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SUMMARY 

 

To realize spectrometers with state-of-the-art performance measures, we need to combine 

novel synthetic material properties and new device concepts using efficient design and 

optimization tools. Considering the material engineering, device innovation, and 

modeling and simulation tool development as the three primary areas of research in the 

invention of modern spectrometers, I put myself at the intersection of these three areas. 

My Ph.D. research has been focused on the development of such infrastructures for next 

generation spectrometers.  

 My research on the new concepts for spectrometer has been focused on the 

development of true multi-dimensional spectrometers, which use a multi-dimensional 

[two-dimensional (2D) or 3D] mapping of the spectral information into space. While the 

conventional spectrometers use a grating to form a one-dimensional (1D) spatial-spectral 

mapping, I showed that by combining a simple dispersive element (a volume hologram) 

formed in very inexpensive polymers with a basic Fabry-Perot interferometer, we can 

form a spectrometer with ultra-high resolution over a large spectral bandwidth, which 

surpasses all conventional spectrometers. This unique performance is obtained by the 2D 

spatial-spectral mapping enabled by combining two simple optical functionalities. I 

strongly believe that the extension of this mapping into three dimensions by using 

synthetic nanophotonic structures with engineered dispersion (optimized using the 

recently demonstrated modeling tool) can further improve the performance and reduce 

the overall spectrometer size into the micron regime.  



 xxi 

 The need for efficient modeling and simulation tools comes from the 

sophisticated nature of the new 3D nanophotonic structures, which makes their simple 

analysis using well-known simple formulas for the propagation of the electromagnetic 

fields in bulk materials impossible. On the other hand, direct numerical simulation of 

these structures using the well-known numerical simulation tools such as finite difference 

time-domain or the finite element techniques is not possible due to the excessive 

requirement of memory and simulation time. Added to the complexity of the problem is 

the diffuse (or spatially incoherent) nature of the optical beams in the state-of-the-art 

spectroscopy applications. In my Ph.D. research, I developed new approximate modeling 

tools for both the modeling of incoherent sources in nanophotonics, and for the 

propagation of such optical beams inside the 3D nanophotonic structures of interest with 

several orders of magnitude improvement in the simulation speed for practical size 

devices without sacrificing accuracy. I believe the tools developed in my research enable 

us to look into new structures and functionalities that we were not able to analyze simply 

before.  

 To enable new dispersive properties using a single nanophotonic structure, I have 

focused in my Ph.D. research into polymer-based 3D photonic crystals, which can be 

engineered using their geometrical features to demonstrate unique dispersive properties in 

three dimensions that cannot be matched by any bulk material even with orders of 

magnitude larger sizes. I have demonstrated the possibilities of using a very compact 

structure for wavelength demultiplexing and also for spectroscopy without adding any 

other device. The range of applications that can be enabled by having a material system 

with a wide range of 3D dispersive properties is very wide covering spectroscopy and 
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sensing, dispersion management, diffraction compensation, pulse shaping, and many 

others. I am very interested in using this material platform and extend my current 

research into 3D heterostructures in which each portion of the structure is engineered to 

optimize a subset of optical functionalities. The simplest version of such heterostructures 

is the integration of interferometry and spectroscopy in a single structure. The most 

general view of such engineered nanostructures is to consider them as a 3D version of the 

gratings for the spatial-spectral mapping of the information in an optical beam. 
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CHAPTER 1 

INTRODUCTION 

 

Recent increasing demand for high performance handheld sensors for biological and 

environmental sensing has inspired a lot of research in this area [1-5]. Many optical 

techniques for such sensing applications rely on the measurement of the spectrum of a 

light beam after interaction with analyte of interest [6-10]. Thus, the development of 

compact and low-cost spectrometers with high resolution and large operation bandwidth 

is highly desired. The use of conventional spectrometers, especially for diffuse source 

spectroscopy [11-15] (which is the case of interest in many biological and environmental 

sensing applications) has a few major drawbacks. First, it requires a collimation 

subsystem (typically a slit and a lens). This adds to the bulkiness and also requires good 

alignment of different elements in the system [16]. Secondly, to improve the resolution 

and at the same time to increase the bandwidth of operation, one must enlarge the size of 

the detector array along the dispersion axis, which makes the overall system larger and 

more expensive [17]. This is caused by the one-dimensional (1D) nature of the spatial-

spectral coding in these spectrometers which are usually based on diffractive gratings as 

seen in Figure 1.1. This 1D spatial-spectral response is referred to as the trade-off 

between the resolution and the operation bandwidth throughout this research.  
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Figure 1.1. Schematic of a spectrometer composed of a diffractive grating which results 
in a 1D spatial-spectral mapping. 
 
 Here our main goal in this thesis is to design and implement a high resolution 

large bandwidth compact diffuse light spectrometer which is also able to encode the 

spectral information in a two-dimensional (2D) pattern on a detector array or a charge- 

coupled device (CCD) chip. To achieve this goal, this thesis is divided into three parts as 

follows: 

1.1. Design and Implementation of a Diffuse Light Spectrometer 

There are three major performances that have to be achieved simultaneously to realize 

such a diffuse spectrometer: 1) ability to disperse a diffuse beam, 2) improvement of the 

resolution without sacrificing the bandwidth, and 3) ability of 2D spatial-spectral 

mapping. At first, we study the spectral response of conventional interferometric and 

diffractive elements to investigate their functionalities under diffuse light illumination. 

Then, we start from the successful implementation of diffuse light spectrometers based 

on volume holograms [18, 19] and try to improve their resolutions by incorporating an 

interferometric device like a Fabry-Perot etalon (FPE) [20, 21]. We show that in order to 

realize both high resolution and large spectral bandwidth independently, we can make 



 3 

benefit of a special type of volume holograms known as cylindrical beam volume 

holograms (CBVHs). We also show that such a tandem spectrometer composed of a FPE 

and a CBVH collectively results into a 2D spatial-spectral pattern on the CCD.  

 To further shrink the size of this spectrometer and for more efficient spatial 

encoding of the spectral channels, we propose to use a new material platform based on 

three-dimensional (3D) photonic crystal (PC) structures [22-24]. In this new platform, we 

can merge the functionalities of both interferometric and diffractive elements together 

and replace the tandem spectrometer with an extremely compact properly designed 3D 

PC microspectrometer [25].   

1.2. Efficient Modeling of a Spatially Incoherent Source 

Prior to analysis and design of 3D PC microspectrometers, we have to develop a 

simulation tool to model a spatially incoherent (i.e., diffuse) source. Initially, we propose 

a Monte-Carlo model which results in almost one order of magnitude less computation 

time compared to the conventional brute-force model. However, its simulation results are 

not as accurate as those of the brute-force model. For a more accurate simulation, we 

further propose a new analytical model based on the Wiener chaos expansion (WCE) 

method. We numerically implement this model using the finite difference time domain 

(FDTD) technique and once again compare it to the brute-force model. It will be shown 

that by using WCE model, the simulation time is reduced considerably while the results 

are in excellent agreement with those obtained by the brute-force model.   

1.3. Design and Implementation of a 3D PC Microspectrometer 

PCs are synthetic periodic dielectric structures [26-30] with controllable dispersion which 

can be engineered and utilized for numerous dispersive applications [31-35]. Among 
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these applications, the possibility of wavelength demultiplexing and spectroscopy using 

the superprism effect is of particular interest [36-45]. Figures 1.2(a) and (b) show a 2D 

and a 3D PC spectrometer, respectively. Unlike simple diffractive gratings, they can 

result in multidimensional spatial-spectral mapping. The 2D PC structure is able to 

separate the wavelength channels in a 2D plane while the 3D PC structure can go further 

and focus them in different depths of a volume and thus results in 3D spatial encoding of 

the wavelength channels.    

 

  

 

 
      (a)            (b) 
Figure 1.2. (a) Schematic of a 2D PC spectrometer which is able to map the spectral 
information into a 2D spatial pattern. (b) Schematic of a 3D PC spectrometer which 
further enables a 3D spatial-spectral mapping. 
 
 2D PC planar structures because of their compatibility with well-developed 

microelectronic fabrication techniques and possibility of integration in a planar platform 

have been extensively investigated for many dispersive applications including 

spectroscopy. However, free-space structures using 3D PCs are highly preferred to avoid 

the issue of coupling light into and out of a planar platform. In addition, recent advances 

in the fabrication of 3D PC structures, including self assembly [46], direct laser writing 

by multi-photon lithography [47-49], and multi-beam interference lithography [50-52] 
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have made possible the realization of such structures for practical applications. 

Applications including beam shaping, dispersion control, and spectroscopy are among a 

variety of possibilities in which unique dispersive properties of 3D PCs can be used [53-

60]. Figure 1.3 shows the scanning electron microscope (SEM) image of a tetragonal 

woodpile 3D PC structure fabricated using a direct laser writing technique which is used 

in the last part of this research for the implementation of low-cost ultra-compact 

spectrometers.  

 

Figure 1.3. SEM image of a tetragonal woodpile 3D PC structure fabricated using a direct 
laser writing technique. 
 
 It has been shown recently that the propagation of optical beams in 2D PCs can be 

accurately and efficiently analyzed using an effective diffractive index model. Following 

the same procedure, we develop a diffractive index model for fast and efficient analysis 

of the beam propagation effects inside 3D PC structures. Having this model developed, 

we move on to the engineering of functional dispersive devices. We later report on a 

successful implementation of a 4-chanel and a 6-channel 3D PC demultiplexer which also 

can be renamed as a proof of principle a microspectrometer. Moreover, we discuss all the 

design requirements and practical issues which are present in this research.  
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 We believe the low-cost technology and the cheap polymer materials used for the 

fabrication of this kind of dispersive devices in addition to their design freedoms can 

revolutionize the spectrometer industry by delivering cheap hand-held high resolution 

large spectral bandwidth diffuse light spectrometers. 

 This thesis is organized as following: The first two chapters after introduction 

deal with the first part of this research regarding the design and implementation of a 

tandem FPE CBVH spectrometer. In Chapter 2 we investigate the functionality of 

conventional spectroscopic elements under diffuse light and propose an innovative design 

to achieve both high resolution and large bandwidth. Chapter 3 reports on the 

experimental demonstration of a tandem spectrometer. In the next two chapters, we 

develop a simulation model for a diffuse source. The Monte-Carlo model and the WCE 

model are described in Chapters 4 and 5, respectively. The subsequent two chapters are 

focused on the applicability of 3D PCs for functional dispersive devices. The diffractive 

index model to expedite analysis of beam propagation effects is developed in Chapter 6 

and its application for implementation of a wavelength demultiplexer is specified in 

Chapter 7. Finally, concluding remarks and future directions are given in Chapter 8. 
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CHAPTER 2 

DIFFUSE LIGHT SPECTROMETERS 

 

There are many proposals for the development and improvement of clinical instruments 

for identification of specific chemicals in human body. Besides, recently, there are huge 

investments for the development of environmental detection systems for immediate 

response to hazardous materials for safety and security purposes. Looking into any kind 

of these instruments, one can certainly verify that its most significant block is a sensor for 

bulk identification or even an exact percentage measurement of some specific molecules 

in a target medium.  

 Among many sensing mechanisms, optical spectroscopy is a powerful diagnostic 

tool because of its high specificity and potential for in vivo measurements [6-8]. 

Moreover, its non-invasive nature makes it very suitable for easy and fast medical 

examinations. On contrary to all these advantages, its very small cross-section and diffuse 

properties in a highly scattering medium like blood or tissue make the optical signal very 

weak and challenging to detect. There are numerous reports on the development of 

coherent light spectrometers which mostly use a spatial filter (i.e., a slit and a collimator) 

to select only a limited narrow divergence angle of the input beam [61]. However, there 

are only a few reports on the development of diffuse light spectrometers without any 

input slit [16].  

 In this chapter we plan to study the spatial-spectral response of the conventional 

spectrometers under diffuse light illumination and to show how effectively we can 

improve their performance by a new design mechanism. Two significant specifications of 
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a high-quality spectrometer are spectral bandwidth and resolution. Throughout this 

chapter, our strategy is to come up with a new design to get the best of both, a high 

resolution and at the same time a large bandwidth.  

 The conventional spectroscopic devices are categorized in two major types: the 

interferometers and the diffraction gratings. We first analyze different examples of each 

category for its spatial-spectral response and investigate its pros and cons regarding 

bandwidth and resolution. The bandwidth of the spectrum is defined as the maximum 

range of wavelengths over which the spectrometer can determine the spectrum of the 

input. The resolution of the spectrometer is usually defined as the smallest difference in 

the wavelengths of two monochromatic input beams while the corresponding outputs can 

be resolved on the output detector. The interferometers are well-known of high resolution 

while the gratings are mostly distinguished for their large bandwidth. In each category we 

end up with the best candidate capable of diffuse light spectroscopy, the Fabry-Perot 

etalon (FPE) and the cylindrical beam volume hologram (CBVH), respectively. Later, we 

combine these two interferometric and diffractive elements and verify its better 

performance, i.e., the larger bandwidth and the higher resolution, compared to its 

individual building blocks. We show that in this tandem configuration the collimation 

subsystem, i.e., the slit and the collimation lens, has been removed to make the final 

spectrometer very compact and less alignment sensitive than the conventional ones. 

Furthermore, the less number of elements accordingly reduces the cost too. It will be also 

shown that the tandem FPE CBVH spectrometer has a two-dimensional (2D) spatial-

spectral response rather than the conventional one-dimensional (1D) response and it 

results in a more efficient and compact coding of spectral information on the CCD.  
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2.1. Interferometric Spectrometers  

Interferometric spectrometers work based on the fact that the interference pattern of any 

spectral channel as a result of propagation through two or more paths is a function of its 

wavelength. Therefore, by calibration and analysis of fringe (i.e., interference) patterns 

we can determine their spectral information [21]. In this section, we look into two major 

interferometric spectrometers, thin films and FPEs.  

2.1.1. Thin Films 

The very initial example of an interferometer is a stand alone thin film composed of a 

dielectric material like silica (SiO2) or titania (TiO2). To analyze the operation of a thin 

film interferometer, we choose a titania film with nf = 2.5 and df = 20 µm. For the titania 

film the reflectivity is [62]    
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where Tmax and Tmin stand for the maximum and the minimum transmission, respectively. 

Consequently, higher extinction ratio results in higher signal to noise ratio (SNR) in 

practical demonstrations. Moreover, if we calculate the full width at half maximum 

(FWHM) of the resonance peaks (i.e., 2/1λ∆ ) as a measure of resolution for both the 

titania and the silica films [62], 
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we find that the titania film has almost four times better resolution than the silica film. 

This justifies the better performance of higher refractive index materials for spectroscopic 

instruments. 

 Figure 2.1 shows the schematic of a thin film spectrometer in which a CCD is 

placed at the focal plane of a lens. Hence, the spectral response of the thin film is Fourier 

transformed to its spatial pattern on the CCD. The input beam is a TE polarized uniform 

diffuse beam which has all the possible free space wavevectors ( °+≤≤°− 9090 θ ). 

Figures 2.2(a)-(d) show the spatial responses of the titania film on the CCD for four 

different spectral channels, 550-553 nm, respectively. As seen in these figures, the 

spectral information of each wavelength is mapped into a circularly symmetric spatial 

pattern on the CCD. Comparing Figure 2.2(a) with Figures 2.2(b) and 2.2(c) clearly 

shows that changing the input wavelength results in a small shift of the circular patterns 

along the radial direction. Therefore, the whole spectral information of the input diffuse 

beam can be retrieved from the radial dimension of the CCD and its azimuthal dimension 

carries no more spectral information and it is left useless. In other words, the spectral 

information recorded along the quarter-circles on the CCD is redundant. This is in fact a 

1D spatial-spectral mapping in spite of its 2D appearance and it is not desired because of 

the wasteful use of the 2D detector array (i.e., CCD).   
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Figure 2.1. Schematic of a thin film spectrometer. The thin film is composed of a titania 
layer with nf = 2.5 and df = 20 µm. The spectral information of the input diffuse beam is 
mapped into its spatial pattern at the Fourier plane of the lens on the CCD. 
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   (c)                (d) 
Figure 2.2. Circularly symmetric fringes formed at the Fourier plane of the spherical lens 
on the CCD as a result of diffuse light illumination of the thin film shown in Figure 2.1.  
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 Figure 2.3 shows altogether the spatial-spectral patterns taken along a radial 

direction in Figures 2.2(a)-(d) at different wavelengths. The first observation confirms the 

high resolution of the titania film as the spectral channels with only 1 nm wavelength 

difference are clearly resolved in this figure. In contrast to its high resolution, the titania 

film has a very small spectral bandwidth limited by its free spectral range (FSR). This is 

obviously seen in Figure 2.3 where the spatial response of the λ = 553 nm almost covers 

that of the λ = 550 nm. Same conclusion can be made in comparing Figures 2.2(a) and 

(d) where they do look similar. Therefore, the periodicity in the spectral response of 

interferometers severely restricts the accessible spectral range because the output image 

on the CCD is degenerate for wavelength spaced by the FSR meaning that the utility of 

this kind of spectrometer for broad source analysis is constrained.   
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Figure 2.3. Periodic spectral transmission response of the spectrometer shown in Figure 
2.1 with FSR = 3 nm. The spectrum of the titania film is degenerate beyond its FSR as 
evidenced by the overlap of the transmission response at λ = 553 nm and that at λ = 550 
nm.    
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2.1.2. Fabry-Perot Etalons 

The second and more remarkable demonstration of the interferometric spectrometers is 

based on a FPE [20, 21]. FPEs are popular for their extremely high resolutions and they 

are widely used for the measurement of very sharp atomic spectral lines. To study the 

operation principle of the Fabry-Perot interferometers under diffuse light illumination we 

choose a fixed-gap etalon as shown in Figure 2.4. It is composed of two parallel highly 

reflecting dielectric mirrors with the reflectivity R = 0.9 and the air-gap distance d = 50 

µm. The air-gap etalon has a frame or spacers which hold mirrors at a fixed distance. 

Similar to the previous study for the thin film spectrometer, the input beam is a TE 

polarized diffuse beam and the CCD is at the focal plane of the lens. Figures 2.5(a)-(d) 

show the spatial-spectral responses of the FPE spectrometer for four successive spectral 

channels 550-553 nm, respectively. Once again the spatial pattern along the azimuthal 

direction on the CCD is redundant and all the spectral information can be extracted from 

the pattern along the radial direction. Thus, the challenge of achieving a 2D spatial-

spectral response is yet remained to be solved.   

 The FSR of the FPE is calculated using the following formula [62], 

 
nd

FSR
2

2λ
=  (2.4) 

and it is almost 3 nm around the λ = 550 nm. Thus, the CCD images in Figure 2.5(a) for 

λ = 550 nm and Figure 2.5(d) for λ = 553 nm look similar. Figure 2.6(a) shows altogether 

the CCD outputs along a radial direction in Figures 2.5(a)-(d) for different wavelengths. 

It is clear that the output pattern at λ = 553 nm almost coincides with that at λ = 550 nm 

which is consistent with FSR = 3 nm. This observation confirms the degeneracy in the 
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spectral response of the FPE spectrometer beyond its FSR and limits its applicability to 

only a 3 nm bandwidth.   
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Figure 2.4. Schematic of a FPE spectrometer. The FPE is composed of two parallel 
highly reflecting dielectric mirrors with the reflectivity R = 0.9 and the air-gap distance d 
= 50 µm. The spectral information of the input diffuse beam is mapped into its spatial 
pattern at the Fourier plane of the lens on the CCD. 
 
 
 Using the estimate given in Equation (2.3), the resolution of the FPE is calculated 

to be ∆λ1/2 = 0.1 nm (i.e., 1 Å) while it is ∆λ1/2 = 1.8 nm for the titania film. Therefore, 

almost 20 times better resolution than thin film is achieved with FPE. The high resolution 

of the FPE is also seen from Figure 2.6(b) where the two 1 Å spaced wavelength 

channels are resolved clearly. Moreover, by comparing the Figures 2.3 and 2.6(a), one 

can see the extinction ratio of the FPE is very much higher than that of the titania film as 

a result of its higher reflectivity. Considering all the advantages together, FPEs look more 

promising interferometric spectrometers than thin films. However, both demonstrations 

suffer from the very small spectral bandwidth which is equal to their FSR.  
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 To summarize, the interferometric spectrometers have high resolution and small 

spectral bandwidth. They can work under diffuse light illumination and result in 1D 

spatial-spectral mapping on the CCD. Nevertheless, to improve their performance, we 

can integrate them with a diffractive element to not only increase their operation 

bandwidth but also break their spatial-spectral response symmetry. The collective 

spectrometer then can result in a 2D invertible mapping between target spectrum and 

CCD image. Prior to proposing the combined spectrometer, we study diffractive elements 

as tentative supplements to improve interferometers functionality. 
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   (c)                 (d) 
Figure 2.5. Circularly symmetric fringes formed at the Fourier plane of the spherical lens 
on the CCD as a result of diffuse light illumination of the FPE shown in Figure 2.4. The 
spatial patterns shown in (a), (b), and (c) are all different from each other along the radial 
direction. However, the patterns of (a) and (d) look similar which confirms the FSR of 3 
nm for the FPE used here. 
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   (a)                 (b) 
Figure 2.6. (a) Periodic spectral transmission response of the FPE spectrometer shown in 
Figure 2.4 with FSR = 3 nm along the radial direction. The spectrum of the FPE is 
degenerate beyond its FSR as evidenced by the overlap of the transmission response at λ 
= 553 nm and that at λ = 550 nm. (b) The spatial responses of two channels with only 1 Å 
wavelength difference are shown for the verification of the ultra-high resolution of the 
FPEs. 
 

2.2. Diffractive Spectrometers 

The second major type of spectrometers is diffractive spectrometers. They work based on 

the principle that different incident wavelengths are diffracted in different angles. 

Therefore, they separate an incident polychromatic beam into its constituent wavelength 

components. Two widely used examples of the diffractive spectrometers are diffraction 

gratings and volume holograms which are analyzed in this section.  

2.2.1. Thin Gratings 

The schematic of a spectrometer composed of a thin diffraction grating is shown in 

Figure 2.7. The grating has a thickness of dg = 5 µm, a period of Λ = 0.5 µm, and it has 

been recorded in a photorefractive material with ng = 1.5. The grating is illuminated by a 

TE diffuse beam and its diffraction pattern is captured on the CCD at the focal plane of 

the lens. Figures 2.8(a) and (b) show the diffraction patterns of the thin grating for two 

different wavelengths λ = 500 nm and λ = 600 nm, respectively. Similar to 
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interferometric spectrometers discussed in the previous section, grating has also a 1D 

spatial-spectral pattern. All the spectral information is encoded along the x direction and 

the pattern along the vertical dimension of the CCD has redundant information. To 

analyze the spectral response of the thin grating we just need to look at a horizontal row 

of the CCD image. Figure 2.9 shows the spatial patterns along a horizontal row on the 

CCD images in Figure 2.8 when both normalized to their peak values. As it is observed 

from this figure the thin grating has a very poor resolution as barely can resolve a 100 nm 

wavelength difference. Such a low resolution device is not practically valuable and thus, 

we conclude that the thin diffraction gratings are not useful for the diffuse light 

spectroscopy.    
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Figure 2.7. Schematic of a grating spectrometer. The grating has a period of Λ = 0.5 µm, 
and it has been recorded in a photorefractive material with ng = 1.5. The spectral 
information of the input diffuse beam is mapped into its spatial pattern at the Fourier 
plane of the lens on the CCD. 
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   (a)                                      (b) 
Figure 2.8. Diffraction patterns formed at the Fourier plane of the spherical lens on the 
CCD as a result of diffuse light illumination of the grating shown in Figure 2.7. The 
grating thickness is dg = 5 µm. The diffraction patterns of the different wavelength 
channels are only displaced along the x direction.  
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Figure 2.9. The spatial responses of the two channels in Figure 2.8 along a horizontal row 
on the CCD are shown. Both curves are normalized to their peak values.  
 

2.2.2. Thick Gratings 

To make practical spectrometers based on the diffraction gratings, one can thicken the 

photorefractive material which substantially results in higher resolution. Here we have 

used a thick grating with the thickness of dg = 50 µm. All the other parameters are the 

same as the last simulation. Figures 2.10(a) and (b) show the CCD images for 
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wavelengths λ = 550 nm and λ = 560 nm, respectively. The output pattern corresponding 

to each wavelength is a bright stripe along the y direction. Once again, by looking into the 

spatial patterns along a horizontal row on the CCD images, we can confirm its higher 

resolution which is about 10 nm as shown in Figure 2.11. Despite of diffracting diffuse 

incident light, the thick gratings are yet low resolution and are not practically useful. 
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   (a)                                      (b) 
Figure 2.10. Diffraction patterns formed at the Fourier plane of the spherical lens on the 
CCD as a result of diffuse light illumination of the grating shown in Figure 2.7. The 
grating thickness is dg = 50 µm. The diffraction patterns of the different wavelength 
channels are only displaced along the x direction. 
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Figure 2.11. The spatial responses of the two channels in Figure 2.10 along a horizontal 
row on the CCD are shown. The resolution of 10 nm is obviously seen in the figure. 
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2.2.3 Volume Holograms 

For achieving higher resolution while functioning under diffuse incident beam, we 

propose volume holograms as a new class of diffractive spectrometers. Volume 

holograms are essentially very thick diffractive gratings where the thickness of the 

recording material can be up to a few hundred nanometers or even thicker in the order of 

a few millimeters. In addition to their higher resolution over thick gratings, they can be 

potentially designed for achieving a desired performance by adjusting their recording 

geometry. Spherical beam volume holograms (SBVHs) have been already proposed and 

extensively investigated for diffuse light spectroscopy [16-19]. However, as it will be 

shown later in this chapter, because of some practical issues they are not of our interest. 

Here, we explore another type of volume holograms, i.e., cylindrical beam volume 

holograms (CBVHs), which are capable of performing high resolution diffuse light 

spectroscopy [63]. We will show later that CBVHs have a great advantage over the 

SBVHs for making a combined interferometric diffractive spectrometer.       

The CBVH is recorded using a plane wave and a cylindrical beam generated by 

focusing another plane wave using a cylindrical lens in the arrangement shown in Figure 

2.12 with d1 = 2.5 cm and d2 = 2.7 cm. The angle of incident of the plane wave in the air 

is 36° and the cylindrical beam propagates normal to the hologram. The recording 

material is a 2 mm thick LiNbO3:Fe:Mn crystal and the recording wavelength is λ = 532 

nm. During the recording the crystal is sensitized using a beam at λ = 404 nm from a 

diode laser.  
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Figure 2.12. Recording geometry for a CBVH. The hologram is recorded using a plane 
wave and a cylindrical beam formed by passing a plane wave through a cylindrical lens. 
The focal plane of the cylindrical beam is at distance d1 = 2.5 cm behind the lens and at 
distance d2 = 2.7 cm in front of the hologram. The recording material is a 2 mm thick 
LiNbO3:Fe:Mn crystal. 
 

The CBVH has almost the same properties as the SBVH in the x direction while it 

does not affect the beam in the y direction. This can be realized from the plane wave 

expansion of both the spherical beam and the cylindrical beam. The expansion of a 

spherical beam at distance r = (x, y, z) from a point source at r0 = (0, 0, -d) as a set of 

plane waves is [64] 
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where kx, ky, and kz are the x, y, and the z components of the wave vector k. The 

amplitude of the wave vector k is the wave number k = 2π/λ. Similarly, the cylindrical 

beam, with the axis parallel to y-axis, originated from a line source at r0 = (0, y, -d) and 

monitored at r = (x, y, z) can be represented by its Fourier transform as 
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Note that in Equation (2.6) ky = 0 and, therefore, kx
2 + kz

2 = k2, where k is the wave 

number. Also, note that the relation in Equation (2.6) is valid for all values of y. If we 

assume paraxial approximation for the beam propagating primarily in the z direction (i.e., 

kz >> kx), the Fourier transform relation in Equation (2.6) can be written as 
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As we know from the analysis of the SBVH [18], the quadratic phase in the x 

direction that is recorded as a hologram provides the desired dispersion properties. From 

Equation (2.7) it is clear that the hologram recorded using a plane wave and a cylindrical 

beam shows the quadratic phase behavior in the x direction (i.e., ]2/)(exp[ 2 kdzjk x +−  

term in the Fourier domain). For the SBVH the quadratic phase is observed in both x and 

y directions, while in the case of the CBVH, it is only observed in the x direction. In the y 

direction, however, the signal is not affected by the hologram. 

The schematic of the CBVH spectrometer is as Figure 2.7 where a cylindrical lens 

is used in place of the spherical one. The output pattern on the CCD corresponding to 

each wavelength is a bright stripe in the y direction as shown in Figure 2.13, where the 

location of this stripe changes in the x direction as λ changes. Hence, its spatial-spectral 

mapping is 1D. We can verify its large bandwidth from this figure since it is working 

from λ = 500 nm all the way to λ = 600 nm. Moreover, in Figure 2.14 we have shown the 

spatial responses of the two channels, i.e., λ = 550 and λ = 553, along a horizontal row on 

the CCD. As seen in this figure, the two diffracted stripes are clearly resolved which 

indicates a resolution better than 3 nm. Therefore, in contrast to typical diffraction 

gratings, CBVHs demonstrate higher resolution in diffuse light spectroscopy.   
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   (c)                 (d) 
Figure 2.13. Diffraction patterns formed at the Fourier plane of the cylindrical lens on the 
CCD as a result of diffuse light illumination of the CBVH. The diffraction patterns of the 
different wavelength channels are only displaced along the x direction. 
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Figure 2.14. The spatial responses of the two channels in Figures 2.10(b) and (c) along a 
horizontal row on the CCD are shown. The resolution of better than 3 nm is obviously 
seen in the figure. 
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To summarize, unlike the interferometric spectrometers, the diffractive 

spectrometers have low resolution and large spectral bandwidth. They can work under 

diffuse light illumination and result in 1D spatial-spectral mapping on the CCD.  

2.3. Tandem FPE-CBVH Spectrometer 

Now we propose an elite spectrometer in a tandem configuration of an interferometer and 

a diffractive spectrometer to benefit from both the high resolution and the large spectral 

bandwidth simultaneously. To function under diffuse light illumination and for achieving 

the highest performance, we choose the best element of each category discussed earlier, 

the Fabry-Perot etalon as an ultra high resolution interferometer and the CBVH as a very 

efficient large bandwidth diffuse spectrometer.    

The schematic of the tandem FPE-CBVH spectrometer has been shown in Figure 

2.15. The CCD is placed in the simultaneous focal planes of the two cylindrical lenses L1  

and L2. The lenses L1 and L2 perform the spatial Fourier transformation on the output 

beam of the spectrometer in the x and y directions, respectively. Figure 2.16(a) shows the 

output pattern of the tandem spectrometer on the CCD for λ = 550 nm. This pattern is 

formed by intersection of the circular fringes [Figure 2.5(a)] and the vertical stripe 

[Figure 2.13(b)]. As seen in the figure, the CBVH simply breaks the circular symmetry of 

the FPE interference fringes and the FPE simply removes the y degeneracy from the 

CBVH spectrum to from a 2D spatial-spectral pattern in the co-Fourier plane of the two 

cylindrical lenses. In Figure 2.16(b), we have shown the spatial-spectral response of the 

tandem spectrometer to a multi-wavelength diffuse input beam composed of λ = 500 nm, 

λ = 550 nm, and λ = 550.1 nm. As the first observation, the bandwidth of the tandem 

spectrometer is no longer limited by the FSR of the FPE since the spatial pattern of λ = 
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550 nm can be distinguished from that of λ = 500 nm. Second, it can easily resolve 

between λ = 550 nm and λ = 550.1 nm which indicates a resolution better than 0.1 nm. 

Therefore, in tandem FPE-CBVH spectrometer, we can indeed achieve the high 

resolution as well as the large bandwidth. Besides, the tandem spectrometer results in a 

2D spatial-spectral pattern on the CCD. 

 Cylindrical lenses 
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Input beam 
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Figure 2.15. Schematic of the tandem FPE-CBVH spectrometer. The spectral information 
of the input diffuse beam is mapped into a 2D spatial-spectral pattern at the co-Fourier 
plane of both cylindrical lenses on the CCD. The horizontal cylindrical lens forms the 
FPE spatial-spectral pattern and the vertical one makes the diffracted orders of the CBVH 
on the CCD.  
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   (a)                 (b) 
Figure 2.16. (a) The output pattern of the tandem spectrometer on the CCD for λ = 550 
nm is shown. (b) The spatial-spectral response of the tandem spectrometer to a multi-
wavelength diffuse input beam composed of λ = 500 nm, λ = 550 nm, and λ = 550.1 nm 
is shown. 
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The significant advantage of the CBVH over other types of volume holograms is 

that it does not alter the beam in the y direction which makes the function of tandem 

spectrometer along x and y directions independent. Hence, we can design the FPE to 

encode the high resolution spectral information along the y direction and the CBVH to 

expand the spectral operating range along the x direction. In other words, we can think of 

a two-step mechanism to achieve high resolution and large operation bandwidth in this 

spectrometer.  A coarse resolution in a large spectral range is obtained by the CBVH 

while a finer resolution is obtained by the FPE inside the coarse resolution of the CBVH.  

In the optimal spectrometer, the resolution of the CBVH will be equal to the FSR of the 

FPE so that the fine resolution of the tandem spectrometer is defined by the FPE 

resolution and its operation bandwidth is defined by the CBVH. In this optimal 

spectrometer, the best performance is achieved in a very compact structure. Note that for 

spectrometers in which the FSR of the FPE is smaller than the resolution of the CBVH, 

spectral ambiguity exists in the y direction (the direction of fine-resolution due to the 

FPE). Thus, to remove the ambiguity in resolving the spectrum of the unknown source 

we have to strictly enforce a precondition that the CBVH resolution is at best equal to the 

FSR of the FPE. This guarantees the 2D spatial-spectral mapping is invertible and there is 

no singularity in the spectrum estimation process. On the other hand, for spectrometers in 

which FSR of the FPE is larger than the resolution of the CBVH (for spatial coding in the 

x direction), the vertical (i.e., y) dimension is not optimally used for coding using the 

FPE. Only the spatial range or the CCD pixels corresponding to the wavelength range 

equal to the CBVH resolution are used resulting in reduction in the resolution. 
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 In the following chapter we report on the experimental demonstration of tandem 

FPE-CBVH spectrometer and we use it to estimate the spectrum of an unknown input 

diffuse beam with very sharp spectral lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

CHAPTER 3 

EXPERIMENTAL DEMONSTRATION OF ULTRA-HIGH 

RESOLUTION TANDEM FABRY-PEROT ETALON CYLINDRICAL 

BEAM VOLUME HOLOGRAM SPECTROMETER 

 

In this chapter we demonstrate a compact and slitless spectrometer with high resolution 

formed by cascading a Fabry-Perot etalon (FPE) and a cylindrical beam volume 

hologram (CBVH). The most significant advantage of this combined spectrometer is that 

we can independently encode spectral information of a diffuse beam in a two-

dimensional (2D) plane. Also, we show in this slitless configuration we can 

simultaneously benefit from the advantages of both elements, the high resolution of the 

FPE and the large spectral range of the CBVH. Here, we report on the experimental 

demonstration of a spectrometer with better than 0.2 nm resolution [65]. 

 The basic property of a spectrometer is to map different wavelength channels of 

the input beam into different spatial patterns in the output plane using an interferometric 

and/or a dispersive element. The simplest form of this mapping (which is usually done in 

conventional spectrometers) is to map each wavelength channel to a distinct spatial 

location (for example, along a line) in the output plane. The intensity distribution of the 

output is then detected by a detector array or a charged coupled device (CCD). By 

calibration of the spectrometer and inversion of the detected data, we can estimate the 

spectrum of an unknown input source [25]. For spectrometers with 1D spatial-spectral 

mapping, spectral information is encoded in only one spatial dimension and the 

measurement capabilities of the other dimension are not utilized for improving the 
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performance of the spectrometer. One major consequence of such 1D mapping is the 

trade-off among resolution, operation bandwidth, and throughput (or sensitivity), which 

is a major drawback of conventional spectrometers for sensing applications with weak 

input signals. There have also been some recent reports using coded aperture 

spectrometers for 2D spatial-spectral mapping with excellent experimental results [66].  

Recently, a new class of volume holographic spectrometers [16] has been reported 

which do not require any collimation optics. These spectrometers rely on the unique 

Bragg selectivity and diffractive properties of a spherical beam volume hologram 

(SBVH) [16, 19] or a CBVH [63] to measure the spectrum of an unknown source. While 

the resulting spectrometers are very compact, alignment insensitive, inexpensive, and 

flexible for design, they still work based on the 1D spatial mapping of the spectral 

information. Among different holographic spectrometers, the ones using CBVH have 

shown better flexibility for designing new classes of spectrometers as they do not affect 

the input light in one direction and perform the spatial-spectral mapping in the other 

direction [63].  

3.1. Experimental Results 

The schematic of the tandem FPE-CBVH spectrometer that we investigate in this chapter 

has been shown in Figure 2.15. The FPE is composed of two dielectric mirrors with the 

fixed air gap (which is 50 µm wide) between them. The reflectivity of each mirror at the 

wavelength range used here (530 nm < λ < 600 nm) is close to 96%. The CBVH is 

recorded using a plane wave and a cylindrical beam obtained by focusing a separate plane 

wave using a cylindrical lens in the arrangement shown in Figure 1(b) with d1 = 2.5 cm 

and d2 = 2.7 cm. The angle of incident of the plane wave in the air is 36° and the 
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cylindrical beam propagates normal to the hologram. The recording material is a 2 mm 

thick LiNbO3:Fe:Mn crystal and the recording wavelength is λ = 532 nm. During the 

recording the crystal is sensitized using a beam at λ = 404 nm from a diode laser. The 

CCD is placed in the simultaneous focal planes of the two lenses L1 (with focal length f1 

= 2.5 cm) and L2 (with focal length f2 = 5.1 cm) as seen in Figure 2.15. The lenses L1 and 

L2 perform the spatial Fourier transformation on the output beam of the CBVH in the x- 

and y-directions, respectively.  

The performance of the spectrometer based on only a CBVH can be found similar 

to what outlined in Reference [63]. The output pattern on the CCD corresponding to each 

wavelength is a bright stripe in the y direction as shown in Figure 3.1(a), where its width 

depends principally on the thickness of the CBVH. The location of this stripe changes in 

the x direction as λ changes as shown in Figure 3.1(b). It should be noted that the CBVH 

spectrometer works well for diffuse light [63]. However, in contrast to the FPE 

spectrometer, the CBVH spectrometer has lower resolution (close to 3 nm for our CBVH) 

but larger operation bandwidth (more than 100 nm for our CBVH).  
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                                           (a)                                                         (b) 
Figure 3.1. (a) Diffraction pattern of the CBVH formed on the CCD at the Fourier plane 
of the cylindrical lens with f = 2.5 cm for diffuse light illumination at λ = 550 nm. (b) 
Spatial-spectral responses of the CBVH along the x direction in (a) for different incident 
wavelengths from λ = 549 nm to λ = 567 nm with 3 nm steps. 
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The main rationale for forming the tandem spectrometer is to combine the unique 

features of these two dispersive elements (FPE and CBVH) and at the same time cover 

each one’s deficiency by the other one’s capability. Furthermore, since both elements 

work well under diffuse light illumination, a simple and compact slitless design can be 

implemented to combine the two elements. In this formation, we use the CBVH to 

separate the input spectrum into horizontal regions (i.e., stripes) each smaller or equal in 

bandwidth to the FSR of the FPE. Then, the FPE divides the operation range of each 

stripe into very small regions with very small wavelength differences (i.e., very high 

resolution) in the vertical direction. Figure 3.2 shows the spatial-spectral pattern of the 

tandem spectrometer on the CCD for three different wavelengths: 540.2 nm, 553.2 nm, 

and 575.4 nm. As clearly seen in this figure, by changing the input wavelength the spatial 

pattern on the CDD moves in both x and y directions. Thus, the overall spectrometer 

performs a true 2D spatial-spectral mapping of the input spectrum. The key aspect of this 

design is to have the right relation between the FSR of the FPE and the resolution of the 

CBVH. It is noteworthy to mention that combination of interferometric and diffractive 

elements has been demonstrated previously [67-69], however the tandem spectrometer 

suitable for diffuse source spectroscopy is presented here for the first time.    

Figure 3.3 shows the output pattern of the CCD when the input to the tandem 

spectrometer is diffuse light from a Hg-Ar lamp with three distinct sharp peaks at 546 

nm, 577 nm, and 579 nm. The 2D spatial-spectral mapping is evident from Figure 3.3. It 

is interesting to note that the 546 nm line is separated horizontally (by the CBVH) from 

the other two lines as its wavelength difference with those two is larger than the 
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resolution of the CBVH. However, the two lines at 577 nm and 579 nm are separated 

vertically (by the FPE) in the output as they fall within the same stripe by the CBVH. 
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Figure 3.2. Spatial-spectral pattern of the tandem spectrometer on the CCD for three 
different input wavelengths. 
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Figure 3.3. The image formed on the CCD corresponding to the diffuse light from an Hg-
Ar lamp with three distinct sharp peaks at 546 nm, 577 nm, and 579 nm. 
 

3.2. Spectrum Estimation 

As schematically shown in Figure 3.4, the function of any spectrometer is to setup a one 

to one mapping between the spectrum of the input source, )(λS , and the spatial pattern 

captured on the detector arrays or CCD, )(rM , where r  stands for spatial coordinates of 
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each pixel on the CCD, i.e., (x, y) in Figure 3.3. This invertible mapping between source 

spectrum and CCD measurements is the spatial-spectral response or transfer function of 

the spectrometer which is represented by ),( λrH  in Figure 3.4. Bandlimited spatial-

spectral response of the tandem spectrometer allow source-measurement transformation 

to be expressed in discrete form as HSM = , where M is an m-tuple measurement vector. 

H is an m-by-n spatial-spectral response matrix of the spectrometer where each row of it 

represents the spectral response of a specific pixel. Each column of H represents the 

characteristic vector corresponding to a particular spectral channel. S is an n-tuple source 

vector representing the target spectrum. 

Now that we have captured the CCD image of the input beam as shown in Figure 

3.3, the next step is to invert this image and find the unknown spectrum of the source. To 

do this inversion process, it is required to have the transfer function H of the tandem 

spectrometer. Because the spatial-spectral response H of the tandem spectrometer is not 

known in advance, a set of calibration sources is used to characterize H. To calibrate the 

tandem spectrometer, we measure the output corresponding to each monochromatic input 

formed by passing white light through a monochromator with full width at half maximum 

(FWHM) of 0.2 nm in the entire operation bandwidth. The output beam from the 

monochromator illuminates a diffuser such that the effective source for the tandem 

spectrometer is a uniform diffuse beam. This training data defines the system transfer 

function H as shown in Figure 3.5. As seen from this figure the transfer function of the 

tandem spectrometer looks like a staircase function with perfectly separated spatial-

spectral responses in every 3 nm (i.e., bright spots inside the figure). This observation 

confirms the independent spatial-spectral functionalities of the FPE and CBVH where in 
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each 3 nm spot the FPE is operating and from one spot to the other the CBVH is 

operating.  

 

)(λS )(rM),( λrH

Input beam Spectrometer Output detectors 

 
Figure 3.4. The operational principle of any spectrometer is schematically shown. The 
spectrometer maps the input spectrum )(λS  to the detector measurements )(rM . This 

invertible mapping between source spectrum and detector measurements is the spatial-
spectral response or transfer function of the spectrometer which is represented by 

),( λrH  inside the figure. 

 
Now we use the calibrated tandem spectrometer to estimate the spectra of 

unknown sources over the wavelength range of 540 nm to 585 nm at the resolution of 0.2 

nm. Since the number of spectral channels estimated, 2252.0/)540585( =− , is much 

less than the number of pixel measurements, 000,20200100 =×  which is 100 pixels 

along x direction times 200 pixels along y direction on the CCD, the measurements over-

determine the spectrum. Over-determined problems do not have globally consistent 

solutions due to the presence of noise, but one can find a solution in the least squares 

sense. In finding the solution, we have added an additional constraint that the spectral 

density is non-negative, which makes direct linear least squares inversion impossible. 

Instead, we have used the Matlab Optimization Toolbox to solve the general nonlinear 
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optimization problem: 
2

min MHS
S

−  such that 0≥S , where 
2
denotes the Euclidean 

norm [25]. 

 
Figure 3.5. The transfer function of the tandem spectrometer in the bandwidth of 540-585 
nm is shown. It is composed of separated spots for each 3 nm wavelength range. 

 
Figure 3.6(a) shows the results of the spectrum estimation for the Hg-Ar lamp 

using our tandem spectrometer. We have also shown the spectrum measured using an 

Ocean Optics USB2000 spectrometer for comparison. Moreover, to confirm the high 

resolution capability of our tandem spectrometer and to show its powerful performance, 

we have compared it with the state of the art and top of the line Oriel InstaSpec ultra-high 

resolution spectrometer and their excellent agreement is shown in Figure 3.6(b). The 

results of our estimation agree very well with the lamp data sheet. 
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(b) 

Figure 3.6. The spectrum of the Hg-Ar lamp measured by the tandem FPE-CBVH 
spectrometer and (a) an Ocean Optics USB2000 spectrometer and (b) an Oriel InstaSpec 
spectrometer for comparison.    
 

It is clear from the inset figure that our spectrometer is capable of measuring the 

fine features of the input light with FWHM of 0.2 nm. Since the resolution of our 

monochromator is 0.2 nm, we can conclude from this data that the resolution of our 
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tandem FPE-CBVH spectrometer is better than 0.2 nm. The measurement of the exact 

resolution requires a more sophisticated monochromator with a resolution much better 

than 0.2 nm. 

A key feature of the proposed spectrometer is its 2D spatial-spectral mapping, 

which breaks the conventional trade-off between the resolution and the operation 

bandwidth. Our initial results demonstrate resolution of better than 0.2 nm with operation 

bandwidth of better than 100 nm using off-the-shelf optics and CCD [65]. Improvement 

of the operation bandwidth is possible by using the recently proposed spatial multiplexing 

of a few CBVH along the y-direction [63]. It is also worth mentioning that although we 

obtained high resolution over a considerable bandwidth using the proposed tandem 

spectrometer, the throughput issue is still present (each wavelength corresponds to a 

small output region). Nevertheless, it is possible to improve the throughput by using 

unique properties of volume holograms, especially their multiplexing [70] that allows 

more sophisticated 2D spatial-spectral mapping to obtain better throughput. 
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CHAPTER 4 

MODELING OF A SPATIALLY INCOHERENT SOURCE USING 

THE MONTE-CARLO METHOD 

 

The next step in this research is to combine the functionalities of interferometric and 

diffractive elements together and replace the bulky tandem Fabry-Perot etalon cylindrical 

beam volume hologram spectrometer with a more compact spectrometer designed based 

on three-dimensional (3D) photonic crystal (PC) structures as a new class of highly 

dispersive materials [22-24]. Prior to that, in order to efficiently analyze and optimize PC 

structures under diffuse light we need to develop a simulation tool to model a spatially 

incoherent source. Although analytic or semi-analytic techniques exist and work well for 

simpler structures like volume holograms [18, 19], the analysis of the propagation of 

diffuse light in more complicated structures like PCs requires detailed numerical 

simulation as no analytic representation of electromagnetic waves in such structures 

exists. Several numerical techniques have been widely used for the analysis of spatially 

coherent electromagnetic waves in PCs, among which the finite difference time-domain 

(FDTD) technique [71] has got considerably more attention. However, the conventional 

implementation of these techniques for diffuse sources is not efficient since all these 

techniques simulate field propagation due to a known (i.e., deterministic) source. Thus, in 

simulation with extended sources (i.e., sources different from the point source), the 

relative spatial incoherence of different source points is not conserved in conventional 

implementation. On the other hand, multiple simulations of large (practical length) 

structures with only one nonzero point source at a time and incoherent addition of the 
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results of all such simulations (i.e., brute-force method) is very time consuming despite 

being accurate. As a result, there is an urgent need for the development of efficient tools 

for the implementation of the spatially incoherent sources in the existing simulation 

methods like FDTD.  

In this chapter we present a reasonably accurate and efficient technique based on 

the Monte-Carlo method for the numerical implementation of diffuse sources with at least 

one order of magnitude (and potentially several orders of magnitude) reduction in the 

simulation time compared to the brute-force implementation. The model developed in 

this chapter is quite general and can be implemented by any numerical simulation tool. 

However, due to extensive use of FDTD for the analysis of novel photonic structures, we 

use FDTD for its numerical implementation. We also use PC structures for validation of 

our model. Nevertheless, the model is not limited to PCs and can be applied to any other 

optical material [72]. 

In what follows we first summarize some key properties of spatially incoherent 

sources and then present the underlying principle for our proposed model. The model is 

then used to analyze PC structures, and the results are compared with those of the brute-

force simulations. Finally, advantages and limitations of the proposed model will be 

discussed. 

4.1. Fundamentals of Incoherent Source Modeling 

Let ),( tV r  denote a field variable at a point represented by a position vector r  at time t . 

This function may represent, for example, a Cartesian component of the electric field of 

an electromagnetic wave. We do not specify the nature of V  more closely at this stage, 

since our main analysis is independent of any particular choice of the field polarization. 
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For any realistic light beam, V  will be a fluctuating function of time and space, which 

may be regarded as a typical member of an ensemble consisting of all possible realization 

of the field. 

As shown in Figure 4.1, assume that the fields at points )( 11 rP  and )( 22 rP  in the 

beam are isolated by placing an opaque screen A across the beam, with pinholes at the 

two points, and that we observe the intensity distribution resulting from the superposition 

of the light emerging from the two pinholes, on a screen B at a distance d  from A. 

Assuming d  is large compared to the wavelength, the instantaneous field at point P  on 

the screen B is given by 

 ),,(),(),( 2211 ttVttVtV −+−= rrr  (4.1) 

where 1t  and 2t  are the time delays from points P1 and P2  to point P, respectively. 

 
Figure 4.1. Interference experiment from which the mutual coherence function of a light 
beam is determined.  
 

The ensemble average of intensity ee tVtVtI 〉〈=〉〈 ∗ ),(),(),( rrr , at the point P at 

time t  is given by [73] 

 )},,;,(Re{2),(),(),( 2121222111 ttttttIttItI eee −−Γ+〉−〈+〉−〈=〉〈 rrrrr  (4.2) 
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where  

 etVtVtt 〉〈=Γ ∗ ),(),(),;,( 22112121 rrrr , (4.3) 

 )2,1(,),(),(),( =〉〈=〉〈 ∗ jtVtVtI ejjjjejj rrr . (4.4) 

The function ),;,( 2121 ttrrΓ  is recognized as the cross-correlation function of the random 

processes ),( 1 tV r  and ),( 2 tV r . It represents the correlation that exists between the field 

fluctuations at the pinholes 1P  and 2P , at times 1t  and 2t  respectively. It is known as the 

mutual coherence function in the classical theory of optical coherence [73]. The quantity 

ejj tI 〉〈 ),(r  represents the ensemble average intensity of the light at the pinhole jP  at the 

time jt  )2,1( =j . For 0≠Γ  in Equation (4.2), the superposition of the two beams will 

give rise to interference, which is a direct result of spatial coherence. The condition of 

0=Γ  is the mathematical definition of spatially incoherent light. We assume that the 

optical field is stationary, at least in the wide sense, and ergodic [73] so the mutual 

coherence function only depends on the time difference 21 tt −=τ  (i.e., ),,( 21 τrrΓ ). 

As mentioned earlier the concept of coherence is buried in the mutual coherence 

function. Since the fluctuations in the light beam from any two different points of a 

spatially incoherent source are mutually incoherent and hence have no fixed phase 

relationship to each other, the power spectrum distribution at the output plane B is 

obtained by simple addition of beam power spectra due to contribution at each point in 

the input plane [73]. In a mathematical sense for an input source composed of k  mutually 

incoherent point sources, the power spectrum at an observation point r  in the output 

plane is given by 

 ),(...),(),(),( 2211 νννν kkSSSS rrrr +++= ,  (4.5) 
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where ν  and ),( νrS  correspond to temporal frequency and power spectrum (calculated 

by Fourier transform of ),,( τrrΓ ), respectively [73]. Note that in Equation (4.5) no 

cross-correlation term is considered. Therefore one possible method to model a spatially 

incoherent source is to turn on one individual source at a time, find the power spectrum 

on the output plane B, and then add them together. Although this approach is accurate, it 

is not time-efficient since we need to repeat the simulation as many times as the number 

of sources. We refer to this approach as the brute-force method and the result of this 

method is taken as the reference for comparison with our approximate method.  

To reduce the simulation time in our new approach we develop a statistical model 

of the spatially incoherent source in such a way that every two point sources in the input 

plane A are mutually independent. In this method, all the sources are on simultaneously 

during simulation and each source by itself consists of a pulse train. To incorporate the 

randomness in the source plane, we assume that each point source is composed of a train 

of identical pulses in time where the interval between the centers of each two pulses is 

defined by an independent exponential random variable. This source is referred to as a 

Poisson pulse train source throughout this chapter. The form of a single pulse is defined 

by  

 )sin()(
2)( tetg Tt ω−= . (4.6)  

The reason for this definition is to cover a reasonable frequency bandwidth using one 

time domain simulation [71] with the FDTD technique. The center frequency ω  and the 

bandwidth T/1=∆ω  are defined based on the desired frequency range for simulation. A 

typical Poisson pulse train source for an input plane composing of k  individual point 
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sources (usually corresponding to the nodes in the FDTD simulation) is shown in Figure 

4.2.  

To prove that the proposed source is a reliable model for a spatially incoherent 

source, we need to calculate the mutual coherence function Γ  between two arbitrary 

Poisson pulse trains shown in Figure 4.2. The pulse train at each point in the source plane 

can be modeled as      

 )()()()(
1

tgtyttgtV
i

i ∗=−=∑
∞

=

, (4.7) 

where  

 ∑
∞

=

−=
1

)()(
i

ittty δ , (4.8) 

is the derivative of a Poisson process and the interval between it  and 1+it  is an 

exponential random variable with parameter α  [74], )(tg  is defined by Equation (4.6), ∗  

denotes convolution, and )(tδ  is the Dirac delta function. From Equation (4.7), we can 

calculate the time-averaged expectation value of )(tV as  
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eee
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             (4.9)  

where the properties of the Poisson process are used to obtain the ensemble average of 

)(ty . Now by assuming independent exponential random variables for the intervals 

between any two pulses for each source point, we can calculate the mutual coherence 

function corresponding to point sources at mr and nr  as  

 
,0)()(

),(),(),;,(
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∗

enem

enmnm
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where the fist equality is valid since the random processes are independent and we have 

used Equation (4.9) to obtain the last result. Equation (4.10) clearly proves that assigning 

independent Poisson pulse trains to different source points truly models a spatially 

incoherent source in the input plane. 
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Figure 4.2. Schematic of the spatially incoherent Poisson pulse train source. For every 
source point the interval between the centers of Gaussian pulses, i.e., between ikt ,  and 

1, +ikt , is an independent exponential random variable with parameter α . 

  

4.2. Simulations and Results 

The structure we consider here is a two-dimensional (2D) PC as shown in Figure 4.3(a). 

It is composed of square lattice of cylindrical air holes etched in GaAs (εr = 12.96). The 

ratio of holes radius to lattice constant (r/a) is equal to 0.3 that guarantees no bandgap 

[28] as we desire for diffuse source spectroscopic applications. In order to quantitatively 

compare the simulation time of the two models (i.e., brute-force and Poisson pulse train) 

we assume the size of the PC to be a 10a by 10a square area. We implement both 

spatially incoherent source models in time domain using standard FDTD method. The 

light beam is assumed to be TE polarized (where the electric field is parallel to the z-

axis). We assume 24 FDTD grid points per lattice constant (a) for both simulations, 
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which results to 240 mutually incoherent point sources in the input plane A. Note that all 

these parameters for the PC geometry and for the simulation grid are chosen just to set an 

example and by no means affect the applicability or accuracy of our model. 

In the brute-force simulation, one source is excited at a time with a sinusoidal 

modulated Gaussian pulse [with mathematical representation of Equation (4.6)] and it 

propagates all the way through the structure to get to the output plane B. The normalized 

center frequency of the pulse (ω ) is 0.04 and its width ( ω∆ ) is 0.016. The normalized 

width of the Gaussian pulse (T) in the time domain is 5.62/1 =∆ω  which corresponds to 

120 time steps in our FDTD simulation. In order to find the steady state field profile in 

the output plane we have to run the simulation for about 65000 time steps. This results in 

a total simulation time of 240 × 65000 time steps. 

In the second simulation we use our new approach and excite all the 240 sources 

in the input plane A with Poisson pulse trains simultaneously. In order to closely simulate 

the spatially independent point sources, the number of pulses (NP) and the average time 

distance between any two pulses should be large enough. This guarantees no overlap 

between adjacent pulses in each pulse train. Furthermore, the randomness of the 

simulation results is averaged out when the number of pulses is large. Here, we choose 

NP = 100 pulses and the average time distance between adjacent pulses (i.e., α/1 ) is 180 

time steps. To get to the steady state at the output plane B, we run the simulation for 100 

× 180 + 65000 = 83000 time steps. To further average the results for power spectrum, we 

repeat this simulation for a few times. The gain of simulation time in our model 

compared to the brute-force technique depends on the number of simulations needed for 



 46 

achieving good accuracy. Note that the number of simulations in our model is 

considerably smaller than that for the brute-force method. 

In order to calculate the power spectrum at the output plane, we save all the field 

values at the output plane at all times during each simulation. The power spectrum is then 

calculated using the Fourier transformation of the autocorrelation function (or it can be 

directly calculated using the Fourier transformation of the field values [73]). In the brute-

force method, we calculate ),( νrS  for each input source individually and then add them 

to enforce spatial incoherence [according to Equation (4.5)]. In the Poisson pulse train 

method, we calculate ),( νrS  at all points in the output plane for each simulation as 

described. We then repeat the simulation and calculate the average value of ),( νrS  at 

each point by ensemble averaging the results of all simulations. Figure 4.3(b) shows the 

power spectrum at a typical point in the output plane B for the PC structure described 

earlier. The results of both the brute-force method and the Poisson pulse train method are 

shown together in this figure. Obviously there is a very good agreement between the 

results of the two methods. Here we have simulated the second approach for 10 times to 

find the ensemble average of the power spectrum. The gain (G) in simulation time (by 

using the Poisson pulse train model) is then equal to 8.18
8300010

65000240
≅

×
×

=G . 

Therefore by using the Poisson pulse train source we can achieve close to 20 

times faster simulation while keeping error at a reasonable value (as further discussed in 

the next section) compared to the brute-force simulation.  
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Figure 4.3. (a) The square lattice PC used for simulations. We have assigned 24 point 
sources per lattice constant in the input plane A to model the spatially incoherent source. 
Each source is excited with TE polarized light. For the whole time of the simulation all 
the field values are saved at the output plane B. (b) The power spectrum of the brute-
force simulation as well as that of the Poisson pulse train simulation with ensemble 
averaging of 10 different simulations for the PC structure shown in (a) at a typical point 
in the output plane B. Both curves have been normalized to their mean values for 
comparison. 
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4.3. Comparison between the Monte-Carlo Model and the Brute-Force Model 

The main trade-off for the proposed simulation method is the accuracy versus the gain of 

simulation time. To measure the error, we first calculate the sum of the square of the 

differences between the two power spectra (from the two methods) for all frequencies 

and all points at the output plane B. Then we divide this sum by the sum of the square of 

the power spectrum for all frequencies and all points at the output plane B calculated 

using the brute-force simulation. Note that we use all the frequencies and all the points on 

the output plane B to show the accuracy of our model. Figure 4.4 shows the error and the 

gain in simulation time verses the number of simulations for the Poisson pulse train 

method for the PC structure in Figure 4.3(a) using the same simulation parameters used 

for the calculations in the last section. As seen in Figure 4.4(a) by increasing the number 

of simulations for the Poisson pulse train method we get smaller error. However, 

increasing the number of simulations degrades the gain of simulation time as illustrated 

in Figure 4.4(b). As clearly seen from Figure 4.4 by accepting 10% error which is 

reasonable for most of practical applications, the simulation of the Poisson pulse train 

method is performed almost one order of magnitude faster than the brute-force simulation 

for the small PC structure in Figure 4.3(a). 

Figure 4.4(a) implies that the amount of error can not be improved to less than 8% 

in limited number of simulations. A possible way to solve this issue is to increase the 

number of pulses at each source point in the proposed method. To do this, we have 

increased the number of pulses (NP) to 350 and accordingly the simulation time to 

128000 time steps to get the steady state result. Figure 4.5(a) shows the amount of error 

can be decreased more than the previous result. The cost of achieving this better accuracy 
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is the longer simulation time and, therefore, a reduction in the gain of the simulation time 

as Figure 4.5(b) suggests.  
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  (a)                                                                     (b) 

Figure 4.4. (a) The relative error between the two methods as a function of the number of 
simulations, and (b) the gain in simulation time of the Poisson pulse train method 
compared to the brute-force simulation for NP = 100. 
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    (a)                                                                     (b) 

Figure 4.5. (a) The relative error between the two methods as a function of the number of 
simulations, and (b) the gain in simulation time of the Poisson pulse train method 
compared to the brute-force simulation for NP = 350. 
 

An important point is that we have used a very small PC structure for our 

simulation. In general, a PC device designed to operate as dispersive element has 

dimensions larger than 100a by 100a [43, 44]. The advantage of the Poisson pulse train 

method over the brute-force method becomes more evident for larger structures since the 

number of simulations needed in the brute-force method increases proportional to the size 
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of the structure and its growth rate is faster than that of the Poisson pulse train method. 

As a result, extensive gain in the simulation time of practical-size structures is expected 

for the proposed Poisson pulse train technique. It should be noted that the simulation of 

such large structures might not be practical using the brute-force method.  

Figure 4.6 shows the error and gain in the simulation time for the same PC as that 

in Figure 4.3(a) when the size of the structure is increased to 20a by 10a. All other 

parameters are the same as those used to obtain the results of Figure 4.4. Comparing 

Figures 4.6 and 4.4 clearly shows higher gain in the simulation time can be achieved for 

larger structures. For example, for obtaining a result with an error close to 8% the gain in 

the simulation time for the larger structure is more than twice of that for the smaller 

structure. Thus, for practical-size structures, we expect to have multiple orders of 

magnitude improvement in the simulation time (while keeping error small) by using the 

Poisson pulse train model for spatially incoherent sources. 

It is noteworthy to mention while we have compared the Poisson pulse train 

method with the brute-force method to show its accuracy and efficiency, this method by 

itself can be used to choose the number of simulations needed to obtain accurate results 

in a typical simulation. For this purpose, we can increase the number of simulations one 

by one and calculate the relative error between the new power spectrum at the output 

plane and the previous one. Again, we calculated this error for all the points and all the 

frequencies as explained before. Based on this relative error, we can decide on the 

number of simulations needed for the desired accuracy and stop simulating the structure 

after certain number of times. Figure 4.7 shows the relative error between consecutive 

results versus the number of simulations for the structure shown in Figure 4.3(a) using 
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the Poisson pulse train method with NP = 100. All the other parameters are similar to 

those used to obtain the results shown in Figure 4.4 for the Poisson pulse train method. 

To obtain the results, we increased the number of simulations by five in each step and 

calculated the relative error. It is clear from the Figure 4.7 that by increasing the number 

of simulations the relative error decreases and, therefore, the results converge. This is 

expected since the increase in the number of simulations provides more accurate 

estimation of the ensemble average of the results. Using the relative error we can choose 

the number of simulations for achieving desired accuracy.          
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(a)                                                                     (b) 

Figure 4.6. (a) The relative error between the two methods as a function of the number of 
simulations, and (b) the gain in simulation time of the Poisson pulse train method 
compared to the brute-force simulation for NP = 100. The size of the PC used for 
simulations is 20a by 10a with the same parameters as in Figure 4.3(a). 
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Figure 4.7. The relative error between consecutive results of the Poisson pulse train 
method with NP = 100 versus the number of simulations for the structure shown in 
Figure 4.3(a). We have increased the number of simulations by five in each step. 
 

Finally, it is useful to note the spatial-spectral diversity in the output power 

spectrum for the PC structure under a uniform diffuse light input. While the focus of this 

chapter is only the development of an accurate and efficient incoherent source, it is worth 

mentioning that the results [Figure 4.3(b)] clearly show the potential of PC structures for 

spectroscopy.     
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CHAPTER 5 

MODELING OF A SPATIALLY INCOHERENT SOURCE USING 

THE WIENER CHAOS EXPANSION METHOD 

 

Although the Monte-Carlo method explained in the previous chapter reduces the 

simulation time of the spatially incoherent source with respect to the brute-force method, 

its accuracy is not very promising. In this chapter we report on a new model which 

almost matches the results of the brute-force model while considerably reduces the 

simulation time. To explain our new model, let’s revisit the propagation of the spatially 

incoherent source from the beginning.  

We know that the light beam originated from a spatially incoherent source is 

inherently an electromagnetic wave which can not be modeled by a deterministic field. 

To physically model such a spatially incoherent source, we normally use stochastic 

processes [73-75]. Therefore, the resultant deriving equation will be a stochastic partial 

differential equation (PDE) in the form of the well-known electromagnetic wave 

equation. Unlike deterministic PDEs, solutions of stochastic PDEs are random fields. 

However, in most cases the physical evaluation is based on the statistical moments (e.g., 

mean, variance) of the solutions rather than the solutions themselves. Therefore, it is 

highly desired to be able to calculate these statistical moments independent of finding the 

random solutions.  

The governing stochastic electromagnetic wave equation is usually too complex 

to be solved analytically; therefore numerical simulations play a significant role in 

solving this useful class of PDEs. So far, the most commonly used method in simulation 
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of random effects modeled by a stochastic PDE is the Monte-Carlo method. As explained 

in the previous chapter, it solves the stochastic PDE realization by realization and then 

takes statistical moments from all the realizations [72]. However, it has some major 

limitations. For instance, in order to correctly simulate a random effect, many realizations 

have to be computed to obtain a reliable estimate of various statistical properties. 

Moreover, in the Monte-Carlo method we need a random number generator that naturally 

increases the numerical error and consequently degrades the accuracy of the solution. 

Hence, the Monte-Carlo simulations are generally lengthy and inaccurate. 

In this chapter we propose to use a more efficient and accurate approach based on 

the Wiener chaos expansion (WCE) method which has been widely used for many 

different problems for both analytical and numerical purposes [76-85]. In this method, 

both the spatially incoherent source and the random solutions of the wave equation are 

expanded on independent standard Gaussian random variables [86, 87]. The WCE 

separates the deterministic effects from the randomness in the stochastic PDE. 

Consequently, it results into a system of deterministic PDEs for the expansion 

coefficients, which is referred to as its propagator. The propagator is the mechanism 

responsible for the evolution of randomness inherent to the original stochastic PDE. 

Remarkably, the propagator has the same form as the original equation. The main 

statistics (such as mean, covariance, and higher-order statistical moments) can be 

calculated by simple formulas involving only the coefficients of the propagator [85]. In 

the WCE approach, there is no randomness directly involved in the computations. One 

does not have to rely upon random number generators, and there is no need to solve the 
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stochastic PDEs repeatedly over many realizations. Instead, the propagator system is 

solved only once.  

Since the propagator is a set of deterministic PDEs for the WCE coefficients, 

standard deterministic numerical methods can be applied to solve it.  Here, once again we 

have used the finite-difference time domain (FDTD) technique to numerically simulate 

the electromagnetic wave equation [71]. Further we have compared the results obtained 

using the WCE method to the results of the brute-force method which is a direct 

simulation method based on the exact definition of a spatially incoherent source [73]. It 

will be shown that the WCE method very accurately resembles the results of the brute-

force method in a much faster pace. We have also used a photonic crystal (PC) structure 

which is a typical inhomogeneous optical material for validation of our numerical 

simulation. Nevertheless, the model is not limited to PCs and can be applied to any other 

optical material [86, 87]. 

In what follows we first briefly introduce the WCE method and some of its 

significant properties. Then we apply the WCE method to the electromagnetic wave 

equation (i.e., Helmholtz wave equation) driven by a spatially incoherent source and we 

form out its associated propagator.  The propagator is then numerically solved by a 

standard FDTD technique for a typical PC structure as a propagation environment, and 

the results are compared to those of the brute-force simulations. Finally, advantages and 

limitations of the proposed method will be discussed. 
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5.1. Wiener Chaos Expansion 

As mentioned earlier, WCE has been extensively used for solving stochastic PDEs in 

many different fields. Here we briefly introduce the expansion and emphasize some of its 

useful properties for linear equations. Let u be a solution of a linear stochastic PDE 

 ),()( txWuL &σ= , (5.1) 

where L is a linear differential operator and ),( txW  is a spatial-temporal Brownian 

motion. u is a function of x, t, and the Brownian motion. It would be beneficial if one 

could solve this equation by separating the deterministic spatial-temporal variables x and 

t from the random variable ),( txW . At the beginning, this idea might appear to be 

improbable or at least impractical due to the infinite dimensional nature of the Brownian 

motion ),( txW . Nevertheless, the information contained in the path of a Brownian 

motion can be efficiently quantized.  

 To be more specific, let’s take a temporal Brownian motion )(tW  as an example. 

For any orthonormal basis ...},2,1),({ =ismi  in ]),0([2 tL , define  

 ∫ ==
t

ii isdWsm
0

...,2,1),()(ξ . (5.2) 

It is easy to show that iξ  are independent standard Gaussian [ )1,0(N ] random variables. 

Then we have the following expansion 
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for all ts ≤ , where )(],0[ τχ s is the characteristic function of interval ],0[ s . The expansion 

in Equation (5.3) converges in the mean square sense 
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For many choices of basis functions (e.g., Haar wavelets or trigonometric functions) the 

convergence in Equation (5.3) holds with probability 1 and uniformly for ts ≤ . For the 

choice of sinusoidal basis functions that later will be used in this chapter,  
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one can easily show that  
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where C is a constant independent of N. 

In the same way, one can derive a similar expression for )(xW  if a spatial 

Brownian motion is considered and a simple tensor product can lead to the expression for 

a spatial-temporal Brownian motion,   

 ∑ ∫ ∫=
i

x t

ii dldsslmtxW
0 0

),(),( ξ ,  (5.6) 

where ...},2,1),,({ =islmi  form an orthonormal basis of ]),0[],0([2 txL × . Replacing 

),( txW  in Equation (5.1) by Equation (5.6), we have  

 ∑=
i

ii txmuL ),()( ξσ . (5.7) 

This indicates that the solution u is a function of x and t as well as random variables iξ .  
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Using the fact that iξ  are independent and L is a linear operator, we multiply 

Equation (5.7) by iξ  and take the expectation, we obtain 

 ),()( txmuL ii σ=  (5.8) 

where ),( ii uEu ξ= , and   

 ∑=
i

iiuu ξ . (5.9) 

The Equation (5.8) is the associated propagator of the primary stochastic PDE given in 

Equation (5.1). Clearly, it has the same form as of the stochastic PDE while it is 

absolutely deterministic. This is the most significant observation which tells us that we 

can successfully factor out the random effects from the stochastic PDE. The expansion in 

Equation (5.9) is the Wiener chaos expansion (WCE) of u for linear equations.  

In the following section we will apply the WCE method to the Helmholtz wave 

equation excited by a spatially incoherent source. 

5.2. The WCE Method and the Stochastic Helmholtz Wave Equation 

Although there are numerous reports on the physical properties of an incoherent beam in 

the context of optical coherence theory [73], to the best of our knowledge there is no 

explicit report on the direct simulation of its propagation in a typical environment. In this 

section, we first propose a new stochastic model for spatially incoherent light sources 

which drives the electromagnetic wave equation and then apply the WCE method to 

solve it rigorously. 

Figure 5.1 shows our simulation platform, which is composed of an 

inhomogeneous dielectric material as the propagation environment. The source line is 

placed in front of the propagation medium along line A and the electric field values are 
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monitored along the output line B. All the input sources are excited with a TE 

polarization (where the electric field is parallel to the z-axis). Due to the z-invariant setup, 

the electromagnetic wave propagation throughout the medium can be reduced to a two-

dimensional (2D) Helmholtz wave equation 
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where the current density (Jz) is the source of excitation, and µ and ε(x, y) are 

permeability and permittivity of the propagation environment, respectively. Here our 

source is represented by a one-dimensional (1D) array of point sources along line A. For 

modeling of a spatially incoherent source, any two point sources on line A should radiate 

independently of each other. More specifically, a spatially incoherent source is defined as 

),(),(),( tyytyJtyJ jijziz −=∗ δ . This definition by itself can be used as the brute-

force method for numerical modeling of the spatially incoherent source. In the brute-

force modeling, we enforce zero correlation between the contributions from every two 

input point sources by separately analyzing the structure with each point source and 

adding the individual contributions at the output line B incoherently (i.e., in power) [72].  
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Figure 5.1. Propagation of a spatially incoherent source from the input source line A to 
the output line B in a typical environment is schematically shown.    
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Note that the input source along line A in Figure 5.1 is a deterministic function of 

time and its stochastic nature is only in the spatial dimension (i.e., y in Figure 5.1). To 

model the spatially incoherent source, we use the white noise, i.e., the derivative of the 

Brownian motion, to model the spatial part of the current density (Jz). More precisely, we 

represent the spatially incoherent source along line A (i.e., x = xA) as 

 )()(),( tVydWtyJ z = , (5.11) 

where )(tV  is a deterministic function representing the time variation of the source and 

)(ydW  is the derivative of the Brownian motion representing the independent spatial 

randomness along y. Note that assuming Jz to be a separable function of space (y) and 

time (t) is consistent with all practical applications in which the time-variation of the 

source is assigned by the frequency range of operation and is usually the same at all 

points along the source line.  

Following the formulation developed in the previous section, by choosing any 

orthonormal basis functions [ )(smi ] in ]),0([2 yL , we can expand )(ydW as 

 ∑=
i

ii ymydW )()( ξ ,  (5.12) 

where ...,2,1)()(
0

== ∫ isdWsm
y

iiξ . Now both the input source (Jz) and the electric field 

(Ez) are expanded using the WCE method similar to Equation (5.9) as 

 )()(),( tVymtyJ
i

iiz ∑= ξ , (5.13) 

 ),,(),,( tyxEtyxE zi

i

iz ∑= ξ . (5.14) 

The expansion in Equation (5.14) separates the deterministic effects [ ),,( tyxE zi ] from 

the randomness (covered by iξ ). By placing Equations (5.13) and (5.14) into Equation 
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(5.10), the original stochastic Helmholtz wave equation is reduced to its propagator 

which is an associated set of decoupled deterministic equations for the expansion 

coefficients [ ),,( tyxE zi ] as following, 

 ...,2,1
)(

)(
),,(

),(),,(
2

2
2 ==

∂

∂
−∇ i

dt

tdV
ym

t

tyxE
yxtyxE i

zi
zi µµε . (5.15) 

We summarize this observation into the following theorem: 

Theorem 5.1. The solutions of the Helmholtz wave equation (5.10) excited by a spatially 

incoherent source must be Gaussian distributed and have the following expression, 

 ( ) ∑=
i

i

m

i tyxuyWtyxu ξ),,()(,,, , (5.16) 

where ),,( tyxum

i are deterministic coefficients and iξ are independent standard Gaussian 

random variables constructed as ...,2,1)()(
0

== ∫ isdWsm
y

iiξ . 

It is worth-mentioning that the linearity of the primary PDE in Equation (5.10) 

makes the application of the WCE method much easier than its application for nonlinear 

PDEs. It can be shown that all the statistical moments of the random solution of the 

original stochastic PDE at the output line B in Figure 5.1 can be directly calculated using 

these expansion coefficients [85]. Obviously, by choosing the number of expansion 

coefficients considered in Equation (5.12), the accuracy and the length of the simulation 

time can be varied. Fortunately, it is known that WCE is a very fast converging 

expansion technique, and usually does not require many expansion coefficients [76, 77, 

79, 81, 82, 84]. Thus by using only a few terms in Equation (5.12), we can achieve 

enough accuracy in a very fast simulation for almost all practical optical structures.  
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5.3. Numerical Simulation of Spatially Incoherent Sources 

The structure we consider here is a 2D PC as shown in Figure 5.2. It is composed of 

square lattice of cylindrical air holes etched in silicon. The radius of the air holes is 0.3a, 

where a is the lattice constant (i.e., period). We fix the size of the PC structure with 

dimensions xf = 10a and yf = 20a. For the wave propagation simulation, we use the 

standard FDTD method. The x-y plane is discretized so we get 24 grid cells per lattice 

constant (a) along both x and y axes. The source line A is placed in the air one lattice 

constant (i.e., 24 grid cells) before the interface of the PC structure, and the output line B 

is fixed 3 grid cells after the interface of the PC structure in the air. To minimize the non-

physical reflections from the computation boundary, a 12 grid-cell wide perfectly 

matched layer (PML) [71] is set up around the structure. Note that all these parameters 

for the PC geometry and for the simulation grid are chosen just to set an example and by 

no means affect the applicability or accuracy of our model. 
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Figure 5.2. The schematic of a 2D square lattice PC structure of air holes in silicon with 
hole radius r and lattice constant a. The input (or source) and output lines are shown by A 
and B, respectively.  
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5.3.1. The Brute-Force Model 

As we have already mentioned, one possible method to model a spatially incoherent 

source is to turn on one individual source on the input line A at a time, find the power 

spectrum on the output line B, and then add them together. While this technique models 

the incoherent source perfectly, it is very time-consuming since it requires one simulation 

of the entire structure for each input point source along line A in Figure 5.2. Knowing that 

even a single numerical simulation of a PC structure with dimension suitable for practical 

applications is very time-consuming, the use of the brute-force method is not a reasonable 

option. We use this method only as a reference to assess the accuracy of our more 

efficient WCE method. 

In the brute-force simulation, one source is excited at a time with a commonly-

used sinusoidal modulated Gaussian pulse for the time function )(tV  [71], 

 ( )




















 −
−−=

2

0
0 exp)(sin)(

T

tt
tttV ω , (5.17) 

to cover a reasonable range of frequencies. This pulse propagates all the way through the 

structure to get to the output line B. The normalized center frequency of the pulse (ω ) is 

0.04 and its width ( ω∆ ) is 0.016. The normalized width of the Gaussian pulse (T) in the 

time domain is 5.62/1 =∆ω  which corresponds to 120 time steps in our FDTD 

simulation. In order to find the steady state field profile at the output line B, we have to 

run the simulation for about 65000 time steps. Since we have assigned one point source 

to each grid cell along input line A, it adds up to 20 × 24 = 480 point sources 

(corresponding to yf = 20a and 24 grid cells per lattice constant, a) and this results to the 

total simulation time of 480 × 65000 time steps. 
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5.3.2. The WCE Model 

Using the formulation described in the last section, we need to solve the set of 

deterministic PDEs given in Equation (5.15) for the expansion coefficients [ ),,( tyxE zi ]. 

In this section, we numerically solve these deterministic PDEs using the FDTD 

technique. Since the deterministic time function [i.e., )(tV ] and the stochastic spatial 

function [i.e., )(ydW ] of the source are separated as shown in Equation (5.11), for the 

numerical simulation of the WCE method once again we can use the sinusoidal 

modulated Gaussian pulse given in Equation (5.17) for the time function. However, for 

the spatial part we choose a set of sinusoidal basis functions for )(ymi  as given in 

Equation (5.4). It is worth mentioning that in general we can choose any orthonormal 

basis for the spatial function [ )(ydW in Equation (5.12)]. The functions used here are 

primarily selected for their simplicity.   

In the numerical simulation, we need to simulate the structure for each basis 

function )(ymi  (i = 1, 2, ..., M) to find the corresponding ),,( tyxE zi  defined in Equation 

(5.15) at the output line B (i.e., x = xB). In each simulation all the point sources along line 

A are excited simultaneously, however the amplitude of the time function at each point 

source is modulated with the value of )(ymi  at its corresponding vertical position. We 

can then calculate all statistical properties of the output field using its corresponding 

expansion coefficients. For example, prior to calculate the power spectrum of light at the 

output line B, we need to find the second moment [73] of the random field values in the 

frequency domain [i.e., ez yxE 〉〈 ),,(2 ω ] from Equation (5.10) which can be simply 
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calculated using the Fourier transform of its corresponding expansion coefficients 

[ ),,( ωyxE zi ] as  

 ∑=〉〈
i

ziez yxEyxE
22 ),,(),,( ωω . (5.18) 

It should be noted that the Fourier transform is a linear transformation and thus, all the 

formulation for the statistical moments in the time domain is kept unchanged in the 

frequency domain. The key advantage of the WCE method is its fast convergence. With 

M expansion coefficients selected in Equation (5.15), the total simulation time is M times 

the simulation time of the original structure with a deterministic input (i.e., M × 65000 

time steps). 

5.4. Simulation Results and Discussion 

The simulation result of the electric field power spectrum versus the normalized 

frequency at a typical point on the output line B is shown in Figure 5.3. For this 

simulation, we have only used M = 15 expansion coefficients. The same data calculated 

using the brute-force technique is also shown in Figure 5.3 for comparison. The excellent 

agreement between the fast simulation using the WCE model and the long simulation 

using the brute-force model is clear from Figure 5.3. To calculate the gain in the 

simulation time using the WCE model, we have just to compare the total number of 

simulations of the entire structure needed in the two models. This number is equal to M = 

15 (i.e., the number of the expansion coefficients) for the WCE model while it is equal to 

the number of FDTD grid cells along the source line A, which is 480 for the brute-force 

model. Thus, the simulation based on the WCE model is 32 times faster than that using 

the brute-force model. 
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Figure 5.4(a) shows the relative error of the WCE model with respect to the brute-

force model as a function of the number of expansion coefficients, M. To calculate the 

relative error, we first calculate the sum of the square of the differences between the two 

power spectra (from the two models) for all frequencies and all points at the output line 

B. Then, we divide this sum by the sum of the square of the power spectrum for all 

frequencies and all points at the output line B calculated using the brute-force model. The 

exact mathematical formulation for the relative error is as following: 
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2

22
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where pN  and fN  are the number of grid cells on the output line B and the number of 

discrete frequencies in our numerical simulation, respectively. Note that we use all the 

frequencies and all the points at the output line B to show the accuracy of our model. 

Figure 5.4(a) clearly shows that the results of the WCE model very quickly become close 

to those of the brute-force model with negligible error (the error is 0.08% for M = 15), 

which is a direct observation of its fast convergence.  
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Figure 5.3. The electric field power spectrum as a function of normalized frequency at a 
typical point on the output line B in Figure 5.2 is shown. The simulation result of WCE 
model was obtained with only M = 15 expansion coefficients. 
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(a)      (b) 

Figure 5.4. (a) The relative error and (b) the gain in the simulation time of the WCE 
model with respect to the brute-force model as a function of the number of expansion 
coefficients (M). 
  

Figure 5.4(b) shows the simulation time advantage of the WCE model with 

respect to the brute-force model. As seen in this figure, for larger M values the gain in the 

simulation time of the WCE model over the brute force model is decreased. This is 

because by increasing M, the number of distinct PDEs in Equation (5.15) and equally the 
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number of FDTD simulations for WCE model is increased. Therefore, the overall WCE 

simulation takes longer. Table 5.1 shows the number of expansion coefficients M 

required in WCE model for assuring certain upper-bounds of the relative error. 

Correspondingly, the gain in simulation time has been calculated and given inside the 

table. As implied by the table, for an accuracy better than 99%, we have to truncate the 

WCE series in Equation (5.12) at M = 12 and hence the numerical simulation is 

performed almost 40 time faster than the brute-force model. Moreover, the data in Table 

5.1 clearly verifies the fast convergence behavior of the WCE model. Comparing the first 

and the third columns tells us by inclusion of only five more expansion coefficients in the 

WCE model, the error is 100 times reduced.     

 
Table 5.1. Number of expansion coefficients (M) 
versus gain for a specific amount of relative error 

Error %10<  %1<  %1.0<  

M 10 12 15 

Gain 48 40 32 

 

5.5. Relation between the Brute-Force Model and the WCE Model 

As the last comment in this section, we will show that there is a mathematical relation 

between the brute-force model and the WCE model.  

 Let )(sn j  be another orthonormal basis for ]),0([2 yL  too, similar to the 

discussion given at the beginning, we can construct )()(
0

sWdsn
y

jj ∫=η , and then the 

solutions ))(,,,( yWtyxu  have a different expression 

 ∑=
j

j

n

j tyxuyWtyxu η),,())(,,,( , (5.19) 
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where ),,( tyxu n

j  satisfies Equation (5.15) with )(ymi  being replaced by )(yn j . 

Theorem 5.2. The coefficients m

iu and n

ju satisfy the following equation 

 ∑ ><=
i

m

iji

n

j unmu , , (5.20) 

where dssnsmnm j

y

iji )()(,
0∫>=< . 

Proof: Since both )(smi  and )(sn j  are orthonormal bases of ]),0([2 yL , we must have 

 ∑ ><=
j

jjii snnmsm )(,)( . 

Therefore, if we integrate both sides against )(sdW over ],0[ y , we have 
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Then by using Equation (5.19) to expand the solution u on these two bases, we have 

 ∑ ∑∑ ∑∑∑ 
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which implies Equation (5.20). 

Theorem 5.3. The brute-force solutions p

ju  and the WCE solutions m

iu  are related by the 

following formulas, 

  ∑=
i

m

iji

p

j uymu )( , (5.21) 

and conversely 

 ∑=
j

p

jji

m

i uymu )( . (5.22) 
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Proof: First of all, we note that in the brute-force method if the point source at yj is 

excited then )()(),,( tVytyxJ jAz δ=  is the input source for Equation (5.10) where 
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where Nyh f /= . Denote h

ju  as the solutions of Equation (5.15) with )()( tVhyn hj  as 

the input which satisfies )()()()(lim
0

tVytVhyn j

h

j
h
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→

. We have 
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lim .  

Follow the linearity of Equation (3.6), it is easy to check h

ju  can be expressed as  

 ∑ ><=
i

m

ii

h

j

h

j umnu , . 

Taking h to 0, we obtain Equation (5.21). 

On the other hand, the piecewise constant functions h

ju  span a subspace of 

]),0([2 yL  as 

 { }NjynspanR h

jh ...,,1),( == . 

It is obvious that  
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h
=

→
, 

which implies, 
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Follow the linearity of Equation (5.15) again, we have 
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which is Equation (5.22). 

As mentioned earlier in particular we are interested in the second moment of the 

solutions in many applications and it can be computed by the WCE coefficients as 

following: 

Corollary: Let p

ju be the brute-force solutions with a point source at jy . Let m

iu be the 

solutions of Equation (5.15) with )()(),,( tVymtyxJ iAz =  as the input source. Then the 

second moment of the solutions is preserved, 

 ∑ ∑=
j i

m
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p

j uu
22
. (5.23) 

Proof: From Equation (5.21) and the orthonormal property of )(ymi , one has 
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This result confirms the equivalence of the second moments of the brute-force model and 

the WCE model as shown in Figure 5.3. Note that in general this is not true for other 

statistical moments. Thus, for correct comparison between their other moments, one has 

to use the linear transformations given in Theorem 5.3 to find the corresponding relation. 
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CHAPTER 6 

MODELING THE PROPAGATION OF OPTICAL BEAMS IN 

THREE-DIMENSIONAL PHOTONIC CRYSTALS  

 

Now that we have developed an efficient simulation model for a spatially incoherent 

source, we move forward and propose to use three-dimensional (3D) photonic crystal 

(PC) structures [22-24] to merge the functionalities of both interferometric and diffractive 

elements together and replace the tandem spectrometer with an extremely compact 

properly designed 3D PC microspectrometer [25]. However, to design and implement 

these structures efficiently and systematically, it is essential to have a basic understanding 

of the propagation effects in 3D PCs. 

In this chapter we show that the propagation effects of optical beams in 3D PC 

structures can be modeled using a direction-dependent effective diffractive index model. 

The parameters of the model (i.e., the effective diffractive indices) can be calculated 

using the curvatures of the band structure of the PC at the operation point. After finding 

these indices, the wave propagation inside the PC can be analyzed using simple 

geometrical optics formulas. As an example, the application of the model for diffraction 

compensation in a tetragonal woodpile PC is demonstrated. 

6.1. Diffractive Index Model for 3D PCs 

The problem of interest in most dispersive applications of PCs is the modeling of 

evolution of optical beams propagating through the periodic structure. Recently, some 

models have been suggested to describe these effects for special cases [88, 89], but a 

general model for 3D PCs is still missing. To analyze these structures, modal approaches 
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can be directly used by expanding the beam over the modes of the PC structure. This, 

however, requires a detailed mode matching process, which is a tedious task. At the same 

time, in most dispersion-based applications of PCs we are not interested in the details of 

the beam profile inside the periodic structure. In most practical cases, accurate 

description of the behavior of the envelope of the optical beam is of main interest. In this 

section, we develop an easy to use model for the analysis of the envelope of an optical 

beam as it propagates through a 3D PC structure. This model can also provide useful 

insight into the process of beam propagation through 3D PC structures. It has been shown 

that in 2D PCs an envelope transfer function (ETF) (using the band structure) can be 

defined to model the evolution of the special envelope of the beam inside the PC 

structure [90]. Here, we extend this idea to define the amplitude transfer function for 3D 

PCs [91]. Local quadratic approximation of the band structure at the operation point is 

then used to define diffractive indices that describe the diffraction of optical beams inside 

the PC structure at different wavelengths. 

One main concept that differentiates between the 3D and the 2D PCs is the 

vectorial nature of the electromagnetic fields in the 3D case, which cannot be modeled 

using scalar quantities as in the 2D case. Nevertheless, it can be shown that the 

polarization of the modes of 3D PC structures in most practical cases have Bloch 

components with well-defined transverse eigenstates [92]. In addition, these polarization 

states have smooth variations over the band structure. As a result, an optical beam with 

limited spatial-spectral content in a 3D PC can be locally modeled using a scalar field by 

projecting its actual vector field over the dominant polarization state. In what follows, 

such a scalar model is used to develop approximate solutions.  
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For simplicity, we consider a tetragonal woodpile 3D PC in our derivations. The 

formulation can be extended readily to other lattices, and the results are not limited to the 

choice of lattice. Assume we have an optical beam with an initial scalar (electric or 

magnetic) field distribution ),(1 yxp  along z = z1 (i.e., a plane normal to the z-axis) inside 

the PC. We can expand this distribution over the PC modes as 

 ∫ ∫ −−−= yxzyxkyx dkdkzjkyjkxjkzyxUkkAyxp )exp()exp(),,(),(
4

1
),( 1121 π

,  (6.1) 

where each PC mode is represented by an excitation amplitude [i.e., ),( yx kkA ], a 

periodic Bloch function [i.e., ),,( zyxU
k

], and a propagation term [i.e., 

)exp( zjkyjkxjk zyx −−− ], and the integration is performed over the entire 2D kx-ky 

plane. The periodic Bloch function can be expanded as a Fourier series 

 ∑∑∑ ++−=
m n l

zyxzyxmnlk
zlKynKxmKjkkkUzyxU )](exp[),,(

~
),,( . (6.2) 

in which, xx aK π2= , yy aK π2= , and zz aK π2=  are the reciprocal lattice vectors 

of the PC in the k-domain (ax, ay, and az are the corresponding lattice constants in the x, y, 

and z directions, respectively). The initial scalar field expansion, thus, can be written as 
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where ),(
~

yxmnl kkU  represents the Fourier expansion coefficient of the periodic Bloch 

function. Note that since this expansion corresponds to a specific operation frequency, by 

fixing kx and ky, the third component of the wavevector of the PC mode, kz, will be known 

[i.e., kz is a function of kx and ky, or kz = kz(kx,ky)], and this fact has been used in Equation 

(6.3). 
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The 2D spatial Fourier transform of the field distribution, ),(1 yxp  can be 

calculated as 

 { }∑∑∑
∫∫

−=′
−=′+′′′′′′=
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or 
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Assuming that the beam profile covers a limited spectrum around (kx,ky)= (kx0,ky0), we 

can extract the envelope of the beam by filtering out the high-frequency portion of the 

spectrum around (kx0,ky0) and moving it to the baseband by shifting the spectrum by –kx0 

and –ky0 in the kx and ky directions, respectively [90]. The resulting spectrum of the 

envelope, represented by ),(1 yx kkP ,  is 
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Note that all 0≠m  and 0≠n  in Equation (6.5) correspond to the higher spatial 

frequency terms corresponding to rapid spatial variations in the length scales smaller than 

a PC unit cell. For the analysis of propagation of optical beams in a dispersive PC 

structure, the optical beam usually covers multiple unit cells, and such rapid variations 

will not be of interest in designing PC structures for practical applications. 

At the monitoring output plane, z = z2, the spectrum of the envelope of the beam 

can be calculated as 
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If zKqzz π212 =−  (with q being an integer), the summation term in Equations (6.6) and 

(6.7) will be exactly the same, resulting in 

 )])(,(exp[),(),( 120012 zzkkkkjkkkPkkP yyxxzyxyx −++= , (6.8) 

which means that the effect of propagation from z = z1 to z = z2 on the envelope of the 

beam is only a phase change in the spectral domain similar to a plane-wave-type 

propagation with propagation constant zk . Thus, the main effect of propagation in 3D 

PCs on the beam envelope is the phase variations of the modes from the initial plane to 

the observation plane.  

Based on Equation (6.8), we can define an ETF for the structure to describe the 

propagation from the z = z1 plane to the z = z2 plane as 

 ])(exp[
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),(
),( 12

1

2

z

yx

yx

yx kzzj
kkP

kkP
kkH −== , (6.9) 

where ),( 00 yyxxzz kkkkkk ++=  is related to kx and ky through the dispersion relation of 

the structure at the constant temporal frequency (ω) of the beam. The ETF for 3D PCs 

[given by Equation (6.9)] is similar to what was obtained for 2D PC structures [90], with 

the main difference being the extension of the ETF from a single variable function to a 

two-variable one. Using the analogy with propagation in bulk media, we can extend 

Equation (6.9) to the case of beam propagation along the ζ direction (normal to the 

constant frequency surface at the point of operation, i.e., parallel to ωkv ∇=g ) as 
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where the coordinates ξ, η, and ζ are defined in Figure 6.1.  

 

kη   

kζ   

kξ   

ω n 0  

 
Figure 6.1. A portion of an iso-frequency surface (at normalized frequency 0nω ) of a 

general 3D PC in the k-space is shown. The directions tangent to the surface (i.e., ξ and 
η) and the direction normal to the surface (ζ) are defined in the figure. 
 

Equation (6.10) can be used readily to investigate beam propagation effects for 

the most general case inside a 3D PC. The analogy with propagation in normal bulk 

media can be further utilized, if we express the exponential term of the spectral response 

in Equation (6.9) in terms of its Taylor expansion. Knowing that the diffraction of an 

optical beam (defined by ω  and k ) inside a PC is governed by the curvatures of the 

constant frequency surface at the operation point, we need to first calculate the PC band 

curvatures at the operation point. Using the second order approximation, 
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a standard method can be adopted to find these curvatures [93]. First, we define W as the 

magnitude of the gradient at the operation point, given by 

 2
3

2
21 aaW ++= . (6.12) 
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Then, the parameters for the first fundamental form of the surface (associated with the 

tangent plane) can be found as [93] 
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and those of the second fundamental form (associated with the second-order curvatures) 

can be calculated as 
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Using these relations, which are coefficients of the fundamental forms of a quadratic 

surface, we can calculate the Gaussian curvature as 

 
2

2

FEG

MLN
K

−
−

= , (6.15) 

and the mean curvature as 
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Finally, the two principal curvatures can be calculated as 

 KHH −+= 2
1κ , (6.17) 

 KHH −−= 2
2κ . (6.18) 

The principal directions, vi, can be calculated by inserting these principal curvatures in 

the characteristic equation, 
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which determines the principal directions projected on the xy-plane. From these 

directions, we can find the two directions at the operation point on the band structure, 

which are normal to the gradient direction, 

 )1,,( 32 aa −−=n . (6.20) 

The two directions obtained from this process determine the principal directions 

corresponding to the principal curvatures at the operation point on the band structure. 

Since these curvatures describe the diffraction of the optical beam inside the structure, we 

will refer to these two principal directions as the principal diffraction directions. Without 

loss of generality we assume the directions of ξ and η in Figure 6.1 to be along the 

principal diffraction directions at the operation point. Note that in the special case that the 

two curvatures are equal (i.e., the degenerate case), the choice of the principal diffraction 

directions is arbitrary.  

To summarize, for each mode of the 3D PC structure (at a given ω and k), there 

are two principal diffraction directions in the plane perpendicular to the direction of 

group velocity for that mode. A principal diffractive index can be defined for each of 

these directions to describe the diffraction of an optical beam along that specific 

direction. Based on the analogy with bulk media, we can find the principal diffractive 

indices ( ηξ dd nn , ) at the operation point as 
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The same phenomenon of anisotropic diffraction, in principle, occurs in ordinary 

anisotropic media as well, but the extent of the contrast between the two principal 
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diffractive indices can be much larger in 3D PCs (for instance they can have opposite 

signs), and the beam propagation in 3D PCs can show practically significant effects from 

a device point of view. Equation (6.21) is the final result of our model. To implement this 

model for an arbitrary 3D PC, we need to first calculate the 3D band structure, which can 

be efficiently done by analyzing one unit cell of the PC structure using a standard 

technique such as plane wave expansion or FDTD. Then, we can calculate the curvatures 

of the iso-frequency surface of the band structure at the operation point of interest. The 

advantage of this model is that the calculation of curvatures is fast (much faster than the 

analysis of wave propagation in even a small 3D PC). Furthermore, once the diffractive 

indices are calculated, they can be readily used to study propagation effects of optical 

beams for different propagation lengths and in a variety of applications of that PC 

structure. 

6.2. Simulation Results 

To verify the applicability of our approximate diffractive index model, we investigate the 

propagation of a Gaussian beam inside a woodpile PC structure with a tetragonal unit cell 

[as shown in Figure 6.2(a)] with 3.0== yx ff , 5.0=zf , and aaaa yxz 4.24.24.2 === . 

The relative permittivity of the material used for fabricating the 3D PC is assumed to be 

εr = 2.5 throughout this chapter, which is the typical value in structures realized in 

polymer-based PCs. We assume the incident wave to be a Gaussian beam coming from a 

homogeneous bulk material (with εr = 2.5) at °= 38α  and °= 0φ  [i.e., propagation in the 

xz-plane in Figure 6.2(b)], where α is the angle between the incident wavevector and the 

z-axis, and φ is the angle between the plane of incidence and the x-axis as shown in 

Figure 6.2(b). For this lattice, the dominant polarizations of the PC modes are very close 
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to the conventional transverse electric (TE) and transverse magnetic (TM) polarizations 

[92]. By direct calculation, we can also verify that the principal diffraction directions in 

this case are parallel and normal to the xz-plane. Figure 6.3 shows the cross-section of a 

Gaussian beam inside this PC structure at different propagation lengths. The beam is 

assumed to be at normalized frequency of 45.0=λa  with TE polarization (electric field 

normal to the plane of incidence) and a symmetric shape with a beam waist of 41.2λ 

upon entrance to the PC structure. Results in Figure 6.3(a) are calculated using a direct 

modal approach based on the plane wave expansion technique as a point of reference, and 

those in Figure 6.3(b) are calculated using our ETF discussed in this chapter. The 

fluctuations on the profile of the beam for the exact method (i.e., the direct modal 

approach) are caused by the nonuniformity of the refractive index inside the photonic 

crystal structure. It can be observed that the approximate profile calculated by the ETF is 

an accurate estimate for the envelope of the beam for most practical purposes.  

   
  (a)       (b) 
Figure 6.2. (a) The schematic demonstration of the 3D tetragonal woodpile PC 
considered throughout this chapter is shown. Lattice constants and filling factors in 
different directions of this lattice are marked on this figure. (b) The general direction of 
the incident beam is shown, with α being the angle between the incident wavevector and 
the normal to the interface (z), and φ being the angle between the plane of incidence and 
the xz-plane. 
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Figure 6.3. Calculated cross-sections of an optical beam propagating through a tetragonal 
woodpile PC structure (with 3.0== yx ff , 5.0=zf , and 4.2zyx aaaa === ) are 

shown at different propagation lengths using (a) the direct mode-matching (brute-force 
approach) and (b) the envelope transfer function approximation. The three snap-shots 
show the calculated Ey field at z = a, 200a, and 400a, respectively. The beam has a 
normalized frequency of 45.0=λa  and a symmetric beam waist of 41.2λ, and it is 
incident upon the PC from a homogeneous material with relative permittivity 2.5 at 

°= 38α  and °= 0φ  as shown in Figure 2. (c) Iso-frequency surface of the tetragonal 

woodpile PC used here at the normalized frequency of 45.0=λa . 

 
Different broadenings in the two principal directions are also evident from the 

beam shapes in Figure 6.3. Figure 6.3(c) shows the iso-frequency surface of the 3D PC 

used in Figures 6.3(a) and (b) at the normalized frequency of 45.0=λa . The 

deformation of the bands in the vicinity of the edges of the Brillouin zone is responsible 

for the anisotropic curvature resulting in the different diffraction of the beam in the x and 

y directions, as shown in Figures 6.3(a) and (b). To get a more quantitative result, we 

have calculated the beamwidths in the two principal diffraction directions [i.e., x and y in 

Figure 6.2(b)] at different propagation lengths and the results are shown in Figure 6.4. 

Agreement between the beamwidths obtained by the diffractive index model and the ETF 

technique is clear from Figure 6.4. The results in Figure 6.4 confirm that the beamwidth 
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of the propagating beam in the photonic crystal structure follows the same simple 

geometrical optics relation predicted by the diffractive index model. 
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Figure 6.4. Comparison of the beamwidths along the x and y directions for an optical 
beam propagating inside a 3D PC (same parameters as defined in Figure 6.3). The results 
obtained using the ETF (shown by markers) are in good agreement with the expected 
beamwidths from a diffractive index model (shown by solid curves). 
 

6.3. Negative Diffraction 

The possibility of negative diffraction in PC structures is another important property that 

can affect an optical beam propagating inside these structures. The immediate 

applications of this property are diffraction compensation [94] and beam shaping. To 

obtain an appropriate 3D PC structure with negative diffraction, we can use our 

diffractive index model and design the PC structure for the desired diffractive indices 

along the two principal diffraction directions. More importantly, we can use these indices 

along with the well-known analytical formulas of geometrical optics to analyze the 

propagation of the optical beam in such a negative diffraction structure at any arbitrary 

propagation length [94].  
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For this analysis, we consider an incident Gaussian beam at the normalized 

frequency of 57.0=λa  with the symmetric beam waist of 20.6λ incident at an angle 

°= 75.21α  and °= 0φ  from the substrate region on the 3D PC structure in the geometry 

shown in Figure 6.2(b). We choose a woodpile PC structure with ax = ay = a, az = 2.4a, 

3.0== yx ff , 5.0=zf , and 5.2=rε , similar to the one in Figure 6.2. The 3D iso-

frequency surface for this PC at the operation normalized frequency is shown in Figure 

6.5(a). The excitation point on the band structure is marked by an arrow in Figure 6.5(a), 

showing that the iso-frequency surface at this operation point has different curvatures in 

the x and y directions. We assume that the beam initially propagates a distance of Lpre = 

1960a in the substrate with 5.2=rε  (and thus, broadens to a beam spot of 2w = 77λ in 

each lateral direction) before entering the PC. The two diffractive indices for this 

structure at the operation frequency of  57.0=λa  are 16.0−=dxn  and 90.0=dyn  

[calculated from the band structure using Equation (6.21)]. The beam profiles normal to 

the direction of propagation (the z direction) at two different propagation lengths inside 

the PC structure are shown in Figures 6.5(b) and (c). Perfect diffraction compensation in 

the x direction at L = 500a is observed from Figure 6.5(c), and the transfer-limited spot 

size is retrieved. Further propagation inside the PC region beyond this point results in the 

broadening of the beam. It is interesting to note the difference between the diffraction 

effects in the x and y directions. The beam undergoes normal diffraction in the y direction 

and continues to broaden upon propagation (since ndy>0), while the diffraction effect in 

the x direction is opposite to that of ordinary bulk materials (since ndx<0), and results in 

focusing of the beam. Figure 6.6 compares the widths of the beam in the x and y 

directions obtained from direct ETF simulations with those obtained by fitting Gaussian 
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beam propagation into the calculated data based on a modal analysis. The estimated 

diffractive indices in the x and y directions from this fitting process are ndx = -0.14 and ndy 

= 0.87, respectively, which are in good agreement with direct calculations of diffractive 

indices from the band structure. 

 
(a) 

 

 
(b)       (c) 

Figure 6.5. (a) Iso-frequency surface of a tetragonal woodpile PC structure (with 
3.0== yx ff , 5.0=zf , 5.2=rε , and 4.2zyx aaaa === ) in the 3D k-space at the 

normalized frequency of a/λ = 0.57 is shown. Only the surface corresponding to the 
excitation polarization (i.e., Ey) is retained. The excitation is a Gaussian beam incident 
from the substrate region ( 5.2=rε ) at an angle of °= 75.21α  and °= 0φ , with a 

symmetric beam waist of 2w0 = 41.2λ, and is originally broadened to a beamwidth of 
77λ. Cross-sections of the beam inside the PC structure is shown at (b) z = a (i.e., upon 
entrance to the PC region) and (c) z = 500a. 
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Figure 6.6. The evolution of the width of the beam during propagation through the PC 
structure is calculated using the ETF method and our simple diffractive index model, 
showing good agreement. Using Gaussian beam propagation formulas and by fitting the 
parameters into the calculated ETF beamwidths, the diffractive indices are estimated to 
be ndx = -0.14 and ndy = 0.87, which are in good agreement with those calculated in our 
simple model. 
 

It is clear that choosing an appropriate 3D PC structure for diffraction 

compensation and confirming its effect on the incident beam with direct simulation of 

propagation (using methods such as FDTD) is very time-consuming. This clearly shows 

the importance of our diffractive index model in the analysis, design, and optimization of 

3D PC structures for practical applications. 
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CHAPTER 7 

ANALYSIS AND DESIGN OF THREE-DIMENSIONAL PHOTONIC 

CRYSTAL DEMULTIPLEXERS 

 

Photonic crystals (PCs) are periodically patterned synthetic optical materials that have 

shown a very strong capability to control the propagation of optical beams [26-30]. 

Because of their anomalous dispersion diagram, they can manipulate different 

wavelengths differently and hence they are very suitable materials for dispersive 

applications. There are many dispersive devices have been proposed so far to exploit 

different dispersion properties of PCs like superprism effect, negative diffraction, and 

super collimation [31-35]. Most of these proposals are in view of two-dimensional (2D) 

PCs as a design template and three-dimensional (3D) PCs did not get much attention 

because of the difficulties present in their fabrication process to make a uniform sample 

with desired lattice geometry. However, recent advances in the fabrication of 3D PC 

structures have resulted in the development of these structures for practical applications. 

Among a variety of dispersive applications of 3D PCs, here in this chapter we look into 

superprism-based 3D PC demultiplexers.  

In conventional PC demultiplexers where optical beam diverges as propagates 

through the PC structure, for larger separation between different spectral channels we 

have to enlarge the PC region along the propagation direction. Knowing that 3D PC 

structures are fabrication limited to pretty small thicknesses, it is not practically possible 

to enlarge the propagation length inside the structure. Therefore, we have used an 

alternative configuration for the 3D PC demultiplexers as shown schematically in Figure 
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7.1 consists of a preconditioning region where the incident beam starts broadening before 

entering the 3D PC region. In this configuration the PC dispersion diagram is engineered 

to have negative effective diffractive index in addition to the superprism effect for all 

wavelength channels. Thus, different wavelength channels of the incident beam are 

angularly separated from each other inside the 3D PC by the superprism effect and are 

simultaneously focused back to their diffraction limited spot size at the output of the PC 

region because of the negative diffraction. 

 

Figure 7.1. Schematic of a preconditioned superprism-based 3D PC demultiplexer. 

In this chapter we present the analysis and design of preconditioned 3D PC 

demultiplexers as in Figure 7.1 where the simultaneous existence of the superprism effect 

and the diffraction compensation results in a very compact structure. We apply the 

effective diffractive index model developed in the previous chapter and use the same 

lines of formula already developed for the 2D case [94] and revise it properly for the 

quantitative analysis of the performances of the 3D PC demultiplexers and their 

optimization in regard of their size. Subsequently, a systematic design procedure for 

making the most compact preconditioned superprism-based 3D PC demultiplexer is 

presented. Later in this chapter, we will use tetragonal woodpile 3D PCs as a design 

λ1 

λ2 

3D PC Preconditioning 
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template for making practical demultiplexers. Finally, polarization states of modes of 3D 

PC structures are briefly discussed.  

7.1. Analysis of Preconditioned Superprism-Based 3D PC Demultiplexers 

At the beginning, it is worth mentioning that in our analysis we have assumed that the 

demultiplexer separates all the spectral channels in one dimension along its direction of 

angular separation. Therefore, all the theoretical formulations developed previously for 

2D PCs [94] can be exactly repeated for 3D PCs with just taking into account that all the 

diffractive index orders are calculated from 3D PC band structures (i.e., iso-frequency 

surfaces) along the direction of angular separation. In other words, the systematic 

analysis and design of 3D PC demultiplexers are reduced into the analysis and design of 

2D ones. In this case, the band structure of the reduced 2D PC demultiplexer (which is 

represented in the form of a constant frequency contour in the 2D wave-vector plane) is 

the intersection of the band structure of the 3D PC (which is represented in the form of an 

iso-frequency surface in the 3D wave-vector plane) and the plane of angular separation.   

As mentioned already in the previous chapter, the diffraction of an optical beam 

in 3D PC is modeled by two diffractive indices. Here in the analysis and design of the 

reduced 2D PC demultiplexers, the second diffractive index in the direction perpendicular 

to the direction of angular separation is not entered and rather considered as a free design 

parameter. Nevertheless, the second diffractive index is preferred to be either equal to the 

first diffractive index (in both sign and value) or to be much larger than the first one so 

when the beam is diffraction compensated to its minimum waist by the PC region along 

the direction of angular separation, it is also very close to its minimum waist in the 

perpendicular direction. 
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The basic topology of the preconditioned superprism 3D PC demultiplexer with 

different important parameters is shown in Figure 7.2. There are two basic conditions that 

need to be satisfied in the demultiplexer, namely, spatial separation and diffraction 

compensation. Spatial separation refers to the different channels being separated in space 

at the output of the device. This is caused by the propagation of beams of different 

wavelength in different directions inside the structure. This separation can be quantified 

by defining cross-talk between channels as the sum of the powers of all undesired 

channels at the location of the desired channel. Diffraction compensation condition is the 

cancellation of second-order spectral phase from the input diffraction-limited incident 

beam to the output plane as designed. In this section, we follow the same lines of 

formulation developed in Reference [94] to express these two conditions in terms of 

actual physical design parameters for 3D PCs.  

In Figure 7.2(a), we have shown the propagation of a Gaussian beam through the 

structure where 02w  is the initial waist of the incident beam, α  is the incident angle, and 

L and gθ  are respectively propagation length and propagation angle of the beam, 

corresponding to a single demultiplexing channel in the PC region. In addition, 

αθ coscos22 0 gPC ww =  is the beam waist in the direction of angular separation 

corresponding to that beam inside the 3D PC. Here, we consider the third order spectral 

phase to be the dominant term in the higher order effects; validity of this assumption can 

be easily checked for each design by comparing the contributions of different spectral 

phase orders. In case other spectral terms become dominant (for example, the fourth 

order spectral phase in the ideal structure) the same steps as below can be performed with 

the corresponding phase term. Figure 7.2(b) shows the evolution of the beam inside the 
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structure considering only the third-order spectral phase term. The output beam obtained 

in this way is the actual beam profile only at the output plane of the structure, where the 

effect of second-order spectral phase is designed to vanish. 

 

 
(a) 
 

 
(b) 

Figure 7.2. (a) Parameters for a preconditioned superprism 3D PC demultiplexer are 
depicted for an incident beam coming at an angle α, and for a single channel inside the 
PC region. (b) The darker pattern trace shows the evolution of an optical beam at a single 
wavelength throughout the structure without the effect of the second order diffraction. In 
this case, 3δ  is the divergence angle of the beam due to the third-order diffraction effect. 

The brighter pattern is the actual beam profile inside the structure. By compensating the 
second-order phase, the beam size at the output is the same as that in the assumed 
structure with zero second-order phase everywhere. 
 

Calculation of the optimum propagation length L inside the PC depends on the 

amount of cross-talk required between adjacent wavelength channels at the output plane 

of the demultiplexer. The relative extent of two adjacent channels inside the PC is 

schematically shown in Figure 7.3(a), assuming that the two channels have equal 

divergence angles 3δ  and the angular separation between them is ∆ . We can calculate 

2w0 

 npre 

δ3 

2w0 
Lpre 

θg 
L 

 npre 

2wPC 



 94 

the required propagation length L, for achieving a cross-talk level of at most X as in 

Reference [42] 

 33zL ζ= ,  (7.1) 

where 

 
)(

)(

3

3
XH

XK

−
=
η

ζ . (7.2) 

In these relations, 3z  is the Rayleigh range corresponding to the third order spectral phase 

term, 33 δη ∆=  is the ratio of the angular separation between adjacent channels (∆ ) to 

divergence angle of each channel due to the third-order diffraction effect inside the PC 

[as represented by 3δ  in Figure 7.2(b)], and K and H are constants given by Table 7.1 

according to the required cross-talk. The procedure for calculating )(XK  and )(XH  is 

the same as that in Reference [42]. Equations (7.1) and (7.2) represent the spatial 

separation condition of output channels for preconditioned superprism 3D PC 

demultiplexers. Figure 7.3(b) shows the cross-talk versus propagation length for different 

ratios of angular separation 3η . Note that one major difference in the 3D case compared 

to the 2D case is the calculation of cross-talk where in the 3D case we have to consider 

the actual 2D Gaussian beam profiles at the output plane rather than the 1D Gaussian 

profiles in the 2D case.  

 

Table 7.1.  Cross-talk parameters 

Cross-talk, X (dB) K(X) H(X) 

-10 0.67 0.15 
-20 0.88 0.38 
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Figure 7.3. (a) Schematic evolution of beam profiles of two adjacent wavelength channels 
inside the PC structure. ∆  is the angular spacing between group velocity directions of 
center frequencies of these two channels, and 3δ  is the divergence angle of one channel 

due to the third-order diffraction effect inside the PC region. (b) The cross-talk versus 
propagation length is shown for different values of 3η . Gaussian beam approximation is 

used in all cases. 
 

The diffraction compensation condition that describes the cancellation of the 

overall quadratic phase can be simply put as 
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in which pren  and preL  are the refractive index and the length of the preconditioning 

region, respectively. Also, 2en  and L  are the effective index along the direction of 

angular separation and the propagation length of the 3D PC region, respectively. To 

assess the performance of the preconditioned superprism demultiplexers, here, we 

calculate the size of these structures for a given angular channel spacing, ∆ . As it has 

been derived in Reference [94] for a beam propagating in a medium with third-order 

diffraction effects, we have |)|(2 33 ePC nwπλδ =  and ||
2

1
3

2
03 ePC nwkz = , with || 3en  

being the magnitude of the third-order effective index along the direction of angular 

separation of the 3D PC. By inserting these relations into Equation (7.2) we obtain 
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and therefore, 
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The volume of the 3D PC (V) taken by each channel can be estimated as 
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The volume in Equation (7.6) depends explicitly on the diffraction-limited beam waist of 

the channel inside the PC, PCw2 ; thus, we can minimize the volume directly with respect 

to this parameter by using 0=∂∂ PCwV  to obtain 
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which consequently results in the optimal propagation length ( optL ) as 

 optPCopt w
K

L )(
3

7

∆
= , (7.8) 

and the optimum (i.e., minimum) 3D PC volume ( optV ) as 
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Following the same lines of formulation as in Reference [94], we can rewrite Equations 

(7.7)-(7.9) in terms of the physical parameters of the 3D PC structure.  

7.2. Design of Preconditioned Superprism-Based 3D PC Demultiplexers 

In this section we develop a design strategy for preconditioned superprism-based 3D PC 

demultiplexers. For any incident angle, we can find different parameters of the structure, 

i.e., angle of group velocity ( gθ ), second-order effective index ( 2en ), sensitivity factors 

[ ( )ωθ ∂∂ g  and ( )α∂∂ 2en ] as well as higher-order effective indices associated with each 

demultiplexing channel in our bandwidth of interest. Note that all these parameters are 

calculated from the band structure of the reduced 2D PC as already mentioned. These 

parameters describe the propagation behavior for each channel (i.e., direction of 

propagation, sensitivity to frequency, and the divergence caused by the third-order 

spectral phase term). To get the required cross-talk for all channels, the parameter iw  

(i.e., the beam waist of the incident optical beam consisting of several wavelengths) 

should be found in such a way that the maximum propagation length required over all 

channels is minimized. This can be directly performed by reformulating Equation (7.5) as 
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in which subscript j stands for the parameters calculated for the jth channel. After finding 

iw  from this process, it is straightforward to set  

 { })(mean ij wLL = , (7.11) 

and the length of the preconditioning region is found from Equation (7.3) as 

 L
n

n
L

ge

pre

pre θ

α
2

2

2

cos

cos
= , (7.12) 

which completes the design. Here, pren  is the refractive index of the preconditioning 

region. 

7.3. Results 

Now we use the procedure of the previous section to design an optimal preconditioned 

3D PC demultiplexer for a dense wavelength division multiplexing system operating 

around 1520nm. We use tetragonal woodpile PCs as a design template for making this 

kind of devices. The choice of woodpile structures is due to their more mature and 

controllable fabrication process rather than other 3D PC lattice geometries. They are 

fabricated by 3D patterning of a polymer material through a two-photon absorption 

technique and direct laser writing [47-49]. The relative permittivity of the polymer 

material is assumed to be εr = 2.5.  

By direct search through the band structure of a woodpile PC structure with a 

tetragonal unit cell [as shown in Figure 6.2(a)] with 3.0== yx ff , 5.0=zf , and 

aaaa yxz 6.16.16.1 === , we look for a frequency range and an excitation point on the 

band structure to simultaneously achieve both superprism effect and negative diffraction 

along the direction of angular separation. Then, around the center frequency, the required 
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propagation length (L) and incident beam waist ( iw2 ) is found so that the desired cross-

talk level for all channels is achieved. This process can be repeated for a range of incident 

angles to find the optimum structure for the given specifications. Note that the excitation 

point can be arbitrarily chosen by the incident angles α and φ, where α is the angle 

between the incident wavevector and the z-axis, and φ is the angle between the plane of 

incidence and the x-axis as shown in Figure 6.2(b). After searching through the band 

structure of the tetragonal woodpile PC introduced earlier, we have found that in the band 

TE3 and in a small bandwidth around the normalized frequency of 66.0=λa  as shown 

in Figure 7.4, it is possible to excite the structure for achieving both superprism effect 

and negative diffraction. Here, we report on two different excitations of the structure, one 

at °= 30α  and °= 45φ , and the other at °= 20α  and °= 0φ , for designing a 4-channel 

and a 6-channel preconditioned demultiplexer, respectively.  

  

 

 
Figure 7.4. Iso-frequency surface of the tetragonal woodpile PC structure specified in the 
text at the normalized frequency of 66.0=λa . 
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7.3.1. Design of a 4-Channel 3D PC Demultiplexer 

In this design we excite the PC structure with an incident beam coming from air at 

°= 30α  and °= 45φ . The incident beam is assumed to be a symmetric Gaussian beam. 

It propagates inside the PC structure in the direction normal to the iso-frequency surface 

at the excitation point. Figure 7.5 shows the group velocity angles αg and φg versus 

normalized frequency. While beam keeps remaining in the °= 45φ  plane, αg is changing 

with frequency which is an evidence of the superprism effect. Therefore, as incident 

beam propagates through the PC structure different wavelength channels are dispersed in 

the °= 45gφ plane. This observation confirms our assumption that we can reduce the 3D 

design problem into a 2D design problem by just looking into the band structure of the 

3D PC in the °= 45φ  plane.  
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Figure 7.5. Group velocity angles αg and φg versus normalized frequency for the 
tetragonal woodpile PC structure excited in band TE3 with an incident beam coming from 
air at °= 30α  and °= 45φ . As seen in the figure φg remains constant and equal to 45°. 
 

Figure 7.6 shows the constant frequency contours of the 3D PC structure in the 

°= 45φ  plane as well as the loci of the points with the constant angle of incidence 

°= 30α  in the wavevector space. We have calculated the group velocity angle (αg) 
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inside the PC structure and the second-order effective index ( 2en ) for the whole 

bandwidth of interest. Figure 7.7(a) shows the group velocity angle versus normalized 

frequency where the superprism effect is clearly seen. Another interesting point observed 

in this figure is the negative sign of the group velocity angle which is a result of negative 

refraction at the interface of the PC structure to air. Therefore, as the beam enters from air 

to the PC structure the desired signal encoded in the bandwidth of interest is separated 

from stray light (i.e., noise) and consequently the signal to noise ratio (SNR) at the output 

detector is improved. Figure 7.7(b) shows the second-order effective index versus 

normalized frequency. The negative sign of the effective index here helps to compensate 

the normal diffraction of the beam in the preconditioning region and focus it back to its 

initial waist, iw . Moreover, the almost constant value of the effective index in the whole 

bandwidth gives us the opportunity to equally compensate the diffraction of all the signal 

channels. As a result, at the output detector all the channels reach their minimum waist 

simultaneously and therefore, crosstalk between adjacent channels is reduced.  
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Figure 7.6. Constant frequency contours of the band TE3 of the tetragonal woodpile PC 
structure in the °= 45φ  plane. The curve marked with α corresponds to the angle of 
incidence °= 30α . 
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                                   (a)                          (b) 
Figure 7.7. (a) Group velocity angle versus normalized frequency for the 2D reduced 
tetragonal woodpile PC excited at °= 30α  in the °= 45φ  plane where its variation with 

frequency is an indication of the superprism effect. (b) Second-order effective index 
versus normalized frequency in the °= 45φ  plane where its negative sign indicates the 

possibility of diffraction compensation.    
 
  For designing a 4-channel PC demultiplexer, four equally spaced channels in the 

bandwidth of interest as in Figure 7.7(a) have been chosen. Following the procedure 

outlined in the previous section we have calculated the length and the beam waist of each 

channel for achieving crosstalk level better than -10 dB and the results are listed in Table 

7.2. For calculation of the actual wavelength values, we have assumed the lattice constant 

of the PC structure is equal to one micron (i.e., ma µ1= ). We have fixed the length of 

the PC structure (L) in 120 µm which is the average of the lengths of the four channels. 

By using Equation (7.12) and the information given in Figure 7.7, we can calculate the 

length of the preconditioning region (Lpre) in Figure 7.2 for the center wavelength and it 

is found to be 650 µm. We have simulated the beam propagation for each channel 

through the whole demultiplexer region as in Figure 7.2 with a symmetric Gaussian 

profile and an initial waist of mwi µ202 = . Figure 7.8 shows the -3 dB contour of output 

beam profiles of the four channels listed in Table 7.2 after passing through the PC 

structure. As expected the four channels are dispersed along the diagonal direction in the 
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°= 45φ  plane. Although the second-order diffraction effect has been compensated and 

all channels almost reach their initial waist along the direction of angular separation, 

higher order diffraction effects deteriorate the beam shapes and result in asymmetric 

profiles in this direction. Presence of these higher order effects increases the interference 

between adjacent channels and hence makes the crosstalk level higher than -10 dB. 

Moreover, we did not try to harness the diffraction effects in the perpendicular direction 

normal to the °= 45φ  plane and the beam is rather freely broadened in this direction. 

Therefore, the proposed demultiplexer despite of being functional in roughly separating 

four channels, is not very promising as the beam profiles do not look symmetric and well-

shaped. This has motivated us to look for a subsequent design with better performance 

regarding the beam shapes.      

   
Table 7.2. Design parameters for an optimal 4-channel 
demultiplexer in the tetragonal woodpile PC structure with 

ma µ1=  excited with an incident beam coming from air at 

°= 30α  and °= 45φ   

Channel (nm) 2wi (µm) L (µm) 

λ1 = 1550 14 189 
λ2 = 1539 13 140 
λ3 = 1527 12 111 
λ4 = 1515 7 49 
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Figure 7.8. The -3 dB contour of the beam profiles of the four channels listed in Table 7.2 
at the output plane of the preconditioned superprism-based demultiplexer shown in 
Figure 7.2 with mwi µ202 = , mLpre µ650= , and mL µ120= .  

 

7.3.2. Design of a 6-Channel 3D PC Demultiplexer 

For the second design we have excited the PC structure in band TE3 with an incident 

beam coming from air at °= 20α  in the xz-plane (i.e., °= 0φ ). All the other parameters 

are as before and the beam is assumed to be a symmetric Gaussian beam. The group 

velocity angles αg and φg versus normalized frequency have been calculated and shown 

in Figure 7.9. As seen in the figure the beam keeps remaining in the xz-plane. Therefore, 

once again we can reduce the 3D PC demultiplexer design problem into a 2D design 

problem by just looking into the band structure of the 3D PC in the xz-plane as shown in 

Figure 7.10. We have calculated the group velocity angle (αg) inside the PC structure and 

the second-order effective index ( 2en ) for the whole bandwidth of interest and they have 

been shown in Figure 7.11.  
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Figure 7.9. Group velocity angles αg and φg versus normalized frequency for the 
tetragonal woodpile PC structure excited in band TE3 with an incident beam coming from 
air at °= 20α  in the xz-plane. As seen in the figure the beam keeps remaining in the xz-
plane. 
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Figure 7.10. Constant frequency contours of band TE3 of the tetragonal woodpile PC 
structure in the xz-plane. The curve marked with α corresponds to the angle of incidence 

°= 20α . 
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(a)                          (b) 

Figure 7.11. (a) Group velocity angle versus normalized frequency for the 2D reduced 
tetragonal woodpile PC excited at °= 20α  in the xz-plane where its variation with 
frequency is an indication of the superprism effect. (b) Second-order effective index 
versus normalized frequency in the xz-plane where its negative sign indicates the 
possibility of diffraction compensation.   
  

For designing a 6-channel PC demultiplexer, six equally spaced channels in the 

bandwidth of interest as in Figure 7.11(a) have been chosen. Once again we have 

calculated the length and the beam waist of each channel for achieving crosstalk level 

better than -10 dB and the results are listed in Table 7.3. We have fixed the length of the 

PC structure (L) in 200 µm. By using Equation (7.12) and the information given in Figure 

7.11, we can calculate the length of the preconditioning region (Lpre) in Figure 7.2 for the 

center wavelength and it is found to be 2250 µm. We have simulated the beam 

propagation for each channel through the whole demultiplexer region as in Figure 7.2 

with a symmetric Gaussian profile and an initial waist of mwi µ402 = . Figure 7.12 

shows the -3 dB contour of output beam profiles of the six channels listed in Table 7.3 

after passing through the PC structure. As expected the six channels are dispersed along 

the horizontal direction in the xz-plane. In this design the beam profiles look more 

symmetric compared to the first design and their diffractions along the y-direction (i.e., 

normal to the direction of angular separation) are pretty small. As seen in the figure yet 
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the presence of higher order diffraction effects increases the interference between 

adjacent channels along the x-direction and makes the crosstalk level higher than -10 dB. 

Although the 6-channel demultiplexer proposed here shows better performance 

compared to the earlier 4-channel demultiplexer, it is twice thick as the first design. 

Considering challenges involved in the state of the art fabrication of 3D PC woodpile 

structures, it is not practically possible to fabricate PC samples thicker than 80 µm. 

Hence, the first design can be realized more practically.    

Table 7.3. Design parameters for an optimal 6-channel 
demultiplexer in the tetragonal woodpile PC structure with 

ma µ1=  excited with an incident beam coming from air at 

°= 20α  in the xz-plane 

Channel (nm) 2wi (µm) L (µm) 

λ1 = 1587 35 532 
λ2 = 1575 35 372 
λ3 = 1563 15 126 
λ4 = 1550 30 220 
λ5 = 1539 45 306 
λ6 = 1527 32 102 
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Figure 7.12. The -3 dB contour of the beam profiles of the six channels listed in Table 7.3 
at the output plane of the preconditioned superprism-based demultiplexer shown in 
Figure 7.2 with mwi µ402 = , mLpre µ2250= , and mL µ200= .  
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Although we did not explicitly report on the spectrometers, the demultiplexers 

designed here can be renamed as a 3D PC microspectrometer as well since they map 

different wavelength channels to different locations. Therefore, our study to reduce the 

size of bulky spectrometers proposed earlier ended up with a successful and of course an 

initial realization of highly compact spectrometers. 

7.4. Polarization State for Modes of 3D PC Structures  

Another property that is desired for the better performance of the demultiplexer is the 

single mode excitation. Although not explicitly mentioned, both the 4-channel and the 6-

channel demultiplexers are almost working under a single mode excitation. Because of 

the anomalous dispersion diagram of PCs, in a multimode excitation different modes can 

propagate in different directions, which results in an undesired division of the power 

through the structure and decreases the SNR on the detector. Hence, in most practical 

applications that we are targeting, to achieve higher SNR it is highly preferred to work in 

the single mode regime. In 2D PC structures most of the time we have two modes that 

can be selectively excited by choosing the proper incident polarization. One of the modes 

is TE polarized and the other one is TM polarized, and these two polarizations are 

orthogonal to each other. Unlike 2D PCs that we can exactly decouple TE and TM 

polarizations, in 3D PCs such a strict decoupling is not possible. We have observed that 

by searching through the band structure of the tetragonal woodpile PCs, there is a chance 

to find modes with TE-like or TM-like polarizations. This gives us an opportunity for 

possible single mode excitation of the woodpile PC structure by the right choice of the 

incident polarization very similar to the single mode excitation of the 2D PC devices. 
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For the tetragonal woodpile PC structure introduced in this chapter and excited at 

the normalized frequency of 66.0=nω  with an incident beam coming from air at 

°= 30α  and °= 45φ , three modes, i.e., TE3, TM3, and TE4, are excited. Figure 7.13 

shows the polarization of the Bloch components of each PC mode. As seen in this figure 

the dominant Bloch components of the TE3 and TM3 modes are almost orthogonal and 

can be selectively excited. Moreover, the polarization of the third mode, i.e., TE4, is 

rather different from those of the first two modes and potentially can be avoided from 

excitation.  

 
 

 
Figure 7.13. Polarization of all three excited PC modes versus the Bloch components for 
the tetragonal woodpile PC structure specified in the text. The PC structure is excited at 
the normalized frequency of ωn = 0.66 with an incident beam coming from air at °= 30α  
and °= 45φ .   
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To investigate the possibility of the single mode excitation of this PC structure, 

we have calculated the transmitted power to each excited mode as a function of 

polarization angle δ which is the angle between magnetic field and plane of incidence in 

Figure 6.2(b). We have shown the coupling efficiency to each of these three PC modes 

versus δ in Figure 7.14. This figure illustrates that by choosing δ from 0° or 90° we can 

couple almost the whole transmitted power to the TM3 or the TE3 mode, respectively. As 

seen in the figure there is no chance for the TE4 mode to be excited with substantial 

power at any incident polarization. Therefore, by proper choice of the incident 

polarization which is °= 90δ , we can selectively excite the desired TE3 mode in our 

designs proposed in the last section.  
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Figure 7.14. Coupling efficiency to the three excited PC modes versus the polarization 
angle δ. By the proper choice of polarization angle we can selectively excite on of the 
TE3 or TM3 modes. The TE4 mode is not substantially excited at any incident 
polarization.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

The goal of this research has been the design and implementation of high resolution and 

large bandwidth free-space diffuse light spectrometers for biomedical and environmental 

sensing applications. To achieve this goal and make a spectrometer with state-of-the-art 

performance measures, we need to combine novel synthetic material properties and new 

device concepts using efficient design and optimization tools. Considering the material 

engineering, device innovation, and modeling and simulation tool development as the 

three primary areas of research in the invention of modern spectrometers, this thesis has 

been divided in three major parts. Although each part has been successfully completed, 

there are still some opportunities for future research in each part. In the following, a brief 

conclusion of each part in addition to its future research directions is presented. At the 

end, a brief summary of contributions and achievements of this research will be listed. 

8.1. Design and Experimental Demonstration of a Diffuse Light Spectrometer using 

Conventional Spectroscopic Devices 

 
In the first part we have analyzed the spatial-spectral response of the conventional 

spectrometers in two categories of the interferometric and the diffractive spectrometers 

for diffuse light spectroscopy where both types result in 1D spatial-spectral mapping at 

the output plane. We have shown that the normal gratings do not function properly under 

diffuse light illumination and we have introduced the CBVHs as a new class of 

diffractive and design-flexible diffuse spectrometers. Moreover, unlike SBVHs they do 

not affect the beam in the direction perpendicular to their diffraction direction.  
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To achieve high resolution as well as large bandwidth, we have proposed the 

tandem spectrometer combined of a FPE and a CBVH. In this configuration, the 

resolution is determined by the resolution of the FPE and the bandwidth is equal to the 

bandwidth of the CBVH. Moreover, the tandem spectrometer has a 2D spatial-spectral 

response at the output (or the CCD) plane. The high resolution spectral information is 

encoded along one direction by the FPE and the low resolution one is dispersed along the 

orthogonal direction by the CBVH. For the one to one spatial-spectral encoding, the 

resolution of the CBVH should be less than or equal to the FSR of the FPE, otherwise 

there is ambiguity in retrieving the spectral information. 

We have experimentally demonstrated a tandem spectrometer by cascading a FPE 

with a CBVH. The tandem spectrometer results in a true 2D spatial-spectral mapping 

and, thus, does not severely suffer from the trade-off between resolution and operation 

bandwidth in contrast to conventional spectrometers. Using this spectrometer, a 

resolution of 0.2 nm over a bandwidth of almost 50 nm has been achieved. Moreover, the 

performance of this tandem spectrometer has been tested with standard light sources. We 

have actually shown that its performance is comparable to that of some sophisticated 

spectrometers such as Oriel InstaSpec spectrometers. 

What remains to be further investigated, is to use the true 2D spatial-spectral 

mapping property of this tandem spectrometer to increase its bandwidth while keeping 

the resolution intact. For this investigation, we can use a spatially multiplexed CBVH 

(with the same FPE) to increase the bandwidth to a few 100 nm. The next step is to study 

the throughput issue and try to improve it by using unique properties of volume 

holograms, especially their multiplexing that allows more sophisticated 2D spatial-
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spectral mapping to obtain better throughput. For commercializing this research, there is 

also a need to investigate other materials such as photopolymers or doped glasses for 

recording volume holograms. These materials are less expensive than Lithium Niobate 

and can be recorded more easily and quickly. They do not require thermal fixing as 

needed for Lithium Niobate for acceptable lifetime of the volume hologram. 

8.2. Fast and Efficient Modeling of a Spatially Incoherent Source 

First we have tried a Monte-Carlo model for modeling and simulation of spatially 

incoherent sources using an array of Poisson pulse trains. Compared to the brute-force 

method, we have shown that by using this method it is possible to reduce the simulation 

time by one order of magnitude while keeping the relative error below 10%. The 

advantage of the proposed method over the brute-force method becomes stronger for 

larger structures. However, the 10% error might be too much for some applications. For 

better accuracy, we have come up with a more accurate model using WCE method. In 

this approach we have proposed a stochastic model for spatially incoherent sources. 

Then, we have successfully applied the WCE method to reduce the stochastic wave 

equation into a set of deterministic PDEs for the expansion coefficients of the random 

fields. The significant advantage of this model is that all the statistical moments of the 

field values can be directly calculated using these expansion coefficients.  

 We have used the standard FDTD technique to numerically simulate these 

deterministic PDEs for a typical 2D PC structure. We have compared the WCE model 

with the exact brute-force model and demonstrated the WCE model accurately simulates 

the propagation of spatially incoherent source much faster than the brute-force model. 
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This is a consequence of the extremely fast convergence behavior of the WCE series in 

which a small number of expansion terms is sufficient for achieving accurate simulation.  

 This part of our research is almost complete and there is no major issue remained 

for future investigation. The next step is to use this simulation tool for analysis and 

design of 3D PC microspectrometers under diffuse light illumination. Although we did 

not show any 3D simulation in this research, all the analytical formulation and numerical 

implementation can be readily carried on to the 3D propagation problem. Moreover, the 

simulation time advantage of the WCE model will be even more remarkable for 3D 

structures (with 2D source planes) as the number of input source points needed for the 

brute-force simulation will be very large in this case. 

8.3. Analysis and Design of a 3D PC Demultiplexer 

First we have developed an accurate and efficient model based on effective diffractive 

indices for the analysis of beam propagation effects inside 3D PC structures. We have 

shown that two principal diffractive indices (corresponding to two principal diffraction 

directions) can be defined to describe the propagation of beams in an arbitrary direction 

inside these structures. The model has good accuracy for the analysis of all 3D PCs of 

interest for practical applications. Using this method, the beam propagation effects can be 

studied using simple geometrical optics formulas, which significantly reduces the amount 

of memory and computation cost needed for 3D structures compared to other approaches. 

Thus, the model enables efficient analysis, design, and optimization of 3D PC structures 

and opens up new possibilities for practical applications of 3D PCs by facilitating their 

modeling.  
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 Then, we have used this diffractive model to analyze and design 3D tetragonal 

woodpile structures for demultiplexing applications. We have tried to bias these 3D PCs 

at a work point on their band structure so we can simultaneously combine the superprism 

effect, diffraction compensation, and negative refraction to minimize the size of these 

demultiplexers and at the same time, minimize the cross-talk between adjacent channels. 

Using this strategy we have reported the design of a 4-chanell and a 6-channel 

demultiplexer. Besides, it has been shown that we can selectively excite a single mode of 

these woodpile structures by proper choice of the incident polarization.  

 Although this part of our research has been performed to a good extent, the 

experimental demonstration of these demultiplexers is remained as the first priority to be 

investigated in near future. As a next step we can extend these demultiplexers to form 

microspectrometers and examine their capabilities for spectrum estimation. Therefore, 

one important task is to optimize the performance measures such as bandwidth and 

resolution of these demultiplexers. For this purpose, other PC lattice geometries as well 

as other host materials need to be investigated. Another interesting extension of this work 

is to investigate the use of 3D PC heterostructures in which each portion of the structure 

is engineered to optimize a subset of optical functionalities. The simplest version of such 

heterostructures is the integration of interferometry and spectroscopy in a single structure. 

The most general view of such engineered heterostructures is to consider them as a 

universal 3D device for the spatial-spectral mapping of the information in an optical 

beam. Considering the extensive opportunities exist in this research and the novelty of the 

research topic, we feel that at least another complete Ph.D. thesis can be devoted to these 

taskes. 
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To conclude a brief summary of contributions of this research follows: 

• Design of a compact, low-cost, alignment insensitive diffuse light spectrometer 

with high resolution, large bandwidth, and 2D spatial-spectral response 

• Experimental demonstration of the tandem FPE-CBVH spectrometer with 

resolution better than 0.2 nm for diffuse light spectroscopy 

• Development of a Monte-Carlo model for simulation of a spatially incoherent 

source 

• Development of a fast and efficient simulation model for a spatially incoherent 

source based on the WCE method (the first theoretical model proposed so far for 

simulation of spatially incoherent sources) 

• Development of an approximate diffractive index model for efficient and intuitive 

analysis of the diffraction effects inside 3D PC structures 

• Developing the idea and systematically designing 3D PC demultiplexers based on 

dispersion compensation (the first 3D PC demultiplexers proposed so far) 
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