotherapeutic 

drugs to solid tumors because they may be specifically targeted to tumors thereby 

shielding healthy organs from the toxic side effects of incorporated chemotherapeutics.  

Passive targeting of liposomes is achieved through the inclusion of PEG to evade the 

RES and prolong circulation in the bloodstream.  Since tumor vasculature exhibits 

increased permeability, prolonged circulation results in passive accumulation of 

liposomes to tumor.  Active targeting to tumor is accomplished through the inclusion of 

agents targeted to over-expressed receptors on tumor cells.  In vitro studies with a wide 

variety of targeting agents have demonstrated the potential for increased cytotoxicity of 

actively targeted liposomes due to specific uptake by tumor cells.  In vivo, however, 

actively targeted liposomal nanocarriers have failed to meet the expectations established 

by the promising outcomes of in vitro studies.  This is attributed to the fact that the 

xiv 



 

inclusion of targeting agents results in accelerated clearance from the bloodstream and 

reductions in passive targeting to tumor thereby offsetting the benefits of active targeting.   

The central focus of this thesis was to engineer a multi-functional nanoscale drug 

delivery system which would enable active targeting without compromising RES evasion 

and passive accumulation to tumor.  It was shown that the use of folate targeting ligands 

in sterically stabilized liposomal formulations significantly reduced blood circulation 

times.  To address this issue and prevent RES recognition of folate on targeted liposomal 

formulations, a cysteine cleavable phospholipid-PEG conjugate was utilized to “mask” 

adjacent targeting ligands while liposomes were in circulation.  This system enabled 

controlled ligand presentation using an exogenous trigger.  Once passive accumulation at 

the tumor was achieved, cysteine was administered to detach PEG chains, expose folate, 

and promote uptake by tumor cells.  In vivo studies demonstrated that cleavable DSPE-

PEG5000 was capable of concealing folate on liposomes to maintain prolonged circulation 

times.  In vitro uptake and cytotoxicity studies verified the ability to conceal and expose 

folate on demand, permitting receptor mediated targeting and delivery of large drug 

payloads into the nucleus of target cells. Finally, studies conducted to analyze drug 

uptake by tumor cells in vivo confirmed that delivery was enhanced when tumor-

inoculated animals received targeted liposomes containing cleavable PEG chains 

followed by a cysteine infusion to expose folate. These results indicate that detachable 

PEG chains can be used in targeted liposomal formulations to enhance efficacy of 

chemotherapy in the treatment of glioma. 
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CHAPTER 1.  INTRODUCTION 

1.1.  STATEMENT OF PROBLEM 

Current approaches for the treatment of glioma are limited in their effectiveness 

because malignant brain tumors are characteristically diffuse, highly invasive, and non-

localized [1].  Upon diagnosis of malignant gliomas, surgical removal of the accessible 

tumor follows; however, due to the invasive nature of malignant gliomas, complete 

surgical resection is a rarity.  Therefore, conventional therapies include radiation therapy 

and chemotherapy after surgical resection.  Treatment regimens including radiation and 

systemic chemotherapy have been minimally effective [2, 3].  The success of systemic 

chemotherapy for intracranial tumors is critically dependent on the access that these 

agents have to tumors which is limited even with the so-called leaky vasculature across 

the blood-brain barrier (BBB).  Indeed BBB associated limitations restrict therapies to 

low molecular weight, uncharged, and lipophilic agents.  Use of implantable 

biodegradable drug depots is one strategy to localize delivery of chemotherapeutics and is 

currently used in clinical practice [4].  Gliadel®, an FDA approved BCNU-loaded 

polyanhydride polymer wafer, has resulted in improved survival rates [5].  However, the 

drug diffused from a central core usually cannot reach the tumor periphery where the 

most aggressive cancer cells persist, and median survival has only shown to be extended 

about 2.2-3.4 months for patients with newly-diagnosed high grade glioma [5, 6] and a 

mere 2 months for patients with recurrent disease [5, 7].  Conversely, drug delivery via 

systemic intravascular administration utilizes the tumor’s own blood supply for transport 

allowing for drug delivery throughout the tumor.  Systemic delivery of long circulating 

liposomal nanocarriers has exhibited increased chemotherapeutic drug delivery to solid 
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tumors [8] due to the combination of prolonged circulation in blood and preferential 

accumulation in solid tumors by passive convective transport through leaky endothelium 

because of the discontinuity in the abnormal tumor vascular—the so called enhanced 

permeability and retention (EPR) phenomenon [9].  

Nanocarrier mediated therapy of gliomas shows promise because multi-functional 

nanocarriers can theoretically be designed not only to carry a range of chemotherapeutic 

or anti-invasive agents, but also to both passively and actively target intracranial tumors 

such as gliomas.  ‘Passive’ targeting results from prolonged circulation of nanocarriers 

allowing for accumulation at sites with abnormal, leaky vasculature.  In recent studies on 

a rat brain glioma, effective ‘passive’ tumor dosing was achieved by i.v. injections of 

drug-loaded liposomal nanocarriers [10].  It has been demonstrated in patients with 

glioblastomas and metastatic brain tumors that long circulating liposomal nanocarriers 

selectively overcome the BBB in the tumor lesions resulting in 13-19 times higher 

accumulation in the glioblastoma as compared to the normal brain [11].  However, 

passive targeting does not address uptake by tumor cells after extravasation. 

Therefore, for further increase in efficacy and specificity, liposomal nanocarriers 

can potentially be tagged with targeting molecules that bind to receptors over-expressed 

on tumor cells for ‘active’ targeting. The initial enthusiasm of the active targeting 

strategies has however been limited due to disappointing in vivo performance of the 

targeted nanocarriers compared to non-targeted nanocarriers.  It has been shown that the 

presence of targeting ligands compromises blood circulation time of nanocarriers [8, 12-

15] and decreases passive accumulation of carriers to tumors [16] as extravasation is 

directly proportional to circulation time and concentration in blood [17].  This is not 
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unexpected as long circulation time of liposomal nanocarriers is due to a polyethylene 

glycol (PEG) shielding (3-10% of the lipid is typically PEGylated), and when targeting 

ligands are employed, they are usually conjugated on the free end of the PEG chain 

resulting in recognition by the reticulo-endothelial system (RES) and accelerated 

clearance by the liver.  As a result, fewer ‘targeted’ nanocarriers are able to reach the 

tumor site and consequently the gains from active targeting after extravasation into the 

tumor are compromised [16]. 

1.2.  HYPOTHESIS 

The ability to actively target systemically delivered drugs to tumors while 

retaining the full capability of passive accumulation remains an unresolved problem.   

Overcoming this challenge requires that circulation times be unaffected by the 

incorporation of targeting agents while the ability to actively target tumor cells at the 

target site is retained.  We believe that targeting ligands may be ‘masked’ by ‘burying’ 

them within adjacent longer PEG chains on the nanocarrier surface so that circulation 

times are not compromised as seen with non-masked ligand presenting nanocarriers.  To 

enable ligand binding to tumor cells after extravasation to tumor site, ligand-masking 

PEG chains may be fabricated to be susceptible to cleavage by a safe ‘cleaving agent’ 

(cysteine) that is administered intravenously after the nanocarriers have extravasated to 

the tumors.  The central hypothesis of this thesis is that the use of targeting ligands that 

are masked while in circulation, but unmasked after extravasation will significantly 

enhance targeted nanocarrier delivery to tumor compared to non targeted nanocarriers or 

targeted, unmasked nanocarriers.   
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1.3.  OBJECTIVES 

The overall purpose of the work described in this thesis is to successfully 

optimize targeted drug delivery to tumors in vivo with an emphasis on achieving 

maximized drug accumulation at the target site with limited uptake by healthy organs.  

To do so, both passive and active targeting of chemotherapeutic agent to tumor should be 

employed where each method of targeting, while used concurrently, retains optimal 

performance. 

To meet this goal, the following objectives were set: 

1. To design and fabricate an actively targeted liposomal doxorubicin formulation 

and characterize in vivo performance.  

2. To reduce RES clearance of actively targeted liposomal formulations by masking 

targeting ligands with cleavable PEG chains.    

3. To demonstrate ligand activity masking and unmasking on targeted nanocarriers 

using cleavable PEG chains.   

a. Determine ability to modulate uptake and cytotoxicity of targeted 

formulations with cleavable PEG chains in vitro. 

b. Evaluate passive accumulation and active targeting of liposomal 

nanocarrier chemotherapeutics in vivo using a rat intracranial tumor 

model. 

Fulfillment of these objectives would also address some of the engineering 

challenges of nanoscale drug delivery to tumors.  In general, there are currently no means 

to control the introduction of ligands on targeted nanocarrier drug delivery systems after 

in vivo administration.  The scheme presented here would allow for precise control over 
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an engineered nanoscale system for drug delivery.  Cleavable phospholipid-PEG 

conjugates would confer the ability to control the time and location of ligand presentation 

in vivo.  Masking and triggered unmasking of biological entities on targeted nanocarriers 

would serve to 1) prevent degradation of targeting agents to ensure that they are intact at 

the site of action, and 2) reduce the immunogenicity of incorporated agents to inhibit 

RES recognition and clearance.  Control over ligand presentation would ensure that 

targeted nanocarriers only act when necessary at the tumor site since activation would be 

initiated through an external trigger.      
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CHAPTER 2.   CURRENT STATE OF GLIOMA THERAPIES 

2.1.  CURRENT TREATMENTS FOR BRAIN TUMORS ARE INSUFFICIENT 

Current therapies for the treatment of gliomas remain problematic while the 

incidence of malignant gliomas is growing, leading to an increasing demand for more 

effective treatment options [1].  It is estimated that there will be 21,810 new cases and 

13,070 deaths from cancers of the brain or nervous system in the United States in 2008, 

and 1 in 165 people will be diagnosed with cancer of the brain or nervous system in their 

lifetime [2].  Evidence suggests that the incidence of malignant brain tumors may be 

increasing particularly in the elderly [3], and gliomas are the second leading cause of 

death amongst children.  Patients diagnosed with malignant brain tumors have a very 

poor prognosis with a current overall 5-year survival rate of merely 34.1% [2].   

Brain tumors continue to be a challenge to treat because they are inherently 

diffuse, highly invasive, and non-localized.  These tumors exhibit aberrant proliferation, 

reduced apoptosis, evasion of external growth control and immunoregulation, and 

resistance to therapeutics [4].  Instead of completely and permanently eliminating a 

malignant brain tumor, current treatments have typically been shown to merely prolong 

patient survival [5, 6, 1].  For these reasons, it is imperative that treatments for brain and 

nervous system cancers are improved. 

2.2.  CURRENT TREATMENT MODALITIES 

Historically, the standard treatment of malignant gliomas has typically consisted 

of surgical resection followed by radiotherapy.  Chemotherapy has also been utilized in 

combination under certain circumstances.  Patient care is individualized on the basis of 
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prognostic factors including patient age, Karnofsky Performance Status (KPS) score, and 

tumor size, location, and histology [7, 8].  Other treatment options currently in use or 

under investigation include localized radiotherapy, localized chemotherapy, and targeted 

systemic chemotherapy.  Novel treatment techniques continue to increase, and the 

National Cancer Institute reports over 400 clinical trials currently recruiting patients with 

brain tumors for the investigation of new treatment options [9].  In addition, the 

abundance of ongoing pre-clinical studies adds to the development of more effective 

treatments.  Current research studies, however, must ensure that newly developed 

treatments not only improve long term survival rates, but also address patient quality of 

life, specifically considering the drastic side-effects often associated with current 

treatments which serve to reduce patient compliance.  Here, the traditional treatment 

strategies as well as those recently developed or in development for the treatment of brain 

tumors are discussed. 

2.2.1.  SURGICAL RESECTION 

Surgical resection is often the first line of defense in the treatment of brain 

tumors.  It is performed to confirm tumor histology and to achieve maximal resection.  

Numerous studies have validated the benefit of surgery by comparing survival times 

between patients treated with radiation versus those undergoing craniotomy in addition to 

whole-brain radiotherapy [10, 11].   Patients who underwent surgery demonstrated a 

significant increase in median survival and experienced longer functional independence.  

Radical resection often leads to a better prognosis for patients [12, 13].  Surgical 

resection, however, is often incapable of completely removing deeply penetrating and 

diffuse brain tumors and typically results in tumor recurrence immediately adjacent to the 
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site of removal.  It has been shown that greater than 95% of the brain tumor must be 

surgically excised to prevent progression of the disease [14].  Recurrence of tumors is 

common following surgical resection since it is often difficult to completely eradicate 

both the tumor and the invading tumor front without harming the adjacent healthy brain 

tissue, and recurrence of tumor invariably results in neurological deterioration and death.  

In addition, there are many risks associated with surgical resection since it is a highly 

invasive procedure.  Some reported risks include operative death, infection, seizures, 

brain fluid flow blockage, peritumoral edema, and impaired neurological functions [15].  

To reduce these risks, more effective and safer therapeutic procedures or adjuvant 

therapies must be developed for the treatment of malignant brain tumors. 

2.2.2.  RADIOSURGERY 

Surgical resection may not be an option for patients if the brain tumor is located 

in an unresectable location or if the glioma is recurrent.  In these cases, radiosurgery 

provides an acceptable treatment alternative [16].  Radiosurgery uses stereotaxy to 

precisely localize focal radiation typically delivered at doses between 54-60 Gy.  

Prescribed dose varies based on tumor size, location, and previous radiation treatments 

[16].  The target volume includes the tumor bed as well as an additional margin 

accounting for tumor infiltration into the surrounding healthy tissue [12].  Computed 

tomography (CT) or magnetic resonance imaging (MRI) is used to locate the tumor prior 

to radiosurgery.  The most commonly used radiosurgery system is the Gamma Knife, 

which centers converging gamma radiation beams at the desired target [16].  

Radiosurgery has proven effective at local tumor control and prolonging patient survival 

[17].  In addition, radiosurgery is less invasive than conventional surgical resection.  
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Despite these advantages, tumor recurrence and side effects similar to those reported for 

surgical resection are often associated with radiosurgery.  In addition, stereotaxic 

radiosurgery often results in the development of late side effects due to the high radiation 

dose required per treatment [18]. 

2.2.3.  WHOLE-BRAIN RADIATION THERAPY 

Both surgical resection and radiosurgery typically require adjuvant postsurgical 

therapy due to the infiltrative nature of glioma.  Whole-brain radiation therapy (WBRT) 

is often utilized for this purpose at a dosage ranging between 10-30 Gy [19].  WBRT has 

also traditionally been used to treat glioma due to concerns of multicentricity.  While the 

use of WBRT has proven to provide swift attenuation of neurological symptoms, improve 

quality of life, enhance control of tumor progression, and decrease the likelihood of 

neurological death [19, 20], there still remain many complications associated with the 

procedure.  The penetration of radiation therapy is limited by the energy of the incident 

photons, and increasing the energy to allow for deeper penetration invariably results in 

irradiation of healthy tissue.  Resultant side effects may be either acute or late in 

occurrence and include fatigue, hair loss, scalp irritation, nausea, memory loss, mental 

deterioration, hormonal deficiencies, headaches, seizures, and possible death.  In 

addition, prognosis after treatment tends to be poor with a median survival of merely 12 

months following the combination of surgery and radiation therapy [1].       

2.2.4.  TRADITIONAL CHEMOTHERAPY 

Currently, systemic chemotherapy is not the primary treatment choice for 

malignant brain tumors; however it may be utilized as an adjuvant therapy.  

Unfortunately, systemic delivery of chemotherapeutics exposes healthy organs to the 

11 



 

toxic side effects of the drug due to non-specific uptake.  As a result, a lower dosage of 

the drug must be administered, causing the overall efficacy of the treatment to be 

decreased offering only a marginal impact on patient survival.  In addition, brain tumors 

are unique from other types of cancer due to the presence of the blood brain barrier.  

Even though the BBB within the tumor environment is compromised exhibiting large 

inter-endothelial junctions (100-780 nm), delivery of traditional chemotherapeutics 

utilized as treatments for other types of cancer is limited.  Patients with recurrent or high 

grade glioma will typically be administered small, lipophilic chemotherapeutics capable 

of crossing the BBB as an adjuvant treatment.   

Temozolomide, as part of an adjuvant therapy, is the most commonly utilized 

chemotherapeutic drug for clinical treatment of glioma.  Temozolomide has recently 

gained popularity over the traditionally used BCNU because it can be administered in 

oral form.  Use of temozolomide (and other similar drugs) is primarily due to its physical 

properties (hydrophobicity and small size), which allow it to cross the BBB to reach 

tumor cells.  However, if other drugs could reach the tumor (i.e. cross the BBB), 

temozolomide would have no advantage over these drugs.  Primary toxicities associated 

with temozolomide include nausea and myelosuppression which result from non-specific 

drug uptake by healthy cells.  These side effects lower the drug therapeutic index which 

makes dosing more difficult and thereby reduces treatment efficacy.       

Theoretically, the BBB permeability of existing anticancer drugs utilized to treat 

other types of tumors could be increased by modifying them to be more lipophilic.  

However, clinical trials have demonstrated no significant increase in therapeutic efficacy 

using chemotherapeutics modified to increase lipophilicity [21].   Instead of altering the 
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drug itself, other efforts have focused on altering the BBB by infusing hyperosmolar 

mannitol causing dehydration of the endothelial cells followed by their shrinkage [22].  

While hydrophilic drugs could penetrate better the disrupted BBB, the invasiveness of 

this method restricts its chronic use.  Encapsulation of traditional chemotherapeutics 

within long-circulating nanocarriers has been shown to circumvent the issues of transport 

across the BBB by increasing the number of passages through the microvascular bed 

thereby escalating the probability of extravasation into tumor [23-25].  In addition, 

entrapment of drug reduces associated side-effects by shielding non-target organs from 

exposure.  These nanocarriers may also be targeted to brain tumors to further increase 

treatment efficacy (See Section 2.2.3.2).   

2.3.  NOVEL TREATMENT APPROACHES 

2.3.1.  NOVEL RADIOTHERAPY TECHNIQUES 

Localized radiotherapy techniques have recently been developed in an attempt to 

avoid the typical side effects associated with WBRT resulting from healthy tissue 

exposure.  Brachytherapy involves interstitial delivery of radiotherapy.  In this process, 

radiotherapy is directed to tumor in order to spare nearby normal brain tissue.  This form 

of radiotherapy differs from radiosurgery because it involves the use of isotopes rather 

than gamma rays to treat the tumor.  Iodine-125 (I125) seeds have been studied most 

frequently and can be implanted permanently or temporarily at the tumor site.  

Unfortunately, studies have failed to demonstrate a significant advantage of this 

technique compared to WBRT, and reported complications such as isotope shift, 

neurologic decline, exacerbation of seizures, infection, and arterial occlusion, have made 

it so that this technique is rarely used today [26, 27]. 
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A more promising development has been the GliaSite Radiation Therapy System.  

This temporary brachytherapy technique utilizes an expandable balloon filled with I125 

solution implanted at the tumor resection site.  The balloon adheres to the walls of the 

resection cavity and ensures a more homogeneous dose distribution of radiation [28].  

Preliminary studies show potential, demonstrating a median survival time of 12.7 months 

for patients with recurrent glioma [29]. 

Another approach to improve local dose intensification of radiation is to use 

systemically delivered radiosensitizers.  Many different agents have been reported 

including hypoxic sensitizers, s-phase sensitizers, and cytotoxic agents, however, with the 

exception of the cytotoxic agent, temozolmide, none of these treatments has 

demonstrated a distinct enhancement in therapeutic efficacy compared to radiotherapy 

alone [30].  In addition, systemic delivery of these radiosensitizers subjects non-target 

organs to the toxic effects of these drugs and delivery to tumor may be limited by the 

BBB.  For the radiosensitizers to be effective, large numbers of molecules per cell may 

be required, and this may not be feasible for gliomas without use of delivery vehicles. 

2.3.2.  LOCALIZED CHEMOTHERAPY 

Localized chemotherapeutic approaches are currently in use and under 

investigation in an attempt to circumvent the side effects associated with traditional 

systemic chemotherapy.  These techniques are used to deliver drug directly to the tumor 

site. 

2.3.2.1.  Intra-Arterial Delivery 

This technique was developed to deliver chemotherapeutics through the carotid 

artery to increase the amount of drug in contact with the BBB in an effort to enhance 
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transport into the brain while reducing systemic toxicity.  The feasibility of drug transport 

across the BBB using this technique has been demonstrated with nitrosoureas; however, 

clinical studies have not yet demonstrated a clear advantage to this technique compared 

to traditional intravenous delivery.  Significant risks are associated with intra-arterial 

delivery including local infarctions, leukoencephalopathy, and heightened neurotoxic 

effects [31].  In addition, technical difficulty and inadequate drug distribution within the 

tumor have limited the success of this treatment method [32]. 

2.3.2.2.  Convection Enhanced Delivery 

In an attempt to localize chemotherapeutics to the delivery site, a method has been 

developed using catheter systems to deliver chemotherapeutics directly to the tumor site 

[33, 34].  The advantage of this method is that chemotherapeutics may be able to reach a 

large brain volume and delivered in a sustained fashion.  In addition, the BBB is 

bypassed and drug half-lives are prolonged.  This treatment must be reserved for patients 

with non-resected tumors because it relies on directional flow from the bulk tumor mass 

to the periphery.  This flow is reversed upon surgical removal of tumor due to the 

creation of an empty resection cavity.  Limitations of convection enhanced delivery 

include drug uptake by healthy cells, high invasiveness, and a limited delivery area 

without the placement of multiple catheters.  Despite successful results, associated risks 

such as infection, catheter blockage, inadequate drug distribution, elevated neurotoxic 

effects, and patient discomfort have limited clinical use of this technique.  

2.3.2.3.  Implantable Drug Depots 

Implantable biodegradable drug depots positioned within brain tumors are 

currently being used in clinical practice in an effort to prevent exposure of healthy organs 
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to the toxic side effects of chemotherapeutics and to localize a chemotherapeutic and 

allow for prolonged and controlled drug delivery [35].  Gliadel® is an intracranial 

implantable polyanhydride polymer loaded with BCNU.  BCNU (carmustine) has been 

widely used as a systemic agent due to its lipophilicity but efficacy is restricted by the 

dose-limited side effects [21, 36].  On the other hand, Gliadel® has produced better 

results for patients with grade IV glioma extending the median survival by 13.4 weeks 

compared to placebo [37, 38].  This method, however, relies on drug diffusion from a 

central core and short diffusion distances from the wafer limit the drug’s accessibility to 

the entire tumor.  As a result, drug usually cannot reach the tumor periphery where the 

most aggressive cells persist.  In addition, BCNU released from the degradable wafer is 

non-specific and therefore cytotoxic to adjacent populations of healthy cells.  Possible 

risks of this system include infection and uncontrolled drug release after implantation 

leading to local neurotoxicity.  In addition, Gliadel wafers are unable to precisely 

conform to the resection cavity which could lead to incomplete exposure of the remaining 

tumor cells. 

2.3.3.  TARGETED SYSTEMIC DELIVERY OF CHEMOTHERAPEUTICS 

Local treatment strategies discussed thus far have been developed in an attempt to 

alleviate some of the side effects associated with traditional treatment of glioma.  While 

treatments are geographically localized to tumor, they remain non-specific and normal 

cells located within and/or near the tumor site will inevitably be affected by these 

treatment strategies.  In addition, these local treatment options do not address the 

invasiveness of gliomas.  Many of the treatments presents thus far suffer from diffusion 

limitations or simple inability to access the distant spread of tumor and the invasive cells 
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located at the edge of the tumor lesion.  Chemotherapy via systemic intravascular 

administration utilizes the tumor’s own blood supply for transport allowing for drug 

delivery throughout the entire tumor and is minimally non-invasive.  The addition of 

targeting agents increases treatment specificity and reduces toxic side effects of the 

chemotherapeutic drugs.  As with traditional chemotherapy, the BBB may be a 

formidable obstacle; however, transport into the tumor may be facilitated by transient 

disruption of the BBB, through drug modifications to increase lipophilicity, or by 

prolonging drug circulation times to increase transport based on the enhanced 

permeability and retention effect.  The latter method is referred to as “passive targeting” 

and will be described in greater detail in Chapter 3.   

2.3.3.1.  Direct Drug Modification 

Chemotherapeutic drugs may be chemically modified to enable specific targeting 

to tumor.  Possible targeting agents include tumor-specific antibodies, antibody 

fragments, ligands, and peptides.  BBB transport may also be facilitated by creating 

lipophilic drug analogs.  The limitations of these approaches, however, include low drug 

payloads delivered to tumor, accelerated clearance due to binding of plasma proteins, 

reduced solubility in the brain interstitial fluid, and renal clearance due to small size of 

drug conjugates.  In addition, monoclonal antibody-drug conjugates utilized to target 

tumors have been shown to exhibit decreased potency compared to the parent drug [39].  

This may be attributed to heterogeneity of antigen expression within tumor, inefficient 

internalization of conjugated drug, inability to cleave the conjugate and release active 

free drug, or the development of drug resistance by cancer cells. 
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2.3.3.2.  Targeted Nanocarriers  

The use of targeted nanocarriers to deliver chemotherapeutics allows for higher 

drug payloads, drug protection from degradation, increased drug solubility, ability to 

evade the immune system and prolong drug half-lives, multi-valent binding, and/or 

facilitated delivery across the BBB.  In particular, the delivery of increased drug payloads 

enables successful treatment of drug resistant cells due to saturation of drug efflux 

pumps.  These characteristics make targeted nanocarriers ideal candidates for specific 

delivery of chemotherapeutics to tumors.  Targeted nanocarrier drug delivery systems 

will be discussed in more detail in Chapter 3. 

2.4.  CONCLUSIONS 

Traditional treatments for brain cancer have failed to significantly alter the 

reported median survival rate over the past three decades.  The current median survival 

rate is less than one year with a reported 5-year survival rate of merely 34.1%.  Adjuvant 

treatments to surgical resection are mandatory; however, the main disadvantage of these 

therapies is that they are non-selective and subsequently toxic to healthy tissues.  

Localization of radiation or chemotherapeutics has been investigated, however, these 

approaches remain non-specific with the ability to injure normal cells, and these 

approaches limit treatment of the tumor periphery where the most aggressive cancer cells 

persist.  Tumor recurrence due to incomplete removal ultimately results in neurological 

deterioration and death.  For these reasons, it is imperative that current therapeutic 

efficacy is improved through the development of innovative, specifically-targeted 

systemic treatment strategies utilizing the tumor’s own blood supply given that the tumor 

is highly invasive and local therapies have demonstrated only limited enhancement in 
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survival.  The use of targeted nanocarriers will allow for the protection of healthy tissues 

from the toxic effects of chemotherapeutics while enabling the delivery of large drug 

payloads to tumor.  
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CHAPTER 3.   THERAPEUTIC NANOCARRIERS FOR DRUG 

DELIVERY TO TUMORS 

3.1.  INTRODUCTION 

Nanocarriers have been studied extensively for the targeted delivery of 

therapeutic drugs, genes, or imaging agents to tumors in an attempt to increase selectivity 

of these agents and to enable delivery of large drug payloads to the target site.  In contrast 

to large-scale drug delivery systems, nanocarriers enable easier penetration through 

biological and physiological barriers within the body due to their small size (at least one 

dimension between 1-100 nm) [1, 2].  Nanocarriers have been shown to improve drug 

stability in vivo and may serve to protect non-target organs from drug uptake.  There are 

many different types of systemically delivered nanocarriers that are either currently being 

investigated or are clinically approved for drug delivery to tumors.  Each class of 

nanoparticles encompasses different characteristics; however, the following essential 

conditions are universal [2]:   

1) biodegradability 

2) biocompatibility 

3) non-immunogenicity 

4) physical stability in the blood 

3.2.  TYPES OF NANOCARRIERS USED FOR TARGETED DELIVERY TO TUMORS 

There exist numerous types of nanocarriers currently utilized for tumor targeted 

delivery applications.  This chapter will focus on those designed with the capability to 
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transport chemotherapeutics to tumors.  While this is not an exhaustive list, some of the 

most commonly used types of nanocarriers are reviewed here (Table 3.1). 

 

Table 3.1.  Various Nanocarrier-Based Drug Delivery Platforms 

System Material Structure Characteristics 
Polymeric 
Nanoparticles 

PLGA 
PLA 
PCL 
Chitosan 
HSA 

--Sustained drug release 
--Limited control over 

degradation rates 
--Harsh formulation 

conditions 

Polymeric 
Micelles 

PLGA 
PLA 
PCL 
PPO 
poly(L-histidine) 
poly(L-aspartic acid)  
poly(L-glutamic acid)

 --Prolonged circulation 
--Limited drug loading 
--Stability depends on 

CMC 

Dendrimers Polyamidoamine 
PEO 
Glycerol 
Succinic acid 
Phenylalanine 
Lactic acid 

--Monodisperse 
--Multivalent 
--Limited drug loading 

Carbon 
Nanotubes 

Graphene 
 

--Absorb heat for 
thermal ablation of 
tumors 

--High Stability 
--Non-biodegradable 
--Limited data on 

biocompatibility 

Liposomes Phospholipids 
Cholesterol 
Polyethylene gycol 
CHEMS 
Gangliosides 

 

--Biocompatible 
--Passive accumulation 

to tumor 
--Efficient and stable 

drug loading 
--Heating required for 

entrapment of drug 
 

 

1-200 nm

15-250 nm 

10-1000 nm

10-100 nm

10 nm- 
several mm 

 

0.4- 
100 nm 

25 



 

3.2.1.  POLYMERIC NANOPARTICLES 

Polymeric nanoparticles are produced from natural or artificial polymers and 

range in size from 10 to 1000 nm.  They can be formulated directly from polymers or 

from the polymerization of monomers.  Nanospheres are spherical in shape and 

composed of a polymer matrix.  Drugs are entrapped, encapsulated, or attached to the 

nanospheres for delivery to target sites.  Nanocapsules are hollow spheres composed 

from natural or artificial polymers.  The hollow central core may be utilized for drug 

encapsulation [4]. 

Many different polymers have been investigated for polymeric nanoparticles 

utilized for drug delivery due to intense research within the past decade.  These 

biodegradable and biocompatible polymers are degraded either enzymatically or non-

enzymatically within the body into inert compounds such as hydrogen, nitrogen, and 

water, removed by normal metabolic pathways, and then excreted.  Polymers can be 

either natural or synthetic.  Synthetic polymers typically degrade more slowly than 

natural polymers allowing for sustained drug delivery over a period of days to several 

weeks, however, harsher formulation conditions are often required involving organic 

solvents which must be thoroughly removed prior to patient administration [4].  Drug 

release rate is controlled through modulation of the polymers utilized in the nanoparticle 

formulation.  The most commonly utilized polymers include poly(lactide-co-glycolide) 

(PLGA) [5, 6], polylactide acid (PLA) [7], poly ε-caprolactone (PCL) [8, 9], chitosan 

[10, 11], and human serum albumin [12]. 

The periphery of polymeric nanoparticles may be modified with targeting agents 

or additional polymers.  Additional polymers may be used to further prolong circulation 
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of the nanoparticles and thereby improve drug pharmacokinetics.  Specific targeting 

agents, such as those that bind to tumor receptors or tumor specific antigens, are often 

utilized to increase specificity of chemotherapeutics loaded in polymeric nanoparticles.   

For example, a recent study utilizing PLGA-PEG nanoparticles functionalized with an 

aptamer that binds to the prostate specific membrane antigen demonstrated a significant 

increase in delivery to prostate tumors in xenograft mouse models compared to non-

targeted controls [13].  These findings confirm the applicability of polymeric 

nanoparticles as tumor targeted drug carriers.    

3.2.2.  POLYMERIC MICELLES 

Micelles are structures formed by the spontaneous association of amphiphilic 

copolymers in an aqueous environment.  The driving force for formation is primarily 

hydrophobic interactions causing the non-polar segments of the copolymer molecules to 

form the micellar core and the relatively polar segments to form the micellar corona 

positioned between the hydrophobic core and the aqueous bulk phase.  The hydrophilic 

corona enables water solubility, prevents aggregation, and prevents protein absorption on 

micelles, while the hydrophobic core is used to encapsulate drugs and enables 

biodegradability [14].  Self-assembly is initiated when the block copolymers exceed a 

threshold concentration known as the critical micellization concentration (CMC).  Below 

the CMC, the copolymers exist as single chains dispersed within the bulk phase.  The 

CMC is an important factor in the design of micelles for drug delivery applications, 

because the stability of micelles, which are considerably diluted following i.v. 

administration to patients, is critically dependent on this number.  CMCs of 

pharmaceutical micellar nanocarriers typically range between 10-6 to 10-4 µM [15].  
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Micelles with the lowest CMCs can withstand the greatest dilution which makes them 

better candidates for biomedical applications.   

The CMC of micellar formulations can be altered by changing the properties of 

the block copolymers comprising the micelles.  An increase in the hydrophobicity or size 

of the micelle core has been shown to result in a highly correlated decrease in the CMC 

[16].  In addition, an increase in the size of the hydrophilic segments serves to increase 

the CMC, albeit to a lesser extent.  Hydrophobic additives incorporated into the micelle 

core have been shown to lower the CMC and increase the number of copolymers 

associating to form each micelle.  The CMC is typically unaffected by temperature 

changes with the exception of micelles composed from poloxamers [17].   

The micelle shape is typically spherical or globular and primarily depends on the 

length of the hydrophobic segments of the amphiphilic copolymers [18].  The size of 

micelles ranges between 10-100 nm, depending on copolymer length, molecular weight, 

and relative proportion of hydrophobic and hydrophilic segments, which all determine 

how well the copolymers pack within the micelle.  The nanoscopic size of micelles 

facilitates sterile filtration prior to patient administration.  In addition, the typical mass of 

an intact micelle varies between 100-1000 kDa which allows them to penetrate capillaries 

within the body and bypass glomerular filtration and excretion by the kidneys with a 

renal threshold of 42-50 kDa [19].  If diluted below the CMC, however, individual 

copolymers are rapidly removed by the kidneys [20]. 

The most commonly studied compounds used for the hydrophobic segment of 

copolymers comprising micelles can be classified into 3 groups: polyethers, polyesters, 

and polyamides.  Hydrophobic polyesters, such as poly(L-lactide) (PLA), poly(lactide-
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co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL), are used most frequently.  

Polyesters are sensitive to hydrolytic degradation making them suitable biodegradable 

candidates for the micelle core.  Poly(propylene oxide) (PPO) is an example of a 

commonly used polyether, and poly(L-histidine), poly(L-aspartic acid) derivatives, and 

poly(L-glutamic acid) derivatives are examples of polyamides utilized for the micelle 

core.  Polyamides are often degraded by enzymes within the body; therefore, they are 

also considered to be biodegradable.  The most commonly used polymer for the 

hydrophilic corona of micelles is polyethylene glycol (PEG) of molecular weight ranging 

from 1-15 kDa [21].  PEG is completely soluble in water, inexpensive, non-toxic, and 

uncharged.  It also serves as an efficient steric barrier between micelles and plasma 

proteins responsible for removing foreign particles from the bloodstream promoting 

prolonged circulation times.  Micelles using PEG in the corona have exhibited plasma 

half-lives of 18 hours after intravenous administration [22].  Alternatives to PEG for the 

hydrophilic portion of micelles include poly(N-vinyl pyrrolidone) (PVP) [23] and 

poly(vinyl alcohol) (PVA) [24].  Poloxamers are copolymers of PEG and PPO oriented in 

a PEG-PPO-PEG configuration.  Also referred to as Pluronics, these polymers micellize 

with the PPO segments localizing in the hydrophobic core and the PEG segments 

forming the hydrophilic corona.  Poloxamer micelles have been studied extensively and 

have been investigated for the delivery of doxorubicin [25-27], vinblastine [28], 

cisplatine [28], and nystatin [29]. 

The hydrophobic core of polymeric micelles makes them useful for the delivery 

of water insoluble drugs.  Drugs may be encapsulated within the core [30] or covalently 

conjugated to the polymers comprising the micelles [31].  The corona serves to protect 
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the associated drugs from degradation prior to delivery.  Sustained release of drug may be 

achieved if the drugs entrapped within the micelle possess extremely small (10-16 to 10-18 

cm2/sec) diffusion coefficients [32].  Micellar drugs may be targeted to specific drug 

delivery sites by chemical conjugation of target-specific molecules to the micelle corona.  

In addition, micelles may be functionalized to allow triggered drug delivery.  Various 

formulations have been studied including those sensitive to pH [33], temperature [34], 

and ultrasound [35].     

3.2.3.  DENDRIMERS 

Dendrimers are nanocarriers composed of multiple highly-branched monomers 

forming a three dimensional treelike structure emerging from a central core.  Dendrimers 

are typically globular or spherical in shape with diameters ranging from 1-200 nm 

although the most commonly utilized dendrimers composed from polyamidoamine 

typically do not exceed 15 nm in diameter [36].  Dendrimers tend to have high molecular 

weights despite their nanoscale size.  Synthesis of dendrimers is stepwise producing 

highly regular branching patterns with repeated units and a distinct number of peripheral 

groups.  Polymerization may proceed from the periphery and terminate at the central core 

or initiate from the core and terminate at the external surface.  Branch lengths are limited 

by steric hindrance.  The low polydispersity associated with these nanocarriers allows for 

reproducible pharmacokinetic behavior in vivo.  The branching pattern of dendrimers 

enables the attachment of many drugs, targeting agents, and/or solubilizing groups to the 

periphery of a single carrier.  As a result, dendrimers have been investigated for a variety 

of biological applications including gene delivery [37], magnetic resonance imaging [38], 

and anticancer therapeutics [39]. 
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  Dendrimers for the delivery of pharmaceuticals may be formulated from a 

variety of compounds.  The most widely used dendrimer scaffolds in biology are those 

prepared from polyamidoamine.  To avoid toxicity and liver accumulation, the surface 

amine groups of these dendrimers must be modified with neutral moieties.  Other 

dendrimer formulations have been made from polyethylene oxide, glycerol, succinic acid, 

phenylalanine, or lactic acid [36].   

The versatile nature of dendrimers allows them to deliver either hydrophobic or 

hydrophilic agents to a target site.  Drugs may be covalently attached to functional groups 

on the dendrimer or simply associated with the internal core of the sphere by electrostatic 

interactions, hydrogen bonding, or hydrophobic interactions [40], however, studies 

investigating the noncovalent encapsulation of doxorubicin and methotrexate within 

polyamidoamine dendrimers showed that drugs were not readily retained in isotonic 

solutions and loading efficiencies were relatively low.  A maximum of merely 6.5 DXR 

and 26 methotrexate molecules were loaded per dendrimer [41], therefore, this loading 

method has yet to be utilized as a common strategy. Covalent attachment of drugs is also 

limited since each drug molecule requires a functionalized branch of the dendrimer for 

attachment.  Nonetheless, covalent attachment of chemotherapeutics such as DXR and 

cisplatin to dendrimers has been investigated and shown to be successful.  Covalent 

association of DXR to PEO dendrimers resulted in a 9-fold increase in tumor delivery 

compared free DXR when administered to mice bearing subcutaneous C-26 tumors.  In 

addition, survival was significantly enhanced for these animals compared to those 

receiving free DXR therapy.  The reported antitumor effect was comparable to that 

achieved with Doxil®, a clinically approved liposomal DXR treatment [39].  Tumor 
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targeting may be achieved with dendrimers through the covalent attachment of targeting 

agents.  For example, it has been shown that the attachment of folic acid to 

polyamidoamine dendrimers carrying covalently attached methotrexate enhances uptake 

by human epithelial carcinoma (KB) cells in vitro [42].  Dendrimers serve as good 

candidates for anti-cancer therapy due to their monodispersity, multivalency, water 

solubility, and capability for surface modification. 

3.2.4.  CARBON NANOTUBES 

Carbon nanotubes are cylinders formed from benzene rings and are single or 

multi-walled with a cage like structure.  Single walled carbon nanotubes (SWNT) consist 

of a layer of graphene rolled into a cylinder while multi-walled carbon nanotubes 

(MWNT) are composed of multiple concentric layers of graphene rolled into cylinders 

spaced approximately 0.34 nm apart [43].  Diameters of SWNTs typically range from 

0.4-3 nm, while MWNT diameters may reach up to 100 nm.  Nanotube lengths vary from 

10 nm up to several millimeters [44].  Without surface modification, carbon nanotubes 

are completely insoluble; however, the nanotubes may be covalently or non-covalently 

modified through the attachment of polymers, such as PEG, to increase solubility for 

biological applications.  The external surface of carbon nanotubes may also be 

functionalized for the attachment of drugs or targeting agents to facilitate specific uptake 

by target cells [45].  Conversely, drugs, fullerenes, porphyrins, or metals may be trapped 

inside the nanotubes due to hydrophobic interactions for delivery to target sites.  Due to 

the large available surface area of nanotubes, multiple types of targeting agents and/or 

drugs may be simultaneously attached providing a functional advantage in cancer therapy 

[46].  The tips at the ends of the nanotubes are best described as fullerene hemispheres 
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and are more reactive than the sidewalls of the nanotubes.  As a result, most reactions 

typically occur at the tips of the nanotubes and at sidewall imperfections before occurring 

at the intact sidewalls [47].    

Recent studies have demonstrated the ability to utilize carbon nanotubes in the 

treatment of cancer.  Since carbon nanotubes intrinsically absorb near infrared (NIR) and 

radio waves resulting in the local generation of heat, they have been investigated in 

attempts to thermally ablate cancer cells.  Experiments have been conducted using 

targeted [48, 49] or locally delivered non-targeted [50] nanotubes followed by the 

application of radiofrequency or NIR radiation to examine the effects on cancer cells.  

Kam, et al., absorbed phospholipid-PEG-folate conjugates to carbon nanotubes and 

observed selective cancer cell death after exposing cultures to the targeted nanotubes and 

NIR light [48].  Another study demonstrated selective cancer cell death after targeting 

PEG coated carbon nanotubes to breast cancer cells using antibodies against insulin-like 

growth factor 1 receptor and human endothelial receptor 2 and applying NIR radiation 

[49].  Radio waves were utilized instead of NIR in another study since they can penetrate 

deeper through the body.  Non-targeted carbon nanotubes were injected directly into a 

liver tumor before applying the radio waves.  This resulted in cell death at the target site 

with slight damage to the neighboring healthy cells [50]. 

Carbon nanotubes have also been studied in the delivery of chemotherapeutics 

such as doxorubicin [51, 52] and methotrexate [53, 45] to directly kill cancer cells.  

Pastorin, et al. demonstrated efficient uptake of carbon nanotubes covalently loaded with 

methotrexate by Jurkat cells [53].  Another study investigated DXR loaded PEGylated 

carbon nanotubes and discovered that noncovalent association of DXR was highly 
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efficient due to Π-stacking and that binding efficiency and release rates were dependent 

on both pH and nanotube diameter.  Nanotubes were targeted to tumor cells through 

covalent attachment of RGD peptide and after administering to U87MG cells, enhanced 

uptake and cytotoxicity was observed.  In fact, IC50 values of the targeted nanotubes (3 

µM) approached values obtained with free DXR (2 µM) [52]. 

The use of carbon nanotubes for the delivery of therapeutic molecules is a 

relatively new concept.  Limited data exists regarding biocompatibility; however, the 

potential advantages of these nanocarriers compel further investigation of their use.  

Carbon nanotubes are highly stable due to their mechanical properties.  In addition, they 

have been shown to effectively penetrate target cells, and their large surface area and 

internal volume allows for multiple functionalization and entrapment of therapeutic 

molecules [54, 55].  Disadvantages to their use include the fact that they are non-

biodegradable, their large surface area may increase the probability of protein 

opsonization, chemical modification is required to ensure solubility in biological fluids, 

and they possess a strong tendency to aggregate.  Despite these challenges, carbon 

nanotubes present a promising option for delivery of chemotherapeutics to tumors. 

3.2.5.  LIPOSOMES 

Liposomes are closed spherical nanoscale vesicles composed of lipid bilayers.  

Multilamellar liposomes are composed from several lipid layers with alternating regions 

of hydrophobicity and hydrophilicity.  Unilamellar liposomes consist of a single bilayer 

enclosing an aqueous core.  Cholesterol is often incorporated into liposomes used for 

biological applications to enhance physical stability.  Formed in a manner similar to 
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micellar formation, hydrophobic interactions play a central role in the self-assembly of 

liposomes from amphiphilic lipids. 

3.2.5.1.  Formulation Components 

Liposomes may be composed from a variety of phospholipids, the most common 

being either natural (egg or soy) or synthetic phosphocholine.  The phospholipid content 

typically varies anywhere from 55-100% (molar) of the liposome components.  The 

chemical structure of a common formulation component, 1,2-distearoyl-sn-

glycerophosphocholine (DSPC), is shown in Figure 3.1a.  This molecule represents the 

typical structure of an amphipathic liposomal component and is composed of a polar 

phosphate head group bound to hydrocarbon chains.  The hydrocarbon chains make up 

the hydrophobic portion of the molecule which forms the interior of the liposome bilayer.  

The polar head group forms the exterior of the bilayer and is in direct contact with the 

exterior and interior buffers.  The level of fatty acid saturation on the selected lipids has 

an affect on the overall stability because it determines the susceptibility to oxidation.  

Typically, the more saturated a lipid the less vulnerable it is to oxidation.  Phospholipids 

derived from biological sources, such as egg or soybean, tend to contain substantial levels 

of polyunsaturated fatty acids making them less stable than the synthetic equivalents.  

The phospholipid head group may be substituted by a functional group to allow 

attachment of other components such as polyethylene glycol and/or targeting moieties.  

1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) is an example of a functional 

phospholipid used to conjugate such agents (Figure 3.1b). 

It is these phospholipids which primarily dictate the ultimate shape of the 

liposomes.  Packing of the phospholipids to constitute the liposome bilayer is dependent 
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on the total length of the molecule and the respective sizes of the head groups and 

hydrocarbon chains.  A so-called “packing factor” (P) may be determined from the lipid 

tail region volume (v) divided by the product of the cross-sectional area of the polar head 

group (a) and the total length of the phospholipid molecule (l) given by Equation 3.1 

[56]:   

  
la

vP
×

=    

 

(Equation 3.1) 

Packing factors ranging between 0.5-1 typically lead to spherical bilayer vesicles. 

Another characteristic to consider in the selection of phospholipids for liposome 

formulation is the phase transition temperature.  The phase transition temperature is 

defined as the temperature at which the lipid physical state converts from an ordered gel 

phase to a disordered liquid crystalline phase and is depended on hydrocarbon chain 

length, degree of saturation, charge, and head group species.  In the gel-like phase, 

hydrocarbon chains are fully extended and tightly packed while they are randomly 

oriented and fluid in the liquid phase [57].  Lengthened hydrocarbon chains and increased 

levels of saturation result in elevated phase transition temperatures due to stronger van 

der Waals interactions.  The use of phospholipids with higher phase transition 

temperatures generates bilayers which are more stable [58].  This decreases the 

possibility for premature leakage of encapsulated components; however, considerations 

must be made to ensure that encapsulated drugs can still escape the liposomes once they 

reach the target site of action.  In addition, the phase transition temperature of the 

liposome bilayer dictates the temperature above which sizing, drug loading, and insertion 

of additional components should occur since these processes are most efficient when the 
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bilayer is in the crystalline fluid state.  If the phase transition temperature of the selected 

phospholipids is too high, denaturation of proteins and/or drugs may occur during the 

sizing, loading, and/or insertion processes.  Therefore, a careful balance must be met to 

ensure that the selected lipids have phase transition temperatures that prevent premature 

leakage of components but enable processing to occur at temperatures that are harmless 

to all liposomal components.   

Cholesterol is often included into the liposomal formulation at a percentage of 30-

45% (molar) to help modulate membrane fluidity, elasticity, and permeability and to 

instill stability (Figure 3.1c).  Within the lipid bilayer, the polar head of cholesterol is 

aligned with the polar head of the phospholipids.  As in biological cell membranes, the 

hydrophobic properties of cholesterol ensure that it resides in the interior portion of the 

bilayer where it serves to fill the gaps created by imperfect packing to inhibit flip-flop of 

membrane components and prevent movement of components within the bilayer.  

Cholesterol also adds rigidity to the liposomes by preventing phase transitions of the 

bilayer thereby decreasing leakage of components encapsulated within the liposomes or 

trapped within the bilayer [59].  In this manner, the amount of cholesterol utilized also 

has an effect on the ultimate phase transition temperature of the bilayer.  Finally, some 

studies have shown that the inclusion of cholesterol may help to protect the bilayer from 

hydrolytic degradation by demonstrating that the water penetration depth into lipid 

bilayers is reduced when cholesterol is present [60]. 

Other components are often included in liposomal formulations depending on the 

final application.  If rapid release of internal components at altered pH is desired, pH 

sensitive lipids such as dioleoyl phosphatidyl ethanolamine (DOPE) and pH stabilizers 
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such as cholesteryl hemisuccinate (CHEMS) may be incorporated [61].  Cationic lipids 

are often used in liposomes intended for the delivery of DNA or gene products [62-64].  

PEG is typically incorporated to enable RES evasion and prolonged circulation times 

while targeting agents may be inserted to facilitate specific targeting to tumor cells.  

Passive and active targeting of liposomes using these components will be discussed 

further in a later section of this chapter. 

A 

 

B 

 

C 

 

Figure 3.1.  Chemical structures of DSPC (A), DSPE (B), and cholesterol (C). 
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3.2.5.2.  Preparation Techniques 

There exist numerous preparation techniques for liposomal formulations including 

detergent removal, emulsion removal, ethanol injection, and solvent removal.  A more 

detailed discussion of these techniques may be found elsewhere [65].  Choice of 

preparation technique dictates final liposome size and number of bilayers.  Solvent 

removal is one of the most commonly used techniques [66].  Lipids are dissolved in 

organic solvents such as chloroform or a mixture of chloroform and methanol to ensure a 

homogeneous mixture.  Lipid solutions are typically prepared at a concentration ranging 

between 10-20 mg/ml depending on the lipid solubility.  Solvent is subsequently removed 

by evaporation to produce a thin film of lipids.  Hydration of the dry lipid film is 

accomplished through the addition of an aqueous medium (typically prepared at 

physiological osmolarity for in vivo applications) at a temperature above the highest 

phase transition temperature (Tc) of the lipids.  Hydration produces large (200-1000 nm), 

multilamellar vesicles (LMV).  Interlamellar spacing is dictated by the level of 

electrostatic repulsion between the polar head groups of the phospholipids.   

Sizing of multilamellar liposomes is typically performed via sonication or 

extrusion.  Sonication is performed at temperatures above the lipid Tc where sonic energy 

serves to disrupt the LMV and produce small unilamellar vesicles (SUV) ranging 

between 15-50 nm in diameter.  Many factors help to determine final size including lipid 

composition, concentration and suspension volume, and sonication time and power.  

Unfortunately, sonication often results in size variations between batches.  Extrusion 

involves forcing the LMV through etched polycarbonate filters with defined pore sizes.  

This process is typically performed under high pressure and at a temperature above the 
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lipid Tc.  Diameters of the liposomes after extrusion tend to be close to the filter pore 

size.  Extrusion through filters with 100 nm pores yields large, unilamellar vesicles 

(LUV) of reproducible size.  Final diameter depends on lipid composition and the filter 

pore size. 

3.2.5.3.  Drug Loading 

Drugs or other agents may be loaded within the liposomal bilayer or within the 

aqueous core.  Drug loading within liposomes provides protection from degradation and 

elimination from the body while shielding non-target organs from the toxic effects of the 

drug.  In particular, chemotherapeutic drugs, such as doxorubicin (DXR), are known to 

be myelosuppressive, GI toxic, and cardiotoxic.  Encapsulation within liposomes 

alleviates some of these effects by primarily confining the drug to the vascular fluid 

thereby sparing healthy organs from exposure.  Liposomal encapsulation of DXR has 

been shown to reduce the volume of distribution in humans from approximately 900 L/m2 

(for free DXR) to merely 2.75 L/m2 (for liposomal DXR) verifying that liposomal DXR 

is primarily restricted to the vascular fluid volume [67].   

Initially, the only option for liposomal encapsulation of therapeutic agents was 

through passive loading.  A new advancement allowing for more efficient drug loading 

involves the use of transmembrane ion gradients and is termed ‘remote’ or ‘active’ 

loading.  Both methods of liposomal drug encapsulation are discussed in the following 

sections.   

3.2.5.3.1.  Passive Loading 

Passive drug entrapment is process where loading occurs during liposomal 

formulation.  Aqueous drugs to be loaded within the internal core of the liposomes may 

40 



 

be mixed with the solution used to hydrate the lipid film prior to sizing.  Lipophilic drugs, 

which will localize within the liposomal bilayer, are simply mixed with the lipids before 

solvent evaporation and subsequent hydration.  Nonincorporated material is removed 

from loaded liposomes by dialysis or gel-filtration chromatography [68, 69].   

Passive loading of aqueous compounds is an inefficient process.  The amount of 

drug loaded is proportional to the initial drug concentration and the total inner volume of 

the liposomes.  The available inner volume for loading is only a small fraction of the 

whole liposome suspension causing this loading method to be inefficient.  The total inner 

volume of the liposomes available for passive encapsulation is a function of the initial 

lipid concentration and the liposome diameter [70].  Increasing the lipid concentration 

allows for an increase in the volume available for loading, however, this typically 

increases the viscosity of the liposomal formulation, and sizing is often more difficult 

when dealing with viscous solutions.  An alternative approach is to preformulate and size 

the liposomes and subsequently concentrate the solution via diafiltration or rotary 

evaporation.  The agent to be encapsulated is then introduced into the liposomes through 

several freeze-thaw cycles serving to transiently rupture the liposomes [71].  This 

method, however, may alter the liposome size distribution creating a heterogeneous 

solution with poor reproducibility [72].  In addition, highly viscous solutions which often 

result from passive encapsulation are not biocompatible for injection and passively 

loaded agents are more susceptible to leakage after dilution and/or liposome purification. 

3.2.5.3.2.  Remote Loading 

The discovery of ‘remote’ loading techniques has provided a superior alternative 

to the inefficient process of passive drug loading.  Remote loading allows for efficient 
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drug entrapment and stable retention of small molecules.  This process is driven by an 

electrochemical potential created by pH or ion gradients established across the lipid 

bilayer of the liposomes.  Gradients are established by preparing the liposomes in a buffer 

of specified pH and ion strength to be used as the internal volume buffer.  The external 

phase is then exchanged for another buffer via dialysis, diafiltration, or size exclusion 

chromatography.  Encapsulation is performed by mixing the liposomes with the 

compound of interest typically at a temperature above the phase transition temperature of 

the lipid bilayer to ensure fluidity and efficient transport across the bilayer.  Interaction 

with ions within the liposomes effectively traps the drug within the core.  This method 

enables encapsulation efficiencies approaching 100% and sustained entrapment of small 

molecules. 

Remote loading has been reported most often with DXR, a small, weakly basic, 

amphiphilic drug (pKa ~ 8.3).  Liposomes are prepared in ammonium sulfate buffer and 

the external phase is exchanged for a non-acidic buffer.  Uncharged DXR passively 

diffuses across the lipid bilayer to enter the liposome core where it interacts with 

dissociated ammonium sulfate forming a gel-like precipitate with the SO4
2- anions 

(Figure 3.2).  This precipitate is effectively trapped within the liposome creating a sink 

for accumulation of additional uncharged DXR [73].   To ensure that release of DXR 

upon entry into tumor cells can be achieved, a study designed to collapse the ammonium 

sulfate gradient through the use of the ionophore nigericin was conducted to ensure that 

the loading process is reversible.  Fortunately, it was shown that when the gradient is 

collapsed, DXR, with full biological activity, is rapidly released from the liposomes [74]. 
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Using an ammonium sulfate gradient DXR can be actively loaded into liposomes 

yielding high drug:phospholipid ratios.  Amounts as high as 15,000 DXR molecules per 

liposome can be stably encapsulated through this method [75].  When liposomes are 

targeted through the inclusion of a few targeting moieties, the efficient loading of DXR 

attained through remote loading techniques allows for the delivery of high amounts of 

DXR per targeting vector.  This is in stark contrast to the 1:1 targeting molecule to drug 

ratio attained through direct drug conjugation to individual targeting vectors confirming 

that targeted liposomes are a superior alternative to targeted drug conjugates. 

 

Figure 3.2. Ammonium sulfate driven remote loading of doxorubicin. 

 

(NH4)2SO4 

2NH4
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2NH3 
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Adapted from Bolotin et. al., J Liposome Res.  4(1), 1994 [3]. 
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3.2.5.4.  Passive Targeting with Liposomes 

A major advantage of using long circulating liposomes came from the observation 

that carriers of relatively small size (~100 nm) can preferentially accumulate in solid 

tumors by passive convective transport [76] through the “leaky” vascular endothelium of 

tumors.  The abnormal tumor vascular has been shown to be discontinuous with pores 

varying from 100 to 780 nm in size [77, 78].  Because tumor blood vessels are inherently 

leaky marked by compromised endothelial junctions, and lymphatic vessels of tumors are 

scarce, prolonged circulation of liposomes in the bloodstream allows for sustained drug 

accumulation at the tumor site.  Due to longer blood residence time, repeated passage 

through the microvascular bed results in high levels of nanocarriers within the tumor 

which is known as the enhanced permeation and retention (EPR) phenomenon (Figure 

3.3).  Gabizon et al. have shown that the longer the blood circulation of liposomes, the 

higher their accumulation in the tumor [79].  When drugs are encapsulated in liposomes 

that are modified with flexible, water soluble polymers such as polyethylene glycol 

(PEG) chains to increase their surface hydrophilicity and prevent the adsorption of blood 

proteins and phagocytic uptake, the circulation time in the bloodstream is significantly 

prolonged.  Coating liposomes with such polymers to inhibit protein opsonization is 

termed “steric stabilization”, and the resulting “Stealth” liposomes have been shown to 

evade clearance by the RES.  For example, free DXR is cleared 450 times faster than 

PEGylated liposomal DXR [80].  The increased concentrations at the tumor site achieved 

through this method of passive targeting can greatly improve treatment efficacy. A recent 

study explored the performance of DXR-loaded liposomes in an orthotopic 9L rat brain 

glioma model [81].  Increased drug concentrations were observed in the brain tumor 
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consistent with passive accumulation of liposomes via the EPR phenomenon.  In another 

study on patients with brain glioblastoma treated with DXR-loaded liposomes, the 

intratumoral drug accumulation was 13-19 times that recorded in normal brain [82].  

Compared to long-circulating micelles, PEG coated liposomes have been shown to 

exhibit longer half-lives giving them a distinct advantage with regard to passive 

accumulation in tumors [83].  In studies, Doxil®, the clinically approved PEGylated 

liposomal form of DXR, has exhibited prolonged circulation, sustained drug release, a 

higher tendency for extravasation into tumors, enhanced therapeutic index, and increased 

antitumor activity over free DXR. The clearance of liposomal DXR in humans has been 

reported as 0.041 L/h/m2 whereas free DXR has been shown to clear at a much faster rate 

ranging from 24 to 35 L/h/m2.  This reduction in clearance results in an AUC for 

liposomal DXR which is approximately 2-3 orders of magnitude larger than that of free 

DXR [67].   

6-7nm 100-780 nm 

 Normal Tissue Tumor Site 

Figure 3.3. Passive accumulation of long-circulating liposomal nanocarriers into 
tumors via the EPR effect. 
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3.2.5.5.  Active Targeting with Liposomes 

To further increase uptake by tumor cells, targeting agents can be incorporated 

into liposomes to allow targeting to cells over-expressing tumor associated antigens or 

certain plasma membrane receptors (Figure 3.4).  The incorporation of targeting ligands 

corresponding to specific cell markers, such as plasma membrane receptors, not only 

facilitates targeting to the cell but also drug retention at the target site by preventing 

retrograde movement of liposomes into the bloodstream.  Targeting ligands can be 

chosen to bind receptors that undergo receptor-mediated endocytosis to facilitate drug 

uptake by cells [84, 85].  Targeting agents may be bound directly to lipid anchors on the 

liposomal bilayer or attached with a linker such as PEG.  Attachment via PEG is 

preferable over direct attachment to lipid anchors because studies have shown that 

adjacent PEG chains, which must be incorporated for RES evasion for in vivo 

applications, inhibit binding to target cells when targeting ligands are grafted directly to 

the liposome surface [86-88].  Studies have even demonstrated interference in cell 

association when small targeting ligands, such as folate (441 Da), are attached to 

liposomes via PEG chains of the same length as adjacent PEG chains incorporated for 

steric stabilization.  Therefore, most efficient active targeting to cells is attained when 

targeting agents are bound to liposomes by longer PEG chains [84]. 

Targeting agents may be incorporated into liposomal formulations by various 

methods.  If the liposomes are formulated using functionalized lipids or PEG chains, 

targeting agents may be reacted with the end groups after the liposomes are formulated 

[89-91].  Another method involves the prefabrication of conjugates of the targeting agent 

either bound directly to a phospholipid (i.e. DSPE-ligand) or bound to a phospholipid via 
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PEG (i.e. DSPE-PEG-ligand).  These conjugates may be included with the liposomal 

components during formulation [92, 93], or insertion of the conjugates may be conducted 

into preformed liposomes by mixing micelles of the conjugate with the liposomes at a 

temperature above the phase transition temperature of the liposome bilayer [94].  The 

latter method, termed “post-insertion”, is desirable because it provides increased 

flexibility regarding the choice of liposomal drug and ligand(s), it allows for greater 

control over the number of incorporated conjugates per liposome, and it provides the 

most economical use of the conjugates by preventing targeting ligands for being 

sequestered to the internal side of the bilayer [95].  

Delivery of drug using actively targeted liposomes is preferable over direct 

conjugation to targeting moieties because (1) the drug-ligand conjugates have lower 

cytotoxic potencies [96] and (2) encapsulation yields a much higher drug cargo [73].  In 

addition, liposomes are typically larger than drug-ligand conjugates preventing  

 

Tumor Cell Normal Cell

 

Figure 3.4. Active targeting of liposomal nanocarriers to tumors using ligands 
targeted to over-expressed receptors on tumor cells and uptake via receptor-
mediated endocytosis. 
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glomerular filtration in the kidneys.  This is advantageous because clearance is decreased, 

and the luminal side of the kidneys is spared exposure to drug.  Finally, since single 

liposomes can be formulated to present multiple targeting ligands, multivalent binding 

results in increased avidity to tumor cells as shown by competitive binding assays [97].   

3.2.5.5.1.  Targeting Agent Selection 

A number of agents have potential as liposomal targeting moieties for active 

targeting to tumors including antibodies or antibody fragments targeted to tumor 

antigens, ligands directed toward tumor cell plasma membrane receptors, or small 

peptides known to bind tumor cell surface determinants.  Selection criteria may be based 

on a number of characteristics, however, foremost consideration should be given to 

immunogenicity of targeting agents, facilitation of entry into cells (i.e. via receptor-

mediated endocytosis), and ability to enable nuclear localization of the entrapped drug 

cargo.  In addition, targets should be easily accessible, have negligible expression in 

healthy tissues, and expression by tumor cells should be elevated, stable, and 

homogeneous [98].   

Antibodies are highly specific and bind target antigens with high affinities, 

however, attachment of antibodies to liposomes has been shown to stimulate uptake by 

the RES, therefore, more recent studies have focused on the use of antibody fragments as 

an alternative to prevent premature clearance by Fc-receptor mediated uptake by the RES 

[77, 99].  Common tumor targets using liposomes functionalized with antibodies or 

antibody fragments include HER2 [86, 85, 100], disialoganglioside (GD2) [101], CD19 

[102, 103], prostate-specific membrane antigen (PSMA) [104, 105], transferrin receptor 

[106-108], and epidermal growth factor receptor (EGFR) [109, 97].  Another drawback to 
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the use of antibodies or antibody fragments is that they are expensive to produce.  The 

incorporation of small peptides into liposomes has been investigated to target 

aminopeptidase N [110, 111], matrix metalloproteinase (MMP) [112], and integrin [113, 

114] on or around tumor cells.  Liposomal incorporation of ligands associated with 

receptors over-expressed by tumor cells has also been studied extensively.  Many 

different cell membrane receptors have been investigated as possible targets for 

liposomes using receptor associated ligands including transferrin receptors [115, 116], 

hyaluronan receptors [117], sigma receptors [118], and most commonly, folate receptors 

[84, 119, 75, 120-122, 93, 123-126, 97, 127, 128], which serve as the tumor associated 

target on which this thesis will focus.  

The folate receptor (FR) is one of the numerous transmembrane receptors known 

to be over-expressed by tumors [129].  This 38,000 Da glycosylphosphatidylinositol-

linked membrane protein exhibits restricted expression in normal adult epithelial tissues 

including the choroid plexus, bladder, testes, colorectum, and lung, however, expression 

is limited to the apical surface of cells placing FR out of direct contact with the 

bloodstream.  The kidneys serve as an exception to this rule since FR is expressed by the 

proximal tubules, however, only those agents which are small enough to undergo 

glomerular filtration will come into contact with FR in the kidneys [130]. 

The primary biochemical role of folate in mammals is to mediate the transfer of 

one-carbon units in reactions that are important for DNA synthesis and replication, cell 

division, survival, and growth [130].  Methyl tetrahydrofolate derived from folate is 

essential for the regeneration of methionine from homocysteine.  Methionine, in turn, is 

utilized for protein production or is converted to S-adenosylmethionine which serves as a 
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methyl donator in over 80 biological methylation reactions including the methylation of 

DNA, RNA, proteins, and phospholipids.  Alternatively, folate may be used for de novo 

synthesis of deoxynucleoside triphosphates required for DNA synthesis [131].  As a 

result, FR is often over-expressed in rapidly dividing cells with increased demands for 

folate.   

FR is an ideal tumor target because it is over-expressed by a wide variety of 

tumors including tumors of the ovary, lung, colon, endometrium, brain, breast, and 

kidney [132].  Upregulation is attributed to an increased cellular demand for folate due to 

elevated DNA synthesis and biological methylation reactions required for cellular 

division.  The use of FR as a target for drug delivery systems is ideal since expression in 

normal tissues is restricted to the apical surface preventing exposure of non-target organs 

to intravenously delivered FR-targeted drugs.  Folate has a high binding affinity for FR 

(Kd<1 nM), and folate covalently bound to drugs has been shown to retain this high 

affinity as well as the ability to undergo receptor mediated endocytosis [133].  In 

addition, folic acid drug conjugates are delivered to the cytoplasm in a functionally active 

form.  Unlike other receptor mediated drug delivery systems, since recovery of intact 

folate is essential to cells, the normal uptake mechanism bypasses lysosomes which 

would otherwise degrade folate prior to release into the cytoplasm [134, 135, 132].   

FR-targeted formulations have been studied extensively and represent an ideal 

targeting system since FR is known to undergo receptor-mediated endocytosis facilitating 

drug delivery [119, 120, 122, 123, 136, 125, 63, 127, 137, 138, 128, 139].  Several in 

vitro liposomal studies utilizing FR as a target have demonstrated significantly higher 

cytotoxicities from FR-targeted formulations compared to non-targeted resulting from 
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increased uptake of drug by target cells [75, 123, 126].  Confocal microscopy has verified 

that drugs delivered via FR-targeted liposomes are rapidly transferred to the nuclei of 

target cells [75].  Others have shown that targeting to this receptor also confers the ability 

to overcome drug resistance, a common problem associated with chemotherapy [121].  

3.2.5.5.2.  Targeting Agent Incorporation Decreases Circulation Times and 

Passive Targeting to Tumor 

Unfortunately, numerous studies have shown that targeting ligand attachment to 

PEG chains anchored in liposomal membranes results in accelerated plasma clearance 

even when additional PEG chains are included to prolong circulation [119, 75, 139].  The 

inability to extend circulation with traditional targeted formulations is due to the fact that 

PEG chains employed are either the same length or shorter than those used to tether 

targeting ligands to the nanocarriers, since longer adjacent PEG chains have been shown 

to inhibit binding to target cells.  Decreased plasma concentrations of targeted 

formulations have been reported whether the targeting moiety is an antibody, receptor 

ligand, or small peptide.  It is believed that targeting moieties anchored with similar 

length or longer PEG on the liposome surface retain the ability to interact with plasma 

proteins responsible for RES clearance.  Specifically, folate receptor (FR)-targeted 

liposomes have been shown to suffer from rapid clearance due to the recognition of folate 

by the RES because folate was conjugated to a longer PEG3350 chain than the adjacent 

PEG2000 chains in an effort to overcome steric interference of PEG on binding of folate to 

target cells [84]. Studies investigating therapeutic efficacy of targeted nanocarriers often 

demonstrate no clear therapeutic advantage due to reduction in circulation times.  In fact, 

when circulation is only slightly reduced, for example in immune-deficient animals, FR-
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targeted liposomal treatments have demonstrated greater success on solid tumors [136]. 

In addition, a study utilizing an in vivo adoptive tumor growth assay, which is unaffected 

by pharmacokinetics, exhibited a distinct advantage of FR-targeted formulations over 

non-targeted in inhibiting tumor growth [121].  When admininstered to immuno-

competent animals, studies have demonstrated no therapeutic advantage between non-

targeted and FR-targeted formulations administered to mice bearing subcutaneous 

carcinomas [75].  Mice with FR-expressing ascites tumors, however, have been shown to 

survive longer on FR-targeted liposomal treatments [75, 125].  In another study, i.p. 

injections of FR-targeted liposomes into nude mice with a KB carcinoma prohibited 

tumor growth and increased survival greater than non-targeted formulations [136], 

whereas both the FR-targeted and non-targeted liposomes exhibited the same blood 

clearance profiles in the nude mice.  These results make it clear that decreased circulation 

time of FR-targeted liposomal nanocarriers needs to be further investigated with an 

emphasis on discovering methods to address the negative consequences of folate 

inclusion within liposomal formulations before therapeutic advantages are realized.    

3.2.5.6.  Use of Cleavable Phospholipid-PEG Chains in Liposomes 

In recent years, conjugates containing reversible disulphide linkages have been 

used by numerous investigators in drug delivery [140, 141].  Cleavable PEG conjugates 

have been utilized previously as mediators capable of destabilizing nanoparticles and 

promoting release of contents at the target site [142-144].  Some groups have investigated 

the use of cleavable PEG to stabilize pH sensitive liposomes to prolong circulation time 

in the bloodstream and demonstrated that these conjugates retain the ability to enable 

RES evasion in vivo [144].  Removal of the PEG coating was shown to destabilize the 
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liposomes promoting fusion and rapid release of liposomal contents in a pH dependent 

manner [142, 143, 145, 144].  In other studies, thiolytically cleavable PEG conjugates 

were used to trigger the release of drugs from inhalable agglomerated liposomes [146, 

147].   

Many different cleavable cross-linkers have been employed including those 

cleavable by matrix metalloproteinase [148, 149], acids [150], and most commonly, 

cysteine or other thiol reducing agents [142, 146, 147, 143, 151, 152, 145, 144].  Many 

conjugates containing reversible disulfide linkages have been studied to bind PEG to 

liposomal phospholipids including diothiobenzyl (DTB) [146, 145], 

dithiobis(succinimidyl propionate (DTSP) [142-144], and N-succinimidyl-3-(2-

pyridyldithio) propionate (SPDP) [151, 152].  Thiol reducible cross-linkers offer the 

advantage of precise control over cleavage since they require an externally delivered 

reducing agent such as cysteine, which is only present in the unbound, reduced form at 

low concentrations in the body (~10 µM in blood), to sever the linkage.  In addition, 

cysteine is innocuous to the body at the doses administered for cleavage (~1 mmol/kg).   

It has long been established that PEG chains are capable of creating a hydrophilic 

barrier around liposomes preventing binding of opsonins by steric hindrance and thereby 

preventing RES recognition.  It is expected that binding to opsonins responsible for RES 

clearance will be prevented and protein deposition decreased in the same manner when 

targeting ligands are attached to PEG chains of shorter length than adjacent PEGs.  By 

inhibiting the binding of plasma proteins to targeting ligands, longer PEG chains can 

effectively ‘mask’ targeting ligands and prevent clearance by the RES.  In recent years, 

conjugates containing reversible disulphide linkages have been shown to enable 
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prolonged liposome circulation in vivo [144].  In addition, studies have demonstrated that 

cleavage of these conjugates in vitro completely restores binding to target cells due to 

exposure of targeting moieties promoting cell association [75, 151, 149]. This suggests 

that cleavable PEG conjugates could also be utilized to mask targeting ligands to prevent 

RES recognition and clearance while the liposomes are in circulation and then allow 

binding to cells after cleaving the PEG chains at the tumor site to expose the targeting 

ligands.  By maximizing the passive accumulation of actively targeted liposomes to 

tumor while still retaining the ability to actively target tumor cells, the negative impact of 

targeting ligand insertion into liposomes can be addressed to realize the full potential of 

actively targeted formulations.  

3.3.  CONCLUSIONS 

The inadequacy of current treatments for glioma needs to be addressed through 

the development of new alternatives providing improved treatment efficacy.  Specifically, 

traditional systemically delivered chemotherapeutics are incapable of adequately 

accumulating in brain tumors and do not spare healthy tissues from the drug toxicity.  

Targeted chemotherapy using nanocarriers provides the opportunity for increased drug 

accumulation in tumor and minimized delivery to non-target organs.   

Liposomal nanocarriers offer much promise in the delivery of chemotherapeutic 

drugs to solid tumors because they are biocompatible, they exhibit efficient and stable 

drug loading allowing for the delivery of large drug payloads to tumors and bypass of 

multidrug resistance efflux pumps [27], and they protect encapsulated drugs from 

premature degradation while shielding healthy organs from the toxic side effects of 

incorporated chemotherapeutics.  Liposomes have been shown to favorably alter the 
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pharmacokinetics of encapsulated drug cargo.  Most importantly, because hydrophilic 

barriers may be created through the inclusion of polymers such as PEG and targeting 

agents are easily incorporated, both passive and active targeting of chemotherapeutic 

drugs to tumors may be achieved using liposomal nanocarriers. 

Since FR is known to be over-expressed by various tumors, numerous studies 

have investigated the use of incorporating folate as a targeting ligand into liposomal 

delivery vehicles loaded with DXR.  There are problems, however, associated with this 

approach that have not yet been addressed.  First, the incorporation of PEG is essential to 

allow prolonged circulation of FR-targeted liposomes, but the addition of this polymer 

hinders target cell association if it is longer than the PEG chains used to tether folate to 

the liposome, and drug uptake at the tumor site may be negatively affected as a result.  

Conversely, if shorter PEG chains are utilized, the attachment of folate to the exterior 

surface of liposomes has been shown to result in accelerated clearance of targeted 

formulations from plasma.   

Cleavable PEG chains provide a potential solution to the issue of folate exposure 

on liposomes.  They have been extensively studied for other liposomal applications and 

have demonstrated a proven ability to retain RES evasion capabilities of liposomes in 

vivo.  In addition, in vitro studies have verified that removal of cleavable PEG chains 

restores the targeting capacity of liposomal nanocarriers.  This suggests that the 

incorporation of a longer cysteine cleavable PEG conjugate into liposomal formulations 

should allow for enhanced control over folate exposure.  When the liposomes are in 

circulation, the long cleavable PEG chains will inhibit binding of plasma proteins and 

effectively ’mask’ the folate targeting ligands reducing RES clearance.  After 
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extravasating into the target site, liposomes will be treated with systemic cysteine, which 

should localize to tumors due to its small size, to cleave the PEG chains and expose the 

targeting ligands, thereby promoting target cell uptake due to receptor binding.  In this 

manner, folate is only exposed at the tumor site where it is needed and will not interfere 

with prolonged circulation of liposomes.  Ultimately, tumor drug accumulation should 

improve since circulating drug levels will be maintained and subsequent receptor binding 

and uptake will prevent retrograde movement of drug from tumor.  The following 

chapters further explore the consequences of folate inclusion within liposomal 

formulations and this novel approach to allow control at the nanoscale level by 

modulating the exposure of folate on liposomal nanocarriers.   
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CHAPTER 4.  EVALUATION OF ALTERNATIVE TARGETING 

AGENTS TO IMPROVE TREATMENT EFFICACY 

4.1.  INTRODUCTION 

Liposomal nanocarriers show vast potential in the field of chemotherapy 

particularly due to the demonstrated ability to passively accumulate to tumors increasing 

delivery to the target site while preventing uptake by non-target organs and reducing the 

side-effects commonly associated with traditional chemotherapeutics.  Passive targeting 

to tumors is due to increased vascular permeability at the tumor site combined with the 

prolonged circulation of liposomes in the bloodstream.  Elevated permeability results 

from the presence of enlarged interendothelial gaps along the emergent tumor 

vasculature, and an increased number of passages through the ‘leaky’ microvascular bed 

at the tumor site facilitates passive extravasation of liposomes.  Prolonged circulation 

times are achieved through steric stabilization of liposomes upon the attachment of 

polyethylene glycol (PEG) to the external surface preventing RES recognition and 

clearance of the nanocarriers.  While passive targeting of nanocarriers increases the 

delivery of chemotherapeutics to the tumor site, it does not facilitate uptake by the target 

cells after extravasation, therefore, active targeting agents are often incorporated to 

promote binding and uptake by tumor cells.  Unfortunately, the exposure of targeting 

agents on the liposomal surface has been shown to increase RES recognition of 

nanocarriers thus reducing passive targeting to tumors.  To address this issue, we have 

proposed controlling the exposure of targeting agents on the liposomal surface to enable 

both RES evasion and active tumor targeting.  An alternative approach to maintain the 

RES evasion capability of targeted liposomes involves the use of small peptides as 
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targeting agents.  Numerous studies have demonstrated that circulation times of 

PEGylated liposomes remain prolonged when small targeting agents such as peptides [1, 

2] or antibody fragments [3, 4] are utilized in lieu of their larger counterparts.  To further 

investigate the impact of targeting agent size on RES evasion and liposomal treatment 

efficacy, we have evaluated 2 targeted liposomal formulations.  The targeting agents 

utilized were a small peptide (1984 Da) targeted to aminopeptidase N and a large 

antibody (~150 kDa) targeted to the transferrin receptor. 

Aminopeptidase N (APN) is an ecto-enzyme involved in the activation of 

collagenase utilized for extracellular matrix degradation during tumor cell invasion [5].  

APN has also been identified to play an essential role in capillary tube formation during 

angiogenesis [6].  APN is an ideal target for chemotherapeutics because it has been 

shown to be expressed by angiogenic vessels, whereas expression is absent or minimal in 

established blood vessels [7].  In addition, a peptide motif (NGR) has been identified 

which binds the APN isoform expressed by tumor vessels and not the isoforms present in 

normal epithelial or myeloid cells [8] and delivery of numerous agents to angiogenic 

vessels has already been proven to be successful with this targeting agent [7, 9].  

Targeting to the tumor vasculature not only aids in the localization of drug at the tumor 

site but has also been shown to treat tumors indirectly through vascular damage and anti-

angiogenic effects making vascular targets ideal for liposomal delivery of 

chemotherapeutics [9, 10].  For the studies reported here, we have utilized a 19 amino 

acid peptide containing a NGR residue sequence targeted to aminopeptidase N (APN) as 

the targeting agent for liposomal DXR.  This longer sequence allowed for accessibility of 

the NGR motif for target cell binding while attached to the liposomal surface via 
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PEG3350.  A terminal cysteine was selected to allow for conjugation to maleimide groups 

on PEG chains bound to DSPE.  NGR was incorporated into the liposomal formulations 

so that it would be present on the external surface of the nanocarriers to enable active 

targeting to angiogenic vessels within tumor.  Formulations containing this small 

targeting peptide were investigated in vivo to determine the effects on circulation times in 

the bloodstream and treatment efficacy.   

In addition, we also investigated liposomal formulations targeted to the transferrin 

receptor (TfR), which is also known to be over-expressed by tumor vasculature [11-13].  

TfR is involved in the endocytosis and transcytosis of transferrin, the blood plasma 

protein for iron ion delivery [14].  It serves as an ideal target for liposomal 

chemotherapeutics because it has been shown to be expressed on both the tumor 

vasculature and tumor cell membranes [15, 16].  In addition, TfR has been shown to be 

selectively expressed by the brain capillary endothelium [12] and has been demonstrated 

to facilitate transcytosis of TfR-targeted liposomal drugs across the BBB [17].  The agent 

utilized to target TfR in these studies was a large antibody, OX26, conjugated to the 

distal ends of PEG2000.  Formulations targeted with this antibody to TfR were investigated 

in vivo to explore the effects on circulation times and biodistribution and the ability to 

prolong survival in tumor-inoculated animals.           

4.2.  MATERIALS AND METHODS 

4.2.1.  SYNTHESIS AND MICELLE FORMATION OF DSPE-PEG3350-NGR 

1,2-Distearoyl-sn-glycerophosphoethanolamine (DSPE)-PEG3350-NGR peptide 

was synthesized by methods similar to those described previously. Briefly, 6.06 µmol 

DSPE-PEG3350-maleimide and 6.55 µmol NGR peptide (GNGRGGVRSSSRTPSDKYC) 
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were dissolved in 600 µL DMSO before adding 5.4 mL deionized water and reacting at 

room temperature for 5 hours.  The micellar product was dialyzed to remove unreacted 

peptide and the final concentration was determined using a modified Lowry method (DC 

protein assay, Bio-Rad, Hercules, CA).   

4.2.2.  PREPARATION OF APN-TARGETED LIPOSOMAL NANOCARRIERS 

A 62:35:3 molar ratio of 1,2-distearoyl-sn-glycero-phosphocholine (DSPC, 

Genzyme, Cambridge, MA)/cholesterol (Sigma, St. Louis, MO)/DSPE-PEG2000 (Avanti 

Polar Lipids, Birmingham, AL) was dissolved in 1 mL of ethanol at 60 °C.  0.005% 

(mol) of fluorescent phospholipid (β-DPH, Invitrogen, Carlsbad, CA) was used to track 

phospholipid content. The lipids were hydrated with 9 mL 400 mM ammonium sulfate 

and extruded five times through a 0.2 μm and 10 times through a 0.1 μm Nucleopore 

membrane.  Liposome size was determined by dynamic light scattering (90 Plus Particle 

Size Analyzer, Brookhaven Instruments, Holtsville, NY). Liposomes were dialyzed 

against a phosphate-buffered saline solution to establish an ammonium sulfate gradient 

for doxorubicin loading.  NGR liposomes were prepared by adding DSPE-PEG3350-NGR 

peptide micelles to liposomes and heating at 60 °C for 1 h. Unincorporated micelles were 

removed through dialysis.  Liposomal NGR was determined using a DC protein assay 

(BioRad, Hercules, CA).  The number of NGR peptides per liposome was determined by 

a ligand to phospholipid ratio, assuming 120,000 phospholipid molecules per liposome 

where phospholipid content was quantified by DPH fluorescence, yielding a bulk average 

for the number of peptides per liposome. 
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4.2.3.  PREPARATION OF OX26 LIPOSOMAL NANOCARRIERS 

To fabricate OX26 liposomes, OX26 was thiolated with a 4:1 molar excess of 2-

iminothiolane (Sigma) by reacting at room temperature for 1 hour similar to methods 

described elsewhere [18].  OX26-thiol was added to liposomes formulated as described 

above from a 62:35:2:1 molar ratio of DSPC/cholesterol/DSPE-PEG2000/DSPE-PEG2000-

maleimide an allowed to react overnight with terminal maleimide groups on PEG2000.  

Unreacted OX26 was removed by size exclusion chromatography.  Amount of liposome-

coupled OX26 was determined by a Bradford dye-binding procedure (protein assay, Bio-

Rad, Hercules, CA) after lysis of liposomes with 20% SDS.  The number of OX26 

antibodies per liposome was determined by an antibody to phospholipid ratio as 

described above for APN peptide.   

4.2.4.  ACTIVE LOADING OF DOXORUBICIN INTO LIPOSOMES 

Following ligand incorporation or coupling, liposomes were loaded with 

doxorubicin (DXR, Henry Schein Inc., Melville, NY) via the ammonium sulfate gradient 

[19].  In brief, liposomes were mixed with DXR reconstituted in phosphate buffered 

saline and heated for 1 hour at 60°C.  Unencapsulated DXR was removed by dialysis.  

Loading efficiency was determined by a 480 nm absorbance reading after lysis with 5% 

TritonX100.   

4.2.5.  TUMOR CELL CULTURE 

9L cells (a kind gift from the University of California at San 

Francisco/Neurosurgery Tissue Bank) were maintained in MEM/EBSS supplemented 

with 10% FBS and 0.05 mg/mL gentamicin under conditions of 5% CO2 and 95% 

humidity.  9L cells were harvested with 0.05% trypsin/0.53 mM EDTA.  Cells were 
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counted with Trypan blue and a hemacytometer.  Prior to implantation, cells were 

resuspended in serum-free Leibovitz’s L-15 medium to a concentration of 2x108 cells/ml.  

4.2.6.  TUMOR INOCULATION  

All animal studies were conducted under a protocol approved by the Institutional 

Animal Care and Use Committee (IACUC) at Georgia Institute of Technology.  A rat 

glioma model was established by surgically implanting 2x106
 9L glioma cells into the 

frontal lobe of 11-12 week old male Fisher 344 rats.  During surgery, anesthesia was 

maintained through the administration of 2-3% inhalant isoflurane.  The incision site was 

shaved and the animal mounted in a stereotaxic frame.  The scalp was opened to expose 

the skull, and a burr hole was drilled 2 mm anterior and 2 mm lateral to the bregma.  9L 

glioma cells in 10 μl of Leibovitz’s L-15 medium were slowly injected into the frontal 

lobe through a 21-gauge needle at a depth of 3 mm.  The burr hole was then sealed with 

bone wax, and the scalp was sutured.   

4.2.7.  IMMUNOHISTOCHEMISTRY FOR CHARACTERIZATION OF APN EXPRESSION  

To ensure that inoculated 9L glioma tumors upregulate APN, explanted brains 

were examined for APN expression.  Twelve days after tumor inoculation, rats were 

anesthetized by an IP injection of 50, 10 and 1.67 mg/kg respectively of 

ketamine/xylazine/acetylpromazine and perfused with phosphate-buffered saline (PBS) 

containing heparin (1000 units/L) followed by 4% paraformaldehyde in PBS. Brains were 

explanted and stored in 4% paraformaldehyde for approximately 24 hours prior to being 

embedded in paraffin. Paraffin embedded tissues were sliced into 5 μm sections using a 

rotary microtome. Representative sections containing tumor were immunostained for 

APN. In brief, sections were deparaffinized and rehydrated using xylene and a graded 

78 



 

series of alcohols and then washed in PBS. Antigen retrieval was performed by 

incubating the slides in a citrate buffer (19.7 mM citric acid, 8.2 mM sodium citrate, pH 

6.0) at 80°C for 20 minutes and then treating with 0.1% trypsin in Tris buffered saline 

(136.9 mM NaCl, 20 mM Tris-HCl, pH 7.2) for 15 minutes at 37°C.  Sections were then 

washed with 0.1% Tween 20 in Tris buffered saline (TBST).  Endogenous peroxidase 

was blocked by treating with 1% H2O2 in PBS. After washing with TBST, sections were 

exposed to a mouse monoclonal antibody to APN (1 μg/ml) in TBST containing 4% 

normal goat serum overnight at 4°C.  Sections were then washed with TBST before 

applying anti-mouse poly horseradish peroxidase (Chemicon, Temecula, CA) for 30 

minutes at room temperature.  After washing with TBST, sections were exposed to DAB 

chromogen-buffer (Chemicon, Temecula, CA) for 20 minutes, washed with TBST, and 

counterstained with Harris’ hematoxylin.  

4.2.8.  SURVIVAL STUDIES EVALUATING TREATMENT EFFICACY 

Four days or 12 days after tumor inoculation, animals were treated with either a 

saline sham, non-targeted ‘Stealth’, or targeted liposomal DXR i.v. injection (10 mg/kg 

doxorubicin; ~60 mg/kg lipid) via tail vein. Equivalent volumes of 0.9% sterile saline 

solution were administered to animals receiving sham injections.  Animals selected to 

receive multiple treatments were administered either non-targeted or APN-targeted 

liposomal DXR (10 mg/kg) 7 days after receiving the initial treatment.  Tumor growth 

was allowed to progress until the animal showed signs of morbidity, at which point, 

interventional euthanasia was administered. Time of death was determined to be the 

following day.  

 

79 



 

4.2.9.  IN VIVO CIRCULATION STUDIES 

Adult, male Fisher 344 rats were given an i.v. injection of liposomal DXR (10 

mg/kg DXR; ~60 mg/kg lipid).  Each group of animals received one of the following 

formulations: non-targeted with 3% DSPE-PEG2000, APN-targeted with DSPE-PEG3350-

NGR and 3% DSPE-PEG2000, or TfR-targeted with DSPE-PEG2000-OX26 and 3% DSPE-

PEG2000.  Number of targeting agents incorporated within targeted liposomes was varied 

to determine the effect on circulation time.   Blood was collected from the orbital sinus 

immediately before injection and at various time points after injection.  Plasma was 

isolated from each blood sample by centrifuging at 2,200g for 15 minutes.  Plasma was 

diluted 1:4 with deionized water before mixing 200μl with 100μl of 10% Triton X-100, 

200μl of water, and 1500μl of acidified isopropanol (0.75N HCl).  Mixtures were stored 

overnight at -20°C to extract the drug and then warmed to room temperature and vortexed 

for 5 minutes.  The samples were then centrifuged at 15,000g for 20 minutes.  

Fluorescence of supernatants was analyzed to determine doxorubicin content (λex=485, 

λem=590).  Plasma samples obtained immediately prior to injection were used to correct 

for background fluorescence.  

4.2.10.  BIODISTRIBUTION IN TUMOR INOCULATED ANIMALS  

Thirteen days after glioma inoculation, when tumor was deemed large enough for 

explantation, an orbital blood sample was collected from each animal prior to treating 

with either a saline sham, non-targeted ‘Stealth’, or TfR-targeted liposomal DXR i.v. 

injection (10 mg/kg doxorubicin; ~60 mg/kg lipid) via tail vein. At each of two 

designated time points following injection (20 or 50 hours), DXR biodistribution was 

assessed.  Animals were anesthetized with an IP injection of 50, 10 and 1.67 mg/kg 
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respectively of ketamine/xylazine/acetylpromazine, and a cardiac blood sample was 

obtained.  Animals were then perfused with heparinized PBS (1000 units/L) to remove 

the blood.  The spleen, brain, heart, lungs, liver, and kidneys were explanted, washed 

with PBS, and blotted dry.  Tumor, identified by discoloration and variation in tissue 

texture, was dissected from the brain using a dissecting microscope at 7x magnification. 

Organs were weighed and frozen at -20°C until ready to be processed.  

Plasma was isolated from each cardiac blood sample obtained prior to perfusion 

by centrifuging at 2,200g for 15 minutes.  Plasma samples were stored at -20ºC until 

ready to be analyzed.  Doxorubicin was extracted from plasma and tissue samples in a 

manner similar to that described elsewhere [20].  Plasma was diluted 1:4 with water. 

Organs were homogenized in distilled, deionized water (20% wt/vol) using a Polytron 

Homogenizer (Brinkmann Instruments, Westbury, NY).  Homogenates and 25% plasma 

samples (200μl) were mixed with 100μl of 10% Triton X-100, 200μl of water, and 

1500μl of acidified isopropanol (0.75N HCl).  Mixtures were stored overnight at -20°C to 

extract the drug and then warmed to room temperature and vortexed for 5 minutes. The 

samples were then centrifuged at 15,000g for 20 minutes.  Fluorescence of supernatants 

was analyzed to determine doxorubicin content (λex=485, λem=590).  Organ samples from 

an animal treated with a saline sham i.v. injection and plasma samples obtained prior to 

doxorubicin injection were used to correct for background fluorescence.  

4.3.  RESULTS 

4.3.1.  IMMUNOHISTOCHEMISTRY FOR CHARACTERIZATION OF APN EXPRESSION  

While it has been previously established that APN is expressed by endothelial 

cells in angiogenic vessels [7, 8], there exists no information regarding expression by 9L  
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BA 

Figure 4.1.  Aminopeptidase N is selectively over-expressed by 9L glioma tumors in vivo.  
Immunohistochemical analysis reveals expression of APN in tumor 12 days after inoculation.  Brown 
horseradish peroxidase marks the location of APN in the fixed tissue.  (a) Normal brain tissue serves as a 
negative control.  (b) Tumor section obtained from Fisher 344 rat 12 days after intracranial 9L glioma 
tumor inoculation exhibiting elevated expression of APN.  Scale bars represent 100 μm. 

glioma.  To evaluate in vivo expression, an intracranial tumor model was developed and 

APN expression was examined through immunohistochemistry on explanted brain 

tumors.  The results confirmed that APN expression is elevated in intracranial 9L glioma 

compared to normal brain tissue (Figure 4.1).  The established tumor, 12 days after 

implantation, demonstrated uniformly distributed APN expression while APN was not 

detected in normal brain tissue.   

4.3.2.  SURVIVAL STUDIES EVALUATING TREATMENT EFFICACY 

Studies were performed to evaluate the therapeutic efficacy of non-targeted 

liposomal DXR compared to liposomal DXR targeted to APN or TfR.  Using non-

targeted and APN-targeted liposomes, the effect of treatment administration time point 

was examined.  APN-targeted liposomes were equivalent to non-targeted liposomes with 

approximately 500 NGR peptides incorporated for targeting to APN.  Animals received 

liposomal DXR either 4 or 12 days after tumor inoculation to determine the impact on 

treatment efficacy.  The results of these studies are displayed in Figure 4.2.  When 
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Figure 4.2.  Use of NGR peptide to target liposomal DXR to APN does not prolong survival of tumor-
bearing rats.  Animals received saline sham ( ), non-targeted ( ), or APN-targeted liposomal DXR ( ) 
i.v. 4 days (a) or 12 days (b) after tumor inoculation.  There was no difference in survival of animals 
receiving non-targeted or targeted liposomal DXR at either time-point.  Both liposomal treatments were 
able to prolong survival of tumor-bearing rats compared to saline-treated controls when administered 4 
days after tumor inoculation, however, when treatment was delayed to 12 days after tumor inoculation, no 
difference in survival times was observed.  Data represents mean ± SEM. 
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Figure 4.3.  Use of OX26 antibody to target liposomal DXR to TfR does not prolong survival of 
tumor-bearing rats.  Animals received a single dose of non-targeted ( ) or TfR-targeted liposomal DXR 
( ) i.v. 4 days after tumor inoculation.  A subset of animals received an additional dose of non-targeted 
( ) or TfR-targeted ( ) liposomal DXR 11 days after tumor inoculation.  There was no difference in 
survival of animals receiving non-targeted or targeted liposomal DXR under either treatment regimen.  The 
addition of a second treatment administration doubled the cumulative dose of DXR and had a detrimental 
effect on survival times.  Data represents mean ± SEM. 

animals received treatments 4 days after tumor inoculation, survival times of liposomal 

DXR treated animals were improved compared to saline-treated controls, however, there 

was no significant difference in survival between the groups receiving either non-targeted 

or APN-targeted liposomal DXR (Figure 4.2(a)).  When treatments were delayed and 

administered 12 days after tumor inoculation, survival times of treated animals did not 

demonstrate any improvement over saline-treated controls (Figure 4.2(b)).  In addition, as 

seen with animals receiving treatments 4 days after tumor inoculation, there was no 

significant difference in survival times between animals receiving non-targeted or APN-

targeted liposomal DXR 12 days after tumor implantation.    
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To investigate the impact of the use of larger targeting agents on therapeutic 

efficacy and to explore the effect of multiple treatment administration, additional survival 

studies were conducted on tumor bearing rats receiving either non-targeted or TfR-

targeted liposomal DXR.  Animals received treatments 4 days after tumor inoculation, 

and a subset of animals received an additional treatment 11 days after tumor inoculation.  

Survival was monitored, and the results of this study are exhibited in Figure 4.3.  No 

improvement in survival resulted upon the inclusion of OX26 for TfR targeting of 

liposomal DXR as demonstrated by the absence of a change in survival times between 

animals receiving non-targeted liposomal DXR compared to those receiving TfR-targeted 

liposomal DXR.  In addition, increasing the number of treatments administered to tumor-

bearing rats actually had a detrimental impact on survival times.   

4.3.3.  IN VIVO CIRCULATION STUDIES 

In vivo circulation studies were performed on rats receiving non-targeted, APN-

targeted, or TfR-targeted liposomal DXR to further explore the impact of targeting agent 

size and possibly elucidate the reason why an improvement in treatment efficacy was not 

observed in survival studies for animals receiving actively-targeted treatments.  Figure 

4.4 displays the results from the circulation study on rats receiving either non-targeted or 

APN-targeted liposomal DXR.  Circulation data were fitted to bi-exponential curves.  

Areas under the curves (AUCs) and plasma half-lives were determined for each 

formulation and are reported in the table inset of Figure 4.4.  Overall, the incorporation of 

APN-targeting NGR peptide into sterically stabilized liposomal DXR formulations had 

little effect on circulation times.  The AUCs were not significantly different between the 

3 formulations tested, and there was no difference between the plasma half-life of non- 
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Figure 4.4.  APN-targeted liposomes retain the ability to evade the RES.  Circulating levels of DXR in 
the bloodstream, expressed as a percentage of initial DXR concentration, over time in animals receiving an 
i.v. injection of Stealth NT ( ) (n=3) or APN-targeted liposomal DXR containing 500 ( ) (n=3) or 1000 
( ) (n=3) NGR peptides.  Data were fit to exponential curves to determine half-lives and AUC’s.  
Inclusion of targeting agents did not have a significant effect on calculated AUC.  A significant decrease in 
half-life was observed when the number of NGR peptides inserted was increased from 500 to 1000 
(*p=0.0192, ANOVA), although there was no significant difference in half-life between liposomes targeted 
with 1000 NGR peptides and Stealth NT liposomes.  Data represent mean ± SEM.     

targeted liposomes compared to either APN-targeted formulation.  There was a 

significant decrease in half-life when the number of NGR peptides was increased from 

500 to 1000; however, the latter formulation displayed a half-life that was comparable to 

that obtained with non-targeted liposomes demonstrating that this formulation retained 

the ability to evade the RES. 

A dramatic difference in the circulation study results was observed when a larger 

targeting agent, OX26, was employed in liposomal formulations targeted to TfR (Figure 

4.5).  After fitting circulation data to bi-exponential curves, plasma half-lives and AUCs 

were compared and are displayed in the inset table in Figure 4.5.  Every targeted 
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Figure 4.5.  Inclusion of OX26 antibody to facilitate active targeting of sterically stabilized liposomes 
to TfR significantly decreases circulation times.  Circulating levels of DXR in the bloodstream, 
expressed as a percentage of initial DXR concentration, over time in animals receiving an i.v. injection of 
Stealth NT ( ) (n=3) or TfR-targeted liposomal DXR containing 4 ( ) (n=3), 6 ( ) (n=3), 10 ( ) (n=3), 
or 45 ( ) (n=3) OX26 antibodies.  Data were fit to exponential curves to determine half-lives and AUC’s.  
Inclusion of targeting agents had a significant and detrimental impact on calculated AUCs and plasma half-
lives (*p<0.0003, †p<0.007, ANOVA).  Data represent mean ± SEM.     

formulation tested exhibited a significant decrease in both plasma half-life and AUC 

compared to non-targeted liposome treated controls.  The addition of as few as 4 OX26 

antibodies decreased circulation half-life from 18.5 hours to a mere 47 minutes, and the 

AUC was reduced by a factor of 4.  Liposomes formulated with higher levels of OX26 

demonstrated even further reductions in half-lives and AUCs.          

4.3.4.  BIODISTRIBUTION IN TUMOR INOCULATED ANIMALS 

Additional studies were performed to determine biodistribution of DXR in tumor-

bearing animals after receiving either non-targeted or TfR-targeted liposomal DXR.  

Initially, studies were conducted on rats without tumors to determine ability to achieve  
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Figure 4.6.  Targeting to TfR with OX26 alters the biodistribution of liposomal DXR 20 hours after 
treatment administration.  Overall organ distribution (A) and brain uptake (B) of non-targeted liposomal 
DXR ( ) or TfR-targeted liposomal DXR containing 45 ( ) or 60 ( ) OX26 is shown.  *Statistically 
significant differences to non-targeted liposomes (Student’s t-test), p<0.05.  Values represent mean ± SEM.  
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delivery of drug to the brain through transcytosis across the BBB using 0, 45, or 60 OX26 

 were 

a 

 

ed in 

tion studies were performed on tumor-bearing animals 50 

hours a  

on-

ke 

in 50 hours after treatment administration 

was investigated using lower amounts of OX26 (4, 6, and 10 OX26 per liposome) for 

TfR-targeted liposomes to determine whether an improvement in delivery to the brain  

antibodies to target TfR (Figure 4.6).  Biodistribution was examined 20 hours after 

treatment administration.  As predicted by the circulation study, plasma DXR levels

significantly reduced in animals receiving TfR-targeted liposomes compared to those 

treated with non-targeted liposomes.  This reduction in plasma levels was reflected by 

significant increase in lung, liver, and brain levels of drug uptake.  The formulation 

containing 60 OX26 antibodies demonstrated a significant reduction in uptake by the

spleen compared to the 2 other formulations.  Levels of uptake by the heart were 

comparable for all 3 formulations.  Delivery to the brain was significantly increas

animals receiving TfR-targeted liposomes compared to those treated with non-targeted 

liposomes (Figure 4.6(b)).   

Additional biodistribu

fter the administration of either non-targeted liposomal DXR or TfR-targeted (45

OX26) liposomal DXR (Figure 4.7).  At this time point, in contrast to the 20-hour study, 

levels of TfR-targeted drug detected in the spleen were significantly increased compared 

to non-targeted controls.  Once again, there was a significant increase in uptake of 

targeted formulations by the brain compared to non-targeted liposomes.  For both n

targeted and targeted liposomes, uptake at the tumor site was significantly increased 

compared to brain uptake, however, there was no significant difference in tumor upta

between the 2 formulations (Figure 4.7(b)).      

Finally, delivery of liposomes to the bra
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Figure 4.7.  Targeting to TfR with OX26 alters the biodistribution of liposomal DXR 50 hours after 
treatment administration.  Overall organ distribution (A) and plasma, brain, and tumor uptake (B) of non-
targeted liposomal DXR ( ) or TfR-targeted liposomal DXR containing 45 OX26 ( ) is shown.  
*Statistically significant differences to non-targeted liposomes (Student’s t-test), p<0.05.  Values represent 
mean ± SEM.  
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could be achieved (Figure 4.8).  There was no significant difference in brain delivery of 

liposomes targeted with 4 OX26 compared to non-targeted controls, however uptake was 

significantly increased when liposomes containing either 6 or 10 OX26 antibodies per 

liposomes were administered.  It should be noted that brain uptake of these 2 

formulations was about half that observed at the same time point for targeted 

formulations composed with 45 OX26 per liposome (Figure 4.7(b)). 

4.4.  DISCUSSION  

The overall goal of these studies was to evaluate alterations in treatment 

performance in response to the incorporation of different targeting agents in liposomal 

 
Figure 4.8.  Targeting to TfR with lower levels of OX26 exposes the minimum number of antibodies 
necessary to achieve selective delivery to the brain 50 hours after treatment administration.  Brain 
uptake of non-target ed liposomal DXR ( ) or TfR-targeted liposomal DXR containing 4 ( ), 6 ( ), or 1
( ) OX26 per liposome is shown.  *Statistically significant differences to non-targeted liposom
(Student’s t-test), p<0.05.  Values represent mean ± SEM.  
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DXR formulations.  Two different targeting agents were investigated; the first, a small 

peptide, was presented as an alternative solution to the issue of targeting agent 

recognition and accelerated clearance by the RES reported for actively targeted 

liposomes.  This peptide containing the APN-targeting motif, NGR, has been reported to 

exhibit minimal immunogenicity in vivo and therefore, served as an ideal candidate in 

these attempts to maintain prolonged circulation of actively targeted liposomal 

nanocarriers.  In addition, immunohistochemistry verified that APN is upregulated within 

9L glioma tumors after implantation.  The presence of APN within tumor 12 days after 

tumor inoculation in our model verifies that this target is available for tumor cell 

targeting in addition to vascular targeting of liposomal formulations.  Survival studies 

8 days in this tumor model, completely eradicated the benefits of treatment.  In addition, 

hese 

formulations was also unable to im  tumor-bearing animals receiving 

a single ltiple 

utilizing APN-targeted liposomal DXR emphasized the importance of liposomal 

treatment administration time point in tumor-inoculated animals.  Delaying treatment by 

it was shown that the inclusion of NGR peptide intended to facilitate targeting to APN on 

both the tumor vasculature and the tumor cell membranes did not have a significant 

impact on survival times of glioma tumor-bearing animals receiving a single dose of 

liposomal DXR. 

An antibody to TfR, OX26, was the other targeting agent selected for t

studies.  Unfortunately, the inclusion of OX26 targeting agents in liposomal DXR 

prove the survival of

 dose of liposomal DXR.  In an effort to enhance treatment efficacy, a mu

treatment regimen was adopted, however, increasing the treatment administration 

frequency from a single to a double dose was actually detrimental to animal survival.  
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This may have been due to the treatment dose (10 mg/kg DXR) chosen for these

experiments.  Instead of maintaining a constant cumulative dose of 10 mg/kg, an

receiving two doses of DXR actually received a cumulative dose of 20 mg/kg.  Even 

though DXR was encapsulated within liposomes to decrease toxicity of the drug, this 

dosage may have been above the tolerable level for these animals.  To address th

a longer period between treatment administrations should be utilized to ensure that the 

original dose is entirely cleared and recovery from non-target damage is complete or the

individual doses should be reduced to maintain an equivalent cumulative treatmen

In an effort to determine why a positive impact on treatment efficacy was not 

achieved through the incorporation of APN-targeting peptides or TfR-targeting 

antibodies, in vivo circulation studies were performed to ensure that adequate circulating 

levels of drug were maintained in the bloodstream preserving the ability to passively 

target tumors.  It was shown that NGR peptides did not impact circulation times of 

liposomal nanocarriers.  This result was surprising given the inability of APN-targete

liposomal DXR to extend the survival of tumor-bearing rats.  Additional studies must

performed to dete

 

imals 

is issue, 

 

t dose. 

d 

 be 

rmine the reason why survival was not prolonged.  First and foremost, 

in vitro ieved 

elivery 

 of drug 

 uptake studies must be performed to verify that nuclear delivery may be ach

with APN-targeted liposomes.  Biodistribution studies would serve to ensure that d

across the BBB is possible using NGR peptides.  Finally, alternative treatment regimens 

may be explored determine whether an improvement in treatment efficacy may be 

achieved with APN-targeted liposomal DXR. 

While the inclusion of NGR peptides had little effect on the circulation of 

liposomes, OX26 antibodies had a severe detrimental impact on circulating levels
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in the bloodstream.  As few as 4 OX26 antibodies per liposome were shown to cause a 

significant reduction in both AUC and half-lives of TfR-targeted liposomes compared

non-targeted control liposomes.  Of these 2 targeting agents, the most obvious differen

is size.  In fact, there is a 75-fold difference in molecular weight between the NGR 

peptide and the OX26 antibody.  Presumably, however, it is not size alone which 

determines the ability to evade the RES particularly since other targeting agents smaller 

than the peptide reported here have been shown to accelerate clearance of liposomal 
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-targeted liposomes.  Many investigators 

have ut

h 

tions from the bloodstream upon incorporation [21, 22].  Other factors such as

polarity, hydrophobicity, overall surface charge, and targeting agent configuratio

other characteristics must also play a role in the ability of the RES to recognize these 

molecules on the surface of liposomal formulations and accelerate clearance from the

bloodstream.  The NGR motif has been shown in these studies and by others to be 

minimally immunogenic.  The primary reason suggested for the low immunogenicity of

NGR has been its ability to mimic natural proteins in the bloodstream.  The NGR motif is

present in natural proteins such as fibronectin which contains 4 NGR sequences [23].  

Structural similarities between the NGR motif and naturally present proteins may explain 

its ability to evade the RES [24].  Conversely, OX26 is much larger in size, presumably 

extending beyond the hydrophilic PEG barrier at the liposome surface, but more 

importantly, the antibody is of murine origin which most likely contributes to the 

triggered acceleration in RES clearance of TfR

ilized antibody fragments in lieu of entire antibodies to avoid Fc receptor-

mediated clearance [3, 4] and the results presented here emphasize this need, however, 

opting for antibody fragments may result in a reduction in antigen binding affinity whic
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should also be taken into consideration.  The entire OX26 antibody was utilized for these 

particular studies to ensure a vast difference in targeting agent size enabling comparison 

between 2 extremes. 

TfR-targeted formulations were further investigated in biodistribution stud

investigate the true impact of drastically reduced circulating levels of drug on the ability 

to achieve delivery to target sites.  Twenty hour biodistribution studies performed in t

absence of tumor demonstrated a significant reduction in circulating levels of drug in th

bloodstream when 45 or 60 OX26 antibodies were utilized for TfR targeting.  The 

primary clearance route accounting for these reductions appeared to be through the liv

which demonstrated a significant increase in uptake of targeted formulations.  An 

increase in delivery to the lungs was observed and may be attributed to binding to lu

TfR since uptake was incrementally increased as the number of OX26 antibodies was 

increased.  Uptake by the spleen was significantly reduced for liposomes targeted with 60 

OX26 compared to non-targeted formulations and TfR-targeted formulations containin

45 OX26 antibodies.  This may be due to RES recognition of maleimide at the terminal 

ends of unconjugated PEG chains and clearance via the spleen.  This difference in uptake

by the spleen was reversed 30 hours later when TfR-targeted liposomes surpassed

uptake of non-targeted liposomes.  This was accompanied by a reduction in liver le

targeted liposomes and may be due to either coagulation of TfR-targeted liposomes over 

time in the bloodstream which would favor RES clearance via the spleen or may b

to saturation of factors responsible for clearance via the liver forcing an increase in 

clearance through the spleen.   
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The major finding of the biodistribution studies was that brain levels of drug were

elevated (approximate

 

ly 4-8 fold) for targeted formulations (6, 10, 45, and 60 OX26) 

compar

 

d be 

 

e 

nd a 

very was achieved compared to non-targeted controls.  

The ina

he 

ed to non-targeted controls at both 20 hours and 50 hours, although brain uptake 

was relatively low in comparison to delivery to all of the other organs studied.  The fact 

that delivery across the BBB to the brain was significantly increased despite the dramatic

reduction in circulating levels of drug suggests that the presence of OX26 must 

significantly facilitate transcytosis across the BBB.  If plasma clearance issues coul

resolved, then delivery may be further improved.  Unfortunately, we showed that 

decreasing the number of OX26 antibodies to as low as 4 per liposome does not 

significantly improve circulation times and the biodistribution study performed after 

reducing the number of targeting antibodies from 45 to 4, 6, or 10 OX26, therefore, did

not demonstrate any further improvement in delivery to the brain.  Formulations with 6 

and 10 OX26 per liposome, however, did exhibit a significant increase in brain delivery 

compared to non-targeted controls and, as with liposomes containing 45 OX26, may hav

potential for targeting of liposomal nanocarriers to the brain if RES evasion can be 

restored for these formulations.  Liposomes formulated with 4 OX26 performed the worst 

in vivo since they still exhibited accelerated clearance by the RES and failed to achieve a 

significant increase in delivery to the brain.  

Unfortunately, uptake by the tumor was not enhanced by the inclusion of 45 

OX26 even though the maximum brain delivery was attained with this formulation a

significant increase in brain deli

bility of TfR-targeted liposomes to surpass tumor uptake of non-targeted 

liposomes despite significant increases in delivery to the brain is most likely because t
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transport mechanism is different between these 2 sites.  In healthy brain where the BBB 

is intact, delivery occurs through transcytosis via TfR; however, delivery to glioma, 

where the BBB is discontinuous, results primarily from the passive process of 

extravasation through the leaky vasculature at the tumor site.  This process is cri

dependent on circulating levels of drug, and therefore, the impact of accelerated clearanc

was more apparent in the case of delivery to the tumor. 

tically 

e 

4.5.  CONCLUSIONS 

These studies have emphasized the importance of careful consideration of 

targeting agent selection upon formulation of actively targeted liposomal nanocarriers.  

The small peptide investigated for APN targeting had no impact on liposome circulation 

times in the bloodstream, whereas the inclusion of as few as 4 OX26 antibodies had a 

severe detrimental effect on liposome performance in vivo.  Unfortunately, neither the 

inclusion of NGR peptide or OX26 targeting agents in liposomal DXR formulations was 

able to improve the survival of tumor-bearing animals receiving a single dose of 

liposomal DXR.  This result is explained by reduced circulating levels of drug in the case 

of TfR-targeted liposomes; however, additional studies with APN-targeted liposomes 

must be performed to determine why this formulation was unable to extend survival of 

tumor-bearing animals despite maintenance of prolonged circulation times.  We have 

successfully achieved an enhancement in drug delivery to the brain using TfR-targeted 

liposomes, which is significant considering the drastic reductions in circulation time upon 

inclusion of OX26 antibody as a targeting agent.  These results further stress the need to 

address reductions in circulation times of actively targeted liposomal formulations and 

demonstrate that the use of smaller targeting agents or those able to mimic naturally 
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occurring substances in the body may provide an option to allow both RES eva

active targeting in vivo. 

sion and 
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CHAPTER 5.  DECREASED CIRCULATION TIME OFFSETS 

INCREASED EFFICACY OF PEGYLATED NANOCARRIERS 

TARGETING FOLATE RECEPTORS OF GLIOMA 

 

As published with A.V. Annapragada and R.V. Bellamkonda, Nanotechnology, 18, 

(2007) 385101. 

5.1.  ABSTRACT 

Liposomal and other nanocarrier based drug delivery vehicles can localize to 

tumors through passive and/or active targeting.  Passively targeted liposomal nanocarriers 

accumulate in tumors via ‘leaky’ vasculature through the enhanced permeability and 

retention (EPR) effect.  Passive accumulation depends upon the circulation time and the 

degree of tumor vessel “leakiness”.  After extravasation, actively targeted liposomal 

nanocarriers efficiently deliver their payload by receptor-mediated uptake.  However, 

incorporation of targeting moieties can compromise circulation time in the blood due to 

recognition and clearance by the reticuloendothelial system, decreasing passive 

accumulation.  Here, we compare efficacy of passively targeted doxorubicin-loaded 

PEGylated liposomal nanocarriers to actively targeted liposomal nanocarriers in a rat 9L 

brain tumor model.  Although folate receptor (FR)-targeted liposomal nanocarriers had 

significantly reduced blood circulation time compared to PEGylated liposomal 

nanocarriers; intratumoral drug concentrations both at 20 and 50 h after administration 

were equal for both treatments. Both treatments significantly increased tumor-inoculated 

animal survival by 60-80% compared to non-treated controls, but no difference in 

survival was observed between FR-targeted and passively-targeted nanocarriers.  
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Therefore, alternate approaches allowing for active targeting without compromising 

circulation time may be important to fully realize the benefits of receptor-mediated active 

targeting of gliomas. 

5.2.  INTRODUCTION 

In the past few decades, liposomal nanocarriers have been extensively 

investigated as drug carriers for cancer therapy and have been found to offer many 

benefits when utilized for drug delivery.  One of the major benefits of PEGylated 

liposomal nanocarriers is their ability to evade the reticuloendothelial system (RES) and 

extend the circulation time of encapsulated drugs in the bloodstream.  PEG chains on the 

outer leaflet of the liposomal bilayer are thought to provide a steric barrier to opsonin 

binding resulting in RES evasion [1-8].  Prolonged circulation in the bloodstream results 

in enhanced extravasation at sites exhibiting increased vasculature permeability [9-12].  

For this reason, liposomal nanocarriers have shown increasing promise as drug delivery 

vehicles with the characteristic ability to passively accumulate in tumors and areas of 

injury.   

Circulation time is an important factor for nanocarrier therapy of tumors and 

consequently much effort has gone into designing and optimizing liposomal nanocarriers 

to exhibit prolonged circulation times.  Numerous studies have examined the effects of 

liposome size [13-15], charge [16], pH dependence [17], lipid composition [15, 18], 

cholesterol percentage [19], polymer incorporation [11], and degree of phospholipid 

saturation [20].  The results of these studies have confirmed that prolonged circulation is 

vital for passive targeting of liposomal nanocarriers at sites with “leaky” vasculature. 

Passive targeting is achieved when liposomal nanocarriers are formulated to evade the 
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RES and subsequently accumulate in areas with characteristic “leaky vasculature”, such 

as tumor sites or sites of injury.  Drainage in tumors is typically limited, and the 

liposomal nanocarriers are retained at the site.  This well-documented phenomenon has 

been designated the enhanced permeability and retention (EPR) effect and results in 

passive accumulation of liposomal nanocarriers at sites with compromised vasculature [9-

12].  

To further increase the efficacy of liposomal nanocarriers that reach the sites of 

interest, active targeting of drugs through the incorporation of targeting moieties on the 

exterior of nanocarriers has been explored.  Active targeting offers many benefits 

including decreased side effects due to reduced accumulation in non-target organs [21-

23].  When targeting moieties are included in the liposomal formulation, these carriers 

can be made to bind specifically to target cells and/or accumulate in areas of interest [24-

28].  Several studies have examined the use of ligands [29-33], small peptides [34, 35], or 

antibodies [26, 36-38] to target over-expressed agents present on or around target cells.  

Although active targeting of liposomal nanocarriers to tumors through the 

incorporation of targeting moieties has shown great promise in vitro, numerous in vivo 

studies utilizing targeting ligands designed to direct formulations to extravascular sites 

have not been as successful.  FR-targeted studies, in particular, have shown very little 

success on solid tumors in vivo [39, 40].  Limited success has been achieved with FR-

targeting in ascitic tumor models, but the increase in efficacy has been attributed to the 

fact that the tumors are disperse and do not limit drug diffusion or receptor binding [39, 

41-44].  It has been suggested that solid tumors are more difficult to treat because drug 

delivery is impeded by the local tumor environment.  High interstitial pressures 
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characteristic of tumors are known to prohibit transport of liposomal drugs beyond the 

perivascular space [45].  We suggest, and this study confirms, that while limited transport 

is a viable culprit, decreased circulating levels of drug also plays a substantial role in 

diminishing the success of these formulations.  In fact, when circulation is not 

compromised, for example in immune-deficient animals, FR-targeted liposomal 

treatments have demonstrated greater success on solid tumors [46].  In addition, a study 

utilizing an in vivo adoptive tumor growth assay, which is unaffected by pharmacokinetic 

parameters, exhibited a distinct advantage of FR-targeted formulations over non-targeted 

in inhibiting tumor growth [47]. 

Therefore, long circulation times and receptor-targeted uptake comprise the 2 

major facets of liposomal drug delivery, passive targeting and active targeting.   

Numerous studies have successfully documented the ability of targeted liposomal 

nanocarriers to bind specifically to target cells in vitro [29-31, 33, 47]; however, others 

have shown that the addition of targeting moieties often has a detrimental impact on RES 

evasion in vivo even when passive targeting methods, such as the inclusion of PEG, are 

used in combination [34, 39, 46, 48-50].  The liposomal drug delivery strategy to achieve 

the highest drug accumulation at the target site with limited uptake by non-target organs 

would ideally incorporate both active and passive methods of targeting where each 

method of delivery retains optimal performance.   

In the present study, we attempted to specifically target a chemotherapeutic drug, 

doxorubicin, to a folate receptor (FR) over-expressing intracranial tumor in 

immunocompetent rats using a liposomal delivery vehicle.  We chose a brain tumor 

model to perform these studies as it represents an invasive, non-localized tumor that is 
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difficult to treat by conventional methods such as surgical resection and/or radiation 

therapy.  These tumors typically exhibit projections into the brain demonstrating the 

diffuse and invasive nature of the disease.  The standard chemotherapeutic agents for 

brain tumors, nitrosoureas, have not been very effective as single agents and have failed 

to significantly improve survival times of patients compared with radiotherapy alone [51-

54].  For this reason, targeted chemotherapeutics are desirable.  We have chosen to target 

a chemotherapeutic, doxorubicin, to glioma using liposomal nanocarriers.  Doxorubicin 

was selected for encapsulation since it is fluorescent, allowing for ease of detection, and 

it can be actively and stably loaded into liposomal nanocarriers, allowing for large drug 

payloads.  In addition, doxorubicin has been shown to be more potent than nitrosoureas 

against glioma cells in vitro [55].  Liposomal doxorubicin has been investigated by 

several groups in the treatment of gliomas with promising results [56-58].  FR-targeted 

formulations have been studied extensively and represent an ideal targeting system [31, 

39-44, 46, 49, 59-61].  Numerous tumors have been identified that over-express FR, and 

FR-targeted liposomal nanocarriers have been shown to actively bind these malignant 

cells and subsequently undergo endocytosis.  Cellular uptake of FR-targeted liposomal 

nanocarriers has been shown to be dependent on the presence of adjacent PEG chains.  

Gabizon, et al. demonstrated that cell association of FR-targeted liposomal nanocarriers 

due to FR binding was completely inhibited when adjacent PEG chains were the same 

length as the folate-bearing PEG chains.  Lengthening the folate-bearing PEG chains 

allowed for a dramatic increase in binding of FR-targeted liposomal nanocarriers to target 

cells [62].  In previous studies, we have investigated the liposomal delivery of 

doxorubicin to glioma cells in vitro utilizing FR as a target.  We have previously 
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demonstrated that preferential uptake of doxorubicin by glioma cells can be achieved 

using FR-targeted liposomal nanocarriers containing an optimal number of targeting 

ligands [29].  For this study, folate-PEG conjugates were inserted into the bilayer of 

liposomal nanocarriers carrying doxorubicin to facilitate targeting to FR.  We 

investigated whether this technique increases the doxorubicin dosage received by tumor 

cells while reducing non-specific delivery to tissues, which do not over-express FR 

receptor.  In addition to dosage obtained at the tumor site, we evaluated delivery to non-

target organs, clearance times, and overall increase in survival of tumor inoculated 

rodents relative to non-targeted or untreated control rodents.  Ultimately, we examined 

the effect of converting a passively targeted formulation to actively targeted to determine 

whether the accompanying negative impact on passive accumulation offsets the benefit of 

active targeting.  The resultant data emphasize the need to consider the effects, both 

beneficial and detrimental, of active targeting when formulating targeted liposomal 

nanocarriers to tumors. 

5.3.  MATERIALS AND METHODS 

5.3.1.  MATERIALS 

A 9L glioma cell line was received as a generous donation from the Neurosurgery 

Tissue Bank at UCSF.  Minimal essential medium containing Earle’s balanced salt 

solution (MEM/EBSS) was purchased from Hyclone (Logan, UT).  Gentamicin (50 

mg/ml), fetal bovine serum (FBS), and Leibovitz’s L-15 medium were obtained from 

Gibco (Carlsbad, CA).  Trypsin-EDTA (0.05% trypsin, 0.53 mM EDTA) in Hanks’ 

balanced salt solution was purchased from Mediatech (Herndon, VA).  Heparin (1000 

USP units/ml), isoflurane, and doxorubicin were obtained from Baxter Healthcare 
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(Deerfield, IL).  Ketamine (100 mg/ml) was purchased from Fort Dodge Laboratories 

(Madison, NJ).  Marcaine (0.5%) was obtained from Abbott Laboratories (Abbott Park, 

IL).  Flunixin meglumine was purchased from Phoenix Scientific (San Marcos, CA).  

Xylazine (100 mg/ml) was purchased from The Butler Company (Dublin, OH).  

Acetylpromazine (10 mg/ml) was obtained from Boehringer Ingelheim (Ingelheim, 

Germany).  Trifluoroacetic acid (TFA) and triethylamine (TEA) were obtained from 

Fisher Scientific (Pittsburgh, PA).  Cholesterol, paraformaldehyde, and Triton X-100 

were purchased from Sigma (St. Louis, MO).  1,2-Distearoyl-sn-glycerophospho-choline 

(DSPC), 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), and 1,2-distearoyl-

sn-glycerophosphoethanolamine poly(ethylene glycol)2000 (DSPE-PEG2000) were obtained 

from Avanti Polar Lipids (Birmingham, AL).  t-Boc-HN-PEG3350-succinimidyl 

propionate (t-Boc-HN-PEG3350-SPA) was obtained from Shearwater Polymers (San 

Carlos, CA).  A monoclonal antibody to nestin (mAb 353, IgG1) was purchased from 

Chemicon (Temecula, CA).  Dialysis tubing (10,000 and 100,000 molecular weight cut-

off) was purchased from Spectra/Por (Dominguez, CA).  All animals were purchased 

from Harlan (Indianapolis, IN) and maintained on a folic acid deficient diet (<0.05 ppm) 

containing 1% succinylsulfathiozole obtained from Purina TestDiet (Richmond, IN).  A 

stereotaxic frame was purchased from Kopf Instruments (Tujunga, CA) and utilized for 

tumor inoculation surgeries. 

5.3.2.  LIPOSOME FORMULATION 

Liposomal nanocarriers were formulated using methods similar to those described 

elsewhere [63, 64].  In brief, a 62:35:3 molar ratio of DSPC:cholesterol:DSPE-PEG2000 

was dissolved in ethanol (60ºC) and then hydrated with 400 mM ammonium sulfate 
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buffer.  The addition of 3% DSPE-PEG2000 was to enable RES evasion.  The solution was 

extruded 5 times through a 0.2 μm filter and then 10 times through a 0.1 μm filter using a 

10 ml Lipex Thermoline extruder (Northern Lipids, Vancouver, British Columbia, 

Canada) at 60ºC.  Liposomal nanocarriers were then dialyzed against decreasing 

concentrations of sodium chloride buffer to remove ethanol and establish an ammonium 

sulfate gradient used to facilitate doxorubicin loading.  The average diameter of extruded 

liposomal nanocarriers was verified by dynamic light scattering (Brookhaven Instruments 

Corporation, Holtsville, NY) and determined to be approximately 110-115nm. 

5.3.3.  DSPE-PEG3350-FOLATE CONJUGATE SYNTHESIS 

Since folate was to be utilized as a targeting ligand, it was necessary to formulate 

a DSPE-PEG3350-folate conjugate to allow insertion into the liposomal bilayer.  A longer 

PEG chain (PEG3350) than those used to confer steric stabilization (PEG2000) was utilized 

to avoid the documented interference with FR binding when shorter PEG chains are used 

[62].  First, a DSPE-PEG3350-amine was synthesized according to methods described 

elsewhere [65].  Briefly, t-Boc-HN-PEG3350-SPA was dissolved in chloroform and mixed 

with DSPE followed by TEA (~1:1:3 molar ratio).  The solution was heated to 60ºC for 5 

minutes and then mixed overnight at room temperature.  The chloroform was rotary 

evaporated, and the residue was taken up with acetonitrile.  The unreacted DSPE was 

precipitated by storing the mixture at 4°C for 6 hours.  The solution was then centrifuged 

to remove the unreacted DSPE, evaporated, and dried over P2O5 under vacuum.  A 10% 

solution of TFA in methylene chloride was added to the DSPE-PEG3350-t-Boc product 

and mixed at 0°C for 2 hours.  The mixture was then washed 4 times with chloroform to 

remove the TFA and rehydrated with water.  The solution was dialyzed (100,000 
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MWCO) against water to remove unreacted Boc-PEG3350-amine and then lyophilized to 

yield the DSPE-PEG3350-amine product.         

Next, the DSPE-PEG3350-Folate conjugate was formed by previously described 

methods [29, 62].  Briefly, 36.8 mg of folate was dissolved in 1.415 ml of dry DMSO 

before adding 190 mg of DSPE-PEG3350-amine, 600 µl of pyridine, and 46 mg of 

dicyclohexyl carbodiimide (DCC).  The mixture was allowed to react for 4 hours at room 

temperature.  The solution was rotary evaporated to remove pyridine and rehydrated with 

17.5 ml water.  Insoluble by-products were removed by centrifugation at 10,000g.  The 

supernatant was dialyzed (100,000 MWCO) twice against 2 L 50 mM NaCl and three 

times against 2 L water.  The retentate was then lyophilized to yield the final product, 

which was analyzed by thin-layer chromatography, 1H NMR, and mass spectroscopy.  

Rf=0.49 in 1.48 N ammonium hydroxide.  1H NMR (CDCl3 solvent): DPPE [0.84 ppm 

(t), 1.2, 1.5(d), 2.25(d), 2.9(t), 3.1(t), 5.04(m)], PEG [3.3 ppm], and folic acid [1.91, 2.03, 

2.3(t), 4.33(m), 4.48(d), 6.5(d), 6.93(t), 7.64(d), 8.12(d), 8.6(s)].  MW=3144Da.  

5.3.4.  DSPE-PEG3350-FOLATE INSERTION INTO PREFORMED LIPOSOMAL 

NANOCARRIERS 

Folate-conjugates were inserted into preformed liposomal nanocarriers to create 

FR-targeted liposomal formulations.  Non-targeted liposomal nanocarriers did not receive 

conjugates for insertion.  Conjugate insertion was performed according to methods 

previously described [29, 66].  Briefly, DSPE-PEG3350-folate conjugates were micellized 

by dissolving in DMSO (60°C) to a concentration of 28 mM and then diluting 1:10 with 

water for a final concentration of 2.8 mM conjugate in 10% DMSO.  Micelles were 

dialyzed (10,000 MWCO) twice against 1 L water to remove DMSO.  Folate content of 
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the retentate was determined by measuring UV absorbance at 285 nm wavelength of 

micelles lysed in 10% SDS using a UV-visible spectrophotometer (Shimadzu Scientific 

Instruments Model 1601, Columbia, MD).  Folate-conjugate micelles were then mixed 

with liposomal nanocarriers to achieve a concentration of 0.15% of the total lipid 

formulation.  Our previous in vitro studies have demonstrated that maximum 

differentiation in drug uptake between malignant and cortical cells was achieved with 

0.2% folate-conjugate insertion in the absence of adjacent DSPE-PEG2000 chains [29].  

0.15% folate-conjugate was inserted to generate the FR-targeted formulations for these in 

vivo studies since the insertion of higher numbers was partially hindered by adjacent 

DSPE-PEG2000 chains and this number allowed for consistent insertion efficiencies.  

Previous in vitro studies from our lab have also demonstrated that FR-targeted 

formulations containing as little as 0.05% folate-conjugate bind efficiently to malignant 

cells, consequently this reduction in targeting ligand insertion would still promote 

targeting to tumor cells [29].  The micelle/liposome mixture was then heated to 60°C for 

1 hour to allow insertion.  Afterwards, the liposomal nanocarriers were cooled on ice and 

then dialyzed (100,000 MWCO) to remove any ammonium sulfate or unincorporated 

folate-conjugates from the external phase of the liposomal nanocarriers.  To verify 

adequate insertion, the folate content in the liposomal formulation was then analyzed by 

measuring the UV absorbance at 285 nm after lysing the liposomal nanocarriers with 

10% SDS. 

5.3.5.  REMOTE LOADING OF DOXORUBICIN 

Doxorubicin was loaded into the liposomal nanocarriers using an ammonium 

sulfate gradient as previously described [64].  In brief, liposomal nanocarriers were 
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mixed with doxorubicin reconstituted in PBS (15 mg/ml) at a ratio of 0.16 mg 

doxorubicin to 1 mg of lipid and heated to 60°C for 1 hour.  The liposomal nanocarriers 

were then immediately cooled on ice and subsequently dialyzed to remove any remaining 

doxorubicin. The formulations were sterilized by passing through a 0.2 μm filter.  Final 

doxorubicin content was assessed by lysing the liposomal nanocarriers with 5% Triton X-

100 at 60°C and measuring the UV absorbance at 480 nm. 

5.3.6.  PLASMA CLEARANCE 

In an effort to separate the effects of RES clearance and extravasation into tumor, 

these studies were performed in animals without tumors.  Animals were given an 

intravenous (IV) injection of either non-targeted (n=5) or FR-targeted liposomal 

doxorubicin (n=5) via tail vein (10 mg/kg doxorubicin; ~60 mg/kg lipid).  Blood was 

collected from the orbital sinus immediately before injection and at 1, 3, 12, 16, 22, 48, 

and 92 hours after injection.  Plasma was isolated by centrifugation (2,200g, 15 min).  

Liposomal nanocarriers were lysed by treating with 5% Triton X-100 and heating to 60ºC 

for 20 minutes.  To accurately detect low levels of doxorubicin, fluorescent readings were 

obtained.  Total doxorubicin content of each sample was analyzed (λex=485, λem=590) 

using a fluorescence spectrometer (BIO-TEK, Synergy HT, Winooski, VT).  Plasma 

samples obtained immediately prior to injection were used to correct for background 

fluorescence.   

5.3.7.  9L GLIOMA CELL CULTURE 

A 9L glioma cell line was maintained in MEM/EBSS medium supplemented with 

10% fetal bovine serum and 0.05 mg/ml gentamicin.  Cells were passaged by 
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trypsinization and washed with growth medium.  Prior to implantation, cells were 

resuspended in serum-free Leibovitz’s L-15 medium to a concentration of 2x108 cells/ml. 

5.3.8.  TUMOR INOCULATION 

A rat glioma model was established by surgically implanting 2x106 9L glioma 

cells into the frontal lobe of 11-12 week old male Fisher 344 rats.  All procedures were 

conducted under a protocol approved by the Institutional Animal Care and Use 

Committee (IACUC) at Georgia Institute of Technology.  Animals were fed a folate-free 

diet containing 1% succinylsulfathiozole for approximately 18 days prior to surgery.  

Folate was eliminated from the diet in an attempt to prevent competitive binding of 

dietary folate to the folate receptors on tumor cells and to avoid possible down regulation 

of tumor FR after implantation.  Although other studies have shown exclusion of dietary 

folate to have no effect on tumor uptake of exogenous folate, a succinylsulfathiozole 

supplement was not utilized to eliminate production of folate by the enteric microflora 

[39].  In addition, a study utilizing J6456 lymphoma in vivo demonstrated a quick down 

regulation of tumor FR expression when animals were kept on a normal folate-enriched 

diet [46].  Therefore, in our study, animals were maintained on the folate deficient diet 

for a minimum of 3 weeks prior to treatment as this has been proven adequate to 

sufficiently lower folate concentrations to a level comparable to that of humans [46].  

During surgery, anesthesia was maintained through the administration of 2-3% inhalant 

isoflurane.  The incision site was shaved and the animal mounted in a stereotaxic frame.  

The scalp was opened to expose the skull, and a burr hole was drilled 2 mm anterior and 

2 mm lateral to the bregma.  2 x 106 9L glioma cells in 10µl of Leibovitz’s L-15 medium 

were slowly injected into the frontal lobe through a 21-gauge needle at a depth of 3 mm 
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below the brain surface.  The burr hole was then sealed with bone wax, and the scalp was 

sutured closed.  Animals received 5 ml Lactated Ringer’s solution through intraperitoneal 

(IP) injection and a subcutaneous injection of 0.5% marcaine at the wound site.   Flunixin 

meglumine (2.5 mg/kg) was administered through an intramuscular injection to alleviate 

pain as needed.     

5.3.9.   IMMUNOHISTOCHEMISTRY FOR CHARACTERIZATION OF ANGIOGENESIS 

To ensure that the injection of liposomal nanocarriers would occur after the onset 

of angiogenesis, explanted brains were examined for new blood vessel formation.  Four 

days after tumor inoculation, rats were anesthetized by an IP injection of 50, 10 and 1.67 

mg/kg respectively of ketamine/xylazine/acetylpromazine and perfused with phosphate-

buffered saline (PBS) containing heparin (1000 units/L) followed by 4% 

paraformaldehyde in PBS.  Brains were explanted and stored in 4% paraformaldehyde for 

approximately 24 hours prior to being embedded in paraffin.  Paraffin embedded tissues 

were sliced into 5 μm sections using a rotary microtome.  Representative sections 

containing tumor were immunostained for nestin, a marker of angiogenesis.  In brief, 

sections were deparaffinized and rehydrated using xylene and a graded series of alcohols 

and then washed in PBS.  Endogenous peroxidase was blocked by treating with 1% H2O2 

in PBS, and the sections were treated with proteinase K (1 μg/ml) for antigen retrieval.  

After washing with PBS and permeabilizing with 0.5% saponin in PBS, sections were 

exposed to a mouse monoclonal antibody to nestin (1 μg/ml) in PBS containing 1% horse 

serum for 1 hour.  Sections were then washed twice with PBS before applying the 

biotinylated secondary antibody in 0.5% saponin in 1% normal horse serum in PBS for 1 

hour at room temperature.  Slides were washed with PBS and incubated for 45 minutes 
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with Vectastain Elite ABC Reagent.  Afterwards, sections were washed with PBS and 

then sterile deionized water and exposed to the Vector DAB substrate (0.067% in tris 

buffered saline with 0.024% H2O2).  The reaction was terminated by washing with PBS, 

and the sections were then counterstained with Harris’ hematoxylin.        

5.3.10.    BIODISTRIBUTION IN TUMOUR INOCULATED ANIMALS 

Thirteen days after glioma inoculation, when tumor was deemed large enough for 

explantation, an orbital blood sample was collected from each animal prior to treating 

with either a saline sham, non-targeted ‘Stealth’ (20 hrs: n=8; 50 hrs: n=8), or FR-

targeted (20 hrs: n=7; 50 hrs: n=10) liposomal doxorubicin IV injection (10 mg/kg 

doxorubicin; ~60 mg/kg lipid) via tail vein.  At each of two designated time points 

following injection (20 or 50 hours), doxorubicin biodistribution was assessed.  

Numerous investigators have reported liposomal accumulation in tumor to peak around 

48 hours [39, 67, 68], which lead to the selection of the 50 hour time point for this study.  

The earlier time point (20 hours) was selected since it has been reported that FR-targeted 

liposomal nanocarriers may have an increased accumulation in tumor compared to non-

targeted liposomal nanocarriers at earlier time points [39].  At each time point after 

doxorubicin administration, animals were anesthetized with an IP injection of 50, 10 and 

1.67 mg/kg respectively of ketamine/xylazine/acetylpromazine, and a cardiac blood 

sample was obtained.  Animals were then perfused with heparinized PBS (1000 units/L) 

to remove the blood.  The spleen, brain, heart, lungs, liver, and kidneys were explanted, 

washed with PBS, and blotted dry.  Tumor, identified by discoloration and variation in 

tissue texture, was dissected from the brain using a dissecting microscope at 7x 

magnification.  Organs were weighed and frozen at -20°C until ready to be processed.  
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Plasma was isolated from each cardiac blood sample obtained prior to perfusion by 

centrifuging at 2,200g for 15 minutes.  Plasma samples were stored at -20ºC until ready 

to be analyzed.  Doxorubicin was extracted from plasma and tissue samples in a manner 

similar to that described elsewhere [69].  Plasma was diluted 1:4 with water.  Organs 

were homogenized in distilled, deionized water (20% wt/vol) using a Polytron 

Homogenizer (Brinkmann Instruments, Westbury, NY).  Homogenates and 25% plasma 

samples (200µl) were mixed with 100µl of 10% Triton X-100, 200µl of water, and 

1500µl of acidified isopropanol (0.75N HCl).  Mixtures were stored overnight at -20°C to 

extract the drug and then warmed to room temperature and vortexed for 5 minutes.  The 

samples were then centrifuged at 15,000g for 20 minutes. Fluorescence of supernatants 

was analyzed to determine doxorubicin content (λex=485, λem=590).  Organ samples from 

an animal treated with a saline sham IV injection and plasma samples obtained prior to 

doxorubicin injection were used to correct for background fluorescence. 

5.3.11.    SURVIVAL STUDIES 

Four days after tumor inoculation, animals were treated with either a saline sham 

(n=5), non-targeted ‘Stealth’ (n=6), or FR-targeted (n=6) liposomal doxorubicin IV 

injection (10 mg/kg doxorubicin; ~60 mg/kg lipid) via tail vein.  Equivalent volumes of 

0.9% sterile saline solution were administered to animals receiving sham injections.  

Tumor growth was allowed to progress until the animal showed signs of morbidity, at 

which point, interventional euthanasia was administered.  Time of death was determined 

to be the following day. 
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5.4.  RESULTS   

5.4.1.  PLASMA CLEARANCE STUDIES 

Analysis of doxorubicin in plasma samples obtained from treated rats revealed 

that the insertion of 0.15% folate-conjugates into liposomal nanocarriers resulted in 

accelerated clearance from blood plasma (Figure 5.1).  ANOVA revealed that the plasma 

clearance was significantly different between the two formulations (p<0.001).  Within the 

first hour, the rapid reduction in circulating FR-targeted liposomal doxorubicin resulted 

in a 20% difference in plasma levels of FR-Targeted doxorubicin compared to non-

targeted.  Circulation data were fitted to bi- exponential curves.  Areas under the curves 
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Figure 5.1.  Plasma clearance of liposomal doxorubicin formulations.  Accelerated clearance of FR-
targeted liposomal formulations was exhibited by the rapid decrease of doxorubicin in the blood following 
an IV injection of 10 mg/kg liposomal doxorubicin.  Plasma clearance of FR-targeted formulations was 
significantly higher than clearance of non-targeted liposomal nanocarriers as determined by ANOVA 
(p<0.001).  Both formulations included 3% DSPE-PEG2000 to promote RES evasion.  Blood samples were 
collected from the orbital sinus at various time-points, and drug concentration was determined by 
fluorometry.  Error bars represent standard error of means. Areas under the curves and plasma half-lives 
were calculated for each formulation and are reported in the inset table. 
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and plasma half-lives were determined for each formulation and are reported in Figure 

4.1.  The incorporation of 0.15% folate-conjugates resulted in a 41.8% reduction in AUC.  

Formulations containing 0.2% folate-conjugates were also investigated and found to 

exhibit a further decrease in circulation times demonstrated by a 61.9% reduction in AUC 

compared to non-targeted liposomal doxorubicin (data not shown). 

5.4.2.  TUMOR GROWTH CURVE 

A growth curve was established to record tumor progression over time in 

untreated rats (Figure 5.2).  The growth curve data was used to determine inter-animal 

variability in tumor growth and to verify our ability to consistently inoculate tumor.  

Tumor volume was shown to increase exponentially with a doubling time of 1.7 days for 

the intracranial 9L tumor model.  Tumors were reliably produced in every animal  
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 Figure 5.2.  9L glioma growth curve in Fisher 344 rats.  Tumor volumes were determined through 
histological analysis.  Representative slices stained with cresyl violet from brains explanted at each time 
point show tumor cross-sections (dark areas).  Data is fitted to an exponential curve.  Error bars represent 
standard error of means. 

118 



 

 

following stereotaxic implantation.  Histological examination revealed that the tumors 

were infiltrative into normal brain tissue (data not shown).  

5.4.3.  NESTIN EXPRESSION 

Angiogenesis is necessary for effective IV delivery of drug to tumors.  For brain 

tumors, in particular, the formation of new blood vessels is critical because it disrupts the 

blood-brain barrier.  Therefore, we performed immunohistochemistry to determine the 

onset of angiogenesis in our intracranial tumor model.  Immunohistochemistry results 

confirmed that angiogenesis initiates as early as 4 days following tumor inoculation 

(Figure 5.3).  Nestin, an intermediate filament protein expressed by neuroepithelial stem 

cells, was present in the tumor at this time point indicating the formation of new 

microvessels (Figure 5.3(b),(c),(d)).  This protein was not detected in normal brain tissue 

(Figure 5.3(a)).  The presence of new vessels 4 days after tumor inoculation in our model 

makes liposomal drug delivery to tumor feasible at this time point.  Since treatments are 

typically most effective at an early time point, day 4 was chosen to be the treatment day 

for survival studies.   

5.4.4.  ORGAN DISTRIBUTION STUDIES 

Organ analysis for doxorubicin content showed that the majority of drug was 

cleared by the liver and spleen for both formulations (Figure 5.4).  RES saturation is 

unlikely since the lipid levels did not exceed those reported to cause saturation [70].  In 

addition, we did not observe an acceleration of clearance as the plasma levels dropped, 

which would have been indicative of RES saturation.  Doxorubicin levels in the kidneys 

were comparable between the two different formulations.  Plasma doxorubicin levels, 
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Figure 5.3.  Nestin expression in normal brain and 9L glioma tumor.  Immunohistochemical analysis 
reveals expression of nestin, a marker for angiogenesis, in tumor 4 days after inoculation.  Brown 
horseradish peroxidase marks the location of nestin in the fixed tissue.  (a) Normal brain tissue serves as a 
negative control.  (b) Tumor section obtained from Fisher 344 rat 4 days after intracranial 9L glioma tumor 
inoculation exhibiting elevated expression of nestin.  Scale bars represent 200 μm.  (c,d) Magnifications of 
tumor image (b) displaying nestin staining along microvessel walls.  Scale bars represent 20 μm. 

however, were significantly different between the two formulations at each time point.  

FR-targeted formulations showed lower plasma levels compared to non-targeted 

formulations at both 20 and 50 hours confirming the data obtained from our plasma 

clearance study.   Plasma doxorubicin levels decreased significantly over time for both 

formulations.  Spleen doxorubicin levels also decreased over time, however, the 

reduction was only statistically significant for FR-targeted formulations as determined by 

Student’s t-test. 
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Figure 5.4.  Biodistribution of liposomal doxorubicin formulations in Fisher 344 rats with 9L glioma 
tumor.  Animals received 10 mg/kg doxorubicin IV in either non-targeted or FR-targeted liposomal 
nanocarriers.  Fisher 344 rats were euthanized (a) 20 hours or (b) 50 hours after doxorubicin 
administration.  Doxorubicin content in each organ (ng/mg) and within the plasma (µg/ml) was determined 
through fluorometric analysis.  At both time points, plasma doxorubicin concentrations in animals treated 
with FR-targeted doxorubicin were significantly lower (p<0.01, p<0.001) and liver concentrations were 
significantly higher (p<0.01, p<0.002) than animals receiving non-targeted formulations (Student’s t-test).  
Inset graphs illustrate tumor and brain doxorubicin levels.  At 50 hours, both groups exhibited significantly 
higher doxorubicin levels in tumor compared to brain (p<0.01).  Error bars represent standard error of 
means. 
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Tumor doxorubicin levels were not significantly different between the two 

formulations at each time point despite the significantly lower amount of FR-targeted 

doxorubicin in the plasma.  Doxorubicin tumor levels for non-targeted formulations 

decreased 6.5% from 20 to 50 hours, which was accompanied by a 27% reduction in 

plasma levels.   In contrast, a 3% increase in tumor levels was observed over the same 

time period for FR-targeted formulations despite the corresponding 65% reduction in 

plasma doxorubicin levels.  Both formulations exhibited higher doxorubicin content in 

the tumor compared to normal brain tissue at 20 and 50 hours, however, elevated 

doxorubicin levels in tumors were only statistically significant at the 50 hour time point.  
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Figure 5.5.  Survival of Fisher 344 rats with 9L glioma tumor in response to treatment.  Intracranial 
tumor implantation occurred on day 0, and treatments were administered 4 days later.  Liposomal 
doxorubicin was administered IV at a dose of 10 mg/kg.  Animals in the saline sham group received 
equivalent volumes of 0.9% saline IV.  Survival was monitored daily as described in Materials and 
Methods.  Survival of animals receiving liposomal doxorubicin was significantly increased over saline 
treated animals (p<0.02), however there was no significant difference in survival between animals 
receiving either non-targeted or FR-targeted liposomal doxorubicin (Student’s t-test). 
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5.4.5.  SURVIVAL STUDIES 

The therapeutic effect of the non-targeted and FR-targeted treatments was 

determined by comparing the respective survival times in response to treatment type 

(Figure 5.5).  Treatments were administered IV at a doxorubicin dosage of 10 mg/kg four 

days after tumor inoculation when new blood vessels have begun to emerge.  Equivalent 

volumes of saline were administered for untreated animals.  The data show a statistically 

significant increase in survival time for both non-targeted (p=0.004) and FR-targeted 

(p=0.01) treatments when compared to a saline sham injection as determined by 

Student’s t-test.  However, there was not a significant difference in survival between the 

non-targeted and FR-targeted liposomal treatments. 

5.5.  DISCUSSION 

The present study was designed to explore the relative benefits of actively 

targeted FR compared to passively targeted ‘Stealth’ liposomal nanocarriers.  Numerous 

in vitro studies have reported gains in targeting efficiency of liposomal nanocarriers to 

tumor cells through the inclusion of folate [29, 31, 41-44, 46, 49, 71].  While in this study 

tumor accumulation and survival were no different when compared to passively targeted 

Stealth liposomal nanocarriers, the fact that this occurred in spite of significantly 

compromised circulation time points to the advantages of active targeting on tumor 

states.  We hypothesize that the increase in clearance exhibited by FR-targeted liposomal 

nanocarriers was due to recognition of folate by the RES.  Exposure of folate on the 

liposomal surface is believed to elicit an interaction between liposomal nanocarriers and 

factors responsible for RES clearance.  This interaction occurs even though PEG is 

included in the liposomal formulation.  Increasing the numbers of PEG chains beyond 3% 
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in the liposomal formulation was not attempted because we have previously determined 

that increasing the number of PEG molecules tends to hinder insertion of folate-PEG3350-

DSPE conjugates into the liposome bilayer and might compromise the access of folate to 

its receptor on tumor cells.  The observed marked reduction in circulation times of FR-

targeted formulations, while significant,  was not as dramatic as that reported for 

formulations utilizing antibodies as targeting moieties [37, 50], but was slightly higher 

than that reported in a similar study utilizing a higher lipid dose in mice [39].  

Survival studies verified that the inclusion of folate in the liposomal formulations 

did not extend survival beyond that achieved by passively targeted ‘Stealth’ liposomal 

nanocarriers. While this is consistent with the equivalent accumulation of doxorubicin in 

tumors in both cases, it is also possible that survival as the ultimate endpoint of this study 

is not sufficiently sensitive to assess differences in behavior of single doses. It is possible 

that because this tumor model exhibits exponential growth, a single injection may not be 

capable of halting growth enough to cause a substantial increase in survival.  Tumor 

growth probably recovers rapidly following a single injection of chemotherapeutic 

making it impossible to see an effect weeks later.  Even if tumor size was reduced to a 

larger degree by the targeted formulations, the aggressiveness of the tumor to recur and 

the ease to expand within an empty void may have made it impossible to ultimately 

resolve a difference in survival times.  Numerous studies, in fact, have demonstrated 

greater success in extending survival times of animals and tumor accumulation of drug 

when multiple treatments are administered [67, 72].  The administration of multiple 

treatments may have revealed a difference in efficacy between the targeted and non-

targeted liposomal treatments in the current study; however, this was not attempted 
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because our ultimate goal was to compare passively targeted and actively targeted 

formulations using a single treatment regimen to examine the effects of active targeting 

more closely. 

To determine why survival times remained unaffected despite the inclusion of 

folate, biodistribution studies were performed to evaluate drug content in the vital organs.  

A significantly higher liver accumulation of FR-targeted over non-targeted liposomal 

nanocarriers (20 hours: p<0.01, 50 hours: p<0.001) obtained from this study suggests that 

the liver is primarily responsible for the accelerated plasma clearance observed for FR-

targeted formulations.  This is either due to specific targeting to the folate receptors on 

hepatic cells or a result of opsonization of FR-targeted formulations resulting in clearance 

through the liver.  Since kidney levels were comparable for both formulations, we are 

confident that both formulations are equally stable and do not ‘leak’ doxorubicin. 

Therefore, significant reduction in plasma levels of FR-targeted drug compared to non-

targeted observed at each time point was due to accelerated RES clearance.   

Comparable amounts of drug were attained in the tumor for both formulations 

despite significantly lower plasma levels of FR-targeted drug at each time point.  Passive 

accumulation of liposomal nanocarriers at pathological sites has been shown to be a 

function of circulation kinetics [73].  This is true up to a certain lipid dose, at which 

saturation of tumor with liposomal nanocarriers would occur.  The fact that FR-targeted 

liposomal nanocarriers demonstrated decreased plasma levels suggests that tumor 

accumulation of doxorubicin should have been proportionately lower compared to non-

targeted, however, this was not the case.  Saturation of tumor with doxorubicin is an 

unlikely cause of this result since tumor levels continued to increase over time, and even 
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at the maximum accumulation levels, it is estimated that only 18% of the tumor 

interstitial volume would have been occupied by liposomal nanocarriers.  Total percent of 

interstitial volume occupied by liposomal nanocarriers was calculated assuming a tumor 

density close to 1 g/cm3 and an interstitial volume fraction of 0.4 as determined by 

previous investigators [74].  

Since it is assumed that the tumor input of doxorubicin is decreased for FR-

targeted formulations due to lower circulating levels, the fact that comparable drug levels 

were discovered in the tumors suggests that FR-targeted formulations may have been 

retained to a better degree within the tumor due to the presence of the folate ligand. 

While we acknowledge the fact that direct evidence for active targeting and enhanced 

retention is not reported in this study, others have demonstrated that active targeting to 

cells obtained from solid mass tumors with FR-targeted liposomal formulations is 

achievable in vivo [44].  In addition, the relationship between circulation time and passive 

targeting of liposomes to tumor sites is well established [70, 73, 75].  Decreased 

circulating levels of liposomes have been proven to lead to decreased tumor uptake; 

however, this was not the case in our studies presumably due to active targeting and 

improved retention of targeted formulations at the tumor site.  Altering the dosage of 

lipids (number of nanocarriers) administered was not attempted because higher dosages 

would have led to RES saturation and lower dosages would have resulted in a further 

reduction in passive targeting to tumor.  We did attempt to increase the amount of 

targeting ligand present on the liposomes in an effort to enhance the ability to actively 

target tumor and overcome the loss in circulation time, however, this simply resulted in 

even lower circulating levels of liposomes in the bloodstream further strengthening our 
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thesis that the presence of folate causes the accelerated clearance.  Decreasing the amount 

of folate present on the liposomes was not attempted because our previous in vitro studies 

have indicated that this would lead to a reduction in tumor targeting [29].  These studies 

reinforce the central finding of this report: while active targeting and retention at the 

tumor site confers a major advantage of FR-targeted over non-targeted formulations, 

decreases in nanocarrier circulating time effectively offset the gain in drug retention 

resulting in comparable survival times with both treatments.   

The results obtained from these experiments stress the importance of carefully 

considering all of the effects related to active targeting.   There exists a definite need to 

properly balance the effects of passive and active targeting when preparing liposomal 

formulations.  Potential therapeutic formulations must be tailored so that the benefits of 

active targeting are not offset by a potential decrease in circulating levels of drug.  To 

address this need, special considerations must be made upon the inclusion of targeting 

moieties to not only allow for adequate drug targeting, but also ensure that time spent in 

circulation is not compromised. 

5.6.  CONCLUSIONS 

To date, the majority of studies utilizing FR-targeted formulations have shown 

very modest, if any, improvements in treatment efficacy.  Lack of success achieved with 

FR-targeted formulations has been attributed to the limitations on the transport of 

liposomal nanocarriers within solid tumors.  We believe, however, that the inability to 

improve treatment efficacy with targeted liposomal nanocarriers in vivo may also be due, 

in part, to the losses in passive accumulation in tumors due to compromised circulation 

times associated with actively targeted formulations.  This information contributes to the 
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current understanding of how potential therapeutic formulations may be tailored to 

address the combined effects of drug retention in tumor and time spent in circulation.  If 

plasma clearance issues can be resolved, the ability to specifically target 

chemotherapeutics to malignant brain tumors would alleviate some of the issues 

associated with current therapies and possibly allow for improved prognoses. 
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CHAPTER 6.  MASKING AND TRIGGERED UNMASKING OF 

TARGETING LIGANDS ON NANOCARRIERS IMPROVES DRUG 

DELIVERY TO BRAIN TUMORS 

 

As prepared for submission to Nature Materials with E. Karathanasis, A.V. Annapragada 

and R.V. Bellamkonda. 

6.1.  ABSTRACT 

Long-circulating nanocarriers have been extensively studied to deliver 

chemotherapeutics, however, inclusion of targeting agents compromises circulation times 

and passive accumulation at tumors thereby offsetting the benefits of active targeting.  

Here, we utilize cysteine cleavable phospholipid-polyethylene glycol (PEG) to ‘mask’ 

targeting ligands on nanocarriers, prolong circulation times, enhance passive tumor 

targeting, and, after cysteine infusion to detach PEG and expose folate, promote active 

targeting to tumor cells.  In vivo blood circulation studies verified the ‘masking’ ability of 

cleavable phospholipid-PEG, and modulation of uptake and cytotoxicity of nanocarriers 

using cleavable phospholipid-PEG was demonstrated through in vitro studies.  Finally, 

studies analyzing uptake by tumor cells in vivo confirmed enhanced delivery when 

tumor-inoculated animals received targeted liposomes containing cleavable PEG 

followed by a cysteine infusion to expose folate. These results indicate that cleavable 

phospholipid-PEG can be used in nanocarrier formulations for controlled masking and 

unmasking of targeting ligands to enhance efficacy of targeted chemotherapeutics. 
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6.2.  INTRODUCTION 

The ability to specifically target systemically delivered chemotherapeutics to 

tumors offers potential advantages over conventional non-targeted chemotherapy, most 

notably a reduction in toxic drug side effects due to decreased delivery to non-target 

organs [1-3].  Receptor-targeted nanocarriers can be used to package drugs and facilitate 

delivery of high drug payloads to tumors while shielding healthy organs and limiting 

degradation of drug [4, 5].  Long circulating nanocarriers, in particular, have been studied 

extensively as delivery vehicles for chemotherapeutics due to the inherent ability to 

preferentially accumulate in solid tumors by passive convective transport through leaky 

endothelium (a process termed extravasation) [6-9].  The long blood residence time and 

repeated passage through the microvascular bed results in high intratumoral 

concentrations.  The efficacy of these passively targeted nanocarriers is dependent on the 

extent of their extravasation to tumors.  The degree of passive accumulation in turn is 

dependent on the nanocarrier circulation time [10].  While passive targeting of 

nanocarriers results in accumulation of drug at the target site, in vitro studies have shown 

that uptake by cells is limited unless a targeting agent is utilized to promote active 

targeting to cells [11-15].  Unfortunately, we have recently demonstrated that there is an 

inherent optimization problem as the properties that confer prolonged nanocarrier 

circulation times, such as the sphere of hydration made possible by incorporation of 

polyethylene glycol (PEG), are compromised by the presence of receptor targeting 

ligands on nanocarrier surface [16].  As a result of the incorporation of targeting moieties 

into nanocarriers, reduced circulation times substantially decrease passive dosing of 

tumors [16-22].  This consequence partially accounts for the limited success of receptor-
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targeted nanocarriers in vivo despite the promising results of in vitro experiments [18, 

23].  In this study, we demonstrate an elegant solution that masks the targeting ligands 

while in circulation, and unmasks the ligands after extravasation to the tumors solving the 

optimization conundrum (Figure 6.1). 

 

 
Figure 6.1.  Schematic depicting FR-targeted nanocarrier options.  A) When attached to PEG chains 
longer than those incorporated for RES evasion, folate targeting ligands are readily recognized by the RES 
resulting in accelerated clearance.  These liposomes are often removed from circulation before 
extravasation to the target site is achieved.  B) Longer PEG chains conceal folate from the RES but hinder 
receptor-mediated uptake by target cells over-expressing the folate receptor.  C) Long cysteine-cleavable 
PEG-phospholipid conjugates mask folate during circulation to enable passive targeting to tumor but may 
be removed through the administration of cysteine at a later time after a majority of the nanocarriers have 
extravasated to the target site.  Resultant exposure of folate enables targeting to cells over-expressing the 
folate receptor.   

 

Here, we report a novel multifunctional nanocarrier system using a cleavable 

PEG-lipid conjugate to allow for precise control over ligand access beyond the stealth 

PEG layer on the nanocarrier surface.  PEG chains are capable of creating a hydrophilic 

barrier around liposomes preventing binding of opsonins by steric hindrance and thereby 

preventing recognition by the reticuloendothelial system (RES) which consists of 

phagocytic cells responsible for clearance of nanoparticles from circulation [24-28].  

Therefore, protein deposition and the binding of opsonins responsible for RES clearance 

should be prevented and the targeting ligands ‘masked’ when they are presented on PEG 
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chains shorter than adjacent PEG chains conferring the hydrophilic, stealth coating on the 

nanocarriers.   

The cleavable conjugate reported consists of a phospholipid bound to PEG5000 via 

a disulfide bridge and is incorporated into the bilayer of receptor-targeted liposomes.  

While present, the cleavable PEG5000 conjugates conceal the targeting ligands (folate), 

which are conjugated to PEG2000, from the immune system allowing for prolonged 

circulation times and passive targeting to tumor.  Once the desired amount of drug is 

passively delivered to the tumor, active targeting is initiated through cleavage of the 

disulfide bridge and removal of PEG5000 from the liposomes.  Targeting ligands are then 

exposed to promote active targeting and uptake by tumor cells.  This distinct ability to 

control the method of targeting using a cleavable PEG conjugate allows for maximization 

of both passive and active targeting while reducing the detrimental effects of targeting 

ligand incorporation. 

Many strategies have been employed to develop conjugates for triggered drug 

delivery systems cleavable by mild acidic pH [29-31], thiols [29-36] or matrix 

metalloproteinase [37, 38]. Thiol reducible cross-linkers offer the advantage of precise 

control over cleavage since they require an externally delivered reducing agent such as 

cysteine, which is only present in the unbound, reduced form at low concentrations in the 

body (~10 µM in blood), to sever the linkage.  In addition, cysteine is innocuous to the 

body at the doses administered for cleavage (~1 mmol/kg).  For these reasons, a cysteine-

cleavable phospholipid PEG conjugate was selected as the ideal candidate for this 

‘triggerable’ receptor-targeting liposomal system.  As a test system, we chose folate as 

the targeting ligand, targeting folate receptors on a rat glioblastoma model.  Folate is a 
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versatile tumor targeting ligand, and the folate receptor has been shown to be over-

expressed in tumors of the ovary, lung, colon, endometrium, brain, breast, and kidney 

[39]. 

 The following data demonstrate our ability to design these multifunctional 

nanocarriers with the ability to 1) conceal targeting ligands, 2) expose targeting ligands 

on demand, 3) enable receptor mediated targeting, and 4) deliver large payloads of drug 

into the nucleus of target cells.   

6.3.  RESULTS AND DISCUSSION 

To test this liposomal system, we first synthesized a cysteine-cleavable conjugate 

by linking a lipid, distearoyl-phosphatidyl ethanolamine (DSPE), to a PEG5000 via a 

disulfide bridge using methods similar to those described elsewhere [34, 36, 40, 41].  

NMR and mass spectroscopy verified the structure of the final conjugate, DSPE-S-S-

PEG5000, which had a purity of 85% with the remaining being inert compounds (see 

methods for details on characterization).   

The thiolytic cleavability of the conjugate was confirmed by treating micellar 

conjugate with cysteine. Upon exposure to cysteine, the parent spot on thin layer 

chromatography (Rf=0.25) disappeared while the native lipid (Rf=0.05) and PEG 

(Rf=0.5) appeared. The degree of cleavage was quantified via normal-phase HPLC 

analysis which confirmed that treatment with a 10-fold excess of cysteine resulted in 

fragmentation of 86% of the conjugate (data not shown).  

In vivo plasma clearance studies were performed to determine the minimal 

percentage of DSPE-S-S-PEG5000 required to adequately mask DSPE-PEG2000-folate on 
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Table 6.1.  Phospholipid-PEG components (mol %) for each nanocarrier formulation. 

Formulation 
% DSPE-
PEG2000 

% DSPE-
PEG5000 

% DSPE-S-S-
PEG5000 

% DSPE-
PEG2000-folate 

%DSPE-
PEG3350-folate 

Conventional NT 0 0 0 0 0 
Conventional FRT 0 0 0 0.15 0 
Noncleavable NT 0 8 0 0 0 
Noncleavable FRT 0 8 0 0.15 0 
Cleavable NT 0 0 8 0 0 
Cleavable FRT 0 0 8 0.15 0 
Stealth NT 3 0 0 0 0 
Traditional FRT 3 0 0 0 0.15 
 

 

 the surface of the liposomes and achieve circulation times comparable to those obtained 

with non-targeted ‘Stealth’ formulations.  All procedures were conducted under a 

protocol approved by the Institutional Animal Care and Use Committee (IACUC).  Male 

Fisher rats received different types of liposomal nanocarriers encapsulating a 

chemotherapeutic, doxorubicin (DXR), intravenously (i.v.) and orbital blood samples 

were obtained at various time points and analyzed for doxorubicin content.  Table 6.1 

contains details regarding formulation components for all treatments used in these 

studies.  The cleavable FRT formulation containing 8 mol% DSPE-S-S-PEG5000 

demonstrated optimal in vivo circulation performance compared to other percentages of 

DSPE-S-S-PEG tested and is included in Figure 6.2 which displays the percentage of 

initial DXR in plasma over time for animals receiving either non-targeted liposomes 

(Stealth NT), masked folate-targeted liposomes (Cleavable FRT), or traditional folate-

targeted liposomes (Traditional FRT).  This plot clearly shows that cleavable FRT 

formulations circulate better than traditional FRT liposomes having a significantly longer 

plasma half-life (p<0.0001) and greater AUC0..25 (p<0.0001) and AUC0..∞ (p=0.0001) as 

determined by ANOVA.  These results indicate that this level of cleavable conjugate is 

capable of concealing DSPE-PEG2000-folate from the RES.  In fact, the circulation profile 
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of this ‘masked’ FRT formulation is comparable to that of Stealth NT liposomes actually 

outperforming the Stealth NT nanocarriers for the first 25 hours after injection.  The slow 

acceleration in plasma clearance over time exhibited by the cleavable FRT formulation is 

presumably due to the low levels (~10 µM) of reduced thiols naturally present in the 

bloodstream slowly cleaving some the PEG chains from the liposomes and gradually 

exposing folate which accelerates RES clearance.  The AUC and half-life of cleavable 

FRT formulations, however, are still dramatically increased compared to traditional FRT  
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Figure 6.2. Inclusion of 8% DSPE-S-S-PEG5000 prolongs circulation of FR-targeted nanocarriers.  
Circulating levels of DXR in the bloodstream, expressed as a percentage of initial DXR concentration, over 
time in animals receiving an i.v. injection of Stealth NT ( ) (n=3) or cleavable FRT ( ) (n=3) liposomal 
DXR.  Data were fit to exponential curves to determine half-lives and AUC’s.  The cleavable FRT 
formulation shown contained 8% DSPE-S-S-PEG5000 and demonstrated improved circulation time 
compared to the traditional FRT formulation reported in Chapter 5 exhibiting a significant increase in both 
AUC and half life (ANOVA).  The half-lives and AUC’s from t=0 to 25 hours of Stealth NT and cleavable 
FRT nanocarriers were similar demonstrating the ability of DSPE-S-S-PEG5000 to adequately mask folate 
from the RES duing this timeframe, however, the AUC calculated from t=0 to infinity for Stealth NT 
liposomes was significantly greater than the AUC of cleavable FRT liposomes (ANOVA).  Data represent 
mean ± SEM.     
 

Cleavable FRT 27.4±1.42 1911.6±45.8 3868.2±186.0 
   p < 0.0078 

*
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liposomes despite this gradual cleavage of PEG.  These data prove that DSPE-PEG2000-

folate can be concealed by DSPE-S-S-PEG5000 in vivo enabling RES evasion and 

prolonged circulation times.  

 

 

Figure 6.3.  DSPE-S-S-PEG5000 enables triggered uptake of DXR encapsulated within liposomal 
nanocarriers by glioma cells.  Confocal images demonstrate DXR uptake (red) by cells and delivery to 
DAPI-stained cell nuclei (blue).  Cells received either unaltered formulations (A-D) or those pre-treated 
with cysteine (E-H). Treatment with Stealth NT formulations (A and E) resulted in negligible DXR uptake, 
whereas cells treated with conventional FRT (B and F) demonstrated bright red staining indicative of DXR 
uptake.  The addition of non-cleavable FRT liposomes did not result in DXR uptake by cells (panels C and 
G).  Cleavable FRT liposomes were not taken up by cells (D) unless pre-treated with cysteine to remove 
PEG chains and expose folate (H).  Cells receiving cysteine-treated cleavable FRT liposomes demonstrated 
bright red staining which was co-localized with DAPI (blue) indicating nuclear localization similar to that 
exhibited by cells treated with conventional FRT nanocarriers (B and F).  Scale bars represent 20 µm. 

 

In vitro studies were performed to evaluate our ability to precisely control ligand 

presentation and cellular uptake and cytotoxicity using 8% cysteine-cleavable DSPE-S-S-

PEG5000.  9L glioma cells were exposed to DXR encapsulated in Stealth NT liposomes, 

conventional FRT liposomes, non-cleavable FRT liposomes, or cleavable FRT liposomes 

(see Table 6.1 for formulation details).  Treatments were either applied directly to cells or 
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after pre-treatment with cysteine.  In addition, excess folate was added to a subset of 

treatments before being applied to cells.  Images of cells were obtained through confocal 

microscopy after 1 hour treatment exposure (Figure 6.3).  Cells treated with Stealth NT 

formulations demonstrated negligible uptake with or without cysteine pre-treatment, 

while those treated with conventional FRT liposomes exhibited substantial uptake and 

nuclear localization of DXR under both conditions.  These data demonstrate the need for 

active targeting to facilitate uptake and nuclear localization of liposomal therapeutics.  

When applied without cysteine pre-treatment, “masked” FRT formulations containing 

either non-cleavable or cleavable DSPE-PEG5000 were not internalized by cells.  Pre-

treatment with cysteine, however, considerably enhanced cellular uptake of cleavable 

FRT liposomes.  When treatments were applied in the presence of excess folate, uptake 

of conventional FRT and cysteine-treated cleavable FRT liposomes was considerably 

reduced (data not shown).  The outcome of these studies indicates that removal of 

PEG5000 chains is necessary to expose folate and promote cellular uptake of FRT 

formulations.  In addition, these data prove that cleavage of PEG5000 and controlled 

exposure of folate is achievable with cysteine and subsequently results in uptake of 

liposomes by glioma cells.   

Cytotoxicity of each formulation was determined by evaluating cell viability after 

treatment exposure to ensure that not only targeted uptake was achieved but that the 

extent of DXR uptake was cytotoxic (Figure 6.4).  Cells exposed to Stealth NT liposomal 

DXR remained largely unaffected by treatment application and exhibited approximately 

100% viability under all four conditions.  Conventional FRT liposomal DXR 

demonstrated a significant (p<0.0001) increase in cytotoxicity exhibited by a dramatic 
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reduction in cell viability.  The addition of excess folate significantly (p<0.0001) reduced 

the cytotoxicity verifying that uptake occurred via the folate receptor.  Cysteine had no 

effect on cytotoxicity, and the results obtained from cells receiving cysteine treated 

conventional FRT liposomes in the presence of excess folate were comparable to those 

resulting from treatment application (without cysteine pre-treatment) in the presence of 

excess folate.  “Masked” formulations (both cleavable and non-cleavable FRT) did not 

demonstrate any cytotoxic effects with or without excess folate, and cysteine had no 

effect on the cytotoxicity of non-cleavable FRT liposomes.  Pre-treatment with cysteine, 

however, did significantly (p<0.0001) decrease viability of cells treated with cleavable  

 

 

Figure 6.4.  Cytotoxicity of liposomal DXR is controllably altered through the inclusion of DSPE-S-S-
PEG5000.  Percent viability of cells after treatment with liposomal DXR formulations is shown.  Treatments 
were applied alone ( ) , with excess folate ( ) , cysteine-treated ( ) , or with excess folate and cysteine 
pre-treatment ( ) .  Stealth NT nanocarrier DXR did not demonstrate any cytotoxic effect on 9L glioma 
cells under any of these conditions.  Conventional FRT DXR was considerably cytotoxic except in the 
presence of excess folate verifying that uptake occurred via the folate receptor.  Cells treated with non-
cleavable FRT liposomal DXR did not exhibit any decrease in viability.  Treatment with cleavable FRT 
nanocarrier DXR did not alter cell viability unless the formulations were pre-treated with cysteine.  The 
addition of excess folate to cells receiving cysteine-cleaved FRT liposomes resulted in a significant 
increase in cell viability indicating that folate sufficiently blocked uptake via folate receptors.  Data 
represent mean ± SEM.  
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FRT liposomes verifying that the application of cysteine allows for controlled release of 

PEG5000 and exposure of folate to facilitate cellular uptake of drug.  When excess folate 

was applied to cells exposed to cysteine treated cleavable FRT liposomal DXR, 

cytotoxicity was significantly (p<0.0001) decreased due to competitive inhibition 

confirming that uptake of ‘unmasked’ FRT formulations occurred via the folate receptor.  

Cleavable NT formulations were also investigated and did not demonstrate any effect on 

cellular viability with or without cysteine pre-treatment (see supplementary data).  These 

results support the data obtained from in vitro uptake studies and clearly demonstrate that 

cytotoxic effect of targeted liposomal DXR can be manipulated through the inclusion of 

cleavable PEG conjugates that conceal targeting ligands.   

Results from studies conducted to determine the lethal concentration that kills 

50% of the cells (LC50) of select formulations corroborate the outcome of the cytotoxicity 

studies (Figure 6.4 inset).   The LC50 of free DXR on 9L glioma cells was very low (1.6 

µM) as was the LC50 of conventional FRT liposomal DXR (4.2 µM).  Masked 

formulations, however, were not cytotoxic at any of the concentrations tested (0-60 µM).  

Upon the addition of cysteine, cleavable FRT liposomal DXR exhibited a substantial 

reduction in LC50 (9.2 µM) verifying successful removal of PEG5000 and exposure of 

folate due to cysteine cleavage of the conjugate disulfide bridges.  These studies 

demonstrate that cleavable phospholipid-PEG conjugates can be inserted into targeted 

nanocarriers to enable precise control over cytotoxic effects.   

To determine intracellular uptake of systemically delivered nanocarriers by tumor 

cells in vivo and the ability to control uptake using cleavable PEG, we performed studies 

on brain tumor-bearing rats (9L/LacZ glioma model) receiving either Stealth NT 
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liposomes or cleavable FRT liposomes encapsulating a fluorochrome (ADS645WS) and a 

subsequent infusion of either saline or cysteine.  Animals were euthanized, tumors were 

dissociated and stained for β-gal production, and cells were analyzed through flow 

cytometry.  Cultured 9L/LacZ cells and nontransfected 9L glioma cells were stained and 

served as positive and negative controls, respectively, for β-gal production.  Cytometric 

detection of β-gal in the 9L/LacZ glioma tumors delineated two populations of cells, β-

gal(+) tumor cells and β-gal(-) nontumor cells.  The β-gal(-) populations exhibited 

similar, minimal ADS645WS staining intensity per cell regardless of treatment type (NT 

+/- cysteine, FRT +/- cysteine) indicating that the uptake of liposomes by nontumor cells 

was nominal (Figure 6.5).  The β-gal(+) population of cells obtained from animals 

receiving cleavable FRT liposomes followed up by a cysteine infusion, however, 

demonstrated a significant shift in liposome uptake indicated by an increase in 

ADS645WS signal detected in the APC channel (Figure 6.5d).  β-gal(+) cells obtained  

 

Figure 5.5.  In vivo cellular uptake of liposomes is enhanced when folate on FR-targeted nanocarriers 
is masked during circulation and ultimately exposed after extravasation into tumor.  Uptake of 
liposomes represented by APC staining intensity, is shown for A) Stealth NT/saline treated (n=8), B) 
Stealth NT/cysteine treated (n=6), C) cleavable FRT/saline (n=6), or D) cleavable FRT/cysteine treated 
(n=6) rats after gating the non-tumor ( ) and tumor ( ) populations.  Saline treated animals (n=3) served 
as a negative control for APC staining ( ).  There was no significant difference in uptake between 
treatment groups by non-tumor cells.  However, a significant shift in the APC peak was observed in tumor 
cells of animals treated with cleavable FRT liposomes and a subsequent cysteine infusion (see Table 6.2 for 
quantitative analysis). 
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from the other treatment groups showed comparably low uptake of liposomally 

encapsulated dye with only a minimal shift in uptake compared to β-gal(-) cells (Figure 

6.5a-c).  Frequency profiles of β-gal and liposome signal intensity on two-dimensional 

graphs also demonstrated a shift in the β-gal(+) cell population obtained from animals 

treated with cleavable FRT liposomes and cysteine into higher liposome signals (Figure 

6.6).  The percentage of tumor cells from these animals that demonstrated liposome 

uptake (APC+/FITC+) was significantly (p<0.0001) greater than that of other treatment  

  

Figure 6.6.  Cysteine cleavage of PEG and exposure of folate on FRT liposomal nanocarriers at the 
target site significantly increases frequency of drug uptake by tumor cells.  Two dimensional event 
density profiles of disaggregated tumor cell suspensions obtained from animals receiving Stealth NT (B 
and C) or cleavable FRT (D and E) liposomal nanocarriers display β-gal (FITC channel) and ADS645WS 
staining intensity (APC channel).  Animals received a saline (B and D) or cysteine (C and E) infusion 
following treatment administration.  A mixture of untransfected 9L glioma cells and transfected 9L/LacZ 
glioma cells obtained from in vitro culture was stained for β-gal production to identify β-gal(-) and β-gal(+) 
populations (A).  A shift in the β-gal(+) (tumor) population obtained from cleavable FRT/cysteine treated 
animals demonstrates a significant increase in the percentage of target cells positive for liposome uptake 
(p<0.0001, ANOVA).  Data represent mean ± SEM. 
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groups, with the percentage of tumor cells demonstrating liposome uptake in cleavable 

FRT/cysteine treated animals being approximately 2.7 times that of Stealth NT/saline 

treated animals.   

Increased uptake of cleavable FRT formulations by tumor cells obtained from 

animals receiving a cysteine infusion is indicative of PEG removal in vivo.  Further 

verification of cleavage was obtained through analysis of blood samples obtained from 

animals immediately prior to euthanasia.  Fluorometric detection of liposomal 

ADS645WS in blood samples demonstrated a 25-30% reduction in liposome blood levels 

of animals receiving FRT liposomes and a cysteine infusion compared to other treatment 

groups confirming that cleavage of PEG, leading to immune recognition of exposed 

folate, was achieved in vivo. 

Cytometric data allowed for quantitative analysis of the results obtained from 

treated animals (Table 6.2).  The shift in fluorescent intensity representing liposomal 

uptake per cell observed in the group receiving cleavable FRT nanocarriers and a 

cysteine infusion was significant compared to the remaining treatment groups.  In 

addition, mean liposome associated fluorescence in tumor cells obtained from FRT 

liposome/cysteine treated animals was about 2.8 times greater than that of host cells  

Table 6.2.  Flow cytometric analysis of uptake of liposomal formulations by 
tumor cells recovered from 9L/LacZ tumors in rats. 

 APC Median Signal Intensity ± SEM 
Formulation Tumor Cells  Tumor/Host Ratio 

Stealth NT + Saline 1.371 ± 0.099  1.355 ± 0.099 
Stealth NT + Cysteine 1.425 ± 0.110  1.411 ± 0.109 
Cleavable FRT + Saline 1.398 ± 0.102  1.384 ± 0.101 
Cleavable FRT + Cysteine 2.845 ± 0.160*  2.715 ± 0.180* 

 *p<0.0001  *p<0.0001 
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verifying specificity for tumor cells.  This tumor/host uptake ratio was significantly 

greater than that obtained from other treatment groups, which did not demonstrate 

selectivity for tumor cells.  These results verify that cleavage of the PEG5000 chains o

cleavable FRT nanocarriers is achievable at the tumor site in vivo using an i.v. cyste

infusion.  This cleavage is sufficient to allow for increased binding and internalization o

liposomes by tumor cells due to exposure of the targeting ligand, folate.  Animals that 

received cleavable FRT liposomes that were ultimately ‘unmasked’ demonstrated a 

significantly higher uptake of liposomes per tumor cell as well as a significantly greater

percentage of tumor cells internalizing liposomes.  These data were obtained from 

animals that were euthanized only 1.5 hours after PEG5000 chains were detached.  At late

time points, when cells have had a longer exposure to the targeted liposomes, the 

difference may be even greater.  Even considering the fact that circulating levels of 

cleavable FRT nanocarriers will decrease after cysteine infusion, longer exposure 

the tumor site should allow for a further increase in specific uptake (tumor/nontumor

uptake ratio) compared to Stealth NT liposome treated rats. 

We have previously demonstrated and discussed the importance of circulation 

time on efficacy of therapeutics encapsulated within actively

n 

ine 

f 

 

r 

times at 

 

 targeted nanocarriers [16].  

With th es 

s 

 as 

e knowledge that passive accumulation is critically dependent on circulation tim

[10], it is imperative that prolonged circulation of nanocarriers is uncompromised upon 

inclusion of targeting moieties.  Here, we have shown that cleavable phospholipid-PEG 

conjugates can be used to enable precise control over ligand exposure, effectively 

concealing ligands to prolong liposomal circulation times and exposing targeting moietie

at the desired time point upon administration of an in vivo safe cleaving agent such
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cysteine.  Appropriate PEG lengths and percentages included in each liposomal 

formulation need to be considered for various applications (i.e. utilizing an alternative 

targeting moiety) as these parameters greatly affect the ability to conceal targetin

and prolong circulation times.  Utilizing the system described here for FRT liposomal 

formulations, we are confident that we have succeeded in satisfying the criteria for 

maximizing passive targeting of liposomal formulations containing targeting ligands an

preventing the offset of active targeting.   

Through these studies, we have also demonstrated that cleavable phospholipid-

PEG conjugates can be utilized to promote

g agents 

d 

 active targeting in a controlled manner 

through , 

nd 

nt 

T 

 

n 

 

 the ability to regulate uptake and cytotoxicity of targeted nanocarriers.  In vitro

cleavage of the PEG conjugates on FRT formulations was achieved with cysteine a

resulted in nuclear localization of drug payloads, a mandate for DXR efficacy.  In 

addition, treatment with cleaved FRT formulations resulted in a significant enhanceme

of uptake and cytotoxicity, which approached values attained with conventional FR

liposomes.  Conventional FRT liposomes have been shown to outperform FRT liposomes

with adjacent DSPE-PEG chains in vitro [42], however, until now, DSPE-PEG has bee

present on FRT liposomes at the tumor site in vivo because it is mandatory to prolong 

circulation time.  Removal of adjacent PEG chains in vivo, a feat made possible with this 

multifunctional liposomal system, should promote uptake of these formulations beyond

that previously achieved, thereby maximizing active targeting of liposomal formulations.  

In vivo, we demonstrated a significant increase in uptake compared to Stealth NT 

liposomes both in the number of tumor cells positive for liposomes and the number of 

liposomes per cell when animals received FRT liposomes followed by a cysteine 
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infusion.  This data confirms that cysteine is capable of cleaving phospholipid-PEG 

conjugates, exposing targeting ligands, and promoting uptake in vivo.  In addition,

studies demonstrate that utilization of these cleavable conjugates in targeted nanocarr

formulations reduces the detrimental effects of targeting ligand incorporation and enables

true optimization of both passive and active targeting to tumors.  These findings should 

allow for a significant enhancement in treatment efficacy of targeted nanocarrier 

chemotherapeutics in vivo. 

 these 

ier 

 

6.4.  METHODS 

6.4.1.  SYNTHESIS OF DSPE-S-S-PEG5000 

A cysteine-cleavable PEG conjugate was synthesized using N-Succinimidyl 3-[2-

slinker between 1,2-distearoyl-sn-glycero-

3-phosp

 

 

  

pyridyldithio]-propionamido (SPDP) as a cros

hoethanolamine (DSPE) and PEG5000-SH. In brief, DSPE (790 mg, 1.05 mmol) 

was dissolved in chloroform (22 mL) with triethylamine (900 µL) at 55 °C.  SPDP (263 

mg, 0.844 mmol) was dissolved in 3 mL of chloroform and then added to the DSPE 

solution.  The reaction mixture was stirred for 5 hours at room temperature.  The reaction

progress was monitored by thin-layer chromatography (TLC) which demonstrated the

conversion of DSPE to a faster running product.  PEG5000-SH (1.75 g, 0.351 mmol) was 

then dissolved in 9 ml of chloroform before being added to the solution of PDP-DSPE.

The mixture was allowed to react overnight at room temperature.  The reaction progress 

was monitored by the UV absorbance at 343 nm of the pyridyl-2-thione byproduct 

released from the DSPE-PDP intermediate once the disulfide bridge between the lipid 

and the PEG was formed.  TLC was also utilized to monitor the reaction progress.  

Following evaporation of the organic solvents, excess DSPE was then removed by 
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precipitation in acetonitrile and centrifugation.  The supernatant was recovered, and

acetonitrile was then removed by rotary evaporation.  The residue was dissolved in 

dichloromethane and applied to a silica gel column.  The column was washed with 20

mL of each of the following concentrations of methanol in dichloromethane: 4%, 6%

9%, 12%, and 15%.  During chromatography, 4 mL fractions were collected, and those 

determined by TLC to contain product were pooled and lyophilized.  The product (DSP

S-S-PEG5000) was characterized by matrix assisted laser desorption ionization time-of-

flight mass spectroscopy (MALDI-TOFMS), high performance liquid chromatography 

(HPLC), and thin layer chromatography (TLC).  TLC confirmed the presence of the fin

product (Rf=0.25 in CHCl3:MeOH=85:15). MALDI-TOFMS resulted in a bell-shaped 

spectra verifying the expected molecular weight of ~6,210 Da with lines spaced at 44 Da. 

1HNMR (DMSO-d6, solvent): δ 0.83 (t, CH3, 6H), 1.2 (s, CH2, 56H), 1.6 (br, CH2 

CH2C=O, 56H), 2.24 (2xt, CH2C=O, 4H), 2.5 (2xt, S=CH2 CH2CON, 4H), 2.85 (t, 

CH2CONHDSPE, 4H), 3.22 (s, CH3O, 3H), 3.5 (s, PEG, ~456H), 3.7 (t, NCH2CH2

2H), 5.0 (m, OCH2CHCH2O, 1H). 
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6.4.2.  THIOLYTIC CLEAVABILITY OF DSPE-S-S-PEG 

The thiolytic cleavability of the conjugate was confirmed by treating 1 mM 

in PBS for 30 min at 37°C.  

The deg LC 

6.4.3.  IN VIVO CIRCULATION STUDIES 

To form the folate conjugate, a DSPE-PEG2000-amine was mixed with folate 

cted with pyridine and dicyclohexyl 

micellar conjugate with cysteine of 10 mM concentration 

ree of cleavage was monitored by TLC and quantified via normal-phase HP

analysis.   

dissolved in DMSO.  This mixture was rea
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 (63%, 59%, 57%).  
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 DSPE-S-

ed 

imide, rotary evaporated, and rehydrated with water to form micelles.  DSPE-

PEG3350-folate conjugates were synthesized in a similar manner [16].  Non-targe

liposomes were composed from a 62:35:3 molar ratio of DPPC:cholesterol:DSPE-

mPEG2000, and liposomes with detachable PEG were prepared using 

DPPC:cholesterol:DSPE-S-S-PEG5000 where the percentage of DSPE-S-S-PEG5000

varied (2%, 6%, 8%) with a corresponding decrease in DPPC content

100 nm liposomes were formulated following previously described methods [11, 16, 43]

Targeted formulations received 0.15 mol% of either DSPE-PEG3350-folate or DSPE-

PEG2000-folate for insertion following established procedures [11, 16].  DXR (120 mg 

DXR/mmol lipid) was then remotely loaded into liposomes according the previously 

described methods [16, 44].  Prior to administration, treatments were sterilized by passi

through a 0.2μm filter.  Final doxorubicin content was assessed by lysing the liposomal 

nanocarriers with 5% Triton X-100 at 60°C and measuring the UV absorbance at 480 nm. 

Plasma clearance studies were conducted under a protocol approved by the 

Institutional Animal Care and Use Committee (IACUC) at Georgia Institute of 

logy.  Adult, male Fisher 344 rats were given an i.v. injection of liposomal D

(10 mg/kg DXR; ~60 mg/kg lipid).  Each group received one of the following 

formulations: non-targeted with DSPE-PEG2000 (n=3), FR-targeted with DSPE-PEG3350-

folate and DSPE-PEG2000 (n=5), or FR-targeted with DSPE-PEG2000-folate and

S-PEG5000 (n=3 for each level of cleavable PEG incorporation).  Blood was collected 

from the orbital sinus immediately before injection and at 1.5, 7, 18.5, 25, 43, 53.5, and 

74.5 hours after injection.  Plasma was isolated by centrifugation.  Liposomes were lys

by diluting plasma 1:10 with 5% Triton X-100 and heating to 60ºC.  Total DXR content 
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of each sample was analyzed (λex=485, λem=590) using a fluorescence spectrometer.  

Plasma samples obtained immediately prior to injection were used to correct for 

background fluorescence.   

6.4.4.  IN VITRO STUDIES 

A 9L glioma cell line received as a generous donation from the Neurosurgery 

aintained in MEM/EBSS medium supplemented with 10% 

fetal bo

 

me of 

mber 

es 

d then incubated at 37°C for 5 days in folate-free 

RPMI m

Tissue Bank at UCSF was m

vine serum and 0.05 mg/mL gentamicin.  Liposomal DXR was prepared as 

describe above using 0% DSPE-PEG (conventional), 3% DSPE-PEG2000 (Stealth), or 8%

DSPE-S-S-PEG5000 (cleavable).  FR-targeted formulations received 0.15% DSPE-

PEG2000-folate for insertion.  Prior to applying to cells, formulations were split in half and 

mixed with either cysteine (10:1 molar ratio of cysteine:lipid) or an equivalent volu

saline for 30 minutes at 37°C and then dialyzed. 9L glioma cells were washed with 

folate-free RPMI medium, and then treatments were applied (10 µM DXR) in RPMI 

medium containing either 0 or 2 mM folate for 2 hours at 37°C.  Cells treated on cha

slides for uptake imaging were then washed three times with ice cold PBS containing 

calcium and magnesium before fixing with 4% paraformaldehyde/1.5% methanol in PBS 

for 20 minutes.  Cells were then washed with PBS and stained with DAPI for 10 minut

before a final PBS wash.  Images of the treated cells were obtained on a Zeiss confocal 

microscope (LSM 510). 

Cells treated for cytotoxicity analysis were washed three times with folate-free 

RPMI after treatment application an

edium.  Viability was then determined using a formazan based cell counting kit 

(CCK-8).  Untreated cells served as live controls for normalization of the data.  LC50 
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values were determined in a similar manner with cells exposed to increasing 

concentrations of liposomal doxorubicin (1.56, 3.13, 6.25, 12.5, 25, 50 µM).  The best

line of at least 3 points in the linear range of cell viability was then used to de

LC50. 

Flow cytometry experiments were performed to determine the amount of 

intrace

 fit 

termine 

llular drug and to distinguish uptake between tumor and non-tumor cells.  For 

these st ter 

 out 

ds 

6.4.5.  TUMOR INOCULATION 

A 9L glioma cell line transfected with the bacterial β-galactosidase encoding 

EM/EBSS medium supplemented with 10% fetal 

bovine 

ds 

ed 

6.4.6.  FLOW CYTOMETRIC STUDIES 

Animals were allowed to recover from surgery, and 21 days later, saline sham, 

vable FRT (8% cleavable DSPE-PEG5000) 

udies, liposomes were fabricated as described above and loaded with a wa

soluble fluorophore, ADS645WS (American Dye Source).  Encapsulation was carried

by mixing the lipids with 10 mg/mL ADS645WS in 0.9% NaCl after dissolving in 

ethanol.  Formulations were extruded to 100 nm and then loaded onto a Sepharose CL-4B 

chromatography column to remove unencapsulated dye.  Insertion of targeting ligan

was conducted as described above.   

gene, LacZ, was maintained in M

serum and 0.05 mg/mL gentamicin.  A rat glioma model was established by 

orthotopic inoculation of 2 x 106 9L/LacZ glioma cells following established metho

[16].  Animals were fed a folate-free diet containing 1% succinylsulfathiozole for 

approximately 18 days prior to surgery to eliminate competitive inhibition of FR-target

liposome uptake and prevent down-regulation of folate receptors in vivo.  

Stealth NT (3% DSPE-PEG2000), or clea
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liposom
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d cell 

ion to 

f 

al ADS645WS (1.77 mg/kg ADS645WS; ~70 mg/kg lipid) treatments were 

administered i.v.  After 28.5 hours, either 0.9% NaCl or a solution of 60 mg/ml cys

in 0.9% NaCl was infused over 15 minutes at a dose of 2 ml/kg.  Animals were 

anesthetized with 5% isoflurane 1.5 hours later and decapitated immediately after 

obtaining a cardiac blood sample.  Tumors were dissected from explanted brains

mechanically fragmented, and treated for 60 minutes at 37°C with a solution of 

collagenase (0.1 U/ml PBS) and dispase (0.8 U/ml PBS) to dissociate cells.  The c

solution was resuspended in 4% fetal bovine serum in PBS and treated with a 

FluoReporter® lacZ flow cytometry kit.  Tumor cells expressing the lacZ reporter gen

product, beta-galactosidase, hydrolyzed the fluorogenic beta-galactosidase sub

allowing fluorescent detection of expression to distinguish tumor cells from non-tumor 

cells.  A LIVE/DEAD® fixable red dead cell stain kit was also used separately to iden

dead cell populations during flow cytometric analysis.  Flow cytometry was conducted 

using a Becton-Dickinson DLSR digital flow cytometer equipped with a 488 nm 

excitation laser using the APC channel for detection of liposomal ADS645WS, the FITC

channel for tumor cell (lacZ) detection, and the Texas Red channel to identify dea

populations.  Liposome uptake by lacZ+ (tumor) cells and lacZ- (non-tumor) cells was 

then quantified.  Tumor cells obtained from saline treated animals served as a negative 

control for ADS645WS while untransfected 9L glioma cells stained with the 

FluoReporter® lacZ flow cytometry kit were utilized as a negative control for lacZ 

staining.  Blood samples were analyzed for liposome content after centrifugat

isolate plasma and treatment with 10% SDS to lyse liposomes.  Fluorescent signal o

samples was then quantified to determine liposome concentration.  
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6.4.7.  STATISTICAL ANALYSIS 

Means were determined for each variable in this study and the resulting values 

from each experiment were subjected to an analysis of variance (ANOVA) with Tukey 

post-hoc pairwise comparisons.  Significance was determined using a 95% confidence 

level.  Normality of each data set was confirmed using the Ryan-Joiner test. 
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6.7.  SUPPLEMENTARY INFORMATION 

 

Figure 6.7.  Matrix assisted laser desorption ionization time-of-flight mass spectrum (MALDI-
TOFMS) of DSPE-S-S-PEG5000.  A bell-shaped spectrum is shown verifying the expected molecular 
weight of ~6,210 Da.  Lines are spaced at 44 Da, the molecular weight of PEG monomer, due to the 
polydispersity of PEG. 
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Figure 6.8.  Supplement to Figure 6.2: Inclusion of 8% DSPE-S-S-PEG5000 prolongs circulation of 
FR-targeted nanocarriers.  Circulating levels of DXR in the bloodstream, expressed as a percentage of 
initial DXR concentration, over time in animals receiving an i.v. injection of Stealth NT ( ) (n=3) or 
cleavable FRT containing 8% DSPE-S-S-PEG5000 ( ) (n=3) liposomal DXR.  This plot also displays data 
obtained from the treatment group receiving cleavable FRT containing 6% DSPE-S-S-PEG5000 ( )  (n=3) 
liposomal DXR, which was omitted from Figure 6.2.  An increase in circulating levels of drug was 
observed when the DSPE-S-S-PEG5000 percentage was increased from 6% to 8% indicating an 
improvement in the ability to mask folate from the RES.  Data represent mean ± SEM.     
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Figure 6.9.  Supplement to Figure 6.4: Cytotoxicity of liposomal DXR is controllably altered through 
the inclusion of DSPE-S-S-PEG5000.  Percent viability of cells after treatment with liposomal DXR 
formulations is shown.  Plot displays additional control treatment groups (free DXR, conventional NT, 
noncleavable NT, cleavable NT) omitted from Figure 6.4.  Treatments were applied alone ( ) , with excess 
folate ( ) , cysteine-treated ( ) , or with excess folate and cysteine pre-treatment ( ) .  Free DXR 
demonstrated significant cytotoxicity to cells, while the 3 additional NT control treatment groups 
(conventional NT, noncleavable NT, cleavable NT) did not demonstrate a substantial cytotoxic effect under 
any of the 4 conditions.  Data represent mean ± SEM.  

 

162 



 

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70

DXR Concentration (uM)

P
er

ce
nt

 V
ia

bi
lit

y

 

 

 

Figure 6.10.  Cytotoxicity of liposomal DXR as a function of applied DXR concentration.  9L glioma 
cells were exposed to increasing numbers of DXR-loaded liposomes for 2 hours, washed, and then 
incubated for 5 days before assessing viability to determine the LC50 of each liposomal formulation.  The 
best fit line of at least 3 points in the linear range of cell viability was used to calculate LC50.  Conventional 
NT ( ), noncleavable NT ( ), noncleavable FRT ( ), and cleavable FRT ( ) did not demonstrate any 
cytotoxic effect over the range of DXR concentrations tested (up to 60 µM).  After pre-treatment with 
cysteine, however, the cleavable FRT formulation ( ) e hibited a dramatic effect on cell viability, reducing 
the LC50 to 9.22 µM.  Conventional FRT liposomal DXR ( ) and free DXR ( ) also exhibited cytotoxic 
effects on 9L glioma cells with LC50s of 4.17 µM and 1.6 µM, respectively.  Data represents mean ± SEM.  

x
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CHAPTER 7.  SUMMARY OF FINDINGS 

7.1.  INTRODUCTION 

Liposomes have been studied extensively since their initial discovery in the 

1960’s.  By the 1970’s, realization of their potential use as therapeutic nanocarriers 

spurred thorough investigation toward drug delivery applications.  Soon afterward, 

sterically stabilized liposomes were introduced with the potential to passively target 

tumors due to the combination of 1) prolonged circulation in the bloodstream resulting 

from RES evasion and 2) the enhanced permeability and retention effect attributed to the 

intrinsic properties of the tumor vasculature and compromised lymphatics.  Today, 

despite the fact that several “Stealth” liposomal formulations have been clinically 

approved, little progress has been made toward the clinical approval of an actively 

targeted liposomal chemotherapeutic.    

 The inclusion of targeting agents into liposomal nanocarriers to promote active 

targeting to tumors has been studied extensively.  In vitro studies with a wide variety of 

targeting agents have demonstrated considerable success in facilitating specific binding 

and uptake by tumor cells [1-9].  In vivo, however, actively targeted liposomal 

nanocarriers have failed to meet the expectations established by the promising outcomes 

of in vitro studies.  Disappointing in vivo results have been attributed to the fact that the 

delivery of liposomes to solid tumors is limited by elevated interstitial pressures and 

inability to diffuse beyond the perivascular space [10].  This certainly is a valid 

explanation, however diffusion limitations only partially account for in vivo failure of 

actively targeted liposomal nanocarriers.   
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It has been shown that the inclusion of targeting agents in liposomal formulations 

results in reductions in circulation time within the bloodstream due to RES recognition 

and clearance.  Since passive accumulation to tumor is directly related to circulating 

levels in the bloodstream, accelerated clearance of actively targeted liposomal 

formulations reduces passive targeting to tumor.  This decrease in passive targeting 

effectively offsets the benefits of active targeting to tumor. 

The global objective of the body of work described here was to further investigate 

the impact of targeting ligand incorporation into sterically stabilized liposomes and to 

explore a possible solution to the negative effects of ligand insertion using cleavable 

phospholipid-PEG conjugates.  To accomplish this objective, this study was divided into 

two parts.  Preliminary experiments were conducted to gain a more thorough 

understanding of the in vivo effects of folate insertion in liposomes, and subsequent 

studies explored the ability to modulate folate exposure in vitro and in vivo using 

detachable PEG chains. 

7.2.  EVALUATION OF ALTERNATIVE TARGETING AGENTS TO IMPROVE TREATMENT 

EFFICACY 

Through in vivo studies utilizing both a small peptide targeted to APN and a large 

antibody targeted to TfR in liposomal DXR formulations, the impact of targeting agent 

selection was investigated.  Survival studies performed on tumor-bearing animals 

demonstrated the importance of administration time point selection.  When treatment was 

administered at an earlier time point, a more favorable response in treatment efficacy was 

achieved.  Delaying the treatment administration by 8 days resulted in the complete 

inability to prolong survival beyond that achieved with saline sham treated animals.  At 
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this time point, the tumor size had progressed to a point where a response to any 

treatment was unattainable.  Additional survival studies were performed to investigate 

alternative treatment regimens.  The results of these studies showed that a single 

treatment with liposomal DXR at a dose of 10 mg/kg was superior to the administration 

of 2 weekly treatments adding to a cumulative dose of 20 mg/kg.  Unfortunately, utilizing 

a single treatment regimen, neither the inclusion of NGR peptide or OX26 targeting 

agents in liposomal DXR formulations was able to improve the survival of tumor-bearing 

animals over the survival of animals receiving non-targeted liposomal DXR.   

Circulation studies emphasized the importance of careful consideration of 

targeting agent selection upon formulation of actively targeted liposomal nanocarriers.  

The small peptide investigated for APN targeting had no impact on liposome circulation 

times in the bloodstream, whereas the inclusion of as few as 4 OX26 antibodies had a 

severe detrimental effect on liposome performance in vivo.  The drastic dissimilarity in 

circulation of these targeted liposomal nanocarriers may be attributed to the 75-fold 

difference in targeting agent size; however, it is not size alone which determines the 

ability to evade the RES.  Other factors such as polarity, hydrophobicity, overall surface 

charge, and 3-dimensional configuration among other characteristics must also play a role 

in the ability of the RES to recognize these molecules on the surface of liposomal 

formulations and accelerate clearance from the bloodstream.  The primary reason 

suggested for the low immunogenicity of NGR has been its ability to mimic natural 

proteins in the bloodstream [11].  These studies have provided insight into additional 

factors which may be considered during targeting agent selection to ensure prolonged 

circulation in the bloodstream. 
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Through biodistribution studies, we determined that an enhancement in drug 

delivery to the brain may be achieved using TfR-targeted liposomes, which is significant 

considering the drastic reductions in circulation time upon inclusion of OX26 antibody as 

a targeting agent.  These results further stressed the need to address reductions in 

circulation times of actively targeted liposomal formulations.  If, as shown here, 

enhanced drug delivery to the brain may be achieved with such low circulating levels of 

drug, improvements in circulation times should significantly increase delivery to the 

brain.  Therefore, it is imperative that circulation times of actively targeted liposomal 

nanocarriers are improved, and the use of smaller targeting agents or those able to mimic 

naturally occurring substances in the body may provide an option to do so in vivo. 

7.3.  DECREASED CIRCULATION TIME OFFSETS INCREASED EFFICACY OF PEGYLATED 

NANOCARRIERS TARGETING FOLATE RECEPTORS OF GLIOMA 

Experiments conducted to investigate the impact of targeting ligand insertion into 

passively targeted liposomes included the development and characterization of an 

orthotopic glioma model, in vivo blood circulation studies, biodistribution studies, and 

survival studies.  Previous reports have indicated a negative impact on targeting ligand 

inclusion through demonstrated reductions in circulating levels of actively targeted 

formulations in the bloodstream; however, the full consequences had not been directly 

addressed or investigated in detail [8, 10, 12-15].  The current studies reported here also 

revealed a dramatic and significant reduction in circulating levels of FR-targeted 

liposomes compared to passively-targeted Stealth liposomes.   

Intravascular administration of liposomal DXR demonstrated that the insertion of 

DSPE-PEG3350-folate into Stealth liposomes caused a 42% reduction in AUC and a 63% 
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reduction in plasma half-life.  These results were attributed to recognition of folate, 

present on PEG chains (PEG3350) longer than those incorporated for steric stabilization 

(PEG2000), by the RES and subsequent acceleration of clearance from the bloodstream.  

Having successfully replicated results from previous work, we then conducted additional 

experiments to explore the effects of accelerated clearance from the bloodstream on the 

biodistribution and ultimate therapeutic efficacy of DXR encapsulated within FR-targeted 

liposomal nanocarriers.  

For these studies, an orthotopic glioma tumor model was developed in rats to 

assess FR-targeted liposomal DXR performance in vivo.  The majority of studies on FR-

targeted liposomes to date have utilized either subcutaneous [10, 13, 16, 17] or 

intraperitoneal [10, 18-21] tumor models for in vivo analysis.  These studies typically 

utilize cell lines, such as the human oral carcinoma KB cell line, which vastly 

overexpress the folate receptor compared to normal tissue [6].  We were interested in 

evaluating the ability to target and treat tumors which exhibit relatively moderate 

overexpression of the folate receptor compared to KB cells since this provides a better 

representation of the difficult to treat tumors presented in the clinic.  Therefore, a glioma 

cell line was selected for intracranial tumor inoculation.  An intracranial model was 

chosen for these experiments to more accurately represent the environment in which 

gliomas naturally occur.  The presence of the BBB is a major component of this 

environment and orthotopic inoculation of tumor ensured that the BBB remained a factor 

in our experimental studies.   

The 9L glioma tumor model was characterized by evaluating growth and 

angiogenesis.  Inoculated tumors proved to be aggressive demonstrating exponential 
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growth with a doubling time of only 1.7 days.  Interventional euthanasia was required for 

all untreated animals on or before 22 days due to the onset of severe debilitating 

symptoms resulting from tumor growth and increased intracranial pressure.  There were 

no signs of metastasis in any of the euthanized animals confirming that symptoms 

resulted solely from rapid progression of the primary tumor.  Tumors were infiltrative 

and reproducible, therefore, this model was deemed appropriate for further studies.  

Angiogenesis of the tumor model was evaluated through histological examination.  The 

onset of angiogenesis was detected as early as 4 days following tumor inoculation.  These 

results helped to determine the proper time of treatment for survival studies evaluating 

therapeutic efficacy since established vasculature is mandatory for tumor delivery of 

treatments administered i.v.   

Studies were conducted on tumor-bearing animals to evaluate biodistribution of 

Stealth and FR-targeted liposomal DXR 20 and 50 hours after treatment administration.  

At both time points, the majority of DXR was located within the spleen and liver, the 

organs responsible for RES clearance.  There was no significant difference between the 

biodistribution of the two liposomal formulations with the exception of amount of drug 

detected within the liver.  Liver accumulation of FR-targeted liposomes was significantly 

greater than that of Stealth liposomes, accounting for the dramatic difference in 

circulating levels of DXR in the bloodstream between the formulations at each time 

point.  Tumor drug levels were not significantly different despite the vast disparity in 

bloodstream concentration of drug between the Stealth and FR-targeted nanocarriers, 

which may indicate that FR-targeted liposomes are retained within the tumor to a greater 

extent due to receptor binding and uptake.         
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Survival studies investigating the therapeutic efficacy of each formulation were 

conducted on tumor-bearing animals receiving a single i.v. injection of liposomal DXR.  

Survival was prolonged for all animals receiving treatments compared to saline treated 

controls; however, there was no significant difference between the survival of animals 

treated with either Stealth or FR-targeted liposomal DXR.  This may simply be due to the 

aggressive nature of the tumor, where a single treatment is incapable of elucidating a 

detectable response in survival, however, the biodistribution results which demonstrated 

no difference in uptake by tumor between the 2 formulations, suggest that there are 

additional barriers in vivo preventing an increase in therapeutic efficacy of targeted 

formulations.  While diffusion limitations within solid tumors are certainly considered to 

be partially responsible, reductions in circulating levels of drug decreasing passive 

targeting to tumor may also play a role in the inability to realize a survival advantage 

using actively targeted formulations.  In fact, the only studies that have demonstrated 

prolonged survival using FR-targeted liposomes have involved i.p. administration of 

treatments to i.p. tumors thus bypassing the bloodstream and RES elimination [18, 22] or 

i.p. injection of treatments to athymic animals bearing s.c. tumors where the 

compromised immune system failed to accelerate clearance of targeted formulations [13].  

Another study demonstrated tumor growth reduction in tumors treated with FR-targeted 

liposomal DXR, however this study involved the administration of treatment ex vivo and 

subsequent implantation of treated cells thereby avoiding treatment exposure to the RES 

[3].  In addition, enhancement in tumor uptake of FR-targeted liposomes has only been 

demonstrated in i.p. tumor-bearing animals receiving the treatments i.p. [19-21].  As 

reported here, others have also shown that i.v. injection of FR-targeted treatments fails to 
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result in an increase in tumor uptake [16, 17], however discussion regarding reductions in 

circulating drug and the impact this may have on delivery to tumor have been absent 

from the literature. 

The conclusions of this study have served to verify that the negative impact in 

targeting ligand insertion into Stealth liposomes, namely the recognition of nanocarriers 

by the RES and subsequent acceleration in plasma clearance, has a detrimental effect on 

tumor targeting.  Lower circulating levels of drug effectively reduce passive targeting to 

tumor thereby offsetting the benefits of active targeting.  This information should aid 

investigators in the design of future formulations where careful consideration regarding 

the effects of targeting agent insertion on circulation times should be made.  A 

compromise in passive targeting to tumor will likely be required unless an alternative 

solution such as transient masking of targeting agents from the RES is utilized. 

7.4.  MASKING AND TRIGGERED UNMASKING OF TARGETING LIGANDS ON NANOCARRIERS 

IMPROVES DRUG DELIVERY TO BRAIN TUMORS 

In an attempt to address the issue of accelerated clearance and reduction in 

passive tumor accumulation of targeted liposomes, we developed a controllable 

liposomal system by which exposure of folate may be modulated using detachable PEG 

chains.  Cysteine cleavable phospholipid-PEG5000 conjugates were formulated and 

characterized, the ability to mask folate with these conjugates was tested through in vivo 

circulation studies, controllable modulation of folate exposure on liposomes was tested 

and verified in vitro, and in vivo intracellular uptake of liposomal formulations was 

examined through flow cytometric analysis of explanted tumors. 
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Following established methods, a cysteine cleavable DSPE-PEG5000 conjugate 

was formulated using SPDP, containing a reducible disulfide bridge, to crosslink DSPE 

and PEG5000-SH.  Mass spectroscopy, TLC, and 1H-NMR verified successful formation 

of the conjugate, and in vitro cleavage studies confirmed the ability to efficiently cleave 

the conjugate with as little as a 10-fold molar excess of cysteine. 

Blood circulation studies were performed on rats receiving FR-targeted liposomes 

with increasing concentrations of DSPE-S-S-PEG5000 to determine the minimum amount 

of cleavable conjugate necessary to adequately mask folate from the RES and enable 

prolonged circulation comparable to that achieved with Stealth liposomal nanocarriers.  

From this study, it was concluded that 8% DSPE-S-S-PEG5000 was sufficient to mask 

DSPE-PEG2000-folate from the RES while in circulation.  This formulation exhibited a 

3.8-fold increase in plasma half-life and a 65.5% increase in AUC compared to 

traditional FR-targeted liposomes containing 0.15% DSPE-PEG3350-folate and 3% 

DSPE-PEG2000.  The inclusion of detachable PEG5000 increased the half-life of FR-

targeted liposomes to 27.4 hours which was comparable to the half-life of non-targeted 

Stealth liposomes, 30.3 hours.  For the first 25 hours in circulation, concentrations of 

cleavable FR-targeted liposomes in the bloodstream actually surpassed the circulating 

levels of Stealth liposomes, however, the clearance of cleavable FR-targeted liposomes 

slowly increased over time presumably due to gradual cleavage and removal of PEG5000 

by endogenous cysteine.  Subsequent exposure of folate would likely trigger opsonization 

and clearance of the liposomes by the RES accounting for this reduction in circulating 

levels.  Fortunately, the AUC calculated between 0 and 25 hours was comparable 

between the cleavable FRT and Stealth liposomes indicating that passive accumulation to 
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tumor should remain unaffected until much later when circulating cleavable FRT 

liposomes begin to clear at a faster rate, however, by that time the benefits of active 

targeting from triggered PEG removal and exposure of folate should surpass any gains 

from elevated circulating levels of drug.   

In vitro studies on cultured 9L glioma cells were conducted to verify the ability to 

modulate folate exposure using detachable PEG chains enabling control over uptake and 

cytotoxicity of FR-targeted liposomal DXR.  Confocal uptake images verified substantial 

uptake of conventional FR-targeted liposomes (0% DSPE-PEG) irrespective of cysteine 

pre-treatment.  Cells did not take up non-targeted Stealth liposomes or FR-targeted 

liposomes masked with non-cleavable DSPE-PEG5000 under either condition.  Cleavable 

FR-targeted formulations, however, demonstrated a distinct dependence on cysteine pre-

treatment.  In the absence of cysteine treatment, uptake of the liposomes was negligible, 

whereas after the application of cysteine, uptake by cells was substantially increased and 

resulted in nuclear localization of drug payloads.   

Cytotoxicity studies confirmed the in vitro uptake results.  DXR encapsulated 

within non-targeted liposomes and FR-targeted liposomes masked with non-cleavable 

DSPE-PEG5000 did not exhibit any cytotoxic potential.  Cytotoxicity of conventional FR-

targeted liposomal DXR was significantly increased.  Treatment with cysteine had no 

effect on the cytotoxicity, however, cell viability was significantly greater when excess 

folate was introduced indicating that uptake of the liposomal DXR was dependent on the 

availability of folate receptors.  Cytotoxicity of FR-targeted liposomal DXR formulated 

with detachable PEG chains demonstrated a significant dependence on cysteine pre-

treatment.  Only those formulations pre-treated with cysteine to remove PEG and expose 
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folate demonstrated cytotoxicity to FR-expressing 9L glioma cells.  In the absence of 

cysteine pre-treatment, the LC50 of cleavable PEG FR-targeted liposomal DXR could not 

be determined since cytotoxicity was not observed at any of the tested concentrations up 

to 60 µM DXR. Cysteine pre-treatment, however, lowered the LC50 to 9.22 µM which 

approached the LC50 value of 4.17 µM obtained with conventional FR-targeted liposomal 

DXR.  The addition of excess folate significantly decreased the cytotoxic potential of 

cysteine treated FR-targeted liposomal DXR with cleavable PEG indicating that uptake 

occurred via the folate receptor.  These in vitro experiments verified the ability to 

modulate uptake and cytotoxicity of FR-targeted liposomal DXR using detachable PEG 

chains.   Cleaved formulations successfully regained the ability to bind and enter target 

cells with cytotoxicity approaching values attained with conventional FR-targeted 

liposomes, and uptake was shown to remain dependent on the folate receptor.    

To assess intracellular delivery in vivo, liposomal formulations were administered 

i.v. to tumor-bearing animals.  Treated animals then received either a saline or cysteine 

i.v. infusion.  Explanted tumors were dissociated and analyzed for liposomal content.  

This procedure enabled specific analysis of intracellular uptake in contrast to the previous 

study which simply measured bulk tumor uptake of liposomes.  Flow cytometry was 

utilized to distinguish between disaggregated tumor cells and host cells.  Animals treated 

with cleavable PEG FR-targeted liposomes followed by a cysteine infusion demonstrated 

a significant increase in uptake of liposomes by tumor cells and a significantly greater 

ratio of uptake between tumor and host cells compared to those animals treated with 

either Stealth liposomes or cleavable PEG FR-targeted liposomes followed by a saline 

infusion or Stealth liposomes followed by a cysteine infusion.  In addition, the percentage 
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of tumor cells positive for liposome uptake was significantly greater in tumors explanted 

from animals treated with cleavable PEG FR-targeted liposomes and a cysteine infusion 

compared to the other treatment groups.  These results indicate that the removal of PEG 

and subsequent exposure of folate through an i.v. infusion of cysteine was sufficient to 

promote specific binding and internalization of liposomes by target cells within an 

intracranial tumor site.  This increase in uptake was dependent on cysteine removal of 

PEG chains since uptake was not increased in animals treated with cleavable PEG FR-

targeted formulations and a saline infusion.  Selectivity of cysteine-cleaved FR-targeted 

formulations was proven through the significant increase in uptake by tumor cells 

compared to host cells.   

 These studies verified the ability to ‘unmask’ folate on FR-targeted liposomes in a 

controlled manner in vivo to promote specific uptake by FR-expressing tumor cells.  This 

experiment was able to distinguish intracellular and extracellular liposomes and also 

differentiate uptake by tumor and host cells.  In this manner, it was determined that 

cysteine cleavage of PEG on FR-targeted formulations relays a distinct advantage for 

specific targeting to tumor cells since FR-targeted liposome treated animals receiving a 

cysteine infusion demonstrated a significantly higher uptake of liposomes per tumor cell 

as well as a significantly greater percentage of tumor cells internalizing liposomes.  In 

addition, uptake was proven to be controllable since it was dependent on exogenous 

administration of cysteine.  

Another potential benefit of PEG detachment from the liposomal surface is 

further diffusion of liposomes into the tumor and away from the perivascular space.  

Studies have shown that the presence of PEG inhibits diffusion within tumor [23, 24], 
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and neutrally charged liposomes lacking a PEG coating have been shown to diffuse more 

deeply into spheroid structures [25].  Since surface modification is a requirement for 

prolonged circulation in vivo, PEG is invariably present upon long-circulating liposomes 

even after extravasation to tumor.  The cleavable PEG nanocarrier system presented here 

allows for controlled removal of PEG after extravasation to promote further diffusion 

within tumor and increased uptake by tumor cells. 

These studies have proven that the use of cleavable PEG on actively targeted 

liposomal nanocarriers is a viable solution to the negative impact of targeting agent 

insertion into liposomes.  With the knowledge that passive accumulation is critically 

dependent on circulation times [26], it is imperative that prolonged circulation of 

nanocarriers is uncompromised upon inclusion of targeting moieties.  Here, we have 

shown that cleavable phospholipid-PEG conjugates can be used to enable precise control 

over ligand exposure, effectively concealing ligands to prolong liposomal circulation 

times and exposing targeting moieties at the desired time point after extravasation to 

tumor to promote specific uptake by tumor cells.   

7.5.  CONCLUSIONS 

The studies presented here have provided further insight into the effects of 

targeting agent inclusion within passively targeted liposomal nanocarriers and 

demonstrated a potential solution to address the associated negative impact on circulation 

time in the bloodstream.  Inability to achieve enhanced delivery to tumor and prolonged 

survival times in vivo using actively targeted liposomal chemotherapeutics was shown to 

be due, in part, to the reductions in circulation time resulting from the use of targeting 

agents in liposomal formulations.  To address this issue, we successfully formulated a 
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nanocarrier system which allows for precisely controlled exposure of targeting agents on 

the liposomal surface.  This liposomal system utilizing cysteine-cleavable phospholipid-

PEG conjugates was shown to restore prolonged circulation of FR-targeted liposomes by 

masking folate targeting ligands from the RES.  Modulation of uptake and cytotoxicity of 

these formulations through controlled removal of PEG was demonstrated and verified 

that liposomally encapsulated DXR reaches the cell nuclei in a functional active form.  In 

addition, enhancement of specific targeting to tumor cells was demonstrated in vivo.  

These findings should allow for increased efficacy of actively targeted nanocarrier 

chemotherapeutics in vivo. 
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CHAPTER 8.  FUTURE PERSPECTIVES 

An actively targeted liposomal chemotherapeutic has yet to make it into the clinic 

despite promising in vitro results demonstrating the potential for increased cytotoxicity 

due to specific uptake by tumor cells.  In vivo studies have typically failed to exhibit 

enhanced efficacy with actively targeted liposomal chemotherapeutics because the 

inclusion of targeting agents results in accelerated clearance from the bloodstream and 

reductions in passive targeting to tumor.  The work reported in this dissertation has 

focused on the use of targeted nanocarriers engineered to allow controlled presentation of 

targeting agents.   Cleavable phospholipid-PEG conjugates were utilized to mask 

targeting ligands on nanocarriers and maintain RES evasion in an attempt to reestablish 

enhanced passive accumulation within tumors.  Unmasking of targeting agents was 

triggered by exogenous cysteine administration to promote specific uptake by tumor cells 

after the nanocarriers had passively extravasated to the target site.  This chapter is 

devoted to the discussion of additional aspects which may be investigated to further 

optimize this multifunctional liposomal system. 

8.1.  BIODISTRIBUTION STUDIES 

While the studies presented here included the examination and differentiation of 

uptake by tumor cells and host cells at the tumor site, additional studies need to be 

performed to evaluate whole organ distribution of drug.  These studies would determine 

whether the inclusion and subsequent removal of cleavable PEG chains in FR-targeted 

liposomes alters the biodistribution of drug.  It would be interesting to follow the 

progression of liver and spleen uptake to verify that it accounts for the slow acceleration 

in clearance of masked formulations over time.  In addition, levels of uptake by the liver 
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of targeted liposomes formulated with detachable PEG at early time points (<25 hours) 

may be compared to the liver uptake of Stealth liposomal DXR to determine whether the 

inclusion of cleavable PEG chains reduces the significant difference in liver uptake 

previously observed between Stealth and traditional FR-targeted liposomes.  Bulk tumor 

uptake measurements would determine total intracellular and extracellular liposomal 

DXR delivered to the tumor.   

8.2.  SPATIAL DISTRIBUTION WITHIN TUMOR 

Histological examination of tumors explanted from animals treated with 

liposomal formulations could be performed to reveal the spatial distribution of drug 

within the tumor.  Vascular staining would serve to identify the perivascular regions to 

determine whether the treatments colocalize within this space.  Fluorescent microscopy 

following the administration of an encapsulated or membrane-inserted fluorophore may 

be utilized to determine spatial distribution of liposomes.  Alternatively, 

microdistribution within tumor tissue could be visualized using light microscopic 

examination of tissue sections obtained from animals treated with gold-loaded liposomes 

to compare tumor penetration and cellular localization. 

Ideally, uniform distribution of drug would ensure treatment delivery to the entire 

tumor; however, this is unlikely to occur for a number of reasons.  First, modifications 

introduced to achieve long-circulation, such as PEGylation, have been shown to inhibit 

diffusion within tumors and tumor spheroids [1-3].  Therefore, the diffusion of treatments 

within tumor prior to the removal of PEG from FR-targeted formulations may be limited; 

however, subsequent PEG detachment should facilitate transport within tumor.  Another 

reason to expect heterogeneous distribution of liposomes within tumor is due to the 
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“binding site barrier”.  This refers to the condition where targeted agents bind to the first 

line of target cells after extravasation, are sequestered to the perivascular space, and 

consequently obstruct the extravasation of additional drug [4].  This phenomenon has 

been observed with antibodies targeted for cancer therapy where it was shown that the 

larger the antibody and higher its binding affinity, the lower its therapeutic efficacy [5].  

Fortunately, prior to cysteine administration, concealed folate should not participate in a 

binding site barrier; therefore, these formulations may diffuse further than other actively 

targeted liposomes.  Successive ‘unmasking’ of folate upon detachment of PEG, 

however, may serve to inhibit further transport within tumor.  This effect may counteract 

the enhanced diffusion benefit of PEG removal; however studies investigating spatial 

distribution within tumor are warranted to determine the overall effects of PEG removal 

at the tumor site.  Another major obstacle to uniform drug distribution of targeted agents 

within tumor is the fact that the interstitial fluid pressure is higher in the tumor center 

compared to the periphery and surrounding tissue [6-8].  This pressure differential along 

with heterogeneity in blood supply leads to lower fluid extravasation in the tumor core 

reducing drug delivery to this region.  In addition, this condition makes it difficult for 

macromolecules delivered to the periphery to diffuse into tumor since they have to 

overcome the outward convection of fluid from regions of high to low pressure [9].  

Spatial distribution studies would help to identify diffusion limitations within tumor.  

Possible methods to overcome transport barriers, should they have a major impact on 

spatial distribution and treatment efficacy, are presented in a later section of this chapter.  
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8.3.  IN VIVO CYTOTOXICITY 

Having investigated uptake by both tumor and host cells at the tumor site, 

additional studies should be performed to evaluate treatment cytotoxicity in vivo.  Ideally, 

cell populations would be differentiated either through histological staining or flow 

cytometry to distinguish cytotoxic effects among the different populations of cells at the 

tumor site.  It would be interesting to compare the cytotoxic effects after varying the time 

point of cysteine administration.  In this manner, the optimal time point for cysteine 

infusion following treatment administration could be determined.   

8.4.  TUMOR MODEL SELECTION 

The studies presented here investigated drug delivery to an intracranial glioma model.  It 

would be useful to determine the effectiveness of delivery utilizing this system with 

different tumor types and sites of implantation.   

8.4.1.  TUMOR TYPE 

With the ultimate goal of clinical application of this liposomal system, studies 

investigating its potential use to treat alternate tumor types would be beneficial.  The 

choice of targeting agent must be considered for different tumor types since expression 

profiles may differ between tumors.  This success of this system will be dependent on the 

type of tumor to be treated.  For example, treatment of tumors known to exhibit highly 

permeable vasculature should demonstrate greater success over tumors with vessels that 

are less “leaky” because it is the vascular permeability, in large part, which determines 

the extent of extravasation.  In addition, tumors expressing targets which facilitate 

transport of intact drug into the cell would be ideal for this delivery system.  Tumor types 

should be selected which display expression levels of target that are much higher than 
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that of surrounding non-target cells.  Additional studies with this liposomal delivery 

system will warrant the use of human cell lines inoculated into nude animals to verify its 

clinical applicability for the future treatment of human tumors.  The studies reported here 

did not investigate delivery to human tumor xenografts because RES clearance of 

administered treatments was a major component of this experiment, and the lack of a 

competent immune system in the nude animals required for human tumor models would 

have compromised the experimental findings. 

8.4.2.  SITE OF IMPLANTATION 

The site of implantation, particularly for glioma models, should be carefully 

considered.  A human glioma, for example, has been shown to display high vascular 

permeability when grown subcutaneously in immuno-deficient mice, however, when 

grown in a cranial window, the same tumor demonstrated BBB characteristics [9].  

Therefore, orthotopic implantation provides the closest representation of the tumor 

microenvironment for glioma models.  Subcutaneous implantation may be appropriate for 

other tumor types, such as breast tumors.  Subcutaneous tumors are advantageous since 

they offer ease of measurement with a caliper and allow monitoring of growth 

progression in a live animal.  Alternatively, an intraperitoneal tumor model may be 

utilized to eliminate negative effects on delivery due to diffusional limitations.  An i.p. 

tumor model is not the best representation for brain tumors, especially due to the lack of 

the BBB; however, it could be utilized for the sole purpose of removing the reductions in 

tumor delivery due to diffusional limitations to gain a better understanding of this 

cleavable PEG liposomal system under optimal conditions. 
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8.5.  IN VIVO THERAPEUTIC EFFICACY 

To analyze in vivo therapeutic efficacy, the ability to prolong survival or reduce 

tumor growth through the use of ‘masked’ FR-targeted liposomal DXR should be tested 

in vivo.  In these studies, treatments would be administered to tumor-bearing animals, and 

after sufficient drug is expected to accumulate at the tumor site, cysteine would be 

injected to cleave PEG chains from FR-targeted, cysteine-cleavable PEG nanocarriers 

and promote uptake by tumor cells.   

8.5.1.  TREATMENT REGIMEN 

Most studies investigating targeted chemotherapeutics have not demonstrated a 

positive impact on therapeutic efficacy unless an aggressive treatment regimen involving 

multiple administrations of treatment is followed.  For studies utilizing targeted 

liposomes with cleavable PEG, a single i.v. injection of treatment may be attempted 

initially to determine whether the advantages of this system are enough to convey a 

distinct improvement in efficacy resulting in either prolonged survival times or 

reductions in tumor growth.  If necessary, multiple treatments may be administered in an 

attempt to further distinguish survival advantages. 

The administration of cysteine should be performed via i.v. infusion.  While the 

length of infusion and amount of cysteine to be delivered for the studies presented here 

were determined through in vitro cleavage experiments, alternate durations of infusion 

and/or amounts of cysteine may be investigated for in vivo use since the cleavage 

experiments simply provide an approximation of the optimal cysteine dosage.  In 

addition, the time point of cysteine administration needs to be further investigated.  This 

may be done through in vivo cytotoxicity studies, biodistribution studies, or directly 
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through survival studies.  In vivo cytotoxicity studies would identify the optimal time 

point for cysteine administration by determining the time point which results in the 

highest cytotoxicity toward tumor cells.  The optimal time point for cysteine infusion, 

presumably, would be at the time when passive delivery of liposomes to tumor occurs.  

Passive tumor accumulation may be measured through biodistribution studies at various 

time points.  The time at which maximum passive delivery to tumor occurs could then be 

determined and used as the time point for the administration of cysteine.  

It is acknowledged that the injection of cysteine will result in a reduction in 

circulating levels of targeted liposomes compared to non-targeted due to the exposure of 

the targeting agent and RES clearance.  To diminish the effects of this consequence, a 

booster dose of Stealth liposomal DXR equivalent to the amount of drug lost due to rapid 

cysteine triggered PEG detachment could be administered after cysteine administration in 

animals receiving FR-targeted liposomes.  

8.5.2.  OUTCOME MEASURES 

Therapeutic efficacy could be analyzed through evaluation of survival time 

following treatment administration or through determination of tumor size at a 

predetermined time point following treatment administration.  Evaluation of tumor size 

using an intracranial tumor model is not a straight-forward process; therefore, survival 

times are typically utilized for determination of therapeutic efficacy.  The drawback to 

this method is that reductions in tumor volume due to treatment may not be realized if the 

tumor is aggressive and growth recovers rapidly resulting in no significant change in 

survival times.  Using survival as the sole measure of treatment efficacy, therefore, may 

not be the best method to evaluate treatment efficacy.  
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Tumor size may be estimated through histological means, medical imaging, 

changes in body weight, or caliper measurements.  With the exception of histological 

analysis, all of these approaches allow for tumor progression to be monitored over time 

after treatment administration.  The site of tumor implantation limits the choice of size 

estimation method since some of these techniques are unsuitable for certain tumors. 

8.6.  ADDRESSING EXTRAVASATION AND DIFFUSION LIMITATIONS 

Since it is acknowledged that extravasation and diffusion limitations also play a 

part in the in vivo failure of actively targeted formulations, the ideal targeted drug 

delivery system would include the multifunctional liposomal system presented here to 

prolong circulation times combined with methods to address extravasation and/or 

diffusion limitations.  As discussed in an earlier section, “leaky” tumors may be ideal 

candidates for this drug delivery system due to reductions in extravasation limitations.  

Alternative approaches to increase delivery to tumors which may not possess highly 

permeable blood vessels are presented here in addition to strategies to increase diffusion 

of treatments within tumor. 

8.6.1.  METHODS TO INCREASE EXTRAVASATION TO TUMOR 

Numerous techniques have been studied in an attempt to increase extravasation of 

nanocarriers into tumors.  The use of localized hypothermia, either by direct heating [10] 

or by the application of radio-frequency [11], has been shown to enhance extravasation 

and localization of liposomes to tumors.  Others have demonstrated that targeting to 

vascular receptors which undergo transcytosis, such as the transferrin receptor, increases 

delivery to tumors [12, 13].  Altering the vascular endothelial pore sizes through the use 

of agents such as mannitol [14], vascular endothelial growth factor [15], or tumor 
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necrosis factor α [16] has been shown to promote extravasation to tumor.  Unfortunately, 

some of these agents may also affect the permeability of blood vessels within non-target 

tissue.  Another approach to improve delivery to tumors involves “normalization” of the 

tumor vasculature with antiangiogenic agents prior to treatment administration.  Tumor 

blood vessels are structurally abnormal with a haphazard pattern of connections and 

tortuous paths often terminating in ‘dead-ends’.  The basement membrane lining these 

vessels may be either unusually thick or entirely absent [17, 18].  Hyperpermeability 

leads to lack of pressure gradients and impairs the flow of fluids leading to the 

heterogeneous delivery of drug to tumors.  Normalizing the vasculature by pruning 

excess endothelial cells with judicious administration of antiangiogenic agents would 

alleviate some of these issues leading to more efficient delivery of drugs to tumor cells 

[19, 20].  Finally, extravasation to tumor has been shown to be size dependent [21, 22], 

therefore, future studies may investigate alterations in liposome size for this cleavable 

PEG system to optimize extravasation to tumor.     

8.6.2.  INCREASING DIFFUSION OF TARGETED AGENTS AFTER EXTRAVASATION 

Since diffusional barriers within tumors prohibit uniform drug delivery, numerous 

methods have been studied to overcome these limitations.  If the binding site barrier 

proves to be a major obstacle to diffusion beyond the perivascular space after PEG 

removal, studies may be conducted to establish the minimum number of targeting ligands 

required to enable specific binding and uptake by tumor cells.  Liposomal formulations 

utilizing this number of targeting ligands may then be investigated to reduce the binding 

site barrier effects.  Another means of promoting further diffusion within tumor is to 

utilize liposomes which may be destabilized.  Temperature-triggered destabilization has 
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been shown to lead to rapid release of free drug from within nanocarriers [23, 24].  Free 

drug should not suffer from diffusion limitations due to its small size and will be able to 

penetrate more deeply into the tumor resulting in a more uniform intratumoral 

distribution.  

8.7.  ALTERNATIVE TARGETING AGENTS 

As discussed in Chapter 3, many different tumor targeting agents have been 

reported in the literature.  It would be worthwhile to investigate the use of alternative 

targeting ligands with this liposomal system.  In addition, this system may allow for or be 

modified to allow for the use of antibodies which tend to demonstrate higher binding 

affinities for tumor targets.  Antibodies presented on nanocarriers usually elicit immune 

responses resulting in accelerated clearance making them impractical for in vivo 

applications, however, masking with cleavable PEG may finally allow for their use in 

targeted formulations.  Due to the large size of antibodies compared to the folate 

targeting ligand utilized here, longer PEG chains may be necessary to adequately mask 

the antibodies from the RES.  To determine the optimal length, additional studies would 

need to be performed examining variation in PEG chain length and the resultant effects 

on circulation times.  Selection of specific agents for future studies would ultimately be 

dependent on the type of tumor to be treated. 

8.8.  CONTRAST AGENT DELIVERY 

The nanoscale delivery system presented here was designed for the delivery of 

chemotherapeutic agents.  Another promising application of this system would involve 

the encapsulation and delivery of contrast agents for medical imaging of tumors.  By 

targeting contrast agents to tumors, improvements in imaging would be achieved 
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allowing for earlier detection of tumors.  In addition, images obtained before and after 

triggered removal of PEG could be compared to gain information on tumor vasculature, 

which tends to be difficult to resolve using traditional imaging techniques.  Images 

obtained prior to PEG cleavage would display contrast from both the tumor and the tumor 

vasculature while images subsequent to cysteine administration would simply display 

contrast at the tumor site since the unmasking of targeting agents results in clearance of 

liposomes from the bloodstream.  Image subtraction may then be performed to yield a 

clear picture of the tumor vasculature.  

8.9.  CONCLUSIONS 

While much progress has been made using the cleavable phospholipid-PEG 

conjugates presented here to successfully mask and unmask targeting agents on 

nanocarriers, additional studies must be performed before the multifunctional system is 

truly optimized for in vivo therapeutic use.  This chapter has presented some of the 

experiments which should yield a more thorough understanding of this system as well as 

some additional applications which may prove to be useful in the future. 
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APPENDIX A.  IMAGING NANOPROBE FOR PREDICTION OF 

NANOPARTICLE CHEMOTHERAPY USING MAMMOGRAPHY  

 

As published with E. Karathanasis, S. Suryanarayanan, S.R. Balusu, I. Sechopoulos, A. 

Karellas, A.V. Annapragada, and R.V. Bellamkonda, Radiology, (2008), accepted. 

 

The following text, figures, and tables comprise a manuscript submitted to 

Radiology related to the passive targeting of contrast agents to tumors using liposomes 

where the degree of extravasation is shown to be an accurate predictor of 

chemotherapeutic efficacy.  The manuscript is included for reference purposes in regards 

to the dissertational work provided in the main text. 

 

Advances in Knowledge:  

1. Imaging studies of a rat breast tumor model using a clinical digital 

mammography system identified a dose of a long-circulating 100nm-scale liposomal 

probe containing a high concentration of iodinated contrast agent (155 mg/mL) that 

produced undetectable signal from the blood while the accumulation of the agent in the 

tumor produced adequate signal for detection.  

2. Imaging of the extravascular, intratumoral accumulation of the nanoprobe 

allowed detection and quantification of the tumor vascular permeability which varied 

between animals. 
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3. The imaging measurements of the tumor vascular permeability to the 

nanoprobe allowed prediction of the effect of a subsequent treatment with liposomal 

doxorubicin of similar composition and particle size as the nanoprobe. 

Implications for Patient Care:  

An a priori determination of the extent of tumor vascular permeability to 

nanoparticle-based therapy can facilitate personalized therapy, and spare potential non-

responders from the rigors of a chemotherapy regimen. 

A.1.  ABSTRACT 

Purpose: To prospectively predict the efficacy of a clinically used 

nanochemotherapeutic by detecting and measuring the intratumoral uptake of an X-ray 

contrast nanoprobe using digital mammography.  

Materials and Methods: All animal procedures were approved by the 

Institutional Animal Care and Use Committee. A long-circulating 100nm-scale injectable 

liposomal probe was developed encapsulating 155 mg/mL iodine. Preliminary studies 

were performed to identify the agent dose that would result in adequate tumor 

enhancement without enhancement of the normal vasculature in rats. This dose was used 

to image a rat breast tumor (n=14) over a period of three days using a digital 

mammography system, and subsequently the animals were treated with liposomal 

doxorubicin. The predictive capability of the probe was characterized by creating ‘good’ 

and ‘bad’ prognosis subgroups, based on the tumor enhancement found during imaging 

and analyzing the tumor growth after treatment of the animals in these two subgroups.  

Results: A dose of 455 mg I/kg body weight was found to produce an 

undetectable signal from the blood while achieving enough intratumoral accumulation of 
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the probe so as to produce adequate signal for detection. The ‘good prognosis’ and ‘bad 

prognosis’ subgroups demonstrated differential tumor growth rates (p<0.003). An inverse 

linear relationship between the contrast enhancement rate constant during imaging and 

the tumor growth rate constant during treatment was found (slope=-0.576, R2=0.838).  

Conclusions: In this animal model, quantitative measure of vascular permeability 

enabled prediction of therapeutic responsiveness of tumors to liposomal doxorubicin 

treatment. 

A.2.  INTRODUCTION 

Nanoscale therapeutic interventions are increasingly important elements of cancer 

therapy [1, 2]. Nanoparticles [3, 4] can be effective delivery vehicles for toxic 

chemotherapeutic drugs, increasing delivery efficiency to the targeted tumor while 

reducing off-target delivery [5]. Liposomal anthracyclines were the first nanotherapeutics 

to be approved for clinical use as the first line for treatment of AIDS-related Kaposi’s 

Sarcoma and relapsed ovarian cancer [6] and are under numerous clinical trials (128 

active studies) for treatment of many types of cancer, especially breast cancer which 

accounts for 41 active clinical trials [7].  

In addition to the cytotoxic effect of the drug at the molecular level, the success of 

systemically delivered nanotherapeutics for solid tumors is critically dependent on the 

access that these agents have to tumors via the so-called leaky vasculature of the tumor 

microvasculature network. This network consists of an immature blood microvessel 

system with hypervascularization, abnormal vascular architecture, increased leakage 

through the vessel wall and lack of lymphatic drainage [8, 9]. Nanoparticles preferentially 

accumulate in solid tumors by passive convective transport through leaky endothelium 
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(extravasation) that is due to pores varying from ~100 to 800 nm in size [10-12]. The 

phenomenon is termed the Enhanced Permeation and Retention (EPR) effect. To date 

however, to our knowledge, there exist no clinical tools to determine whether tumor 

blood vessels are permeable to nanoparticles in this fashion. For instance, the current 

clinical protocols for liposomal doxorubicin consist of a standard dose every 3-4 weeks 

[13]. No prior knowledge of tumor vessel status, especially leakiness, is taken into 

account for the dose scheduling. However, it is well-known that the degree of tumor 

vasculature leakiness differs not only among same type tumors but even spatially within 

the same tumor [14-16]. 

Our purpose was to prospectively predict the efficacy of a clinically used 

nanochemotherapeutic by detecting and measuring the intratumoral uptake of an X-ray 

contrast nanoprobe using digital mammography.  

A.3.  MATERIALS AND METHODS 

A.3.1.  FABRICATION OF THE NANOSCALE X-RAY PROBE  

A highly concentrated iodine solution (650 mg I/mL) was prepared by dissolving 

iodixanol powder (lyophilized from Visipaque 320; GE Healthcare, Milwaukee, WI) in 

ultrapure water under stirring and heating at 70°C. The rest of the procedures were 

similar to those described previously [17] (E.K., with 7 years of experience in 

nanoparticle fabrication). The liposomal probe contained 72 mg/ml lipids and 155 mg/mL 

iodine and 100% of the iodine was encapsulated within the liposomes. The average 

diameter of the liposomes was 96 nm (SD=8), a size known to prevent renal clearance. 

An in vitro leakage experiment against isotonic phosphate buffered saline exhibited very 
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low leakage of the encapsulated iodine (less than 5% of the initial payload) over a period 

of 3 days.  

A.3.2.  ANIMAL MODEL 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee. Our study took place from February 15, 2007 to December 10, 2007. A 0.2 

mL aliquot containing 106 cancer cells (13762 MAT B III cell line (American Type 

Culture Collection, Manassas, VA), a mammary adenocarcinoma) was subcutaneously 

injected into the right flank of 53 8-9 weeks old female Fisher rats (Harlan, Indianapolis, 

IN). Caliper measurements were used to estimate tumor size and the tumor volume was 

calculated as: Vtumor=(d1
2 x d2)/2, where d1 and d2  are the minimum and maximum 

diameters (E.K., with 6 years of experience in animal handling and procedures). 

A.3.3.  X-RAY IMAGING  

Imaging was performed using a clinical digital mammography system 

(Senographe 2000D, GE Healthcare, Milwaukee, WI) (S.S. and I.S., with 10 and 6 years 

experience in medical physics, respectively). To maximize the number of photons with 

energies above the K-edge of iodine (~33.2  keV) [18], imaging was performed at 49 kVp 

and 63 mAs, using a rhodium target and the available 25 µm thick rhodium filter with an 

added 0.254 mm thick copper filter [19]. The resultant x-ray spectrum was estimated 

using the XSPECT simulation program (Henry Ford Health Systems, Detroit, MI), which 

uses semi-empirical models [20].   

To estimate the radiation dose to the animals during imaging, a previously 

validated Monte Carlo simulation for dosimetry studies [21] was modified to include a 

simplified version of the animal geometry (I.S.). In the simulation, the animals were 
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represented as a 10 cm long cylinder of water with a 4 cm diameter. To estimate the dose 

to the cylinder from the x-ray spectrum used in the imaging studies, the Monte Carlo 

simulation was performed repeatedly with monochromatic x-rays with energies from 20 

keV to 49 keV in 0.5 keV steps. To achieve the necessary statistical accuracy, one million 

photons per energy level were simulated. The monochromatic results were combined 

with the x-ray spectrum obtained with the XSPECT simulation program using the method 

described by Boone [22]. 

A.3.4.  PRELIMINARY DOSE STUDY 

Initially, pilot imaging sessions were performed to determine the appropriate dose 

of the probe that would result in appropriate tumor enhancement with no detectable 

enhancement of the vasculature. For this task, 16 animals were injected with the probe at 

doses resulting in iodine concentrations in the blood ranging from 6 to 20 mg/mL with 2 

mg/mL intermediate steps (2 animals per dose) and were subsequently imaged at t=0.5, 1, 

5, 10 min and 24, 72, 120 h. From the acquired images the dose threshold above which 

the vasculature was not highlighted was identified by visual inspection by two reviewers 

in consensus (E.K., S.S.). 

A.3.5.  EFFICACY PREDICTION STUDY 

At day 6 after tumor inoculation (tumor volume ~300 mm3), 14 animals were 

imaged before (t=0) and at defined time points (t=2 and 30 min, 24 and 72 h) after 

intravascular (IV) injection of the probe at the dose identified in the preliminary dose 

study. As a control for the imaging portion of the study, 6 animals that were also 

inoculated with the tumor but only injected with 0.5 mL of saline were imaged at the 

same time points. Immediately after the last imaging session (at day 9 after tumor 
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inoculation), the animals were IV injected with liposomal doxorubicin at a dose of 10 

mg/kg doxorubicin. As a control for the treatment portion of the study, 15 animals that 

underwent the same tumor inoculation and probe injection at the same time points as the 

study group was not injected with liposomal doxorubicin. Liposomal doxorubicin was 

prepared following established methods [23]. The tumor growth of each animal was 

monitored every day using caliper measurements. The maximum tumor size that was 

allowed was 3 cm. When the tumor reached this size or the animals showed signs of pain, 

prostration, labored breathing, sunken eyes, any skin ulcers, emaciation or anorexia, the 

animals were euthanized using a CO2 chamber. Otherwise the animals were euthanized 

21 days after tumor inoculation. 

A.3.6.  IMAGE ANALYSIS 

The sequential image acquisitions provided the dynamics of the probe’s 

intratumoral accumulation over time. The grey levels were measured in raw data 

(DICOM format) using ImageJ software (NIH, Bethesda, MD). An ellipsoid region of 

interest (ROI) was used for the measurements surrounding the entire tumor lesion (E.K.) 

and the average value of the grey levels in the ROI was used as the tumor enhancement. 

Since mammography is not a tomographic modality, the observed tumor enhancement 

represents the summation of the absolute enhancement due to the contrast agent and the 

enhancement of overlying tissue structures. To normalize with respect to the overlying 

tissues, a relative enhancement was computed by subtracting the pre-contrast 

enhancement value (t=0) from the post-contrast enhancement value (t>0). Tumors that 

presented a relative enhancement lower than 50 digital units in the 24 h post-injection 
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image were assigned to a ‘bad prognosis’ subgroup, while tumors with a relative 

enhancement of 50 digital units or above were assigned to a ‘good prognosis’ subgroup. 

As a control, the relative enhancement of a normal section of tissue was also 

measured in each image by selecting a ROI that included only soft tissue and completely 

excluded the tumor (E.K.). The relative enhancement of this ROI was computed using the 

same methodology as that described for the tumor’s relative enhancement. 

For enhanced visibility of the images for publication, the images in Figures A.2, 

A.3, and A.4 , were histogram matched and sharpened using unsharp masking. Both 

processes were performed using ImageJ. This processing was performed for display of 

the images only; the quantitative analysis was performed with the original, unprocessed 

images. 

A.3.7.  IMMUNOHISTOCHEMISTRY AND HISTOLOGICAL EVALUATION OF EXPLANTED 

TUMORS 

For histological examination, animals (n=2) were injected at day 6 with the probe 

(455 mg I/kg) tagged with rhodamine. At 48-h post-injection, the animals were 

euthanized and the tumors were explanted. To visualize the tumor microvasculature, the 

tissue slices were immunohistochemically stained for the specific endothelial antigen 

CD31 (BD Biosciences Pharmingen, San Diego, CA). The tissues were also stained with 

the nuclear stain DAPI. The staining procedures followed established methods [24]. The 

tumor sections were imaged at 10x on the Nikon Eclipse 80i upright microscope using a 

Microfire CCD camera (Optronics, Golate, CA) that interfaced with the Neurolucida 

software (MicroBrightField Bioscience, Williston, VT) to obtain a montage of each 

section. The histological analysis was performed to verify the presence of extravascular 
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intratumoral accumulation of the probe and its location with respect to the tumor 

vasculature (E.K.).  

A.3.8.  DATA AND STATISTICAL ANALYSIS 

To determine the significance of the grey levels variation and tumor volumes 

among the various animal groups at different time points, one-way ANOVA with post-

hoc Bonferroni test was performed (SPSS 15, Chicago, IL). A p-value less than 0.05 was 

used to confirm significant differences at the 95% confidence level. The Anderson-

Darling test was performed to verify that the data follow a normal distribution. The tumor 

enhancement profiles and tumor growth curves were fitted into an exponential function 

[25] using nonlinear regression (Levenberg-Marquardt algorithm) to compute the 

enhancement rate constant (Kenhancement) and the tumor growth rate constant (Ktumor growth), 

respectively (Polymath 5.0, Willimantic, CT) . The area under the curve of the signal 

enhancement profiles was estimated using the Gauss-Legendre orthogonal polynomial 

approximation. The correlation between the signal enhancement and the tumor growth 

rate was determined using linear regression. Besides the Pearson’s correlation, the 

correctness of the model was evaluated by examining the residuals plots and other 

statistical tests (SPSS 15, Chicago, IL).    

A.4.  RESULTS 

A.4.1.  IMAGING USING A CLINICAL MAMMOGRAPHY SYSTEM  

Figure A.1 shows the modeled x-ray spectrum resulting from the tube voltage and 

filter settings and the addition of the copper filter. Under these operating conditions, the 

animal received an estimated radiation dose of 0.39 mGy per imaging session. In the pilot 
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Figure A.1. Estimation of the 49 kVp rhodium/rhodium x-ray spectrum with the added 0.254 mm 
copper filter, according to the XSPECT simulation program. 
 

imaging sessions where animals were injected with different doses of the probe, the 

threshold for visualization of blood vessels was ~12 mg I/mL in the blood (or a dose of 

800 mg I/kg b.w.). For instance, while no vessels were visible pre-injection, they became 

clearly visible in normal tissue and at the tumor one minute after injection of the probe at 

a dose of 1344 mg I/kg body weight (bw) producing a concentration of ~20 mg I/mL in 

blood (Figure A.2). To eliminate signal from the blood vessels and probe the 

extravasation into the tumor, the dose selected for contrast-enhanced imaging was 455 

mg I/kg bw, producing a concentration of ~7 mg I/mL in blood; a concentration below 

the threshold for detection of iodine in the blood. This allowed detection of the 

extravasated nanoprobes as early as 24 h post-injection, with no interference from the 

vascular signal (Figure A.3). In the post-injection images no blood vessels were visible in 

the normal tissue while enhancement of the spleen, liver and the tumor can be clearly 

seen. Spleen and liver enhancement is consistent with clearance of liposomes via the  
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Figure A.2. Whole body images of a rat with a breast tumor in its right flank obtained using a clinical 
digital mammography system (a) before and (b) 1 minute after administration of a high dose (1344 mg 
I/kg) of the probe resulting in vasculature visualization of the tumor site and the normal tissues.  

  
Figure A.3. X-ray images display the 5-day intratumoral fate of the probe in a rat breast tumor model 
before and 24, 72, and 120 h after administration of the probe at a dose of 455 mg I/kg bw. In the post-
injection images no blood vessels were visible in the normal tissue while the spleen, liver and the tumor 
were clearly seen.  
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reticulo endothelial system (RES).  Figure A.4 shows two examples of how tumors were 

enhanced by the extravasated probe. The spatial and temporal variability of this 

enhancement, suggesting that each tumor had different tumor vasculature leakiness, can 

be clearly seen. 

 

Figure A.4. X-ray images of two tumors before and after injection of the probe at a dose of 455 mg I/kg 
with signal enhancement in terms of grey levels of tumor A is higher that tumor B by 40 and 70 digital 
units at t=72 and 120 h post-injection respectively, a difference that is clearly visible in the images.  

A.4.2.  HISTOLOGICAL EVALUATION OF EXTRAVASATED PROBE TUMOR DISTRIBUTION  

The tumor was characterized by a highly vascularized peripheral rim and an 

internal core with low vascularization.  The extravasated liposomes were localized in the 

well-vascularized periphery of the tumor in a patchy distribution (Figure A.5).  

A.4.3.  TUMOR IMAGING  

During the 3-day time course of imaging, some tumors exhibited a rapid and 

substantial increase of the enhancement whereas other tumors showed a slow and low  
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Figure A.5. Microdistribution of the probe in a breast tumor lesion 48 h after IV injection of rhodamine-
tagged iodinated liposomes (appeared as red dots on fluorescent microscopy); (a) The liposomes localized 
in the periphery of the tumor showing a patchy distribution (DAPI was used as a nuclear stain; appeared as 
blue; 10x magnification); (b) Immuhistochemical microvascular staining was achieved by staining for the 
specific endothelial antigen CD31 (appeared as green) revealing a highly vascularized peripheral rim and a 
less vascularized inner core (top left quadrant of the lesion is shown; 10x magnification); (c) In the same 
histological slice, the probe was localized within the well-vascularized rim. 

 

increase (Figure A.6).  Overall, the tumor enhancement displayed a variation among the 

animals with the standard deviation of 55 digital units representing 50% of the mean 

value of 110 digital units 3 days post-injection (Figure A.6.b).  While the tumor displays 

substantial enhancement, no enhancement was observed in normal tissues confirming that 

the nanoprobe levels in the blood were below the detectable threshold by mammography. 

In contrast, tumors within the control group of rats not given a contrast agent remained 

unenhanced implying that no endogenous changes of the tumor tissue contributed to the 

enhancement. 

A.4.4.  QUANTIFYING TREATMENT EFFICACY AS A FUNCTION OF PROBE 

EXTRAVASATION 

Liposomal doxorubicin slowed the progress of the tumor displaying statistically 

significant effectiveness 3 days after initiation of treatment comparing the control to 

treated groups (Figure A.6.c, d). The tumor response exhibited a variation reflected by  
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Figure A.6. (a) The 3-day pattern of the enhancement following injection of the probe (455 mg I/kg) to a 
group of rats (n=14) indicates a high variability of the tumors leakiness; (b) The tumor enhancement due to 
the probe was significantly higher than that of normal tissue (the region used for the measurement of 
normal tissue is indicated in the inset) which showed no substantial enhancement. Without administration 
of the probe, the tumor lesion of a control group of animals (n=6) showed no substantial enhancement (data 
presented as mean ± standard deviation); (c) Comparison of the tumor growth rate of an untreated group 
(n=15) and a group treated with liposomal doxorubicin (n=14) at day 9 (arrow) showed significance 
difference after day 12 (∗ indicates p<0.005; data presented as mean± standard deviation); (d) The tumor of 
each animal of the treated group responded differently to the nanotherapeutic as indicated by the variable 
tumor growth curves. 

 

the tumor growth curve having standard deviations ranging from 10-35% of the mean 

value. Higher uptake of the probe by the tumor indicating leakier vasculature was 

associated with a slower tumor growth rate suggesting a better therapeutic outcome of 

liposomal doxorubicin. While the tumors of five animals grew marginally, the rest of the 

animals had to be euthanized since their tumors reached notably large sizes affecting the 

animals’ quality of life.  

We found a strong correlation between Ktumor growth and Kenhancement with the less 

leaky tumors (low Kenhancement) having faster tumor progress (high Ktumor growth) and vice  
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Figure A.7. (a) The correlation of the tumor growth (Ktumor growth) and the prognostic assessment 
(Kenhancement) was statistically significant (R2=0.838; p<0.001). Based on the imaging-based prediction, the 
group of treated animals was divided into two subgroups:  ‘good prognosis’ (n=9) and ‘bad prognosis’ 
(n=5). (b) The tumor enhancement of the two subgroups was significantly different; (c) The response of the 
‘good prognosis’ subgroup to the chemotherapy was significantly better († and ‡ indicate statistical 
significance of p<0.0005 and p<0.002 compared to the control group and the ‘bad prognosis’ subgroup, 
respectively). The ‘bad prognosis’ subgroup showed decreased tumor growth when compared to the control 
group (∗ indicates p<0.005). 
 

versa (Fig 7). Besides the enhancement rate constant, the predictive power of other 

descriptive parameters (such as the area under the enhancement curve) were examined  

displaying similarly good correlations (R2=0.856). A better therapeutic outcome was 

observed in the ‘good prognosis’ subgroup from day 12 when compared to the untreated 

and the ‘bad prognosis’ subgroup. The ‘bad prognosis’ subgroup still benefited from the 

liposomal therapy; showing decreased tumor growth after day 14 when compared to the 

untreated control group.  

A.5.  DISCUSSION 

The variability in tumor enhancement found in our study is consistent with a 

published study where the standard deviation of the accumulation of liposomal 

doxorubicin in a rat brain tumor was 150% of the mean value [23]. Numerous studies 

with liposomal doxorubicin conducted in invasive and well-vascularized xenograft mouse 

models have shown substantial variation in intratumoral accumulation and antitumor 

effects [26-29].  Besides animal studies, the biodistribution of radiolabeled liposomes 

was studied in cancer patients showing a considerable heterogeneity of the liposomal 

intratumoral deposition between different cancer types and between patients with the 

same tumor type [30]. However, no attempt was made in that study to correlate the 

efficiency of a subsequent liposomal doxorubicin treatment. 
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The variability of the intratumoral contrast agent uptake captured during the 3-day 

imaging sessions provided an accurate prognosis of the effect of liposomal doxorubicin 

on tumor growth rate. Since the timescale of extravasation of nanocarriers such as 

liposomal doxorubicin to tumors is in the order of few days, the 3-day imaging derived 

enhancement rate constant correlated well with the tumor growth. The variable tumor 

response to the treatment observed in our study is consistent with human breast tumor 

xenografts in nude mice treated with liposomal doxorubicin where the tumor growth 

curve had standard deviations of about 30% of the mean value [26]. The variability of 

tumor response to treatment depends on the type and the status of the tumor when 

treatment is initiated. Even in the aggressive model [31] used in our study where imaging 

probed the vascular permeability of a tumor growing at a fast rate, the prognosis and 

antitumor effect of liposomal doxorubicin were significantly correlated.  

Consistent with earlier reports [12, 27, 32], the liposomes showed a patchy 

distribution concentrated on the periphery of the tumor, where there is high 

vascularization, associated with high levels of angiogenic and permeability factors [33, 

34].  

It is important to note that the goal of our study was not to induce regression, but 

to be able to non-invasively probe EPR status of a given tumor in a given animal and 

correlate this to the extent of change in tumor growth rate with administration of systemic 

nanotherapeutic.  In this aggressive tumor model, the protocol to induce regression of 

tumor would require multiple injections of systemic nanotherapeutic but this would 

obfuscate the goals of the study which were to facilitate non-invasive probing of EPR 
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status of tumors so as to predict the degree of extravasation of systemically administered 

nanotherapeutics.  

A limitation of our study is that the feasibility of the predictive capability of the 

nanoprobe was demonstrated on a single tumor model although human cancer as a 

disease is much more heterogeneous than one experimental tumor model in terms of both 

tumors and hosts. Further testing in more tumor models is required to fully assess the 

value of this approach in clinical practice.   

In summary, the nanoprobe’s extravasation was probed in a rat breast tumor using 

a clinical mammography unit, and the animals were subsequently treated with liposomal 

doxorubicin of similar composition and particle size as the probe (and as the clinically 

used liposomal chemotherapy), to evaluate the probe’s predictive efficacy. Imaging 

allowed the identification of two subgroups prior to treatment: a ‘good prognosis’ and a 

‘bad prognosis’ subgroup and indeed these demonstrated differential tumor growth rates 

following administration of therapeutic. Our study demonstrates a contrast agent with 

the potential of predicting the therapeutic outcome of a clinically used nanoparticle-

based chemotherapy. Taking under consideration that mammography prevails as the 

only method of low cost mass screening of the general population for non-palpable breast 

cancer, the visualization of the extravascular accumulation of the probe and at the same 

time invisibility of the vasculature makes mammography an attractive non-invasive 

method for prediction of cancer therapy. Finally, though planar x-ray imaging enabled 

prognosis in our study by employing a clinically relevant, breast cancer imaging 

modality, mammography, we hypothesize such strategy would also be possible with 

tomographic methods (e.g. CT) yielding further insights. 
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A.6.  PRACTICAL APPLICATIONS  

Prediction of systemic liposomal chemotherapy efficacy with iodinated liposomal 

probes and clinical digital mammography would facilitate personalized treatment of 

breast cancer.  
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