
KNOWLEDGE COMPOSITION METHODOLOGY FOR
EFFECTIVE ANALYSIS PROBLEM FORMULATION IN

SIMULATION-BASED DESIGN

A Dissertation Presented to

The Academic Faculty

by

Manas Bajaj

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in Mechanical Engineering

Georgia Institute of Technology

December, 2008

Copyright © 2008, Manas Bajaj

 ii

KNOWLEDGE COMPOSITION METHODOLOGY FOR
EFFECTIVE ANALYSIS PROBLEM FORMULATION IN

SIMULATION-BASED DESIGN

Dr. Christiaan J. J. Paredis
Committee Co-Chair
Mechanical Engineering
Georgia Institute of Technology

Dr. Russell S. Peak
Committee Co-Chair
Product & Systems Lifecycle
Management Center
Georgia Institute of Technology

Dr. David Rosen

Mechanical Engineering
Georgia Institute of Technology

Dr. David McDowell
Mechanical Engineering
Georgia Institute of Technology

Dr. Charles Eastman
College of Architecture &
College of Computing
Georgia Institute of Technology

Dr. Steven J. Fenves

National Institute of Standards and
Technology

Date of Approval: November 11, 2008

 iii

DEDICATION

To my parents (Urmil and Indra) for their love, patience, and belief in me

To my wife (Mansi) for her love and companionship

To my family members for their boundless affection and unconditional pampering

 iv

PREFACE
The motivation for this research distills from the countless days and nights that I

have spent in writing, debugging, and modifying computer code for creating and adapting

finite element analysis models for design variations. In particular, I have spent a

significant time over the last few years developing a production-ready software

application for formulating FEA models for computing thermo-mechanical behavior of

electronics artifacts, such as printed wiring boards and assemblies. The underlying design

model-to-behavior model transformations in this application were realized using Java-

based methods. As soon as I started testing this application with production-level design

models gathered from several electronic design and manufacturing organizations, the

hardships were apparent. It became extremely difficult to adapt the transformations to

variations in design models and to maintain consistency of idealizations embodied in the

application. Attempts to incorporate different fidelities of idealizations made matters

worse. For production-ready deployment of this application, it was necessary that

analysts have complete (and yet simple) control of the underlying idealizations and

transformations. Without direct control of the source code, this was impossible. From

discussions with several colleagues, conference presentations and publications, and

interactions with designers and analysts across several organizations (NASA, Rockwell

Collins, Lockheed Martin and Boeing, to name a few), it was apparent that this was in

principle their story as well.

In this dissertation, I have made an initial attempt at researching and developing

an approach that could alleviate some of the more painful conceptual problems

experienced in “our combined hardships”. In particular, I find the application of graph

transformations to model formulation for variable topology problems as a new

application area emergent from this research. It is my hope that this dissertation provides

a meaningful step towards a seamless interface between design and analysis activities,

and a significant (though small) cornerstone for variable topology problems in general.

 v

ACKNOWLEDGEMENTS
In the traditional gurukul system of education in India, it is believed that

education is a process where students and the master (guru) can have unhindered,

countless debates on topics. It is believed that this is essential for students to internalize

the concepts and learn for themselves, as opposed to plainly accepting and memorizing

the teachings of gurus. I have been a strong proponent of this method, where good ideas

need to stand the test of time and critique. I will take this opportunity to thank my

advisors Dr. Russell Peak and Dr. Chris Paredis for providing a gurukul environment

during my PhD. As traditional gurus, they were always open to hear my thoughts,

evaluate them objectively, and help me think for myself. Though there were several

instances when I was shortsighted or overly conservative, this process has helped me

grow as an independent thinker. It was the optimal combination of independent learning

and strong guidance that a student may have.

I would also like to take this opportunity to thank members of my PhD reading

committee—Dr. David Rosen, Dr. David McDowell, Dr. Charles Eastman, and Dr. Steve

Fenves—for their valuable time and patience. Their comments and critique have

sometimes broken my existing “shell of thoughts” and have encouraged me to expand my

research ideas further. I have learnt tremendously from them, either directly by taking

their classes or working on projects supervised by them, or in-directly by reading their

published work. I strongly believe that it is an honor to have a committee of this stature.

I would like to especially thank my former advisor, Late Dr. Robert E. Fulton

who encouraged me to join the PhD program in Mechanical Engineering at Georgia

Tech. It was an honor to work with him. It was only much later after he passed away that

I realized the value of his mere presence. He would have been proud to see this day, to

see the last of his students (or Fultonians as they are known) ready to graduate this long

and enriching journey. I am sure I have his best wishes with me. May God bless his

departed soul!

 vi

I would like to specially thank the following project leads and organizations for

sponsoring my research:

 Kevin Brady and John Messina at the Electronics and Electrical Engineering

Laboratory (EEEL) at the National Institute of Standards and Technology (NIST)

 Steve Fenves, Ram Sriram, and Steve Ray at the Manufacturing Engineering

Laboratory (MEL) at the National Institute of Standards and Technology (NIST)

 Thomas Thurman, Jim Lorenz, and Jack Harris at Rockwell Collins

 Sandy Friedenthal at Lockheed Martin Corporation

I am indebted to the opportunity created by the research projects sponsored by these

organizations. Without their financial and technical support, it would not have been

possible to perform this research.

I take this opportunity to specially thank members of the PDES Inc.

Electromechanical team—Thomas Thurman, Greg Smith, Lothar Klein, Giedrius

Liutkus, Viktoras Kovaliovas, Mike Benda, Stephen Waterbury, and Mike Dickerson. I

would also like to thank the OMG SysML standards working group, especially Sanford

Friedenthal and Roger Burkhart for their expertise and encouragement; and the VIATRA

team—Daniel Varro and his colleagues at the Budapest University of Technology and

Economics in Hungary.

What good is research life without the camaraderie of fellow researchers and trips

to coffee shops? I would like to thank the following members of the Engineering

Information Systems Lab (now Modeling and Simulation Lab) for their camaraderie—Sai

Zeng, Injoong Kim, Greg Mocko, Nsikan Udoyen, Mohammed Saadat, Robbie Ludlow,

Andy Scott, and Bennett Wilson. I would also like to thank the following members of the

Systems Realization Lab for their camaraderie—Jitesh Panchal, Tommy Johnson, Rich

Malak, Jonathan Jobe, Jay Ling, Benay Sager, Jamal Wilson, Carolyn Seepersad, Hae-Jin

Choi, and Matthias Messer. I also thank Dr. Dirk Zwemer and Dr. Selcuk Cimtalay at

InterCAX (where I work full-time) for their help and support, especially handling the

extra work during the last few weeks of my dissertation journey.

My research journey at Georgia Tech was made lively and exciting by a large

group of friends. I would like to thank each one of them. Without them, it would have

been an “all work, no play” journey that would have exhausted me long ago. Space and

http://www.bme.hu/en/index.html
http://www.bme.hu/en/index.html

 vii

time do not permit me to mention each name but to name a few in particular—Kunal

Singh, Arnab Choudhury, Rajesh Luharuka, Anandita Seth, Rithika Naidu, Sakethraman

Mahalingam, Sriram Kanvah, Jitesh and Pinky Panchal, Saurabh Marda, Tejpal Singh,

Raman and Pooja Baijal, Anandraj and Deepti Sengupta, Lokendra and Meghna

Chauhan, Vivek and Alina Mishra, Abhinav Saxena, Lalit Bohra, Apurva Mohan,

Dheeraj Reddy, Vipul Saini, and Vishal and Tarang Gupta. I thank each of you for the

lively evenings, late night movies, and gatherings over several cups of coffee and tea. It

would have been impossible for me to accomplish this goal without your camaraderie.

I would also like to thank my family members for their boundless affection and

unconditional pampering over several years, especially my mamus, mamis, and massis

(maternal uncles and aunts). I thank all my cousin brothers and sisters for the love and

affection they have showered on me. I often bask in sweet memories of my summer

vacations at my maternal place. I thank my late grandparents (paternal and maternal) for

their blessings.

In the end, I would like to deeply thank those who shaped my life and inspired me

to dream beyond the obvious. My father (Indra) and my mother (Urmil) have been the

foundation stone of my life. Words cannot fathom the sacrifices they have made for me to

be where I am. This thesis is dedicated to my parents and their dreams. With the grace of

God, last year I found a person who has changed my life for good. I found my true love

in my gorgeous and sweet wife Mansi. Her love and companionship, patience with my

thesis, and countless culinary delights have made this journey possible for me. I do owe

her our first real vacation that has been postponed long due to this dissertation.

Lastly, I would like to thank God for holding me strong and for powering me

through this journey.

 viii

TABLE OF CONTENTS

PREFACE .. IV

ACKNOWLEDGEMENTS... V

LIST OF TABLES..XII

LIST OF FIGURES ...XIII

NOMENCLATURE ...XXI

SUMMARY ... XXIII

CHAPTER 1 : INTRODUCTION ..1

PART 1: PROBLEM DEFINITION ..15

CHAPTER 2 : PROBLEM DESCRIPTION..16

2.1 DESCRIPTION OF BASIC CONCEPTS ..16

2.2 ASPECTS OF SIMULATION-BASED DESIGN FOUNDATIONAL TO THIS RESEARCH21
2.2.1 Integrated Functional and Spatial Design ... 21
2.2.2 Simulation Templates ... 24

2.3 VARIABLE TOPOLOGY MULTI-BODY (VTMB) PROBLEMS35

2.4 PRIMARY RESEARCH QUESTION AND GAPS ..44
2.4.1 Primary Research Question... 44
2.4.2 Research Gaps... 46

2.5 SUMMARY...47

CHAPTER 3 : RELATED RESEARCH...49

3.1 DESIGN INFORMATION AND KNOWLEDGE MODELING ..50

3.2 BEHAVIOR MODELING ..55
3.2.1 Types of behavior models... 55
3.2.2 Formulating behavior models ... 61
3.2.3 Analysis knowledge and reuse.. 67

3.3 MODEL DEFINITION AND TRANSFORMATION ..71
3.3.1 Model Definition... 71
3.3.2 Model Transformations... 74

 ix

3.4 SUMMARY...80

CHAPTER 4 : RESEARCH GAPS, QUESTIONS & HYPOTHESES..82

4.1 PRIMARY RESEARCH QUESTION (PRQ) AND HYPOTHESIS (PRH)...........................82

4.2 SECONDARY RESEARCH QUESTIONS AND HYPOTHESES (SRQ/HS).........................83

PART 2: KNOWLEDGE COMPOSITION METHODOLOGY (KCM)......................................84

CHAPTER 5 : KCM OVERVIEW...85

5.1 REQUIREMENTS...87

5.2 USE CASES..89

5.3 ORGANIZATION OF KCM COMPONENTS ...92

CHAPTER 6 : CPM2_XKCM - AN ARTIFACT META-MODEL ...93

6.1 DESCRIPTION OF CPM2_XKCM...95
6.1.1 CPM2_xKCM View 1: CPM2 with minor modifications for the Knowledge

Composition Methodology ... 95
6.1.2 CPM2_xKCM View 2: New concepts added to CPM2 for the Knowledge

Composition Methodology ... 101

6.2 VTMB ARTIFACT DESIGN MODELS – ABSTRACTIONS AND EXAMPLES................107

6.3 SUMMARY...121

CHAPTER 7 : CORE BEHAVIOR MODEL (CBM) – AN ARTIFACT BEHAVIOR META-
MODEL...122

7.1 CORE BEHAVIOR MODEL ..123
7.1.1 Overview... 123
7.1.2 Description.. 125

7.2 ABB META-MODEL ...133
7.2.1 Analysis building block (ABB) model ... 133
7.2.2 Analysis building block (ABB) system model ... 151

7.3 ABB MODEL LIBRARY ...153
7.3.1 Analysis Body ABBs .. 154
7.3.2 Material Behavior ABBs... 157
7.3.3 Behavior ABBs ... 160
7.3.4 Analysis Feature ABBs... 162
7.3.5 Analysis Body Interaction ABBs.. 163
7.3.6 Analysis Body System ABBs ... 165
7.3.7 Load ABBs.. 166
7.3.8 Behavior Condition ABBs .. 169

7.4 BEHAVIOR MODELS ..171

 x

7.4.1 Abstractions .. 171
7.4.2 Examples... 175

7.5 ANALYSIS KNOWLEDGE DIMENSIONS...183
7.5.1 Behavior Dimension ... 186
7.5.2 Analysis Body Dimension .. 189
7.5.3 Load Dimension.. 192
7.5.4 Behavior Condition Dimension .. 194

7.6 SUMMARY...195

CHAPTER 8 : BEHAVIOR MODEL FORMULATION METHOD...196

8.1 OVERVIEW ..196

8.2 COMPOSING BEHAVIOR MODEL STRUCTURES AND SIMULATION TEMPLATES204
8.2.1 Stages of composition ... 204
8.2.2 Semantics of composition ... 212
8.2.3 Mechanics of composition .. 216

8.3 BEHAVIOR MODEL FORMULATION SPECIFICATIONS ...230
8.3.1 Conceptual Specifications... 231
8.3.2 Computable Specifications ... 236

8.4 ARTIFACT MODEL TRANSFORMATION LIBRARY (AMTL)237
8.4.1 Stage 1 composition - transformation rules and patterns.................................... 241
8.4.2 Stage 2 composition – transformation rules and patterns 246
8.4.3 Stage 3 composition – transformation rules and patterns 249
8.4.4 Stage 4 composition – transformation rules and patterns 252
8.4.5 Analyzable artifact model patterns ... 254

8.5 SUMMARY...255

PART 3: VERIFICATION & VALIDATION, FUTURE WORK, AND CLOSURE....................257

CHAPTER 9 : TEST CASES ...258

9.1 MODELS IN VIATRA MODEL TRANSFORMATION FRAMEWORK...........................258

9.2 TEST CASE FAMILY 1 (TCF1): THERMO-MECHANICAL ANALYSIS OF MULTI-
LAYERED PRINTED WIRING BOARDS ..260

9.2.1 Behavior Model Formulation Specifications 1 (BMFS1) 263
9.2.2 Behavior Model Formulation Specifications 2 (BMFS2) 277

9.3 TEST CASE FAMILY 2 (TCF2): THERMO-MECHANICAL ANALYSIS OF BALL GRID
ARRAY (BGA) CHIP PACKAGES ...280

9.3.1 Behavior Model Formulation Specifications 1 (BMFS1) 283
9.3.2 Behavior Model Formulation Specifications 2 (BMFS2) 298

9.4 EXECUTION OF SIMULATION TEMPLATES ...300

9.5 VALIDATION OF RESEARCH HYPOTHESES...309

 xi

9.5.1 Validation of Secondary Research Hypothesis 1.. 310
9.5.2 Validation of Secondary Research Hypothesis 2.. 311
9.5.3 Validation of Primary Research Hypotheses .. 313

9.6 SUMMARY...326

CHAPTER 10 : RESEARCH CONTRIBUTIONS AND FUTURE WORK328

10.1 RESEARCH CONTRIBUTIONS..328

10.2 RECOMMENDED FUTURE WORK ...332

CHAPTER 11 : CLOSURE..335

APPENDICES...340

REFERENCES..350

 xii

LIST OF TABLES
Table 2.1: Assembly system and components in design-analysis models used in MRA

simulation template pattern... 43

Table 3.1: Metrics for categorizing and evaluating related technical work...................... 49

Table 3.2: Summary of technical survey (shows most relevant references only) 81

Table 7.1: Guidelines for modeling idealization relationships between analyzable

artifacts and analysis bodies.. 130

Table 7.2: Guidelines for modeling idealization relationships between analyzable

features and analysis features.. 131

Table 8.1: Modes of taking decisions on material behaviors and shapes of analysis bodies

... 232

Table 9.1: Simulation templates created for thermo-mechanical analysis of PWBs...... 262

Table 9.2: Conceptual specifications (BMFS1) for thermo-mechanical analyses of multi-

stratum PCBs .. 263

Table 9.3: Simulation templates created for thermo-mechanical analysis of BGAs 282

Table 9.4: Conceptual specifications (BMFS1) for thermomechanical analysis of multi-

component BGAs.. 284

Table 9.5: VTMB design variations and Idealization variations results for TCF1 and

TCF2 (Measures of effectiveness of the Behavior Model Formulation Method) 314

Table 9.6: Formulation Efficiency results for TCF1 and TCF2 (Measure-of-effectiveness

of the Behavior Model Formulation Method)... 321

 xiii

LIST OF FIGURES
Figure 1.1: Scope of simulation-based design in a model of the design process (Gero

1990) ... 1

Figure 1.2: Integrated functional and spatial design through design phases (Fenves, Choi

et al. 2003) .. 2

Figure 1.3: Examples of design alternatives with non-equivalent assembly system

topologies.. 6

Figure 1.4: Knowledge Composition Methodology – A functional overview 10

Figure 2.1: Integrated functional and spatial design (Fenves 2004) through design phases

... 21

Figure 2.2: Integrated functional and spatial design in a given design phase................... 23

Figure 2.3: Simulation template for computing plane stress behavior of Flap Link part . 25

Figure 2.4: Instances of a simulation template that embodies a linear extensional behavior

model of Flap Link part .. 27

Figure 2.5: Multi-Representation Architecture (Peak, Fulton et al. 1998) — A simulation

template pattern showing the behavior model formulation and solution sub-patterns 28

Figure 2.6: LinearSpring (ABB) and TwoSpringSystem (ABB system) examples—

SysML parametric diagram view.. 32

Figure 2.7: Parts and their features ... 37

Figure 2.8: AST diagram constructs ... 38

Figure 2.9: Assemblies with equivalent system topologies; ST diagram as SysML IBD 39

Figure 2.10: Change in AST due to reconfiguration (changes in interactions and

participating features) ... 41

Figure 2.11: Change in AST due to addition of new components (and hence also addition

of new interactions)... 42

Figure 2.12: Measures of effectiveness of analysis problem formulation 45

Figure 3.1: Core Product Model version 2 (CPM2) - UML class diagram view.............. 51

Figure 3.2: Types of behavior models from different viewpoints 56

Figure 3.3: Basic concepts of model transformation (Czarnecki and Helsen 2006) 75

 xiv

Figure 3.4: Classification scheme for model transformation approaches (Czarnecki and

Helsen 2006) ... 75

Figure 3.5: Illustrative definition of a graph transformation rule (Andries, Engels et al.

1999) ... 79

Figure 5.1: KCM Framework components ... 85

Figure 5.2: KCM Framework requirements – functional and design specifications 88

Figure 5.3: KCM Framework design requirements satisfied by other components 89

Figure 5.4: KCM Use Cases ... 90

Figure 5.5: Organization of KCM Components ... 92

Figure 6.1: VTMB Design Model Abstractions based on CPM2_xKCM – focus of this

chapter... 93

Figure 6.2: Scope of CPM2_xKCM in MRA simulate template pattern.......................... 94

Figure 6.3: CPM2_xKCM View 1 – shows minor modifications to CPM2..................... 96

Figure 6.4: CPM2_xKCM View 2 – shows addition of new concepts to CPM2 for KCM

... 103

Figure 6.5: Abstractions of artifact design models in KCM – Design Model Stack 107

Figure 6.6: A typical Printed Circuit Board design (shown here with 5 stratums)......... 110

Figure 6.7: PDMM (D3) for representing mechanical design aspects of (VTMB) multi-

stratum PCBs .. 112

Figure 6.8: PAMM (D3): An analyzable artifact meta-model for (VTMB) multi-stratum

PCBs ... 113

Figure 6.9: Pictoral view of PDM_5Sx and PAM_5Sx (D4 models)............................. 114

Figure 6.10: PDM_5Sx (D4): A designed artifact model structure for (FTMB) 5-Stratum

PCBs ... 116

Figure 6.11: PAM_5Sx (D4): An analyzable artifact model structure for (FTMB) 5-

Stratum PCBs.. 118

Figure 6.12: PM_5Sx (D4): An artifact model structure for representing designed and

analyzable (FTMB) 5-Stratum PCBs... 119

Figure 6.13: Example D5 model - A analyzable artifact model instance for a 5-stratum

analyzable PCB... 120

Figure 7.1: Behavior Model Abstractions based on Core Behavior Model (CBM) 122

 xv

Figure 7.2: Scope of CBM and ABB Meta-Model in MRA simulate template pattern . 124

Figure 7.3: SysML block definition diagram of the Core Behavior Model (CBM)....... 126

Figure 7.4: Types of ABBs represented using the ABB Meta-Model............................ 134

Figure 7.5: Aspects of domain theoretic knowledge represented in each ABB type 137

Figure 7.6: ABB Context Meta-Model for representing contextual knowledge in ABBs

... 139

Figure 7.7: ABB Property Meta-Model for representing properties of ABBs 145

Figure 7.8: ABB System Meta-Model .. 152

Figure 7.9: ABB model abstractions in KCM .. 154

Figure 7.10: Analysis body ABBs .. 155

Figure 7.11: Shell analysis body ABB.. 156

Figure 7.12: Material behavior ABBs... 157

Figure 7.13: Linear elastic isotropic and orthotropic material behavior ABBs.............. 158

Figure 7.14: Constraint relations between E, G, and Nu parameters for linear elastic

isotropic temperature-independent material behavior ABB ... 159

Figure 7.15: Constraint relations between E, G, and Nu parameters in each principal

direction for linear elastic orthotropic temperature-independent material behavior ABB

... 160

Figure 7.16: Behavior ABBs .. 161

Figure 7.17: Structural behavior ABB.. 161

Figure 7.18: Analysis feature ABBs ... 162

Figure 7.19: Analysis Body Interaction ABBs ... 163

Figure 7.20: Shell-shell tie interaction ABB... 164

Figure 7.21: Interaction relations for shell-shell tie interaction ABB 165

Figure 7.22: Analysis Body System ABBs... 166

Figure 7.23: Load ABBs ... 167

Figure 7.24: Uniform temperature load ABBs ... 168

Figure 7.25: Behavior condition ABBs .. 169

Figure 7.26: Point displacement fixed behavior condition ABB.................................... 170

Figure 7.27: Behavior condition relations for point displacement fixed behavior condition

ABB .. 170

 xvi

Figure 7.28: Behavior Model Abstractions in KCM .. 172

Figure 7.29: PCB_nSx_ThermoMech_Behavior_Meta-Model (B3): A thermo-mechanical

behavior meta-model for multi-layered PCBs (View 1)... 176

Figure 7.30: Example D3-B3 model showing relationships between n-stratum analyzable

PCBs (D3) and corresponding n-layered laminated shell systems (B3)......................... 178

Figure 7.31: PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4): A thermo-

mechanical behavior model structure for 5-layered PCBs (View 1) 179

Figure 7.32: Analysis body system of

PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4)... 180

Figure 7.33: Example D4-B4 model showing relationships between 5-stratum analyzable

PCBs (D4) and corresponding 5-layered laminated shell systems (B4)......................... 181

Figure 7.34: Example D5-B5 model showing relationships between a specific 5-stratum

analyzable PCB (D5) and corresponding 5-layered laminated shell system (B5 model in

unsolved state) .. 183

Figure 7.35: Analysis Knowledge Dimension Model – top-level view.......................... 185

Figure 7.36: Behavior Dimension... 187

Figure 7.37: Analysis Body Dimension.. 191

Figure 7.38: Load Dimension ... 193

Figure 7.39: Behavior Condition Dimension.. 195

Figure 8.1: Behavior Model Formulation Method – focus of this chapter 196

Figure 8.2: Schematic of a model transformation (Czarnecki and Helsen 2006)........... 197

Figure 8.3: Schematic of KCM’s Behavior Model Formulation Method (BMFM)....... 198

Figure 8.4: Detailed view of the source and target models in BMFM 199

Figure 8.5: Source and target meta-models and models in BMFM - design and behavior

model stack view... 199

Figure 8.6: Example schematic of KCM’s Behavior Model Formulation Method applied

to VTMB problems ... 202

Figure 8.7: Schematic for the execution of simulation templates................................... 203

Figure 8.8: Stages of composing simulation templates using BMFM............................ 206

Figure 8.9: Stage 1 Composition: Composing an analysis body and its relationship with

analyzable artifacts.. 207

 xvii

Figure 8.10: Stage 2 Composition: Composing an analysis body system and its

relationship with analyzable artifact ... 209

Figure 8.11: Stage 3 Composition: Composing behavior model ABB system and behavior

model context.. 210

Figure 8.12: Stage 4 Composition: Behavior model structure view............................... 211

Figure 8.13: Stage 4 Composition: Simulation template view 212

Figure 8.14: Semantics of composition .. 213

Figure 8.15: BMFM’s model transformation process realized as graph transformations

(GT)... 217

Figure 8.16: Source and target graph schemata and a source graph – Artifact

transformation example .. 219

Figure 8.17: Graph L is a subgraph of G and has an occurrence in H (Andries, Engels et

al. 1999) .. 220

Figure 8.18: An example graph pattern represented in VTCL 221

Figure 8.19: An example graph transformation rule represented in traditional graph

notation and VTCL (used for initializing the form of an artifact in the Artifact

transformation example) ... 224

Figure 8.20: VTCL ASM constructs used for defining model transformation process -

shows the forall construct used for calling the init_form transformation rule in the

Artifact transformation example ... 227

Figure 8.21: Target graph after the graph transformation process executed on the source

graph for the Artifact transformation example (traditional graph notation and SysML

notation) .. 228

Figure 8.22: Summary of graph transformation approach to model transformations

embodied in the Behavior Model Formulation method... 228

Figure 8.23: Detailed view of Behavior Model Formulation Specifications.................. 230

Figure 8.24: Representation of specifications using SysML Parametrics constructs 233

Figure 8.25: View of the Conceptual Specifications for Stage 1 and 2 compositions - B3

model (PCB_nSx_ThermoMech_Behavior_Meta-Model from section 7.4.2)............... 234

Figure 8.26: Example model to illustrate Type 1 and 2 graph transformation rules in the

Artifact Model Transformation Library.. 238

 xviii

Figure 9.1: Applications and Validation of KCM meta-models and methods 258

Figure 9.2: KCM meta-models, models, and model transformation libraries shown in the

KCM model space of the VIATRA model transformation framework 259

Figure 9.3: A typical Printed Wiring Board design (shown here with 5 stratums) 261

Figure 9.4: 5-stratum PCB – design and analyzable design views 262

Figure 9.5: Specifications for relationships between analyzable stratum and planar shell

analysis bodies (only assembly system topology-related aspects are shown) 264

Figure 9.6: PWB_5S2L has 5 analyzable stratums and 4 stratum interfaces 266

Figure 9.7: Stratum entity example... 267

Figure 9.8: Stratum interface entity example.. 267

Figure 9.9: VIATRA model space showing ABB Library, AMTL, and BMFS1 268

Figure 9.10: Executing BMFS1 in VIATRA model space.. 268

Figure 9.11: Simulation template automatically created using Behavior Model

Formulation Method ... 269

Figure 9.12: Results of Stage 4 composition .. 269

Figure 9.13: Behavior Model ABB System created at the end of Stage 3 composition. 270

Figure 9.14: Analysis body system created at the end of Stage 2 composition.............. 270

Figure 9.15: Relationship between analyzable PWB and multi-shell analysis body system

... 271

Figure 9.16: Relationship between an analyzable stratum and analysis body created in

Stage 1 composition.. 272

Figure 9.17:Planar shell analysis bodies created in Stage 1 composition....................... 273

Figure 9.18: PWB_9S4L has 9 analyzable stratums and 8 stratum interfaces 274

Figure 9.19: Multi-shell analysis body system created in composition Stage 2 for

Simulation Template9
1 .. 275

Figure 9.20: Relationship between analyzable PWB design and multi-shell analysis body

system created in composition Stage 2 ... 276

Figure 9.21: Planar shell analysis bodies created for BMFS2 and PWB_5S4L in

composition Stage 1.. 278

Figure 9.22: Planar shell analysis bodies created for BMFS2 and PWB_9S4L in

composition Stage 1.. 280

 xix

Figure 9.23: Ball grid array (BGA) chip packages (left) and 3D CAD models of idealized

BGAs (right) ... 281

Figure 9.24: Assembled and exploded views of an idealized BGA mounted on a PWB281

Figure 9.25: Cross-sectional view showing components of an idealized BGA chip

package assembly.. 281

Figure 9.26: BMFS1 relationship specifications between idealized BGA and Multi-Shell-

Solid analysis body system ... 284

Figure 9.27: 16-solder body analyzable BGA design model structure

(CP_BGA_5S2L_16SB) ... 287

Figure 9.28: 5-stratum, 2-layer analyzable chip substrate design model structure

(Substrate_5S2L) .. 288

Figure 9.29: Behavior Model structure created for CP_BGA_5S2L_16SB and BMFS1 in

composition Stage 4.. 289

Figure 9.30: ABB system created for CP_BGA_5S2L_16SB and BMFS1 in composition

Stage 3... 289

Figure 9.31: Analysis body system created for CP_BGA_5S2L_16SB and BMFS1 in

composition Stage 2.. 290

Figure 9.32: Relationship between analyzable BGA design model structure

(CP_BGA_5S2L_16SB) and Multi-Shell-Solid analysis body system for BMFS1 in

composition Stage 2.. 291

Figure 9.33: Material behavior of analysis bodies corresponding to substrate stratums 292

Figure 9.34: Types of analysis bodies created for CP_BGA_5S2L_16SB and BMFS1 in

composition Stage 1.. 293

Figure 9.35: 36-solder body analyzable BGA design model structure

(CP_BGA_5S2L_36SB) ... 296

Figure 9.36: Analysis bodies and tie interactions corresponding to 36 solder balls in

CP_BGA_5S2L_36 SB... 298

Figure 9.37: Analysis body corresponding to solder ball SB1 has a cuboid shape 299

Figure 9.38: Shape idealization relationship between truncated sphere shape of SB1 and

cuboid shape of the corresponding analysis body... 299

Figure 9.39: Analyzable Artifact (PCB) and Behavior Model Context.......................... 301

 xx

Figure 9.40: Analyzable artifact and behavior model context relationships for a single

stratum - SysML block definition diagram view .. 302

Figure 9.41: Behavior model context and analysis body relationships for a single analysis

body (corresponding to a single PWB stratum) SysML block definition diagram view 303

Figure 9.42: Design verification scenario - Analysis body parameters computed from

design parameters.. 304

Figure 9.43: Design verification scenario – Behavior model instance (B5) formulated

from design model instance (D5), and solved using FEA .. 307

Figure 9.44: Design synthesis scenario – Design parameters computed from analysis

body parameters .. 308

Figure 9.45: Measures of effectiveness of analysis problem formulation 313

Figure 10.1: Lack of effective methods to formulate VTMB-related simulation templates

before KCM .. 328

Figure 10.2: KCM enables effective formulation of advanced simulation templates ... 329

 xxi

NOMENCLATURE

AMTL Artifact Model Transformation Library

B1 model Artifact Behavior Meta-Model (e.g. Core Behavior Model)
See section 7.4 for detailed description of B1-B5 models

B2 model Analysis-specific Behavior Meta-Model

B3 model VTMB Artifact Behavior Meta-Model

B4 model FTMB Artifact Behavior Model Structure

B5 model FTMB Artifact Behavior Model Instance

BDD Block Definition Diagram (SysML)

BGA Ball Grid Array Electronics Chip Package

BMFS Behavior Model Formulation Specifications

BMFM Behavior Model Formulation Method

CAD/E Computer-Aided Design / Engineering

CBM Core Behavior Model

CPM2 Core Product Model version 2 (NISTIR 7185) (Fenves 2004)

CPM2_xKCM CPM2 extended by the Knowledge Composition Methodology

D1 model Artifact Meta-Model (e.g. CPM2_xKCM)
See section 6.2 for detailed description of D1-D5 models

D2 model Application-specific Artifact Meta-Model

D3 model VTMB Artifact-specific Meta-Model

D4 model FTMB Artifact Model Structure

D5 model FTMB Artifact Model Instance

FEA/M Finite Element Analysis / Method

FTMB Fixed Topology Multi-Body

IBD Internal Block Diagram (SysML)

KCM Knowledge Composition Methodology

PCA/B, or Printed Circuit Assembly/Board, or Printed Wiring Assembly/Board

 xxii

PWA/B

SBD Simulation-Based Design

SysML Systems Modeling Language (www.omgsysml.org)

VTMB Variable Topology Multi-Body

 xxiii

SUMMARY
In simulation-based design, a key challenge is to formulate and solve analysis

problems efficiently to evaluate a large variety of design alternatives. The solution of

analysis problems has benefited from advancements in commercial off-the-shelf math

solvers and computational capabilities. However, the formulation of analysis problems is

often a costly and laborious process. Traditional simulation templates used for

representing analysis problems are typically brittle with respect to variations in artifact

topology and the idealization decisions taken by analysts. These templates often require

manual updates and “re-wiring” of the analysis knowledge embodied in them. This

makes the use of traditional simulation templates ineffective for multi-disciplinary design

and optimization problems.

Based on these issues, this dissertation defines a special class of problems known

as variable topology multi-body (VTMB) problems that characterizes the types of

variations seen in design-analysis interoperability. This research thus primarily answers

the following question:

How can we improve the effectiveness of the analysis problem formulation process for

VTMB problems?

The knowledge composition methodology (KCM) presented in this dissertation

answers this question by addressing the following research gaps: (1) the lack of

formalization of the knowledge used by analysts in formulating simulation templates, and

(2) the inability to leverage this knowledge to define model composition methods for

formulating simulation templates. KCM overcomes these gaps by providing: (1) formal

representation of analysis knowledge as modular, reusable, analyst-intelligible building

blocks, (2) graph transformation-based methods to automatically compose simulation

templates from these building blocks based on analyst idealization decisions, and (3)

meta-models for representing advanced simulation templates—VTMB design models,

analysis models, and the idealization relationships between them.

Applications of the KCM to thermo-mechanical analysis of multi-stratum printed

wiring boards and multi-component chip packages demonstrate its effectiveness—

 xxiv

handling VTMB and idealization variations with significantly enhanced formulation

efficiency (from several hours in existing methods to few minutes).

In addition to enhancing the effectiveness of analysis problem formulation, the

KCM is envisioned to provide a foundational approach to model formulation for

generalized variable topology problems.

 1

CChhaapptteerr 11 :: IINNTTRROODDUUCCTTIIOONN

In today’s dynamic product realization environments driven by functionality,

time-to-market and cost-to-develop, it is often economically advantageous for engineers

to create virtual prototypes of a system (Pratt 1995) and verify design alternatives by

means of simulations. Here, simulation refers to the use of computational models to

analyze and evaluate the behavior of an engineering system. Simulations enable designers

and analysts to predict and optimize system performance during the design process,

thereby reducing the number of design cycles, cycle time, costly reworks, and improving

system quality. This approach of using simulations as the primary means of analysis and

evaluation of system alternatives is commonly known as simulation-based design (SBD)a

(Fenves, Choi et al. 2003; Shephard, Beall et al. 2004; NSF 2006). Simulation-based

design bridges the knowledge and methodologies of engineering domains, such as

mechanical, aerospace, electrical, and civil, with those of mathematical and

computational sciences, thus providing integrated techniques for predicting system

behavior and optimizing system designs (NSF 2006). Figure 1.1 depicts the scope of

simulation-based design in a model of the design process (Gero 1990).

a Simulation-driven design, Simulation-based engineering science, Analysis-based design, and Analysis-driven design

are also widely used similar phrases.

Production of Design
Description

Formulation
Evaluation
Reformulation
Synthesis
Analysis

F

Be

S D

Bs

Behaviors derived from Structure
Artifact’s DescriptionD

Bs

Expected Behaviors of an ArtifactBe

Structure of an ArtifactS
Desired Functions of an ArtifactF

Scope of SBD

A
nalysis

SynthesisReform
ulation

Evaluation

Fo
rm

ul
at

io
n

Figure 1.1: Scope of simulation-based design in a model of the design process (Gero 1990)

 2

Simulation-based design involves three key stages of a design process—synthesis,

analysis, and evaluation. Typically during a design process, a set of desired functions (F)

is transformed to a design description (D) to be used for downstream product lifecycle

processes, such as manufacturing. Except during catalog lookup, the direct

transformation F D is not available. Hence, designers generate an artifact’s structure (S)

which is then transformed to its design description (D). The transformation F S—an

alternate statement of the design problem—is achieved in the following manner in the

design process: (a) During formulation, the desired functions of an artifact are

transformed to expected behaviors (Be); (b) Then during synthesis, different alternatives

of an artifact’s structure (S) are generated based on its expected behaviors (Be); (c)

During analysis, the behaviors of each alternative of an artifact’s structure are determined

(Bs); (d) Then during evaluation, the expected behaviors (Be) are compared with

behaviors derived from an artifact’s structure (Bs) for each alterative of the structure.

Evaluation is used to narrow down on a set of alternatives. Sometimes when a structure is

analyzed, its behavior can be a useful superset of expected behaviors. In such a case, the

set of desired functions is accordingly extended and this is known as reformulation.

Simulation-based design is an iterative and collaborative process involving

designers and analysts, and spanning all design phases. Figure 1.2 illustrates an integrated

Figure 1.2: Integrated functional and spatial design through design phases (Fenves, Choi et al. 2003)

 3

functional and spatial design scenario (Fenves, Choi et al. 2003) representing the iterative

and collaborative nature of simulation-based design. In a given design phase, designers

synthesize alternative forms of an artifact that are represented as design models. For a

particular type of analysis, (i) design alternatives are idealized in the context of the

analysis, (ii) a particular set of behaviors are computed using simulation, and (iii) the

simulation results are evaluated against requirements. The evaluation results from a

family of analyses are then used for selecting the best-in-class alternatives for the next

design phase or mapped to generate new design alternatives for the current phase. This

collaborative process is realized by means of models. Alternative forms of an artifact are

represented as design models that are then idealized and enriched with analysis oriented

information for creating analysis models—also known as behavior models in the context

of this dissertation.

To reuse the knowledge associated with analyzing design alternatives, and to

automate the analysis and evaluation process, designers and analysts create simulation

templates—models that relate an artifact’s design parameters to its behavior parameters.

Design parameters are abstracted from design models and behavior parameters are

abstracted from behavior models. In essence, a simulation template provides a structure

for relating design models and behavior models, and provides a template for model-based

communication between designers and analysts. In an automated analysis and evaluation

process, for each design alternative: (a) the values of design parameters are input to the

simulation templates, (b) the values of behavior parameters are computed as outputs of

the simulation templates, and (c) the values of behavior parameters are evaluated against

requirements. At each design stage, this process is typically repeated for a set of design

alternatives using several simulation templates, and the best-in-class alternatives are

selected for the next design phase. If simulation templates are defined with stepping stone

models between design models and behavior models, and the idealization relationships

between these models are inherently non-causal, then simulation templates may also be

used to compute the “preferred” values of design parameters from given values of

behavior parameters (Peak and Fulton 1994; Peak, Burkhart et al. 2007).

 In design optimization problems that aim to select the best-in-class

alternative(s), simulation templates are used for computing behavior parameters that

 4

directly or indirectly participate in the objective function. For a particular alternative in

the design space exploration path, simulation templates are used for computing behavior

parameters that are then used to evaluate the objective function. In general, simulation

templates provide an efficient approach for routine analysis (including complex and

coupled simulations) and optimization problems today, such as multi-scale, multi-body,

and multi-disciplinary analysis and optimization problems.

Considering the time and effort required to create simulation templates, it is

economically preferable that a given set of simulation templates be reused for computing

behavior parameters for all feasible design alternatives. However, simulation templates

are generally brittle to changes in the assembly system topology of design alternatives.

As an example, with variations in the configuration of components in an assembly or

variations in the number of components (including features and interactions), simulation

templates have to be manually updated. With variations in the types of components,

features, and interactions among components, analysts not only have to provide the

idealization intent for these new types of design objects but also manually update

simulation templates.

Assembly system topology—defined more precisely later in this dissertation—is a

collective measure of the number and types of components, their interactions, and

component features participating in these interactions in an artifact assembly. In general,

simulation templates are not reusable for computing behavior parameters for design

alternatives with non-equivalent assembly system topologies.

Figure 1.3 below illustrates simple examples of design alternatives with non-

equivalent assembly system topologies. The first column in the figure shows the spatial

arrangement of parts in alternative assembly systems, and the second column shows the

equivalent graph representations. For a given part A, the top, bottom, left, and right

features are referred as AT, AB, AL, and AR respectively. Assembly ABC is a reference

design alternative with three components A1, B1, and C1 of part types A, B, and C

respectively, arranged in a certain configuration. In assemblies ABC2 and ABC3, the

number and types of components are the same but their configurations are different. With

respect to ABC1, C1 interacts with the top feature of B1 in ABC2; and with respect to

ABC2, A1 interacts with the bottom feature of B1 in assembly ABC3. In assembly ArBC, the

 5

number, types, and configuration of components is the same as in ABC1, ABC2, and ABC3

but the interaction between A1 and B1 is changed—A1 can roll along the top surface of

B1. In assembly ABCD, a new component D1 (of new type D) is added with respect to

ABC.

Parts and Features Graph representation

Assembly System Configurations

ABC3

A1: A

B1: B

C1: C

Baseline: ABC2
Change: A1 moved to bottom of B1

 6

A1B1

BT B1 BB

CT C1 CB

B1C1

AT A1 AB

DL D1 DB

DT

BR B1D1

Figure 1.3: Examples of design alternatives with non-equivalent assembly system topologies

Any such changes in the number or types of components, interactions, or features

participating in the interactions alter the assembly system topology of artifact

alternatives. These changes are also reflected in changes in the topologies of equivalent

graph representations. A more precise and formal graphical representation of assembly

system topology is presented later in this dissertation.

The idealization relationships between design parameters and behavior parameters

in a simulation template are typically based on assumptions about the number, type, or

the configuration of components and their interactions in an artifact assembly. With

changes in the assembly system topology, idealization relationships embodied in

simulation templates may need to be modified or extended. Idealization relationships

“implicitly” represented as parameterized scripts can typically handle only a subset of

topology changes. For example, changes in the number of components can be handled

with assumptions on the nature and type of interactions and configuration of components.

Such scripts are commonly used today to create behavior models from design models,

such as the case when automatically generating FEA models in commercial tools such as

ABAQUS and ANSYS.

 7

Based on the concept of assembly system topology, a special class of analysis

problems known as Variable Topology Multi-Body (VTMB) Problems is defined in

this dissertation. VTMB Problems are a class of problems where the assembly system

topology of design alternatives changes. In the context of simulation-based design

VTMB problems affect simulation templates, generally requiring manual updates and

“re-wiring” of relationships between design parameters and behavior parameters in

simulation templates. The brittleness of simulation templates to VTMB problems makes

their reuse even more difficult for multi-disciplinary design optimization problems where

the number of idealization relationships and behavior parameters per simulation template

and the number of simulation templates are generally larger as compared to optimization

problems concerning a single discipline. In general, the lack of robustness of simulation

templates to VTMB problems jeopardizes their efficacy for multi-scale, multi-body, and

multi-disciplinary analysis and optimization problems.

In addition to assembly system topology variations among design alternatives,

changes in idealization decisions taken by analysts also cause changes in simulation

templates. Generally, these changes involve manual “re-wiring” of the idealization

relationships embodied in simulation templates. This is economically infeasible,

especially in cases when analysts perform trade studies on idealizations, especially for

new types of analysis problems and to measure the relative advantages of high-fidelity,

time-intensive analyses versus quick, low-fidelity analyses. Even without variations in

assembly system topology, changes in the idealizations—such as using shells versus

solids, or isotropic versus orthotropic material behavior—involves manually restructuring

the relationships between design parameters and behavior parameters in simulation

templates.

Broadly, there are two steps in leveraging simulation templates for behavior

analysis and design optimization problems as described above. These are: (a) formulation

of simulation templates, and (b) execution of simulation templates. The execution of

simulation templates has benefited from advancements in computational capabilities and

commercial off-the-shelf solvers, such as differential algebraic equation solvers and FEA

solvers. However, the formulation of simulation templates is often costly and laborious,

especially for VTMB problems and idealization changes.

 8

The lack of effectiveness of simulation templates for performance evaluation and

design optimization is primarily due to the: (a) inability to automatically adapt simulation

templates to VTMB problems, (b) inability to automatically adapt simulation templates to

changes in idealization decisions taken by analysts, and (c) inefficient representation and

creation of simulation templates in general. In light of these challenges, the primary

research question that this dissertation answers is as follows:

How can we improve the effectiveness of the analysis problem formulation process for

VTMB problems?

Though simulation templates are brittle to VTMB problems, it is also not

pragmatic to create a simulation template that is robust to all types of changes in the

assembly system topology of design alternatives. Additionally, changes in idealizations

will require manual and costly “re-wiring” of simulation templates. Hence, a holistic and

pragmatic solution to this challenge problem is to have the capability to automatically

compose simulation templates from idealization decisions taken by analysts. By the

virtue of information-rich representation of idealization intent, analysts can create

simulation templates that are robust to certain types of assembly system topology

changes. With the capability to compose simulation templates from building blocks

automatically, analysts can create simulation templates for other types of assembly

system topology changes as well as for changes in idealization decisions in an efficient

manner.

However, research gaps exist in the current state-of-the-art for achieving this

solution. Specifically, these gaps are: (a) the lack of formalization of the knowledge used

by analysts in formulating simulation templates, and (b) the inability to leverage this

knowledge to define model composition methods for formulating simulation templates.

The lack of formalized knowledge is particularly apparent in the direct representation of

idealization decisions as mathematical equations and procedural functions in scripts or

programs used for creating behavior models, without necessarily representing the

idealization intent. This results in simulations templates that are brittle to VTMB

problems and idealization changes. If one can formalize the types of idealization

decisions taken by analysts, and the conditions for these decisions, one may explicitly

represent these decisions at a higher level of abstraction from which mathematical

 9

relations or computable scripts may be automatically derived. For efficient formulation of

simulation templates, it is also necessary to define model composition methods that can

automatically compose simulation templates from reusable building blocks and the

idealization decisions taken by analysts. The representation of building blocks requires

both static knowledge—What concepts are represented by building blocks?—as well as

dynamic knowledge—How are building blocks composed to create simulation templates?

The Knowledge Composition Methodology (KCM) presented in this dissertation

addresses these research gaps by providing (a) a method to formalize and reuse the

knowledge required for creating simulation templates, and (b) model composition

methods to automatically compose simulation templates from this formalized knowledge

and the idealization decisions taken by analysts. Figure 1.4 illustrates a high-level

functional view of the KCM. Figure 1.4a illustrates the formulation of simulation

templates using KCM’s Behavior Model Formulation Method (BMFM). The BMFM is a

model transformation method used for automatically composing simulation templates

from fixed topology design model structures based on the idealization decisions taken by

analysts. This model transformation method is founded on graph transformations, where

fixed topology design model structures and simulation templates are abstracted as source

and target graphs respectively, and reusable graph transformation patterns and rules are

explicitly scheduled to compose the target graph from the source graph and the

idealization decisions. The Behavior Model Formulation Method and its model

transformation approach are presented in Chapter 8. An overview of each component in

the functional view is described below:

 VTMB Design Meta-Model defines the constructs and relationships to represent design

alternatives with non-equivalent assembly system topologies for a specific type of

artifact, such as printed circuit boards. KCM provides an extended Core Product Model

(CPM2_xKCM) based on the Core Product Model originally proposed by Fenves et al.

(Fenves 2004) to represent designs and idealized designs of artifacts. CPM2_xKCM is

specialized to define a VTMB Design Meta-Model for representing variable topology

alternatives for a specific artifact type. CPM2_xKCM is presented in Chapter 6 of this

dissertation.

 10

 Fixed Topology Design Model Structure represents a set of design alternatives with

equivalent assembly system topologies. Several fixed topology design model structures

may be defined conforming to a VTMB design meta-model. Examples of fixed

topology design model structures are presented in Chapter 6 of this dissertation.

 VTMB Behavior Meta-Model defines the constructs and relationships for representing

behavior models for design alternatives with non-equivalent assembly system

topologies. Together a VTMB design meta-model, a VTMB behavior meta-model, and

their relationships provide a meta-model for simulation templates. KCM provides the

Core Behavior Model (CBM) as a meta-model for representing behavior models

(including relationships with design models). Together CPM2_xKCM and CBM define

a. Formulation of simulation templates

b. Execution of simulation templates

Figure 1.4: Knowledge Composition Methodology – A functional overview

 11

a comprehensive meta-model for representing simulation templates for design

alternatives with non-equivalent assembly system topologies. The Core Behavior

Model is presented in Chapter 7 of this dissertation. KCM builds on the MRA

simulation template pattern (Peak and Fulton 1994; Peak, Burkhart et al. 2007) to

represent simulation templates that are founded on physics-based concepts and

independent of a particular solution method or solvers.

 Fixed Topology Behavior Model Structure represents a set of behavior models created

for a design model structure based on the idealization decisions taken by analysts.

Several fixed topology behavior model structures may be formulated for variations in

design model structures and idealization decisions. Examples of fixed topology

behavior model structures are presented in Chapter 7 of this dissertation.

 Behavior Model Formulation Specification (BMFS) embodies the idealization

decisions taken by analysts. BMFS provides specifications for the composition of

simulation templates.

 Simulation Template Building Block Library provides a library of reusable building

blocks that are used for automatically composing simulation templates. KCM provides

the Analysis Building Block (ABB) Meta-Model that represents the constructs and

relationships for key types of building blocks. For different analysis disciplines,

building blocks are defined as specializations of the generic building block concepts in

the ABB Meta-Model. The library also contains reusable model transformation rules

and patterns used by the Behavior Model Formulation Method. The ABB Meta-Model

and ABB library are presented in Chapter 7. The dynamic aspects of ABBs that govern

how ABBs are composed in an ABB system are represented by graph transformation

rules and patterns, and described in Chapter 8.

 Transformation Engine is a graph transformation engine that executes the Behavior

Model Formulation Specifications to automatically compose simulation templates.

KCM addresses VTMB problems because for different desing model structures—

each of which represents a set of design alternatives with equivalent assembly system

topologies—behavior model structures and simulation templates can automatically be

created for the same Behavior Model Formulation Specifications. Additionally, behavior

 12

model structures and simulation templates can also be automatically created for different

Behavior Model Formulation Specifications and for a given design model structure.

Figure 1.4b illustrates the execution of simulation templates composed using

KCM’s Behavior Model Formulation Method. With the availability of a simulation

template, object solvers (or solver managers) such as ParaMagicb, OpenModelicac, and

Mathematicad may be used for solving the idealization relationships embodied in

simulation templates for design instances that conform to the fixed topology design

model structure embodied in simulation templates. As shown in Figure 1.4b, for each

design instance the idealization relationships are solved to create a behavior model

instance that confirms to the fixed topology behavior model structure embodied in the

simulation template. Each behavior model instance can then be solved using different

solution methods and solver tools, such as using FEA method and solvers such as

ABAQUS or ANSYS. If the idealization relationships embodied in simulation templates

are inherently non-causal, such as mathematical equations, then analysts may specify

target values of behavior parameters and compute design parameters values (unique or a

range) using the same simulation template. Multi-disciplinary design optimization

tools—at their backend—can deploy the ability to automatically formulate simulation

templates for VTMB problems, and the ability to execute a given simulation template

(possibly in multiple directions) for different values of design model (or behavior model)

instances. This will provide an effective mechanism to search for the feasible design

space that has alternatives that have non-equivalent assembly system topologies.

The primary contribution of the research presented in this dissertation is the

Behavior Model Formulation Method that prescribes a graph transformation-based

approach for automatically composing simulation templates for (i) variations in assembly

system topology of design alternatives, and (ii) variations in idealization decisions taken

by analysts. The secondary contributions of this research are the (i) characterization of

VTMB problems, (ii) meta-models for representing simulation templates and their

building blocks, (iii) graph pattern and transformation rules to manage models that

b www.intercax.com/sysml
c www.ida.liu.se/labs/pelab/modelica/OpenModelica.html
d www.wolfram.com/mathematica

 13

conform to these meta-models, and (iv) an extensible, proof-of-concept library of

simulation template building blocks.

The most promising extension of this research lies in the application of KCM’s

model transformation approach to other types of VTMB problems. Examples of

simulation templates that are brittle to topology variations of system alternatives are

abound. The concept of assembly system topology, as presented in this research, is

defined for systems in general, including systems that may have human and software

components. Suggested applications include manufacturing systems, real time embedded

systems, and energy generation and distribution networks.

This dissertation consists of three parts:

 Part 1: Problem Definition

 Part 2: Knowledge Composition Methodology

 Part 3: Verification and Validation, Future Work, and Closure

Part 1 lays a platform for framing the research problem, identifying research gaps,

and posing research questions. It consists of Chapters 2-4. Chapter 2 presents basic

concepts necessary for problem description, followed by a presentation of three

foundational perspectives in aspects of simulation-based design relevant to this research,

and definition of VTMB problems that form the thrust of this research. It ends by

identification of research gaps and their exemplification using an example VTMB

problem. Chapter 3 describes related technical work in the context of these research gaps,

and Chapter 4 builds on the research gaps and relevant technical background to pose the

research questions and present research hypotheses.

Part 2 presents the Knowledge Composition Methodology (KCM), specifically

emphasizing aspects of the methodology that address the research gaps identified in Part

1. Part 2 consists of Chapters 5-8. Chapter 5 presents an overview of the KCM and

describes its key functional requirements, stakeholders, use cases, and the overall

approach. Chapters 6-7 describe the meta-models used for representing simulation

templates, and Chapter 8 presents the model transformation methods in KCM.

Part 3 comprises Chapters 9-11. Chapter 9 presents the VTMB test cases

including descriptions of simulations templates automatically composed using a proof-of-

concept software implementation of KCM’s model transformation method. In Chapter

 14

10, a summary of research contributions is presented followed by recommended future

work to extend and apply the Knowledge Composition Methodology. In Chapter 11, a

summary of the Knowledge Composition Methodology is presented.

This dissertation also includes three appendices. Appendix 1 provides a brief

description of basic information modeling concepts used in this dissertation. Appendix 2

provides a summary of OMG Systems Modeling Language (SysML) constructs used in

this dissertation; and Appendix 3 provides a brief description of KCM’s Generic

Properties Meta-Model.

 15

PART 1: PROBLEM DEFINITION

 16

CChhaapptteerr 22 :: PPRROOBBLLEEMM DDEESSCCRRIIPPTTIIOONN

This chapter describes the research challenges in formulating simulation

templates for VTMB analysis problems. The intent of this description is to characterize

simulation template formulation capabilities of existing methods that do not scale to

address VTMB challenges, thereby making simulation templates ineffective for multi-

disciplinary analysis and optimization problems in particular. First, a set of basic

concepts necessary to describe the problem are presented in section 2.1. Then, two key

aspects of simulation-based design that are foundational to this research are presented in

section 2.2. These aspects establish the need for simulation templates for integrated

functional and spatial design. The time and effort required to create simulation templates

and the types of changes that result in manually updating simulation templates are

discussed in sections 2.2.2.1 and 2.2.2.2. In particular, simulation templates are brittle to

a specific type of change—variation in the assembly system topology of design

alternatives. Assembly system topology is the main concept used in describing Variable

Topology Multi-Body problems in section 2.3. In section 2.4, the primary research

question is presented followed by a description of two key research gaps in existing

methods for formulating analysis problems.

2.1 Description of basic concepts
In this section, a set of basic concepts necessary to describe simulation templates

and VTMB analysis problems are presented.

Idealization is a transformation that relates aspects of a real world system or phenomena

to models representing the system or phenomena for the purpose of facilitating

mathematical analyses. For example, a linear elastic material behavior is an idealization

of the material behavior of an artifact. Similarly, a static force is an idealization of real

forces acting on a system. In general, a model (or its aspects) is an idealization of the

system or phenomena represented by the model (or its aspects).

 17

An Artifact is a distinct subset of a physical product or system (Fenves 2004). An Artifact

could be a system itself, such as a specific printed circuit assembly, or any of its sub-

systems, such as a printed circuit board used in a printed circuit assembly.

Form5 represents the physical characteristics of an artifact, such as its shape and material

(Fenves 2004). The goal of a design process is to create a form that performs the desired

functions.

Function is what an artifact is intended to do (Fenves 2004). An artifact may have

several functions, and a function may be performed by several artifacts. A function may

be broken down into several sub-functions. Examples of common types of functions are

transfer of materials, energy, or information.

Behavior is the response of an artifact to external stimuli (environment). A behavior may

be intended—implements an artifact’s function, or it may be unintended—doesn’t

contribute or has adverse effects on an artifact’s function. For example, heat generation is

an unintended behavior of a microprocessor chip in operation.

A Behavior Model represents an idealized subset of behaviors of an artifact in a given

environment. The purpose of a behavior model is to answer questions concerning the

subset of artifact behaviors that it represents. In the context of this research, a behavior

model is formalized as a computable model—one that it can be solved to compute

behavior parameters or other measures-of-effectiveness of the artifact. In general,

analysts formulate a Behavior Model Structure that represents a set of behavior models.

Each member of the set is a Behavior Model Instance that conforms to a Behavior Model

Structure. Structure and instance correspond to the concepts of schema and schema

instance (Schenck and Wilson 1994) in information modeling. Like a schema, a behavior

model structure represents the parameters and relationships embodied in a behavior

5 also referred as structure

 18

model. In a behavior model instance, values of some parameters are given while others

are computed using the relationships embodied in the structure.

Behavior Model Formulation is a process of designing a behavior model (structure and

instances) to compute a set of behavior parameters for a family of artifacts. For example,

an analyst would formulate a behavior model to calculate the maximum deformation of a

printed circuit board when it is subjected to a thermal load during the assembly process.

The formulation of a behavior model consists of the following key steps:

1) Identifying behavior parameters to characterize the subset of behaviors that are of

interest. For example, the behavior parameters of interest in the PCB deformation

problem are the out-of-plane deformation parameter (uz) and in-plane deformation

parameters (ux and uy).

2) Identifying domain theories that may be used for computing these behavior

parameters. Examples of domain theories are Euler’s beam theory (Gere and

Timoshenko 1997) and Kirchhoff’s plate theory (Krauthammer and Ventsel 2001).

3) Idealizing the artifact and environment under which behavior parameters are to be

computed. For example, in the PCB deformation problem, each stratum of a PCB

may be idealized to have homogenous material distribution, the thermal load may be

idealized as a uniform temperature increase, and one edge of the PCB may be held

fixed as a boundary condition.

4) Creating a model that represents the idealized artifact, environment, behavior

parameters, and their relationships based on domain theories.

 This view of model formulation is in principal also corroborated by (Gruber

1992). This research focuses on solution method- and solver-independent formulation of

behavior model structures. A behavior model may be reformulated for specific solution

method and solvers. For example, the parameters and relationships in a behavior model

may be used to create a solution method-specific system of equations (such as the global

stiffness matrix in finite element analysis) that may be solved using a specific solver

(such as ABAQUS (Dassault Systemes 2006) for finite element analysis).

 19

Behavior Model Solution is the process of solving the mathematical relationships in a

formulated behavior model. During solution, behavior parameters are computed using an

appropriate solution method and a solver. Behavior model solution may require

reformulations of a behavior model for specific solution methods and solvers.

Simulation is a process of formulating models, solving models, and analyzing results to

gain an understanding of a given system (Fishwick 1995). Usually, the term simulation is

used when the mathematical relationships in a model do not have an exact or analytical

form or they are so complex that it is computationally inefficient to solve them and hence

they need to be solved numerically (Law and Kelton 2000). Some examples of systems

that are subjects of simulation studies are: products, processes, combination of products

and processes, or theoretical systems. In the context of this research, the term simulation

is used in a broader sense—includes models that have a closed form solution and those

that have to be solved numerically. This research focuses on computer-based simulations

(and hence computer-based models) to compute behaviors of artifacts. In the context of

this research, the term simulation model refers to behavior model.

In the context of this research, behavior simulation is a process of formulating

behavior models, solving them, and evaluating results to gain an understanding of an

artifact’s behavior under external stimuli. In this dissertation, the terms “simulation” and

“behavior simulation” are used interchangeably.

A Behavior Parameter is a computable parameter that is used to characterize the

behavior of an artifact. The value of a behavior parameter measures the (idealized)

behavior of an artifact. Deformation, Stress, and Strain are examples of behavior

parameters to measure the structural behavior of an artifact, and Temperature is an

example of a behavior parameter to measure the thermal behavior of an artifact.

Analysis is a process of computing the behavior of an artifact from its form. Specifically,

the term analysis used here implies behavior analysis—computing the behavior of an

artifact under external stimuli. Other types of analyses include but are not limited to

requirements analysis—computing requirements that must be met by an artifact to satisfy

 20

the needs of customers, cost analysis—computing the cost of producing an artifact given

its form.

Evaluation is a process of comparing the behavior(s) of an artifact with the artifact’s

function (intended behavior). Specifically, the term evaluation here implies behavior

evaluation. Other types of evaluation include but are not limited to requirements

evaluation—checking if an artifact satisfies the requirements, cost evaluation—checking

if the cost of producing an artifact satisfies budget requirements.

An Inverse Problem is a problem where the natural outputs of a behavior model are

known but not all the natural inputs to the behavior model are known. The natural outputs

of a behavior model are the behavior parameters, and the natural inputs are the artifact’s

form, load, and behavior conditions. As an example for static structural analysis of an

artifact, the form of the artifact (including geometry and material specifications),

boundary conditions, and loads are natural inputs and the deformation, stress, and strain

fields are natural outputs (solution). One of the inverse problems for this case would be

such that the deformation, stress, and strain fields, loads, boundary conditions, and

artifact’s material specifications are inputs to the problem and the form of the artifact is

to be determined. Inverse problems are prominent in science and engineering as can be

corroborated by a dedicated journal in this topic area (Taylor and Francis (Inverse

Problems in Science and Engineering) 2008). The objective of this research is to

formulate behavior models such that the relationships between parameters are represented

in a non-causal manner (if the relationships are inherently non-causal, such as equations).

Non-causal representation of relationships is necessary for solving inverse problems

efficiently.

 21

2.2 Aspects of simulation-based design foundational to this

research

In this section, two keys aspects of simulation-based design that are foundational

to this research are presented. Collectively, these aspects establish a platform for (a)

clearly describing the primary question that this research shall answer, and (b) describing

the specific research gaps that motivate this research. The context of each aspect is as

stated below:

 Integrated Functional and Spatial Design aspect establishes that analysis is an activity

performed through the design process and requires model-based communication

between designers and analysts.

 Simulation Templates aspect establishes that simulation templates, patterns, and

instances are mechanisms for enabling model-based communication between designers

and analysts.

2.2.1 Integrated Functional and Spatial Design
Designers and analysts are key stakeholders in simulation-based design. Figure

2.1 (Fenves 2004) illustrates the integrated functional and spatial design process scenario

involving designers and analysts. Designers generate alternative forms of an artifact that

are idealized to create analyzable forms for the purpose of analysis and evaluation. The

Figure 2.1: Integrated functional and spatial design (Fenves 2004) through design phases

 22

outcome of an analysis and evaluation process is either (i) satisfactory—selecting a set of

alternatives that are candidates for the next design phase, or (ii) unsatisfactory—mapping

proposed design changes to generate new alternatives. Here, spatial design refers to

generating the form of the artifact, and functional design refers to generating an artifact

that performs the required functions. The term “integrated” implies that developing the

form and function of an artifact are inherently coupled aspects of the design process, and

should be performed collaboratively by designers and analysts. It is necessary to view

analysis as a process of continuously evaluating an artifact across all design phases. It is

necessary that simulation-based design methods enable analyses during conceptual

design phases that largely govern the overall product cost and form.

Figure 2.2 illustrates the communication process between designers and analysts

for a given design phase by elaborating on the subjects of the idealization and mapping

operations illustrated in Figure 2.1. The design of a complex product may require several

types of designers and analysts who work collaboratively on their specific aspects. For

example, the simulation-based design of an electromechanical product (such as a printed

circuit assembly) typically requires the following types of designers and analysts.

 Designers

o electronics designers propose a form to satisfy electronic function,

o mechanical designers propose a form to satisfy mechanical function,

o system designers integrate electrical and mechanical perspectives of a form;

 Analysts

o electronic analysts analyze the electronic behavior of proposed forms,

o electromagnetic analysts analyze the electromagnetic behavior of proposed forms,

o thermal analysts analyze the thermal behavior of the proposed forms, and

o structural analysts analyze the structural behavior of the proposed forms.

In engineering workflows, a single individual may play roles of a designer and an analyst

both.

In a given design phase, designers collectively generate several alternatives of an

artifact. The nature of analyses to be performed on these alternatives is collectively

determined by the following three broad metrics:

 Type indicates analysis domain, such as thermal, electromagnetics, and structural.

 23

 Resolution indicates the subject of analysis. This could be the artifact system (such as

printed circuit assembly), or subsystem (such as a printed circuit board or chip

package), or features (such as solder balls and joints).

 Fidelity indicates the level of detail incorporated in the behavior model

Based on the nature of a given analysis, the design alternatives are idealized to create

analyzable forms. An analyzable form may be used for creating behavior models of

different types and fidelities. For example, a structural analyst may use an analyzable

form of a PCB to create a 2D (or 3D) thermal (or structural) behavior model.

 As indicated in Figure 2.1 and Figure 2.2, the communication process between

designers and analysts is bi-directional. While the designers provide the artifact

alternatives to be analyzed, the results of analysis and evaluation performed by analysts

are used to propose design changes in the alternatives and to solve inverse problems.

 Figure 2.1 and Figure 2.2 also help illustrate the complexity of the communication

process between designers and analysts. For a tighter integration between functional and

spatial design, it is necessary that such a communication process be founded on model-

based templates that provide a mechanism to (a) represent and organize the different

types of models exchanged between designers and analysts, (b) represent the fine-grained

connections between these models (Peak 2003), and (c) realize the bi-directional flow of

information. Such model-based templates can then enable “what-if” trade studies,

Figure 2.2: Integrated functional and spatial design in a given design phase

 24

sensitivity and opportunistic analyses. Simulation templates—described in the next

section—contribute towards this objective.

2.2.2 Simulation Templates
In this section, simulation templates, patterns, and instances are described as

enablers for model-based communication between designers and analysts. The effort

required for creating simulation templates and the types of changes in design alternatives

and analysis specifications that require costly and manual updates to simulation templates

are also presented. The brittleness of simulation templates to these types of changes is the

challenge problem being addressed by this research. First, the general idea of simulation

templates is presented. Then, a specific simulation template pattern relevant to this

research is presented. Types of variations in analyses that require manually updating

simulation templates are presented in sub-sections 2.2.2.1 and 2.2.2.2. A specific type of

variation in design alternatives that affects simulation templates is presented in section

2.3.

A Simulation Template is a model structure for formulating and solving a class of

simulation models. In the context of this research, simulation templates associate design

model structure to behavior model structure, thereby allowing one to compute behavior

parameters for different values of design parameters. Thus, simulation templates may be

used for formulating and solving all simulation models that conform to the idealization

relationships embodied in a simulation template. A simulation template may be

categorized as:

 White-box or Black-box: A white-box simulation template exposes the entities,

attributes, and relationships that collectively define a simulation template. For a given

causality, some attributes are input parameters, some are output parameters, and others

may be ancillary or do not contribute to the computation. A black-box simulation

template exposes only those attributes that may be inputs or output parameters for the

computation process.

 Causal or Non-causal: A causal simulation template has a fixed causality. It consists of

a fixed set of input parameters and output parameters. A non-causal simulation

template doesn’t have a fixed causality. The causality of the parameters can be

changed such that an input parameter for some computations may be an output

 25

parameter for other computations. In such a case, a simulation template can be used for

formulating and solving simulation models and also for solving inverse problems. It is

to be noted that some relationships between parameters are inherently causal (such as

if-else relationships) and hence it is not possible to use simulation templates for all

computation directions. An explicit inverse relationship must be defined for a causal

relationship to use it for solving inverse problems.

In the context of this research, the key ingredient of a simulation template is the

behavior model structure that is associated with the design model structure via

idealization relationships. Figure 2.3 illustrates a simulation template that is used for

computing the plane-stress behavior of a Flap Link—a mechanical part used in an air

frame (Peak, Burkhart et al. 2007). Specifically, it shows a SysML parametric diagram

view of the plane-stress deformation model structure whose attributes are connected to

the design attributes of the Flap Link part. For example, deformationModel.t is connected

to soi.effectiveLength (soi means “system of interest” which is the Flap Link in this case).

Figure 2.3: Simulation template for computing plane stress behavior of Flap Link part

 26

In this example, the simulation template is used for formulating a behavior model which

is then used for auto-generating and solving a finite element analysis model. This

template is non-causal in the sense that relationships between the attributes are (a)

inherently non-causal, and (b) represented in a non-causal way using SysML binding

connectors. Such a template can be used both for formulating and solving a behavior

model, and also to compute required design parameters to achieve desired behavior.

Figure 2.4 illustrates both design verification and synthesis scenarios for a

simulation template that associates design parameters of the Flap Link part to a linear

extensional behavior model. When this simulation template is used in the design

verification scenario, the form-related attributes of the Flap Link part and the end forces

(condition.reaction) on the part are inputs while the elongation of the part and axial

stresses and strains are outputs. When the same simulation template is used in the design

synthesis scenario, some form-related attributes of the Flap Link part are outputs and the

elongation and end forces are inputs. For example, deformationModel.area is computed in

the design synthesis scenario and not an input from

soi.Shaft.criticalCrossSection.basic.area. Hence, a simulation template is instantiated for a

specific computation. In this case, the simulation template that embodies an extensional

behavior model of the Flap Link part is instantiated twice—once for design verification

scenario and once for design-synthesis scenario.

 27

ts1

B
sleeve1

B

ts2

ds2

ds1

sleeve2

L

shaft

Leff

θs

rib1 rib2

red = idealized parameter

x
FF

E, A, α

ΔLLo

ΔT, ε , σ

y L

x
FF

E, A, α

ΔLLo

ΔT, ε , σ

y L

Figure 2.4: Instances of a simulation template that embodies a linear extensional behavior model

of Flap Link part

 28

A Simulation Template Pattern is a meta-model of a simulation template. It

represents the types of models, their attributes, and their inter-relationships in a family of

simulation templates. The Multi-Representation Architecture (Peak and Fulton 1994;

Peak, Fulton et al. 1998; Peak, Paredis et al. 2005) is a simulation template pattern for

creating simulation templates that can provide a foundation for model-based

communication between designers and analysts through the design process. The rationale

behind the MRA pattern—illustrated in Figure 2.5—is to have modular components that

can be reused in different templates. The MRA pattern consists of four stepping stone

models:

 Analyzable Product Model (APM) represents an idealized design model with additional

analysis intents, and is created for a family of analyses.

 Context–based Analysis Model (CBAM) represents product-specific simulation

templates that capture the relations (APMΦABB) between the APM and ABB system

model.

 Analytical Building Block (ABB) System Model represents a system composed of

reusable analysis concepts that encapsulate domain knowledge. These reusable

analysis concepts are known as analysis building blocks (ABBs)—for example linear

elastic material behavior ABB and point-load ABB. A behavior model of an artifact is

Figure 2.5: Multi-Representation Architecture (Peak, Fulton et al. 1998) — A simulation template

pattern showing the behavior model formulation and solution sub-patterns

 29

formalized as a CBAM that includes the ABB system model and its relationships to the

APM.

 Solution Method Model (SMM): Represents a solution method-specific behavior

model, such as a finite element model.

 All the four models above have an explicit structure and may have several

instances that conform to this structure. Figure 2.3 and Figure 2.4 illustrate simulation

templates that are based on the MRA pattern. In Figure 2.3, the Flap Link plane stress

CBAM is shown—relates the Flap Link APM and the plane stress ABB model. The FEA

SMM model is auto-generated from this CBAM. In Figure 2.4, the Flap Link linear

extension CBAM is shown—relates the Flap Link APM to the linear extension ABB

(deformationModel). The SMM—not shown in the figure—is a Mathematica (Wolfram

Mathematica 2008) model auto-generated from this CBAM. An APM is created for a

family of analyses, and different APMs may be created for analyses of different

fidelities—one APM for 2D analyses and one for 3D analysis. The Flap Link APM used

in the plane stress CBAM includes the two sleeves and the shaft features of the Flap Link

part. But, the Flap Link APM used in the linear extension CBAM includes only the shaft

feature. Though not explicitly shown here, the MRA pattern has been extended to include

the as-designed (DM) or as-manufacturable product model (MPM)6 structure (Zwemer,

Bajaj et al. 2004) and their relationships to the APM structure.

 Figure 2.5 also shows two sub-patterns that are related to behavior model

formulation and solution respectively. In the context of this research, the formulation of

behavior model (structure or instance) implies the formulation of the CBAM (structure or

instance), i.e. the ABB system model (structure or instance) and its relationships to the

APM (structure or instance). In effect this is the formulation of a simulation template

itself. The solution of a behavior model may require the re-formulation of behavior

models as SMMs for specific solution methods and solvers. In this dissertation, the term

simulation template is used to refer to design-analysis simulation templates based on the

MRA pattern. Note that the MRA is a broad and generic pattern and specific simulation

templates may instantiate the MRA in entirety or in part.

6 These DM and MPM are shown explicitly in the formalized MRA pattern included in KCM (Part 2 of this

dissertation).

 30

2.2.2.1 Effort in creating simulation templates

 The cost-benefit ratio of simulation templates depends on the type of analysis—

original, adaptive, or ubiquitous (routine) (Peak 1993; Peak, Scholand et al. 1999; Bajaj

2006). For ubiquitous analysis, simulation templates are created once and reused for

different causalities, and different input values for a given causality. In this case, the cost

of creating simulation templates is amortized with usage. However for the case of

adaptive and original analyses, new simulation templates need to be created or existing

simulation templates need to be modified for analysts to perform trade studies on

idealizations. This involves manually creating CBAMs by (a) instantiating ABBs from a

library, and (b) establishing connections among the ABBs, and from ABB attributes to

APM attributes. As an example, the Flap Link plane stress simulation template shown in

Figure 2.3 consists of 17 relationships between APM attributes and ABB system

attributes. In order to create such a simulation template, usages of APM and ABBs needs

to be created in the simulation template (assuming that relevant APM and ABBs already

exist), and 17 relationships have to be manually created among APM and ABB system

model attributes. This involves significant time and effort on an analyst’s part to create

and maintain the relationships (a.k.a. associativities) between the models (Peak 2003).

The Flap Link is a single part. For complex multi-level assemblies where each

component is idealized differently, the number of entities and the number of relationships

that need to be created between these entities in a simulation template increases

significantly.

 This research focuses on automated creation of simulation templates based on

specifications provided by analysts. This reduces the cost-benefit ratio of simulation

templates esp. for adaptive and original analyses (conditional to the availability of

ABBs).

2.2.2.2 Robustness of simulation templates

The structure of a simulation template holds for the specific (a) type of analysis

for which it is created, (b) family of artifacts for which it is created, and (c) idealizations

that are represented in it — MPM-APM type idealizations and APM-ABB type

idealizations (CBAM). As an example, the linear extension simulation template shown in

Figure 2.4 is created for static linear extension analysis of Flap Link part where the part is

 31

idealized as a linear extensional rod. Analysts may use this simulation template with

different parameter values and do trade studies with different causalities. If however,

there are design alternatives of the Flap Link part that have other analyzable features in

addition to the sleeves and the shaft, then these simulation templates have to be manually

modified to include entities related to those features and establish relationships between

the additional analyzable features and their corresponding ABBs. Also, if the applied

forces were not idealized as axial loads but as eccentric loads, then the bending behavior

would need to be computed in addition to the extension. This would imply including the

ABB for bending behavior in the simulation template and establishing connections to the

APM entities. Additionally, if the type of analysis were dynamic and non-linear in the

sense that deformations of the Flap Link part were not small but were large enough to

change the point of application of applied loads and deform the part substantially such

that new features like a surface recess or a crack develop on the part, then the above

simulation templates would need substantial modification—finding the right ABBs,

include them in the templates, and establishing relationships to the APM. In a nutshell,

the structure of a simulation template changes with the following three types of changes

in the analysis specifications:

 ST_Change_Type_1: Changes in a simulation template due to changes in assembly

system topology of design alternatives

This category includes changes in simulation templates due to a change in

assembly system topology (defined in section 2.3) of design alternatives and

corresponding APMs. These changes are such that they may affect a change in the

number of analysis bodies in the ABB system model. Figure 2.6 illustrates a

LinearSpring ABB—single spring with linear behavior, and TwoSpringSystem (ABB

system)—two springs with linear behavior connected in series. An analyst may use the

LinearSpring simulation template for computing the linear behavior of a single spring. If

the assembly system changes such that two linear springs are connected in series, then

another usage of the LinearSpring ABB must be created in the simulation template and

both usages of LinearSpring ABB must be connected to reflect the series connection

(such as the end point of one spring is associated with the start point of the other spring).

 32

If a third spring needs to be added in series or parallel to both or either of the springs,

then it would imply creating an additional usage of LinearSpring ABB and establishing

relationships between this usage and previous two usages to reflect the modified system.

In general, this type of change in assembly system topology helps define a special

class of analysis problems known as Variable Topology Multi-Body Analysis problems

(defined later in section 2.3). This research specifically focuses on this class of analysis

problems.

Figure 2.6: LinearSpring (ABB) and TwoSpringSystem (ABB system) examples—SysML

parametric diagram view

 33

 ST_Change_Type_2: Changes in a simulation template due to changes in the

idealization decisions taken by analysts

This category includes changes in simulation template due to the changes in the

idealization decisions taken by analysts. This includes idealization decisions concerning

(a) MPM-APM relationship—how an analyzable product model is idealized from a

design model or manufacturable product model for a class of analyses, and (b) APM-

ABB system—how is the behavior of the analyzable product model idealized.

If MPM-APM idealization decisions are such that they result in a change in the

assembly system topology of the assembly system in the APM, then these changes are

included in ST_Change_Type_1 category above. However, if the idealization decisions

are such that the nature of the relationship(s) between MPM attribute(s) and APM

attribute(s) change, then they are included in this category. For example, if the effective

length attribute in the Flap Link APM in the plane stress CBAM in Figure 2.3 were to be

computed differently the Flap Link design model, then such an idealization change would

be included in this category. Changes in the type and (or) fidelity of analyses that the

APM is required to support will affect changes in the MPM-APM idealizations.

The APM-ABB system idealization changes result in changes in a simulation

template by using different type of ABB for idealizing the behavior of the artifact. These

type of idealization changes occur due to changes in the type of analysis and (or) the

fidelity of analysis. For example, an analyst may perform a 2D plane stress analysis or a

relatively lower fidelity 1D linear extension analysis to compute the axial deformation of

the Flap Link part.

This research focuses on automatically generating simulation templates based on

the specifications provided by analysts. Changes in the idealization decisions are

reflected as changes in the specifications. The updated specifications may then be used to

regenerate the simulation templates using methods developed in this research.

 ST_Change_Type_3: Changes in simulation template due to simulated behavior

This includes changes in simulation template due to non-linear analysis. These

changes typically occur when (a) idealized behavior(s) of an artifact affect a change in

the assembly system topology of the artifact itself, and/or (b) different set of idealizations

 34

need to be applied for different analysis regimes. For example, if the deformation of an

assembly is large such that the connection between any two components breaks when

simulating the behavior of the assembly, then this should be reflected in the simulation

template by deactivating the interaction behavior between the corresponding components

(analysis bodies) during the course of simulation. Further, an analyst may select a

conditional idealization such that if the deformation is within a specified range, a

different set of idealizations are in-effect (a separate set of ABBs in the ABB system)

versus if the deformation is outside the specified range. These use cases are distinguished

by using the terms static simulation template versus dynamic simulation template.

This research proposes a conceptual approach for handling these types of changes

in simulation templates. Note that the brittleness of simulation templates also depends on

the manner in which relationships are created between models in a simulation template.

For example, if the geometric idealization relationships in a simulation template are

represented using a generic scheme such as Affine transformations (Mortenson 1997),

then they are more robust to changes in the type of shapes at the input end of the

idealization relationship—the structure of the idealization relationship can handle wider

varieties of input shapes. However, if a geometric idealization relationship is represented

by a set of relationships between the attributes of specific shapes and their features, then

they are brittle to changes in the type of shapes that are being idealized. Further, the use

of logical relationships (such as IF-THEN relationship) can enhance the robustness of

simulation templates to types of changes in ST_Change_Type_3 category. This research

is also aimed at developing guidelines for creating robust simulation templates.

 35

2.3 Variable Topology Multi-Body (VTMB) Problems
As described in the previous section, changes in the assembly system topology

(AST) of design alternatives result in changes7 in the structure of simulation templates

using these models. In this section, the concept of Assembly System Topology (AST) is

defined and illustrated. This dissertation defines a special type of graph construct and

corresponding visualization diagram—an Assembly System Topology diagram—to help

characterize VTMB problems and visualize and communicate changes in AST.

Following the definition of AST and AST diagram, the specific subsets of a simulation

template that AST changes impact and the conditions for these changes are presented.

Founded upon the concept of AST and AST diagram, a special class of analysis

problems, namely Variable Topology Multi-Body (VTMB) Problems, is defined in this

dissertation. This research is aimed at addressing VTMB problems.

What is Assembly System Topology and how can it be characterized?

Assembly System Topology (AST) is a property of an assembly system that is used to

collectively characterize (a) the number and type of components in an assembly, (b) the

number and type of interactions between these components, and (c) the number and type

of component features that participate in these interactions. Since AST is a collective

characteristic, it is easier and pragmatic to compare if two assembly systems have

equivalent AST rather than computing an absolute value of AST for an assembly system.

The AST of two assembly systems is equivalent if and only if

a) They have the same number of components of each type

b) Each component has the same number and type of features

c) The type and number of interactions between any two features is the same

Let us denote the AST of an assembly system ASi as AST(ASi), then we can define

the AST Equivalence Relation as follows.

AST Equivalence Relation, AST_EQ (denoted as ~), is a binary relation between the

AST of two assembly systems ASi and ASj that implies that the AST of ASi and AST of

7 except when the idealizations ignore the components and interactions involved in the change

 36

ASj are equivalent. This relation is denoted as: AST(ASi) ~ AST(ASj). The AST

Equivalence relation is:

 Reflexive: AST(ASi)~AST(ASi) — implies that the AST of an assembly system ASi is

equivalent to itself.

 Symmetric: If AST(ASi)~AST(ASj), then AST(ASj)~AST(ASi) — implies that is the AST

of assembly system ASi is equivalent to the AST of assembly system ASj, then by

definition of AST, the AST of assembly system ASj is equivalent to the AST of assembly

system ASi.

 Transitive: If AST(ASi)~AST(ASj) and AST(ASj)~AST(Ask), then AST(ASi)~AST(ASk) —

implies that if the ASTs of assembly systems ASi and ASj are equivalent, and the ASTs

of assembly systems ASj and ASk are equivalent, then by definition of AST, the ASTs of

assembly systems ASi and ASk are equivalent.

An AST Equivalence Set, AST_EQ_Set, is a set of all assembly systems such that the

ASTs of any two members of the set, ASi and ASj, are equivalent. Thus, an

AST_EQ_Set is defined as: ∀ ASi , ASj ∈ AST_EQ_Set, AST(ASi)~AST(ASj)

An Assembly System Topology Diagram (AST diagram) is a type of SysML Internal

Block Diagram that depicts an assembly system and its components, features of

components, and the interactions between components. Hence, the AST diagrams of two

assembly systems can be compared to unambiguously decide if have equivalent AST.

Figure 2.7, Figure 2.9, Figure 2.10, and Figure 2.11 help illustrate the concepts of

AST and AST diagram. Figure 2.7 shows a set of parts (or bodies)8,9—A, B, C and D—

using which several assembly configurations are composed. Figure 2.9 illustrates a set of

assembly systems with equivalent AST while Figure 2.10 and Figure 2.11 each illustrate

a set of assembly systems with non-equivalent AST.

8 AST can be used to characterize the topology of assemblies at the MPM (and APM) level where the part-component

terminology is used, or the ABB system level where analysis body and analysis body system terminology is used.

 37

Figure 2.7: Parts9 and their features

 The constructs of an AST diagram are illustrated in Figure 2.8 and described

below.

 Assembly system block is used to represent assembly systems. It is denoted as a

SysML block

 Component block is used to represent components of an assembly system. Each

component block is identified by the name of the component and its type (part name).

For example, as shown in Figure 2.8, component_A1 is of type Part_A. A component

block is labeled as component_A1: A. It is denoted as a SysML part property and is

shown inside its parent assembly system block.

 Feature block is used to represent features of assembly components that participate in

defining the interaction between components. Each feature block is identified by the

name of the feature and its type, and is shown inside the component block

corresponding to its parent component. A feature is a part of the component’s form

that participates in the interactions between the components. For example, Figure 2.8

shows that component_A1 has two features, Feature_A_Top and Feature_A_Bot of

type Feature_Type. Features may be typed according to their shape (such as point

feature, line feature, or surface feature), their constituent material(s) (such as copper

features, solder features), their function (such as electrically conductive feature or

electrically non-conductive feature), or other characteristics relevant to tracking them

9 Name of components and corresponding parts used in this section have the prefixes component_ and part_. For

brevity, the prefixes are not shown in the assembly configurations.

 38

in the product realization process. It is denoted as a SysML part property and is

shown inside its parent component block.

 Interaction block is used to represent interactions between features (and hence

components) in an assembly. Each interaction block is identified by its name and

type. Interactions are typically typed by their function (such as structural, thermal, or

electrical function). For example, in Figure 2.8, component_A1 and component_B1

are glued together and this is represented by the interaction block, A1_B1_Interaction

of type Glued_Interaction between Feature_A_Bot (of component_A1) and

Feature_B_Top (of component_B1). It is denoted as a SysML part property.

Assembly System
Block

Component Block

Interaction Block

Connector

Figure 2.8: AST diagram constructs

Figure 2.9 shows three assembly systems Assembly_ABC_111a1,

Assembly_ABC_111a2, and Assembly_ABC_111a3 that have equivalent ASTs, as

illustrated by the AST diagram in the figure. Hence, these assembly systems belong to the

same AST Equivalence Set. One may draw a single AST diagram for an AST

Equivalence Set since the AST diagrams for all members in the set are isomorphic.

 39

Figure 2.9 also illustrates that changes in the size and shape of components and even the

geometric topology of components doesn’t necessarily affect the AST of the assembly

system. For example, the size of component A1 in Assembly_ABC_111a1 is different

than in Assembly_ABC_111a2, and the geometric topology of component A1 in

Assembly_ABC_111a3 is different than in other two assembly systems. These changes

do not affect the AST diagram, and hence by definition do not affect the AST and

simulation templates10.

A1: A

B1: B

C1: C

Assembly_ABC_111a1

Assembly_ABC_111a2

Assembly_ABC_111a3

A1: A

B1: B

C1: C

A1: A

B1: B

C1: C

hole

Figure 2.9: Assemblies with equivalent system topologies; ST diagram as SysML IBD

Figure 2.10 illustrates changes in AST due to reconfiguration of existing

components. In assembly system Assembly_ABC_111b, component C1 is moved to the

10 As stated in the previous section, this assumes that an analyst has defined geometric idealization relationships at the

object level and not at the attribute level. For example, using Affine transformations for idealizing shapes versus

relating attributes of shape by algebraic relationships.

 40

top of component B1 with respect to assembly system Assembly_ABC_111a1. This

change in reflected in AST diagram for Assembly_ABC_111b—Feature_B_Top and

Feature_C_Bot are associated with B1_C1_Interaction instead of Feature_B_Bot and

Feature_C_Top in the AST diagram for Assembly_ABC_111a1 in Figure 2.9. Similarly

in assembly system Assembly_ABC_111c, component A1 is moved to the bottom of

component B1 with respect to assembly system Assembly_ABC_111a1. The

corresponding changes are reflected in the AST diagram of Assembly_ABC_111c. In

assembly ABC_111c_roller, the interaction type between components A1 and B1 has

changed from glued interaction to roller interaction—A1 and B1 can mutually slide along

the interacting surface as opposed to being glued in Assembly_ABC_111a. The changes

in the AST diagrams for these three assembly systems with respect to the AST diagram

for assembly system Assembly_ABC_111a reflects that the AST of these three assembly

systems is (a) not equivalent to the AST of Assembly_ABC_111a, and (b) not equivalent

to the AST of each other.

Figure 2.11 illustrates changes in AST due to addition of new components. These

changes are reflected in the AST diagram as addition of new component blocks and

feature blocks—representing new components and their features, and interaction blocks

and connectors—representing new interactions among new and existing components. In

Assembly_ABC_211, a new component A2 (usage of part A) is added to the assembly,

and in Assembly_ABCD_1111, a new component D1 (usage of part D) is added to the

assembly. The AST of these two assembly systems is not equivalent to the AST of

Assembly_ABC_111a1, and to the AST of each other.

 41

Assembly_ABC_111c

A1: A

B1: B

C1: C

Baseline: Assembly_ABC_111a1
Change: A1 moved to bottom of B1

Figure 2.10: Change in AST due to reconfiguration (changes in interactions and participating features)

 42

Figure 2.11: Change in AST due to addition of new components (and hence also addition of new interactions)

 43

The AST of a family of design alternatives may be different from AST of another

family of design alternatives. Changes in the AST of design alternatives require changes

in simulation templates. For example, addition of new components and interactions

require analysts to manually create new entities, parameters, and relationships in

simulation templates, or the changes in the type of interaction between components

require analysts to re-wire existing relationships between parameters in a simulation

template. Specifically, in the MRA simulation template pattern, each stepping stone

model consists of a representation of an assembly system. Table 2.1 shows the types of

assembly system and components represented in design-analysis models used in MRA

simulation template pattern.

The AST of idealized assembly system in an APM depends on the AST of the design

model (or MPM) and the idealization relationships between them. Similarly, the AST of

the analysis body system in ABB system model depends on the AST of the idealized

assembly in the APM and the idealization relationships between then (APMΦABB). Hence,

changes in assembly system topology of design alternatives require updates to simulation

templates that are generally done manually.

In this context, Variable Topology Multi-Body (VTMB) Problems are a class of

problems where the assembly system topology of design alternatives varies. In the

context of simulation-based design VTMB problems affect simulation templates,

generally requiring manual updates and “re-wiring” of parameters and relationships in a

Table 2.1: Assembly system and components in design-analysis models used in

MRA simulation template pattern

Model in MRA pattern Assembly System Components

Design model (DM) /

Manufacturable product

model (MPM)

Design assembly /

Manufacturable product

assembly

Sub-assemblies and parts

Analyzable Product Model Idealized DM / MPM assembly Analyzable sub-assemblies

and components

ABB System Model Analysis Body System Analysis bodies

(e.g., plates and shells)

Solution Method Model Assembly of solvable elements

(e.g., meshed assembly in FEA)

Solvable elements (e.g.,

mesh elements in FEA)

 44

template. The acronym VTMB is used instead of the complete phrase variable topology

multi-body in this dissertation.

Note that variable topology multi-body problems are defined here based on the

concept of assembly system topology and not geometric topology. The definition of

variable topology presented here is different from highly-coupled variable topology

problems defined by Zeng (Zeng, Peak et al. 2008) where changes in the geometric

topology of interconnected bodies pose FEA meshing challenges.

2.4 Primary Research Question and Gaps

2.4.1 Primary Research Question
The primary question that this research answers is as follows:

How can we improve the effectiveness of the analysis problem formulation process

for VTMB problems?

In this sub-section, three measures of effectiveness of analysis problem

formulation are described. These measures provide means to characterize why existing

methods are ineffective for formulating analysis problems, and to characterize how

methods developed in this research are more effective.

The term “analysis problem formulation” in the primary research question refers

to the formulation of simulation templates. A simulation template provides a structure to

create a class of behavior models for a class of design models. The value of simulation

templates in performing what-if trade studies on design alternatives has been established

in the previous sections. The term “process” in the primary research question refers to the

way in which simulation templates are created in existing methods.

The term “effectiveness” in the primary research question sums up the core of the

research problem. Figure 2.12 below illustrates three measures of effectiveness of

analysis problem formulation in the context of this research.

 45

These measures of effectivess are described below.

 VTMB variations: This measure-of-effectiveness concerns the ability of analysis

problem formulation methods to address VTMB problems. As discussed in previous

sections, simulation templates (formulated analysis problems) are generally brittle to

variations in assembly system topology of design alternatives. This makes simulation

templates ineffective for design optimization problems where they are used for

computing parameters that directly or indirectly participate in the objective function.

 Idealization variations: This measure-of-effectiveness concerns the ability of analysis

problem formulation methods to handle variations in idealization decisions taken by

analysts. The idealization decisions taken by analysts are embodied in simulation

templates as design and behavior parameters and relationships between these

parameters. As discussed in the previous section, for new types of analyses, analysts

perform what-if trade studies on idealizations and compare results from different

behavior models, such as low-fidelity, easy-to-solve models and high-fidelity,

complex-to-solve models.

 Formulation Efficiency: This measure-of-effectiveness concerns the ability of analysis

problem formulation methods to create simulation templates in an efficient manner. In

this dissertation, formulation efficiency is characterized in terms of percentage

reduction in time take to formulate simulation templates using new methods

(developed in this research) versus current methods. Section 9.5.3.3 describes how the

percentage reduction in time is measured.

In the context of this research, the following functional aspects contribute towards

increasing formulation efficiency.

VTMB
variations

Idealization
variations

Formulation
Efficiency

Figure 2.12: Measures of effectiveness of analysis problem formulation

 46

1. Automated methods for formulating simulation templates that are based on easy-to-

modify analysis specifications and simulation template meta-model.

2. Existence of meta-models for formally representing simulation templates for VTMB

problems.

3. Analysis specifications that abstract the idealization decisions taken by analysts from

the details of the formulation process. This will allow analysts to change idealization

decisions without manually reconfiguring the formulation process.

4. Abstraction of building blocks of simulation templates that can be used for formulating

a large class of simulation templates. Each simulation template is used for a class of

analysis problems.

5. Methods for formulating simulation templates are modular and extensible to allow

usage of different building blocks, such as shape and material behavior, for different

types of analysis problems.

In the context of this dissertation, an analysis problem formulation method is

highly effective if it scores high on all the three measures of effectiveness. This implies

that the analysis problem formulation method is effective if:

 it can be used for creating simulation templates for greater types of design variations,

specially VTMB-type variations

 it can be used for creating simulation templates for greater types of idealization

variations

 it has a higher formulation efficiency

2.4.2 Research Gaps
The effective formulation of analysis problems using existing methods is hindered

by two key research gaps as stated below.

 Lack of formalization of the knowledge used by analysts in formulating simulation

templates

 Inability to leverage this knowledge to define model composition methods for

formulating simulation templates

In the context of this research, this knowledge refers to the intent of the

idealization decisions taken by analysts. Existing methods, such as those based on

parameterized scripts for creating behavior models, do not represent the intent of the

 47

idealization decisions. At best, these methods are based on an interpretation of this intent

in the form of mathematical relations between design parameters and behavior

parameters for a particular class of analysis problems. VTMB-type variations or

variations in idealization decisions taken by analysts require manual and costly updates to

a large set of these parametric relations. If one can formalize the types of idealization

decisions taken by analysts and the conditions for these decisions, one may explicitly

represent these decisions at a higher level of abstraction from which mathematical

relations or computable scripts may be automatically derived.

Efficient formulation of simulation templates also requires model composition

methods that can automatically compose simulation templates from reusable building

blocks and the idealization decisions taken by analysts. The representation of building

blocks requires both static knowledge—what concepts are represented by building

blocks—as well as dynamic knowledge—how are building blocks composed to create

simulation templates.

2.5 Summary
In this chapter the presentation of integrated functional and spatial design scenario

and simulation templates as means to achieve this, provide a platform for this research.

The brittleness of simulation templates to VTMB problems and changes in idealization

decisions taken by analysts is presented in details. The concept of assembly system

topology which is central to the definition and characterization of VTMB problems is

defined and illustrated in this chapter. The central theme of the primary research question

is the improvement of effectiveness of analysis problem formulation. Variation in design

alternatives, idealizations decisions, and efficiency in formulating simulation templates

are presented as three key factors contributing to the effectiveness of analysis problem

formulation. The lack of effectiveness in formulating analysis problems using existing

methods is contributed to two key research gaps: (1) lack of formalization of the

knowledge used by analysts in formulating simulation templates, and (2) inability to

leverage this knowledge to define model composition methods for formulating simulation

templates. In the following chapter, a thorough review of published research, methods,

and tools relevant to these gaps is presented. This review provides a refined

 48

understanding of these research gaps, and establishes requirements for model formulation

methods developed in this research.

 49

CChhaapptteerr 33 :: RREELLAATTEEDD RREESSEEAARRCCHH

In this chapter, a research survey is presented towards answering the primary

research question (section 2.4.1). Past and existing research efforts are described and

evaluated in this survey. The purpose of this survey is twofold: (a) categorize models,

methods, and ontologies used in diverse applications in these research efforts, (b)

elaborate on the lack of existing methods to address the gaps identified in this research,

and (c) leverage existing models and methods to address these research gaps. The survey

also points to research efforts that have been directed towards similar end goals as this

research but for a different class of problems.

Table 3.1: Metrics for categorizing and evaluating related technical work

1
Design information and knowledge modeling
(design meta-model)

a Represent conceptual and detailed design models
b Domain-specific detailed design ontologies
c Open-standard and non-proprietary ontologies
d Extensibility
e Represent associated behavior models
f Export model structure from design tools (such as ECAD, MCAD tools)
g Export model instances from design tools

2 Behavior modeling
a Formulating behavior models (solution method and solver-independent)
b Relationship between design models and behavior models
c Solution method-, and solver-specific behavior models
d Behavior model building blocks (and library) & reuse
e Auto-generate behavior models from building blocks

3 Simulation templates
a Template patterns and templates for trade studies
b Auto-generate simulation templates and their components
d Multi-directional solution of simulation templates (and inverse problems)
e Adapting simulation templates to changes in idealization decisions
f Ability to address VTMB problems

4 Model definition and transformation
a Declarative representation of models (and their associativities)
b Declarative representation of model transformations

Table 3.1 above enlists a set of qualitative metrics to categorize and evaluate existing

body of research. These metrics account for the research gaps and requirements for

efficient analysis problem formulation presented in section 2.4. The research survey is

 50

presented roughly in the order in which the metrics are listed. At the end of this chapter,

the results of the survey are summarized.

3.1 Design Information and Knowledge Modeling
With geographically and temporally distributed product realization teams, it is

required that next generation product development systems create and exchange

information and knowledge across different product lifecycle activities in an information-

rich electronic form. Of particular interest to this research is the interoperability and

knowledge exchange between design and analysis systems. As a foundation, Fenves et al.

(Fenves 2004) have proposed the Core Product Model (CPM2) as a formal representation

of an artifact. It is a conceptual meta-model representing a broad range of design

concepts including requirements, form, function, behavior, material, physical and

functional decompositions, and their inter-relationships. The CPM is targeted to be (a)

software vendor solution-independent, (b) open and non-proprietary, (c) simple and

generic, (d) extendable, (e) independent of any particular product development process,

and (f) applicable through different lifecycle phases. In the context of this research,

CPM2 can serve as meta-model to represent an artifact during different design phases

(Pahl and Beitz 1996)—from conceptual design models to detailed design models to

manufacturable design models.

CPM2 is influenced by the Entity-Relationship data model (Chen 1976), and

consists of two key classes, called CommonCoreObject and CommonCoreRelationship

(equivalent to Class and AssociationClass in the Unified Modeling Language (UML))

(Rumbaugh, Jacobson et al. 2004; UML 2 2004). A UML class diagram for CPM2 is

show in Figure 3.1. The principal entity in CPM2 is the Artifact—a distinct entity in a

product (component, sub-assembly, or assembly). An artifact has properties such as

form—physical description of the artifact, function—what an artifact is intended to do,

and flow—medium for realizing transfer functions. Form consists of geometry—spatial

description of an artifact, and material—physical constituent of an artifact. A feature is a

part of an artifact’s form that has function(s) associated with it. An artifact satisfies a

specification—a collection of customer requirements. The specializations of

CommonCoreObject in CPM2 can be related to each other using specializations of

 51

CommonCoreRelationship. For instance, the Usage entity relates the definition of a

CommonCoreObject to its usage in a particular context.

Figure 3.1: Core Product Model version 2 (CPM2) - UML class diagram view

CPM2 allows one to associate behaviors to an artifact, and associate behavior models to a

behavior. However, it doesn’t specify the structure of this behavior model and the nature

of fine-grained associativities between a behavior model and other properties of an

artifact, partially so because CPM2 is intended to be open and extensible. One of the

target contributions of this research is to augment CPM2 with these representation

capabilities. CPM2 also support the use case of representing computed behavior

parameters and results of their evaluation against requirements.

As an example of CPM2’s intent to represent product information through

different lifecycle phases, the cardinality of the Aritfact-Form association reflects that an

 52

artifact may have 0 or more forms associated with it. This represents the use case that

during conceptual design stages, the form of an artifact may not be available.

It is to be noted that CPM2 represents a conceptual meta-model that can be

specialized and extended for different product domains such as aerospace, electronics,

and automotive. New domain-specific entities may be added as specializations of existing

core entities. Extensions to the Core Product Model, such as the Open Assembly Model

(Rachuri, Han et al. 2006), have been developed for specializing different aspects of an

artifact.

The ISO 10303 family of standards (STEP) is an extensive set of open standards-

based product domain ontologies, such as for mechanical design, electronics, and

automotive and cross-domain constructs such as geometry and product configuration

control. Though the intent of STEP was to enable exchange of product information across

different CAD/CAE/CAM systems, it has matured into a set of modularized ontologies

for representing different aspects of product information typically during detailed design

and manufacturing phases of the product lifecycle11. These modularized ontologies

(formally known as STEP modules) are extended and specialized into ontologies for

product application domains, such as AP210 (ISO 10303-210 2001) for electronics

products, AP203 (ISO 10303-203 2000) for mechanical products, AP214 (ISO 10303-

214 2003) for automotive products, and AP215, 216, and 218 for ships(ISO 10303-216

2000; ISO 10303-218 2000; ISO 10303-215 2001). In addition, integrated resources

provide concepts that are reusable across several application domains. For example, Part

42 (ISO 10303-42 2000) is a modular ontology for representing geometry- and topology-

related aspects of a product and is used across different product domain-specific

ontologies (such as AP210 and AP203).

In the context of this research, CPM2 and STEP ontologies are complimentary in

the sense that the former provides an organizing principle for product information that is

recurrent in different product domains through the lifecycle phases while the latter

provides rich formal information models for specific aspects of product information and

for different product application domains typically during detailed design and

11 Part 41 (ISO 10303-41 2000) and AP239 (ISO 10303-239 2000) provide representations for generic product structure

and basic product lifecycle information respectively.

 53

manufacturing phases. As an example, the Geometry entity in CPM2 can refer to the

constructs in STEP Part 42. For formulating behavior model structures to simulate

different types of behaviors of an artifact at different fidelities in different disciplines, it

is necessary to have meta-models that (a) represent different aspects of product design,

such as form, function, and requirements, and (b) are rich and formal ontologies that may

be used to create design information models, which may then be used to create behavior

models. Together CPM2 and STEP satisfy these requirements. An example of complex

analyses supported by STEP ontologies is provided by (Zwemer, Bajaj et al. 2004; Bajaj,

Peak et al. 2006) wherein detailed PCB design information available as STEP AP210

instance model is used to perform high fidelity thermo-mechanical warpage analysis.

In actual industry practice, product design information is typically available via a

collection of models, such as CAD models, enterprise databases, and auxiliary models.

Each model populates a subset of the design information shown in Figure 3.1, and

collectively all models may not populate the all aspects of design information—leading to

gap filling tools such as PCB layer stackup editors (Peak, Wilson et al. 2002; PCB Layer

Stack Editor (LKSoft) 2008). In general, CAD tools provide a good authoring

environment for form- and function-related design information—typically MCAD tools

provide detailed 3D form and ECAD tools provide 2D form and electrical function

information. There are two broad approaches for using the available design information

for analyses:

 Integrated simulation capabilities with CAD tools: Most CAD tools provide

integrated capabilities for simulating certain types of behaviors of artifacts, based on the

form and function-related information authored in these tools. For example, some MCAD

tools provide utilities to create finite element models (NX CAE (Siemens PLM)), and

ECAD tools provide utilities to create electrical simulation models (Zuken CR-5000

PSpice & HSpice). These utilities can be used to simulate only certain types of behaviors

at certain fidelities, and work well as long as all the design information required for

simulating behaviors-of-interest is available in these tools, and the behavior models can

be solved using specific solvers integrated with these tools. Additionally, cross-version

interoperability and long-term retention of design and simulation models has always been

 54

a challenge with such an approach. This approach is not extendable to other types of

analyses beyond those supported by the integrated simulation capabilities. One may argue

that CAD tools provide application programming interfaces (APIs) to extract design

information and use it for creating customized behavior models. This approach may

alleviate some potential limitations outlined above but it does not increase the set of

available design information beyond the models created in CAD tools, and there is

limited subset of this information that is accessible via the APIs. Typically, even the

extraction of form-related parameterization scheme from CAD tools via their APIs is an

open question.

 Design Integrators: To enable a wider variety of analyses, and to use customized

methods for formulating behavior models, and to allow a combination of CAE solvers to

solve them, it is necessary to integrate subsets of design information in a unified non-

proprietary standard form. For the purposes of detailed design, STEP ontologies typically

satisfy this requirement. Design integrators are tools that may be customized for an

enterprise and are used for automatically integrating design information from multiple

CAD tools, enterprise databases, and other auxiliary models. As an example, LKSoft

design integrator / importer (IDA-STEP (LKSoft) 2008) has been customized for

electronics design enterprises to create a unified STEP AP210 model from design

information sub-sets, which is then used for enabling multiple fidelities of thermo-

mechanical warpage analyses (Zwemer, Bajaj et al. 2004; Bajaj, Peak et al. 2006) and

design-for-manufacturability analyses (DFXpert (SFM Technology Inc.)) of PCBs. This

approach makes a greater sub-set of design information available for complex multi-

fidelity analyses. Also, the existence of rich open standard and non-proprietary STEP

models enables long term design information retention and reuse.

In general, the industry practice is to use both approaches depending on the types

of analyses being performed and the design information required to support them.

However, for the purpose of this research, the latter approach is preferred as it provides

for a greater subset of design information that is required to support a wider variety of

analyses.

 55

3.2 Behavior Modeling
In this section, research related to formulating behavior model structure, analysis

knowledge representation and reuse is presented. Prior to investigating existing methods

for formulating behavior models, a taxonomy of behavior models is presented.

3.2.1 Types of behavior models
Figure 3.2 illustrates a taxonomy of behavior models as a SysML block definition

diagram (SysML 2007). Behavior models may be classified in many different ways

depending upon the perspective. In Figure 3.2, each perspective is represented as a

SysML Viewpoint, and the classification of behavior models in that perspective is

contained in a SysML View. In essence, a viewpoint provides the context for

specialization and a view—confirming to this viewpoint—contains the specialization

tree. Each view has an abstract block (italicized name) which is the parent (class) for all

specializations in that view.

This approach for categorizing behavior model is extensible in the sense that other

viewpoints and views may be added and further specializations of behavior models in

each view may be created. A brief explanation of each viewpoint and confirming views is

provided below:

 56

Figure 3.2: Types of behavior models from different viewpoints

 57

 Viewpoint: Nature of domain knowledge

This viewpoint is concerned with all specializations of behavior models from a

standpoint of nature of domain knowledge used for formulating and solving behavior

models (structures and instances). A confirming view (Qual Quant View) consists of

specializations of behavior model based on qualitative or quantitative nature of domain

knowledge. In this view, there are two broad classes of behavior models—Qualitative

Behavior Model and Quantitative Behavior Model. As the names suggest, a quantitative

behavior model is used to compute the behavior of a system quantitatively in contrast to a

qualitative behavior model which is used to predict the behavior of a system in qualitative

terms. (de Kleer and Brown 1984; de Kleer 1992) have presented extensive work on

qualitative physics and its use to create qualitative behavior models. An analytical

behavior model or a numerical behavior model (such as a FEA model) is an example of a

Quantitative Behavior Model.

Another view confirming to this viewpoint is the Physics Empirical View. This

view consists of specializations of a behavior model based on whether the behavior

model is founded on physics-based concepts and theories, or empirical information. A

finite element model to predict the warpage behavior of PCBs is an example of a

quantitative Physics-based Behavior Model (Bajaj, Peak et al. 2006), while an analytical

model to predict warpage behavior based on the expertise of a PCB fabricator is an

example of an Empirical Behavior Model.

The focus of this research is to develop methods for efficient formulation of

quantitative physics-based behavior model structures. However, the intent is to not to

underestimate the valuable insights that may be obtained from formulating and solving

qualitative behavior models. Beyond verifying design alternatives, qualitative results may

guide analysts formulate higher fidelity quantitative behavior models. Though this

research focuses on physics-based behavior models, the formulation methods may be

extended to use quantitative empirical building blocks.

 Viewpoint: Variation of behavior versus stimulus

This viewpoint is concerned with all specializations of a behavior model from a

standpoint of the variation of the behavior represented by a behavior model and the

 58

stimulus for that behavior. A confirming view (Linear Non-Linear View) consists of

specializations of behavior model based on the whether the behavior represented by a

behavior varies linearly or non-linearly with respect to the stimulus. In the context of

structural behavior analysis, this would imply the behavior of the deformation of the

structure with respect to the applied loads. There may be several causes of non-linear

behavior, such as non-linear material behavior, and large deformations.

 Viewpoint: Nature of behavior parameter space

This viewpoint is concerned with all specializations of behavior models from a

standpoint of the nature of behavior parameter space. A confirming view (Lumped

Distributed View) consists of specializations of behavior model based on the lumped

behavior parameters or distributed behavior parameters. A Lumped Parameter Behavior

Model is one in which the spatial distribution of behavior parameters is idealized as a

single value, in contrast to a Distributed Parameter Behavior Model in which the behavior

parameters are spatially distributed. For example, if the temperature distribution along a

heated bar is idealized as an average temperature value in a thermal behavior model for

the bar, the thermal model would be a Lumped Parameter Behavior Model. However, if

the spatial distribution of temperature in the bar is accounted in the thermal behavior

model for the bar, the thermal model would be a Distributed Parameter Behavior Model.

 Viewpoint: Behavior model use

This viewpoint is concerned with all specializations of behavior models from a

usage standpoint. A confirming view (Behavior Model Use View) consists of

specializations of behavior model based on if a behavior model is formulated for the first

time (Original Behavior Model), is adapted from an existing behavior model (Adapted

Behavior Model), or is being reused as-is (Ubiquitous Behavior Model). These behavior

models correspond to the idea of original, adaptive, or ubiquitous analysis presented in

section 2.2.2.1.

 59

 Viewpoint: Closed form solution

This viewpoint is concerned with all specializations of behavior models from a

standpoint of solvability of mathematical relationships in a behavior model. A confirming

view (Nature of Mathematical Relationships View) consists of specializations of behavior

model based on whether they have a closed form solution or need to be solved

numerically. If all such relationships have a closed form solution, then such a behavior

model is a Closed Form Behavior Model. If these relationships do not have a closed form

solution, such a behavior model needs to be solved numerically and is known as a

Numerical Behavior Model. It is possible that some relationships in a behavior model

have a closed-form solution while others do not. All such cases in different views are

specializations of a Hybrid Behavior Model (described at the end of this section).

 Viewpoint: Solution method

This viewpoint is concerned with all specializations of behavior models from a

standpoint of solution methods for solving the mathematical relationships in a behavior

model. The solution methods depend on the nature of mathematical relations (e.g. closed

form). Hence, this viewpoint depends on the Closed form solution viewpoint as indicated

in Figure 3.2. A confirming view, Solution Method View, consists of specializations of

behavior model based on solution methods. It consists of two main classes of solution

method-based behavior models—Spatial Domain Discretization Behavior Model and

Functional Transform-based Behavior Model. The former represents those behavior

models in which the spatial domain is discretized to solve the mathematical relationships

in each discretization, such as finite element method-, finite difference method-, finite

volume method, and boundary element method-based behavior models. These are

denoted as Meshless, FEA, FDM, FVM, and BEM Behavior Model blocks in the figure.

The block Functional Transform-based Behavior Model represents those behavior models

in which analytical relationships are derived from behavior experimental data, or an

analytical relationship is decomposed into a series of analytical relationships or

transformed from one analytical form to another to aid mathematical operations (such as

integrals). This class of behavior models is represented by the Function Transform-based

Behavior Model block that has specialization such as Fourier Transform-based Behavior

 60

Model, Laplacian Transform-based Behavior Model, and Wavelet Transform-based

Behavior Model.

 Viewpoint: Variation of behavior model parameters with respect to time

This viewpoint is concerned with all specializations of behavior models from a

standpoint of variation of behavior parameters with respect to time. Static (or steady

state) behavior models are those wherein behavior model parameters are idealized to be

constant with respect to time, and dynamic (or transient) behavior models are those

wherein behavior model parameters vary with time. In Figure 3.2, the Static Behavior

Model block represents the former class of behavior models, and the Dynamic Behavior

Model block represents the latter class of behavior models. Dynamic behavior models

can be further specialized into continuous time behavior models and discrete event

behavior models depending on whether behavior model parameters are provided or

computed as continuous functions of time, or at discrete points in time. These are

represented by Continuous Behavior Model and Discrete-Event Behavior Model blocks

respectively in the figure.

 Viewpoint: Determinism of behavior model parameters

This viewpoint is concerned with all specializations of behavior models from a

standpoint of determinism of behavior model parameters. Deterministic behavior models

are those wherein all behavior model parameters are deterministic in nature, while

Stochastic behavior models are those wherein one or more behavior model parameters are

stochastic in nature. In Figure 3.2, the Deterministic Behavior Model block represents the

former class of behavior models, and the Stochastic Behavior Model block represents the

latter class of behavior models.

 Viewpoint: Behavior Context

This viewpoint is concerned with all specializations of a behavior model from a

standpoint of the context of the behavior model. Here, “context” implies the specific

“thing” whose behavior is being represented by a behavior model. A confirming view,

Behavior Context View, consists of specializations of a behavior model from this

 61

viewpoint. These specializations include: (a) Phenomenological model—represent the

behavior of a phenomena, such as an Euler Beam bending model, (b) Component

behavior model—represents the behavior of a component (physical artifact), and (c)

Process behavior model—represents the behavior of a process.

In general, a behavior model may be hybrid of the specializations in a given view.

All such hybrid behavior models are represented by the Hybrid Behavior Model block in

the figure. A Hybrid Behavior Model specializes one or more behavior model blocks in a

view since all specializations within a view may not be mutually disjoint.

3.2.2 Formulating behavior models
In this section, research related to the formulation of behavior models is presented

with special focus on the following aspects: (a) Formulating structure vs. instance of

behavior models, and (b) Formulating solution method-, and solver-independent behavior

models.

3.2.2.1 CAD-FEA integration

A major research thrust in formulating distributed parameter behavior models has

been in the area of CAD-FEA integration. Methods developed in this area are aimed at

efficient and intelligible idealization of CAD geometry to make it more amenable to

FEA. Gordon (Gordon 2001) has identified three primary geometry idealization

categories: (1) design and analysis geometry are same and no idealizations are required

(seamless case); (2) design geometry is too complex and has wrong intent, so it has to be

extensively modified to create a geometric model amenable to analyses; and (3)

engineering analysis is performed first on an idealized form to create specifications for

the actual design form. These three use cases affirm the necessity of non-causal

associativity between design and behavior models to enable the creation of one from the

other.

Armstrong et al. (Armstrong 1995; Donaghy 1996) have proposed geometric

operations for dimensional reduction and addition / suppression of features based on

medial-axis transforms and Saint Venant’s principle for creating idealized geometry for

simpler FEA meshes and faster analyses. Arabshahi et al. (Arabshahi, Barton et al. 1991;

Arabshahi, Barton et al. 1993) have proposed CAD-FEA transformation methods for

analysis to respond to changes in design, and Belaziz et al. (Belaziz, Bouras et al. 2000)

 62

have developed a feature-based tool based on morphological analysis of solid models for

integrating the design model and its idealized form. This analysis views the detailed solid

model available from CAD tools as one created from a “gross model” with

addition/modification of features. Given a solid model, this analysis creates a form

feature model (detecting the gross model and the process of feature addition / removal),

followed by simplification of features to create an idealized model, and iterative FEA

based on the idealized model. The updated idealized model is then mapped back to

update the native CAD model.

The contribution of these and other research efforts in this area that have

developed intelligent methods for creating idealized geometric models from details

design geometry is valuable but not sufficient for formulating behavior models.

Turkiyyah and Fenves (Turkiyyah and Fenves 1996) aptly state that the functional

description of the system is a key for creating behavior models. Spatial information by

itself provides little information about desired behavior and hence, insufficient for

behavioral evaluation. In addition to the idealized form, the formulation process requires

idealization of the material behavior of the artifact, and associated behavior conditions

and stimulus (such as loads)—stated in details in the definition of behavior model

formulation in section 2.1.

The workflow for formulating behavior models in most current-day CAE tools

(such as finite element tools) typically starts at creating the idealized form, or importing it

from a COTS CAD tool via their native interfaces or standard STEP- or IGES-based

interfaces. More often than not, CAE tools have limited support for importing design

form from multiple CAD tools and minimal12 support for open standards-based

interfaces. In effect, an analyst has to re-create the idealized form or refine the imported

design form. Even in the case of seamless import, there is no explicit associativity

between the design form and idealized form that will be used for analysis (such as FEA).

An additional limiting factor is the inability of most CAE tools to recognize the imported

shapes as parts, and their usages as components in an assembly, and to interpret that the

interactions between geometric shapes is the interaction between assembly components,

12 Here, minimal implies confirming to (or importing/exporting) limited aspects of standards-based description of

design form.

 63

thus compelling users to work with basic geometry entities such as vertices, edges, areas,

and volumes. However, once an idealized form is available in their analysis modeling

environment, most CAE tools provide a broad set of capabilities to formulate solution

method- and solver-specific behavior models. Newer capabilities in some FEA tools

provide for a one-way associativity between a CAD model and corresponding FEA

model (Simulia ABAQUS 2008). It enables an automated update of the FEA model when

the design form is changed. However, this associativity is static and one-way. For

changes in assembly system topology of design models, the idealization process leading

to creation of the FEA model has to be repeated.

The limitations in formulating behavior models directly in CAE tools (and hence

specific to a solver for a given solution method) can be summarized as follows:

 Inability to capture analysis intent, such as attribution of material behavior and loads to

specific parts in the design form as opposed to volumes in the idealized form

 Lack of explicit associativity between design form and idealized form

 Lack of support for VTMB analysis problems

 Need to reformulate behavior models from scratch for using capabilities of other CAE

solvers, and other analysis methods (such as FEA (Reddy 1993) and meshless analysis

(Chen, Lee et al. 2006))

Hence, this research focuses on formulating behavior models independent of

solution method and solver, and to establish explicit associativity relationships between

the design form and idealized form so as to preserve the analysis intent. In the context of

the MRA-based simulation pattern presented in section 2.2.2, this implies formulating the

CBAM. Behavior models formulated in this manner may then be solved in whole or parts

using different methods and solvers.

(Shephard, Beall et al. 2004) corroborate the approach for having an abstract

design-component model to capture analysis intent and to interface between CAD and

FEA tools. The Simulation Application Suite (Simmetrix Inc. 2006)) is one such FEA

mesh generation tool that is founded on this abstract component model. In the MRA-

based simulation pattern, the ABB system consists of an assembly of analysis bodies and

their associativities to individual parts and components in the design form. This satisfies

 64

the requirement for having an abstract design-component model for supporting multi-

fidelity analyses and can additionally be used for other solution methods apart from FEA.

3.2.2.2 Heuristic frameworks

In the past heuristic methods have been proposed to formulate problem-specific

equations from general domain equations, such as the framework developed by Yip et al.

(Yip 1993) for simplifying the Navier Stokes equations and by Ling et al. (Ling,

Steinberg et al. 1993) for generating governing equations for analysis of thermal systems.

A challenge with these approaches is to develop and assemble equations for different

fidelities for a multi-body design alternative. Most modern CAE tools possess the

capability of assembling and solving a set of relevant equations for a multi-body problem,

given a consistent set of analysis specifications (idealizations). Even then, the issue lies in

the lack of explicit associativity between the behavior model and the design model (both

at the structure and instance level) thus making the behavior model formulation process

inefficient for handling VTMB problems for adaptive and original analyses.

The heuristics-based approaches may not be sufficient but are can play an

important role on the overall solution towards model-based communication between

designers and analysts. Heuristics may help guide analysts in selecting appropriate

idealizations based on the given artifact, behavior conditions, and desired analysis

accuracy. Additionally, it may used for refining behavior models such as in adaptive

control tools for FEA pre-processors (Shephard, Beall et al. 2004).

3.2.2.3 Simulation templates

In this sub-section, behavior model formulation approaches that laid special

emphasis on integration with design models and modularity of the formulation method

are presented.

The Composable Simulation research (Diaz-Calderon, Paredis et al. 2000; Sinha,

Paredis et al. 2000; Paredis, Diaz-Calderon et al. 2001) is aimed at performing system

level behavior simulations by composing behavior models of the system components.

Each physical component is represented by means of port-based models that formally

describe its form and behavior with explicit mapping between the form and behavior

 65

ports. These port-based models can be composed to create the system level behavior

model. The ports and the internal behavioral implementations are separate, thus providing

the capability to easily reconfigure the system for different fidelities of behavioral

simulations. Although specific to mechatronics systems that are typically modeled using

lumped parameters, the composability ideas may be leveraged for creating behavior

models of a system from behavior models of components. However, much of this

research depends on the availability of behavior models of the components and this

research does not prescribe efficient ways to formulate them. Also, the methods in this

research are specifically developed for behavior models that are described using

differential algebraic equations.

The Multi-Representation Architecture (Peak 1993; Peak, Fulton et al. 1998;

Wilson, Peak et al. 2001; Peak, Paredis et al. 2005) research prescribes a modular and

reusable approach for creating behavior models from design models by stepping through

four intermediate models, as described in details in section 2.2.2. As described in that

section, the MRA can be viewed as a simulation template pattern—analogous to design

patterns (Gamma, Johnson et al. 1995) in software engineering. The reusability of this

approach is due to (a) use of analysis building blocks (such as linear elastic material) and

systems of ABBs (such as Euler beam system), and (b) non-causal description of ABBs,

ABB systems, and their associativity to design models, thus providing a model structure

for solving analysis problems and inverse problems. The process of composing the ABB

system structure from ABBs and establishing associativities to the design model structure

is manual, thus making the process inefficient for adaptive and original analyses wherein

designers and analysts perform trade studies on idealizations. Additionally, the model

structure needs to be “rewired” for assembly system topology changes inherent to VTMB

analysis problems. However, once the structure is available, it can be used to formulate

behavior model instances automatically for a family of design model instances (XaiTools

(Georgia Tech) 1999)

In the MOSAIC project-related research (Sellgren 2003), a product is divided into

sub-systems, and their mating features (what is connected) and interface features (how it

is connected) are identified. It proposes a three-layered architecture for organizing the

information in design and analysis models – the design layer for design-specific

 66

information such as geometry and material; the generic behavior layer for information

specific to behaviors of the design model, mating and interface features; and the

application layer for representing this information in a software tool (such as FEA tools).

The modularization rationale is similar to the composable simulation work—separating

the interface definition and its behavior implementations. However, this research does not

deal with organization of analysis knowledge or formulation of behavior models.

 The open standards-based information exchange methods are focused on use of

open standards to represent analysis models and their relationships to the design model.

STEP AP209 (ISO 10303-209 2001) is an ontology for representing analysis models and

the associativity between the shape representations of the design form and the idealized

form for analyses, and the idealized form for analysis to a solution method-specific form

(such as FE meshed model). Here, a relationship (“basis”) is used to link the idealized

and the nominal design shape (Hunten 2001). With the modularized STEP architecture,

the generic design model concepts in AP209 are shared with other application domain

APs, such other AP210 (ISO 10303-210 2001) for electromechanical products and

AP203 (ISO 10303-203 2000) for generic mechanical products. Further, Part 104 (ISO

10303-104 2000) provides an ontology for representing finite-element based models.

Overall, these open standards are useful for representing some types of idealization

relations (esp. geometry-related) between the design model and the analysis model, but

they do not prescribe a standards-based ontology for representing ABBs (such as material

behavior models, load models, and behavior condition models) that may be used for

creating analysis models. In the research presented in this dissertation, relevant aspects of

STEP-based ontologies are leveraged in principle and a behavior meta-model is

developed. Additionally, algorithms for automated composition of ABBs—typically

outside the scope of the subject open standards-based ontologies—are also developed.

Several methods have been proposed in the past for organizing behavior models.

Some notable methods are described here. Hoffman et al. (Hoffman and Joan-Arinyo

1998) propose a product master model mechanism so that the different behavior models

of the artifact may be linked and synchronized with a master model that contains all the

information about the artifact. Addanki et al. (Addanki, Cremonini et al. 1991) have

proposed the graph of models approach for automated selection of analysis models

 67

organized in a graph, on the basis of assumption-checking. This method is implemented

for systems characterized by ODEs and is founded on model-based reasoning techniques.

Falkenhainer and Forbus (Falkenhainer and Forbus 1991) have proposed a compositional

modeling approach using which appropriate analysis models may be searched from a

repository of analysis knowledge, based on the specific query and the structure of the

subject system. This repository is founded on the relevant domain theories (such as

thermodynamic analysis of steam plants). Since the approach is targeted for searching

models and not formulating behavior models, all possible combinations of idealizations

are explicitly modeled in this approach, which is typical known only when analysis

knowledge is mature. For adaptive and original analyses, analysts need to dynamically

compose, verify and reconfigure behavior model structures using different combinations

of idealizations and perform trade studies to select the appropriate set of idealizations.

However, the use case of efficiently organizing behavior models is a valuable one. If

behavior model structures can be characterized along some key dimensions, then

algorithms can be created to compute the “differential” between any two behavior model

structures and thus determine their degree and dimension of separation in a repository of

behavior model structures. For a given behavior model structure, one may also create a

repository of behavior model instances.

Tools such as Model Center (Engineous Software 2007) and iSight (Phoenix

Integration 2007) provide a modeling and computation framework for linking design

parameters in native CAD models and behavior parameters computed in different solver

tools (such as FEA tools). These linkages are specific to the assembly system topology of

artifacts and have to be manually updated for families of VTMB design alternatives. In

addition, mathematical relationships embodied in these linkages need to be manually

updated both for topology variations in design alternatives and idealization decisions

taken by analysts.

3.2.3 Analysis knowledge and reuse
The term “analysis knowledge” has been used in different flavors in related

research efforts. Different research efforts model different aspects of analysis knowledge

that are essential to realize their specific use cases. In essence, analysis knowledge is the

 68

union of all such aspects. Some well-known aspects of analysis knowledge are listed

below.

 Domain theoretic knowledge—including first principles such as conservation of

energy and equilibrium principles and derived behavior theories like Euler-Beam and

Timoshenko beam theories (Timoshenko and Goodier 1970)—used for computing

behaviors of artifacts

 Consistent combinations (and limitations) of different aspects of domain theoretic

knowledge, such as assumptions under which the Newton’s laws of inertia are valid

 An answer to the following question: “What domain theoretic knowledge concepts

have to be used for a specific behavior computation problem?”, i.e. when and how to

apply existing knowledge to compute behavior. Heuristic-based approaches presented in

section 3.2.2.2 specifically address this question. Other research efforts in this direction

involve automated selection of assumptions given the analysis objectives (Finn 1993;

Turkiyyah and Fenves 1996).

 Analysis intent—description of idealization decisions that help formulate a behavior

model structure and its relationships to a design model structure

 Analysis rationale—justification of why certain pieces of knowledge (and hence

certain idealizations) are used for computing behavior. The justification typically relates

to experiential knowledge of the analysts.

 Objectives of the analysis problem and limitations of analysis models

In this research, analysis knowledge specifically implies domain theoretic

knowledge, modeled as computer-interpretable analysis building blocks (ABBs), and the

consistent combinations of these ABBs that reflect valid combinations of domain

theoretic concepts. In particular, this research does not focus—without limiting such

extensions—on developing a knowledge base relating domain theoretic concepts to

family of analysis problems for which they may be used or are most useful. The

methodology developed in this research is targeted to be used by analysts in formulating

behavior model structures. Designers use a simulation template pattern that embodies the

behavior model structure to perform trade studies on instances. This assumes that

analysts are aware of the analysis rationale and hence the reasons behind the

assumptions—embodied as ABBs. However, this research does aim at representing

 69

analysis intent by (a) explicitly relating a design model structure to behavior model

structures (as shown in the definition of simulation templates in section 2.2.2), and (b)

representing idealization decisions taken by analysts as computer-interpretable

specifications for automated formulation of a behavior model structure.

 For efficient formulation of behavior model structures—the primary objective of

this research—it is necessary that ABBs be reused for formulating different behavior

model structures, and behavior model structures of components be reused for formulating

behavior model structures of systems. In the context of the simulation template for plane

stress analysis of Flap Link part example illustrated in Figure 2.3, this would imply using

the plane stress ABB model for plane stress analysis of different mechanical parts, and

reusing the entire Flap Link plane stress CBAM for developing a plane stress CBAM of a

system with multiple Flap Link parts.

 Peak et al. (Peak 1993; Peak, Fulton et al. 1998; Peak, Fulton et al. 1999; Zeng

2004; Bajaj, Peak et al. 2006) have demonstrated the advantages of abstracting domain

theories as ABBs and using ABBs to create behavior models. Here ABBs embody

specific assumptions that are used for creating a behavior model. They have shown

special types of primitive ABBs for mechanical and thermo-mechanical analyses, such as

material behavior ABBs, load ABBs, geometry ABBs, and boundary condition ABBs.

These ABBs can then be used to create phenomenological models, such as Linear

Extensional Rod model, Euler Beam model, Linear Torsion model, and Plane Stress

behavior model. A phenomenological model is a type of a complex ABB.

Phenomenological models can then be used to create component behavior models, such

as the Plane Stress ABB is used to create plane stress behavior model for the Flap Link

part (Figure 2.3). Turkiyyah and Fenves (Turkiyyah and Fenves 1996) propose that

analysis assumptions should be modeled explicitly using declarative aspects that define

the scope, content, and the validity of assumptions, and procedural aspects that define the

transformations to the behavior model when the subject assumption is applied. It is to be

noted that ABBs are representative of types of assumption choices available to analysts.

The above effort only models the declarative aspects of ABBs. In the research presented

in this dissertation, this will be augmented with the procedural aspects, thus aiding

automated composition of behavior models (structures) from ABBs. In addition, this

 70

research shall also investigate the characteristic dimension of ABBs and develop a meta-

model for building a library of ABBs.

 Robinson et al. (Robinson, Nance et al. 2004) aptly state that the validity of

simulation models when being used in a context different from the original use is factor

that limits reuse. In this light, ABBs themselves embody domain theoretic knowledge,

and the creation of each ABB should be followed by a formal verification method to

check if it repreents the domain knowledge correctly. On the other hand, the use of ABBs

for creating component and assembly-level behavior model structures deserves rigorous

validation for the following reasons: (a) not all ABBs (assumption choices) are mutually

consistent, and (b) ABBs used (assumptions) for creating behavior model structures may

not be valid when analysis specifications are changed—the linear extensional model of

the Flap Link part will not be a valid behavior model if the end loads on the part were

torsional in nature.

 The research presented in this dissertation leverages the work of (Finn 1993) that

states the different types of approximations to physical system and phenomena for

developing a behavior model. These include approximation of: (a) geometry of physical

system, (b) physical phenomena being modeled, (c) boundary conditions, (d) material

properties, and (d) approximation of control volume (esp. for thermal convection

problems).

 Grosse et al. (Grosse, Milton-Benoit et al. 2005) have proposed an ontology for

supporting reuse, adaptation, and interoperability of engineering analysis models. This

ontology provides an extensive listing of generic properties of analysis models that can

be used to archive, identify and reuse them. In comparison, this is akin to the secondary

use case of this research. The primary use case is to create behavior models. In the work

presented by Grosse et al., an analyst (or a knowledge engineer per their terminology) has

to explicitly categorize and document the decisions taken while creating an analysis

model in terms of these generic properties. Further, most of the key properties, such as

model idealization and model limitation, are represented as text strings. This limits the

ability to search analysis models based on these properties since typically there are no

commonly well-accepted standard string values for these properties. Also, the

idealizations and limitations identified by an analyst may be coupled (or even contradict)

 71

each other. It is difficult for algorithms to identify these couplings and contradictions if

the instances are text strings with no bounds on values. The ontology proposed by Grosse

et al. agrees well with our perspective on model formulation versus solution methods – it

identifies continuum, lumped parameter, and empirical-based idealizations for physics-

based models, and several numerical solution techniques for solving these problems. In

their ontology, the related physical system (or the design model) is a property of an

analysis model. This is a coarse-grained associativity between an analysis model and a

design model as opposed to fine-grained associativity that the automated methods

developed in this research aim to establish. The research presented in this dissertation

develops an extensible behavior meta-model based on an ABB meta-model for

representing behavior model structures, which are then used to represent behavior model

instances. It is strongly believed that behavior model structures confirming to this meta-

model will provide an inherent description of the idealizations (performed to create them)

by the virtue of the ABBs that compose them.

3.3 Model Definition and Transformation
In this section, declarative model definition and transformations approaches are

described in the context of the modeling requirements for this research.

3.3.1 Model Definition
This section focuses on modeling paradigms and languages necessary for

representing the types of models relevant to this research—artifact design models,

behavior models, and analysis building block models (all three at both the structure and

instance levels).

Some well-known representations for modeling knowledge are: productions

(rules), semantics nets, schemata, frames, scripts and logic (Giarratano and Riley 1998).

Productions formalize the knowledge by identifying preconditions, which when satisfied

will result in actions. Semantic nets are used to model propositional information and

formalize knowledge by identifying relationships (such as is-a, has-a) between nodes.

Though they provide ease-of-expression, semantic nets have a non-definite (lack of

representation for cardinality of relationships, aggregates of nodes) and shallow

knowledge structure (attributes of a concept are represented as nodes, like the concept

itself). A Schemata or a Schema is a deep knowledge structure, unlike semantic nets.

 72

Using this, we can represent knowledge related to the properties of artifacts. Frames and

Scripts (time-ordered sequence of frames) are different types of schema. Frames are used

to describe knowledge typical to a given situation (snapshot in time). They may be: (a)

situational frames – knowledge as to what to expect in a given situation, (b) action frames

- knowledge about what to do in a given situation and (c) causal knowledge frames -

combining situational and action frames to represent causal knowledge. The attributes of

a frame are known as slots and their values are known as fillers. For example, a frame

“car A” has an attribute “color” with value “black”. Frames can be grouped together into

new frames (such as “car”). This is similar to the class and object terminology in object-

oriented programming and schema and instance terminology in databases.

Most declarative formalisms for information and knowledge modeling in

engineering are frame-based, such as EXPRESS (ISO 10303-11 2001) which is used by

the STEP family of standards and SysML (SysML 2006) which specializes the UML

formalism for systems engineering. Essentially, they provide entities to represent

concepts in a given universe-of-discourse, attributes to represent the properties of this

concept, constraints to bound the values of the attributes (such as where-rules in

EXPRESS, constraint blocks in SysML, constraints in COBs (Wilson 2000), OCL (UML

2 OCL 2004)), and relations to represent the relationships between the attributes and

entities (such as association, aggregation in (UML 2 2004)). In the recent past, the term

ontology is used to define a set of representational primitives to model a universe of

discourse. These representational primitives are classes (or sets), attributes (or

properties), and relationships (relations between classes) (Gruber 1995; Gruber 2007). An

ontology provides semantics to communicate about a domain. As an example, STEP

AP210 (ISO 10303-210 2001) is an ontology for describing the design of electro-

mechanical products. It provides concepts, their inter-relationships, and validity for

describing design-related information for electromechanical artifacts.

Logic is the study of the rules of exact reasoning. Formal logic focuses on the

structure or the form of logic and not the semantics. Just as algebra can be used for

uniquely formulating problems with different semantics, formal logic can be used for

reasoning about objects without concerning itself with semantics of the objects. Predicate

Logic was developed to analyze the internal structure of statements, and propositional

 73

logic (subset of predicate logic) deals with IF- THEN structure only. The simplest form

of predicate logic is first order predicate logic that consists of universal and existential

quantifiers.

Description Logics (a.k.a. DL) (Calvanese, Lenzerini et al. 1998) is a family of

knowledge representation languages that provides the capabilities of “description”—

describing a domain, and “logic”—rules to reason about the domain. The purpose of DL

languages is to model domains in a manner that formal reasoning can be performed on

these domains. With reference to object-oriented modeling, in DL a class is modeled as

an atomic or complex concept representing a set of objects, and a relationship is modeled

as atomic (or complex) role representing sets of pairs of objects. Complex concepts and

relationships are modeled as expressions consisting of atomic concepts, roles, and logical

operations. Examples of these operations are: ¬ negation (complement), ∪ disjunction

(or union), and ∩ conjunction (or intersection). In addition restrictions can be placed on

sets by using the value restriction quantifier ∀ and the existential quantifier ∃.

Representing a set of concepts using DL constructs allows one to use DL reasoners such

as (RacerPro 1997) to verify the non-redundancy of concepts, non-empty concepts, and

check subsumption relationships (subset) between concepts. DL languages and reasoning

engines can be helpful in developing a knowledge base of concepts. In the context of this

research, this technology can be helpful in extending and validating a library of ABBs

provided ABB models can be formalized as DL expressions. The primary objective of

this dissertation is to identify key characteristics of ABBs and to develop model

transformation methods to formulate behavior model structures. Developing formal

methods to validate a library of ABBs will be a valuable future extension. It is also to be

noted that several object-oriented languages (such as EXPRESS) themselves are founded

on set theory-based concepts. A reasoning engine could possible be built to validate the

semantic consistency and non-redundancy of models expressed in these languages. It is

also worth noting that object-oriented languages ((ISO 10303-11 2001; UML 2 2004;

SysML 2007)) provide enhanced ease of expressiveness for modeling real world

concepts. DL languages provide constructs to enable formal reasoning based on these

concepts. It is best to combine the easy of expressiveness with formal reasoning

capabilities in developing model repositories and ontologies. In this dissertation, SysML

 74

is used extensively to represent design and behavior meta-models and models for the

following three reasons in particular: (a) ease of expressiveness in defining the models,

(b) representation of fine-grained relationships in a non-causal manner, as modeled using

SysML parametric diagrams, and (c) applicability to systems design and analysis

problems in general—representation of different types of systems and behaviors.

3.3.2 Model Transformations
Existing foundations of model transformations hold key to the research presented

in this dissertation. The formulation of behavior model structures from an artifact design

model structure given a set of analysis specifications is a type of model transformation.

The intent of this aspect of the technical survey is to understand existing approaches to

model transformation and to select one that is more suitable for the primary use case of

this research.

Analogous to traditional data computing wherein the operands are numbers and

operators transform numbers (such as add, subtract, divide, and multiply numbers),

model transformation can be viewed as a form of computing where the operand is a

model and the operators are transformation rules. Over time, the term model

transformation has tended to imply transformations of object-oriented models as opposed

to program transformation that deals with transformations of computation statements

(such as those in imperative programming and functional programming) and is a

relatively mature field in computer science. In contrast to program transformation

systems that are based on mathematically-oriented concepts such as term rewriting,

functional programming, and attribute grammars, model transformation systems tend to

be based on object-oriented principles (Czarnecki and Helsen 2006).

Figure 3.3 illustrates the basic idea of model transformation. A model

transformation process transforms a source model that confirms to a source meta-model

(or schema) to a target model that confirms to a target meta-model (or schema). The two

enablers for this transformation are: (a) transformation definition—describes how the

transformation is to be achieved, and (b) a transformation engine—executes the

transformations described in the definition. It is to be noted that the definition of a

transformation is based on the source and target meta-models while the transformation

engine executes this definition on source models (instances of source meta-model).

 75

(Czarnecki and Helsen 2006) present a classification scheme to characterize

different model transformation approaches. Figure 3.4 illustrates this classification

scheme. Here, different aspects of this classification scheme are summarized and their

relevance to this research is described.

 Specification implies the definition of the transformation itself. There are two main

methods to specify a transformation. In one method, the source model (operand) and the

transformation function (operator) are given and the target model (result) is computed.

In the second method, the source model (operand) and the target model (result) are

given and the transformation engine automatically figures a way to achieve the target

model from the source model. In method 1, the operator may be encoded as a procedural

code. In contrast, method 2 is more declarative in the sense that one describes the source

and target models and not the specific computation process. In the context of this

research, method 2 is adopted versus method 1.

Figure 3.4: Classification scheme for model transformation approaches (Czarnecki and Helsen 2006)

 Transformation rule is the atomic unit of the model transformation process. Typically,

transformation rules are declaratively represented with a LHS pattern and a RHS

Figure 3.3: Basic concepts of model transformation (Czarnecki and Helsen 2006)

 76

pattern. However, they may also be imperatively represented as a procedure or a

function. Transformation rules consist of three main building blocks: (a) Variables that

bind to model elements such as entities and relationships, (b) Patterns that consist of

variables and bind to model fragments, and (c) Logic that defines the computation

process. Variables, patterns, and logic could be syntactically typed or semantically

typed. For declarative transformation rules, the transformation engine binds the LHS

pattern to all matching fragments of the source model and replaces them with the RHS

pattern to create the target model. For an imperative transformation rule, the

transformation engine executes the procedure or function in the transformation rule. In

the context of this research, the transformation rules are described declaratively as this

will allow analysts to express the intent of behavior model structure formulation

process without having to describe a procedure to formulate it. For example, for the

plane stress CBAM for the Flap Link part in Figure 2.3, the analysis intent is to

idealize the Flap Link part as a plane stress body. Declaratively, this is achieved by

specifying the source Flap Link model and the target model—CBAM fragment that

shows the Flap Link part wired with a Plane Stress body. Imperatively, this would have

to be realized by writing a procedure to create the target model from the source model.

Some other notable aspects of transformation rules are:

o Multi-directionality describes if a transformation rule can be executed in multiple

directions and causalities. In this research, transformation rules are being used to

create the structure of a behavior model and are uni-directional. However, the

structure itself may have relationships that may be solved in multiple directions

(for inherently non-causal relations) to compute instance values.

o Application conditions describe necessary conditions that must be satisfied before a

rule can be executed.

o Parameterization allows for passing parameter value (flags), data types, or even

other rules to influence the behavior of a given rule.

 Rule application control primarily deals with the scope (local determination) of the

model fragment to which a given rule is applied, and scheduling strategy to determine

which rules are executed before others. There may be multiple matches of the LHS

 77

pattern of a rule in the source model. Transformation engines implement different

application strategies—deterministic, non-deterministic, and interactive. In the context

of this research, the deterministic strategy is required as it is desired that the

transformations be applied to all possible matches in the source model. This is one of

the key requirements for selecting a transformation engine that can be used for VTMB

problems. Another notable aspect of rule application control is scheduling. In the

context of this research, a transformation engine that allows for explicit scheduling is

preferred since there is a sequence to the process of formulating a behavior model

structure. In contrast, transformation engines with implicit scheduling do not allow

users to control the execution order of rules.

 Rule organization deals with how rules may be packaged in a repository for reuse.

 Source-Target Relationship deals with the following transformation options: (a)

creating a new target model that is different from the source, or (b) updating the source

model to be the target model. In the context of this research, the latter approach is

preferred as it allows for not duplicating the source model (artifact design model) and

establishing associativities from the design model structure to the behavior model

structure.

 Incrementality deals with the capability to efficiently synchronize the source and the

target models when either one is changed.

 Directionality deals with the ability to execute transformations in one versus multiple

directions. For model synchronization, it is desired that transformations be executable

in multiple directions. This distinction holds importance when the source and the target

models are not related. However, in the context of this research, the target model

includes the source model and associativities to the source model itself. This is similar

to the triple graph grammar approach (Konigs 2005) wherein the transformation rule

not only creates the target model but also the associativities between the source and the

target model.

 78

 Tracing deals with recording the runtime process of transformation execution.

(Czarnecki and Helsen 2006) discusses several model to model transformation

approaches. Of particular interest to this research is the graph transformation-based

approach to model transformations. This particular approach is founded on the strong

mathematical theory behind graphs and graph transformation—summarized by (Andries,

Engels et al. 1999; Engels and Heckel 2000). This approach typically applies to models

that may be abstracted as typed, attribute, labeled graphs which as (Czarnecki and Helsen

2006) point out is a formal representation of simplified class models. Two of the

outstanding features of this approach are: (a) the ability to specify transformation rules in

a declarative manner, leading to ease of modeling and model maintenance, and (b) the

ability to apply transformations simultaneously to all fragments of the source model that

match with the LHS pattern of a transformation rule—in contrast to sequential

application for imperative transformations. A pitfall with this approach—in its native

form—is the lack of explicit rule scheduling, thus leading to issues such as non-

termination of transformations. However, newer graph transformation tools such as

VIATRA (VIATRA 2007) fill this gap by providing a state machine-based controller to

schedule the order of application of rules. It is worth pointing out that the definition of

the transformation rule itself is declarative but the application of transformation rules is

specified as a procedure. This approach is also intuitive to the realm of object oriented

modeling as such models can be viewed as graphs in an abstract sense. Another potential

weakness of the graph transformation-based approach is the treatment of ordered graphs,

such as when representing methods as graphs where the ordering of statements is

important (Czarnecki and Helsen 2006).

The objective of this research is to select a graph transformation system that

satisfies the specific requirements for the primary use case. The research contribution

lies in demonstrating the impact of such a graph transformation approach and system on

the problem that this research addresses versus making improvements in the fundamental

paradigms and algorithms that graph transformation approaches and systems are

founded on.

 79

A graph transformation rule r = (L, R, K, glue, emb, appl) consists of a left hand

side graph L and a right hand side graph R, an interface graph K which is a subgraph of

L, an occurrence glue of K in R, an embedding relation emb that relates the nodes in L to

the nodes in R, and a set of application conditions appl that need to be satisfied for a

subject graph for this rule to execute on it (Andries, Engels et al. 1999). The application

of the rule r to a given graph G yields a graph H, denoted as G =>r H, in the following

five steps (also illustrated in Figure 3.4).

Step 1: CHOOSE an occurrence of the left hand side graph L in graph G.

Step 2: CHECK if the application conditions, appl are satisfied

Step 3: REMOVE the occurrence of L upto the occurrence of K in G. Also remove any

dangling edges—edges incident on deleted nodes.

Step 4: GLUE the resulting graph D in Step 3 with the right hand side graph R of rule r.

This results in a disjoint union of graph D and R.

Step 5: EMDED graph R in D, i.e. establish all relationships between R and D per the

embedding relations in emb.

Figure 3.5: Illustrative definition of a graph transformation rule (Andries, Engels et al. 1999)

Different graph transformation approaches realize these basics steps in different

ways. In general, the CHOOSE step requires the Injectivity condition—the occurrence of

 80

L in G be isomorphic to L. Less restrictive conditions are the Contact condition—no

dangling edges will arise in the REMOVE step, and Identification condition—occurrence

of L in G should only compare nodes and edges in the interface graph K. A single

pushout rule has empty application conditions and empty embedding relations. A double

pushout rule has a contact and identification condition but empty application condition. A

rule with a single node in the left hand side graph L and empty interface graph is a node

replacement rule.

It is worth noting that there is a fundamental difference in the use case of graph

grammars versus model transformation using graph transformations. Graph grammars

consist of a set of formal production rules to generate a language (or expressions) based

on a set of terminal symbols. The terminal symbols have semantics in their own right,

and the syntactic arrangement of terminal symbols in an expression obeys the grammar.

The semantics of an expression is determined by the semantics of the terminal symbols

and the relative arrangement of terminal symbols in the expression. This is similar to the

English language wherein the semantics of a sentence is determined by the semantics of

the individual words and the relative arrangement of words. The primary use case for

graph grammars is to generate a language of graphs based on terminal graphs and

productions specified in the grammar. This would be useful when one intends to generate

all possible models that could be created using a given set of transformation rules, as in

generating a family of all possible design alternatives (Mullins and Rinderle 1991).

However, the primary use case for this research is to create a specific behavior model

structure that embodies the idealizations specified by an analyst. Graph transformations

with explicit scheduling serve the needs of this specific use case.

3.4 Summary
A summary of the technical survey presented in this chapter is shown in Table

3.2. The table shows only the most relevant research efforts in the columns. The rows

correspond to qualitative metrics for evaluating and comparing these research efforts. The

coloring grades these research efforts based on the qualitative metrics.

 81

Table 3.2: Summary of technical survey (shows most relevant references only)

 82

CChhaapptteerr 44 :: RREESSEEAARRCCHH GGAAPPSS,, QQUUEESSTTIIOONNSS && HHYYPPOOTTHHEESSEESS

The objective of this chapter is to transition from the statement and descriptions

of the problem and gaps that this research addresses to developing hypotheses for a

possible solution approach. The primary question that motivated this research is as

follows: How can we improve the effectiveness of the analysis problem formulation

process for VTMB problems? In this light, two key research gaps identified in Chapter

2 were:

 lack of formalization of the knowledge used by analysts in formulating simulation

templates

 inability to leverage this knowledge to define model composition methods for

formulating simulation templates

Based on the related research presented in Chapter 3, it can be concluded that

existing methods and approaches are ineffective in formulating and adapting simulation

templates for VTMB problems and changes in idealization decisions taken by analysts.

Based on the factors contributing to the effectiveness of analysis problem formulation

presented in Chapter 2 and survey of existing methods in Chapter 3, the primary research

hypothesis is presented in this chapter. Based on the primary hypothesis, two secondary

research questions are posed for this research. Hypotheses for the secondary research

questions are also stated.

4.1 Primary Research Question (PRQ) and Hypothesis (PRH)

PRQ: How can we improve the effectiveness of the analysis problem formulation

process for VTMB problems?

PRH: We can improve the effectiveness of the analysis problem formulation process for

VTMB problems by:

 abstracting the analysis building blocks (ABBs) that may be reused for composing

simulation templates

 abstracting the intent of the idealization decisions taken by analysts, and using it to

drive the process of formulating simulation templates

 83

 systematically and automatically composing simulation templates using ABBs and the

idealization decisions taken by analysts

4.2 Secondary Research Questions and Hypotheses (SRQ/Hs)
SRQ1: How can we formalize an ABB such that it can be reused for composing

simulation templates?

SRH1: We can formalize an ABB such that it can be reused for composing simulation

templates by:

 using a non-causal, declarative formalism to describe the concept and the knowledge

represented by an ABB

 using a model transformation-based formalism to describe the method for using an

ABB when composing simulation templates

SRQ2: How can we systematically and automatically compose simulation templates from

ABBs?

SRH2: We can systematically and automatically compose simulation templates from

ABBs by:

 representing idealization decisions in terms of specific ABBs to be used in composing

simulation templates and the conditions for using these ABBs

 formalizing the process of composing simulation templates as a model transformation

process that automatically creates simulation templates for VTMB design alternatives

and idealization decisions

 84

PART 2: KNOWLEDGE COMPOSITION METHODOLOGY (KCM)

 85

CChhaapptteerr 55 :: KKCCMM OOVVEERRVVIIEEWW

The Knowledge Composition Methodology (KCM) is the contribution of the

research presented in this dissertation. KCM is a collection of models and methods that

enable effective formulation of analysis problems. KCM models and methods are based

on the research hypotheses stated in the previous chapter. The KCM Framework is a

computational embodiment of the KCM. The purpose of the KCM Framework is to (a)

provide a testbed for KCM implementations, and (b) test research hypotheses. The

chapters presented in Part 2 of this dissertation describe different aspects of the KCM

Framework. Figure 5.1 illustrates the components of the KCM Framework as a SysML

package diagram.

Figure 5.1: KCM Framework components

The components of the KCM Framework are as follows:

 Requirements – functional and design requirements of KCM based on research

hypotheses and research gaps presented in the previous chapter. KCM requirements

are presented in this chapter.

 Use Cases – use cases of KCM based on research hypotheses presented in the

previous chapter. KCM use cases are presented in this chapter.

 Simulation Template Patterns – patterns that define the structure of simulation

templates for analysis problems. In this dissertation, the MRA pattern is used for

formulating simulation templates for computing physics-based behavior. Similarly,

 86

other simulation template patterns may be included in this package. See section 2.2.2

for the definition of simulation templates and the MRA pattern in the context of this

research.

 Behavior Model Formulation Method – method to formulate behavior model structures

and hence simulation templates (presented in Chapter 8).

 Meta-Model Library – library of meta-models relevant to KCM. This consists

primarily of the KCM_Meta-Model which is a collective meta-model for representing

design and analysis models for VTMB problems, and consists of:

 CPM2_xKCM – extension of the Core Product Model (Fenves 2004) meta-model for

representing abstractions of an artifact, such as designed artifact, manufacturable

artifact, and analyzable artifact (presented in Chapter 6)

 CBM – a meta-model for representing artifact behavior models—both structures and

instances—for VTMB problems (presented in Chapter 7)

 ABB Meta-Model – a meta-model for representing ABBs for composing behavior

models for VTMB problems (presented in Chapter 7)

 Generic_Properties – a meta-model for representing generic properties such as

geometry and material that are used for all meta-models in the KCM_Meta-Model

(referred in Part 2 and defined in Appendix 3).

Other meta-models in this library may include for example STEP (ISO 10303)-based

modules that provide concepts for representing detailed design aspects of domain-

specific VTMB alternatives. For instance,

 Model Structure Library – a library of model structures for test cases in the KCM

Framework

 Model Instance Library – a library of model instances for test cases in the KCM

Framework

The components of the KCM Framework are designed to be extensible for different

design domains and different types of analyses.

 87

5.1 Requirements
The Requirements component of the KCM Framework consists of requirements

for KCM distilled from the research gaps and hypotheses. These requirements are

formalized in two sets:

 KCM Framework Functional Specification consists of KCM requirements distilled

from research hypotheses and research gaps.

 KCM Framework Design Specification consists of KCM requirements from the

standpoint of a methodology developer and which when satisfied will also satisfy the

functional specification above.

Figure 5.2 illustrates the functional and design specifications of KCM using a SysML

requirements diagram. The KCM Framework Functional Specification consists of the

following three requirements:

 Effectiveness – requirement related to the effectiveness of formulating analysis

problems. This consists of three sub-requirements, namely VTMB Variations,

Idealization Variations, and Efficiency. Collectively, these requirements state that the

KCM will enable effective formulation of analysis problems by providing effective

methods to handle VTMB variations and variations in idealization decisions taken by

analysts. The Effectiveness is based on the definition of effectiveness in the context of

this research (section 2.4).

 Knowledge Representation – requirement related to representing ABBs that embody

the knowledge used by analysts in formulating behavior model structures.

 Automated creation of simulation templates – requirement related to providing

methods to automatically compose simulation templates for VTMB problems from

ABBs.

The formal statements of these requirements are presented in Figure 5.2 as

requirements text property. Note that these three functional requirements are not mutually

independent. The Effectivenss requirement and its sub-requirements are refined by the

other two requirements, as shown by the <<refine>> relationship between these

requirements. The Knowledge Representation requirement and Automated creation of

simulation templates requirement are based on a specific approach to enhance the

 88

effectiveness of formulating analysis problems for VTMB design alternatives. This

approach is founded on the research hypotheses presented in the previous chapter.

Figure 5.2: KCM Framework requirements – functional and design specifications

The KCM Framework Design Specification consists of the following three

requirements:

 Meta-Models – requirement related to providing meta-models for representing all

VTMB design models, behavior models, and ABB models.

 ABB Models – requirement related to providing an extensible library of ABBs that are

building blocks of behavior model structures.

 Behavior Model Formulation – requirement related to providing methods to compose

behavior model structures (and hence simulation templates) from design model

 89

structures, ABBs, and behavior model formulation specifications (embody the

idealization decisions taken by analysts).

The KCM Framework design requirements are derived from the functional requirements.

Hence, each design requirement is related to the corresponding functional requirement

with a <<deriveReqt>> relationship.

 Figure 5.3 illustrates the KCM Framework components that satisfy the KCM

design requirements (KCM Framework Design Specification). The Behavior Model

Formulation Method component of the KCM Framework shall satisfy the Behavior Model

Formulation requirement; the KCM_Meta-Model components (CPM2_xKCM, CBM,

ABB_Meta_Model) shall satisfy the Meta-Models requirement; and ABB_Model_Library

component of the KCM Framework shall satisfy the ABB_Models requirement.

Figure 5.3: KCM Framework design requirements satisfied by other components

5.2 Use Cases
A Use Case is the specification of actions performed by the system which yields

an observable result that is of value for one or more actors or other stakeholders of the

system (UML 2 2007). KCM use cases—represented by the Use Cases component of the

KCM Framework—are a collection of use cases relevant to the KCM Framework. A use

case diagram identifies a system, the use cases for that system, and the actors who are

related to these use cases. In the context of the KCM Framework, the subject system is

the framework itself as illustrated as a SysML Use Case diagram in Figure 5.4. The

 90

figure also shows the use cases and the actors who are the key stakeholders in the

framework. A line connecting an actor to use case(s) represents the communication that

occurs between the actor and the framework in realizing the actions specified by the use

case(s). The primary use case of the KCM Framework is to automatically create

simulation templates. This is represented by the Generate Simulation Template use case

in Figure 5.4. The primary end-users of the KCM Framework are designers and analysts.

However, the use cases are presented from the context of the KCM Framework as a

whole, including actors such as framework developers and modelers who define and

extend the KCM Framework. Hence, it shows use cases that are relevant to the

methodology developer (author of this dissertation).

Figure 5.4: KCM Use Cases

 91

In these use cases, the term “Generate” implies automated creation by a computer-based

method in these use cases. The use cases of the KCM Framework are summarized as

below:

 Create Meta-Model use case concerns creation of meta-models for KCM Framework.

The KCM Developer actor (author of this dissertation) shall realize these use cases in

the form of KCM_Meta-Model component (see Figure 5.1) of the KCM Framework.

 Extend Meta-Model use cases concerns extending meta-models of the KCM

Framework by KCM Developer actors and Modeler actors—users who are well-versed

in the object-oriented concepts of the KCM. Designers and senior analysts provide

specific scenarios (modeling needs) that aid in extending design and behavior meta-

models respectively.

 Create Model Structure use case concerns the creation of model structures by

designers (represented by the Designer actor), junior analysts (represented by the

Junior Analyst actor), and senior analysts (represented by the Senior Analyst actor). It

consists of the following three specialized use cases:

 Create Design Model Structure use case concerns creating VTMB design model

and analyzable design model structures by designers.

 Create ABB Model use case concerns creating the structure of the ABB models by

senior analysts.

 Formulate Behavior Model Structure / Simulation Template use case concerns

automated generation of the behavior model structure and simulation templates. It

consists of following two sub-use cases (as also illustrated by the <<include>>

relationship in Figure 5.4):

 Create Behavior Model Specifications use case concerns formulating analyst

idealization decisions as specifications for formulating behavior model

structure.

 Generate Simulation Template use cases concerns automatically creating the

behavior model structure (and hence simulation template).

 Execute Simulation Template (Design Verification Scenario) use case concerns

execution of simulation templates for design instances, thereby automatically

generating behavior model instances.

 92

 Execute Simulation Template (Design Synthesis Scenario) use case concerns

execution of simulation templates for behavior model instances, thereby

automatically generating design model instances.

5.3 Organization of KCM Components

 Figure 5.5 illustrates the organization of KCM components in this dissertation. In

this chapter (Chapter 5), an overview of the KCM Framework components was presented

followed by requirements and use cases of the KCM Framework. In Chapter 6, different

abstractions of VTMB design models are presented. This includes definition and detailed

description of the CPM2_xKCM meta-model and its abstractions. In Chapter 7, the

different abstractions of behavior models are presented. This includes definition and

detailed description of the Core Behavior Model (CBM) and the ABB Meta-Model. In

Chapter 8, the Behavior Model Formulation Method (BMFM) and the underlying model

transformation approach is presented. The BMFM is used for formulating simulation

templates—composing behavior model structures given VTMB design model structures,

ABB models, and analyst idealization decisions. In Chapter 9, two test applications of the

Behavior Model Formulation Method are presented in details. These test applications

concern the formulation of simulation templates for thermo-mechanical analyses of

multi-stratum printed wiring boards (PWB) and multi-component chip package designs

respectively.

Figure 5.5: Organization of KCM Components

 93

CChhaapptteerr 66 :: CCPPMM22__XXKKCCMM -- AANN AARRTTIIFFAACCTT MMEETTAA--MMOODDEELL

The focus of this chapter is to present the different abstractions of design models

for representing variable topology multi-body alternatives. Representation of design

models is a central component in formulating simulation templates using the Behavior

Model Formulation Method. The different abstractions of design models for VTMB

design alternatives are founded on CPM2_xKCM—a meta-model for representing

VTMB design alternatives for all families of artifacts. In this chapter, the CPM2_xKCM

meta-model is presented first, followed by the other abstraction levels and examples in

section 6.2.

CPM2_xKCM is an extension of the Core Product Model, CPM2 (Fenves 2004),

for the Knowledge Composition Methodology (KCM), and it is used to represent

abstractions of an artifact for design, analysis, and manufacturing lifecycle phases, and

the relationships between these abstractions. In the context of simulation templates these

abstractions are necessary to define an artifact for the purposes of formulating behavior

models of that artifact. In some scenarios behaviors of an artifact may be computed from

its design description, while in other scenarios they may be computed from an artifact’s

manufacturing description. Depending upon the product realization process, additional

Figure 6.1: VTMB Design Model Abstractions based on CPM2_xKCM – focus of this chapter

 94

artifacts and features may be added to an artifact assembly when transforming design

descriptions to manufacturing descriptions. Hence, it becomes necessary to evaluate the

behavior of artifacts from both design and manufacturing descriptions. In both of these

scenarios, analysts perform idealizations or add additional details to an artifact’s

description for analysis purposes. In doing so they create a description of an artifact that

is ready for a family of analyses. In the KCM, this description is known as the

Analyzable Artifact Model (or Analyzable Product Model) as shown in Figure 6.2. While

the Core Product Model provides a basic foundation for representing artifacts across their

lifecycle, CPM2_xKCM extends it by adding these abstractions.

In essence, CPM2_xKCM is a meta-model for defining an artifact as originating

from CAD/CAM tools and its idealizations (AAM / APM) for analysis purposes.

CPM2_xKCM is a component of the KCM_Meta-Model as shown in Figure 5.1, and can

be specialized for different product domains. Detailed analyses in each product domain

shall require a detailed domain-specific meta-model. The Knowledge Composition

Methodology presented in this dissertation relies on the STEP (ISO 10303) application

protocols (APs) and modules for detailed product definition. The STEP APs provide

domain-specific meta-models that can be viewed as specializations of CPM2 and

CPM2_xKCM.

Scope of
KCM_Meta-Model

Scope of
CPM2_xKCM

Figure 6.2: Scope of CPM2_xKCM in MRA simulate template pattern

 95

Hence, behavior model formulation methods developed using CPM2_xKCM are

applicable both for low fidelity analyses performed during conceptual design phases and

high fidelity analyses performed during detailed design phases. In this chapter,

CPM2_xKCM is described in section 6.1, and is illustrated with examples in section 6.2.

6.1 Description of CPM2_xKCM
In this section, CPM2_xKCM is described. There are two types of extensions to

CPM2 that were done to formalize CPM2_xKCM. These are: (a) minor modifications to

the existing concepts (esp. relationships) in CPM2, and (b) addition of new concepts—

entities and relationships—to CPM2. The basic concepts in CPM2 with minor

modifications are described in section 6.1.1 and new concepts are described in section

6.1.2.

6.1.1 CPM2_xKCM View 1: CPM2 with minor modifications for the
Knowledge Composition Methodology
Figure 6.3 illustrates all the key classes in CPM2. While the Core Product Model

was originally presented using UML, it is presented using SysML in this dissertation.

Refer to Appendix 2 for a summary of SysML constructs used in this dissertation. All

models and meta-models in KCM are described using SysML as it provides a common

formalism to define and relate models at different levels of abstractions and to establish

fine-grained associativities between them. In the SysML-based version of CPM2, a UML

class maps to a SysML block, and a UML association class maps to a block with

reference properties (names prefixed with “related” and “relating”) to the blocks being

associated.

The Core Product Model schema consists of two main abstract blocks:

 CommonCoreObject is the base abstract block for all objects.

 CommonCoreRelationship is the base abstract block for all relationships between

objects.

 96

Figure 6.3: CPM2_xKCM View 1 – shows minor modifications to CPM2

The CommonCoreObject block is specialized into the following blocks.

 CoreEntity is the base abstract block for representing artifacts and their features.

 CoreProperty is the base abstract block for representing properties of artifacts such as

form, function, material, shape (geometry), and flow.

 Behavior is the base block for representing behaviors of artifacts. Behavior is the

response of an artifact to external stimuli such as applied forces and temperature. While

function describes what an artifact is supposed to do, behavior describes what an artifact

does. During analysis, specific behaviors of an artifact are computed and compared

against the functional requirements. An instance of Behavior has no existence on its own,

 97

and must be associated with the artifact whose behavior is being computed. This is

reflected by the Behavior block property Behavior.behaviorOfArtifact. In CPM2, the

Behavior block has the following four properties:

o behaviorOfArtifact for referencing the artifact whose behavior is to be computed and

evaluated

o behaviorModels for referencing behavior models that are used to compute the subject

behavior of the artifact

o observedBehavior for describing the results of computing the behavior

o evaluatedBehavior for evaluating the computed behavior against requirements

One of the key contributions of this dissertation is the Core Behavior Model (CBM)—a

meta-model for describing behavior models—which is described in Chapter 7.

 Requirement is the base block for representing requirements for artifacts. A

requirement applies to one or more properties of an artifact—form, function, flow,

material, or geometry. Requirements are contained in a specification.

 Specification is the base block for representing a collection of requirements based on

end user needs or engineering specification derived from it. A specification may or may

not be satisfied by existing artifacts. Typically during early design stages, an artifact that

satisfies a specification does not exist.

The CoreEntity is block is further specialized into the following blocks.

 Artifact is the base block for representing artifacts. An artifact is a distinct entity of a

product, such as component, sub-assembly, or an assembly. An artifact may have

multiple features as represented by the block property Artifact.hasFeatures, and a feature

must be owned by an artifact, as represented by the block property

Feature.featureOfArtifact. An artifact may have sub-artifacts as represented by the

recursive composition relationship with roles Artifact.subArtifactOf and

Artifact.subArtifacts. This is used to represent the part-assembly structure of artifacts.

 Feature is the base block for representing features of artifacts. A feature is a specific

part of an artifact’s form that implements one or more functions. A design or analysis or

manufacturing feature implements one or more functions for the purposes of design or

analysis or manufacturing process respectively. A feature may have sub-features as

 98

represented by the recursive composition relationship with roles Feature.subFeatureOf

and Feature.subFeatures.

The CoreProperty block is further specialized into the following blocks.

 Form is the base block for representing forms of artifacts and features. The form of an

artifact is described using its geometric shape and constituent material. Further

specializations of form depend on specializations of the artifact to which it is associated.

Form may represent a proposed design form, a specific idealization of a proposed design

form for analyses, or the final design form that may be used to create a bill of materials

for manufacturing. Artifact.hasForm associates a form to an artifact. An artifact may have

multiple forms associated with it, each representing a specific view of the artifact’s form

for a specific purpose (such as generating a bill of materials) or as a version of the form

in-development. Form.formOfArtifacts associates artifacts to a given form. A given form

may be used by multiple artifacts. A form may have sub-forms as represented by the

recursive composition relationship with roles Form.subFormOf and Form.subForms.

 Function is the base block for representing functions of artifacts. Functions of an

artifact describes what an artifact is supposed to do, and is derived from end user and

engineering specifications. A transfer function—represented by the block

TransferFunction—is a specific type of function that involves the transfer (or conversion)

of an input flow to an output flow. For example, a generator is an artifact that implements

a transfer function that converts mechanical energy to electrical energy.

Artifact.hasFunctions associates functions to an artifact and Function.functionOfArtifacts

associates artifacts to a given function. A function may be realized by multiple artifacts.

A function may have sub-functions, as represented by the recursive composition

relationship with roles Function.subFunctionOf and Function.subFunctions.

 Material is the base block for representing the constituent material(s) of artifacts. A

material may be associated with one or more forms. Form.hasMaterials associates a

material to a given form, and Material.ofForms associates a form to a given material. A

given form may be associated with multiple materials, each representing a version of the

material in-development for the subject form, or a view of the material used in the subject

form. A material may have sub-materials as represented by the recursive composition

 99

relationship with roles Material.subMaterials and Material.subMaterialOf. This may be

used to represent alloys that are materials composed of other alloys or basic materials.

 Shape is the base block for representing shapes of artifacts and features. A given shape

may be associated with one or more forms. Form.hasShapes associates shapes to a given

form and Shape.ofForms associates forms to a given shape. A given form may be

associated with multiple shapes, each representing a version of the shape in-development

for the subject form, or a view of the shape used in the subject form. A given shape may

have sub-shapes as represented by a recursive composition relationship with roles

Shape.subShapeOf and Shape.hasShapes. The Knowledge Composition Methodology

relies on shape representation concepts in STEP Part 42 (ISO 10303-42 2000). Those

concepts are specializations of the Shape block in CPM2_xKCM.

 Flow is the base block for representing flows. A flow is the medium, such as fluid,

energy, or messages that is used to realize transfer function(s). A flow can be realized by

one or more artifacts, and an artifact may have multiple flow inputs and outputs.

The CommonCoreRelationship is an abstract block that associates a “relating”

CommonCoreObject block to one or more “related” CommonCoreObject blocks. The

CommonCoreRelationship block is specialized into the four main blocks.

 EntityAssociation block is used for representing set membership relation between

CoreEntity blocks.

 Constraint is the base block for defining constraints (and more generically relations)

between the properties of artifacts and features.

 Usage block is used to specify the relationship between the definition of a

CommonCoreObject and its usages (possibly in different contexts). For example, if a

part defined in a database occurs as a component in an assembly, the occurrence of the

part and the definition are related by the Usage block.

 Trace block is similar to the Usage block. It is used to specify relationships between

one CommonCoreObject and another when one depends on the other in the following

manner: (a) alternative of, (b) version of, (c) derived from, (d) based on, (e) same as.

So, typically relationships defined using a Trace block have a directionality. For

example, if a part is an alternate / derived from / version of another source part, then

the Trace block is used to associate the subject part to its source part.

 100

The list of minor modification done to CPM2 to create CPM2_xKCM is as

follows.

 Use of SysML language constructs instead of UML. The use of a SysML block with

reference properties to represent relationships between concepts instead of a UML

association class resulted in minor modifications to name and cardinality of reference

properties. For example, CommonCoreRelationship block has reference properties

relatingCCO and relatedCCOs instead of associatedCCO and ccRelationship attributes in

the UML association class. The cardinality change reflects that a relationship instance

must have the relating and related properties populated, i.e. an instance of a

relationship is not valid unless it is associated with object instances that are being

related.

 Use of SysML Composition Relationship between two blocks—denoted by a line

connecting the blocks with a filled black diamond on the end of the composed block—

to represent that the composed block has a part property of type of the composing

block. When the composed block instance is deleted, the composing block instances

shall also be deleted. This is used to represent the composition relationships between

blocks representing the following pairs of concepts: Artifact-Artifact, Feature-Feature,

Form-Form, Function-Function, Shape-Shape, Material-Material, Artifact-Feature, and

Specification-Requirement.

 Use of SysML Association Relationship between two blocks—denoted by a line

connecting the blocks—to represent that each block has a reference property of type of

the referenced block. This implies that when an instance of one of the blocks is

deleted, the reference relationship will be deleted but the referring block instance will

not be deleted. This is used to represent the association relationships between blocks

representing the following pairs of concepts: Artifact-Form, Feature-Form, Artifact-

Function, Feature-Function, Form-Material, and Form-Shape.

 When a composition or an association relationship has roles with cardinality 0 or more

(0..*), the name of the roles is pluralized. For example, featureHasFunction is changed

to featureHasFunctions. Similar changes were done for the association relationships

between blocks representing the following pairs of concepts: Artifact-Form, Feature-

Form, Artifact-Form, and Artifact-Function.

 101

 Changed the name of class (block) Geometry to Shape to better align with the term

“shape” as used in STEP-based product models to represent both geometry and

topology of products. Changes were made to all relationship and role names that used

the term Geometry.

 Changed the cardinality of association relationship Form–Shape. An instance of a

Form may exist without an instance of a Shape. This represents the use case during

conceptual design or work-in-progress designs when a shape has not been defined for a

form. Also, a shape may be used in multiple forms.

 Changed the cardinality of association relationship Form–Material with the same

rationale as above.

 Changed the cardinality of some association relationships to allow for reuse of

instances. For example, the cardinality of reference property Form.formOfArtifacts

changed from 0 or 1 (0..1) to 0 or more (0..*) to allow reusing the same instance of a

form for multiple instances of an artifact. Similar changes were done for the following

association relationships:

o Function.functionOfArtifacts

o Function.functionOfFeatures

o Form.formOfFeatures

o Flow.isSourceOf

o Flow.isDestinationOf

o Shape.shapeOfForms

o Material.materialOfForms

 Changed the name of the root object to CoreProductModelObject instead of

CoreProductModel. The package containing the entities and relationships is named as

CPM2_xKCM.

In this dissertation only those aspects of the Core Product Model are described

that are relevant to the technical contributions of this research. It is suggested that readers

refer to (Fenves 2004) for a more complete description.

6.1.2 CPM2_xKCM View 2: New concepts added to CPM2 for the
Knowledge Composition Methodology
In this section, the new concepts—entities and relationships—that are added to

CPM2 to create CPM2_xKCM are described. The new entities are formalized as blocks

 102

in the SysML-based representation of CPM2_xKCM, and highlighted in blue color in

Figure 6.4. The figure is a SysML Block Definition Diagram (BDD) of CPM2_xKCM

and only shows concepts that are added with respect to CPM2. These new concepts are

described a below.

The Artifact block is specialized into Designed_Artifact, Manufactured_Artifact,

and Analyzable_Artifact blocks that are described below.

 The block Designed_Artifact represents a designed artifact—the definition of an

artifact in the design process. It is the central entity used for representing design-

oriented information of an artifact. The design-oriented information of an artifact

includes the designed artifact and sub-artifacts, designed features and sub-features.

 The block Manufacturable_Artifact represents a manufacturable artifact—the definition

of an artifact for the purposes of manufacturing. It is the central entity used for

representing manufacturing-oriented information of an artifact. This includes a

manufacturable artifact and sub-artifacts, manufacturable features and sub-features.

The manufacturing-oriented definition of an artifact is typically derived from the

design-oriented definition for a particular manufacturing technology.

 The block Analyzable_Artifact is used for representing an analyzable artifact—the

definition of an artifact for analyses purposes. It is the central entity used in

representing analysis-oriented information of an artifact. This typically includes an

analyzable artifact and sub-artifacts, analyzable features and sub-features. The

analysis-oriented information of an artifact is derived from its design-, or

manufacturing-, or existing analysis-oriented information of the artifact for a family of

analyses.

 103

 The Artifact_Artifact_Relationship (AAR) block is a specialization of the Trace

block and represents relationships between two artifacts (or their specializations), such as

those between two designed artifacts, or a designed artifact and a manufacturable (or

analyzable) artifact, or between two analyzable artifacts. A designed artifact may be

derived from another designed artifact. This relationship is useful for relating these

abstractions of an artifact when one is derived from others in a particular context. A

manufacturable artifact may be derived from another manufacturable artifact or a

Figure 6.4: CPM2_xKCM View 2 – shows addition of new concepts to CPM2 for KCM

 104

designed artifact, and an analyzable artifact may be derived from a designed artifact, or a

manufacturable artifact, or another analyzable artifact. The AAR block has two reference

properties relatingArtifact and relatedArtifacts that refer to the subject artifact (or its

specialization) and all other related artifacts respectively. For example, if an analyzable

artifact instance is derived from a designed artifact instance, then the analyzable artifact

instance will be referred as the relatingArtifact and the designed artifact instances will be

referred as the relatedArtifact in the Artifact_Artifact_Relationship instance. The AAR

block also has a recursive composition relationship with roles subAARs and ofAAR. When

two artifact assemblies are related using an AAR block instance, then their parts also

related using AAR block instances. The composition relationship is used to contain all

part AAR instances in the assembly AAR instance.

 The Form_Form_Relationship (FFR) block is a specialization of the Trace block

and represents relationships between two forms (or their specializations). The intent of

the FFR block is similar to the Artifact_Artifact_Relationship block. It may be used for

example to relate forms of two designed artifacts, or a form of a designed artifact and a

form of an analyzable artifact. An Artifact_Artifact_Relationship block instance may be

associated with zero or more (0..*) FFR block instances, and a FFR block instance may

be associated with zero or more (0..*) Artifact_Artifact_Relationship block instances as

represented by the association end roles associatedFFRs and ofAARs respectively. The

cardinality of these roles is derived from the cardinality of the associated between the

Artifact and Form blocks. The FFR block also has a recursive composition relationship

with roles subFFRs and ofFFR. This is similar in intent to the recursive composition

relationship of the AAR block. The FFR composition relationship is used for collecting

FFR block instances relating child forms into a FFR block instance that relates the parent

forms.

 The form of an artifact refers to definitions of the constituent material and shape

of that artifact. Hence, the relationship between two forms will also results in a

relationship between the referred shapes, and a relationship between the referred

materials. Instead of relating two materials, a relationship between two forms relates two

material behaviors that characterize these materials. The FFR block has two reference

properties associatedSSRs and associatedMBMBRs of type Shape_Shape_Relationship and

 105

Material_Behavior_Material_Behavior_Relationship respectively. The block

Shape_Shape_Relationship (SSR) is used to describe relationships between two or more

shapes. For example, an instance of SSR block may be used to relate two shapes such that

one is the result of an affine transformation on the other. A relationship between a master

relating shape and set of related shapes is described using mathematical relations, and is

represented by the property shape_shape_relations of type Mathematical_Relation

(defined using SysML Constraint Block and explained in Chapter 7). The block

Material_Behavior_Material_Behavior_Relationship (MBMBR) is used to describe

relationships between two or material behaviors. For example, an instance of MBMBR

may be used to relate source materials behaviors and a target material behavior such that

the target is the effective material behavior computed from the source material behaviors

(say by Rule of Mixtures). A relationship between source and target material behaviors is

described using mathematical relations, and is represented by the property

mb_mb_relations of type Mathematical_Relation (defined using SysML Constraint Block

and explained in Chapter 7). MBMBR relates two or more material behaviors, each

represented by the block Material_Behavior_Property. The block Material (originally in

CPM2) has a reference property hasBehavior of type Material_Behavior_Property in

CPM2_xKCM. This represents the relationship between the definition of a material and

the definition of its behaviors.

Note that in some cases, material behavior idealization relationships are also

dependent on the shape idealization relationship, such as when relating a homogenous

material distribution to a heterogeneous material distribution. In such case, a new block

shape_and_material_behavior_relationship may be defined as a specialization of

MBMBR and SSR blocks.

The block Analyzable_Feature represents an analyzable feature. An analyzable

feature is a feature defined for the purposes of analyses. Analyzable features are typically

defined to specify (a) geometric features where behavior parameters are to be computed,

and (b) geometric features that participate in component interactions in an analyzable

artifact assembly. An analyzable feature could be same as (or derived from) a design

feature or defined new for specifying analysis conditions. For the purposes of analyses,

some design features may be neglected. For example, if an analyst wants to compute the

 106

shear stress at the interface between two components of an assembly, then the interface

will be defined as an analyzable feature. The block Analyzable_Feature is a specialization

of the block Feature. An analyzable artifact may have multiple analyzable features, and

analyzable feature must be owned by an analyzable artifact. These relationships are

represented by Analyzable_Artifact.hasAFs and Analyzable_Feature.afOfAA properties.

 The block Artifact_Artifact_Interaction (AAI) was added to CPM2_xKCM to

represent interactions between components and the features participating in these

interactions when defining an assembly. The composition relationship

Artifact.subArtifacts represents the component artifacts in an assembly artifact, and the

composition relationship Artifact.hasFeatures represents the features of an artifact. The

composition relationship Artifact.subArtifactInteractions was added in CPM2_xKCM to

more explicitly represent the interactions between components in the context of defining

an assembly of these components. An interaction must be defined in the context of an

artifact and cannot exist on its own. This is realized by the cardinality (1) of the property

Artifact_Artifact_Interaction.parentArtifact. An interaction between any two components

of an assembly is realized by the features of the components participating in the

interaction. An interaction is realized between a relating feature and one or more related

features. The relating and related features are represented by the reference properties

relatingFeature and relatedFeatures of the block Artifact_Artifact_Interaction. The block

AA_AA_Interaction is a specialization of Artifact_Artifact_Interaction and is used to

represent interactions between components of an analyzable artifact assembly. An

interaction between two components represented by the Analyzable_Artifact block is

realized by analyzable features of these two components. An interaction between any two

analyzable artifacts must exist in the context of their analyzable artifact assembly. This is

realized by the cardinality of the property AA_AA_Interaction.parentArtifact.

 107

6.2 VTMB Artifact Design Models – Abstractions and Examples
In this section, the different abstractions of artifact models in the Knowledge

Composition Methodology are presented. Examples of each abstraction are also

presented. Figure 6.5 is a SysML block definition diagram that conceptually illustrates

these five levels of abstractions (Levels 1-5, a.k.a D1-D5) of artifact models.

Figure 6.5: Abstractions of artifact design models in KCM – Design Model Stack

The rationale for developing these abstractions of artifact models are: (a) defining design

meta-models that represent variable topology design alternatives of a particular product,

and (b) identifying desing models that are associated with behavior models in simulation

templates. For efficient formulation of analysis problems (and hence behavior models), it

is necessary that behavior model formulation methods be applied to artifact models that

represent a set of artifacts and not necessarily a specific artifact. In this manner, the

 108

resulting behavior models can be used to compute the behavior parameters for a set of

artifacts. The five levels of abstractions of artifact models in KCM are described below.

 Level 1 (D1): Artifact Meta-Model - An Artifact Meta-Model is a meta-model that

defines constructs and relationships to represent artifacts in all application areas, such as

Automotive, Electronics, and Aerospace. The Core Product Model extended by the

Knowledge Composition Methodology (CPM2_xKCM) is an example of such a meta-

model.

 Level 2 (D2): Application-specific Artifact Meta-Model - An Application-specific

Artifact Meta-Model defines the constructs and relationships for representing artifact in a

specific application area, such as electronics or automotive. An Application-specific

Artifact Meta-Model specializes an Artifact Meta-Model to represent application area-

specific concepts. STEP AP210 is an example of an Application-specific Artifact Meta-

Model for electromechanical artifacts, such as printed circuit boards, assemblies, and chip

packages. Similarly, STEP AP214 is an example of an application-specific artifact meta-

model for representing automotive artifacts.

 Level 3 (D3): VTMB Artifact-specific Meta-Model – A VTMB Artifact-specific

Meta-Model defines the constructs and relationships for representing a specific family of

artifacts, such as printed circuit boards. A VTMB Artifact-specific Meta-Model is created

as a specialization of or abstracted from an Application-specific Artifact Meta-Model. In

the context of KCM, a VTMB Artifact-specific Meta-Model is used for representing

design and analyzable design-related information for multi-body artifacts with different

assembly system topologies. Typically, D3 models are represented by artifact design

templates created and maintained by designers, using system design tools such as CAD

tools.

 Level 4 (D4): FTMB Artifact Model Structure – A FTMB Artifact Model Structure

is an instance of a VTMB Artifact-specific Meta-Model, and it represents a family of

multi-body artifacts with equivalent assembly system topologies, such as family of 5-

 109

layered printed circuit boards. Here, FTMB stands for Fixed Topology Multi-Body.

Typically, D4 models are represented as design models—conforming to a specific design

template—where topology-specific decisions have been taken.

 Level 5 (D5): FTMB Artifact Model Instance – A FTMB Artifact Model Instance is

an instance of an FTMB Artifact Model Structure and it represents a specific artifact in

the family of FTMB artifacts, such a specific 5-layer printed circuit board. Typically, D5

models are represented in system design tools as a specific instance of a D4 model.

 Note that the design model stack shown in Figure 6.5 is a conceptual model

shown in SysML. In implementation, SysML does not allow instantiation of instance

models—D5 is an instance of D4, and D4 is an instance of D3. In implementation, D4 is

modeled as a partially-specified instance of D3, and D5 is modeled as a fully-specified

instance of D3. Multiple levels of meta-modeling (not supported by UML and SysML) is

a much desired feature of modeling languages (Atkinson and Kuhne 2001), especially

when model transformations may be applied at different levels of model abstractions, and

models at a given abstraction may serve as meta-models for transformations of models at

lower (instance) levels of abstraction.

An FTMB Artifact Model Structure can be viewed as partially-specified instance

of a VTMB Artifact Meta-Model where only topology-specific decisions have been

taken. In contrast, a FTMB Artifact Model Instance can be viewed as a fully-specified

instance of a VTMB Artifact Meta-Model.

Having defined the five different levels of abstractions of artifact models in KCM,

specific examples of these abstractions are now presented. CPM2_xKCM as described in

the previous section is an example of Level 1 abstraction—an Artifact Meta-Model for

representing artifacts in all application domains. In this section, a Printed Circuit Board

(PCB) artifact is used for illustrating the other four abstractions of artifact models. Figure

6.6 illustrates the 2D layout and through-thickness stackup of a typical PCB. A PCB

consists of a stackup of materials as shown in the through-thickness view. Each layer of

material is known as a stratum. A stackup is made of alternatively electrically conductive

and non-conductive stratums. Conductive stratums have conductive features such as

lands and traces as shown in the planar layout view. Vias and through-holes are openings

 110

in the stackup from one conductive layer to another—primarily meant to provide

electrical connections across stratums.

Figure 6.6: A typical Printed Circuit Board design (shown here with 5 stratums)

STEP AP210 is an example of a Level 2 abstraction for electromechanical

products. Figure 6.7 and Figure 6.8 together illustrate a VTMB Artifact-specific Meta-

Model for representing design and analyzable design aspects of multi-stratum printed

circuit boards. Figure 6.7 illustrates PDMM—a meta-model for representing mechanical

design aspects of printed circuit boards, and Figure 6.8 illustrates PAMM—a meta-model

for representing analyzable design aspects of printed circuit boards (for thermo-

mechanical analyses in particular). Together PDMM and PAMM constitute a Level 3

artifact model for representing printed circuit boards with different assembly system

topologies. PDMM and PAMM are represented as specializations of CPM2_xKCM and

contain PCB product concepts abstracted from the STEP AP210 meta-model.

Figure 6.7 illustrates the PDMM. The blocks highlighted in yellow and blue

belong to CPM2_xKCM meta-model and the blocks highlighted in pink belong to

PDMM. The entities and relationships represented in the PDMM are abstracted from

STEP AP210. The block Electronics_Designed_Artifact is the central entity for

representing design-oriented information of an artifact in the electronics domain, and is a

specialization of the block Designed_Artifact. Similarly, the block

Electronics_Design_Feature is the central entity used for representing design-oriented

information of a feature (of an artifact) in the electronics domain, and is a specialization

of the block Feature. The block PCB represents design-oriented information for printed

circuit boards, and the block Stratum is used to represent design-oriented information for

stratums that are stacked together to define a PCB. A PCB is composed of multiple

stratums. Each stratum has a form (represented by the block Stratum_Form) that refers to

 111

the shape and material of a stratum (represented by blocks Stratum_Shape and Material).

The block Adjacent_Stratum_Surface_Interaction is a specialization of

Artifact_Artifact_Interaction and is used for representing the interactions between any two

adjacent stratums in a stackup. Each interaction is realized by the mating of the secondary

surface of the preceding stratum and the primary surface of the succeeding stratum.

This is represented by the two reference properties precedingStratumSurface and

succeedingStratumSurface of the block Adjacent_Stratum_Surface_Interaction. Each

stratum also has design-oriented features (represented by the block Stratum_Feature). A

stratum feature may lie within a stratum (intra-stratum feature) such as in the case of

lands and traces, or extend across stratums (inter-stratum feature) such as in the case of

vias and plated through holes. A plated through hole is a stratum feature that extends

across the entire depth of the stackup of a PCB. Intra-stratum features are represented by

the block Intra_Stratum_Feature, and inter-stratum features are represented by the block

Inter_Stratum_Feature. A PCB is composed of stratums, their interactions, and inter-

stratum features. A stratum is composed of intra-stratum features. The PDMM can be

used to represent 2-, 3-, or n-stratum PCBs and hence is a VTMB meta-model.

 112

Figure 6.7: PDMM (D3) for representing mechanical design aspects of (VTMB) multi-stratum PCBs

Figure 6.8 illustrates PAMM—a meta-model for representing analyzable design

aspects of printed circuit boards (for thermo-mechanical analyses in particular). This

meta-model represents a specific idealization of the multi-stratum PCB designed artifact

meta-model (PDMM). In this idealization—as illustrated by Figure 6.9 for a 5-stratum

PCB—the intra- and inter-stratum features have been ignored for analyses purposes. Each

stratum is idealized as a homogenous layer of material. In the PAMM shown in Figure

6.8, the blocks highlighted in yellow and blue belong to CPM2_xKCM meta-model and

the blocks highlighted in pink belong to PAMM.

 113

Figure 6.8: PAMM (D3): An analyzable artifact meta-model for (VTMB) multi-stratum PCBs

The blocks Analyzable_Electronics_Artifact and Analyzable_Electronics_Feature

are used for representing artifacts and their features for analyses purposes. These blocks

are specializations of Analyzable_Artifact and Analyzable_Feature blocks respectively.

The block Analyzable_PCB and AStratum are used to represent analyzable PCBs and

analyzable stratums respectively. An analyzable PCB is composed of analyzable stratums

and the interactions between them (represented by the block

Adjacent_AStratum_Surface_Interaction).

In the idealization represented by the PAMM here, an analyzable stratum is a

homogenous layer of material and hence does not contain inter-stratum features.

Similarly, an analyzable PCB does not contain intra-stratum features. The PAMM can be

used to represent 2-, 3-, or n-stratum analyzable PCBs and hence is a VTMB meta-model.

In a similar manner, other PAMMs can be idealized for the PDMM shown in Figure 6.7.

For example, one may define an analyzable PCB that contains all the intra- and inter-

 114

stratum features (or only specific types of features)—as in the designed PCB—if such

details are relevant for the specific types of analyses.

 Figure 6.10 illustrates PDM_5Sx—a FTMB artifact model structure for

representing mechanical design-related information for 5-stratum PCBs. This model

structure is at Level 4 abstraction, and is an instance of PDMM (Level 3 abstraction).

PDM_5Sx represents design-oriented information for a family of PCBs with 5 stratums.

The number of stratums, interactions, and their types are fixed. Hence, the members of

the family of 5-stratum PCBs have equivalent assembly system topologies.

PAM_5Sx

PDM_5Sx

Figure 6.9: Pictoral view of PDM_5Sx and PAM_5Sx (D4 models)

The instance block PCB_5Sx represents a family of 5-stratum PCBs, and is an instance of

the block PCB. PCB_5Sx has 5 stratums as represented by instances (Stratum_1 to

Stratum_5) of the Stratum block, and also consists of 4 stratum interactions instances

(stratum_12_interaction and so on) of the Adjacent_Stratum_Surface_Interaction block.

 The preceding and the succeeding stratum surfaces in each interaction are also

instantiated. The stratum interaction instances for other stratums are not shown in the

figure. In the figure, not all instance information is show for each stratum but the type of

instance information that exists for stratums is illustrated. For example, inter-stratum

feature instances are shown only for Stratum_1 instance while the form (shape and

material) instance is shown only for Stratum_5 instance. Stratum_1, Stratum_3, and

Stratum_5 are conductive stratums, while Stratum_2 and Stratum_4 are non-conductive

stratums—represented by the relationship between these stratum instance blocks and

Conductive and Non-conductive instance blocks (of type Function block). The conductive

 115

stratums also have intra-stratum features such as lands and traces. The intra-stratum

features are shown only for stratum 1. Stratum_1 instance block has 1000 lands—

represented by instances Land_1_1 to Land_1_1000 of the Land block, and 400 traces—

represented by instances Trace_1_1 to Trace_1_400 of the Trace block. Via_13_1 to

Via_13_40 instance blocks are instances of the Via block and represent vias between

conductive stratums Stratum_1 and Stratum_3. PTH_15_1 instance block is an instance

of the Plated_Through_Hole block and represents a plated through hole between stratums

Stratum_1 to Stratum_5. Vias and plated through-holes are examples of intra-stratum

features.

 116

Figure 6.10: PDM_5Sx (D4): A designed artifact model structure for (FTMB) 5-Stratum PCBs

PDM_5Sx (Level 4) is a partially-specified instance of the PDMM (Level 3) because

although the decisions related to the assembly system topology of the designed artifact

have been taken, decisions related to specific numeric instance values (such as the exact

size and shape of the PCB and stratums) have not been taken. Hence, PDM_5Sx

represents a family of 5-stratum PCBs and not a specific 5-stratum PCB.

 117

 Figure 6.11 illustrates PAM_5Sx—an analyzable artifact meta-model structure

for representing (FTMB) 5-stratum analyzable PCBs. PAM_5Sx is a Level 4 model and

is an instance of PAMM. The instance block APCB_5Sx represents a family of analyzable

PCBs with 5-stratums, and is an instance of Analyzable_PCB block. APCB_5Sx has 5

analyzable stratum instances (AStratum_1 to AStratum_5) of type AStratum block. Each

analyzable stratum instance is composed of two stratum surfaces (in roles of primary and

secondary surface). The interactions between adjacent stratums are realized by instances

of Adjancent_AStratum_Surface_Interaction block. Each analyzable stratum also has a

function—represented by instance blocks Conductive and Non-Conductive for conductive

and non-conductive functions respectively.

PAM_5Sx is an idealized artifact model for the purposes of analyses, and is

derived from PDM_5Sx. However, these model structures are not stand-alone. They are

related. The relationships between these model structures represent the idealizations.

Figure 6.12 illustrates PM_5Sx—an artifact model structure that represents the designed

and analyzable model structures, and their inter-relationships for 5-stratum PCBs.

PM_5Sx is at Level 4 abstraction and consists of PDM_5Sx (Level 4), PAM_5Sx (Level

4), and their inter-relationships. The figure does not illustrate all instances in these model

structures and their inter-relationships. Only instances relating to designed stratum

Stratum_5 and corresponding analyzable stratum AStratum_5 are shown. The designed

and the analyzable artifact instances are related by instances of

Artifact_Artifact_Relationship (AAR) block, and the designed and analyzable forms are

related by instances of Form_Form_Relationship (FFR) block.

 118

Figure 6.11: PAM_5Sx (D4): An analyzable artifact model structure for (FTMB) 5-Stratum PCBs

 119

Figure 6.12: PM_5Sx (D4): An artifact model structure for representing designed and analyzable

(FTMB) 5-Stratum PCBs

The AAR instance between the designed and analyzable PCB is composed of the

AAR instances between the designed stratums and the corresponding analyzable

stratums. For example, the AAR instance block PCB_APCB_5Sx consists of the AAR

instance block Stratum_AStratum_5. Each instance of AAR refers to an instance of FFR

that relates the forms of the artifact instances. For example, Stratum_AStratum_5

instance block refers to Stratum_AStratum_5_Forms instance block of type FFR. Each

instance of FFR refers to an instance of the

Material_Behavior_Material_Behavior_Relationship block (MBMBR) and

Shape_Shape_Relationship block (SSR) that relates the material behaviors and the shapes

of the forms being related by the subject FFR instance. For example,

Stratum_AStratum_5_Forms instance block refers to MBMBR1 and SSR1 instance blocks.

 120

 Figure 6.13 illustrates PAMI_5S1—an analyzable artifact model instance that

represents a specific 5-stratum analyzable PCB. PAMI_5S1 is a fully-specified instance

of PAMM, and also an instance of PAM_5Sx. It is at Level 5 abstraction. PDMI_5S1

which is at Level 5 and represents design-related information of a specific PCB is not

shown here. The specific analyzable PCB represented by PAMI_5S1 model is

APCB_5S1. Note that PAMI_5S1 is a fully specified instance of PAMM as opposed to

PAM_5Sx—a partially specified instance of PAMM—because not only is the assembly

system topology decision has been taken (as in PAM_5Sx) but also specific shapes, sizes,

and materials of the artifact and features have been decided. For example, analyzable

stratum 5 (represented by the instance block AStratum_5) has a rectangular outline of

width 5 inches and length 10 inches, and is 0.1 inches thick.

Figure 6.13: Example D5 model - A analyzable artifact model instance for a 5-stratum analyzable PCB

The focus of this dissertation is to define transformations for formulating behavior

model structures from analyzable design model structures (for VTMB problems in

particular) and to provide a method for executing these transformations. Idealizations

 121

used for transforming design models to analyzable design models such as geometry-

specific idealizations (Finn 1993) are well-developed. In particular (Tamburini 1999)

presents the Analyzable Product Model (APM) representation—in the context of MRA

simulation template pattern—for formally representing analyzable design-related

information. The graph transformation-based approach for formulating behavior models

for variable topology problems, as presented in this dissertation, also provides a

fundamental approach for formulating analyzable models from design (or manufacturing

models).

6.3 Summary
In this chapter, CPM2_xKCM has been presented as a meta-model for

representing design, manufacturing, and analysis-oriented information of artifacts. Five

different abstractions of artifact models are presented in the context of KCM, and

illustrated for (VTMB) multi-stratum printed circuit boards. These abstractions of the

designed and analyzable artifact models are central to the Behavior Model Formulation

Method in the KCM. For effective formulation of behavior models, it is required that the

formulation methods may be applied to analyzable artifact models that represent a set of

analyzable artifacts, and not necessarily represent a single analyzable artifact. As a result

of this approach, the formulated behavior model structure will represent a family of

behavior models—one for each member in the family of analyzable artifacts to which the

formulation methods were applied. Applying the formulation method to design

alternatives with different assembly system topologies will result in corresponding

behavior model structures (and simulation templates) for VTMB analysis problems.

 122

CChhaapptteerr 77 :: CCOORREE BBEEHHAAVVIIOORR MMOODDEELL ((CCBBMM)) ––

AANN AARRTTIIFFAACCTT BBEEHHAAVVIIOORR MMEETTAA--MMOODDEELL

The focus of this chapter is to present the different abstractions of behavior

models of variable topology multi-body design alternatives. All abstractions of behavior

models are founded on the Core Behavior Model (CBM)—a meta-model that defines the

constructs and relationships for representing behavior models. In this chapter, the CBM is

presented first. This is followed by a presentation of Analysis Building Block (ABB)

meta-models and ABB models in sections 7.2 and 7.3 respectively. ABBs define the units

of knowledge that are composed for creating behavior models; and the ABB Meta-Model

defines the constructs and relationships for representing different types of ABBs. In

section 7.4, different abstractions of behavior models based on the CBM are presented.

The analysis knowledge embodied in ABBs, and the structure of the Core Behavior

Model is founded on the Analysis Knowledge Dimensions presented in section 7.5. The

analysis knowledge dimensions define the types of decisions taken by analysts in

formulating behavior models (and hence simulation templates) and the choices available

for each type of decision. In the KCM, behavior models also include relationships to

VTMB design models. Hence, the formulation of behavior models implies the

formulation of simulation templates.

Figure 7.1: Behavior Model Abstractions based on Core Behavior Model (CBM)

 123

7.1 Core Behavior Model
The Core Behavior Model (CBM) is a behavior meta-model. It defines the

constructs and relationships for representing behavior models of artifacts. A behavior

model represents a set of idealized behaviors of an artifact in a behavior environment.

The behavior environment is the set of external conditions under which the behavior is

being computed. For example, a linear deformation model of a mechanical spring is a

behavior model of the mechanical spring that can be used to compute the axial

deformation behavior of a spring when axial forces are applied to the ends of the spring.

The linear deformation model idealizes the behavior of the spring to be linear—

deformation is directly proportional to the end forces.

7.1.1 Overview
In the KCM, an artifact behavior model is represented as an instance of the Core

Behavior Model. The Core Behavior Model embodies the concept of context-based

analysis models defined in the MRA simulation template pattern. In this pattern, a

context-based analysis model consists of (a) an ABB system model, and (b) behavior

idealization relationships (APMΦABB) between an analyzable artifact (product) model

and the ABB system model. An analyzable artifact model represents an idealized artifact

for a class of behavior analyses (Chapter 6). An ABB system model is a system of

analysis building block models (ABB models) such as those representing analysis bodies,

loads, and boundary conditions, and it represents the behavior of a system of analysis

bodies. The behavior idealization relationships between an analyzable artifact and an

ABB system model idealize the analyzable artifact as a system of analysis bodies. Hence,

a set of behaviors of the idealized artifact are approximated as behaviors of the system of

analysis bodies. For example, the deformation of a printed circuit board during the

manufacturing process can be idealized as the deformation of a laminated shell subjected

to thermal loading during the manufacturing process. Here, the printed circuit board is the

artifact whose behavior is to be computed. The laminated shell, the thermal loading and

the boundary conditions are defined in an ABB system model. Thus, an artifact behavior

model that is represented as an instance of the Core Behavior Model is composed of (a)

an ABB system model, and (b) idealization relationships that approximate the idealized

artifact as a system of analysis bodies represented by the ABB system model. In addition,

 124

the ABB system model also represents the behavior environment in which the behaviors

are computed.

The central idea in KCM—and the MRA pattern that it embodies—is that an

ABB system model is the core ingredient of an artifact behavior model, and an ABB

system model can be composed from reusable ABB models. Thus, the efficiency of

formulating behavior models can be significantly improved if there were methods to

automatically compose a behavior model from reusable ABB models. The behavior

model formulate methods in KCM address this need, and are described in Chapter 8.

Another meta-model presented in this chapter and closely related to the Core

Behavior Model is the ABB Meta-Model. The ABB Meta-Model is a meta-model for

representing ABB models and ABB system models. Figure 7.2 illustrates the scope of the

Core Behavior Model and the ABB Meta-Model in the context of the MRA simulation

template pattern. While the Core Behavior Model is used to represent artifact behavior

models, the ABB Meta-Model is used for representing ABB models and ABB system

models. The ABB Meta-Model is defined separately from the Core Behavior Model since

ABB models may exist in a library of ABBs independent of their usage in an ABB

system model. Additionally, an ABB system model may exist independently of its usage

in an artifact behavior model.

Scope of
KCM_Meta-Model Scope of CBM

Scope of
ABB Meta-Model

Figure 7.2: Scope of CBM and ABB Meta-Model in MRA simulate template pattern

 125

The constructs and relationships in both the meta-models—Core Behavior Model

and ABB Meta-Model—are founded on analysis knowledge dimensions described in

section 7.5. Analysis knowledge dimensions represent the types of decisions taken by

analysts when creating a behavior model, and provide the rationale for defining ABB

models. Each ABB model is a choice for specific type(s) of decision(s) taken by analysts.

In this chapter, the Core Behavior Model is described in section 7.1. The ABB

Meta-Model is described in section 7.2. An initial library of ABB models (each

represented as an instance of the ABB Meta-Model) is presented in section 7.3, and in

section 7.4 different abstractions of a behavior model relevant in the context of Variable

Topology Multi-Body problems are presented. The analysis knowledge dimensions are

described in section 7.5. Note that in this chapter, the CBM and ABB Meta-Model are

described using examples. The transformations that compose ABB models to create a

behavior model are presented as part of the behavior model formulation methods in

Chapter 8.

7.1.2 Description
The Core Behavior Model is presented in this section. Figure 7.3 illustrates a

SysML block definition diagram of the Core Behavior Model.

The Behavior_Model block is main construct for representing artifact behavior

models. The Behavior block (section 6.1.1) is used for representing behaviors of an

artifact. A given behavior of an artifact may be computed using several behavior

models—each of a different fidelity. For example, the planar deformation of a printed

circuit board is a specific behavior that may be computed using any of the following

behavior models that idealize the printed circuit board as a: (a) homogenous solid, (b)

homogenous shell, (c) laminated solid, or (d) laminated shell. The reference property

Behavior.behaviorModels is used for representing this use case. The lower bound on

cardinality of this property (0..*) represents the use case that a behavior may be

instantiated without a behavior model to compute it. A given behavior model must be

associated with atleast one behavior. A behavior may be used as the computation model

for several behaviors. For example, a behavior model in which a printed circuit board is

idealized as a laminated shell can be used for computing planar deformation behavior

 126

and out-of-plane deformation behavior. The reference property

Behavior_Model.ofBehavior is used for representing this use case.

Per the MRA simulation template pattern illustrated in Figure 7.2, a behavior

model is composed of (a) an ABB system model, and (b) behavior idealization

relationships (APMΦABB) between ABB system model and an analyzable artifact

model. The blocks Behavior_Model_ABBSys and Behavior_Model_XContext are used for

representing ABB system model and behavior idealization relationships that constitute

the behavior model. The part properties Behavior_Model.context and

Behavior_Model.associated_bm_abbsys realize the composition relationships. The

cardinality of these part properties indicate that a behavior model instance may exist

without an instance of an ABB system or an instance of Behavior_Model_XContext block

that encapsulates the behavior idealization relationships, such as during the behavior

model development process.

For brevity, an ABB system used in a behavior model is referred as a behavior

model ABB system and it is represented by the Behavior_Model_ABBSys block. A

behavior model ABB system in itself is the behavior model of a system of analysis bodies.

Behavior_Model_ABBSys block is a specialization of the ABBSys block and has the

Figure 7.3: SysML block definition diagram of the Core Behavior Model (CBM)

 127

following part properties that represent the types of ABB models that are composed to

define an ABB system model:

 abs_sys part property is used for composing an analysis body assembly in an ABB

system model. An analysis body represents the physical continuum whose behavior is

to be computed. Note that the behavior of an analysis body assembly is an

idealization of the behavior of the analyzable artifact assembly. The property type

ABS_ABB is a generalization of blocks representing an analysis body or an analysis

body assembly, and is described in section 7.2. Analysis body and analysis body

assembly are special types of ABBs.

 load_applications part property is used for composing loads—applied to the analysis

body assembly—in an ABB system model. A load is an external stimulus to which

the behavior of an analysis body assembly is to be computed. The property type

Load_ABB represents loads (a special type of ABB) and is described in section 7.2.

 behavior_condition_applications part property is used for composing behavior

conditions—applied to an analysis body assembly—in an ABB system model. A

behavior condition represents a constraint imposed on the analysis body assembly.

The property type Behavior_Condition_ABB represents behavior conditions (a special

type of ABB) and is described in section 7.2.

 behaviors reference property is used for representing the set of behavior parameters

that may be computed for the subject ABB system model. The property type

Behavior_ABB represents behaviors (characterized by behavior parameters) and is a

special type of ABB described in section 7.2.

The lower bound on the cardinality of these part properties denote that during model

development, an ABB system model instance may exist without the ABB model

instances that compose it. The upper bound on the cardinality indicates the maximum

number of ABB instances of each type that may compose an ABB system model. Note

that the ABB system—as defined here—is targeted specially towards physics-based

behavior models. However, specializations of the ABB system can be defined for

representing different types of behaviors, such as physics-based behaviors (as in this

case) and state-based behaviors.

 128

The Behavior_Model_ABBSys block is a specialization of the ABBSys block to

distinguish an ABB system model used in a behavior model from any other ABB system

model. An ABB system model may be composed of two or more ABBs and may not

necessarily represent the behavior of a physical continuum (analysis body system). In

contrast, a Behavior_Model_ABBSys is designed to represent an ABB system model that

may be solved using a solution method to compute behavior parameters of a physical

continuum. Hence, a Behavior_Model_ABBSys instance must be composed of: (a) one

instance of ABS_ABB that represents a physical continuum, (b) atleast one instance of

Load_ABB that represents the external stimulus under which the behavior is to be

computed, (c) atleast one instance of Behavior_Condition_ABB that represents the

conditions under which the behavior is being computed, and (d) atleast one instance of

Behavior_ABB that represents the behavior parameters that may be computed for the

subject analysis body system. The first two requirements are necessary for computing

behavior parameters in a solver. In addition, the third requirement may be necessary for

certain class of problems. The fourth requirement is necessary a more complete definition

of the model. Note that the cardinality of the part properties may have been constrained to

represent these requirements but they are relaxed to represent in-development

Behavior_Model_ABBSys instances.

Behavior_Model_XContext block represents the context of the behavior model—

the specific analyzable artifact model whose behavior shall be computed using the

behavior model. It is the main construct for representing behavior idealization

relationships between an analyzable artifact model and an ABB system model. These

idealization relationships associate an analyzable artifact assembly to an analysis body

assembly. Specifically, idealization relationships between the following pairs of entities

realize this association: (a) between components of analyzable artifact assembly and

components of analysis body assembly, (b) between analyzable features and analysis

features, and (c) between interactions among analyzable artifact components and

interactions among analysis body components. Analyzable features are features defined

in an analyzable artifact assembly (section 6.1.2) while analysis features are features

defined in an analysis body assembly. Like an analysis body, analysis feature is a special

type of ABB and described in section 7.2. The three types of idealization relationships

 129

above are represented by Analyzable_Artifact_ABS_Relationship,

Analyzable_Feature_Analysis_Feature_Relationship, and

Analyzable_Feature_Analysis_Feature_Interface_Relationship blocks respectively. The

part property aa_abs_rel is of type Analyzable_Artifact_ABS_Relationship and is used for

composing the behavior idealization relationship between the analyzable artifact

assembly and analysis body assembly in the behavior model. The cardinality of the part

property indicates that a Behavior_Model_XContext instance may exist independent of the

idealization relationship but the reverse is not permitted. An idealization relationship

must always be defined in the context of a behavior model.

Analyzable_Artifact_ABS_Relationship block is used for representing behavior

idealization relationships between an analyzable artifact assembly and an analysis body

assembly. In essence, these relationships idealize the behavior of an analyzable artifact

assembly as the behavior of an analysis body assembly continuum. The

Analyzable_Artifact_ABS_Relationship block has following four reference properties:

 associated_aa reference property is used for referring to the analyzable artifact

assembly that is participating in the idealization relationship

 associated_abs reference property is used for referring to the analysis body (or

analysis body assembly) participating in the idealization relationship

 shape_idealization reference property is used for representing the relationship

between the geometric shapes of the analyzable artifact assembly and analysis body

(or analysis body assembly).

 material_behavior_idealization is used for representing the relationship between

material behaviors of the analyzable artifact assembly and analysis body (or analysis

body assembly).

The Analyzable_Artifact_ABS_Relationship block has the following three part properties in

addition to the reference properties above:

 constituent_aa_abs_rels part property is a recursive relationship used for composing

idealization relationships between analyzable artifact and analysis body sub-

assemblies (children) in the idealization relationship between parent assemblies.

 130

 af_anf_rels part property is of type

Analyzable_Feature_Analysis_Feature_Relationship block which is used for

representing relationships between analyzable features and analysis features.

 af_anf_interface_rels part property is of type

Analyzable_Feature_Analysis_Feature_Relationship which is used for representing

relationships between component interfaces in the analyzable artifact assembly and

component interfaces in the analysis body assembly. Specifically, it maps component

interfaces in the analyzable artifact assembly to analysis body interfaces and

behaviors in an analysis body assembly.

Table 7.1: Guidelines for modeling idealization relationships between

analyzable artifacts and analysis bodies

Idealization case Modeled as

Single analyzable artifact

corresponds to a single analysis

body

 One AA_ABS_Rel instance that relates the

analyzable artifact to the analysis body

Single analyzable artifact

decomposed to create an analysis

body assembly

 One AA_ABS_Rel instance that relates the

analyzable artifact to the analysis body assembly;

the instance is composed of multiple AA_ABS_Rel

instances of the following type.

 For each analysis body, an AA_ABS_Rel instance

that relates the analyzable artifact to the analysis

body.

Assembly of analyzable artifacts

composed (or lumped) to create a

single analysis body

 One AA_ABS_Rel instance that relates the

analyzable artifact assembly to the analysis body;

this instance is composed of multiple AA_ABS_Rel

instances of the following type.

 For each analyzable artifact, an AA_ABS_Rel

instance that relates each analyzable artifact to the

analysis body.

Combination of decomposition

and composition

 Combination of above

 131

Table 7.1 above shows guidelines to model different idealization cases using

Analyzable_Artifact_ABS_Relationship (AA_ABS_Rel) block instances.

Analyzable_Feature_Analysis_Feature_Relationship block is used for representing

idealization relationships between analyzable features and analysis features. Analyzable

features are geometric features of an analyzable artifact assembly that are defined for

analysis purposes (section 6.1.2). Analysis features are geometric features of an analysis

body assembly that are also defined for analysis purposes. They are a special type of

ABB and are described in section 7.2.

The Analyzable_Feature_Analysis_Feature_Relationship block has the following

reference properties:

 associated_af is used for referring to the analyzable feature participating in the

idealization relationship

 associated_anf is used for referring to the analysis feature participating in the

idealization relationship

 shape_idealization is used for representing the geometric relationship between the

analyzable feature and the analysis feature.

Table 7.2 below shows guidelines to model different idealization cases using

Analyzable_Feature_Analysis_Feature_Relationship (AF_ANF_Rel) block instances.

Table 7.2: Guidelines for modeling idealization relationships between

analyzable features and analysis features

Idealization case Modeled as

Single analyzable feature

corresponds to a single analysis

feature

 One AF_ANF_Rel instances relates the analyzable

feature to the analysis feature

Single analyzable feature is

decomposed to create several

analysis features

 For each analysis feature, an AF_ANF_Rel

instance that relates the analyzable features to the

analysis feature

 One may also create an AF_ANF_Rel instance that

relates the analyzable feature to the parent

analysis feature—composed of the individual

analysis features.

 132

Several analyzable features

composed (or lumped) to create a

single analysis feature

 For each analyzable feature, an AF_ANF_Rel

instance that relates the analyzable feature to the

analysis features.

 One may also create an AF_ANF_Rel instance that

relates the analysis feature to the parent

analyzable feature—composed of the individual

analyzable features.

Combination of decomposition

and composition

 Combination of above

Analyzable_Feature_Analysis_Feature_Interface_Relationship is used for

representing relationships between component interfaces in the analyzable artifact

assembly and component interfaces in the analysis body assembly. It has the following

three reference properties:

 associated_aa_interaction reference property is of type AA_AA_Interaction block

which is used for representing component interfaces in the analyzable artifact

assembly (section 6.1.2).

 associated_ab_interaction reference property is of type AB_AB_Interaction_ABB block

which is used for representing analysis body interactions in an analysis body

assembly. Analysis body interaction is a special type of ABB and described in section

7.2. The interaction is described by specifying analysis features participating in the

interaction and the interaction behavior in terms of mathematical relations between

behavior parameters of the participating analysis bodies.

 The Core Behavior Model accounts for multi-physics analyses in two possible

ways: (a) defining behavior models that have specialized analysis bodies representing

coupled behavior, such as analysis bodies that represent both structural and thermal

behaviors, and (b) defining separate behavior models—one corresponding to each

analysis discipline—and relating the behavior parameters in one model to the load (or

behavior condition) parameters in another behavior model, such as when thermal loads

result in temperature changes in an analysis body system, causing structural deformation.

 The Core Behavior Model is illustrated using examples in section 7.4.

 133

7.2 ABB Meta-Model
In this section, the ABB Meta-Model is presented. The ABB Meta-Model is a

meta-model for representing analysis building blocks models (ABB models) and analysis

building block system models. The ABB Meta-Model is described here by specifically

focusing on the following key questions.

1. What is an ABB model?

2. What are the different types of ABB models?

3. What is the type of knowledge embodied in ABB models?

4. What is an ABB system model?

5. What is the type of knowledge embodied in an ABB system model?

Aspects of the ABB Meta-Model that address questions 1, 2, and 3 are presented

in section 7.2.1 and those that address questions 4 and 5 are presented in section 7.2.2.

7.2.1 Analysis building block (ABB) model
The ABB Meta-Model defines the constructs and relationships for representing

analysis building block models. In the Knowledge Composition Methodology, an ABB

model is defined as follows.

An Analysis building block (ABB) model represents a specific aspect of domain

theoretic knowledge (section 3.2.3) that is necessary for defining behavior models of

artifacts. An ABB model is the atomic unit for representing this knowledge.

ABB models (referred as ABBs for brevity) represent choices available to

analysts when taking decisions for creating behavior models. There are several types of

ABBs. All ABBs of a given type correspond to choices available to analysts for taking a

specific type of decision. Examples of types of ABBs (and choices for each type) are as

follows: Analysis Body ABB (plane stress analysis body, shell analysis body); Load

ABB (point force load, temperature load); and Analysis Body Interaction ABB (shell-

shell interaction, solid-shell interaction). In the KCM, ABBs are derived and organized

based on analysis knowledge dimensions (section 0). The dimensions are a conceptual

organization of types of decisions (and available choices) and consistency and

completeness of a set of decisions for creating behavior models. The SysML block

definition diagram shown in Figure 7.4 below illustrates the types of ABBs that are

represented using the ABB Meta-Model.

 134

Figure 7.4: Types of ABBs represented using the ABB Meta-Model

All ABBs are modeled as specializations of the ABB block. The type of decision

represented by each specialization of the ABB block is as follows:

 Analysis_Body_ABB block is used for representing analysis bodies. It represents the

form and idealized behavior of a family of analysis bodies.

An analysis body is an idealization of an artifact such that it exhibits an idealized

sub-set of behaviors of the artifact. These behaviors are formalized as mathematical

expressions relating the behavior parameters, the form parameters of the analysis body,

and the behavior environment in which the behaviors are computed (such as load and

behavior conditions). Some examples of analysis bodies are plates, shells, membranes,

linear springs, and linear resistor. For instance, when an artifact is idealized as a linear

spring, its axial extension/compression behavior is abstracted from other behaviors that

an artifact may exhibit and this extension/compression behavior is idealized to be linear

and elastic like a spring (i.e. linear deformation is directly proportional to the applied

extensional forces). The intent of defining an analysis body is to idealize the behavior of

an analyzable artifact as the behavior of an analysis body (or an analysis body assembly).

The behavior models of an analysis body are well-established from existing knowledge—

analytical models derived from domain theories to response surface models derived from

physical experiments.

 135

 Analysis_Body_System_ABB block is used for representing analysis body assemblies

(or systems). An analysis body assembly is represented using a set of analysis bodies

that are components of the assembly and the interactions among these analysis bodies.

The analysis body components in an analysis body assembly are usages of pre-defined

analysis bodies (represented as analysis body models), and the interactions among

these components are usages of pre-defined interactions (represented as analysis body

interaction behavior models). Example of analysis body assemblies are solid-shell

assembly, or beam-shell assembly.

 ABS_ABB block is generalization of Analysis_Body_ABB block and

Analysis_Body_System_ABB block.

 Analysis_Feature_ABB block is used for representing analysis features defined on

analysis bodies or an analysis body assemblies.

An analysis feature is a specific aspect of the shape of analysis body or analysis

body assembly that is defined for analysis purposes such as to define geometric regions

where behavior parameters are to be computed, or regions where loads and behavior

conditions are to be applied.

 AB_AB_Interaction_ABB block is used for representing interaction behaviors between

analysis bodies. The interaction behavior among analysis bodies in an assembly can be

defined using math models relating behavior parameters of the analysis bodies at their

interaction regions (represented as analysis features).

 Shape block is used for representing geometric shapes. Since this construct is

used for other meta-models in the KCM, its name does not have the ABB suffix

as the case with other types of ABB models described here.

 Material_Behavior_ABB block is used for representing constitutive material behavior of

analysis bodies. Examples of material behavior models are: linear elastic isotropic

 136

temperature-independent material behavior and linear viscoelastic isotropic

temperature-independent mater behavior.

 Load_ABB block is used for representing loads applied to an analysis body or an

analysis body assembly.

A load is the stimulus to which the response of an analysis body (or analysis body

system) is to be computed. Loads are applied to analysis features defined on analysis

bodies or analysis body assemblies. Some examples of loads are: force, moment,

temperature, and heat generation rate.

 Behavior_Condition_ABB block is used for representing behavior conditions. Behavior

conditions are additional conditions applied to analysis body or analysis body

assemblies under which their response to loads is to be computed. Examples of

behavior conditions include initial value conditions or boundary conditions. Behavior

conditions are typically described using math constraints involving behavior

parameters.

 Behavior_ABB block is used for representing the set of behavior parameters that may be

computed for a given analysis body or an analysis body assembly.

The ABB Meta-Model also defines the specific aspects of domain theoretic

knowledge represented for each ABB type. It defines four foundational aspects of this

knowledge. These are:

 Context—to identify the domain theoretic concept being represented by an ABB. The

context for each ABB type is defined in section 7.2.1.1. The context attribute of an

ABB is static—not instantiated with an ABB instance. This is because the context

attribute of an ABB defines the characteristics of the specific ABB class and not its

instances.

 Property—to model the domain theoretic concept as parameters and relations. The

properties for each ABB type are defined in section 7.2.1.2.

 137

 Application Conditions—to describe the conditions that must be satisfied for using an

ABB when composing ABB systems or sub-systems. The application conditions for

each ABB type are defined in section 7.2.1.3. The application conditions attribute of

an ABB is also static since it defines the characteristics of the specific ABB class and

not its instances.

 Application Transforms—to define the behavior model composition transformations

when an ABB is used to compose ABB systems (and hence behavior models). The

application transforms for each ABB type are defined in section 7.2.1.4. The

application transforms attribute of an ABB is also static since it defines the

characteristics of the specific ABB class and not its instances.

Figure 7.5: Aspects of domain theoretic knowledge represented in each ABB type

Figure 7.5 above illustrates how these four foundational aspects are represented for each

ABB in the ABB Meta-Model. Note that the static attributes of each ABB are underlined.

Details of the four foundational aspects of ABBs are as described below.

7.2.1.1 ABB Context - what concept is being represented?

 This aspect of an ABB is used to represent contextual knowledge about the

domain theoretic concept represented by the ABB. This contextual knowledge can be

 138

used by analysts to query ABBs in a library and to test the mutual compatibility of

candidate ABBs selected for composing ABB system models. The contextual knowledge

is modeled by populating the contextual attributes of each ABB with pre-defined

keywords. The type of the each contextual attribute is a list of allowable keywords for

that attribute. The allowable keywords for each attribute are governed by the blocks

(classes) in the Analysis Body Dimension model defined in section 7.5.2 and KCM’s

Generic Properties Meta-Model defined in section Appendix 3. In effect, the keywords

tag an ABB thus making it easier to search it in a large library of ABBs. The set of

keyword tags for each ABB is unique and unambiguous. For example, the contextual

attributes for material behavior ABB are the following: (i) material behavior

parameters—set of parameters used for characterizing material behavior, such as

Young’s Modulus and Poisson’s Ratio, (ii) material behavior discipline, such as

structural behavior and thermal behavior, (iii) material behavior distribution, such as

isotropic and orthotropic, (iv) material behavior variation, such as linear, bi-linear, non-

linear. Material behavior variation is further characterized as (a) variation of stress with

strain, (b) variation of material behavior parameters with temperature, and (c) variation of

stress and material behavior parameters with strain rate. In this manner, the context

attribute of each ABB, when populated, allows analysts to query ABBs from a library of

ABBs.

Figure 7.6 illustrates the ABB Context Meta-Model (subset of the ABB Meta-

Model) for representing the contextual knowledge in ABBs. The ABB Context Model

defines the contextual attributes for each ABB type. The ABB Context Meta-Model is

founded on the analysis knowledge dimensions (section 7.5) and is extensible to defining

the contextual attributes of other types of ABBs..

 139

Figure 7.6: ABB Context Meta-Model for representing contextual knowledge in ABBs

 140

The central construct in the ABB Context Meta-Model is the ABB_Context block. All

other blocks are specializations of the ABB_Context block and are used for representing

the context of the corresponding ABBs. For example, the Analysis_Body_Context block is

used for representing the context of analysis body ABB and so on. Note that context of an

ABB is a static attribute. Thus, the attributes of context blocks (used for populating the

context of each ABB) are also static and shown as underlined in Figure 7.6. The

constructs in the ABB Context Meta-Model and their properties are described below

 Analysis_Body_Context block is used for representing contextual knowledge for

analysis body ABB. The following five reference properties are used for characterizing

this contextual knowledge:

o ab_discipline refers to the analysis discipline (such as structural or thermal)

associated which the idealized behaviors represented by an analysis body.

o ab_space refers to geometric space used for defining the shape of an analysis body.

o ab_active_DOFs refers to the number and type of degrees-of-freedom used for

defining the behavior of an analysis body

o associated_mb_context refers to the context of the material behavior associated with

an analysis body

o ab_behavior_parameters refers to the behavior parameters that can be computed for

an analysis body

 Analysis_Feature_Context block is used for representing contextual knowledge for

analysis feature ABB. The following two reference properties are used for

characterizing this contextual knowledge:

o associated_ab refers to the context of the analysis body that owns the analysis

feature.

o feature_space refers to the geometric space of an analysis feature (e.g. 1D feature—

point; 2D features—line and plane; and 3D features—surface and volume).

 Material_Behavior_Context block is used for representing contextual knowledge for

material behavior ABB. The following four reference properties are used for

characterizing this contextual knowledge:

 141

o mb_parameters refers to parameters used for describing the material behavior (such

as Young’s Modulus, Poisson’s Ratio, etc.)

o mb_discipline refers to the analysis disciplines for which the material behavior is

being described (such as structural discipline and thermal discipline). The type and

number of material behavior parameters depend on the discipline.

o mb_distribution refers to the idealized distribution of material in the analysis body

such as isotropic, transversely isotropic, and orthotropic. The material distribution

governs the number of material behavior parameters.

o mb_variation refers to the variation of material behavior parameters, such as linear,

bi-linear, and non-linear. Material_Behavior_Variation_Context block is used for

characterizing the variation.

 Material_Behavior_Variation_Context block is used for characterizing the types of

variation of material behavior. The following three reference properties are used for

characterizing this contextual knowledge:

o stress_strain_based_variation represents variation characterized as the variation of

stress-strain response of a material.

o temperature_based_variation represents variation characterized as the variation of

material behavior parameter values with respect to temperature.

o strain_rate_based_variation represents variation characterized as the variation of

stress with respect to strain rate (or deformation rate).

 AB_AB_Interaction_Context block is used for representing contextual knowledge for

analysis body interaction ABB. The following three reference properties are used for

characterizing this contextual knowledge:

o relating_ab_feature_context and related_ab_feature_context refer to the context

two analysis features participating in an analysis body interaction.

o relating_behavior_parameters and related_behavior_parameters refer to behavior

parameters (at each analysis feature) used for defining the interaction. For example,

if two solid bodies are glued together, then the displacement parameters (translation

and rotation) at the glued surfaces are used for populating the

relating_behavior_parameters and related_behavior_parameters contextual

properties.

 142

 Analysis_Body_System_Context block is used for representing contextual knowledge

for analysis body system ABB. The following two reference properties are used for

characterizing this contextual knowledge:

o associated_ab_context refers to the context of each analysis body used for creating

an analysis body assembly.

o associated_ab_interaction_context refers to the context of each interaction (between

analysis bodies) in an analysis body assembly.

o constituent_absys_context refers to the context of sub-assemblies in the top level

analysis body assembly. An analysis body assembly may be composed of analysis

bodies, or analysis body sub-assemblies, or combinations of both.

o associated_behavior_parameters refers to the behavior parameters used for

representing the behavior of the analysis body system.

 Behavior_Condition_Context block is used for representing contextual knowledge for

behavior condition ABB. The following four reference properties are used for

characterizing this contextual knowledge:

o bc_discipline refers to the analysis discipline for which the behavior condition is

described. For example, structural boundary conditions and thermal boundary

conditions are described for structural and thermal analysis disciplines respectively.

The value of this property is governed by the discipline associated with the behavior

parameters that are used for describing the behavior condition.

o bc_model refers to the type of behavior condition. Boundary conditions (for

boundary value problems) and initial conditions (for initial value problems) are

examples of different types of behavior conditions.

o bc_application_space refers to the geometric space (such as point, line or surface)

over which a behavior condition is applied.

o bc_parameters refers to the behavior parameters used for describing behavior

conditions. For example, displacement parameters (ux, uy, uz, θx, θy, θz) are used for

describing a displacement boundary condition.

 Load_Context block is used for representing contextual knowledge for load ABB. The

following five reference properties are used for characterizing this contextual

knowledge:

 143

o load_application_domain refers to the geometric space over which the load is

applied. For example, a concentrated point load is applied at a point, and a

distributed load may be applied along a line/curve, or over a surface.

o load_space_variation refers to the variation of load over the geometric space over

which it is applied. For example, a load may be distributed uniformly or non-

uniformly over the application domain.

o load_time_variation refers to the variation of load over the time domain. For

example, a point force may be constant or vary with time.

o load_discipline_specific_type refers to the analysis discipline for which the load is

described. The types of loads are different for each analysis discipline. For example,

force, moment, and temperature are loads in the structural analysis discipline, and

heat flux and heat generation rate are loads in the thermal analysis discipline.

o load_parameter_type refers to the parameters used for representing loads, such as

force parameter, moment parameter, and temperature parameter.

 Behavior_Context block is used for representing contextual knowledge for behavior

ABB. The following six reference properties are used for characterizing this contextual

knowledge:

o behavior_modes refers to the different modes of behavior of the analysis body

system. For example, in the structural analysis discipline, small deformation and

large deformation are examples of different behavior modes. The governing

concepts and the analytical formulations for these modes are different. Stress

stiffening, fatigue, and fracture modes are specific types of large deformation mode.

o behavior_parameters refers to the behavior parameters used for quantifying the

behavior of an analysis body system. Displacement, stresses, and strains are

examples of behavior parameters in the structural discipline while temperature is an

example of a behavior parameter in the thermal discipline.

o behavior_discipline refers to the analysis disciplines such as structural, thermal,

electromagnetics

o behavior_space refers to the behavior space of the analysis body system. Behavior

space is characterized by: (a) geometric space defined to describe the form of an

analysis body system, such as 1D or 2D, and (b) number of independent behavior

 144

parameters used for characterizing the behavior of an analysis body system. For

example, the geometric space used for defining a beam-rod—an analysis body that

exhibits axial deformation and bending behavior—with constant cross-section is 1-

dimensional, while it has 2 independent behavior parameters (axial deformation and

transverse deflection). The purpose of this reference property is to better

characterize the meaning of the commonly used terms such as “1D analysis

problem” and “2D analysis problem”.

o behavior_load_variation refers to the variation of behavior parameters with respect

to the applied loads. For example in the case of an idealized linear spring, the

deformation varies linearly with the applied forces. This is an example of linear

behavior.

o behavior_time_variation refers to the variation of behavior parameters with respect

to time. For transient behavior, behavior parameters vary with temperature while for

steady-state or static behavior, behavior parameters are idealized to be constant with

respect to time.

7.2.1.2 ABB Property - how is this concept represented?

The knowledge represented by the context attribute of an ABB can enable

analysts to search ABBs in a library, and identify semantic conflicts between the different

ABBs used for composing behavior models. In contrast, the property attribute of an ABB

is used for representing parameters and relations that mathematically define the domain-

theoretic concept represented by the ABB. When ABBs are composed to create an ABB

system, the property attributes of different ABBs are associated with each other via

mathematical relations. As an example, the contextual attribute of the Hook’s Law

Material Behavior ABB has keywords that collectively state that the stress-strain co-

variation is linear but the property attribute of this ABB represents the behavior

parameters (Stress σ, Strain ε, and Young’s Modulus Y), and the linear mathematical

equation between them (σ/ε = Y).

 145

Figure 7.7: ABB Property Meta-Model for representing properties of ABBs

 146

Figure 7.7 illustrates the ABB Property Meta-Model (subset of the ABB Meta-

Model) for representing the property attribute of ABBs. The ABB Property Meta-Model

defines the constructs for representing the property attribute of different types of ABBs. It

is founded on the analysis knowledge dimensions (section 7.5) and is extensible to

defining the properties of other types of ABBs.

The central construct in the ABB Property Meta-Model is the ABB_Property

block. All other blocks are specializations of the ABB_Property block and are used for

representing the properties of corresponding ABBs. For example, the

Analysis_Body_Property block is used for representing the property of analysis body ABB

and so on. Note that the values populating the property attribute of an ABB do not

explicitly convey the semantics of the physical concept being represented by the ABB.

For example, the property attribute of Hooke’s Law Material Behavior ABB represents

the stress, strain, and Young’s Modulus parameters and the linear equation relating the

three (stress = strain * Young’s Modulus) but it does not explicitly describe the nature of

the equation (linear) or the material distribution assumed (isotropic versus orthotropic).

The constructs in the ABB Property Meta-Model are described below.

 Analysis_Body_Property block is used for representing the property attributes of

analysis body ABB. It has the following four reference properties:

o shape refers to the geometric shape of the analysis body. The reference property type

is the Shape block that is reused across all meta-models in the KCM—CPM2_xKCM,

CBM, and ABB Meta-Model. KCM leverages STEP Part 42 (ISO 10303-42 2000)

standard for representing geometric shapes. Thus, the Shape block is an abstraction

for geometry representation entities in Part 42.

o associated_behavior_property refers to the behavior parameters that may be

computed for the analysis body, and the relations among these behavior parameters in

the context of the analysis body. The reference property type is the Behavior_Property

block. For example, for a linear mechanical spring (an analysis body ABB), the only

behavior parameter that may be computed is the deformation of the spring along its

axis (Ux).

 147

o associated_mb_property refers to the material behavior ABB that represents the

constitutive material behavior of the analysis body. The reference property type is the

Material_Behavior_Property block.

o constituent_analysis_features_property refers to the analysis features defined on the

analysis body. The reference property type is the Analysis_Featuare_Property block.

Analysis features are defined to identify geometric regions defined on an analysis

body (or assembly) where behavior parameters are to be computed, interactions need

to be defined among analysis bodies, and/or load and behavior conditions need to be

applied.

 Analysis_Feature_Property block is used for representing property attributes of analysis

feature ABB. It has the following two reference properties:

o associated_ab_or_absys refers to the analysis body or analysis body assembly on

which the analysis feature is defined. The reference property type is the

Analysis_Body_Property block.

o associated_feature_shape refers to the shape of the analysis feature defined on the

analysis body or analysis body assembly. The reference property type is the Shape

block.

o analysis_sub_features refers to analysis features that are sub-features of the given

analysis feature. This reference property represents the composition of analysis

features from analysis features. For example, if a surface is identified as an analysis

feature and a point on the surface is identified as another analysis feature, then the

two analysis features are related by this reference property.

 AB_AB_Interaction_Property block is used for representing property attributes of

analysis body interaction ABB (AB_AB_Interaction_ABB block). The analysis body

interaction ABB represents the interaction behavior among two analysis bodies in an

analysis body assembly. The interaction behavior is defined between analysis features of

the analysis bodies participating in the interaction. The AB_AB_Interaction_Property

block has the following two reference properties:

o relating_analysis_feature and related_analysis_feature refer to the two analysis

features (each defined on an analysis body) participating in the interaction.

 148

o relating_behavior_parameters and related_behavior_parameters refer to two sets of

behavior parameters that are used for defining the interaction behavior.

o interaction_relations refer to mathematical relations defined using the relating and

related behavior parameters.

For example, the No-slip interaction ABB (type of analysis body interaction ABB) can

be used to create a tie constraint between two analysis features—at which the

corresponding analysis bodies contact each other—such that there is no relative

displacement between the analysis features. In the No-slip interaction ABB, the relating

and related analysis features would refer to the two analysis features participating in the

contact respectively; the relating and related behavior parameters refer to the

displacement parameters (ux, uy, uz, θx, θy, θz) defined at each analysis feature; and the

interaction relations would refer to the mathematical equations that bind the

displacement parameters at the analysis features (ux
1=ux

2, uy
1=uy

2, …:where ux
1 and ux

2

are the displacement parameters at analysis features 1 and 2 respectively, and so on).

 Analysis_Body_System_Property block is used for representing property attributes of

analysis body system ABB. It has the following four reference properties.

o constituent_ab_ab_interactions_property refer to the interactions defined between

analysis bodies in the context of the analysis body system. The reference property

type is AB_AB_Interaction_Property block.

o constituent_af_property refer to the analysis features defined on the analysis body

system. The reference property type is Analysis_Feature_Property block.

o constituent_abs_property refer to the analysis body components of the analysis body

system. The reference property type is Analysis_Body_Property block.

o constituent_absys and of_absys refer to the children sub-systems and parent sub-

system of an analysis body system respectively. The reference property type is

Analysis_Body_System_Property block.

o asociated_behavior_property is used representing the behavior parameters computed

for the analysis body system and the analysis features at which they are computed.

 ABS_Property block is used for representing property attributes of an analysis body

ABB or analysis body system ABB. It is the generalization of Analysis_Body_Property

block and Analysis_Body_System property block.

 149

 Material_Behavior_Property block is used for representing property attributes of material

behavior ABB. It has the following two reference properties.

o mb_parameters refers to the material behavior parameters used for defining the

material behavior.

o mb_parameter_relations refer to the mathematical relations established among

material behavior parameters to define the material behavior. These mathematical

relations may have an analytical form (such as equations) or a tabulated form (such as

material property-value tables generated in physical experiments). In general, KCM

has pre-defined specializations of the Mathematical_Relation block for representing

analytical, logical, tabulated relations, and is extensible to developing other

specializations.

 Load_Property block is used for representing property attributes of the load ABB. It has

the following three reference properties.

o load_type refers to the type of load and the load parameter used for defining the load.

For example, force is a structural load defined using the force parameter (denoted as

F) and heat generation rate is a thermal load defined using the heat generation rate

parameter (denoted as qgen).

o load_application_domain refers to the analysis features of an analysis body or analysis

body system to which the load is applied. Depending on the load type, loads may be

applied to a point, surface, or volume features.

o load_distribution_function refers to the mathematical relations that describe the

variation of the load over the application domain. For example, a constant force load

would have a distribution function as F=constant while a force load that varies

linearly over a straight edge analysis feature would have the following distribution

function: Fx=(x/L)*FL where: Fx is the force magnitude at a distance x from the origin

of the edge feature, L is the length of the edge feature, and FL is the force magnitude at

the end of the edge feature.

 Behavior_Condition_Property block is used for representing property attributes of the

behavior condition ABB. It has the following three reference properties.

o bc_parameters refers to parameters used for defining behavior conditions.

 150

o bc_application_domain refers to the analysis features of an analysis body or analysis

body system on which the behavior conditions are defined.

o bc_relations refers to mathematical relations—established among behavior condition

parameters—that are used for defining behavior conditions.

For example, if a boundary condition that constrains all degrees of freedom at a point on

an analysis body is to be defined, the behavior condition parameters are the

displacement parameters (ux, uy, uz, θx, θy, θz); the application domain is the point

analysis feature; and the behavior condition relations are the mathematical equations

that bind displacement parameters at the point analysis feature to 0, such as ux=0, uy=0

and so on.

 Behavior_Property block is used for representing property attributes of the behavior

ABB. Note that the behavior ABB is defined as an ABB to characterize and reuse the

definition of different types of idealized behaviors. It has the following two reference

properties.

o behavior_parameters refers to the set of behavior parameters (such as displacement,

temperature, stress, and strain) that are used for characterizing the behavior.

o behavior_computation_domain refers to the analysis features where the subject

behavior parameters are being computed.

o behavior_parameter_relations refers to a set of mathematical relations defined using

behavior parameters. Together, the behavior parameters and the mathematical

relations are used for characterizing a behavior.

While the context and property attributes of an ABB define the concept

represented by the ABB, the application condition and the transformation rules attributes

define how an ABB may be used in composing an ABB system and hence a behavior

model.

7.2.1.3 ABB Application Conditions – what are the conditions for using this concept?

 The application condition attribute of an ABB defines the pre-conditions for

using / applying the concept embodied in an ABB when composing ABB system model.

ABB application conditions are represented using mathematical relation such as

analytical, logical, or tabular that must be satisfied for an ABB to be used. For example,

 151

when an analyzable artifact is idealized as a shell, it is assumed that the in-plane

deformation (stretching) and bending effects dominate the deformation of the shell and

the out-of-plane tensile or compressive deformations are negligible. As the thickness of

the shell decreases, the stretching behavior dominates and all other deformations

behaviors are neglected. Thus, when an analyzable artifact is idealized as a shell, it is

assumed that the ratio of the thickness of the shell to the radius of curvature is

significantly less than unity. The application condition attribute of the shell analysis body

ABB is used to represent the mathematical relation (h/R <<1, where h is the thickness of

the shell and R is the radius of curvature). Hence, the application condition attribute of an

ABB represents an aspect of the domain theoretic concept represented by the ABB.

7.2.1.4 ABB Transformation Rules – how does one use this concept?

 ABB transformation rules attribute of an ABB represents the model

transformations that are executed when the ABB is composed in an ABB system model

and when the ABB system model is composed in a behavior model. The following two

types of transformation rules are defined for an ABB: (i) transformation rules that

establish composition relationship between an ABB and the ABB system where is it to be

used, and (ii) transformation rules that establish idealization relationships between an

ABB and the corresponding analyzable artifact. While the former is defined for all ABBs,

the latter is defined only for those ABBs that are idealizations of some specific aspect of

the analyzable artifact model. These are analysis body ABB, analysis body system ABB,

 In the KCM, the graph transformations and patterns are used for mathematically

defined these transformation rules. The transformation rules for each ABB type are

defined as part of the behavior model formulation method presented in Chapter 8.

7.2.2 Analysis building block (ABB) system model
An analysis body system model (referred to as ABB system for brevity) is a

model composed of ABB models. If ABBs are choices available to analysts for a certain

type of decision, then an ABB system is a grouping of selected choices for a certain set of

decisions. Similar to an ABB, an ABB system can be reused to create other ABB

systems. Figure 7.8 illustrates the ABB System Meta-Model (a sub-set of the ABB Meta-

 152

Model). An ABB system is represented by the ABBSys block and has the following four

part properties:

 abs_sys refers to an analysis body or analysis body system ABBs in the ABB system.

 load_applications refers to load ABBs in the ABB system.

 behavior_condition_applications refers to the behavior condition ABBs in the ABB

system

 behaviors refers to behavior ABBs in the ABB system

While there are a significantly large number of ABB systems that may be

composed from nine different types of ABBs defined in the previous section, two key

types of ABB systems defined using the ABBSys block in the KCM are as follows:

 Behavior Model ABB Systems - These types of ABB systems are represented by

the Behavior_Model_ABBSys block—described in details in section 7.1.

 ABB systems that are logical groupings of ABBs and are used relatively

frequently when creating behavior models. For example, an ABB system

composed of a solid analysis body ABB with linear elastic isotropic material

behavior ABB.

The ABB System Meta-Model illustrated in Figure 7.8 is also designed to allow

composition of multiple ABB systems to create a higher-level ABB system. This allows

for greater reuse of ABB systems across different behavior models. For example, if an

electronics designer/analyst was interested to compute the warpage behavior of printed

circuit assemblies and printed circuit boards, they could create a warpage behavior model

for printed circuit boards and reuse that behavior model to create a warpage behavior

model for printed circuit assemblies. Note that the ABBSys block does not have an explicit

Figure 7.8: ABB System Meta-Model

 153

composition relationship to itself for realizing this use case. Instead, this composition is

realized by defining a new analysis body system that is composed of the analysis body

systems from the ABB systems that were to be composed. Similarly, the load application,

behavior conditions applications, and behavior attributes from the ABB systems are

‘merged’ to define the higher-level ABB system.

The composition of an ABB system from ABBs along with the composition rules

defined in each type of ABB (as transformation rule attribute) are described in details in

Chapter 8 as part of the Behavior Model Formulation Method of the Knowledge

Composition Methodology.

7.3 ABB Model Library
In this section, ABB models of each type are presented. Figure 7.9 illustrates the

three levels of ABB model abstractions. The ABB Meta-Model presented in section 7.2

defines the constructs for defining eight different types of ABBs. For each ABB type,

multiple ABB models may be defined as specializations of the corresponding type in the

ABB Meta-Model. For example, the analysis body ABB defined in the ABB Meta-Model

may be specialized to define Rod analysis body ABB (or Rod ABB for brevity), Beam

ABB, Shell ABB, and so on. ABB models are used for composing behavior meta-models

and behavior model structures—specifically the VTMB Artifact Behavior Meta-Model

(Level 3) and FTMB Artifact Behavior Model Structure (Level 4) as described later in

section 7.4. ABB models are instantiated to define behavior model instances—

specifically, the FTMB Artifact Behavior Model instance as described in section 7.4.

 154

Figure 7.9: ABB model abstractions in KCM

As an example, the block Analysis_Body_ABB defined in the ABB Meta-Model

represents analysis body ABBs. This block is specialized to define different types of

analysis body ABBs (such as Rod ABB, Beam ABB, and Shell ABB). Each of these

ABBs may be then instantiated such that its property attributes are populated—the Rod

ABB may be instantiated with specific values of the rod’s length, cross-sectional shape,

and its material behavior properties.

Examples of each of the eight ABB types are described below. For each ABB

type, one example is presented in details to describe how the ABB meta-model may be

specialized. Note that only the context and property attributes of ABBs are presented

here. The application conditions and transformation attributes are described in Chapter 8

as part of the behavior model formulation methods.

7.3.1 Analysis Body ABBs
An analysis body is an idealization of an artifact such that it exhibits an idealized

sub-set of behaviors of the artifact. An analysis body ABB represents the form and

idealized behavior of a family of analysis bodies. In the ABB Meta-Model (section 7.2),

the Analysis_Body_ABB block is used for representing analysis body ABBs. This block

may be specialized to represent several types of analysis body ABB models as shown in

Figure 7.10. The blocks representing different analysis bodies are stated below:

 Structural_Body – represents analysis bodies with idealized structural behavior

 155

 Thermal_Body – represents analysis bodies with idealized thermal behavior

 Electric_Body – represents analysis bodies with idealized electric behavior

 Magnetic_Body - represents analysis bodies with idealized magnetic behavior

 Fluid_Body - represents analysis bodies with idealized fluid flow behavior

The structural body ABB (represented by Structural_Body block) may be further

specialized into different types of structural analysis bodies such as Rod, Shaft, Beam,

Column, Plate, Shell, and Membrane as shown in Figure 7.10

Figure 7.10: Analysis body ABBs

In addition, analysis bodies may be defined such that inherit the characteristics of one

more analysis bodies within the same discipline or across disciplines. For example, beam-

rod is a special type of analysis body that exhibits both transverse and axial deformation

behavior.

Note that ABBs are characterized using their context attribute, and the context of

each type of ABB is defined in the ABB Meta-Model. For example, the block

Analysis_Body_Context represents the context of analysis body ABBs in general. The

properties of this block characterize the context of analysis body ABBs. Specifically, the

context of analysis body ABBs can be represented in terms of the analysis discipline,

geometric space, active degrees-of-freedom, and material behavior. Any of these

characteristics may be used for organizing different types of analysis body ABBs in a

 156

hierarchy. In Figure 7.10, analysis body ABBs are organized based on the analysis

discipline.

For each of the analysis body ABBs described above, the context and the property

attribute types may be defined. For example, for the shell analysis body ABB,

Shell_Context and Shell_Property blocks represent the context and property type

respectively, defined as specializations of Analysis_Body_Context and

Analysis_Body_Property block respectively. The shell analysis body ABB defined here is

based on Kirchhoff-Love assumptions for thin elastic shells (Ventsel and Krauthammer

2001). Thus, the attribute values of the Shell_Context and Shell_Property block properties

indicate the shell analysis body ABB has an elastic material behavior and the stress and

strain behavior parameters normal to the mid-surface are neglected.

Figure 7.11: Shell analysis body ABB

Each of the analysis body ABBs described above may be further specialized. For example,

the shell analysis body ABB is specialized to represent planar shell analysis body ABB. A

planar shell is a shell whose mid-surface has a planar shape as shown in Figure 7.11. Only

the context and property attributes of the ABBs are shown here.

Note that the attributes of Analysis_Body_Context and its specializations are

static—values do not change when an analysis body ABB is instantiated. However, the

attributes of Analysis_Body_Property block are populated with specific values when an

analysis body ABB is instantiated. The context attribute of the planar shell analysis body

 157

ABB is of type Planar_Shell_Context block. The attribute values of this block characterize

a planar shell. In a similar manner, the Analysis_Body_Property block is specialized to

represent shell property and planar shell property in particular. The shape attribute of the

Planar_Shell_Property block is of type Planar_Shell_Shape. Also note that during

specialization the parent attributes are re-defined to better characterize the specializations.

7.3.2 Material Behavior ABBs
Material behavior ABBs are used for representing the constitutive material

behavior of analysis body ABBs. The Material_Behavior_ABB block is the parent block

for represent material behavior ABBs. The context attribute of material behavior ABBs

defines the key dimensions for characterizing material behavior ABBs, namely analysis

discipline, behavior parameters, distribution, and variation (described in details in section

7.2.1. Any of these dimensions may be used for creating a hierarchy of material behavior

ABBs. Figure 7.12 below illustrates blocks corresponding to different types of material

behavior ABBs organized based on analysis discipline, and defined as specializations of

the Material_Behavior_ABB block.

Figure 7.12: Material behavior ABBs

 158

Figure 7.13: Linear elastic isotropic and orthotropic material behavior ABBs

Two specializations of the elastic material behavior ABB —linear elastic isotropic

temperature-independent material behavior ABB and linear elastic orthotropic

temperature independent material behavior ABB—are illustrated in details in Figure 7.13.

The context and property attribute types of these ABBs are also shown in the figure—

Linear_Elastic_Isotropic_TempInd_MB_Context and

Linear_Elastic_Isotropic_TempInd_MB_Property blocks for the linear elastic isotropic

temperature-independent material behavior ABB, and

Linear_Elastic_Orthotropic_TempInd_MB_Context and

Linear_Elastic_Orthtropic_TempInd_MB_Property blocks for the linear elastic orthotropic

temperature-independent material behavior ABB. The attribute values of the context

blocks are populated with keywords that indicate the isotropic versus orthotropic material

distribution as the only difference between the two material behavior ABBs. The property

blocks for the two ABBs are defined as specializations of the Material_Behavior_Property

block, and the Material_Behavior_Property .mb_parameters and

 159

Material_Behavior_Property.mb_relations attributes are specialized to 3 parameters and 1

constraint relation for the linear elastic isotropic temperature-independent material

behavior ABB, and 9 parameters and 3 constraint relations for the linear elastic

orthotropic temperature-independent material behavior ABB. For the linear elastic

isotropic temperature-independent material behavior ABB, the three parameters are the

Young’s Modulus, Poisson’s Ratio, and Shear Modulus; and the constraint relation

relates the three parameters as shown in the parametric diagram in Figure 7.14. For the

linear elastic orthotropic temperature-independent material behavior ABB, the nine

parameters are the Young’s Modulus, Poisson’s Ratio, and Shear Modulus in three

principal directions; and the constraint relation relates the three parameters in each

principal direction as shown in the parametric diagram in Figure 7.15.

Figure 7.14: Constraint relations between E, G, and Nu parameters for

linear elastic isotropic temperature-independent material behavior ABB

 160

Figure 7.15: Constraint relations between E, G, and Nu parameters in each principal

direction for linear elastic orthotropic temperature-independent material behavior ABB

In a similar manner, the property types of other material behavior ABBs may be

defined with their corresponding parameters and relations. The constraint relations

between material behavior parameters may be available as a tabulated data between the

parameters.

7.3.3 Behavior ABBs
A Behavior ABB represents a set of idealized behaviors. When an analysis body

ABB is associated with a behavior ABB, it implies that the subject analysis body exhibits

the specific set of behaviors. In the KCM, behavior is characterized by the context and

property attribute of the behavior ABB, represented by the Behavior_Context and

Behavior_Property blocks respectively. The Behavior_Context block properties provide

several dimensions for characterizing behavior, as described in section 7.2. Figure 7.16

shows a set of behavior ABBs organized in a hierarchy based on the behavior discipline

dimension. The structural behavior ABBs represent different types of primitive structural

 161

behaviors, such as tension, compression, bending, torsion. A composite behavior may be

defined by multiply inheriting two or more types of behavior ABBs.

Figure 7.16: Behavior ABBs

 Figure 7.17 shows Structural_Behavior ABB block—representing structural

behavior ABB—defined as a specialization of the Behavior_ABB block. The property

values of Structural_Behavior_Context block characterize the structural behavior ABB,

and the Structural_Behavior_Property.behavior_parameters is specialized to represent

structural behavior parameters only.

Figure 7.17: Structural behavior ABB

 162

7.3.4 Analysis Feature ABBs
Analysis features ABBs are associated with analysis body (or analysis body

system) ABBs since an analysis feature is specific aspect of the shape of analysis body or

analysis body systems. Figure 7.18 illustrates different types of analysis features defined

for a shell. The blocks representing these analysis features are defined as specializations

of the Analysis_Feature_ABB block.

The shell analysis features represented by these blocks are as follows:

 Shell_Vertex_Analysis_Feature block represents a point or vertex analysis feature

defined on a shell analysis body.

 Shell_Surface_Analysis_Feature block represents a surface analysis feature defined on

a shell analysis body.

 Shell_Volume_Analysis_Feature block represents a volume analysis feature defined on

a shell analysis body. The volume feature could be the entire volume of the analysis

body or a sub-volume.

Figure 7.18: Analysis feature ABBs

 163

 Laminated_Shell_Volume_Analysis_Feature block represents a volume analysis

feature defined on a laminated shell analysis body system. A laminated shell analysis

body system is a stackup of planar shell analysis bodies.

7.3.5 Analysis Body Interaction ABBs
Analysis body interaction ABB represents the behavior of the interaction between

analysis bodies in an analysis body system. Since it is the behavior of the interaction that

is core to representing the interaction, analysis body interaction ABBs may be organized

based on the analysis disciplines. Figure 7.19 illustrates different types of analysis body

interaction ABBs organized based on analysis discipline, and each represented by a block

that is a specialization of the AB_AB_Interaction_ABB block. For analysis body interaction

ABBs corresponding to a specific analysis discipline, the interaction is defined in terms

of the corresponding behavior parameters. For example, for structural interaction ABBs,

the interaction is defined in terms of structural behavior parameters. Note that the

context attribute of analysis body interaction ABB is of type AB_AB_Interaction_Context

block, and the properties of this block define characteristics on the basis of which

analysis body interaction ABBs may be organized. Figure 7.19 shows one such hierarchy

based on a analysis disciplines.

Figure 7.19: Analysis Body Interaction ABBs

 164

Figure 7.20: Shell-shell tie interaction ABB

Figure 7.20 illustrates shell-shell tie interaction ABB that represents perfectly

bonded (or glued) interaction between two shell analysis bodies, and is represented by

Shell_Shell_Tie_Interaction block. As the context and property attribute types of this

interaction ABB illustrate, the shell-shell tie interaction ABB associates the displacement

parameters defined at the surfaces of two shell analysis bodies. The mathematical

relations between the displacement parameters are illustrated by the parametric diagram

in Figure 7.21. As shown in the diagram, the displacement parameters (both translation

and rotation) at the surfaces of two shell analysis bodies participating in the interaction

are equated13 to each other.

13 The lines connecting the displacement parameters are called binding connectors—used for binding values of

connected objects.

 165

Figure 7.21: Interaction relations for shell-shell tie interaction ABB

7.3.6 Analysis Body System ABBs
An analysis body system is an idealization of an artifact14 such that it exhibits an

idealized sub-set of behaviors of the artifact. An analysis body system ABB represents an

analysis body system. Figure 7.22 illustrates a laminated shell analysis body system

ABB. A laminated shell analysis body system ABB is a stackup of shells such that

surfaces of adjacent shells are glued together. As illustrated in the figure, this

composition is reflected in the context and property attributes of this ABB, represented

by LamShell_ABSys_Context and LamShell_ABSys_Property blocks respectively. In

addition, a volume analysis feature that represents the volume of the laminated shell

analysis body system is also defined.

14 Typically a multi-body artifact unless a single artifact is chopped to define multiple analysis bodies

 166

Figure 7.22: Analysis Body System ABBs

7.3.7 Load ABBs
A load is the stimulus to which the response of an analysis body (or analysis body

system) is to be computed. The context and property attributes of load ABB are

represented by Load_Context and Load_Property blocks respectively. The attributes of the

Load_Context block define several dimensions on which load ABBs may be organized.

Figure 7.23 illustrates a set of load ABBs organized based on the analysis discipline, and

Figure 7.24 illustrates uniform temperature load ABB defined as a special types of load

ABB. The uniform temperature load ABB represents a temperature load (increase or

decrease in ambient temperature) to which an analysis body (or analysis body system)

may be subjected to. Since temperature change affects the entire volume of the analysis

body or analysis body system, this load is applied to the volume analysis feature. The

load distribution function in the Uniform_Temperature_Load_Property block shows that

 167

the final temperature is a constant (as also illustrated in the parametric diagram in Figure

7.24. The change from reference temperature to final temperature is a straight ramp.

Figure 7.23: Load ABBs

 168

Figure 7.24: Uniform temperature load ABBs

 169

7.3.8 Behavior Condition ABBs
Behavior_Condition_ABB block is used for representing behavior conditions.

Behavior conditions are additional conditions applied to analysis body or analysis body

system under which their response to loads is to be computed. Figure 7.25 illustrates

behavior condition ABBs organized based on analysis disciplines. The

PointDisplacementFixed_Condition block represents a behavior condition in which a point

analysis feature is held static, i.e. the displacement parameters are set to zero.

Figure 7.25: Behavior condition ABBs

Figure 7.26 illustrates the context and property attributes of this behavior condition ABB

and Figure 7.27 illustrates the behavior condition relations for this ABB.

 170

Figure 7.26: Point displacement fixed behavior condition ABB

Figure 7.27: Behavior condition relations for point displacement fixed behavior condition ABB

 171

7.4 Behavior Models

7.4.1 Abstractions
In this section, the five levels of abstractions of behavior models relevant in the

KCM are described. Figure 7.28 shows a conceptual hierarchy of models in the KCM as

a SysML block definition diagram. The five levels of abstractions of behavior models are

grouped as the behavior model stack in the diagram and are described in this section. The

behavior model abstraction at each level in the stack represents a set of behavior models.

As one moves down the stack (increase in levels), the models become more specialized

and represent a sub-set of behavior models represented by the preceding abstraction level.

The five different abstractions of behavior models in the KCM are useful for the

following reasons:

 Since the primary use case of KCM is the automated composition of behavior models,

it is necessary to distinguish the abstraction levels where the model composition

transformations are specified versus the levels at which they are executed versus the

level at which behavior models are solved to compute behavior parameters. This

approach allows one to define transformations to create a set of behavior models and

not just a specific behavior model.

 Since KCM is targeted to address VTMB problems, the abstractions allow one to

distinguish between behavior models that represent the behavior of artifacts with

different assembly system topologies versus those that represent the behavior of

artifacts with a fixed topology. The former type of behavior models are those for which

assembly system topology-specific decisions have not been taken by analysts while the

latter type of behavior models at those where these decisions have been taken.

 The abstractions also allow one to study variations of behavior models. Each level in

the abstraction corresponds to a specific type of variation of behavior models and

hence represents a set of behavior models. For example, at Level 3 in the behavior

model stack the assembly system topology of artifact may vary; at Level 4 the

topology is fixed but size and properties of artifacts may vary.

 .

 172

Focus of this section

Figure 7.28: Behavior Model Abstractions in KCM

 173

The five different levels of abstractions in the behavior model stack are described

below with examples

 Level 1 (B1): Artifact Behavior Meta-Model (Core Behavior Model)

The Level 1 abstraction in the behavior model stack is known as Artifact

Behavior Meta-Model. This meta-model defines the constructs and relationships for

representing behavior models of artifacts in different application areas (such as

electronics, automotive, and aerospace) for different types of analyses (such as structural

analyses, thermal analyses, and electromagnetic analyses). The Core Behavior Model

presented in this chapter is a specific example of an Artifact Behavior Meta-Model (with

special focus on VTMB artifacts). The Artifact Behavior Meta-Model is related to the

Artifact Meta-Model (Level 1 in design model stack) and this relation represents the

relation between an artifact (specifically its analyzable abstraction) and its behavior

models. In KCM, CPM2_xKCM (specific example of Artifact Meta-Model) is related to

CBM through the Behavior block as described in section 7.1 and illustrated in Figure 7.3.

 Level 2 (B2): Analysis-specific Behavior Meta-Model

The Level 2 abstraction in the behavior model stack is known as Analysis-specific

Behavior Meta-Model. This meta-model is a specialization of the Artifact Behavior

Meta-Model (B1) and it defines the constructs and relationships for representing behavior

models of artifacts in a specific application area for a specific analysis domain. For

example, the CBM may be specialized to create a behavior meta-model for thermo-

mechanical analyses of electronics artifacts.

 Level 3 (B3) : VTMB Artifact Behavior Meta-Model

 The Level 3 abstraction in the behavior model stack is known as VTMB Artifact

Behavior Meta-Model, where VTMB stands for Variable Topology Multi-Body. This

meta-model may be defined as a specialization of Analysis-specific Behavior Meta-

Model (B2) or directly as a specialization of Artifact Behavior Meta-Model (B1). This is

so because it may not be practical to develop a behavior meta-model for each analysis

domain for some artifact application areas. The VTMB Artifact Behavior Meta-Model

defines the constructs and relationships for representing behavior models of a family of

 174

artifacts with different assembly system topologies and for a specific type of analysis. All

members of this family are a specific type of artifact in a given application area and with

different (non-equivalent) assembly system topologies. An example of the VTMB

Artifact Behavior Model is a behavior meta-model defined for thermo-mechanical

analyses of multi-layered printed circuit boards. Here, the behavior meta-mode is for a

family of artifacts of a specific type (printed circuit boards) but with different assembly

system topologies (such as 5-layered, 10-layered, or 13-layered PCBs).

 The PCB_nSx_ThermoMech_Behavior_Meta-Model illustrated in section 7.4.2 is

an example of the VTMB Artifact Behavior Meta-Model. It is a meta-model for

representing thermo-mechanical behavior models of n-stratum printed circuit boards.

 Level 4 (B4): FTMB Artifact Behavior Model Structure

 The Level 4 abstraction in the behavior model stack is known as FTMB Artifact

Behavior Model Structure, where FTMB stands for Fixed Topology Multi-Body. This

model is defined as an instance of the VTMB Artifact Behavior Model Structure (B3). In

instantiating the B3 model, only decisions pertaining to the assembly system topology are

populated. While the B3 abstraction is a meta-model for representing behavior models of

a family of artifacts with varying assembly system topology, the B4 abstraction

represents behavior models of artifacts with a fixed topology. For example, one may

create a B4 model for representing 5-layered PCBs, or 10-layered PCBs, or 15-layered

PCBs. Since only topology-specific decisions have been populated in an FTMB Artifact

Behavior Model Structure, it is a partially-specified instance model and it provides a

structure for creating several fully-specified instances. Hence, B4 abstraction is a

behavior model structure and not a specific behavior model. It represents a set of

behavior models for artifacts with the equivalent assembly system topologies.

 The PCB_5Sx_ThermoMech_Behavior_Model_Structure illustrated in section 7.4.2

is an example of the FTMB Artifact Behavior Model Structure. It represents thermo-

mechanical behavior models of a set of 5-layered printed circuit boards.

 175

 Level 5 (B5): FTMB Artifact Behavior Model Instance

 The B5 abstraction in the behavior model stack is known as FTMB Artifact

Behavior Model Instance. This model is a fully-specified instance of B3 model (VTMB

Artifact Behavior Meta-Model). In contrast to a B4 model, a B5 model is a specific

behavior model and is intended to be solvable. It incorporates all decisions that have been

taken to completely define a behavior model (i.e. a solvable behavior model). For a given

B4 behavior model (structure), several B5 models (instances) may be created. A B5

model is a behavior model of a specific artifact for a specific analysis.

 The PCB_5S1_ThermoMech_Behavior_Model_Instance model illustrated in

section 7.4.2 is an example of the FTMB Artifact Behavior Model Instance. It represents

a thermo-mechanical behavior model of a specific 5-layered printed circuit board.

7.4.2 Examples
In this section, specific examples of the model abstractions in the behavior model

stack are presented. The Level 1 abstraction is the Core Behavior Model which was

presented in section 7.1. In this section, B3, B4, and B5 models are presented to illustrate

how the CBM is used for representing specialized meta-models and models. The

examples presented here show different levels of abstractions of thermo-mechanical

behavior models for multi-layered printed circuit boards. The relation of these models to

the corresponding models in the design model stack is also illustrated.

 Level 3 (B3) example: PCB_nSx_ThermoMech_Behavior_Meta-Model

Figure 7.29 below illustrates PCB_nSx_ThermoMech_Behavior_Meta-Model —a

thermo-mechanical behavior meta-model for n-layered printed circuit boards. This meta-

model is created as a specialization of the Core Behavior Model, and it defines the

constructs and relationships for representing thermo-mechanical behavior models of

multi-layered PCBs. The central entity in this meta-model is PCB-

LamShell_ThermoMech_BM block (specialization of Behavior_Model block) and it

represents a thermo-mechanical behavior meta-model where an n-layered PCB is

idealized as an n-layered laminated shell system.

 176

Figure 7.29: PCB_nSx_ThermoMech_Behavior_Meta-Model (B3): A thermo-mechanical behavior

meta-model for multi-layered PCBs (View 1)

This behavior meta-model is composed of an ABB system meta-model, and a context

meta-model that relates the ABB system meta-model to the analyzable artifact meta-

model (D3 abstraction in the design model stack). LamShell_ThermoMech_ABBSys block

represents the specialized ABB system meta-model and PCB_LamShell_Context

represents the specialized context meta-model. Note that the specializations also redefine

the block properties. For example, Behavior_Model.context is of type

Behavior_Model_XContext but PCB-LamShell_ThermoMech_BM.context is of type

APCB_LamShell_Context. The ABB system meta-model (LamShell_ThermoMech_ABBSys

block) is composed of:

(i) n-layered laminated shell system (represented by LamShell_ABSys_Property block

illustrated in Figure 7.30), (ii) uniform temperature load applied to the laminated shell

system (represented by Uniform_Temperature_Load_Property block), (iii) point

displacement boundary condition (represented by PointDisplacementFixed_BC_Property

block), and (iv) set of structural behavior parameters (Structural_Behavior_Property

block). These four types of ABBs are described are described in section 7.3. Note that in

PCB_nSx_ThermoMech_Behavior_Meta-Model, specific types of loads and boundary

conditions have also been specified as part of the meta-model. However, it is not

 177

necessary to specify these and keep the meta-model more generic. The context meta-

model (represented by the APCB_LamShell_Context block) is composed of idealization

relationships between n-stratum analyzable PCB (Level 3 model in the design model

stack) and n-layered laminated shell system (special type of analysis body system). These

relationships are represented by the APCB_LamShell_Relationship block in Figure 7.30.

 Figure 7.30 illustrates a more detailed view of the meta-model. In particular, it

shows the n-layered laminated shell system and its relationship to the n-layered

analyzable PCB model. The n-layered laminated shell system is composed of n individual

planar shells (represented by Planar_Shell_Property block), the tie interactions between

these planar shells that are stacked together (represented by

Shell_Shell_Tie_Interaction_Property block), and the planar shell surfaces that participate

in defining the tie interactions—the secondary surface of a preceding shell is tied to the

primary surface of the succeeding shell—that are represented by

Shell_Surface_AF_Property block. Planar shell, Shell-Shell tie interaction, and shell

surface analysis features are special types of ABBs and blocks representing these ABBs

are described in section 7.3. Corresponding to the n-layered laminated shell system in the

behavior model stack is the n-layered analyzable PCB in the design model stack. An n-

layered analyzable PCB is composed of individual stratums, the interactions between the

stratums, and the stratum surface features that participate in the interactions—explained

in details in section 6.2. The behavior idealization relationships that are defined as part of

the context meta-model relate the stratums, interactions, and surface features to the planar

shells, tie interactions, and shell surface analysis features respectively. The

APCB_LamShell_Relationship block is the central entity in this context meta-model (part

of the behavior meta-model) and represents the behavior idealization relationships

between an n-layered analyzable PCB to an n-layered laminated shell system. The

behavior idealization relationships are composed of: (i) idealization relationships between

each analyzable stratum to the corresponding planar shell, (ii) idealization relationships

between an analyzable stratum surface to the corresponding shell surface, and (iii)

idealization relationships between the interactions between adjacent analyzable stratums

and the tie interactions between adjacent planar shells. These three types of idealization

relationships are represented by AStratum_PShell_Relationship,

 178

AStratSurf_PShellSurf_Relationship, and AdjStrat_PShellTie_Interaction_Relationship

blocks respectively.

Figure 7.30: Example D3-B3 model showing relationships between n-stratum analyzable PCBs (D3) and

corresponding n-layered laminated shell systems (B3)

 Level 4 (B4) example: PCB_5Sx_ThermoMech_Behavior_Model_Structure

Figure 7.31 below illustrates

PCB_5Sx_ThermoMech_Behavior_Model_Structure—a thermo-mechanical behavior

model structure for 5-stratum15 PCBs. This behavior model structure is an instance of the

PCB_nSx_ThermoMech_Behavior_Meta-Model and represents thermo-mechanical

behavior models of printed circuit boards with 5 stratums. As shown in Figure 7.31,

central entity in this B4 model is PCB-LamShell_5Sx_ThermoMech_BM (an instance of

PCB-LamShell_ThermoMech_BM). Just like its parent meta-model and CBM,

PCB_5Sx_ThermoMech_Behavior_Model_Structure is composed of an ABB system,

and a context model that relates the ABB system to analyzable design model structure

(D4 model in the design model stack). LamShell_5Sx_Thermo-Mech_ABB_System block

15 The term ‘layer’ in printed circuit boards typically refers to design layers (electrically conductive). Hence the term

‘stratum’ is used to refer to all layers in general.

 179

represents the ABB system, and APCB_LamShell_5Sx_Context block represents the

context model for this behavior model structure.

The ABB system is composed of a 5-layered laminated shell system as illustrated in

Figure 7.32. The figure shows 5 planar shells, their primary and secondary surfaces, and

the tie interactions between planar shells in the laminate shell system. The planar shells,

their surfaces, and shell-shell tie interactions are ABB instances. The properties of each

ABB instance are also shown in the figure.

Figure 7.31: PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4): A thermo-mechanical

behavior model structure for 5-layered PCBs (View 1)

 180

Since B4 is a partially-specified instance model, the assembly system topology of the

laminate shell system is fixed but the actually sizes and shapes of each shell, and their

material behavior property values are not defined.

Figure 7.32: Analysis body system of PCB_5Sx_ThermoMech_Behavior_Model_Structure (B4)

 181

Figure 7.33 above shows the 5-layered laminate shell system and the context

model that associates this laminate shell system to the 5-stratum analyzable PCB model

structure. Behavior idealization relationship for shown only for stratum 1 as the structure

repeats itself for other stratums. The central entity in the context model is the

APCB_LamShell_5Sx_Context block (Figure 7.31). The context model refers to the

Behavior Model StackDesign Model Stack

Figure 7.33: Example D4-B4 model showing relationships between 5-stratum analyzable PCBs (D4) and

corresponding 5-layered laminated shell systems (B4)

 182

behavior idealization relationship between the 5-stratum analyzable PCB and the 5-

layered laminate shell system (APCB_LamShell_5Sx_Context.aa_abs_rel). As shown in

Figure 7.33, this idealization represented is represented by the APCB_LamShell_5Sx_Rel

block that relates the APCB_5Sx block (5-stratum analyzable PCB) and

LamShell_5Sx_ABSys block (5-layered laminate shell system). The idealization

relationship between the 5-stratum analyzable PCB and 5-layered laminate shell system

is composed of: (i) idealization relationship between each stratum and shell (represented

by blocks AStrat_PShell1_Rel, AStrat_PShell2_Rel,…), and (ii) the idealization

relationships between the stratum interfaces and the shell interactions (represented by

blocks AStrat_ShellTie_12_Interaction_Rel, AStrat_ShellTie_23_Interaction_Rel, …).

The idealization relationship between an analyzable PCB stratum and a planar

shell in the laminate shell system refers to shape idealization relationships and material

behavior idealization relationships. These relationships represent how the shapes and

material behaviors respectively of the stratum and the shell are related—including the

mathematical relationships between the shape parameters and the material behavior

parameters. For the first stratum in the analyzable PCB and first planar shell in the

laminate shell system, SSR1 and MBR1 are the shape idealization and material behavior

idealization relationships respectively. Note that the mathematical relations associated

with these idealization relationships indicate that the shape properties and material

behavior properties of the stratum and shell are equal. The idealization relationship

between an analyzable PCB stratum and a planar shell is also composed of the

idealization relationships between their features. The primary and the secondary surfaces

of the stratum are related to the primary and secondary surfaces of the corresponding

shell by the blocks AStrat_PShell1_Prim_Rel and AStrat_PShell1_Sec_Rel.

 Level 5 (B5): PCB_5S1_ThermoMech_Behavior_Model_Instance

Figure 7.34 below illustrates PCB_5S1_ThermoMech_Behavior_Model_Instance—

a thermo-mechanical behavior model for a specific 5-stratum PCB.. This behavior model

is a fully-specified instance of PCB_nSx_ThermoMech_Behavior_Meta-Model (B3 model).

In contrast to the B4 models all property values are fully-populated in B5 models,

including the material behavior properties and the shapes of the analyzable PCB stratums.

 183

The shape and material behavior idealization relationships between the stratums and the

shells can then be solved using math solvers. Figure 7.34 shows the shape and material

behavior properties for stratum 1 of the analyzable PCB_5S1 (in a D5 model). The values

of the corresponding shape and material behavior properties for shell as shown in the

figure are not computed.

7.5 Analysis Knowledge Dimensions
Analysis knowledge dimensions provide the basic foundation for defining the

Core Behavior Model and the ABB Meta-Model. These constructs and the relationships

defined in these meta-models were based on representing the types of decisions that

analysts take in defining reusable building blocks of domain-theoretic concepts and

Design Model Stack Behavior Model Stack

Figure 7.34: Example D5-B5 model showing relationships between a specific 5-stratum analyzable PCB (D5)

and corresponding 5-layered laminated shell system (B5 model in unsolved state)

 184

composing behavior model structure based on these concepts. Analysis knowledge

dimensions provide a conceptual organization of the types of these decisions and the

choices available. The Analysis Knowledge Dimension Model presented in this

dissertation is a conceptual model that is not instantiated itself but was used to define the

Core Behavior Model and the ABB Meta-Model that may be specialized and instantiated.

In this section, the Analysis Knowledge Dimension model is presented using a set

of SysML block definition diagrams. There are two types of constructs in this conceptual

model: (a) constructs representing types of decision taken by analysts in creating

behavior models, and (b) constructs representing choices available for these decisions.

The former type of constructs is denoted as a ‘dimension’ or ‘sub-dimension’ (for sub-

decisions). Both the constructs are presented as SysML blocks. There are two types of

relationships defined among constructs:

 The composition relationship (line ending in a black diamond) denotes the composition

of higher-level decisions into sub-decisions, and it is drawn between constructs

representing dimensions.

 The generalization relationship (line ending in an arrow) denotes the choices available

for a particular type of decision, and it is drawn between constructs representing choices

to the construct representing the corresponding decision.

 The central entity in Analysis Knowledge Dimension model is the

Analysis_Knowledge_Dimensions block and it represents the collective decisions that

need to be taken by analysts to create a behavior model structure. As shown in Figure

7.35, such a collective decision is decomposed into four dimensions (set of decisions),

namely:

 Behavior dimension (represented by Behavior_Dimension block)

 Analysis body dimension (represented by Analysis_Body_Dimension block)

 Load dimension (represented by Load_Dimension block)

 Behavior condition dimension (represented by Behavior_Condition_Dimension block)

Note that the layout of the SysML diagrams presented in this section is circular and not

hierarchical. The top-level concept is positioned in the middle of the diagram and related

concepts are arranged around the top-level concept.

 185

Blocks representing the four major dimensions have names ending in ‘Dimension’, and

the blocks representing the sub-dimensions under each of the four major dimensions have

names ending in ‘Dim’. The basis for abstracting these four dimensions lies in the

assumption that the behavior of an artifact in a given environment is a function of the

artifact’s form, and the loads and behavior conditions to which an artifact is subjected in

that environment. Note that when formulating behavior models, the artifact is represented

in its idealized form as an analysis body or analysis body system. Before describing the

complete structure of each of these four dimensions, it is necessary to describe the

semantic properties of the Analysis Knowledge Dimension Model. These are:

1. Decisions need to be taken on all dimensions and their sub-dimensions, either directly

or indirectly, to create a complete behavior model structure. A complete behavior

model structure is one which when instantiated is solvable.

2. Analysis knowledge dimensions and their sub-dimensions may not be mutually

exclusive, and a decision taken on a particular sub-dimension may influence or

constrain a decision on other sub-dimension(s).

3. There may not be a sequence in which decisions are taken along particular

dimensions.

4. Decisions may be mutually consistent (or inconsistent), and/or redundant

5. The choices presented here for the dimensions are primarily primitive level choices.

More choices may be defined by creating choices that are composed of one or more

choices.

Figure 7.35: Analysis Knowledge Dimension Model – top-level view

 186

6. Choices available for a decision may be mutually exclusive. In the SysML block

definition diagrams presented here, these choices are represented by blocks with

italicized names.

These properties reflect the inherent nature of analysis problem formulation process in

that there are several ways of creating a behavior model structure, and a valid and

complete behavior model is one for which the set of idealization decisions were mutually

complete, consistent and preferably non-redundant.

Note that the analysis knowledge dimensions presented here are extensible. The

types of decisions and the choices for each decision type presented help to illustrate the

conceptual model and in no way represent a fully exhaustive set of choices for all types

of behavior models.

7.5.1 Behavior Dimension
The Behavior dimension is meant for categorizing decisions pertaining to the

overall behavior of an artifact. It is represented by the Behavior_Dimension block and

includes six sub-dimensions, as shown by the composition relationships in Figure 7.36.

These sub-dimensions are as follows:

 Behavior_Type_Dim: This sub-dimension is used to categorize different types of

idealized behaviors of an artifact As shown in Figure 7.36, the choices for this decision

are categorized based on analysis disciplines, such as tension, torsion, vibration, and

buckling for structural behavior; and conduction, convection, and radiation for thermal

behavior. Choices that represent composite behaviors (such as bending and torsion) may

be defined by creating blocks that specialize one or more blocks.

 187

Figure 7.36: Behavior Dimension

 188

 Behavior_Mode_Dim: This sub-dimension is used to categorize different idealized

behavior modes of an artifact for a given type of behavior. For example, depending on

the magnitude of the load, an artifact’s torsional behavior may be idealized as one

resulting in small deformation or large deformation. Here, small deformation and large

deformation are different modes of torsional behavior. Note that large deformation and

small deformation are mutually exclusive choices (denoted with italicized block names)

 Behavior_Variation_Dim: This sub-dimension is used to categorize how the variation

in the behavior of the artifact may be idealized, such as static or dynamic, linear or non-

linear. In Figure 7.36, two main specializations of this sub-dimension are shown, namely

(a) Linear_or_Non-Linear to specify if the response of an artifact to loads is idealized

linear or non-linear, and (b) Static_or_Dynamic to specify if the response of an artifact to

loads with respect to time is idealized as static or dynamic. Here, the response of an

artifact is measured in terms of a behavior parameter, such as deformation or

temperature. Other sub-dimensions may be added for relating the behavior of an artifact

to other parameters apart from load and time.

 Behavior_Space_Dim: This sub-dimension is used to categorize the geometric space

of an idealized artifact. There are 2 ways of measuring this: (a) the geometric space

occupied by the idealized artifact, and (b) number of independent spatial variables in the

analysis problem. As an example for a beam bending under transverse loads, the number

of independent spatial parameters is one (distance measured along the axis of the beam).

The transverse deflection is dependent on this distance. However, the geometric space

occupied by a deformed beam is 2D. One needs the both the distance along the axis of the

beam and the transverse deflection to describe the deformed shape of a beam.

Traditionally, it is the former criterion that is used for characterizing behavior analysis

problems as 1D, 2D, or 3D.

 Behavior_Parameter_Dim: This sub-dimension is used to categorize parameters used

for measuring the idealized behaviors of an artifact, such as temperature, deformation,

stress, and strain. The choices available for this dimension are organized based on

 189

analysis disciplines. So, there are choices available for structural behavior parameters,

and thermal behavior parameters, and so on.

7.5.2 Analysis Body Dimension
The analysis body dimension is used for categorizing decisions pertaining to

analysis bodies and analysis body systems. When creating behavior models, analyzable

artifacts are idealized as analysis bodies (or analysis body systems) as described in

section Figure 7.2. The analysis body dimension has 4 sub-dimensions, as illustrated in

Figure 7.37 and described below.

 Analysis_Body_System_Composition_Dim: This sub-dimension is used to categorize

decisions pertaining to the composition (part-assembly structure) of an analysis body

system. The choices available for this sub-dimension are correspond to different types of

single body and multi-body systems.

 Material_Behavior_Dim: This sub-dimension is used to categorize decisions pertaining

to the constitutive material behavior of an analysis body. This sub-dimension is

composed of three sub-sub-dimensions:

o Material_Behavior_Type_Dim: This sub-dimension is used to categorize decisions

pertaining to the response of the material to applied loads. The choices are categorized

based on the type of load, such as such as elastic, plastic, and for structural loads.

o Material_Behavior_Distribution_Dim: This sub-dimension is used for categorizing

decisions pertaining to homogeneity or types of non-homogeneities of the material,

such as isotropic, transversely isotropic, orthotropic, general anisotropic, etc.

o Material_Behavior_Variation_Dim: This is used for categorizing decisions related to

quantifying the idealized variation of material response to a load or deformation,

loading rate or deformation rate, and temperature. These three criteria are represented

by the following sub-dimensions as also shown in Figure 7.37: (a) Stress_Strain_Co-

Variation_Dim for effects of loading / deformation, (b)

Strain_Rate_Based_Variation_Dim for effects of strain rate, and (c)

Temperature_Based_Variation_Dim for effects of temperature change. Other categories

of material behavior variation may be added to this decision classification.

 190

o Material_Behavior_Parameters_Dim is used to categorize parameters used for

quantifying material behavior. The choices are described based on the analysis

disciplines implying that different parameters are used for quantifying material

behavior for different analysis discipline.

 Analysis_Body_Type_Dim: This sub-dimension is used for categorizing decisions

pertaining to the type of an analysis body. The type is characterized based on the (a) the

idealized behaviors that an analysis body exhibits, (b) geometric space used for

representing the shape of an analysis body, and (c) the number and type of degrees-of-

freedom associated with an analysis body. These criteria are represented by the following

three sub-dimensions: (a) Analysis_Body_Discipline_Type, (b)

Analysis_Body_Space_Type, and (c) Analysis_Body_DOF.

 Analysis_Body_Interaction_Behavior_Dim: This sub-dimension is used for categorizing

decisions pertaining to the behavior of the interaction between analysis bodies in an

analysis body system. Since the decision pertains to behavior, it is similar in nature to the

types of decisions presented under the behavior dimension.

 191

Figure 7.37: Analysis Body Dimension

 192

7.5.3 Load Dimension
The load dimension is used for categorizing decisions pertaining to the applied

load(s). The load dimension consists of four sub-dimensions, as illustrated in Figure 7.38

and described below:

 Load_Type_Dim: This sub-dimension is used to categorize decisions based on the

type of loads. The choices are organized in terms of analysis disciplines. For example,

pressure is a structural load while heat generation rate is a thermal load.

 Load_Application_Dim: This sub-dimension is used to categorize decisions concerning

the application of load to an analysis body (or analysis body system). This decision is

composed of the following two sub-decisions: (a) the application space of the load, such

as whether the load is applied to an analysis feature (geometric space) or to an inertial

mass, and (b) the direction of the load. These decisions are represented by the

Load_Application_Domain_Dim and Load_Application_Direction_Dim respectively.

 Load_Variation_Dim: This sub-dimension is used to categorize decisions pertaining to

the variation of loads over space and time, represented by the two sub-dimensions

Load_Space_Variation and Load_Time_Variation respectively.

 Load_Parameter_Dim: This sub-dimension is used to categorize parameters for

quantifying loads. The choices are organized on the basis of analysis disciplines.

 193

Figure 7.38: Load Dimension

 194

7.5.4 Behavior Condition Dimension
This behavior condition dimension is used for categorizing decisions pertaining to

behavior conditions in which the behavior of an analysis body system (idealized artifact) is

to be computed. This dimension consists of the following five sub-dimensions:

 Behavior_Condition_Discipline_Dim: This sub-dimension is used for categorizing the

analysis discipline associated with the behavior condition. Behavior conditions are

described in terms of behavior parameters and thus the analysis discipline is decided based

on the discipline associated with the behavior parameters. For example, behavior a behavior

condition described in terms of displacement (a type of structural behavior parameter) is a

structural behavior condition.

 Behavior_Condition_Type_Dim: This sub-dimension is used for categorizing the types of

behavior conditions. Two prominent choices are boundary value conditions for boundary

value problems, and initial value conditions for initial value problems.

 Behavior_Condition_Application_Space_Dim: This sub-dimension is used for categorizing

the geometric application space for behavior conditions, i.e. if the behavior condition is

applied to a point analysis feature or a surface analysis feature.

 Behavior_Condition_Variation_Dim: This sub-dimension is used for categorizing the

variation of behavior conditions with respect to space and time, represented by the

following two sub-dimensions: Behavior_Condition_Space_Variation_Dim and

Behavior_Condition_Time_Variation_Dim respectively.

 Behavior_Condition_Parameter_Dim: This sub-dimension is used for categorizing the

different types of parameters for quantifying behavior conditions. The categorization is

similar to that described in Behavior_Parameter_Dim.

 195

7.6 Summary
In this chapter, the Core Behavior Model (CBM) is presented as a meta-model for

representing behavior models of VTMB design alternatives. Five levels of abstractions of

behavior models, based on the CBM, are also presented with examples. The ABB Meta-

Model that defines the constructs for representing different types of ABBs is also presented

in this chapter. The ABB Meta-Model prescribes four foundational aspects of knowledge

that must be represented in an ABB. Two of these aspects are described in details with

examples in this chapter. The other two aspects concern the transformations applied for

composing ABBs, and are presented in the following chapter (Chapter 8). The Core

Behavior Model and the ABB Meta-Model are founded on Analysis Knowledge

Dimensions that are also presented in this chapter. The Analysis Knowledge Dimensions

define the types of decisions taken by analysts in formulating behaviors models and the

choices available for each type of decision.

Figure 7.39: Behavior Condition Dimension

 196

CChhaapptteerr 88 :: BBEEHHAAVVIIOORR MMOODDEELL FFOORRMMUULLAATTIIOONN MMEETTHHOODD

The focus of this chapter is to present the Behavior Model Formulation Method

(BMFM). KCM’s Behavior Model Formulation Method prescribes an approach for

formulating behavior model structures given idealized design alternatives with varying

assembly system topologies and behavior idealization specifications defined by analysts. In

this chapter, the Behavior Model Formulation Method is described and its fundamental

underpinnings in model transformations and analysis domain theories are presented. In

section 8.1, an overview of the Behavior Model Formulation Method is presented, and in

section 8.2 the model transformation process used for composing behavior model structures

and simulation templates is described in details. The idealization decisions taken by analysts

are formally represented as Behavior Model Formulation Specifications, and presented in

section 8.3. In section 8.4, the Artifact Model Transformation Library—a library of reusable

model transformation rules and patterns—is presented.

Chapter 6
VTMB Design Model Abstractions

(CPM2_xKCM)

Chapter 7
Behavior Model Abstractions

(CBM, ABB Meta-Model)

Chapter 8
Behavior Model Formulation Method

Chapter 9
Multi-stratum PWB Designs

Multi-component Chip Package Designs

Test Applications & Validation

Chapter 5
KCM Framework Overview
Requirements & Use Cases

This Chapter

Figure 8.1: Behavior Model Formulation Method – focus of this chapter

8.1 Overview
The Behavior Model Formulation Method (BMFM) prescribes a model

transformation process for creating behavior model structures. By definition, a model

transformation process transforms a source model that confirms to a source meta-model (or

schema) to a target model that confirms to a target meta-model (or schema). As shown in

 197

the schematic of a model transformation in Figure 8.2 (Czarnecki and Helsen 2006), there

are six key elements of a model transformation process:

 Source meta-model defines constructs and relationships for defining source models.

 Target meta-model defines constructs and relationships for defining target models.

 Source model is the input to the model transformation process, and conforms to the

source meta-model.

 Target model is the output of the model transformation process, and conforms to the

target meta-model.

 Transformation definition formally states the model transformation process. A

transformation definition mainly states: (a) types of entities and relationships in the

source model that are of concern or to be transformed to create a target model, (b)

transformations that will be executed on these types of source model entities and

relationships, and (c) order of execution of transformations. Since a transformation

definition is stated in terms of the types of entities and relationships, it refers to the source

and target meta-models that define these types.

 Transformation engine is the software that executes the transformation definition on the

source model to create a target model.

Figure 8.2: Schematic of a model transformation (Czarnecki and Helsen 2006)

Figure 8.3 illustrates the schematics of the model transformation process realized by

the BMFM resulting in the automated creation of behavior model structures and simulation

templates. Typically model transformations are achieved by creating a target model

different from the source model, or by changing the source model itself (in-place

transformation). The model transformation process prescribed by the BMFM is an in-place

transformation where the source model is not modified but instead additional models are

composed and related to the source model. Thus the target model is composed of the source

model and new models. This is so because the target model of the BMFM’s model

transformation process is a simulation template that relates an artifact’s design model

 198

structure and its behavior model structure; the source model of the BMFM’s model

transformation process is an artifact’s design model structure. In essence, the model

transformation process prescribed by BMFM is a model building process. During the model

transformation process, an artifact’s behavior model structure is created and related to the

design model structure, thereby creating a simulation template. While Figure 8.3 illustrates

the source and target meta-models and models in the context of BMFM’s model

transformation process, Figure 8.5 illustrates the source and target meta-models and models

in the design and behavior model stack (sections 6.2 and 7.4).

The six key elements of BMFM’s model transformation process are as follows:

 Source meta-model: The source meta-model of BMFM’s model transformation process is

a VTMB Artifact-specific Meta-Model—D3 model in the design model stack. As shown

in Figure 8.5, this meta-model defines the constructs and relationships for representing

design and analyzable design model structures of a family of artifacts with different

assembly system topologies, such as a family of multi-stratum printed circuit boards.

 Target meta-model: The target meta-model of BMFM’s model transformation process is

the combined VTMB Artifact-specific Meta-Model (D3) and VTMB Artifact Behavior

Meta-Model (B3). As shown in Figure 8.5, this meta-model is used for representing

simulation templates for a specific type of analysis for a family of VTMB artifacts.

 Source model: The source model of BMFM’s model transformation process is an FTMB

Artifact Model Structure (D4) defined as an instance of the VTMB Artifact Meta-Model

Behavior Model
Formulation Specifications a

VTMB Artifact-specific
Meta-Model

VTMB Artifact
Behavior Meta-Model

FTMB Artifact
Model Structure i

FTMB Artifact
Model Structure i

FTMB Artifact Behavior
Model Structure ia

Source Meta-Model Target Meta-Model
VTMB Artifact-specific

Meta-Model

Transformation
Engine

Transformation Definition
Behavior Model

Formulation Specifications a
refers to refers to

executes

reads

Target Models

...

Source Models
writes

...

conforms toconforms toconforms to

Simulation Templates

Artifact Model
Transformation library

uses

ABB library

...

Formulation of
simulation templates

D3

D4

D3-B3

D4-B4

Figure 8.3: Schematic of KCM’s Behavior Model Formulation Method (BMFM)

 199

(source meta-model). A D4 model represents a family of fixed topology design

alternatives, and it consists of the design and analyzable design model structures (Figure

8.4) for these FTMB design alternatives, such as 5-stratum printed circuit boards.

Figure 8.4: Detailed view of the source and target models in BMFM

 Target model: The target model of BMFM’s model transformation process is a simulation

template that relates a FTMB artifact model structure to a FTMB behavior model

structure. As shown in the detailed view in Figure 8.4, the simulation template uses the

behavior model context to relate an ABB system and the analyzable design model

structure. As presented in Chapter 7, a behavior model context and an ABB system

together define an artifact behavior model structure.
KCM_Design_Behavior_Model_AbstractionsArtifact_Model_Abstractions[Package] bdd []

<<block>>

Artifact Behavior Meta-Model (CBM)

<<block>>

FTMB Artifact Behavior Model Instance

<<block>>

Artifact Meta-Model (CPM2_xKCM)

<<block>>

VTMB Artifact-specific Meta-Model

<<block>>

FTMB Artifact Model Structure

<<block>>

FTMB Artifact Model Instance

<<block>>

VTMB Artifact Behavior Meta-Model

<<block>>

Analysis-specific Behavior Meta-Model

<<block>>

FTMB Artifact Behavior Model Structure

<<block>>

Application-specific Artifact Meta-Model

Behavior Model StackDesign Model Stack

B5

D4

D5

B3

D2

B4

B2

D3

D1 B1

+instances1..*

+instanceOf1

+instances1..*

+instanceOf1

+instances1..*

+instanceOf1..*

+instances1..*

+instanceOf1

1..*

1..*

1..*

Figure 8.5: Source and target meta-models and models in BMFM - design and behavior model stack view

 200

A FTMB design and analyzable design model structures (source model) are defined as

instances of the VTMB Artifact-specific Meta-Model (CPM2_xKCM), and the FTMB

behavior model structure is created as an instance of the VTMB Artifact Behavior Meta-

Model (CBM). Note that D3 and B3 models are specializations of D1 and B1 models

respectively. Thus, the concepts in D1 and B1 may be used as-is or specialized for

specific types of artifacts and specific analysis in D3 and B3 respectively. The target

meta-model (B3) consists of entities defined in the Core Behavior Model (B1)—

especially the definition of behavior model, ABB system, and behavior model context—

and the ABB models selected for the specific types of analysis.

 Transformation definition and Transformation process: In the BMFM, the transformation

definition and process are separate. This allows one to define reusable transformations

that can be used by one or more transformation processes. The transformation definitions

are building blocks of transformations while the transformation process defines the order

in which these transformations are to be executed on the source model. All

transformation definitions are stored in a library of model transformations, named

Artifact Model Transformation Library. The transformation process is known as the

Behavior Model Formulation Specifications, and it constitutes the behavior idealization

decisions taken by analysts. The BMFS is defined in terms of the source and target meta-

models, and prescribes the specific transformations from the Artifact Model

Transformation Library that will be executed and the order of execution. The BMFS

consists of conceptual specifications—idealization decisions—that may be compiled into

computable specifications—a set of transformation engine-interpretable instructions that

are defined in terms of the pre-existing transformations in the Artifact Model

Transformation Library, and are executed by the transformation engine to create the

target model.

 Transformation Engine: The model transformation process in the BMFM is realized

using graph transformations where the source and target meta-models and models are

abstracted as graphs and the transformations are abstracted as graph transformations.

Hence, BMFM uses a graph transformation engine for model transformations. The

 201

VIATRA graph transformation engine (VIATRA 2007) is used for test cases

demonstrated in this dissertation.

As shown in Figure 8.3, BMFM’s model transformation process is realized in the following

manner:

 The source and target meta-models are defined once for a family of VTMB artifacts (such

as printed circuit boards) and for a family of analyses (such as thermo-mechanical

analyses).

 For a particular analysis, such as warpage analysis, analysts provide Behavior Model

Formulation Specifications (say BMFSa).

 The source models are defined by designers and are typically derived from parameterized

CAD models. A designer may provided a set of FTMB artifact model structures (say

FTMB artifact model structure i, FTMB artifact model structure j, and so on)

 During the model transformation process—as illustrated in Figure 8.3 and Figure 8.4—

the transformation engine reads a FTMB Artifact Model Structure (say FTMB artifact

model structurei) and executes a Behavior Model Formulation Specification (say BMFSa)

to automatically create a simulation template (say Simulation Templateia that is composed

of FTMB Artifact Model Structurei and Behavior Model Structureia). For the same BMFS

(say BMFSa), the transformation engine can read several FTMB Artifact Model

Structures (say FTMB Artifact Model Structurei,, FTMB Artifact Model Structurej, and

so on) and create corresponding simulation templates (say Simulation Templateia,

Simulation Templateja, and so on). Also, for the same FTMB Artifact Model Structure

(say FTMB Artifact Model Structurei), analysts may provide alternate idealizations (say

BMFSb) and automatically create a simulation template (say Simulation Templateib). As

shown in Figure 8.4, that model transformation process results in creating a behavior

model structure and relating it to an analyzable design model structure via behavior

model context entity.

The core advantage of BMFM’s model transformation process is to use the same

BMFS to transform variable topology analyzable design model structures to create

corresponding simulation templates. As an example, Figure 8.6 illustrates how the model

transformation process will be realized for creating simulation templates for thermo-

mechanical analysis of multi-layered printed circuit boards. A BMFS created by analysts for

 202

thermo-mechanical analyses (say Thermo-mechanical BMFS layer-shell) will be executed by

the transformation engine on 5-, 6-, 7-layered analyzable PCB model structures (variable

topology design alternatives) to create thermo-mechanical simulation templates for 5-, 6-,

and 7-layered PCBs. Each simulation template for thermo-mechanical analysis of n-layered

PCB will be composed of n-layered analyzable PCB model structure and n-layered

laminated shell behavior model structure16. In this case, Thermo-mechanical BMFS layer-shell

represents the behavior idealizations—to idealize each layer in the PCB as a shell and to

idealize an n-layered PCB as an n-layered laminated shell.

Figure 8.6: Example schematic of KCM’s Behavior Model Formulation Method applied to VTMB problems

The Behavior Model Formulation Method addresses VTMB problems because for

different desing model structures—each of which represents a set of design alternatives with

equivalent assembly system topologies—behavior model structures and simulation

templates can automatically be created for the same Behavior Model Formulation

Specifications. Additionally, behavior model structures and simulation templates can also

be automatically created for different Behavior Model Formulation Specifications and for a

given design model structure. The Behavior Model Formulation Method address all types of

variations in assembly system topology—number and types of components, features, and

interactions—of design alternatives as described in section 2.3. Automated adaptation of

simulation templates based on simulation results, as described in ST_Change_Type_3

(section 2.2.2.2), is not demonstrated in the version of the Knowledge Composition

Methodology presented in this research, and is recommended for future research. However,

the meta-models and formalisms used in the KCM are positioned to address this use case. In

the version of KCM presented in this dissertation, analysts may automatically re-formulate

16 assuming that layers are preserved and not ignored in the idealization specified in BMFS

 203

simulation templates by varying the Behavior Model Formulation Specifications to reflect

the new knowledge gained from simulation results.

... ...
Figure 8.7: Schematic for the execution of simulation templates

Figure 8.7 illustrates the schematic for the execution of simulation templates.

Simulation templates formulated at D4-B4 level using BMFM’s model transformation

approach can be executed in two scenarios—design verification scenario and design

synthesis scenario. In the design verification scenario, design alternatives (D5) with

equivalent assembly system topologies are input to a simulation template and corresponding

behavior model instances (B5) are formulated. These behavior model instances can then be

solved using a specific solution methods and solvers. Note that the primary focus of the

KCM is to formulate behavior models independent of a solution method and solver.

However, the model transformation approach can be easily extended to include solution

method- and solver-specific behavior model structures in simulation templates. For

example, a FEA behavior model structure could be included in simulation templates—

associated with the FTMB Artifact Behavior Model Structureia—that specifies the element

types and mesh specifications for analysis bodies and their interactions. The design

synthesis scenario represents the use case where analysts may perform optimization of the

analysis body system (represented in a behavior model structure), and intend to update the

design model accordingly. In such a scenario, the optimized behavior model instance is

input to a simulation template and the corresponding design model instance is formulated.

Note that the execution of simulation templates in the design synthesis scenario depends on

the nature of mathematical relationships embodied in simulation templates—causal versus

non-causal relationships. While the fomer can be executed for different causalities, the latter

 204

may require the use of specialized numerical techniques and in some cases may not be

pragmatic to solve.

8.2 Composing Behavior Model Structures and Simulation

Templates
Given that simulation templates are automatically created from analyzable artifact

design model structures and behavior model formulation specifications provided by

analysts, it is necessary to understand the different stages of model transformations during

this process. This process of model transformation is realized by composing a behavior

model structure from analysis building blocks provided by the KCM (Chapter 7), and

composing a simulation template from the behavior model structure and design model

structure. This composition process is realized in four stages that are described in section

8.2.1. In each stage a specific type of composition is achieved, both for creating behavior

model structure and simulation template. In section 8.2.2, the semantics of composing

behavior model structures and simulation templates is described. Semantically, the process

of composing a behavior model structure and simulation template is a process of deriving

equations relating the behavior parameters to the design parameters, and the building blocks

of the composition process represent pre-defined equations representing domain theoretic

concepts that are used during this derivation. In section 8.2.3, the mechanics of the

composition process is presented in terms of graph transformations that are the theoretical

foundation of the composition process.

8.2.1 Stages of composition
The model transformation process prescribed by the Behavior Model Formulation

Method is a four-stage composition process. Figure 8.8 illustrates these four stages of

compositions that occur when a FTMB behavior model structure and simulation template

(target model) are created from an FTMB analyzable artifact model structure (source

model). The figure shows the source and target models in these four stages of composition.

The source model is a FTMB analyzable artifact model that represents an idealized design

for analysis purposes. The target model is a FTMB simulate template that includes the

source model and a FTMB behavior model structure. Thus, the model transformation

process is “in-effect” a model building process that is realized in four stages. During these

 205

four stages, the source model is not changed but target model entities are created that relate

to the source model. The four stages are as described below:

 Stage 1 composition: Composing analysis bodies and their relationships to analyzable

artifacts

In this composition stage, analysis bodies and their relationships to analyzable

artifacts are composed from their respective building blocks based on the Behavior Model

Formulation Specifications provided by analysts. As shown in Figure 8.8 and described in

the ABB Meta-Model and Core Behavior Model, the building blocks of an analysis body

are its features, shape, material behavior, and behavior; and the building blocks of the

relationship between an analysis body and an analyzable artifact are relationships between

their shapes, material behaviors, and features. The end products of Stage 1 composition are

(a) analysis bodies represented as instances of Analysis_Body_ABB17), and (b) relationship

between analysis bodies and analyzable artifacts, represented as instances of

Analyzable_Artifact_ABS_Relationship (see Core Behavior Model for details).

Figure 8.9 illustrates a planar shell analysis body and its relationship to the

corresponding analyzable PCB stratum, created at the end of a Stage 1 composition process.

The figure is abstracted from the example described in section 7.4.2 where a FTMB (5-

shell) thermo-mechanical behavior model structure is created for FTMB (5-stratum) printed

circuit boards. The figure shows a composed analysis body and its relationship with an

analyzable artifact for a single stratum in the analyzable PCB model.

17 Note that only the property attribute of an ABB is instantiated; the other three attributes (context, application conditions,

and transformations) are static.

 206

Stage 4

Stage 3

Stage 2

Stage 1

Source Model

Target Model

Figure 8.8: Stages of composing simulation templates using BMFM

The same structure is repeated for other stratums in the analyzable PCB. In this example,

instances of material behavior ABB (LEOTI_1), shape ABB (PS1_Shape), and analysis

feature ABB (PS1_PrimSurf and PS1_SecSurf) are created and associated with an instance of

analysis body ABB (PS1). In addition, an instance of Shape_Shape_Relationship (SS1), an

instance of Material_Behavior_Material_Behavior_Relationship (MBR1), and two instances of

Analyzable_Feature_Analysis_Feature_Relationship (AStrat_PShell_1_Prim_Rel and

AStrat_PShell_2_Sec_Rel) are created, associated with corresponding entities of the

 207

analyzable stratum and planar shell analysis body, and associated with an instance of

Analyzable_Artifact_ABS_Relationship (AStrat_PShell1_Rel). Note that instances of

specialized ABBs are created during this composition process but for brevity only the

parent ABBs are mentioned here. For example, PS1 is an instance of planar shell analysis

body ABB which is a special type of analysis body ABB.

Analysis bodyRelationship between analysis body
and analyzable artifact

Analyzable Artifact

...similar structure created for other planar shell analysis bodies
and analyzable stratums

Figure 8.9: Stage 1 Composition: Composing an analysis body and its relationship with

 analyzable artifacts

Also note that the specialized pre-defined analysis body ABB instantiated here has

attributes whose types restricts the shape, feature, and material behavior ABB instances that

can be associated with it. For example, the Planar Shell Analysis Body ABB has a shape

attribute of type Planar Shell Shape. This allows only instances of Planar Shell Shape to be

associated with instances of Planar Shell Analysis Body ABB.

 208

 Stage 2 composition: Composing analysis body systems and their relationships to

analyzable artifacts

In this composition stage, analysis body systems and their relationships to

analyzable artifacts are composed from their respective building blocks based on the

Behavior Model Formulation Specifications provided by analysts. As shown in Figure 8.8

and described in the ABB Meta-Model and Core Behavior Model, the building blocks of an

analysis body system are its features, constituent analysis bodies and analysis body systems,

and interactions between constituent analysis bodies; and the building blocks of the

relationship between an analysis body system and an analyzable artifact are relationships

between their shapes, material behaviors, features, and their interactions. The end products

of Stage 2 composition are (a) analysis body systems represented as instances of

Analysis_Body_System_ABB), and (b) relationship between analysis body systems and

analyzable artifacts, represented as instances of Analyzable_Artifact_ABS_Relationship (see

Core Behavior Model for details).

Figure 8.10 illustrates a laminated shell analysis body system and its relationship to

the corresponding analyzable PCB, created at the end of a Stage 2 composition process. The

figure is abstracted from the example described in section 7.4.2 where a FTMB (5-shell)

thermo-mechanical behavior model structure is created for FTMB (5-stratum) printed

circuit boards. The figure shows a composed analysis body system and its relationship with

an analyzable artifact. For brevity, only one out of five constituent analysis bodies and one

out of four analysis body interactions are shown for the subject analysis body system. In this

example, instances of analysis body ABBs (PS1,PS2,…,PS5) created in Stage 1 and analysis

body interaction ABBs (PS1_PS2_Tie,…,PS4_PS5_Tie) created in Stage 2 are associated

with an instance of analysis body system ABB (LamShell_5Sx_ABSys) created in Stage

2. In addition, 5 instances of Analyzable_Artifact_Analysis_Body_Relationship

(AStrat_PShell1_Rel,…,AStrat_PShell5_Rel) created in Stage 1, and four instances of

Analyzable_Feature_Analysis_Feature_Interface_Relationship

(AStrat_ShellTie_12_Interaction_Rel,…,AStrat_ShellTie_45_Interaction_Rel) created in

Stage 2 are associated with an instance of Analyzable_Artifact_ABS_Relationship

(APCB_LamShell_5Sx_Rel) created during Stage 2. In this example, the analysis body

system does not constitute other analysis body systems (sub-systems). Semantically, in this

 209

composition, a laminated shell analysis body system is being composed from the individual

shell bodies and the tie interactions among the adjacent shell bodies in the stackup. In

addition, a relationship between the laminated shell system and the PCB is being composed

from (a) relationships between shell bodies and corresponding idealized stratums on a PCB,

and (b) relationships between shell tie interactions and corresponding interfaces between

PCB stratums.

Figure 8.10: Stage 2 Composition: Composing an analysis body system and its relationship with analyzable

artifact

Note that Stage 2 composition is more intuitive that other stages as it is similar to

composition of physical systems where assemblies are composed from parts and the

interactions among parts. Composition in KCM is the composition of models that may or

may not represent systems that are similar to physical systems. For example, composing an

analysis body from its attributes such as shape, features, and material behavior is not

intuitively similar to composing a physical system.

 210

 Stage 3 composition: Composing a behavior model ABB system and behavior model

context

In this composition stage, a behavior model ABB system and a behavior model

context—relates ABB system to analyzable artifact—are composed from their respective

building blocks. As described in the Core Behavior Model, a behavior model ABB system

represents the behavior model structure of an analysis body system and a behavior model

context is relates the analysis body system to the analyzable artifact. As shown in Figure 8.8

and described in the ABB Meta-Model and Core Behavior Model, the building blocks of a

behavior model ABB system are its analysis body system, applied loads, applied behavior

conditions, and the set of idealized behaviors that it represents; and the building block of

behavior model context is the relationship between the analysis body system in the behavior

model ABB and the corresponding analyzable artifact. The end products of Stage 3

composition are (a) behavior model ABB system represented as an instance of

Behavior_Model_ABBSys, and (b) behavior mode context represented as an instance of

Behavior_Model_XContext.

 Figure 8.11 (a and b) illustrate a behavior model ABB system and a behavior model

context model respectively, created at the end of Stage 3 composition process. The figure is

abstracted from the example described in section 7.4.2 where a FTMB (5-shell) thermo-

mechanical behavior model structure is created for a FTMB (5-stratum) printed circuit

boards. In this example, an instance of analysis body system created in Stage 2, instance of

temperature load ABB (UniformTempLoad_T1T2) created in Stage 3, instance of point

a. Composing behavior model ABB system b. Composing behavior model context

Figure 8.11: Stage 3 Composition: Composing behavior model ABB system and behavior model context

 211

displacement fixed boundary condition ABB (LamShellCornerVertexFixed) created in Stage

3, and instance of structural behavior ABB (LamShell_5Sx_Behavior) created in Stage 3 are

associated with an instance of behavior model ABB system (LamShell_5Sx_Thermo-

Mech_ABB_System) created in Stage 3. Semantically, in this composition, a behavior model

ABB system is being composed from the laminated shell analysis body system, uniform

temperature load, point displacement fixed boundary condition, and structural behavior

parameters and relations. The behavior model context relates the laminated shell analysis

body system and the analyzable PCB (idealized PCB design for analysis purposes).

 Stage 4 composition: Composing behavior model structure and simulation template

In this composition stage, a behavior model structure is composed from a behavior

model ABB system and a behavior model context as shown in Figure 8.8. The end product

of Stage 4 composition is a FTMB behavior model structure represented as an instance of

Behavior_Model. Figure 8.12 illustrates a FTMB thermo-mechanical behavior model

structure (PCB-LamShell_5Sx_ThermoMech_BM) that is composed in this stage from a

FTMB behavior model ABB (APCB_LamShell_5Sx_Context) and a behavior model context

(LamShell_5Sx_Thermo-Mech_ABB_System) composed in Stage 3.

Figure 8.12: Stage 4 Composition: Behavior model structure view

Note that a behavior model is also the root entity (or the central entity) of a simulation

template. This is so because a behavior model is composed of behavior model context—

represented by Behavior_Model_XContext block—that relates the analysis body system in

 212

the ABB system to an analyzable artifact. Note that in composing a FTMB behavior model

structure, the simulation template is also composed. Figure 8.13 illustrates the thermo-

mechanical behavior simulation template that shows the analyzable artifact (APCB_5Sx)

associated with the behavior model context (APCB_LamShell_5Sx_Rel) entity.

Figure 8.13: Stage 4 Composition: Simulation template view

The four composition stages defined here represent the following two specific

characteristics of BMFM’s model transformation process: (a) types of composition, and (b)

the dependency relation between the types of composition. For example, the Stage 2

composition depends on Stage 1 composition. However, the dependency does not imply that

the Stage 1 composition must be completed for all analysis bodies before Stage 2

composition may be initialized, or Stage 2 composition must be completed before Stage 3

composition. Thus, the composition process in different stages may be initialized and run in

parallel, although the Stagei+1 process cannot finish until Stagei process has finished.

8.2.2 Semantics of composition
The process of composing simulation templates is similar to the process of deriving

behavior relations for a given analysis problem, where behavior relations are analytical

formulations of simulation templates—relating design parameters to behavior parameters.

In this section, BMFM’s model composition process and the traditional process of deriving

behavior relations are compared to each other. The intent of this comparison is to establish

that the model-based composition of simulation templates is a more formal and structured

approach to formulating behavior models, and is fundamentally similar to deriving behavior

relations by “assembling” domain theoretic concepts to solve analysis problems.

 213

Figure 8.14 illustrates the comparison between the traditional process of deriving

behavior relations and the process of composing behavior model structure. The example

illustrated in the figure concerns formulating a behavior model structure to compute the

axial deformation of a system of two prismatic bars tied together, with one end of a bar held

fixed and a static force is applied at one end of the other bar. The figure shows both the

process of deriving behavior relations on the left side, and the behavior model structure (as

would be composed using the Behavior Model Formulation Method). The steps in the

derivation process and composition process are marked from 1-8. In this comparison, the

idealized design model and its relationships to the analysis bodies/system are not shown—

only the ABB system is shown for the behavior model structure.

Figure 8.14: Semantics of composition

 214

All ABBs used for composing the behavior model structure are shown in the ABB library in

the figure. Only the property attribute of ABBs is shown (e.g. Prismatic_Bar_Property block

that is the type of Prismatic_Bar_ABB.property block).

Steps 1-5 concern the decisions take by analysts and steps 6-8 involve the

formulation and assembly of equations for this analysis problem. In step 1, a decision is

taken to idealize the behavior of a 2-bar idealized design (or idealized design) as the

behavior of a system of two prismatic bars with circular cross-sections and tied end to end.

Here, the axial deformation behavior is being studied in particular. This decision

corresponds to the instantiation of two prismatic bar analysis body ABBs (Bar1 and Bar2)

along with the instantiation of two prismatic shape ABBs (Bar1_Shape and Bar2_Shape)

that represent the shape of the two prismatic bars, bar end analysis feature ABBs (Bar1-

EndA, Bar1-EndB, Bar2-EndA, Bar2-EndB) that represent the end points of prismatic bars,

and axial deformation behavior ABBs (behavior_bar_1 and behavior_bar_2) that represent

the behavior parameters to be computed for bar 1 and 2. The tag marked “1” attached to

behavior model structure entities (such as Bar1 and Bar2) indicates that these entities are

created in step 1. In step 2, a decision is taken to idealize the interaction between the two

analysis bars as tied interaction—deformation behavior parameters at Bar1-EndB and Bar2-

EndA are equated. In step 3, the constitutive material behavior of both the prismatic bars is

idealized as homogenous linear elastic and isotropic. This corresponds to the instantiation of

linear elastic isotropic temperature18 independent material behavior ABB

(Bar1_Material_Behavior and Bar2_Material_Behavior). In step 4, a decision is taken to

idealize load as static force acting at end B of Bar 2, at the center of the cross section of end

B, and in step 5, a decision is taken to assume that end A of Bar 1 is fixed. These decisions

correspond to the instantiation of a static force ABB (Bar2_endB_Force) and point

displacement fixed boundary condition ABB (Bar1_endA_Fixed).

Steps 6-8 correspond to the formulation and assembly of behavior relations.

Behavior relations are formulated based on: (a) Equilibrium equation shown in step 6, (b)

Strain definition relation (or displacement relation) as shown in step 7, and (c) Hooke’s law

material behavior equation shown in step 3. Then, these equations are assembled to define

18 The temperature independence aspect does not concern the subject analysis problem (since it is not a thermal or thermo-

mechanical problem).

 215

deformation behavior of bar 1 and bar 2 as shown in step 8. The formulated equations can

be represented as mathematical relations in behavior_bar_1 and behavior_bar_2 entities (for

the deformation of each bar) and in 2-bar-system (for the overall deformation of the two bar

system).

The assumption decisions made during the derivation process are representative of

the selection of ABBs from the ABB library. Each ABB (property) represents the

parameters and relations for that ABB, such as the relation between Young’s Modulus,

Shear Modulus, and Poisson’s ratio for the case of linear elastic isotropic temperature

independent material behavior ABB shown in the figure. Similarly, the point displacement

fixed behavior condition ABB represents the displacement parameters and the constraint

equations, such as ux=0, uy=0 and so on.

As in the derivation process, the decisions taken during a step in the model

composition process may or may not constrain the choices available for the decisions taken

at the next step. For example, the material behavior idealization decision is independent of

the analysis body type and shapes (prismatic bar and prismatic shape) and it is also

independent of the interaction behavior at the interface of the two bars. Similarly, the

interaction behavior is independent of the material behavior of the two bars and the analysis

body type and shape. However, just as in the case of the derivation process, some decisions

may constraint the subsequent decisions. For example, the decision to idealize the behavior

of the designed artifact as a prismatic bar constrains the analysis features and type of shape

that can be associated with the bar. In the model composition process, it implies that

instances of only specific type of analysis feature ABBs and shape ABBs may be associated

with the instances of the analysis feature ABB. A prismatic bar by definition has two end

points that are modeled as point features and a prismatic shape associated with it. These

constraints are reflected in the definition of the prismatic bar ABB and hence automatically

handled during the behavior model composition process. Note that

Prismatic_Bar_Property.shape is of type Prismatic_Shape; and

Prismatic_Bar_Property.endA_feature and Prismatic_Bar_Property.endB_feature represent

the two end features of a prismatic bar and are of type

Bar_EndPoint_Analysis_Feature_Property that represents end point feature of a bar.

 216

Note that the domain theoretic principles such as Equilibrium equations, Stress and

Strain definitions are not explicitly shown in the behavior model structure in the figure

above. They can be represented as behavior relations associated with the 2-bar analysis

body system. However, for most multi-body problems, analytical formulations of the

system-level behavior relations are not available. Numerical solution techniques need to be

employed to solve the problems, such as FEA methods. Most numerical solvers, such as

FEA solvers like ABAQUS and ANSYS are “computationally-aware” of the domain

theoretic principles such as Equilibrium equations and Hook’s Law. Thus, behavior model

structures formulated from physics-based principles need to “refer” to the specific

principles when transforming ABB systems to solution method models (as prescribed by the

MRA simulation template pattern) and not necessarily “represent” the mathematical

relationships embodied in these principles. For example, the details of analytical plate

theory formulations (Timoshenko and Goodier 1970) may not be necessarily represented in

the plate analysis body ABB though the latter may refer to such formulations for the sake of

completeness. Albeit, the ABB Meta-Model provides mechanisms to represent such

formulations as required, such as Behavior_Property.behavior_parameter_relations for

behavior ABBs, and Material_Behavior_Property.mb_parameters_relations for material

behavior ABBs, and load_distribution_function for load ABBs, and so on.

8.2.3 Mechanics of composition
As described in the previous sections, the model transformation process prescribed

by the Behavior Model Formulation Method is one where behavior model structures and

simulation templates are composed19 in four stages. In this section, the mechanics of this

composition process is described. The key computation elements necessary for achieving

the composition are described. Figure 8.15 illustrates these computation elements in the

backdrop of the schematic of Behavior Model Formulation Method, as described in section

8.1. The model transformation process is computationally realized as graph transformations.

The source and target models are represented as graphs and a graph transformation engine

creates a target graph for a given source graph. The transformation definitions in the

19 Here, model composition is regarded as a special type of model transformation.

 217

Artifact Model Transformation Library are represented as graph transformation patterns and

rules, and the transformation process defined by the Behavior Model Formulation

Specifications is represented as a graph transformation process.

Source graphs Target graphs

GT patterns and rules library
GT specifications

GT engine

Graph schemataGraph schemata

GT = Graph Transformation

Figure 8.15: BMFM’s model transformation process realized as graph transformations (GT)

Source and Target graphs

A graph G = (V, E) consists of two sets V and E where:

 elements of V are known as vertices (or nodes)

 elements of E are known as edges

 an edge has 1-2 vertices20 associated with it (called its end points)

(Gross and Yellen 2003)

The source and target graphs in the Behavior Model Formulation Method are directed,

labeled, attributed, and typed graphs (Gross and Yellen 2003), and represented using

SysML. In general, labeled, attribute, typed graphs can be thought as formal representations

of class models (Andries, Engels et al. 1999; Czarnecki and Helsen 2006). SysML structure

models are extensions of UML 2 class models. The nodes in the source and target graphs

are represented using SysML instance specifications, and the edges are represented by

instance slots. Specifically, the source and target graph are:

 directed graphs because slots owned by an instance have values that refer to other

instances. Instances owning slots or populating slots are abstracted as graph nodes, and

20 The source and target graphs in this dissertation are not hypergraphs

 218

slots are abstracted as graph edges directed from nodes corresponding to instances

owning slots to nodes corresponding to instances populating slots.

 labeled graphs because all instances and slots have names. In addition, the names are

unique with a given namespace.

 typed graphs because instance and slots have types (also known as classifiers). Instances

used for populating slots must be of the same type (or subtype) as the slot type.

 attributed graphs because slots are attributes of instances. Slots may be of complex type

(objects) or primitive type (such as integer and boolean).

The source and target meta-models in the Behavior Model Formulation Method are

formalized as SysML-based structure models with different views, such as block definition

diagrams, internal block diagrams, and parametric diagrams. In essence, the source and

target meta-models are like graph schemata (Ehrig, Engels et al. 1999) for the source and

target models (graphs). The nodes in the source and target meta-models (graph schemata)

are represented as SysML blocks, and the edges are represented as block properties—part

properties, reference properties, and constraint properties. Constraint blocks (classifier for

constraint properties) are a special type of block. Other types of edges in the source and

target meta-model include generalization relationships between blocks.

Figure 8.16 illustrates the source and target meta-model, and a source model for an

Artifact transformation example in both traditional graph notation and in SysML notation—

nodes shown as SysML blocks/instances and edges shown as associations/slot references.

Figure 8.16a shows the source and target meta-model (same in this case) that represent three

blocks—Artifact, Form, and Function, and the relationships between them. From a graph-

schemata perspective, the blocks correspond to node types and the association relationships

correspond to edge types. Thus, Figure 8.16a shows that source and target graphs

instantiated from this graph schemata can have three types of labeled nodes (Artifact, Form,

and Function) and two types of edges (hasForm, hasFunction) that originate from Artifact

node and end in Form node and Function node respectively. These edges are also attributes

of Artifact node, as Artifact.hasForm and Artifact.hasFunction respectively. Figure 8.16b

shows a source graph that is an instance of the schemata shown in Figure 8.16a. The figure

shows that the source graph has four nodes of type Artifact, two nodes of type Form, and

three nodes of type Function. In addition, the edges between these nodes are also shown

 219

(though not labeled). The edges are also represented as attributes of each node. For

example, the edge from A1 to F1 is represented as value of the attribute A1.hasForm.

Note that although the edges in the source graph are not shown21 as un-directed, they are

directed. This is evident from the fact that the attributes hasForm and hasFunction are

owned by Artifact. Thus the edges originate from Artifact instance nodes and end in Form

and Function instance nodes respectively.

Graph patterns

Graph patterns represent conditions or constraints in a declarative manner, defined on

graphs. Patterns are matched against a graph to check if they satisfy the conditions

represented by patterns (Varro and Balogh 2007; VIATRA 2007). Fundamentally, pattern

matching is a process of finding the occurrence of the graph pattern in a given graph, G. If a

21 SysML instance specification does not represent the directed edges between instance entities (instance specifications).

a. Source and target graph schemata (traditional graph notation and SysML model notation)

A2

A3A1

F1FU1 FU2

A4

FU3

F2

b. Source graph (traditional graph notation and SysML model notation)

Figure 8.16: Source and target graph schemata and a source graph – Artifact transformation example

 220

graph L is a subgraph of G, it is denoted as L ⊆ G and it implies that the (a) nodes and

edges of L are subsets of the nodes and edges of G, (b) source and target mapping for each

edge in L coincide with the source and target mappings for each edge in G, and (c) labels of

nodes and edges in L coincide with labels of nodes and edges in G (Andries, Engels et al.

1999).

The occurrence of a graph pattern L in a graph G is denoted as occ: L G and implies that

(a) there is a mapping which maps the nodes, edges, and labels of L to the nodes, edges and

labels in G, (b) for each edge e in L the source of the image of e in G coincides with the

image of the source of e in G and the target of the image of e in G coincides with the image

of the target of e in G, and (c) for all nodes and edges in L, the label of their images in G

coincide with the label of x (Andries, Engels et al. 1999). A bijective mapping is one where

(a) each node and edge in L maps to a distinct node and edge in G—injective condition, and

(b) all nodes and edges in G have atleast one corresponding node and edge in L—onto

condition. If the mapping is bijective, then L and G are isomorphic. In Figure 8.17 above,

graph L is a sub-graph of G and has an occurrence in H.

It is known that for the graph pattern matching problem, also known as the sub-

graph isomorphism problem, the number of tests that need to be performed to check if a

pattern with n nodes matches to a sub-graph in a graph with m nodes requires O(mn) tests in

the worst case (Valiente and Martinez 1997). Research efforts in the past have improved the

performance of graph pattern matching algorithms for specific types of graphs. All patterns

defined in the Behavior Model Formulation Method (section 8.4) are defined for each type

of relationship in the meta-models (CPM2_xKCM and CBM). Hence, all patterns have two

nodes. Even for a source graph with large number of nodes, this approach restricts the

Figure 8.17: Graph L is a subgraph of G and has an occurrence in H (Andries, Engels et al. 1999)

 221

number of tests that need to be performed in the worst case. In addition, all graph

transformation rules defined in the Behavior Model Formulation reuse patterns.

The Behavior Model Formulation Method leverages the VIATRA Textual

Command Language (VTCL) to define graph patterns. Figure 8.18 shows a graph pattern

(artifact_and_form) for the Artifact transformation example described using VTCL. The

pattern checks if there exists a relationship between an artifact and a form. As it can be

seen, the pattern has three arguments A, F, and Model_Space that will be bound to nodes in

the source graph. The Model_Space argument is used to define the scope of the source

model—specifically the package where the source model exists.

It is not stated if the arguments are inputs or outputs of the pattern thus making the pattern

definition declarative. Thus, the pattern can be used to check for the following conditions or

provide the following matches of interest:

 If variable A is bound to an artifact instance (node), the pattern can be used to find the

form instance (node) associated with that artifact in the model space.

 If the variable F is bound to a form instance (node), the same pattern can be used to find

all artifact instances (nodes) that have the subject form.

 If arguments A and F are bound to an artifact instance and a form instance respectively,

the pattern can check if they are associated.

 If none of the arguments are bound to any instances, the pattern can be used to find all

Artifact and Form instance pairs that are associated with each other.

Thus, a single graph pattern can be used to realize multiple queries and check for

conditions. Typically, it would have taken four conditional statements (IF-ELSE) to realize

the four use cases above in a procedural language (such as C, C++, or Java).

 In the example above, the artifact_and_form pattern checks for structural conditions

only—if two nodes and the relationship between them exist. Patterns can also be used to

Figure 8.18: An example graph pattern represented in VTCL

 222

represent conditions that require checking specific attribute values of matched nodes. For

example, patterns may be defined to check if the name, id, or other attribute values match a

given value. In addition, patterns can call other functions that may be required to derive

certain properties before checking them against a given value. For example, given a

rectangle with length and breadth attribute values, a pattern can call a function to compute

the area of a rectangle and check against a given value (equal, greater, or less).

To summarize the characteristics and the use cases of graph patterns:

 Graph patterns can be defined to check for structural conditions, such as if a node or an

edge in the model graph is of a specific type. Examples of these types of conditions are

illustrated in the example above.

 Graph pattern can also be used to check for conditions defined in terms of the attributes

values of nodes in a model graph. For example, the check keyword in VIATRA allows

for defining conditions that return a boolean value (true/false).

 Graph patterns can call each other using the find keyword. The condition in the caller

pattern is satisfied only if the condition in the called pattern is satisfied and the local

constructs in the caller patter are satisfied. Patterns can call themselves if certain

conditions are satisfied, thus allowing for defining recursive patterns.

 Alternate graph patterns can be defined as sub-patterns within a parent pattern, such as by

grouping them with the or keyword in VTCL. In this case, the condition in any of the

sub-patterns must be satisfied for the condition in the parent pattern to be satisfied.

 Graph patterns can be called in a negative mode, such as by using the neg keyword in

VTCL, to return true if the conditions embodied in them are not satisfied.

 If a variable passed to a graph pattern is unbound, graph patterns bind all possible model

elements (to that variable) that satisfy the logical condition embodied in the pattern. If all

variable passed to a graph pattern are bound to model elements, then the pattern returns

true if the model elements bound to the variables satisfy the pattern condition, or false

otherwise.

 One can also define the search scope for pattern conditions, such as specifying the

namespaces where model elements should be searched.

 223

Graph transformation rule

A graph transformation rule r = (L, R, App) contains a left-hand side (LHS) graph L, a

right-hand side (RHS) graph R, and application conditions App. The application of r to a

source (host) graph G replaces occurrence(s) of L in G by R. In general, this is performed by:

 finding occurrence(s) of L in G (also denoted as graph pattern matching)

 checking the application conditions App (such as negative application conditions which

prohibit the application of the rule in the presence of certain nodes and edges)

 removing a part of the graph G determined by the occurrence(s) of L yielding the context

graph D

 gluing R and the context graph D and obtaining the target (derived) graph H

(Varro, Varro et al. 2002; Varro and Balogh 2007; VIATRA 2007)

Although the fundamental idea behind graph transformation rules is the same, graph

transformation systems implement them differently and also provide different mechanisms

to specify and control transformation rules. Typically, the occurrence of L in G is required to

be isomorphic to L. The VIATRA graph transformation system checks for sub-graph

isomorphism and provides a mechanism for parallel application of transformation rules

(replacement of L with R) to all matches of L in G. This capability is especially relevant for

variable topology problems where target model elements can be formulated in parallel for

all sub-systems (sub-graphs) in the system model (source graph) that match with the pre-

conditions of the idealization decisions.

 A graph transformation rule is the atomic unit of model transformation in the

Behavior Model Formulation Method. While graph patterns define the logical conditions on

model graphs, graph transformation rules define the manipulation of model graphs. In this

section, the representation of graph transformations in the context of Behavior Model

Formulation Method is presented.

 The Behavior Model Formulation Method leverages VIATRA Textual Command

Language (VTCL) for representing graph transformation rules. Graph transformation rules

represented in VTCL have two parts that are represented as patterns—the pre-condition

pattern and a post-condition pattern. The LHS and RHS of a graph transformation rule are

embodied in the pre- and post-condition patterns respectively. The application conditions of

a graph transformation rule are embodied in patterns that may be called before invoking a

 224

transformation rule or included in the pre-condition pattern. The application of a graph

transformation rule to a model (say source mode graph) replaces all matches of the pre-

condition pattern in the source model graph with the post-condition pattern. The source

model graph after the replacement operation is known as the target model graph.

 Figure 8.19 illustrates a graph transformation rule with pre-condition and post-

condition pattern represented in traditional graph notation and VTCL. The graph

transformation rule is used in Artifact transformation example to initialize the form for all

artifacts that do not have a form associated with them. The pre-condition pattern represents

all artifact instances that do not have a form instance associated with them. Thus, the pre-

condition pattern matches all artifact nodes such that for each artifact node there are no

edges from the subject artifact node to a form node. For each artifact node matched by the

pre-condition pattern, application of the post-condition pattern creates a form node and

associates it with the artifact node.

Figure 8.19: An example graph transformation rule represented in traditional graph notation and VTCL

(used for initializing the form of an artifact in the Artifact transformation example)

 225

In VTCL representation, the rule body begins with the gtrule keyword. The keywords

precondition pattern and postcondition pattern along with the curly braces mark the pre-

condition and post-condition patterns respectively. Note that pre-condition and post-

condition patterns are graph patterns, and hence they may call other pre-defined patterns. In

this example, the pre-condition pattern calls the artifact_and_form pattern in a negative

mode using neg find keywords.

Graph transformation rules and their pre- and post-condition patterns may also have

arguments. The rule arguments are identified as either inputs, outputs, or both. Input

arguments are those that can be bound to model elements when the transformation rule is

called while the output arguments are those that are bound to model elements as a result of

applying the transformation rule and are available to be used in constructs calling the

transformation rule, such as ASM rules that call graph transformation rules during the

transformation process (described later). Arguments that are identified as both input and

output can be pre-bound or bound when the rule is applied. VTCL keywords in, out, and

inout are used to identify input, output, and input/output arguments respectively. The

Behavior Model Formulation Method uses the following mechanism to create, delete, or

preserve model elements when defining graph transformation rules using VTCL:

 For the creation of a new model element, a variable—to which the model element will be

bound—should be in the argument and body of the post-condition pattern but not the pre-

condition pattern argument or body. The variable may be identified as the output of the

graph transformation rule.

 For deleting a model element, a variable—to which the model element will be bound—

should be in the pre- and post-condition pattern arguments and pre-condition pattern body

but not in the post-condition pattern body.

 For preserving a model element, a variable—to which the model element will be bound—

should be in the pre- and post-condition pattern arguments and body.

If a parameter exists in both the pre-condition and post-condition arguments, then the model

elements bound to that parameter during pre-condition pattern matching are passed to the

post-condition. In the example transformation rule in Figure 8.19, the variables A and

Model_Space exist in both the pre-condition and post-condition arguments and body, and

hence model elements bound to them are not changed. However, variables F and AF exist

 226

only in the post-condition pattern arguments and body, and hence the model elements bound

to them are created. There are no variables such that (a) they exist in the pre-condition

pattern argument, body, and post-condition pattern argument, and (b) do not exist in the

post-condition body, and hence no model elements are deleted when the transformation rule

is applied.

 As described in section 8.1, the model transformation (composition) process

prescribed by the Behavior Model Formulation Method is one where the source model is

not altered during the transformation, but instead the target model contains the source model

and the additional models. Hence, source model elements are not deleted during this model

transformation process. This is so because the Behavior Model Formulation Method uses

the graph transformation-based approach to model transformation to synthesize simulation

templates.

Graph transformation process

 The Behavior Model Formulation Method uses VTCL constructs to define a graph

transformation process. The transformation process describes the conditions and order in

which the graph transformation rules are applied to the source model graph. In addition to

providing constructs to define graph patterns and graph transformation rules, VTCL also

provides constructs to define a control structure very similar to conventional programming

languages such as C, C++, and Java. The VTCL constructs used for defining this control

structure are known as ASM rules, named after Abstract State Machine constructs used in

VTCL and similar to conventional programming languages. The ASM rules are similar to

methods in object-oriented programming. In essence, the ASM rules in VTCL provide a

mechanism to provide explicit scheduling to the model transformations—a pitfall of the

graph transformation-based approach in its original form. The purpose of the Behavior

Model Formulation Method is to create a specific behavior model structure and simulation

template based on the Behavior Model Formulation Specifications—decisions taken by

analysts. Hence, there is a specific need for controlling and scheduling the transformation

rules. VTCL addresses this need by the virtue of ASM rules. In addition to constructs for

calling and scheduling graph transformation rules, VTCL also defines other control

 227

structures constructs similar to conventional programming languages, such as an if-else

construct.

 Graph transformation rules can be called using two specific ASM rule constructs—

forall and choose. While the former allows tracking and using all model elements bound to

an output argument of a transformation rule, the latter allows tracking and using only one

model element (selected non-deterministically). The Behavior Model Formulation Method

uses the forall construct only. Figure 8.20 illustrates the forall ASM construct that is used for

applying the init_form graph transformation rule (Figure 8.19) to the source model graph

(Figure 8.16b).

Figure 8.20: VTCL ASM constructs used for defining model transformation process - shows the

forall construct used for calling the init_form transformation rule in the Artifact transformation

example

Figure 8.21 shows the transformed graph in the Artifact transformation example after the

transformation process is executed by the VIATRA graph transformation engine.

Specifically, this transformation is achieved by executing the forall ASM rule shown in

Figure 8.20. Artifact node A4 in the source graph was the only artifact node that did not

have an associated form node—no edges existed from A4 to any form node. After the

transformation process execution, a form node F3 and an edge from A4 to F3 has been

created. The edge creation is accompanied by the population of attribute A4.hasForm with

value F3 (corresponding to the newly created form node object).

 228

Figure 8.22: Summary of graph transformation approach to model transformations embodied in the

Behavior Model Formulation method

Figure 8.21: Target graph after the graph transformation process executed on the source graph for

the Artifact transformation example (traditional graph notation and SysML notation)

 229

To summarize, the key advantages of the graph transformation-based approach to

model transformations as embodied in the Behavior Model Formulation Method are as

follows:

 Graph patterns provide a mechanism to define conditions and constraints on source

graphs in a declarative manner. The same pattern can be used to check if a source graph

satisfies a set of conditions as well as to search for model elements that satisfy the

conditions. The advantage of using this approach versus using a procedural approach is

evident in the multiple use cases that may be addressed by the same pattern—depending

upon which pattern arguments are bound to model elements and which are free.

 Graph transformation rules use graph patterns to define the atomic units of model

transformations. The rules enable one to model transformations in a declarative rather

than a procedural manner—as would be done using conventional procedural

programming languages (such as C, C++, or Java). This is achieved by using graph

patterns to model the state of sub-graphs before the transformation (pre-condition pattern)

and the state of those sub-graphs after the transformation (post-condition pattern). The

graph transformation engine can automatically interpret the transformation steps to

achieve the final state of the graph.

 ASM rules use procedural programming language-like constructs to explicitly schedule

graph transformation rules thereby enabling one to define a model transformation process

with assured termination. The existence of a control structures makes it easier to define

transformation processes (based on rule-based paradigm) that are testable, maintainable,

and reliable (Li 1991).

Figure 8.22 summarizes the graph transformation approach to model transformations as

embodied in the Behavior Model Formulation Method. Successful application and

scalability of the graph transformation-based approach for complex design models will also

depend on the availability of production-strength transformation tools.

 The graph transformation approach is core to formulating simulation templates in an

effective manner—addressing VTMB variations and idealization variations and efficiently

formulating simulation templates. The formulation process is defined in terms of a graph

transformation process that can be derived from the idealization specifications provided by

analysts—see Behavior Model Formulation Specifications in the next section. Changes in

 230

idealization specifications result in changes in the graph transformation process used for

formulating simulation templates. The ability to apply transformation rules in parallel to all

artifacts (and their features and interactions) that satisfy specific conditions—modeled as

graph patterns—enable formulation of simulation templates for VTMB problems. For the

same idealization specifications, simulation templates can be automatically re-formulated

for families of artifacts with non-equivalent assembly system topologies.

8.3 Behavior Model Formulation Specifications
The Behavior Model Formulation Specifications (BMFS) embody the idealization

decisions taken by analysts. BMFS are defined using the Artifact Model Transformation

Library and executed by the Transformation Engine to realize the model transformations

leading to the creation of behavior model structures and simulation templates. Figure 8.23

shows a detailed view of the BMFS and its relationship with the Artifact Model

Transformation Library.

Figure 8.23: Detailed view of Behavior Model Formulation Specifications

The BMFS can be divided into the following two levels:

 Conceptual Specifications represent the idealization decisions independent of the

transformation rules or process used to realize these decisions. Ideally, the same

conceptual specifications may be realized by different transformation engines,

transformation processes, and sets of transformation rules.

 231

 Computable Specifications represent a transformation process in a syntax that is

interpretable and executable by a specific transformation engine. The computable

specifications are derived from the conceptual specifications and use transformation

patterns and rules defined in the Artifact Model Transformation Library.

8.3.1 Conceptual Specifications
The conceptual specifications represent idealization decisions taken by analysts for

all four stages of the composition process (section 8.2.1). In this section, the specific

decisions that analysts need to take for each of four composition stages are presented.

Composition Stage 1: In this composition stage, analysis bodies and their relationships to

analyzable artifacts are composed from their respective building blocks. The idealization

decisions in this composition stage must specifically answer the following questions.

 What analysis body ABBs should be used to idealize the behavior of each type of

analyzable artifacts?

 What analysis feature ABBs should be used for each of these analysis body ABBs, and

how are these analysis features ABBs related to the analyzable features of the

corresponding analyzable artifact(s)?

 What shape ABBs should be used for representing the shape of each of these analysis

body ABBs, and how are these shape ABBs related to the shape of the corresponding

analyzable artifact(s)?

 What material behavior ABBs are used for representing the material behavior of each of

these analysis body ABBs, and how are these material behavior objects related to the

material behavior of the corresponding analyzable artifact(s)?

 What behavior ABBs are used for representing the idealized set of behaviors of these

analysis body? The behavior ABBs govern the set of behavior parameters that will be

computed for these analysis bodies.

Note that the first question corresponds to the analysis body being composed in Stage 1, and

the other four questions correspond to the attributes of analysis body that must be populated

during the composition.

Note that material behavior and shape are two types of ABBs that are associated

with both an analyzable artifact and an analysis body. An analyzable artifact may have is

 232

typically formulated for a large class of analysis problems, and may have multiple material

behavior models (and shape models) of different fidelities associated with it. Thus, in

answering two of the questions above regarding material behavior ABBs and shape ABBs

should be used for analysis bodies, analysts will typically make decisions in three ways as

shown in Table 8.1 below. For an analysis body, analysts can select one of the multiple

material behavior ABBs (and shape ABBs) associated with the corresponding analyzable

artifact(s). This is a special case of idealization where the idealization relationships

represent equality. Alternatively, analysts can select a material behavior ABB (or shape

ABB) for an analysis body and explicitly specify the idealization relationships between the

material behavior ABB (or shape ABB) associated with analyzable artifact(s) and those

associated with the analysis body. The third mechanism is when analysts specify conditions

for selection or idealization, such as a If-Else condition.

Table 8.1: Modes of taking decisions on material behaviors and shapes of analysis bodies

Select Selecting a material behavior ABB (or shape ABB) for an

analysis body from the list of available material behavior model

ABBs (or shape ABBs) associated with an analyzable artifact.

Idealization relationships represent equality.

Idealize as …

relations …

Selecting a material behavior ABB (or shape ABB) for an

analysis body and establishing math relations between material

behavior ABBs (or shape ABBs) associated with an analysis

body and those associated with analyzable artifact(s).

Idealization relationships represent these math relations.

If (condition)

 Select or Idealize…

Else

 Select or Idealize…

Providing a condition for selecting or idealizing one type of

material behavior ABB (or shape ABB) versus another type.

In general, conditions may be specified for all decisions taken by analysts in

selecting ABBs for composition Stages 1-3. Figure 8.24 below illustrates how conceptual

specifications may be represented formally using SysML Parametrics constructs. The figure

shows analysts can define the pattern of the idealization relationship between an analyzable

artifact and analysis body. When this “pattern” is applied for all analyzable artifacts, then

 233

these relationships will be created between all analyzable artifacts and analysis bodies, such

as shown in Figure 7.34 in section 7.4.2 for relationships created between all stratums of an

analyzable printed circuit board and corresponding planar shell analysis bodies. As an

example, Figure 8.24 below illustrates such a pattern. The pattern shows shape idealization

relationship (shape_idealization) and material behavior idealization relationship

(mb_idealization) created between shape and material behaviors associated with an

analyzable artifact and an analysis body. Per CPM2_xKCM Meta-Model (Chapter 6), an

analyzable artifact may several forms associated with it; each form may have several shapes

and materials associated with it; and each material may have several material behavior

models associated with it. The Shape_Shape_Relationship and

Material_Behavior_Material_Behavior_Relationship are constraint blocks that embody the

mathematical relationships between associated shape and material behavior parameters

respectively. Hence, such a pattern can be used to define all three cases in Table 8.1 above.

The SysML constraint specifications shape_shape_relations and mb_mb_relations can

represent math relations (including conditions).

Figure 8.24: Representation of specifications using SysML Parametrics constructs

Figure 8.25 illustrates a view of the conceptual specifications defined by analysts.

The model shown in the figure is a Level 3 VTMB Behavior Model (section 7.4.2). The

figure illustrates how an analyzable multi-stratum PCB is idealized. In the context of the

 234

idealization questions stated above for Stage 1, the figure shows that an analyzable stratum

of the analyzable PCB is idealized as a planar shell analysis body, the primary and

secondary surfaces of the analyzable stratum are idealized as primary and secondary

surfaces of the planar shells. The figure does not show the shape and material behavior of

the analyzable stratums are idealized as the shape and material behavior of the planar shells.

Behavior Model StackDesign Model Stack

An
al

yz
ab

le
 a

rti
fa

ct

(A
A)

 a
ss

em
bl

y
An

al
yz

ab
le

ar

tif
ac

ts
An

al
yz

ab
le

fe

at
ur

es
 (A

Fs
)

Analyzable
artifact interaction

Analysis body (AB)
assem

bly
Analysis
bodies

Analysis
features (AN

Fs)

Analysis body
interactions

AA interaction – AB interaction
relationship

AA-AB
relationship

AF-ANF
relationship

Figure 8.25: View of the Conceptual Specifications for Stage 1 and 2 compositions -

B3 model (PCB_nSx_ThermoMech_Behavior_Meta-Model from section 7.4.2)

Composition Stage 2: In this composition stage, analysis body systems and their

relationships with analyzable artifact (assembly) are composed from their respective

building blocks. The idealization decisions in this composition stage must specifically

answer the following questions:

 What analysis body system ABBs are used for representing the idealized behavior of

analyzable artifact assemblies, and how are these analysis body systems related to the

corresponding analyzable artifact assemblies?

 What analysis body ABBs and analysis body system ABBs constitute the analysis body

system being composed during this stage, and how are they related to the corresponding

analyzable artifacts?

 235

 What analysis body interaction ABBs are used for representing the behavior of the

interaction between the analysis bodies used in composing analysis body systems, and

how are these interactions related to the interactions between the corresponding

analyzable artifacts?

 What analysis feature ABBs should be used to define the analysis features associated with

the composed analysis body system?

 What behavior ABBs should be used for representing the idealized set of behaviors of the

composed analysis body system?

Note that the first question corresponds to the analysis body system being composed in

Stage 2, and the other four questions correspond to the attributes of analysis body system

that must be populated during the composition.

In the context of the idealization questions stated above for Stage 2 composition,

Figure 8.25 illustrates that the analyzable PCB is idealized as a laminated shell analysis

body system, and the interaction between the any adjacent stratums of the analyzable PCB

are idealized as tie interactions between the planar shell analysis bodies corresponding to

the stratums. Note that SysML Parametrics constructs, as shown in Figure 8.24 can be used

for formally representing conceptual specifications for Stage 2.

Composition Stage 3: In this composition, a behavior model ABB system is composed

from its building blocks, and a behavior model context is created to wrap the relationship

between the top level analysis body system and analyzable artifact (assembly). The

idealization decisions in this composition stage must specifically answer the following

questions:

 What load ABBs are used for representing the loads for which the behavior parameters

are to be computed?

 What behavior condition ABBs are used for representing the behavior conditions for

which the behavior parameters are to be computed?

 What behavior ABBs are used for representing the behavior parameters to be computed?

 236

Note that SysML Parametrics constructs, as shown in Figure 8.24 can be used for formally

representing conceptual specifications for Stage 3, such as selecting load and behavior

condition ABBs based on certain conditions defined on analyzable artifact.

Composition Stage 4: In this composition, behavior model structure and simulation

template are composed from the behavior model ABB system and behavior model context

composed in Stage 3. Except for deciding the behavior model namespace and identifiers,

there are no decisions that analysts need to take in this stage. The inputs and outputs of this

composition stage are common to all VTMB analysis problems.

8.3.2 Computable Specifications
Computable specifications are model composition instructions that are derived from

the conceptual specifications, and interpreted by the model transformation engine. While

the conceptual specifications represent the idealization decisions taken by analysts, they do

not prescribe a process for model composition. This is so because the idealization decisions

are independent of the order in which the model is composed. The computable

specifications are executable scripts that define a set of activities that can be executed in

series or parallel. Each activity in the script comprises of the following two basic steps.

 Invoke pre-defined graph patterns from the Artifact Model Transformation Library to

search for model elements in the source model. Graph pattern matches return sub-graphs

of the source model graph that satisfy the conditions embodied in the patterns. As an

example, for conceptual specifications that state that all stratums in a printed circuit board

are to be idealized a shells, the computable specifications include calls to pre-defined

graph patterns to search the printed circuit board model space and retrieve all stratums.

The conditions specified in invoked patterns may include additional constraints that need

to be satisfied by the model elements in the source graph.

 Create new model elements in the target model space by invoking graph transformation

rules defined in the Artifact Model Transformation Library. The transformation rules may

call pre-defined patterns to check for conditions before creating new model elements. The

model elements created by graph transformation rules include both entities (nodes) and

edges (relationships between entities).

 237

Besides the basic restrictions posed by the stages of composing simulation templates—

composition stagei+1 cannot complete until stagei is completed—the process of formulating

simulation templates is not necessarily relevant to an analyst, especially since the computer

time taken to generate these templates is of the order of seconds (section 9.5.3.3).

Algorithms to derive computable specifications from conceptual specifications would

typically be managed by modelers proficient in the language in which the graph

transformation process is described (such as VTCL in this case) and conceptual

specifications.

 In the proof-of-concept software implementation of the Behavior Model

Formulation Method, the computable specifications are represented as a graph

transformation processing using VTCL, as described in section 8.2.3.

8.4 Artifact Model Transformation Library (AMTL)
The Artifact Model Transformation Library of KCM’s Behavior Model Formulation

Method provides a repository of graph transformation rules that can be reused for writing

Behavior Model Formulation Specifications in the computable form for analysis problems

in general. The intent of the transformation library is to provide unit-level transformation

rules that are generic for all behavior models, and ABB-specific transformation rules that

are used when specific ABBs are used for composing a Behavior Model ABB System. The

core of the model transformation method prescribed by the Behavior Model Formulation

Method is the creation of simulation templates, and hence the two key types of graph

transformation rules in the Artifact Model Transformation Library concern creation of

entities, and creation of relationships between entities. Application results for these two

types of transformation rules are illustrated using a simple model shown in Figure 8.26.

Figure 8.26a shows an example meta-model. The meta-model shows two SysML blocks, A

and B, and a relationship between the blocks A.hasB.

 238

a. Meta-model example for illustrating Type 1 and Type 2 graph transformation rules

b. Application result of Type 1

transformation rules – creation of new entity

instances in the model space

c. Application result of Type 2 transformation

rules – creation of new relationship instances

between entity instances in the model space

Figure 8.26: Example model to illustrate Type 1 and 2 graph transformation rules in the

Artifact Model Transformation Library

Type 1 transformation rule: In this type of graph transformation rule, a new entity of type

A with a given identifier ID is created in a given model space M. As an example, Figure

8.26b illustrates that new instances of entities—A1 as an instance of A and B1 as an instance

of B—would be created in this type of transformation though there may be two different

transformation rules—one for creating instance an instance of A and one for creating an

instance of B. This type of rule corresponds to the creation of a node in the artifact model

graph. The schematic of a Type 1 graph transformation rule is as described below. The

input parameters ID and M are already bound to entities ID and M while the output

parameter is unbound when the rule is called. After the execution of the rule, the output

parameter A1 will be bound to entity A1.

Type 1 transformation rule (input: ID, M; output: A1)

Pre-condition

o there exists a model space M

o there does not exist an entity in M with id=ID

Post-condition

o there exists a model space M

o there exists an entity A1 of type A in M with id=ID

 239

The Behavior Model Formulation Method maintains a unique id for the model entities and

relationships, and hence the id of an entity is used to check for its existence in a given

model space.

Type 2 transformation rule: In this type of graph transformation rule, a new relationship

of type A.hasB is created between two given entities of type A and type B respectively in a

given model space M. As an example, Figure 8.26c illustrates that Type 2 transformation is

used for creating a new relationship between instances, A1.hasB=B1. This type of node

corresponds to the creation of an edge in the artifact model graph. The schematic of a Type

2 transformation rule is as described below. The input parameters A1 and B1 are already

bound to entities A1 and B1 while the output parameter is unbound when the rule is called.

After the execution of the rule, the output parameter A1B1 will be bound to relationship

A1B1.

Type 2 transformation rule (input: A1, B1, M; output: A1B1)

Pre-condition

o there exists a model space M

o there exists an entity A1 of type A in M

o there exists an entity B1 of type B in M

o there does not exist a relationship of type A.hasB from A1 to B1

(or implemented as pattern A_and_B (A1, B1, M) returns false)

Post-condition

o there exists a model space M

o there exists an entity A1 of type A in M

o there exists an entity B1 of type B in M

o there exists a relationship A1B1 of type A.hasB from A1 to B1

In addition to transformation rules Type 1 and Type 2, the Artifact Model Transformation

Library also has reusable patterns to check for the existence of entities and relationships, or

to search for them in the model space. These patterns are used for Type 2 transformation

rules in particular. For example, the last clause in the pre-condition of Type 2 rule could be

 240

implemented by calling pattern_A_and_B for entities A1 and B1 and checking that the

pattern returns false. The pattern pattern_A_and_B is as shown below:

Pattern Type 1

pattern A_and_B (An, Bn, M)

o there exists a model space M

o there exists an entity An, of type A, in M

o there exists an entity Bn, of type B, in M

o there exists a relationship AnBn, of type A.hasB, in M

Though several types of patterns may be defined using the concept of graph patterns,

Pattern Type 1 is commonly used in the Behavior Model Formulation Method. In this type

of pattern, a condition is defined to check for the existence of a relationship between two

given model elements—as shown in the example above. To make the pattern matching

process computationally less expensive, all patterns defined in the Artifact Model

Transformation Library are based on the following strategy:

 All patterns defined in Behavior Model Formulation Method are of Type 1—checking for

a single relationship in the meta-models (CPM2_xKCM and CBM). Since all pre-defined

patterns have 2 nodes, this restricts the number of tests that need to be performed when

matching these patterns to sub-graphs in the source graph (Valiente and Martinez 1997).

 More complex patterns are realized by calls to simpler patterns.

 Wherever possible, patterns are invoked on specific sub-sets of the model space. This

limits the number of nodes and/or edges in the model space for which pattern matching

tests need to be performed.

Sections 8.4.1 to 8.4.4 describe the transformation rules and patterns for

composition stages 1 to 4. Composition stages 1-3 consist of rules that are specific to the

ABBs being composed and rules that are common to all behavior model structures and

simulation templates composed using the Behavior Model Formulation Method. Rules and

patterns specific to an ABB are attributes of the ABB itself. The ABB Meta-Model

described in section 7.2.1 prescribes four key attributes of an ABB—context, property,

application conditions, and transformation rules. When ABBs are instantiated, only their

 241

property attribute is populated. The other attributes are static—describe the ABB itself. The

first two properties were defined in section 7.2.1 and described for each ABB type in

section 7.3. The application conditions and transformation rules for each ABB are modeled

as graph patterns and graph transformation rules. The ABB-specific rules and patterns

described below are represented as application conditions and transformation rules for that

ABB. The representation of both dynamic and static aspects of an ABB is a key

distinguishing feature of the ABB Meta-Model with regards to existing approaches. While

the static aspects—context and property attributes of an ABB—represent the characteristics

of an ABB, the dynamic aspects—application conditions and transformation rules—

describe how an ABB is to be used in the context of creating a behavior model.

The entities and relationships created in these transformation rules described below

are created in a given model space. For brevity, this is not stated for each rule. The types

(classifiers) of instances created in these transformations are entities defined in the Core

Behavior Model (section 7.1) and the Core Product Model extended by KCM (Chapter 6).

8.4.1 Stage 1 composition - transformation rules and patterns
The set graph transformation rules for Stage 1 composition consists of rules that are

common to the creation of all behavior model structures and simulation templates, and rules

that are specific to the ABBs used in a given behavior model structure.

 In this composition stage, an analysis body is composed from shape ABB, system

ABB, analysis feature ABB, material behavior ABB, and behavior ABBs. In addition, a

relationship between the composed analysis body and the corresponding analyzable artifact

is created. This relationship is composed from the relationship between the shapes of

analyzable artifact and analysis body, relationship between the material behavior of

analyzable artifact and analysis body, and relationships between analyzable features and

analysis features. The Type 1 and Type 2 transformation rules in the Artifact Model

Transformation Library for Stage 3 composition are described below. The name of the rule

is followed by a short description of its specific purpose.

 242

Type 1 transformation rules

 Rules for initializing analysis body ABB instances - These transformation rules are

specific to the analysis body ABBs used in composing a given behavior model structure.

Example of analysis body ABBs are illustrated in Figure 7.10. For example, Beam, Rod,

Shell, and Column are different types of structural analysis body ABBs. An initialization

rule (Type 1) would exist for each of the analysis body ABBs in the Artifact Model

Transformation Library (AMTL). For example, initalize_planar_shell_analysis_body is a

rule to initialize an instance of Planar_Shell_Property (type of

Planar_Shell_ABB.property), as shown in Figure 7.11. The initialization transformation

rule and associated patterns are attributes of the specific analysis body ABBs.

 Rules for initializing shape ABB instances – Similar to transformation rules for

initializing analysis body instances, the Artifact Model Transformation Library would

contain rules for initializing different types of shape ABBs. For example,

initialize_planar_shape is a rule in the AMTL to initialize an instance of Planar_Shape.

 Rules for initializing analysis feature ABB instance - The Artifact Model Transformation

Library would contain rules for initializing different types of analysis feature ABBs

shown in Figure 7.18. For example, initialize_shell_surface_af is a rule in the AMTL to

initialize an instance of Shell_Surface_AF_Property entity shown in the figure.

 Rules for initializing material behavior ABB instance - The Artifact Model

Transformation Library would contain rules for initializing different types of material

behavior ABBs as shown in Figure 7.12. For example,

initialize_linear_elastic_tempind_mb is a rule in the AMTL to initialize an instance of

Linear_Elastic_Isotropic_TempInd_MB_Property as shown in Figure 7.13.

 Rules for initializing behavior ABB instance - The Artifact Model Transformation

Library would contain rules for initializing different types of behavior ABBs. For

example, initialize_structural_behavior is a rule in the AMTL to initialize an instance of

Structural_Behavior_Property as shown in Figure 7.17.

 initialize_aa_abs_relationship - used for creating an instance of

Analyzable_Artifact_ABS_Relationship for associating an analysis body system with an

analyzable artifact. Note that this rule is sued for both Stage 1 and Stage 2 composition.

 243

In Stage 1 composition, relationships are created between analyzable artifact and analysis

body.

 initialize_af_anf_relationship - used for creating an instance of

Anlyzable_Feature_Analysis_Feature_Relationship for associating an analyzable feature

with an analysis feature. Note that this rule is used in both Stage 1 and Stage 2

compositions. In Stage 1 composition, relationships are created between analyzable

features and analysis features corresponding to an analyzable artifact and analysis body.

 initialize_shape_shape_relationship - used for creating an instance of

Shape_Shape_Relationship that associates two shape instances

 initialize_material_behavior_material_behavior_relationship - used for creating an

instance of Material_Behavior_Material_Behavior_Relationship that associates two

instances of material behavior ABBs.

 244

Type 2 transformation rules

 Rules for populating attributes of analysis body ABBs – These rules are used for

populating attributes of analysis body ABB instances. The Artifact Model

Transformation Library would have rules for associating an analysis body ABB instance

with (a) shape ABB instance, (b) material behavior ABB instance, (c) analysis feature

ABB instance, and (d) behavior ABB instance. Depending upon their specialization,

analysis body ABBs may have their own specialized association rules. For example, a

planar shell analysis body ABB will have rules to associate its instances with (a) planar

shape ABB instances (and not any shape instance), and (b) two planar shell surface

analysis feature ABB instances corresponds to its primary and secondary surface

respectively. However, a material behavior is not inherent in the definition of a planar

shell analysis body ABB, and hence it may use the generic rule that associates an analysis

body ABB with a material behavior ABB.

 Rules for populating attributes of Analyzable_Artifact_ABS_Relationship that relates an

analyzable artifact with an analysis body system (or analysis body), are described below.

o associate_aa_abs_rel_with_aa_and_abs – used for creating an instance of the

relationships Analyzable_Artifact_ABS_Relationship.associated_aa and

Analyzable_Artifact_ABS_Relationship.associated_abs that relate an instance of

Analyzable_Artifact_ABS_Relationship to an instance of Analyzable_Artifact and

Analysis_Body_System_Property (or Analysis_Body_Property) respectively. This

transformation rule associates an analysis body system composed during Stage 2

composition with the corresponding analyzable artifact (assembly).

o associate_aa_abs_rel_with_af_anf_rel – used for creating an instance of the

relationship Analyzable_Artifact_ABS_Relationship.af_anf_rels that relates an instance

of Analyzable_Artifact_ABS_Relationship with an instance of

Analyzable_Feature_Analysis_Feature_Relationship. Here, the analyzable feature-

analysis feature relationship instances are defined between analyzable features of

analyzable artifact assembly and analysis body system.

o associate_aa_abs_rel_to_geom_idealization – used for creating an instance of the

relationship Analyzable_Artifact_ABS_Relationship.shape_idealization that relates an

 245

instance of Analyzable_Artifact_ABS_Relationship with an instance of

Shape_Shape_Idealization

o associate_aa_abs_rel_to_mb_idealization - used for creating an instance of the

relationship Analyzable_Artifact_ABS_Relationship.material_behavior_idealization that

relates an instance of Analyzable_Artifact_ABS_Relationship with an instance of

Material_Behavior_Material_Behavior_Idealization

 Rules for populating attributes of Analyzable_Feature_Analysis_Feature_Relationship

instance are described below.

o associate_af_anf_rel_with_af_and_anf – used for creating an instance of each of the

following two relationships:

Analyzable_Feature_Analysis_Feature_Relationship.associated_af and

Analyzable_Feature_Analysis_Feature_Relationship.associated_anf. These

relationships relate an instance of Analyzable_Feature_Analysis_Feature_Relationship

to an instance of Analzable_Feature and Analysis_Feature_Property respectively.

o Associate_af_anf_rel_with_shape_idealization - used for creating an instance of the

relationship Analyzable_Feature_Analysis_Feature_Relationship.shape_idealization that

relates an instance of Analyzable_Feature_Analysis_Feature_Relationship to an

instance of Shape_Shape_Relationship

 Rules for populating attributes of Shape_Shape_Relationship instance are described

below.

o associate_ssr_with_relating_shape_and_related_shape – used for creating an instance

of each of the following two relationships: Shape_Shape_Relationship.relatedShapes

and Shape_Shape_Relationship.relatingShapes. These relationships relate an instance

of Shape_Shape_Relationship to an instance of Shape and Shape respectively.

o associate_ssr_with_idealization_relation – used for creating an instance of the

relationships Shape_Shape_Relationship.shape_shape_relations. This relationship

associates an instance of Shape_Shape_Relationship to an instance of

Mathematical_Relation.

 Rules for populating attributes of Material_Behavior_Material_Behavior_Relationship

instance are defined similar to those defined for populating attributes of

Shape_Shape_Relationship instances.

 246

Type 1 patterns

 aa_abs_rel_and_aa - used for relationship

Analyzable_Artifact_ABS_Relationship.associated_aa

 aa_abs_rel_and_abs – used for relationship

Analyzable_Artifact_ABS_Relationship.associated_abs

 aa_abs_rel_and_shape_shape_idealization – used for relationship

Analyzable_Artifact_ABS_Relationship.shape_idealization

 aa_absys_rel_and_mb_idealization – used for relationship

Analyzable_Artifact_ABS_Relationship.material_behavior_idealization

 aa_abs_rel_and_af_anf_rel – used for relationship

Analyzable_Artifact_ABS_Relationship.af_anf_rels

 af_anf_rel_and_af – used for relationship

Analyzable_Feature_Analysis_Feature_Relationship.associated_af

 af_anf_rel_and_anf – used for relationship

Analyzable_Feature_Analysis_Feature_Relationship.associated_anf

8.4.2 Stage 2 composition – transformation rules and patterns
The set graph transformation rules for Stage 2 composition consists of rules that are

common to the creation of all behavior model structures and simulation templates, and rules

that are specific to the ABBs used in a given behavior model structure.

 In this composition stage, an analysis body system is composed from analysis body

ABBs or other analysis body sub-systems, analysis body interaction ABBs, and analysis

feature ABBs. Additionally, idealization relationships are created between (i) analyzable

artifact (assembly) and the composed analysis body system, (ii) analyzable features and

analysis features, and (iii) the interaction between analyzable artifacts and interactions

between analysis bodies in the analysis body system.

The Type 1 and Type 2 transformation rules in the Artifact Model Transformation

Library for Stage 3 composition are described below. The name of the rule is followed by a

short description of its specific purpose.

 247

Type 1 transformation rules

 initalize_AB_System - used for creating an instance of Analysis_Body_System_ABB or any

of its specializations

 initialize_aa_abs_relationship – used for creating an instance of

Analyzable_Artifact_ABS_Relationship for associating an analysis body system with an

analyzable artifact. In contrast to its usage in Stage 1 composition, this rule is used in

Stage 2 composition to create relationships between analyzable artifact (assembly) and

analysis body system respectively.

 initialize_af_anf_relationship - used for creating an instance of

Anlyzable_Feature_Analysis_Feature_Relationship for associating an analyzable feature

with an analysis feature. In contrast to its usage in Stage 1 composition, this rule is used

in Stage 2 composition to create relationships between analyzable features and analysis

features corresponding to analyzable artifact (assembly) and analysis body system

respectively.

 initialize_aa_ab_interaction_relationship - used for creating an instance of

Anlyzable_Feature_Analysis_Feature_Interface_Relationship for associating an interface

between two analyzable artifacts with the corresponding interface between two analysis

bodies—either directly or as part of interacting analysis body assemblies

Type 2 transformation rules

 Rules for populating attributes of Analysis_Body_System_ABB or its specializations are

described below. Specialized rules may be defined for populating attributes of

specializations.

o associate_absys_with_abs - used for creating an instance of the relationship

Analysis_Body_System_Property.constituent_abs_property that relates an instance of

Analysis_Body_System_Property22 and an instance of Analysis_Body_System_Property

or Analysis_Body_Property

22 Note that when ABBs are instantiated, only their property attribute (non-static) is populated. The property attribute of

each ABB is of a specific type. For example, Analysis_Body_ABB.property is of type

Analysis_Body_Property.

 248

o associate_absys_with_abi - used for creating an instance of the relationship

Analysis_Body_System_Property.constituent_ab_ab_interactions_property that relates

an instance of Analysis_Body_System_Property and an instance of

AB_AB_Interaction_Property

o associate_abs_with_anf - used for creating an instance of the relationship

Analysis_Body_System_Property.constituent_afs_property that relates an instance of

Analysis_Body_System_Property or an instance of Analysis_Body_Property with an

instance of Analysis_Feature_Property

 Rules for populating attributes of Analyzable_Artifact_ABS_Relationship that relates an

analyzable artifact with an analysis body system (or analysis body), are described below.

o associate_aa_abs_rel_with_aa_and_abs – same as described in Stage 1 composition

but in Stage 2 composition, this rule associates an analysis body system with the

corresponding analyzable artifact (assembly).

o associate_aa_abs_rel_to_constituent_aa_abs_rel - used for creating an instance of the

relationship Analyzable_Artifact_ABS_Relationship.constituent_aa_abs_rels that relates

an instance of Analyzable_Artifact_ABS_Relationship with an instance of

Analyzable_Artifact_ABS_Relationship.

o associate_aa_abs_rel_with_af_anf_rel – same as used in Stage 1 composition but in

Stage 2 composition, the rule is used to relate an analyzable feature-analysis feature

relationship instance with analyzable features of analyzable artifact (assembly) and

analysis body system.

o associate_ aa_abs_rel_with_aa_ab_interaction_rel - used for creating an instance of

the relationship Analyzable_Artifact_ABS_Relationship.af_anf_interface_rels that

relates an instance of Analyzable_Artifact_ABS_Relationship with an instance of

Analyzable_Feature_Analysis_Feature_Relationship.

 Rules for populating attributes of Analyzable_Feature_Analysis_Feature_Relationship

instance are same as described in Stage 1 composition except that in Stage 2 composition,

they are invoked for associating analyzable features of analyzable artifact (assemblies)

and analysis features of analysis body systems.

 Rules for populating attributes of

Analyzable_Feature_Analysis_Feature_Interface_Relationship are described below.

 249

o associate_aa_ab_interaction_relationship_to_aaaai_and_ababi – used for relating an

instance of the relationship

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_aa_interactio

n and

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_ab_interactio

n that relate an instance of

Analyzable_Feature_Analysis_Feature_Interface_Relationship to an instance of

AA_AA_Interaction and AB_AB_Interaction_Property respectively

Type 1 patterns

 aa_abs_rel_and_constituent_aa_abs_rel - used for relationship

Analyzable_Artifact_ABS_Relationship.constituent_aa_abs_rels

 aa_abs_rel_and_aa_ab_irel - used for relationship

Analyzable_Artifact_ABS_Relationship.af_anf_interface_rels

 absys_and_abs - used for relationship

Analysis_Body_System_Property.constituent_abs_property

 absys_and_abi - used for relationship

Analysis_Body_System_Property.constituent_ab_ab_interactions_property

 absys_and_anf - used for relationship

Analysis_Body_System_Property.constituent_anf_property

 aa_ab_irel_and_aaaai - used for relationship

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_aa_interaction

 aa_ab_irel_and_ababi - used for relationship

Analyzable_Feature_Analysis_Feature_Interface_Relationship.associated_ab_interaction

8.4.3 Stage 3 composition – transformation rules and patterns
The set graph transformation rules for Stage 3 composition consists of rules that are

common to the creation of all behavior model structures and simulation templates, and rules

that are specific to the ABBs used in a given behavior model structure.

 In this composition stage, (a) a behavior model ABB system is composed from

analysis body system ABB, load ABBs, behavior condition ABBs, and behavior ABBs, and

(b) a behavior model context is composed from the relationship between the analysis body

 250

system ABB and an analyzable artifact. A behavior model ABB system represents the

idealized behavior of the analyzable artifact. The analyzable artifact is idealized as an

analysis body system. The Type 1 and Type 2 transformation rules in the Artifact Model

Transformation Library for Stage 3 composition are described below. The name of the rule

is followed by a short description of its specific purpose.

Type 1 transformation rules

 initialize_behavior_model_abbsys - used for creating an instance of

Behavior_Model_ABBSys

 initialize_behavior_model_xcontext - used for creating an instance of

Behavior_Model_XContext

 Rules to initialize load ABB instances –These transformation rules are specific to the load

ABBs used in composing a given behavior model structure. Example of load ABBs are

illustrated in Figure 7.23. For example, Force, Pressure, Moment, and Temperature are

different types of structural load ABBs. An initialization rule (Type 1) would exist for

each of the load ABBs in the Artifact Model Transformation Library. For example,

initalize_uniform_temp_load is a rule to initialize an instance of

Uniform_Temperature_Load_ABB (shown in Figure 7.24).

 Rules to initialize behavior condition ABB instances – Similar to load ABBs, these

transformation rules are specific to behavior condition ABBs used in composing a given

behavior model structure. Example of behavior condition ABBs are illustrated in

Figure 7.25. For example, PointDisplacementFixed_Condition ABB and

TemperatureConstant_Condition ABB are two types of behavior condition ABBs. In the

former, the displacement is locked at a given point, and in the latter the temperature is

held constant. An initialization rule (Type 1) would exist for each of the behavior

condition ABBs in the Artifact Model Transformation Library. For example,

initalize_point_displacement_fixed_BC is a rule to initialize an instance of

PointDisplacementFixed_Condition ABB.

 251

Type 2 transformation rules

 Rules for populating attributes of Behavior_Model_ABBSys instance – These rules are

used for populating the attributes of Behavior_Model_ABBSys instance. There are four

such rules, one for each attribute of Behavior_Model_ABBSys, as described below:

o associate_behavior_model_abbsys_with_absys - used for creating an instance of the

relationship Behavior_Model_ABBSys.abs_sys that relates an instance of

Behavior_Model_ABBSys and an instance of Analysis_Body_System_ABB

o associate_behavior_model_abbsys_with_load - used for creating an instance of the

relationship Behavior_Model_ABBSys.load_applications that relates an instance of

Behavior_Model_ABBSys and an instance of Load_ABB

o associate_behavior_model_abbsys_with_bc - used for creating an instance of the

relationship Behavior_Model_ABBSys.behavior_condition_applications that relates an

instance of Behavior_Model_ABBSys and an instance of Behavior_Condition_ABB

o associate_behavior_model_abbsys_with_behavior - used for creating an instance of the

relationship Behavior.behaviors that relates an instance of Behavior_Model_ABBSys and

an instance of Behavior_ABB

 Rules for populating attribute of Behavior_Model_XContext instance – There is one rule

for populating the single attribute of Behavior_Model_XContext, as described below.

o associate_bmx_context_with_aa_absys_rel - used for creating an instance of the

relationship Behavior_Model_XContext.aa_abs_rel that relates an instance of

Behavior_Model_ABBSys and an instance of Analyzable_Artifact_ABS_Relationship

 Rules for populating attributes of load ABBs – These rules are used for populating

attributes of load ABBs instances in the behavior model structure. There are three

attributes of all load ABB properties—load parameters, load application domain, and

load distribution function. A rule to populate the application domain attribute of each

type of Load_ABB would be defined in the Artifact Model Transformation Library. For

example the rule associate_utl_with_vf is used for associating an instance of

Uniform_Temperature_Load_ABB with an instance of Volume_Feature_ABB, since

temperature is a volume load. Note that load parameters and the distribution function are

typically defined for each type of load ABB. However, the specific values in the

distribution function may be populated when creating behavior model instance (Level 5

 252

model). For example, for Uniform_Temperature_Load_ABB, the load parameter

(temperature) and distribution function (temperature=constant) are inherently decided in

the definition of the ABB but the value of the constant may be populated only when

creating behavior model instances.

 Rules for populating attributes of behavior condition ABBs – Similar to load ABBs, there

are three attributes of all behavior condition ABB properties—behavior condition

parameters, application domain, and distribution function. A rule to populate the

application domain attribute of behavior condition ABB would be defined in the Artifact

Model Transformation Library. For example, the rule associate_pdc_with_pf is used for

associating an instance of PointDisplacementFixed_Condition and an instance of

Point_Feature_ABB. The behavior condition parameters and distribution function are

inherently pre-decided for specific type of behavior condition ABB. For example, the

behavior parameters for PointDisplacementFixed_Condition ABB are displacement

parameters, and the distribution function is displacement=constant, though the value of

the constant may be populated only when creating behavior model instances.

Type 1 patterns

The following Type 1 patterns are defined in the Artifact Model Transformation Library

that are typically used for Stage 3 composition

 behavior_model_abbsys_and_absys - used for relationship

Behavior_Model_ABBSys.abs_sys

 behavior_model_abbsys_and_load - used for relationship

Behavior_Model_ABBSys.load_applications

 behavior_model_abbsys_and_bc - used for relationship

Behavior_Model_ABBSys.behavior_condition_applications

 behavior_model_xcontext_and_aa_absys_rel - used for relationship

Behavior_Model_XContext.aa_abs_rel

8.4.4 Stage 4 composition – transformation rules and patterns
The graph transformation rules for Stage 4 composition are common to the creation

of all behavior model structures and simulation templates formulated using the Behavior

 253

Model Formulation Method. In this composition stage, a behavior model structure and

simulation template are composed from a behavior model ABB system—a system of

analysis building blocks that represents the idealized behavior of an analyzable artifact, and

a behavior model context—relates the analysis body system in the ABB system to the

analyzable artifact.

The types (classifiers) of instances created in these transformations are entities

defined in the Core Behavior Model (section 7.1). One of the entities, Behavior, is defined

in the Core Product Model extended for KCM—CPM2_xKCM (Chapter 6). The Type 1

and Type 2 transformation rules in the Artifact Model Transformation Library for Stage 4

composition are described below. The name of the rule is followed by a short description of

its specific purpose.

Type 1 graph transformation rules

 initialize_behavior_model - used for creating an instance of Behavior_Model

Type 2 graph transformation rules

 associate_behavior_model_with_behavior - used for creating an instance of the

relationship Behavior.behaviorModels that relates an instance of Behavior and an instance

of Behavor_Model

 Rules for populating attributes of Behavior_Model – These rules are used for populating

the two attributes of Behavior_Model, and are described below.

o associate_behavior_model_with_bmabbsys - used for creating an instance of the

relationship Behavior_Model.associated_bm_abbsys that relates an instance of

Behavior_Model and an instance of Behavor_Model_ABBSys.

o associate_behavior_model_with_bmxcontext - used for creating an instance of the

relationship Behavior.context that relates an instance of Behavior_Model and an instance

of Behavor_Model_XContext

Type 1 patterns

The following Type 1 patterns are defined in the Artifact Model Transformation Library

that are typically used for Stage 4 composition

 254

 behavior_model_and_behavior_model_abbsys - used for relationship

Behavior_Model.associated_bm_abbsys

 behavior_model_and_behavior_model_xcontext - used for relationship

Behavior_Model.context

8.4.5 Analyzable artifact model patterns
When composing behavior model structures and simulation templates, entities in the

analyzable artifact model need to be unambiguously identified. The Behavior Model

Formulation Specifications in both conceptual and computable forms need to explicitly state

the analyzable artifacts (or their specific aspects) and the conditions that need to be satisfied

before associating behavior model entities. In the Behavior Model Formulation Method, the

identification criteria and conditions are formally represented as graph patterns. For

example, if stratums of a PCB is idealized as shell, this requires that all stratums of the PCB

be unambiguously identified and then transformation rules be executed to initialize shell

analysis body ABB and the relationships to the stratums. In addition to identifying

analyzable artifacts or their specific aspects, there may be conditions that need to be

checked. For example, stratums made of conductive material are idealized to have linear

isotropic material behavior, and stratums made of non-conductive material are idealized to

have linear orthotropic material behavior.

The Artifact Model Transformation Library would also have patterns for

relationships in the analyzable artifact model. Depending upon the variable bindings when

the pattern is called, a pattern could be used to search and identify analyzable artifact

entities or check for specific conditions. The entities and relationships are specialized for

each application domain and hence patterns are created for meta-model defined at Level 2

in the design model stack (section 6.2). Figure 6.7 and Figure 6.8 show the design and

analyzable design models for printed circuit boards. As an example, for the relationships in

the analyzable PCB model illustrated in Figure 6.8, the following Type 1 patterns are

defined in the Artifact Model Transformation Library.

 astratums_and_apwb - used for the relationship Analyzable_PCB.hasStratums

 astratum_interfaces_and_apwb - used for the relationship

Analyzable_PCB.astratumInteractions

 255

 astratum_and_surfaces - used for the relationships AStratum.primary_surface and

AStratum.secondary_surface

 assi_and_preceding_stratum_surface - used for the relationship

Adjacent_AStratum_Surface_Interaction.precedingAstratumSurface

 assi_and_succeding_stratum_surface - used for the relationship

Adjacent_AStratum_Surface_Interaction.succeedingAstratumSurface

 astratum_and_form - used for the relationship AStratum.hasForms

 astratum_and_shape - used for the relationship AStratum_Form.hasShapes (where

AStratum.hasForms: AStratum_Form)

 astratum_and_material - used for the relationship AStratum_Form.hasMaterial (where

AStratum.hasForms: AStratum_Form)

 astratum_and_elec_function - used for the relationship AStratum.hasFunctions

8.5 Summary
To summarize, the Behavior Model Formulation Method (BMFM) of the

Knowledge Composition Methodology is presented in this chapter. Specifically, the

following aspects of the model transformation process prescribed by BMFM are presented

here.

 Schematics of the transformation process focuses on the functional components of the

transformation framework—source and target meta-models and models, transformation

specifications, model transformation library, and the model transformation engine.

 Stages of the transformation process focuses on the major steps in which simulation

templates are composed from design model structures and idealization decisions.

 Semantics of the transformation process relates the process of composing simulation

templates to deriving relations between behavior parameters and design parameters. The

intent of presenting this aspect is to illustrate that the BMFM is a formal and structured

approach to creating simulation templates that embody existing fundamental domain

theories. The BMFM provides a computationally effective mechanism to apply existing

domain theories and concepts to variable topology multi-body problems.

 Mechanics of the transformation process focuses on how the model transformation

process is realized as a process of graph transformations.

 256

In addition, pre-defined graph patterns and transformation rules in the Artifact Model

Transformation Library are presented.

 257

PART 3: VERIFICATION & VALIDATION,
FUTURE WORK, AND CLOSURE

 258

CChhaapptteerr 99 :: TTEESSTT CCAASSEESS

The focus of this chapter is to present test applications of KCM meta-models and

methods, and to validate the research hypotheses. In this chapter, test cases are presented to

demonstrate different aspects of the Knowledge Composition Methodology. The test cases

validate the model composition process prescribed by KCM’s Behavior Model Formulation

Method. Two families of test cases are presented here. In the first test case family (TCF1)

presented in section 9.2, the objective is to generate fixed topology simulation templates for

thermo-mechanical analyses of multi-layered printed wiring boards. For the second test case

family (TCF2) presented in section 9.3, the objective is to generate fixed topology

simulation templates for thermo-mechanical analyses of ball grid array (BGA) chip

packages. The test cases demonstrate automated generation of simulation templates for two

types of variations: (a) analyzable design model structures with different assembly system

topologies (VTMB problems), and (b) idealization decisions taken by analysts.

Figure 9.1: Applications and Validation of KCM meta-models and methods

9.1 Models in VIATRA Model Transformation Framework
The test cases presented in this chapter are implemented using VIATRA model

transformation framework. For all test cases, the model space in this framework is pre-

loaded with KCM meta-models and libraries. Figure 9.2 illustrates the KCM model space in

 259

the VIATRA model transformation framework. The following meta-models, models

libraries, and model transformation libraries are pre-loaded for execution the model

transformations prescribed by KCM’s Behavior Model Formulation Method. The meta-

models and model libraries presented here are implementations of the KCM meta-models

and models in VIATRA Textual Metamodeling Language, and the model transformations

presented here are implementations of KCM’s Artifact Model Transformation Library in

VIATRA Textual Command Language (VTCL).

 Meta-Models

o CPM2_xKCM is the implementation of the CPM2_xKCM meta-model (section 6.1) in

VTML.

o CBM is the implementation of the Core Behavior Model (CBM – section 7.1) in

VTML.

o ABB_Meta_Model is the implementation of the ABB Meta-Model (section 7.2) in

VTML.

o Generics_Meta_Model is the implementation of KCM’s Generic Meta-Model for

representing geometry, math relations, and other constructs that are used by all meta-

models and models.

o Analyzable_Electronics_Design_Meta-Model is a VTMB electronics artifact-specific

meta-model. It is a Level 3 model in the design model stack and contains design and

analyzable design meta-models for representing electronics artifacts of varying

Artifact Model Transformation Library
Figure 9.2: KCM meta-models, models, and model transformation libraries shown in the KCM

model space of the VIATRA model transformation framework

 260

assembly system topologies. The Analyzable_Electronics_Design_Meta-Model is the

meta-model for representing both types of electronics artifacts—printed wiring boards

and ball grid array chip packages—used in the test cases described in this chapter. In

section 6.2, a sub-set of this meta-model for representing design and analyzable design

aspects of printed wiring boards was presented.

 Models

o ABB_Library is the implementation of KCM’s Analysis Building Block Library (section

7.3) in VTML.

o Analyzable_Electronics_Design_FTMB_Model_Space is a model space for fixed

topology multi-body analyzable design model structures—Level 4 models in the

design model stack.

 Model transformations

o mxform_rp is the implementations of KCM’s Artifact Model Transformation Library

(section 8.4) in VTCL.

9.2 Test Case Family 1 (TCF1): Thermo-mechanical Analysis of

Multi-Layered Printed Wiring Boards
A printed wiring board23 is an electronic artifact that transmits signals between

components mounted on it via conductive pathways (traces) originating from / terminating

in other conductive features (lands). A bare printed wiring board has no packaged

components on it. A PCB with mounted components (such as chip packages) is also known

as a printed wiring assembly (PWA/PCA). The mechanical function of a PWB is to support

the electronic circuitry laid out in multiple stratums of the PWB. Figure 9.3 illustrates the

2D layout and through-thickness stackup of a typical PWB. A PWB consists of a stackup of

materials as shown in the through-thickness view. Each layer of material is known as a

stratum. A stackup is made of alternatively electrically conductive and non-conductive

stratums. Conductive stratums have conductive features such as lands and traces as shown

in the planar layout view. Vias and through-holes are openings in the stackup from one

conductive layer to another—primarily meant to provide electrical connections across

23 Also known as printed circuit board (PCB)

 261

stratums. The through-thickness view shows the structure of the stackup—same for

different thicknesses of the stratums.

Figure 9.3: A typical Printed Wiring Board design (shown here with 5 stratums)

In this section, simulation templates shall be automatically generated using the

Behavior Model Formulation Method for PWBs with different number of stratums, and for

different behavior idealization decisions. These simulation templates are to be used for

thermo-mechanical analyses of printed wiring boards. Specifically, the objective of creating

these simulation templates is to compute both out-of-plane and in-plane deformation of

printed wiring boards for different temperature loads. This type of analysis is required to

simulate the deformation of printed wiring boards when components are assembled on their

surface, or when a printed wiring board is being manufactured in a sequential lamination

process in which heating and cooling result in different materials on a PWB to expand and

contract differently owing to mismatches in their coefficient of thermal expansions. The

deformation of printed wiring boards leads to mis-registration between component terminals

and the conductive footprints on the PCB where they are supposed to mount, leading to

acute reliability problems (Zwemer, Bajaj et al. 2004; Bajaj, Peak et al. 2006).

In the Behavior Model Formulation Method, the source models are fixed topology

analyzable design model structures—Level 4 models in the design model stack. If a design

is to be analyzed as-is (including all features), then the analyzable design model structure is

same as the design model structure. For the specific case of simulation templates generated

for thermo-mechanical analyses of printed wiring boards in the test cased presented here,

the design and analyzable design are different. In the analyzable design model, the stratums

are idealized as homogenous. This is a fairly common idealization in different types of

analyses of printed wiring boards, especially when global behaviors are of interest to

analysts. Figure 9.4 illustrates both design and analyzable design for a 5-stratum PWB. In

 262

the analyzable design, the design layers (conductive stratums) are idealized as uniform and

homogenous as opposed to having specific conductive features such as lands and traces in

the design model.

The analyzable design model structure is the starting point of the test cases

demonstrated here. Sections 9.2.1 and 9.2.2 illustrate two different behavior idealizations—

BMFS1 and BMFS2 respectively. For each BMFS, simulation templates are created for two

analyzable PWB design alternatives—one with 5 stratums and one with 9 stratums. The

analyzable PWB design alternatives with 5-stratums and 9-stratums have non-equivalent

assembly system topologies due to differences in number of assembly components (5 versus

9), and differences in number of interactions between components (4 versus 8).

Figure 9.4: 5-stratum PCB – design and analyzable design views

Table 9.1 shows the four fixed topology simulation templates that would be auto-

generated for combinations of 2 different Behavior Model Formulation Specifications and 2

analyzable design model structures with different assembly system topologies.

Table 9.1: Simulation templates created for thermo-mechanical analysis of PWBs

 Analyzable Design Model Structures

 5-stratum analyzable PCB 9-stratum analyzable PCB

BMFS1 Simulation Template 51 Simulation Template 91

BMFS2 Simulation Template 52 Simulation Template 92

 263

9.2.1 Behavior Model Formulation Specifications 1 (BMFS1)
In this section, simulation templates auto-generated for idealization decisions

embodied in BMFS1 are presented. First, the conceptual specifications in BMFS1 are

presented. Then, fixed topology simulation templates auto-generated for two analyzable

PWB design model structures with different assembly system topologies are presented in

sections 9.2.1.1 and 9.2.1.2 respectively. The conceptual specifications in BMFS1 are

summarized in Table 9.2 below. Note that the conceptual specifications are presented here

using the select and idealize constructs described in section 8.3.1.

Table 9.2: Conceptual specifications (BMFS1) for thermo-mechanical analyses of multi-stratum PCBs

Conceptual specifications for Stage 1 composition

Entities in analyzable PCB design model Entities in Multi-shell analysis body system
(as instances of ABBs stated below)

Analyzable stratum Idealize as Planar shell analysis body ABB
Planar shape Select Planar shape ABB
Linear elastic isotropic temperature-
independent material behavior
Linear elastic orthotropic temperature-
independent material behavior
…

Select Linear elastic isotropic temperature
independent material behavior ABB

Analyzable features Analysis features
Primary surface (planar surface feature) Idealize as Planar surface feature ABB
Secondary surface (planar surface
features)

Idealize as Planar surface feature ABB

Conceptual specifications for Stage 2 composition
Analyzable PCB Idealize as Multi-shell analysis body system

Analyzable stratum Idealize as Planar shell analysis body ABB
Adjacent stratum surface interaction Idealize as Shell-shell tie interaction ABB (perfectly

bonded shell-shell interaction)
Analyzable features Analysis features

Volume of analyzable PCB Idealize as Volume feature ABB
Mid-pt of bottom soldermask stratum Idealize as Point feature ABB

Conceptual specifications for Stage 3 composition
Heating a PCB Idealize as Uniform temperature load ABB

associated with Volume feature ABB instance
corresponding the volume of the analyzable PCB

PCB held fixed at mid-pt of the bottom
soldermask stratum

Idealize as Point displacement constant behavior
condition ABB associated with Point feature ABB
instance corresponding to mid-pt of bottom
soldermask

The conceptual specifications are summarized for Stages 1-3 of the composition process.

Stage 4 is creation of high-level behavior model entities that are common to all behavior

 264

model structures formulated using KCM. Figure 9.5 illustrates specifications for

idealization relationships between an analyzable stratum in the analyzable PWB design

model structure and the corresponding planar shell analysis body in the behavior model

structure (to be created). Only assembly system topology-related aspects of the

specifications are shown.

Analyzable Stratum i

Analyzable Stratum i+1 Planar shell analysis body i+1

Planar shell analysis body i
Primary surface

Secondary surface

Primary surface

Secondary surface

Adjacent stratum surface interface i, i+1 Tie interaction i, i+1

Planar surface analysis feature

Planar surface analysis feature

Planar surface analysis feature

Planar surface analysis feature

Specifications for relationships
Figure 9.5: Specifications for relationships between analyzable stratum and

planar shell analysis bodies (only assembly system topology-related aspects are shown)

Stage 1 composition concerns the idealizations at the level of a single analysis

body. In BMFS1, a stratum of an analyzable PCB is idealized as a planar shell analysis body

as shown in Figure 9.5. Thus, the mechanical behavior of a stratum is idealized as the

mechanical behavior of a shell, and the shape of the stratum is idealized as a planar shell

shape—a thin prismatic shape where the outline and thickness of the shape is same as the

outline and thickness of the analyzable stratum. The material behavior of all analyzable

stratums is idealized to be linear, elastic, isotropic, and temperature independent. The

primary and secondary surfaces of the analyzable stratums are idealized as planar surface

analysis features.

Stage 2 composition concerns idealizations at the level of multiple analysis bodies

in the context of an analysis body system. In BMFS1, an analyzable PWB is idealized as a

multi-shell system composed of a stack of planar shell analysis bodies—each body

corresponding to an analyzable stratum. Since the thickness of each planar shell analysis

body is small, the multi-shell system itself behavior as a laminated shell. The interactions

between the analyzable stratums, also known as adjacent stratum surface interfaces, are

relationships between the secondary surface of the preceding stratum and the primary

 265

surface of the succeeding stratum. In BMFS1, an adjacent stratum surface interface is

idealized as a tie interaction between the corresponding planar shell analysis bodies. The

planar surface analysis features of two adjacent planar shell analysis bodies participate in a

tie interaction. The behavior of a tie interaction is same as if adjacent planar shell analysis

bodies were perfectly bonded. Hence, the displacement (translational and rotational

components) is continuous across the interface of adjacent planar shell analysis bodies. In

addition, two new analysis features are defined at the multi-shell analysis body system

level. These are (i) volume feature ABB instance corresponding to the volume of an

analyzable PCB, and (ii) point feature ABB instance corresponding to the mid-point of the

bottom analyzable stratum (corresponding to the soldermask stratum in the PWB design

model).

Stage 3 composition concerns the idealizations of loads and behavior conditions in

which the behavior of the analysis body system is to be computed. The process of heating a

PCB, say for mounting components, is idealized as a uniform temperature load—uniform

increase in temperature from a reference value to a target value. In addition, the load is

idealized to be uniform through the volume of the entire multi-shell analysis body system.

The behavior condition for this analysis is to hold the mid-point of the bottom analyzable

stratum as fixed. This corresponds to locking all degrees of freedom at that point in the

analysis body system. This behavior condition is realized by the use of point-displacement-

fixed ABB instance that embodies the displacement constraint, and associating it with the

point feature ABB instance corresponding to the mid-point of the bottom planar shell

analysis body. Per the idealization specifications in Figure 9.5, the bottom planar shell

analysis body corresponds to the bottom analyzable stratum.

9.2.1.1 Simulation Template 51: Simulation template for 5-stratum analyzable PWB

design model structure and BMFS1

In this section a fixed topology simulation template auto-generated for 5-stratum

analyzable PWB design model structure and BMFS1 is presented. The source model in the

model transformation shown here is PWB_5S2L—a 5-stratum, 2-layer24 analyzable PWB

24 Conductive stratums are known as layers. In this example, the analyzable PWB has 5 stratums and 2 layers.

 266

design model structure, shown in Figure 9.6 in the VIATRA model space. PWB_5S2L is an

instance of the Analyzable_Electronics_Design_Meta-Model (section 6.2) that is pre-loaded

in the VIATRA model space. The source model shown here is a Level 4 model in the design

model stack, and same as the PCB_5Sx model illustrated in Figure 6.10.

Attributes values (References to objects)

Objects

Key

Interfaces between
stratums5-stratum PWB

5 stratums

Figure 9.6: PWB_5S2L has 5 analyzable stratums and 4 stratum interfaces

In the figure above, the objects in the model space denoted with an icon with letter E are

entities, and objects denoted with an icon with letter R and an arrow () are attributes of

the containing entity. In VTML, attributes are modeled as relationships and hence the letter

R is used o denote them in the VIATRA model space. As shown in Figure 9.6, PWB_5S2L

 267

has 5 analyzable stratums and 4 stratum interfaces. In the figure, the entities highlighted

using dashed lines are the show the attribute values of the PWB_5S2L entity. These values

refer to the 5 analyzable stratum objects and 4 stratum interfaces entities as shown in the

model space. Figure 9.7 illustrates an analyzable stratum object and its attribute values, and

Figure 9.8 illustrates a stratum interface object and its attribute values—preceding and

succeeding stratum surfaces.

Figure 9.7: Stratum entity example

Figure 9.8: Stratum interface entity example

Once the FTMB analyzable design model (PWB_5S2L) is available in the model

space, BMFS1 can be loaded and executed to auto-generate fixed topology simulation

template. Figure 9.9 illustrates the ABB Library, Artifact Model Transformation Library,

and BMFS1 (computable specification) in the VIATRA model space. The ABB Library and

Artifact Model Transformation Library are common to all behavior model structures and

simulation templates formulated using the Behavior Model Formulation Method, but the

Behavior Model Formulation Specifications that embody the idealization decisions typically

differ from one analysis to another. Figure 9.10 illustrates the execution of BMFS1 in the

VIATRA model space—right click on model space entry and select Run from the menu.

 268

Figure 9.9: VIATRA model space showing ABB Library, AMTL, and BMFS1

Figure 9.10: Executing BMFS1 in VIATRA model space.

The Behavior Model space shown in Figure 9.11 shows the simulation template

entities auto-created by executing BMFS1 (computable specifications). Figure 9.11

illustrates the relationship between an analyzable artifact, its behaviors, and behavior

models used for computing those behaviors. This is one of the core concepts in

CPM2_xKCM. Note that two attributes of the entity ThermoMech_Behavior relate

PWB_5S2L (analyzable artifact) and Multi_Shell_UniTemp_PtDx_ThermoMech_BM

(behavior model). Similarly, other thermo-mechanical behavior models of different

fidelities can be associated with the entity ThermoMech_Behavior.

 269

Figure 9.11: Simulation template automatically created using

Behavior Model Formulation Method

Figure 9.12: Results of Stage 4 composition

 270

Figure 9.12 illustrates the entities and relationships created in the simulation

template at the end of Stage 4 of the composition process. The figure shows a behavior

model, behavior model ABB system, and context entities during the process. The attribute

values of the behavior model entity refer to the ABB system and context entities. Figure

9.13 illustrates the behavior model ABB system entity and its attribute values creating at the

end of Stage 3 of the composition process. The figure shows the ABB system consists of the

multi-shell analysis body system, point displacement behavior condition, and a constant

temperature load.

Figure 9.13: Behavior Model ABB System created at the end of Stage 3 composition

Figure 9.14: Analysis body system created at the end of Stage 2 composition

 271

Figure 9.14 above illustrates the multi-shell analysis body system created at the end of

Stage 2 composition process.

Note that the VIATRA framework orders attributes in an alphabetical order, and

hence attributes corresponding to planar shell analysis bodies do not show the stackup order

of these bodies in the multi-shell analysis body system. Figure 9.14 illustrates the attributes

of the multi-shell analysis body system that refer to the 5 planar shell analysis bodies and 4

shell-shell tie interactions automatically created during the Stage 2 composition. In addition

to the analysis bodies and their interactions, the relationships between the 5-stratum

analyzable PWB and 5-shell analysis body system is also automatically created at the end of

Stage 2 composition. Figure 9.15 below illustrates the five relationships created between

analyzable stratums and planar shell analysis bodies—1 relationships for each pair, and the

four relationships created between the analyzable stratum interfaces and the tie interactions

between planar shell analysis bodies—1 relationship for each pair. These relationships

realize the specifications illustrated in Figure 9.5.

Figure 9.15: Relationship between analyzable PWB and multi-shell analysis body system

A relationship between an analyzable artifact and an analysis body consists of

relationships between their shapes, material behaviors, and analysis features. Hence, for

every relationship between an analyzable stratum and a planar shell analysis body, several

sub-relationships are also automatically created at the end of Stage 1 composition. Figure

9.16 illustrates these sub-relationships for an analyzable stratum and an analysis body. The

 272

entity Planar_Shell_AB – Design_Cu_Stratum_1_ASSOC represents the relationship between

an analyzable stratum (specifically Design_Cu_Stratum_1) and the corresponding planar

shell analysis body. The attribute values of this relationship refer to the relationships

between (i) their primary and secondary features represented by entities of type

AF_ANF_Relationship, (ii) their shapes represented by entity of type

Geom_Geom_Relationship, and (iii) their material behaviors represented by entity of type

Material_Behavior_Material_Behavior_Relationship.

Figure 9.16: Relationship between an analyzable stratum and analysis body created in Stage 1 composition

 Figure 9.17 illustrates the planar shell analysis bodies created at end of Stage 1

composition. Each planar shell analysis body is an instance of Planar Shell Analysis Body

ABB. The attributes of each planar shell analysis body is populated with other ABB

instances. The shape attribute is populated by Planar Shape ABB instance, the material

behavior attribute is populated by Linear Elastic Isotropic Temperature Independent

Material Behavior ABB instance (highlighted in the figure), and the primary and secondary

 273

analysis feature attributes are populated by Planar Surface Analysis Feature ABB instances

(Planar Shell Primary Surface is a special type of Planar Surface Analysis Feature ABB).

Note that the figure shows the planar shell analysis body entities and not their occurrence

in the multi-shell system.

Figure 9.17:Planar shell analysis bodies created in Stage 1 composition

 274

9.2.1.2 Simulation Template 91: Simulation template for 9-stratum PWB design model

structure and BMFS1

In this section, the simulation template automatically created for the same Behavior

Model Formulation Specifications (BMFS1) as in the previous section but for a 9-stratum

analyzable PWB design is presented.

Figure 9.18: PWB_9S4L has 9 analyzable stratums and 8 stratum interfaces

 275

Figure 9.18 illustrates PWB_9S4L—a 9-stratum, 4-layer analyzable PWB design model

structure—in the VIATRA model space. Like PWB_5S2L presented in the previous

section, PWB_9S4L is also a Level 4 model in the design model stack, and is an instance of

the Analyzable_Electronics_Design_Meta-Model (section 6.2).

Only those aspects of the simulation template are presented here that are different

for the 9-stratum analyzable PWB design. Simulation template entities and relationships

created in composition Stages 1, 3 and 4 are the same for Simulation Template 5
1 and

Simulation Template 9
1. However, results of composition Stage 2 are different. This is so

because the changes in assembly system topology due to changes in the number of

analyzable artifacts and their interactions (as in this case) affects the number of analysis

bodies and their interactions in the analysis body system—composed in Stage 2

composition.

Figure 9.19: Multi-shell analysis body system created in composition Stage 2 for Simulation Template9
1

 276

Figure 9.18 illustrates the analysis body system automatically created in Stage 2 of

the composition process for Simulation Template 9
1. The figure shows 9 planar shell

analysis bodies and 8 shell-shell perfectly bonded (tie) interactions created as components

of multi-shell analysis body system at the end of composition Stage 2. The 9 analysis bodies

correspond to the 9 analyzable stratums, and the 8 tie interactions correspond to the 8

stratum interfaces in PWB_9S4L.

Figure 9.20 illustrates the relationship between PWB_9S4L and the multi-shell

analysis body system created at the end of Stage 2 composition process. Note that in this

case nine analyzable stratum–planar shell analysis body relationships have been created

(one for each pair), and eight relationships have been created between analyzable stratum

interfaces and analysis body tie interactions (one for each pair). Hence for the same BMFS,

Figure 9.20: Relationship between analyzable PWB design and multi-shell analysis body system created in

composition Stage 2

 277

the Behavior Model Formulation Method can be used to automatically compose simulation

templates for design alternatives with non-equivalent assembly system topologies.

9.2.2 Behavior Model Formulation Specifications 2 (BMFS2)
In this section, simulation templates automatically generated for the second set of

Behavior Model Formulation Specifications (BMFS2) are presented. In BMFS2, the material

behavior idealization decisions are changed as compared to BMFS1. Instead of idealizing

the material behavior of all analyzable stratums as linear, elastic, isotropic, and temperature

independent (as in BMFS1), the following conditions is used to select the material behavior

ABB to be associated with a planar shell analysis body associated with an analyzable

stratum:

If (electrical function of an analyzable stratum is CONDUCTIVE or SOLDERMASK)

Select linear elastic isotropic temperature-independent material behavior ABB

Else if (electrical function is DIELECTRIC)

Select linear elastic orthotropic temperature independent material behavior ABB

These idealization decisions are reflected in both the conceptual and computable Behavior

Model Formulation Specifications. Note that these idealization decisions are at the level of

individual analysis bodies since material behavior is an attribute of an analysis body. Thus,

the new idealizations in BMFS2 affect results of the Stage 1 composition only. Hence, only

results of the Stage 1 composition are presented below. Figure 9.21 and Figure 9.22 below

illustrate the planar shell analysis bodies created for PWB_5S4L and PWB_9S4L with the

new idealization decisions embodied in BMFS2. The figures show that the planar shell

analysis bodies corresponding to conductive and soldermask stratums are associated with

instances of Linear Elastic Isotropic Temperature-independent Material Behavior ABB, and

those associated with dielectric stratums are associated with instances of Linear Elastic

Orthotropic Temperature-independent Material Behavior ABB during composition Stage 1.

The figures clearly illustrate that with changes in idealization decisions, simulation

templates can be easily and automatically generated for design alternatives with different

assembly system topologies.

 278

9.2.2.1 Simulation Template 52: Simulation template for 5-stratum PWB design model

structure and BMFS2

Figure 9.21: Planar shell analysis bodies created for BMFS2 and PWB_5S4L in composition Stage 1

 279

9.2.2.2 Simulation Template 92: Simulation template for 9-stratum PWB design model

structure and BMFS2

 280

Figure 9.22: Planar shell analysis bodies created for BMFS2 and PWB_9S4L in composition Stage 1

9.3 Test Case Family 2 (TCF2): Thermo-mechanical Analysis of

Ball Grid Array (BGA) Chip Packages
A ball grid array (BGA) chip package is a surface mount electronic package that

interconnects with a printed wiring board via balls of solder arranged in a grid on the

bottom surface of the package. In general, an electronic chip package embodies integrated

circuits (ICs). The solder balls on the bottom surface of a BGA25 are meant to conduct

electrical signals between the IC and the PWB on which the BGA is mounted. BGAs are

commonly used today in most electronics devices, such has handhelds and computers.

Figure 9.23 (left) shows snapshots of BGAs used for consumer electronics and

microprocessors, and Figure 9.23 (right) shows a three-dimensional CAD model of an

idealized BGA assembly—mold around the silicon chip is not shown. Figure 9.24 shows

assembled and exploded views of an idealized BGA assembly mounted on a PWB. Figure

9.25 shows a cross-sectional view of a BGA assembly.

25 Ball grid array chip packages are referred as BGAs for brevity

 281

Photo: www.shinko.co.jp
Figure 9.23: Ball grid array (BGA) chip packages (left) and 3D CAD models of idealized BGAs (right)

Figure 9.24: Assembled and exploded views of an idealized BGA mounted on a PWB

Figure 9.25: Cross-sectional view showing components of an idealized BGA chip package assembly

Figure 9.25 also shows the key components of a BGA assembly in the context of

VTMB analysis problems presented in this section. The idealized BGA assembly shown in

the figure consists of the following components:

 Substrate is a multi-layered structure similar to a PWB that embodies other electronic

functions supporting the IC

 Solder balls are ball-shaped solder material structures that connect the chip package to a

PWB, both electrically and mechanically. Solder balls are arranged in a grid on the

 282

bottom surface of a BGA, and interface with the conductive pads on the surface of a

PWB when the BGA is mounted.

 Si Chip is a silicon die that houses the integrated circuit.

 Die Attach is a mechanical adhesive that binds the chip to the substrate.

 Mold is an enclosing to protect the chip.

Note that the design of a BGA is more complicated and variant than described in the

idealized view above. The idealized design presented above is the basis for analyzable

design models used in this section for demonstrating the Behavior Model Formulation

Method.

In this section, the Behavior Model Formulation Method is used to automatically

generate simulation templates for thermo-mechanical analysis of BGAs. Thermo-

mechanical issues lead to reliability problems for BGAs. The heat from the surrounding

regions or that generated from the chip causes different materials in a BGA assembly to

expand and contract differently due to mismatches in their coefficient of thermal expansions

leading to deformation of the BGA assembly and reliability issues resulting thereof. In this

section two analyzable BGA design models are considered—one with 16 solder bodies and

one with 3626 solder bodies. Two different Behavior Model Formulation Specifications are

used for generating simulation templates for the two BGA assemblies that have non-

equivalent assembly system topology. Table 9.3 below shows the four simulation templates

that will be automatically created by the combination of two variable topology BGA

alternatives and two Behavior Model Formulation Specifications. These simulation

templates are presented in sections 9.3.1 and 9.3.2.

Table 9.3: Simulation templates created for thermo-mechanical analysis of BGAs

 Analyzable Design Model Structures

 16-solder ball analyzable BGA 36-solder ball analyzable BGA

BMFS1 Simulation Template 16
1 Simulation Template 36

1

BMFS2 Simulation Template 16
2 Simulation Template 36

2

26 Note that the number of solder balls may well be over 100 for a complex BGA. The low number of solder balls shown

here are purely for demonstration of VTMB aspects of the Behavior Model Formulation Method.

 283

The objective of the simulation templates generated here is to compute the

deformation of a BGA assembly when it is uniformly heated, either due to the heat

generated from the chip or the heat from the surroundings—as in an assembly process.

9.3.1 Behavior Model Formulation Specifications 1 (BMFS1)
The conceptual specifications for BMFS1 for all composition stages are stated in

Table 9.4. In addition, Figure 9.26 illustrates the idealization decisions to create a Multi-

Shell-Solid analysis body system corresponding to an analyzable BGA design model

structure. The chip substrate is idealized in the same manner as the PWB in BMFS2 in

section 9.2.2. The chip, mold, and solder balls are idealized as generic solid analysis bodies

with no shape idealizations—analysis body has the same shape as the analyzable artifact,

and with linear elastic isotropic temperature-independent material behavior. The bottom

surface of the chip mates with the die attach and the outer surface of the chip mates with the

bottom (inner) surface of the mold. All these features are idealized as generic analysis

features (instances of analysis feature ABB). The die attach is modeled as a planar shell

analysis body ABB and its top (primary) and bottom (secondary) features are idealized as

instances of planar surface analysis feature ABB—same as in the case for primary and

secondary surfaces of all stratums in the chip substrate. The solder ball is also idealized as a

generic solid with linear elastic isotropic temperature-independent material behavior. The

solder ball is shaped as a truncated sphere with two truncation features—top and bottom—

that connect it with the chip substrate and PWB respectively.

For Stage 2 composition, all interfaces are idealized as tie interactions. The idealized

BGA corresponds to a Multi-Shell-Solid analysis body system as shown in Figure 9.26 and

stated in Table 9.4.

 284

Figure 9.26: BMFS1 relationship specifications between idealized BGA and

Multi-Shell-Solid analysis body system

Table 9.4: Conceptual specifications (BMFS1) for thermomechanical analysis of multi-component BGAs

Conceptual specifications for Stage 1 composition
Entities in analyzable BGA design model Entities in Multi-shell-solid analysis body system

(as instances of ABBs stated below)
Analyzable stratum (of chip substrate) Idealize as Planar shell analysis body ABB

Shapes
Planar shape
…

Select Planar shape ABB

Material Behaviors
Linear elastic isotropic temperature-
independent material behavior
Linear elastic orthotropic temperature-
independent material behavior

If(stratum function is conductive or soldermask)
Select Linear elastic isotropic temperature
independent material behavior ABB

Else If(stratum function is dielectric)
Select Linear elastic orthotropic temperature
independent material behavior ABB

Analyzable features Analysis features
Primary surface Idealize as Planar surface feature ABB
Secondary surface Idealize as Planar surface feature ABB

Si Chip Idealize as Generic solid ABB
Shape

Cuboid
…

Idealize as Cuboid shape ABB

Material behaviors
Linear elastic isotropic temperature
independent material behavior ABB

Select Linear elastic isotropic temperature
independent material behavior ABB

Analyzable features Analysis features
Bottom surface Idealize as Analysis feature ABB
Outer surface Idealize as Analysis feature ABB

Mold Idealize as Generic solid ABB
Shape

3D shape representation
Select 3D shape representation ABB

Material behaviors Select Linear elastic isotropic temperature

 285

Linear elastic isotropic temperature
independent material behavior ABB
…

independent material behavior ABB

Analyzable features Analysis features
Bottom surface Idealize as Analysis feature ABB

Die Attach Idealize as Planar shell analysis body ABB
Shapes

Planar shape
Select Planar shape ABB

Material behaviors
Linear elastic isotropic temperature
independent material behavior ABB
…

Select Linear elastic isotropic temperature
independent material behavior ABB

Analyzable features Analysis features
Primary surface Idealize as Planar surface feature ABB
Secondary surface Idealize as Planar surface feature ABB

Solder Ball Idealize as Generic solid ABB
Shape

Truncated sphere
…

Select Truncated sphere shape ABB

Material behaviors
Linear elastic isotropic temperature
independent material behavior ABB

Select Linear elastic isotropic temperature
independent material behavior ABB

Analyzable features Analysis features
Top truncation feature Idealize as Analysis feature ABB
Bottom truncation feature Idealize as Analysis feature ABB

Conceptual specifications for Stage 2 composition
Analyzable BGA Idealize as Multi-Shell-Solid Analysis Body System

Chip Substrate Idealize as Multi-shell analysis body system
Analyzable stratum Idealize as Planar shell analysis body ABB
Stratum interfaces Idealize as Shell-shell tie interaction ABB

Mold-Chip interface Idealize as Solid-solid tie interaction ABB
Mold-Substrate interface Idealize as Solid-shell tie interaction ABB
Chip-Die Attach interface Idealize as Solid-shell tie interaction ABB
Die Attach-Substrate interface Idealize as Shell-shell tie interaction ABB
Substrate-Solder Ball interface Idealize as Shell-Solid tie interaction ABB
Analyzable features Analysis features

Volume of analyzable PCB Idealize as Volume feature ABB
Mid-pt of bottom soldermask stratum of
BGA substrate

Idealize as Point feature ABB

Conceptual specifications for Stage 3 composition
Heating a BGA Idealize as Uniform temperature load ABB

associated with Volume feature ABB instance
corresponding the volume of the analyzable BGA

BGA held fixed at mid-pt of the bottom
soldermask stratum of the substrate

Idealize as Point displacement constant behavior
condition ABB associated with Point feature ABB
instance corresponding to mid-pt of bottom
soldermask of the BGA substrate

 286

Stage 3 composition concerns the idealizations of loads and behavior conditions in

which the behavior of the Multi-Shell-Solid analysis body system corresponding to an

idealized BGA. A uniform temperature load is used for idealizing the thermal load on a

BGA when it is heated (due to the heat generated from the chip or during the assembly

process). The behavior condition for this analysis is to hold the mid-point of the bottom

analyzable stratum as fixed. This corresponds to locking all degrees of freedom at that point

in the analysis body system. This behavior condition is realized by the use of point-

displacement-fixed ABB instance that embodies the displacement constraint, and

associating it with the point feature ABB instance corresponding to the mid-point of the

bottom planar shell analysis body.

Note that the conceptual specifications have been presented here in a tabulated

form. The intent here is to describe the types of idealization decisions taken by analysts

when developing conceptual specifications. Conceptual specifications are represented more

formally using SysML Parametrics constructs as shown in Figure 8.24 of section 8.3.1.

9.3.1.1 Simulation Template 16
1: Simulation template for 16-solder ball analyzable BGA

model structure and BMFS1

Figure 9.27 illustrates CP_BGA_5S2L_16SB—analyzable design model structure

for a 16-solder ball BGA.

 287

Figure 9.27: 16-solder body analyzable BGA design model structure (CP_BGA_5S2L_16SB)

 288

Figure 9.28: 5-stratum, 2-layer analyzable chip substrate design model structure (Substrate_5S2L)

Figure 9.27 shows 16 solder ball components and their interactions with the substrate (one

interaction for each solder ball component). The figure also shows the chip, mold, die

attach, and substrate components, and their interactions. Figure 9.28 shows

Substrate_5S2L—analyzable design model structure for the chip substrate. The 5 stratum

components (2 layers) and the 4 interfaces between them are shown in the figure.

After the execution of BMFS1
, a thermo-mechanical behavior model for the 16-

solder ball analyzable BGA is created. Figure 9.29 illustrates this behavior model

(BGA_ThermoMech_UniTempp_PtFx_BM) and its associated ABB system and context

created at the end of Stage 4 composition. Figure 9.30 illustrates the ABB system created at

the end of Stage 3 composition. The ABB system consists of an analysis body system

(Multi_Shell_Solid_Analysis_Body_System), a constant-temperature load applied to the entire

volume of the analysis body system, and a point-displacement-fixed behavior condition

applied to the mid-point of the bottom surface of the last planar shell analysis body

(corresponding to the last soldermask layer) in the analysis body system corresponding to

the substrate.

 289

Figure 9.29: Behavior Model structure created for CP_BGA_5S2L_16SB and BMFS1 in

composition Stage 4

Figure 9.30: ABB system created for CP_BGA_5S2L_16SB and BMFS1 in composition Stage 3

Figure 9.31 illustrates the Multi-Shell-Solid analysis body system—corresponding

to the analyzable BGA—created in Stage 2 of the composition process. The figure shows

the 16 generic solid analysis body components corresponding to the solder balls in the

analyzable BGA design assembly, and the 16 solid-shell tie interactions between these

analysis bodies and the last planar shell analysis body—corresponding to the bottom

soldermask layer—of the substrate analysis body system. The figure also shows the multi-

shell analysis body system—corresponding to the chip substrate created in Stage 2

composition.

 290

Figure 9.32 illustrates 16 association relationships created between generic solid

analysis bodies (corresponding to solder balls) in the multi-shell-solid analysis body system

and the solder balls in the analyzable BGA design assembly in composition Stage 2. The

figure also shows the 16 analyzable artifact-analysis body interaction relationships between

(a) interface between these generic solid bodies and the bottom surface of the last planar

shell analysis body in the multi-shell analysis body system (corresponding to the chip

substrate) and (b) interface between the solder balls and the bottom surface of the last

stratum (soldermask) of the analyzable chip substrate.

Figure 9.31: Analysis body system created for CP_BGA_5S2L_16SB and BMFS1 in composition Stage 2

 291

Figure 9.32: Relationship between analyzable BGA design model structure (CP_BGA_5S2L_16SB)

and Multi-Shell-Solid analysis body system for BMFS1 in composition Stage 2

Figure 9.33 illustrates the material behavior of five planar shell analysis bodies in

the multi-shell analysis body system corresponding to the chip substrate. Per the

idealization decisions in BMFS1, the planar shell analysis bodies corresponding to

conductive and soldermask stratums have an isotropic material behavior as opposed to

orthotropic material behavior for the body corresponding to the dielectric stratum.

 292

Figure 9.33: Material behavior of analysis bodies corresponding to substrate stratums

 293

Figure 9.34: Types of analysis bodies created for CP_BGA_5S2L_16SB and BMFS1 in

composition Stage 1

 294

Figure 9.34 illustrates the different types of analysis bodies, corresponding to

components in the analyzable BGA assembly, created in composition Stage 1. The number

of each type of analysis body is shown in Figure 9.31. For example, 16 generic solid

analysis bodies (corresponding to 16 solder balls) were created in Stage 1 of the

composition process. The intent of Figure 9.34 is to illustrate the different types of entities

created for each analysis body. The figure shows shape, material behavior, and analysis

features created for analysis bodies corresponding to mold, chip, die attach, substrate

stratum, and solder balls. In addition, associations between shape, material behavior, and

analysis features of each analysis body and the corresponding component in the analyzable

BGA assembly are also created during Stage 1 composition.

9.3.1.2 Simulation Template 36
1: Simulation template for 36-solder ball analyzable BGA

model structure and BMFS1

In this section, the simulation template automatically created for an analyzable BGA

design model structure with 36 solder balls and for idealization decisions embodied in

BMFS1 is presented. The analyzable BGA assembly with 36 solder balls has a non-

equivalent assembly system topology as compared to the analyzable BGA assembly with 16

solder balls. For the same BMFS, change in assembly system topology of the design

alternative affects results of composition Stages 1 and 2 only. If the topology variation is

only due to changes in the number of artifacts in the design alternative assembly, the

number of analysis bodies created during Stage 1 composition changes. In addition, the

analysis body system composed in Stage 2 has a different number of analysis body

components and their interactions.

Figure 9.35 illustrates CP_BGA_5S2L_36SB—an analyzable BGA design model

structure with 36 solder balls. The figure shows the 36 solder ball components and the 36

interactions between the solder balls and the bottom stratum of the chip substrate—one

interaction per solder ball. Note that in this example BGA assembly, the number of solder

balls (and associated interactions) is the only change compared to the 16 solder ball BGA

example illustrated in the previous section.

 295

 296

Figure 9.35: 36-solder body analyzable BGA design model structure (CP_BGA_5S2L_36SB)

Figure 9.36 illustrates the 36 analysis bodies created as a result of executing BMFS1

on analyzable BGA design model structure with 36 solder balls. The figure also shows the

36 tie interactions created between these 36 analysis bodies and the planar shell analysis

body corresponding to the last (bottom) stratum of the chip substrate.

 297

 298

Figure 9.36: Analysis bodies and tie interactions corresponding to 36 solder balls in CP_BGA_5S2L_36 SB

9.3.2 Behavior Model Formulation Specifications 2 (BMFS2)
In BMFS2, an alternate idealization is prescribed for the solder balls. In contrast with

BMFS1, the shape of a solder ball is to be idealized as a cuboid in BMFS2. This type of

idealization is common for thermo-mechanical analyses of a BGA when the global behavior

of the package is to be computed (Zeng 2004). The shape transformation relations may vary

from (a) creating a cuboid whose height is same as the height of the truncated sphere (solder

ball shape), and whose length and width are same as the diameters of the sphere, to (b)

creating a cuboid those height is same as the height of the truncated sphere (solder ball

shape), and whose length and width are equal and computed such that volume of the cuboid

is same as the volume of the truncated sphere. The affect of this idealization change in

 299

BMFS2 is seen at composition Stage 1 where analysis bodies corresponding to solder balls

are created.

Figure 9.37 illustrates the shape of the analysis body corresponding to solder ball

SB1, created in Stage 1 composition after executing BMFS2. The figure shows the entity

representing the cuboid shape of this analysis body.

Figure 9.37: Analysis body corresponding to solder ball SB1 has a cuboid shape

Figure 9.38 shows the analyzable artifact-analysis body relationship between solder ball

SB1 and the corresponding analysis body. As shown, the shape idealization relationship is

an attribute of the analyzable artifact-analysis body relationship, and it represents the math

relations embodying the shape idealization transformations.

Figure 9.38: Shape idealization relationship between truncated sphere shape of SB1 and cuboid shape of the

corresponding analysis body

In this case, no specific math relations are specified but the entity Relation (type of math

relation shown in the figure below) can represent the parameters and the math relations

among these parameters—similar to a constraint blocks in SysML.

 300

9.3.2.1 Simulation Template 16
2: Simulation template for 16-solder ball analyzable BGA

model structure and BMFS2

The simulation template generated using BMFS2 for CPM_BGA_5S2L_16SB—

analyzable BGA design with 16 solder balls—is same as shown for BMFS1 (section 9.3.1.1)

except for the shape attribute of all analysis bodies corresponding to solder balls.

9.3.2.2 Simulation Template 36
2: Simulation template for 36-solder ball analyzable BGA

model structure and BMFS2

The simulation template generated using BMFS2 for CPM_BGA_5S2L_36SB—analyzable

BGA design with 36 solder balls—is same as shown for BMFS1 (section 9.3.1.2) except for

the shape attribute of all analysis bodies corresponding to solder balls.

9.4 Execution of Simulation Templates
In this section, the value of a single simulation template in performing trade studies

on design alternatives is demonstrated. The simulation template shown here corresponds to

the simulation template ST5
1 for thermo-mechanical analysis of 5-stratum PWBs per the

idealization decisions in BMFS1 (section 9.2.1.1). The execution of this simulation template

in two different causalities—design verification and synthesis scenarios—is shown here. In

the design verification scenario, the values of design parameters are given and the values of

the analysis body parameters are computed. In the design synthesis scenario, the values of

analysis body parameters are given and the values of design parameters are computed. The

design synthesis scenario represents the case where analysts have optimized the

performance of the analysis body system and intend to update the design based on these

values. In each scenario, the simulation template can be used to solve for different values of

the “given” parameters to compute corresponding values of the “target” parameters.

Figure 9.39 below illustrates a high-level tree view of the simulation template that

would be automatically created using the Behavior Model Formulation Method. In this

figure, the simulation template has been loaded in ParaMagicTM—an object solver that can

execute math relationships for multiple causalities. The figure shows that the simulation

template is composed of the analyzable artifact structure (5-stratum PWBs) and a behavior

model structure (for thermo-mechanical analysis of PWBs). The 5 stratums of the PWB and

 301

the 5 planar shell analysis bodies (psab1-5) are shown in the figure. In addition, the

idealization relationships embodied in the simulation template can be seen in lower part of

ParaMagic browser.

Figure 9.39: Analyzable Artifact (PCB) and Behavior Model Context

Figure 9.40 and Figure 9.41 illustrate shape and material behavior idealization relationships

for a single stratum and analysis body in this simulation template (SysML block definition

diagram view). Note that the same structure is repeated for all stratums and analysis bodies

in the simulation template.

 302

…similarly for 4 other stratums…

Figure 9.40: Analyzable artifact and behavior model context relationships for a single stratum - SysML block definition diagram view

 303

…similarly for 4 other analysis bodies…

Figure 9.41: Behavior model context and analysis body relationships for a single analysis body (corresponding to a single PWB stratum)
SysML block definition diagram view

 304

Figure 9.42: Design verification scenario - Analysis body parameters computed from design parameters

 305

Figure 9.40 illustrates the connections between a stratum in the PWB design

model structure to the analyzable artifact—analysis body relationship in the Behavior

Model Context; and Figure 9.41 illustrates the connections between analyzable artifact—

analysis body relationship to the analysis body in the analysis body system.

Figure 9.42 above shows an expanded tree view of the simulation template in

ParaMagic browser for a single PWB design model instance. For a given PWB design

model structure in the simulation template, multiple instances may be defined

(corresponding to different values of parameters). The figure shows the given values of

shape and material behavior parameters for all 5 stratums in the PWB. The figure also

shows that the shape and material behavior parameter values for the 5-stratum analysis

body system are targets. When the simulation template is executed (using ParaMagic) to

solve for values of the analysis body system parameters, they are computed as shown in

the figure as target values in the solved state. ParaMagic uses Mathematica to solve for

the idealization relationships embodied in the simulation template. Note that the

computed values of the target parameters are the same as given parameters because the

idealization relationships in this simulation template equated the material behavior and

shape parameters of stratums to those of planar shell analysis bodies. More complex

idealization relationships can be embodied in the SysML constraint blocks shown in

Figure 9.40 and Figure 9.41.

For the design verification scenario, shape and material behavior parameters of

planar shell analysis bodies are computed for different values of shape and material

behavior parameters of PWB design stratums. This corresponds to formulating behavior

model instances (B5 models) for design model instances (D5 models). Figure 9.43

illustrates executions of the simulation template ST5
1 (illustrated in Figure 9.40, Figure

9.41, and Figure 9.42) for two design model instances. In the first design model

instance—left hand side of the Figure 9.43—the effective co-efficient of thermal

expansion (CTE) of the bottom design layer (stratum_4_design) is higher than that of the

top design layer (stratum_2_design), other aspects of the stackup remaining balanced.

Hence, when the PWB is heated from 25oC - 250oC, the bottom design layer expands

more than the top design layer, resulting in a bowl-shaped deformation of the PWB

(concave when viewed from the top). In the second design instance—right hand side of

 306

the Figure 9.43—the effective co-efficient of thermal expansion of the top design layer

(stratum_2_design) is higher than that of the bottom design layer (stratum_4_design),

other aspects of the stackup remaining balanced. Hence, when the PWB is heated from

25oC - 250oC, the top design layer expands more than the bottom design layer, resulting

in a dome-shaped deformation of the PWB (convex when viewed from the top).

Figure 9.44 illustrates the execution of the same simulation template (ST5
1) in the

design synthesis scenario. Here, a design model instance (D5 model) is automatically

created from a given behavior model instance (B5 model) using the simulation template.

This scenario represents the use case where an analyst optimizes the shape and/or

material behavior properties of a multi-shell system to minimize the out-of-plane

deformation. The optimal multi-shell system (represented as a behavior model instance)

is then used to derive a PWB design instance.

 307

Eff. CTEEff. CTE

Figure 9.43: Design verification scenario – Behavior model instances (B5) formulated from design model instances (D5), and solved using FEA

 308

Figure 9.44: Design synthesis scenario – Design parameters computed from analysis body parameters

 309

The automated creation of behavior model instances corresponding to different

design model instances using a simulation template demonstrates the value of simulation

templates in performing trade studies over fixed topology design alternatives. The

capability of the Behavior Model Formulation Method to automatically create simulation

templates for variable topology design alternatives greatly enhances the effectiveness of

analysis problem formulation process. The FEA results also validate the completeness of

information represented by the KCM meta-models. If the information were incomplete,

solution method-specific models (such as FEA models) could not have been solved. The

behavior model instances formulated by executing simulation templates are independent

of the solution method (FEA in this case), and can be solved using different solution

methods and solvers.

9.5 Validation of Research Hypotheses
In this section, the primary and secondary research hypotheses are validated using

results obtained for two classes of analysis problems using KCM’s Behavior Model

Formulation Method. First, both the secondary research hypotheses are discussed. The

validation of the primary research hypothesis depends upon the validation of the

secondary research hypotheses. Capabilities of specific aspects of the test results and

KCM components in the context of each hypothesis are highlighted. Then, a description

of the effectiveness of the Knowledge Composition Methodology for analysis problem

formulation is presented. The focus of this description is to present how KCM answers

the primary research question in general, including addressing the two research gaps

identified in section 2.4.2.

 310

9.5.1 Validation of Secondary Research Hypothesis 1
The secondary research question SRQ1 and the corresponding hypothesis

presented in Chapter 4 are stated below.

Secondary Research Question 1 (SRQ1): How can we formalize an ABB such that it can

be reused for composing simulation templates?

Hypothesis (SRH1): We can formalize an ABB such that it can be reused for composing

simulation templates by:

 using a non-causal, declarative formalism to describe the concept and the knowledge

represented by an ABB

 using a model transformation-based formalism to describe the method for using an

ABB when composing simulation templates

The validation approach for SRH1 is founded on selecting formalism for

representing ABBs, and demonstrating that ABBs represented in this formalism can be

reused for composing simulation templates.

The ABB Meta-Model (section 7.2) of the Knowledge Composition Methodology

provides the formalism for representing analysis building blocks (ABBs). It defines the

nature of knowledge represented in ABBs. It defines four aspects of this knowledge—

context, property, application conditions, and application transforms. The first two

aspects represent the concept and the knowledge embodied in an ABB, and the second

two aspects represent the conditions and model transformations associated with using an

ABB for composing simulation templates. The ABB Meta-Model presented in section 7.2

specifically describes the context and property attributes of 9 different types of ABBs,

such as analysis body ABBs and load ABBs. The ABB library presented in section 7.3

shows examples of each of different types of ABBs. SysML blocks (extensions of UML

classes) provide a non-causal and declarative formalism to describe the concept

embodied in an ABB.

The other two aspects of the knowledge embodied in an ABB (application

conditions and application transforms) are represented using graph patterns and graph

transformation rules respectively. The Artifact Model Transformation Library presented

in section 8.4 defines Type 1 graph transformation rules for creating ABB instances, and

 311

Type 2 graph transformation rule for associating an ABB instance with other parts of a

simulation template. The composition of a simulation template is presented in four stages

and the types of ABBs participating in each composition stage are presented in section

8.2.1.

Simulation templates automatically created for test case families 1 and 2 (sections

9.2 and 9.3 respectively) demonstrate that ABBs defined using the ABB Meta-Model can

be used for composing simulation templates. For each test case family, four simulation

templates are automatically created for variation of VTMB design alternatives and

idealization decisions. Depending upon the idealization decisions, the simulation

templates reuse the same ABB definitions (including the patterns and transformation

rules for each ABB). For example, analysis body ABBs (representing planar shell

analysis body), material behavior ABBs (representing isotropic and orthotropic material

behaviors), temperature load ABB, and behavior conditions ABBs defined in the ABB

Library and the Artifact Model Transformation Library are used for all 8 simulation

templates created in the test case families 1 and 2. As shown in Figure 9.2, the ABB

Library and Artifact Model Transformation Library are pre-loaded in the KCM model

space in the VIATRA model transformation framework before the simulation templates

are automatically created.

9.5.2 Validation of Secondary Research Hypothesis 2
The secondary research question SRQ2 and the corresponding hypothesis

presented in Chapter 4 are stated below.

Secondary Research Question 2 (SRQ2): How can we systematically and automatically

compose simulation templates from ABBs?

Hypothesis (SRH2): We can systematically and automatically compose simulation

templates from ABBs by:

 representing idealization decisions in terms of specific ABBs to be used in composing

simulation templates and the conditions for using these ABBs

 formalizing the process of composing simulation templates as a model transformation

process that automatically creates simulation templates for VTMB design alternatives

and idealization decisions

 312

The Behavior Model Formulation Method defines Behavior Model Formulation

Specifications (BMFS) for representing the idealization decisions taken by analysts in

Figure 8.4. The conceptual specifications in BMFS are used by analysts in terms of the

ABBs used for each composition stage, including conditions that need to be satisfied for

using specific ABBs. The computable specifications are in the form of a script for

explicitly scheduling the graph transformation rules for composing simulation templates.

The computable specifications are derived from the conceptual specifications.

In both test case families (TCF1 and TCF2), two different conceptual

specifications (BMFS1 and BMFS2) are defined for composing simulation templates.

These conceptual specifications are defined in terms of the ABBs used for composing

simulation templates and conditions for using each ABB. For example, in BMFS1 of test

case family 1, all stratums of a PCB are to be idealized as planar shell analysis bodies.

This is realized by creating an instance of planar shell analysis body ABB for each PCB

stratum. The conditions for using ABBs may be existential (all stratums are idealized as

planar shell analysis bodies), or based on values of certain properties of design objects—

the material behavior of stratums with conductive function is idealized as linear, elastic,

isotropic, and temperature independent.

The Behavior Model Formulation Method presented in Chapter 8 prescribes a

model transformation process based on graph transformations for automatically

composing simulation templates for VTMB design alternatives and idealization

decisions. Simulation templates automatically created for both test case families (TCF1

and TCF2) validate the capability of the Behavior Model Formulation Method in creating

simulation templates. In TCF1, design model structures PWB_5S2L and PWB_9S4L

represent two families of PWB design alternatives. Design alternatives in one family are

topologically non-equivalent to the design alternatives in the other family. For two sets of

idealization decisions (BMFS1 and BMFS2) and two design model structures, the

Behavior Model Formulation Method automatically generates four different simulation

templates—one for each combination of BMFS and design model structure. Similarly in

TCF2, design model structures CP_BGA_5S2L_16SB and CP_BGA_5S2L_36SB

represent two families of BGA chip package design alternatives such that design

alternatives in one family are topologically non-equivalent to design alternatives in the

 313

other family. For two sets of idealization decisions (BMFS1 and BMFS2) and two design

model structures, the Behavior Model Formulation Method automatically generates four

different simulation templates—one for each combination of BMFS and design model

structure.

9.5.3 Validation of Primary Research Hypotheses
Validation results for the secondary research hypotheses above also validate the

primary research hypothesis indirectly. In this section, a summary of results from test

case families (TCFs) 1 and 2 is presented in support of the primary research hypothesis.

The intent of this section is to describe the effectiveness of KCM’s Behavior Model

Formulation Method in formulating analysis problems.

VTMB
variations

Idealization
variations

Formulation
Efficiency

Figure 9.45: Measures of effectiveness of analysis problem formulation

In section 2.4, three measures of effectiveness of analysis problem formulation

methods were presented. As shown in Figure 9.45, these measures are: (1) VTMB

variations, (2) Idealization variations, and (3) Formulation Efficiency. As described in

section 2.4, the effectiveness of a method for anlysis problem formulation depends on its

ability to address VTMB problems and variations in idealization decisions, and formulate

simulation templates efficiently. Quantitative results for the first two measures of

effectiveness (VTMB variations and Idealization variations) of the Behavior Model

Formulation Method as applied to test case families 1 and 2 are presented in sections

9.5.3.1 and 9.5.3.2 respectively. Results for the third measure-of-effectiveness

(Formulation efficiency) are presented in section 9.5.3.3.

Table 9.5 below summarizes the effectiveness of the Behavior Model Formulation

Method—as applied to test case families TCF1 (section 9.2) and TCF2 (section 9.3)—in

terms of its ability to address VTMB variations and idealization variations. For each test

 314

case family, the table shows results for the four simulation templates automatically

generated for combinations of two Behavior Model Formulation Specifications (BMFS1

and BMFS2) and two VTMB design alternatives. Eight columns corresponding to eight

simulation templates created for the two test case families are shown in the table. The

rows in the table show results for two measures of effectiveness of Behavior Model

Formulation Method. The first set of rows corresponds to VTMB design variations, and

the second set of rows corresponds to idealization variations.

Results presented in this table are described below.

9.5.3.1 VTMB Design Variations

The first set of rows in Table 9.5 measure VTMB variations of the design

alternatives in each of the test case families. The variations are measured in terms of the

Table 9.5: VTMB design variations and Idealization variations results for TCF1 and TCF2
(Measures of effectiveness of the Behavior Model Formulation Method)

 315

key factors that are used for defining the assembly system topology of artifacts. As

described in section 2.3, assembly system topology is characterized using number and

types of components in an assembly, interactions among components in an assembly, and

the features participating in these interactions. These six aspects are used for

characterizing the VTMB variations for the design alternatives in the two test case

families (TCF1 and TCF2). For TCF1 in which simulation templates are created for

thermo-mechanical analysis of printed wiring boards (PWBs), there are two families of

PWB design alternatives—one family of design alternatives for PWBs with 5 stratums

and one family of design alternatives for PWBs with 9 stratums. For TCF2 in which

simulation templates are created for thermo-mechanical analysis of BGA chip packages,

there are two families of BGA design alternatives—one family of design alternatives for

BGAs with 16 solder balls and one family of design alternatives for BGAs with 36 solder

balls. The six aspects used for measuring VTMB variations in these design alternatives

and the quantitative values for each design alternative are as described below.

 Number of components, as the name implies, corresponds to the number of components

(analyzable artifacts) in the artifact assembly. For TCF1, the PWB stratums are the

components. Thus, PWB design alternatives with 5 stratums have 5 components, and

PWB design alternatives with 9 stratums have 9 components. For TCF2, the

components in the BGA assembly consists of (1) chip mold, (2) chip, (3) die attach, (4)

substrate, (5) stratums in the substrate, (6) solder balls. Thus, BGA design alternatives

with 16 solder balls have 25 components—1 of each of the first four component types,

5 stratums in the substrate, and 16 solder balls. Similarly, BGA design alternatives

with 36 solder balls have 45 components.

 Types of components correspond to the number of components with distinct functions.

PWB design alternatives in TCF1 have three types of stratums—conductive, dielectric,

and soldermask. Similarly BGA design alternatives in TCF2 have 8 types of

components—chip mold, chip, die attach, substrate, 3 types of stratums in the

substrate, and solder ball.

 316

 Levels of components imply if the components are leaf-level components in the

assembly or composed of multiple levels of sub-assemblies. PWB design alternatives

in TCF1 have only one assembly level—PWB is an assembly composed of stratums.

BGA design alternatives in TCF2 have two assembly levels—BGA assembly consists

of a substrate that is composed of stratums.

 Number of interactions corresponds to the number of interactions among components

in the assembly. For PWB design alternatives in TCF1, there are 4 interactions among

stratums for 5-stratum PWBs and 8 interactions among stratums for 9-stratum PWBs.

For BGA design alternatives in TCF2, the number of interactions are counted in terms

of interactions between (1) mold and chip, (2) mold and substrate, (3) chip and die

attach, (4) die attach and substrate, (5) stratums in the substrate, and (6) solder balls

and substrate. Both 16-solder ball and 36-solder ball BGA design alternatives have one

interaction of each of the first four types, 4 interactions between the stratum substrates,

and one interaction between each of the solder balls and the substrate. Thus, the two

sets of design alternatives have 24 and 44 interactions respectively.

 Types of interactions are counted based on the types of components participating in the

interactions. For PWB design alternatives in TCF1, there 2 types of interactions—one

between soldermask stratums and conductive stratums, and one between conductive

stratums and dielectric stratums. For BGA design alternatives in TCF2, there are 7

types of interactions—2 types for the substrate and 5 other types as described above in

Number of interactions.

 Number of features corresponds to the number of analyzable features defined on

components. For PWB design alternatives in TCF1, (1) two features are defined for

each stratum corresponding to its surfaces, (2) a feature is defined corresponding to the

volume of the PWB, and (3) a feature is defined corresponding to the mid-point of the

bottom surface of the last stratum in the stackup. Thus, PWB design alternatives with 5

and 9 stratums have 12 and 20 features respectively. For BGA design alternatives in

TCF2, (1) one feature is defined for the mold, (2) two features are defined for the die

 317

attach, chip, each solder ball, and each stratum in the substrate, (3) one feature is

defined corresponding to the volume of the BGA assembly, and (4) one feature is

defined corresponding to the mid-point of the bottom surface of the last stratum in the

substrate stackup. Thus, BGA design alternatives with 16 and 36 solder balls have 49

and 89 features respectively.

 Types of features are characterized based on the shape of the feature, function of the

feature, type of artifact for which the feature is defined, or a combination of these. In

the table, the types of features are characterized based on their shape and the type of

artifact for which the feature is defined. For PWB design alternatives in TCF1, there

are 5 types of features—3 types corresponding to the surfaces of 3 types of stratums, 1

type corresponding to the PWB volume, and 1 type corresponding to the mid-point of

the bottom stratum. For BGA design alternatives in TCF2, there are 9 types of

features—7 types corresponding to each of the seven types of leaf-level27 components,

and 2 types corresponding BGA volume and mid-point of the bottom surface of the last

stratum in the substrate stackup.

In summary, the results from TCF1 and TCF2 demonstrate the Behavior Model

Formulation Method can be used for formulating simulation templates for large set of

design variations, especially VTMB-type variations.

9.5.3.2 Idealization Variations

The second set of rows in Table 9.5 measure types of idealizations used for

formulating simulation templates in both test case families TCF1 and TCF2. The

idealization variations are measured in terms of the number of specializations of each

type of ABB used in formulating simulation templates. The table shows eight28 types of

ABBs used for measuring the variations in the idealizations. Two additional criteria are

27 No features are defined for the substrate (as a whole) for BGA alternatives in TCF2
28 All structural behavior parameters are to be computed for the test case families. Hence, behavior ABB does not

contribute to the variations.

 318

used to denote if idealization decisions were specified in terms of types of design objects

(components, features, and interaction), or also using the properties of these objects.

Note that the rationale for defining analysis building blocks is that a relatively

small set of ABBs can be used for formulating a large class of analysis problems. Hence,

an entire class of analysis problems, such as thermo-mechanical analyses of PWBs, can

be formulated using a few specializations of each type of ABB. The type of ABB

corresponds to the type of decision taken by analysts.

 Types of analysis body ABBs: One specialization of analysis body ABB (planar shell

analysis body ABB) is used for simulation templates created in TCF1, and two

specializations of analysis body ABB—planar shell analysis body ABB and generic

solid analysis body ABB—are used for simulation templates created in TCF2.

 Types of shape ABBs: One specialization of shape—planar shell shape—is used for

simulation templates created in TCF1 and four specializations of shape—

corresponding to the shape of mold, chip, die attach or substrate stratums, and solder

ball—are used for simulation templates created in TCF2.

 Types of material behavior ABBs: Except for simulation templates created using

BMFS1 in TCF1, all simulation templates created in TCF1 and TCF2 use two

specializations of material behavior ABB, corresponding to linear elastic isotropic

temperature-independent and linear elastic orthotropic temperature-independent

material behaviors.

 Types of analysis feature ABBs: In the simulation templates created in TCF1, 3

specializations of analysis feature ABBs are used—point feature, planar surface

feature, and volume feature ABBs. In addition to these three analysis features,

simulation templates created in TCF2 also used a generic surface analysis feature for

representing the non-planar surfaces, such as the bottom surface of the mold.

 319

 Types of analysis body systems: For simulation templates created in TCF1, one type of

analysis body system (multi-shell analysis body system) is used, and for simulation

templates created in TCF2, two types of analysis body systems are used—multi-shell

system for the BGA substrate used in a solid-shell system.

 Types of analysis body interaction ABBs: For simulation templates created in TCF1, 1

type of analysis body interaction ABB is used (shell-shell tie interaction ABB), and for

simulation templates created in TCF2, 3 types of analysis body interaction ABBs are

corresponding to tie interactions between two solids, solid and shell, and two shells.

 Types of load ABBs and behavior condition ABBs: For simulation templates created in

TCF1 and TCF2 one type of load ABB (temperature load) and one type of behavior

condition ABB (point displacement fixed condition ABB)

Though the number of specializations of each ABB type demonstrated for

simulation templates in TCF1 and TCF2 is low, the process is similar for using other

specializations defined in the ABB Library or those that can be created based on the ABB

Meta-Model. Graph patterns and transformation rules defined in the Artifact Model

Transformation Library for composition Stages 1-4 are defined in terms of the different

ABB types. Thus, all specializations of each ABB type can use the same set of patterns

and rules for composition. If relationships particular to a specialized ABB need to be

created in these composition stages, existing patterns and rules for that ABB type can be

extended or new patterns and transformations rules may be created.

In addition to the types of ABB used for representing the idealization decisions,

the Behavior Model Formulation Method also allows analysts to specify conditions for

idealization decisions. Conditions can be specified based on the types of design objects,

such as those that check for the existence of a specific type of component, or feature, or

interaction in the design assembly. Conditions can also be specified based on the

properties of design objects or other properties derived from these properties, such as

those that check for attribute values of specific types of components, features, or

interactions. As an example, in TCF1, simulation templates created for BMFS2 check the

 320

value of the function attribute of stratums to use isotropic versus orthotropic material

behavior.

In summary, the results from TCF1 and TCF2 demonstrate the Behavior Model

Formulation Method can be used for formulating simulation templates for variations in

idealization decisions taken by analysts.

9.5.3.3 Formulation Efficiency

In this section, quantitative results for Formulation Efficiency (third measure-of-

effectiveness) of the Behavior Model Formulation Method (BMFM) in creating

simulation templates for test case families TCF1 and TCF2 are presented. Table 9.6

below consists of two sets of rows. The first set of rows present results for the

formulation efficiency of KCM’s BMFM (referred in the table as KCM for brevity). The

second set of rows show the number of entities in the source model (given) and the

number of entities automatically generated by the BMFM in formulating simulation

templates.

The formulation efficiency of the BMFM is characterized in terms of the

percentage reduction in the time taken to formulate simulation templates using the

BMFM versus current methods. The table shows how the cost of formulating simulation

templates using the BMFM is computed. Here, cost is measured in terms of time

(assuming a constant cost/time factor). The cost of formulating simulation templates

using the BMFM consists of two parts: (1) Fixed cost, and (2) Marginal cost.

The fixed cost is an upfront cost to create VTMB design meta-model (D3 model),

create ABBs, and specialize pre-defined patterns and transformation rules (if needed).

KCM provides the CPM2_xKCM model that can be directly used as a VTMB design

meta-model for a particular artifact. For TCF1, it took 5 hours to define a D3 model

(PDMM and PAMM in section 6.2); and for TCF2, it took 7 hours to define a D3 model

Note that a VTMB design meta-model is used for representing design alternatives with

different assembly system topologies, and not specific to a particular type of analysis.

The time for creating D3 models (as shown in the table) is based on the assumption that

the D3 models did not exist previously (worst case scenario).

 321

Table 9.6: Formulation Efficiency results for TCF1 and TCF2
(Measure-of-effectiveness of the Behavior Model Formulation Method)

Test Case Families >>
Idealization Decisions >>

VTMB Variations >>

5-
st

ra
tu

m

9-
st

ra
tu

m

5-
st

ra
tu

m

9-
st

ra
tu

m

16
-s

ol
de

r
ba

ll

36
-s

ol
de

r
ba

ll

16
-s

ol
de

r
ba

ll

36
-s

ol
de

r
ba

ll

Simulation Template IDs >> ST5
1 ST9

1 ST5
2 ST9

2 ST16
1 ST36

1 ST16
2 ST36

2

Formulation Efficiency
cost stated below in terms of time taken
Total Cost (in terms of time taken) using KCM

Fixed Cost
Create VTMB design meta-model (D3)
Create library primitives (ABBs)
Specialize/Extend patterns and transformation rules

Marginal Cost
Define conceptual specifications (minutes)
Automatically generate simulation template < 5s < 5s < 5s < 5s < 5s < 15s < 5s < 15s

Total Cost per template (for 20 templates) 0.93h 0.93h 0.95h 0.95h 1.6h 1.6h 1.64h 1.64h
Total Cost per template (for 40 templates) 0.51h 0.51h 0.53h 0.53h 0.93h 0.93h 0.97h 0.97h
Total Cost per template (for 80 templates) 0.30h 0.30h 0.31h 0.31h 0.59h 0.59h 0.63h 0.63h

Total Cost (in terms of time taken) using Current Methods 5hb 3h*** 2h*** 5h*** 15hb 5h*** 5h*** 10h***

Reduction in time (KCM versus Current Methods)
% Reduction in time for 20 templates 81% 88% 86% 91% 89% 92% 92% 93%
% Reduction in time for 40 templates 90% 94% 92% 95% 94% 95% 95% 96%
% Reduction in time for 80 templates 94% 96% 96% 97% 96% 97% 97% 97%
[1 hr / ABB x 10-18 ABBs]=10-18 hrs; *additional time with respect to the base time; xb: base time for TCF

Number of given and generated entities
Given entities
(FTMB Analyzable Artifact Model Structure)

Number of analyzable artifacts (AAs) 5 9 5 9 25 45 25 45
Aux entities (shapes, material behaviors,...) 10 18 10 18 50 90 50 90

Number of interactions (AAI) 4 8 4 8 24 44 24 44
Number of analyzable features (AFs) 12 20 12 20 49 89 49 89

Aux entities (shapes,...) 12 20 12 20 49 89 49 89
Number of given entities* 43 75 43 75 197 357 197 357
Automatically generated entities
(FTMB Artifact Behavior Model Structure)

Number of analysis bodies (ABs) 5 9 5 9 25 45 25 45
Aux entities (shape, material behavior) 10 18 10 18 50 90 50 90

Number of AB - AA relations 5 9 5 9 25 45 25 45
Aux entities (shape idz, material behavior idz) 10 18 10 18 50 90 50 90

Number of analysis body interactions (ABI) 4 8 4 8 24 44 24 44
Number of AAI - ABI relations 4 8 4 8 24 44 24 44
Number of analysis features (ANFs) 12 20 12 20 49 89 49 89
Number of AF - ANF relations 12 20 12 20 49 89 49 89

Aux entities (shape idz) 12 20 12 20 49 89 49 89
Number of generated entities* 74 130 74 130 345 625 345 625
Number of entities in a simulation template* 117 205 117 205 542 982 542 982
* excluding attribute relations and auxiliary entities

5m***

TCF1 TCF2
BMFS1 BMFS2 BMFS1 BMFS2

2h 2h

Total Cost per template using KCM = Fixed Cost / Number of templates + Marginal cost

5h 7h
10h** 18h**

10mb 2m*** 30mb

 322

Similarly, 10 ABBs were used for TCF1 and 18 ABBs were used for TCF2. Assuming

that these ABBs did not exist in the library, it would typically take 1 hour to create an

ABB model as an instance of KCM’s ABB Meta-Model. Also assuming that pre-defined

transformation rules and patterns may need to be extended for new D3 models defined as

specializations of CPM2_xKCM, the table shows an additional 2 hours for such

extensions. Note that these three component costs of the total fixed cost are expended

once upfront. The required time (as shown in the table) is also based on the assumption

that ABBs and meta-models required for the two test case families were completely

different (which was certainly not the case). This is also a worst-case scenario.

 The marginal cost is the additional cost to formulate each simulation template

beyond the fixed cost. The marginal cost for formulating simulation templates using the

BMFM consists of two components: (1) cost to specify idealization decisions (conceptual

specifications), and (2) cost to automatically generate simulation templates. As with the

fixed cost, the marginal cost is also stated in the table in terms of the time. For TCF1, the

time required for defining conceptual specifications BMFS1 was around 10 minutes, and

the time required to modify BMFS1 to create BMFS2 was around 2 minutes. Similarly, for

TCF2, the time required for defining conceptual specifications (BMFS1) was around 30

minutes, and the time required to modify BMFS1 to create BMFS2 was around 5 minutes.

The time taken to automatically generate simulation templates was of the order of

seconds (15 seconds for the the 36-solder ball BGA design in TCF2).

 The table shows the total cost of formulating each simulation template as a sum of

the fixed cost per template and the marginal cost. The fixed cost per template is computed

by dividing the total fixed cost with the number of simulation templates (as an estimate)

for which the meta-models and ABBs can be reused. The total cost of formulating each

simulation template is computed based on the fixed cost distributed over 20, 40, or 80

simulation templates. Note that the estimated numbers of simulation templates over

which the fixed cost is distributed are realistic. As an example, 8 simulation templates are

created for two test case families TCF1 and TCF2 for only two VTMB variations and two

idealization variations.

 In the BMFM, the conceptual specifications are defined once for all VTMB

variations. However, this is not the case for existing methods where variations in the

 323

number or configuration of components and interactions require significant increases in

the amount of time spent in formulating simulation templates. As an example, the time

required for formulating the simulation template shown in Figure 9.40 and Figure 9.41

(for 5-stratum PWBs based on BMFS1) is around 5 hours—based on personal

experiences by the author. Table 9.6 also shows the time required for formulating

simulation templates manually and modifying them for VTMB variations and idealization

variations. As an example, it would take ~5 hours to formulate ST5
1 (simulation

templates for 5-stratum PWB based on BMFS1) and an additional 3 hours to add more

relationships for 9-stratum PWB (based on the same BMFS). With changes in the BMFS,

the time required to manually re-wire simulation templates can be significant too. For

example, it took 2 additional hours to modify ST5
1 for BMFS2, thereby resulting in ST5

2.

In addition to time, manual “re-wiring” of simulation templates is more error-prone and

may require significant debugging effort.

 Based on the time required to formulate simulation templates using the KCM and

using current methods, the percentage reduction in time (using the KCM versus current

methods) is presented in Table 9.6 for each simulation template. The percentage

reduction is presented for all the three scenarios—fixed cost in formulating simulation

templates using the KCM is distributed over 20, 40, and 80 simulation templates.

Overall, the results show 90% or greater (on average) reduction in the time required for

formulating simulation templates using the KCM versus current methods. The results

clearly support the higher formulation efficiency of the KCM when compared to current

methods.

 Note that the fixed costs depend on the meta-models, ABBs, and extensions to

pre-defined transformation rules and patterns for formulating simulation templates. With

a lower fixed cost, the breakeven point for formulating simulation templates using the

KCM may seem to be achievable with less usage. However, this is countered by the lost

opportunity to formulate a larger variety of simulation templates. Meta-models and ABBs

that may be used for representing only few types of artifact design variations and for

formulating simulation templates for specific analyses may lower the fixed cost but add

to the lost opportunity to formulate a large set of simulation templates.

 324

 The contribution of different aspects of the KCM in increasing the set of

simulation templates that may be formulated using the Behavior Model Formulation

Method, thereby lowering the cost and effort to do so is described below:

 Meta-Models: KCM provides meta-models for representing different aspects of

simulation templates. CPM2_xKCM—extension of CPM2 (Fenves 2004)—is a

generic meta-model for abstract representation of design alternatives in different

application areas. Chapter 6 illustrates how artifact-specific design meta-models can be

defined as specializations of CPM2_xKCM. These artifact-specific meta-models can

be used for representing VTMB design alternatives of the artifact. The Core Behavior

Model (Chapter 7) provides an abstract meta-model for representing physics-based

behavior models for VTMB problems, including idealization relationships between

design models and behavior models. The CBM is abstract and extensible. It depends

on the analysis building blocks (ABBs) to represent domain-theoretic analysis

knowledge.

 ABB Library: KCM provides an initial library of ABBs that can be used as-is. Nine

different types (categories) of ABBs are defined in the ABB Meta-Model. The library

contains specializations of each ABB type. Additional specializations of ABBs can be

easily defined. Creation of simulation templates for a new class of problems requires

creation of new specializations of existing types of ABBs. Creation of new ABBs is

one of the few aspects of the KCM that is requires effort. However, this effort is

minimal and can enable formulation of simulation templates for a large class of

analysis problems as below.

o A large class of analysis problems can be addressed by each new specialization of an

ABB type.

o The number of specializations of each ABB type for a given physics-based domain

(such as structural analysis or thermal analysis) is limited.

o If a new ABB can be associated with concepts in the solver tools, such as an element

type in an FEA solver, then analysts do not need to represent all domain theoretic

mathematical relationships when defining ABBs, thus saving time and effort. For

 325

example, the definition of a shell analysis body ABB does not require the

representation of domain theoretic equations for shell behavior since FEA tools (for

example) have elements to represent shells.

 Artifact Model Transformation Library: KCM provides a library of reusable graph

patterns and transformation rules based on the meta-models. For the design model

stack, these rules and patterns are defined at both Level 1 and Level 3. For the behavior

model stack, these rules and patterns are defined at Level 1, for each ABB type, and in

some cases for specializations of ABB types. Since Level 1 meta-models do not

change from one class of problems to another, the graph patterns and transformation

rules defined for them can be reused for all types of simulation templates formulated

using the Behavior Model Formulation Method. The Level 3 meta-model in the design

model stack is for representing VTMB design alternatives for an entire family of

artifacts, such as printed wiring boards. This governs the applicability of graph patterns

defined for Level 3 meta-models in the design model stack.

 Conceptual specifications to control computable specifications: One of the key factors

that contribute to the efficiency of formulating simulation templates using KCM’s

Behavior Model Formulation Method is the ability to change idealizations with relative

ease. As demonstrated for test case families TCF1 and TCF2, the conceptual

specifications are defined in terms of the ABBs, including the conditions for using

specific ABBs. This provides a higher level of semantic handle on defining

idealizations as opposed to writing procedural code (such as the computable

specifications).

 Use of graph transformation-based approach to compose simulation templates: The use

of the graph transformation-based approach to model composition provides a modular

and extensible to automatically formulate simulation templates. Graph patterns,

transformation rules, and transformation process together provide a three-tier

framework (Figure 8.22, section 8.2.3) for formulating simulation templates. Graph

patterns provide a declarative and highly efficient representation for describing

 326

conditions and constraints, as well as searching model elements. Due to their non-

causal representation, a single pattern can be used for achieving multiple use causes

depending upon variables that are bound or unbound during pattern calls (section

8.2.3). In addition, graph transformation rules enable the representation atomic units of

model transformations that can reused across for formulating simulation templates.

Graph transformation rules provide a declarative representation of a transformation

step in terms of the source and target model graphs and not in terms of the process of

creating a target model graph. This approach is more intuitive to modelers and analysts

who want to define new specializations of ABBs or extend the KCM meta-models.

 Table 9.6 also presents a summary of the number of entities in the source model

and the number of entities automatically generated by the BMFM when formulating

simulation templates (target models) for TCF1 and TCF2. The numbers provide an

estimate of the number of entities automatically created in formulating information-rich

simulation templates. As an example, for simulation template ST36
2 in TCF2, 625 entities

were created and the total number of entities in the simulation template is ~1000. Manual

creation and modification of simulation templates with large number of entities is

certainly not feasible. In this light, KCM’s Behavior Model Formulation Method

provides a much superior approach to formulating simulation templates.

9.6 Summary
Two families of test cases are presented in this chapter to demonstrate the

capability of the Behavior Model Formulation Method in handling VTMB-type design

variations and idealization variations when automatically composing simulation

templates. Automated composition of eight simulation templates using the Behavior

Model Formulation Method—as realized in the VIATRA graph transformation

framework—is demonstrated for both test case families combined. The illustrations

demonstrate the extent and the depth of model elements automatically created for each

simulation template. In addition, the execution of simulation templates for generating

behavior model instances that can be solved in FEA tools is also demonstrated. The

execution of simulation templates both in design verification and synthesis scenarios

 327

demonstrates the value of a single simulation template in addressing routine analysis

problems.

In section 9.5, a detailed validation of the secondary and primary research

hypotheses is presented based on the simulation templates automatically created in both

test case families. The effectiveness of the Behavior Model Formulation Method in

formulating simulation templates is established using the results summarized in Table

9.5. In addition, a discussion on other components of the KCM that strongly contribute to

increasing both the efficiency and effectiveness of formulating simulation templates

using this approach is presented.

 328

CChhaapptteerr 1100 :: RREESSEEAARRCCHH CCOONNTTRRIIBBUUTTIIOONNSS AANNDD FFUUTTUURREE WWOORRKK

 In this chapter, a summary of research contributions and recommended future

work are presented in sections 10.1 and 10.2 respectively.

10.1 Research Contributions
 Figure 10.1 below shows the state-of-the-art in formulating and executing

simulation templates before the development of the Knowledge Composition

Methodology. Simulation templates were formulated manually / semi-automatically and

modified manually for VTMB problems and for changes in idealization decisions taken

by analysts. This made the usage of simulation templates ineffective and costly for multi-

disciplinary design optimization problems and for evaluation of system performance in

general. However, the execution of simulation templates has benefited from

advancements in commercial off-the-shelf object solvers, math solvers, and solution

method-specific solvers (such as FEA tools). These solvers have been used successfully

to execute simulation templates—solve for the unknown (target) variables from the

known (input) variables.

Figure 10.1: Lack of effective methods to formulate VTMB-related simulation templates

before KCM

The Knowledge Composition Methodology (KCM) addresses two critical

research gaps in effectively formulating simulation templates—formalizing the

knowledge necessary for formulating simulation templates, and providing the Behavior

Model Formulation Method to automatically formulate simulation templates for VTMB

problems and idealization variations. Figure 10.2 below illustrates the “enhanced” state-

 329

of-the-art in formulating and executing advanced simulation templates with the

Knowledge Composition Methodology.

Figure 10.2: KCM enables effective formulation of advanced simulation templates

The specific research contributions (RCs) are summarized below.

Research Contribution 1 (RC1)

The Knowledge Composition Methodology developed in this research provides a

mechanism to formulate advanced simulation templates in an effective manner.

Simulation templates formulated by the KCM are executable. With the capability to (i)

automatically formulate simulation templates for VTMB problems and variations in

idealizations and (ii) execute simulation templates, KCM makes the use of simulation

template more effective for multi-disciplinary design optimization problems and for

evaluating system performance in general. In addition to handling VTMB problems and

idealization variations, test results show significant increase in formulation efficiency

using KCM versus current methods—90% or greater (on average) reduction in the time

required for formulating simulation templates using the KCM versus current methods.

 330

KCM’s Behavior Model Formulation Method plays the central role in formulating

simulation templates. Founded on graph transformations, the BMFM enables automated

composition of simulation templates from reusable building blocks.

This dissertation also defines the concept of Assembly System Topology (AST)

and a special type of graph construct and corresponding visualization diagram—an

Assembly System Topology diagram—to help characterize VTMB problems and

visualize and communicate changes in AST. In addition to formulating simulation

templates, KCM provides a fundamental graph transformation-based approach to model

formulation for variable topology problems in general, such as from logical/functional

system design models to physical system design models (Friedenthal 2006).

Research Contribution 2 (RC2)

KCM provides meta-models and an approach for representing simulation

templates. The Core Behavior Model developed in this research is a meta-model for

representing artifact behavior models, and fine-grained relationships between behavior

models and design models. KCM provides five different abstractions for representing

behavior models and simulation templates, depending upon the scope of the artifacts and

type of analysis. The ABB Meta-Model developed in this research is a meta-model for

representing the building blocks of behavior model structure. Though focused on physics-

based behavior of artifacts, the ABB Meta-Model provides generic constructs—four

types of knowledge represented in building blocks—that would be used for defining

building blocks for other types of behaviors, such as state-based behavior.

Research Contribution 3 (RC3)

KCM’s Behavior Model Formulation Specifications (BMFS) provides a

mechanism for capturing and representing idealization decisions taken by analysts. These

decisions serve as specifications for simulation templates automatically formulated by the

BMFM. The specifications, aka Behavior Model Formulation Specifications, are defined

at two levels of abstractions—conceptual specifications and computable specifications.

The conceptual specifications represent the intent of the idealization decisions and are

defined by analysts. The computable specifications, derived from the conceptual

 331

specifications, represent the graph transformation process for composing simulation

templates. Differentiating conceptual specifications from computable specifications

enables analysts to focus on the idealization intent (conceptual specifications) and not on

the actual computer code for the transformation process (computable specifications).

Apart from representing idealization knowledge as conceptual specifications, this

approach makes it easier for analysts to change idealization decisions and automatically

re-formulate simulation templates without worrying about updating computer scripts for

formulating simulation templates.

Research Contribution 4 (RC4)

KCM also provides graph transformation-based algorithms formalized as reusable

graph patterns and graph transformation rules for automatically composing simulation

templates from building blocks. These patterns and rules are defined in terms of the KCM

meta-models (CPM2_xKCM, CBM, and ABB Meta-Model) and hence are applicable for

all specializations of these meta-models. In essence, patterns and rules together provide

something similar to an application programming interface (API) for the KCM. Scripts to

formulate simulation templates—formalized as graph transformation process—use these

pre-defined patterns and rules. In addition, KCM also provides a library of ABBs—

building blocks of behavior models and hence simulation templates. KCM’s Artifact

Model Transformation Library includes all graph patterns and transformation rules,

including transformation rules defined specifically for each type of ABB.

Research Contribution 5 (RC5)

KCM extends the Core Product Model (CPM2) to define CPM2_xKCM—a meta-

model for representing VTMB artifact design alternatives. KCM provides five abstraction

levels of design models to characterize the set of design alternatives represented by each

model, and to distinguish models used for defining the formulation of simulation

templates versus models used in simulation templates. Abstractions D3, D4, and D5 of

design models are of specific importance. Instead of formulating design models for an

artifact at two levels (a meta-model and instances), the KCM provides three different

abstraction levels (D3, D4, and D5) that serve the following purposes: (1) D3 model used

 332

represents all variable topology alternatives of an artifact, and is used for defining

specifications for composing simulation templates; (2) D4 model is the source model for

formulating simulation templates, and represents a set of design alternatives with

equivalent assembly system topologies; and (3) D5 model represents a specific artifact as

an instance of D4 model, and is used for creating behavior model instances using a

simulation template.

10.2 Recommended Future Work
The following applications and extensions of this research are recommended for

the future. These recommendations are divided in two categories: (a) Conceptual

extensions—theory-related extensions of the KCM, and (b) Implementation extensions—

software development-oriented extensions of the KCM (or KCM Framework).

Conceptual extensions

1. Application of KCM’s model transformation approach to variable topology problems

in system engineering design and analysis, such as designing the following types of

systems: manufacturing systems, real time embedded systems, energy distribution

systems, and software systems.

2. Application of the concept of assembly system topology (defined in this research) and

graph transformation-based techniques for composing simulation templates to

systems with hardware, software, and human components.

3. Addition of new types of ABBs to represent concepts of state-based behavior, such as

time and events, activities, and decision nodes. While state machine representation in

UML (and SysML) and UML profiles such as MARTE provide a standards-based

representation of these concepts, the composition of simulation templates for state-

based behavior requires that these concepts be wrapped as ABBs. In addition, hybrid

simulation templates composed of physics-based ABBs and state-based ABBs can be

used for co-simulation.

4. Representation of dynamic simulation templates to model problems where the

assembly system topology of design alternatives change during the solution process.

This can be achieved by defining conditions for existence of relationships in a

 333

simulation template. Depending upon the computed values, the relationships may be

“disabled” temporarily. As an example, when the shear stresses between two layers in

a PCB increases beyond the peel strength, it leads to delamination of layers.

Delamination changes the assembly system topology of a PCB and hence interaction

relationships between analysis bodies representing delaminated layers would need to

be “disabled”.

5. Application of KCM’s model transformation approach (based on graph

transformation) variable topology problems where transformations are performed to

generate one aspect of a design model from another aspect, such as from logical

design view to physical design view. Implementation of OMG’s Model Driven

Architecture to systems engineering involves transformations from Platform

Independent Models (PIMs) to Platform Specific Models (PSMs) (Friedenthal 2006).

Graph transformation-based approach to VTMB problems can provide a foundation

for intra-disciplinary transformations.

6. Development of solver managers for open standards-based simulation templates.

Such solver managers can solve simulation templates by delegating relationships to a

“cloud of solvers” without worrying about the transformations between solver-

independent and solver-specific models. This allows the automated execution of

different types of relationships—procedural code to math-based constraints—in

simulation templates. In addition, depending upon the nature of the relationships,

simulation templates (or parts of it) can be executed in multiple directions.

7. Investigation and development of better metrics to characterize model formulation

efficiency.

Implementation extensions

1. Application of the KCM’s Behavior Model Formulation Method to automatically

compose simulation templates for analysis problems in different disciplines, such as

thermal analysis, dynamics and vibration analysis, and fluid dynamics.

2. Extension of Behavior Model Formulation Method’s graph transformation-based

approach to compose simulation templates from simulation templates. As an example

for test case family TCF2, simulation templates for thermo-mechanical behavior of

 334

BGA could be composed from existing simulation templates for thermo-mechanical

behavior of substrates.

3. Representation and use of decision nodes in simulation templates. Decisions nodes

can be represented by extending SysML constraint blocks. When used in simulation

templates, decision nodes can be used for verifying if computed values of behavior

parameters satisfy requirements.

4. Simulation templates, as composed by the KCM in this dissertation, consist of

solution method- and solver-independent formulations of behavior models. The

rationale for this was to enable analysts to use multiple solution methods and solvers

for the same analysis problems. KCM’s model composition approach can be used to

formulate solution method-specific and solver-specific behavior models (such as FEA

models in ABAQUS) that are associated with the solution- and solver-independent

behavior models. Examples of FEA scripts automatically formulated from solution

method- and solver-independent behavior models are shown in (Peak, Burkhart et al.

2007). Solution method and solver specifications (such as FEA mesh specifications)

would be provided by analysts and will be included in the Behavior Model

Formulation Specifications (BMFS). Conceptual specifications in BMFS may include

conditions that are checked post-solution, such as mesh refinements based on the

results. This use case corresponds to the research in adaptive idealizations by

Shephard et al. (Shephard, Beall et al. 2004). Changes in the topology of simulation

templates based on solution results would be handled in a similar manner as for

dynamic simulation templates described in item 4 (Conceptual extensions) above.

 335

CChhaapptteerr 1111 :: CCLLOOSSUURREE

The Knowledge Composition Methodology (KCM) for effective formulation of

analysis problems is presented in this dissertation. The representation of analysis

problems as simulation templates enhances the reuse of analysis knowledge in

formulating behavior models for a large set of design alternatives. However, simulation

templates are typically brittle to variations in assembly system topology and idealization

decisions taken by analysts. This makes them ineffective for analyzing the performance

of design alternatives and for using them in design optimization problems. To

characterize the types of changes that require manual updates and “re-wiring” of

simulation templates, the concept of assembly system topology has been defined in

Chapter 2 of this dissertation. Based on the concept of assembly system topology, this

dissertation defines a special class of problems, namely Variable Topology Multi-Body

(VTMB) problems where the assembly system topology of design alternatives varies.

VTMB problems are defined and illustrated in Chapter 2. In this context, the Knowledge

Composition Methodology answers the following primary research question: How can we

improve the effectiveness of the analysis problem formulation process for VTMB

problems? Specifically, KCM addresses the following two key research gaps in existing

methods for formulating analysis problems: (a) lack of formalization of the knowledge

used by analysts in formulating simulation templates, (b) inability to leverage this

knowledge to define model composition methods for formulating simulation templates.

The Knowledge Composition Methodology is presented in details in Part 2 of this

dissertation (Chapters 5-9). Based on the research questions and hypotheses presented in

Chapter 4, the functional and design specifications of KCM are presented in Chapter 5.

The KCM Framework is a computational embodiment of the KCM. It provides a testbed

for KCM models and methods. The use cases and components of the KCM Framework

are also presented in Chapter 5.

 336

The key functional components of the KCM for formulating simulation templates

were presented as follows:

 CPM2_xKCM is an extension of the Core Product Model (Fenves 2004) for the

Knowledge Composition Methodology. CPM2_xKCM provides a meta-model for

representing VTMB design alternatives. Based on CPM2_xKCM, five levels of

abstractions of design models are described with examples in Chapter 6.

 CBM (Core Behavior Model) provides a meta-model for representing behavior models

of VTMB artifacts. Based on the CBM, five different levels of abstractions of behavior

models are presented in this Chapter 7. Behavior models in the KCM consist of two

core components: (a) ABB System—artifact-independent model composed of ABB

models, and (b) Context—model that associates an ABB System to artifact design

models.

 ABB Meta-Model provides a meta-model for representing analysis building blocks

(ABBs). ABBs are units of analysis knowledge that can be reused for formulating a

large class of behavior models. Nine different classes of ABBs are defined based on

the ABB Meta-Model. Examples of ABBs in each class are also presented. The ABB

Meta-Model and ABBs are presented in Chapter 7. Some classes of ABBs defined in

this version of the KCM are primarily targeted for physics-based behavior models. For

other types of behavior models, such as state-based behavior models, new classes of

ABBs can be defined based on the ABB Meta-Model in a similar manner. In contrast

to representations of domain theoretic knowledge in existing methods, ABBs in the

KCM also embody the model transformations associated with using them in a behavior

model.

 Behavior Model Formulation Method (BMFM) is a model transformation approach for

automatically composing behavior model structures from ABBs, based on the

idealization decisions taken by analysts. The BMFM is presented in details in Chapter

8 of this dissertation. The idealization decisions are represented as selections of ABBs

for idealizing VTMB design alternatives and representing the environmental

conditions (such as loads and behavior conditions) in which the behavior of design

alternatives is to be computed. In addition to specifying ABBs, the conditions for using

one ABB versus the other based on properties of design alternatives can also be

 337

represented. The model transformation approach in the Behavior Model Formulation

Method is founded on graph transformations. Graph transformations provide a formal

approach for model transformations since entity-relationship type of models can be

structurally abstracted as graphs. The model transformation approach is four-tiered—

graph patterns, graph transformation rules, computable specifications to explicitly

schedule the execution of transformation rules, and conceptual specifications to

embody the idealization decisions taken by analysts.

The test applications of KCM meta-models and methods, and validation of

research hypotheses are presented in Chapter 9. The Behavior Model Formulation

Method (implemented in the VIATRA graph transformation framework) is used for

automatically generating simulation templates for thermo-mechanical analyses of two

families of VTMB design alternatives—multi-stratum printed wiring boards, and multi-

component ball grid array chip packages. The simulation templates generated for each

test case family are illustrated in details in Chapter 9. Table 9.5 and Table 9.6 summarize

results of the three measures of effectives of Behavior Model Formulation Method for the

test case families. In addition to handling VTMB variations and idealization variations,

the results clearly show a 90% or more (on average) reduction in the time taken to

formulate simulation templates using the KCM versus current methods. With the increase

in the number of components and interactions, the improvements in formulation

efficiency are significant when using KCM’s BMFM versus current methods. In contrast

to existing methods where variations in idealization decisions may require several hours

to update and “re-wire” simulation templates, the time required using BMFM is of the

order of minutes (less than a minute for minor variations).

There are two key directions for deploying and extending the current capabilities

of the KCM. The first direction concerns the ability to formulate a larger variety of

simulation templates for a larger variety of design families; and the second direction

concerns the ability to use KCM approach for formulating models for variable topology

problems in general.

The application of KCM for analyzing artifact behavior depends on the existence

of ABB models to represent domain theoretic concepts used in these analyses. These

ABB models can be created as specializations of existing ABB types. Some of the ABB

 338

types defined in this dissertation are especially relevant for physics-based behavior. For

analyzing other types of artifact behaviors, such as state-based behavior, additional types

of ABBs and their specialization need to be defined based on the ABB Meta-Model.

For applying KCM methods for artifact families in different application areas,

such as automobile, electronics, and aircrafts, the CPM2_xKCM meta-model can be

leveraged to define application-specific meta-models. STEP (ISO 10303) application

protocols provide an extensive set of design concepts for some of these application areas.

The VTMB artifact models for representing multi-stratum PWBs in this dissertation

leverages concepts defined in the STEP AP210 standard for electronics artifacts. In

addition, standards such as OMG MARTE (MARTE 2008) provide constructs for

representing design and analysis information for real-time embedded systems—

composed of both software and hardware components—whose functions are primarily

defined in terms of state-based behavior.

Overall, KCM’s design meta-model (CPM2_xKCM) can be specialized to define

VTMB artifact meta-models for artifact families in different application areas by

leveraging concepts defined in standards adopted in that application area. KCM’s

behavior meta-model (CBM) and ABB Meta-Model can be specialized to define ABBs

(and behavior models) for other different types of behaviors.

The second direction to deploy and extend the capabilities of KCM concerns a

unique contribution of the KCM—a formal model transformation approach for

formulating models for variable topology problems. The graph transformation-based

approach can be used for formulating different types of artifact (or system) models where

variable topology poses a significant challenge in automatically formulating and adapting

models to changes in specifications provided by model authors. Examples of this are

plenty in today’s system engineering processes, such as creating physical system design

models from logical system design models (and vice versa) based on the specifications

provided by designers. For instance in this case, a designer specifies the type of physical

component to be used for realizing each type of logical component (unit). With variations

in number, type, or configuration of logical components, or the specifications provided

by designers, KCM’s model transformation approach can be used for automatically

formulating physical design models.

 339

The Knowledge Composition Methodology achieves its primary objective to

make analysis problem formulation a more effective process as compared to the methods

and tools representative of the current state-of-the-art. It successfully achieves this

objective and in doing so opens a new application area for its model transformation

approach as applied to variable topology problems. As opposed to spending costly

resources on interoperability of design and analysis models, it is envisioned that the

Knowledge Composition Methodology shall provide the foundation to bridge the

significant gap between system definition and analysis tools. As a result, the Knowledge

Composition Methodology will provide system designers, analysts, and other

stakeholders a greater opportunity to focus on the function and the quality of systems.

 340

AAPPPPEENNDDIICCEESS

Appendix 1 : Description of Basic Concepts
Brief descriptions of the commonly used terms and concepts are presented in this

appendix. The intent of this appendix is to describe these terms and concepts in the sense

that they are used in this dissertation.

Data are symbols which represent information for processing purposes, based on implicit

or explicit interpretation rules. In general, data lacks semantics. Even if the interpretation

rules are explicit, they are informally documented (Schenck and Wilson 1994; Giarratano

and Riley 1998).

Information is data with formal and explicit semantics. Information can be communicated

between two or more partners. Semantics is a key aspect of information because the

partners need to have a unique and unambiguous understanding of every piece of

information.

Knowledge extends beyond the notion of information by also including relationships

between pieces of information. Knowledge is also known as value-added information for

the purpose of decision making. Knowledge may be represented in different ways, such

as rules, semantic nets, schema, and logic symbols. The collective knowledge pertaining

to a given universe-of-discourse may be formalized in different ways, such as

taxonomies, thesauri, and ontologies.

A Model is a computable approximation of a “thing” for an intended purpose. A model is

a surrogate for the actual thing itself and enables us to answer questions about it. The

fidelity to which a model approximates a “thing” limits the types of questions that may be

answered about that thing. A model that is computable may be interpreted or solved using

computer-based methods. In a more generic sense, a model may imply both - a physical

model or a computable model, but this research specifically focuses on the latter. The

specific thing approximated by a model may be a physical object such as a car or a ship; a

 341

process, such as manufacturing or quality control; collection of physical objects or

processes; specific characteristic(s) of them; or even a model itself.

There are two key aspects of a model, namely semantics and syntax. Semantics is

concerned with the meaning of the thing that a model represents. Syntax is the computer-

interpretable form in which the model is formalized.

Per the definition above, in this dissertation the term Model also implies

Information Model (Schenck and Wilson 1994) or Knowledge Model.

A Meta-Model consists of constructs and rules that are needed to build models in a

universe of discourse. A meta-model is also a model and it can have any number of

instance models (or instances for brevity). In essence, a meta-model is a “model” of the

universe of discourse. Figure A1 illustrates the conceptual relationship between a model,

a meta-model, and model instance using SysML (SysML 2007) notation. The core entity

is a Model. The terms meta-model and instance denote the relationship between two

models such that one describes the constructs and rules necessary to create the other. A

model always has a meta-model and a meta-model may have any number of model

instances. A model cannot be a meta-model (or instance) of self. For example, a web

page is internally represented as an information model written in HTML which confirms

to a meta-model defined by World Wide Web Consortium (W3C), specifically W3C

HTML DTD (W3C 1999).

<<block>>
Model

+meta-model
1

+instances*

Figure A1: Conceptual relationship between meta-model and instance (using SysML notation)

In the context of this dissertation, the terms meta-model, model schema, and

model structure imply the same and are used interchangeably. Unless otherwise stated,

the term model implies model instance.

An Ontology defines a set of representational primitives to model a universe of

discourse. These representational primitives are classes (or sets), attributes (or

 342

properties), and relationships (relations between classes) (Gruber 1995; Gruber 2007). As

an example, STEP AP210 (ISO 10303-210 2001) is an ontology for describing the design

of electro-mechanical products. An ontology is concerned with defining the “semantics”

to communicate about a universe of discourse, and not necessarily concerned with

organizing and implementing information models of the universe of discourse across one

or more databases. In the context of this dissertation, the term Ontology is used

interchangeably with meta-model or model structure to denote the semantics of the

universe of discourse being represented. An ontology (or meta-model or model structure)

is described using a representation language, also known as a modeling language.

 343

Appendix 2 : Systems Modeling Language (SysML) Notation
In this appendix, visual notations of OMG’s System Modeling Language

(SysML) used in this dissertation are presented. The text and pictures shown in the table

below are abstracted from standard definitions of elements in the SysML standard

specifications (SysML 2007).

Block
A Block is a modular unit that describes the structure of a
system or element. It may include both structural and
behavioral features, such as properties and operations, that
represent the state of the system and behavior that the system
may exhibit.

 Block properties typed by blocks using part associations
are known as part properties.

 Block properties typed by blocks using reference
associations are known as reference properties.

 Block properties typed by primitive values (such as integer
and string types) are known as value properties.

 Block properties typed by constraint blocks are known as
constraint properties.

The difference between part properties and reference
properties is that block instances associated with a parent
block instance as part properties are owned by the parent
block.

Block Definition Diagram (BDD)
A Block Definition Diagram is a view of the system model,
and it shows the properties of blocks and the relationships
between blocks using part associations, reference
associations, and generalizations.

Internal Block Diagram (IDB)
An Internal Block Diagram shows the internal structure of a
block. It shows the properties of a block and the connections
between these properties.

Part Association
Part Associations are used for relating a parent block and a
child block. The black diamond connects to the parent block.
The other end connects to the child block. A part association
means that the parent block has a property of type of the child
block. When a model instantiated, a parent block instance
owns the child block instance(s).

Reference Association
In contrast to part associations, when blocks related by a
reference association are instantiated, the referring block
instance does not own the referred block instance.

 344

Generalization
Generalization is used for representing generalization
relationship between concepts represented by blocks. The
head of the arrow connects to the parent block and the tail of
the arrow connects to a child block. A generalization
relationship implies that the child block represents a concept
that is a specialization of the concept represented by the
parent block.

Constraint Block
Constraint blocks are used for representing reusable
mathematical relationships, including domain concepts such
as the definition of Newton’s Second Law (F=m*a, or
F=m*dv/dt). Constraint blocks primarily consist of constraint
parameters and constraint specifications that define the
mathematical relationships between constraint parameters. A
constraint block may also contain other constraint blocks.

Parametric Diagram
A Parametric Diagram includes usages of constraint blocks to
constraint the properties of a block. Constraint blocks used in
the context of a block (as constraint properties) are denoted as
rectangles with rounded corners.

Use Case
Use case of a system represents the functionality of the
system that is achieved when actors interact with the system.

Actor
Actors are users of a system

Include
Include relationship is defined between a base use case and
the included use case. This relationship denotes that the
included use case is performed as part of realizing the base
use case.

Association (Communication Path)
Actors are associated with use cases via a communication
path (association). The communication path represents the
interaction between an actor and a system when the specific
use cases are being realized.

 345

Package
A Package defines a namespace for model elements, and may
contain other packages.

Table A2: Summary of SysML modeling elements used in this dissertation

 346

Appendix 3 : KCM’s Generic Properties Meta-Model
Figure A3 illustrates KCM’s Generic Properties Meta-Model. The constructs

defined in this meta-model are used in other KCM meta-models and models. Specifically,

this meta-model defines specializations of the CoreProperty entity defined in CPM2 (and

included in CPM2_xKCM Meta-Model). In CPM2_xKCM, CoreProperty is the basic

abstract block used for representing properties of an artifact, such as shape and material.

In the Generic Properties Meta-Model, the CoreProperty is specialized to define

CoreBehaviorProperty as the base block for representing a basic set of concepts used for

defining the behavior of artifacts. The concepts shown in this version of the Generic

Properties Meta-Model are targeted for the test applications and models described in this

dissertation—mostly physics-based behavior models with emphasis on thermal and

mechanical analysis. The Generic Properties Meta-Model is intended to be extensible as

new types of ABBs and analysis concepts are added to the KCM.

Two primary types of specializations to the CoreProperty concept are developed

in the Generic Properties Meta-Model. The first type specialization concerns the

specializations to the concept of Shape (renamed from Geometry in CPM2 to Shape in

CPM2_xKCM). Shape is the parent entity for defining the geometric shape of all

abstractions of artifacts and features. It is also used as the Shape ABB in the definition of

analysis bodies and analysis body systems. In general, KCM shall leverage STEP Part 42

to extend the representation of geometric shapes. However, for demonstrating the test

applications of KCM, some basic specializations of Shape are developed here. As shown

in Figure A3, one dimensional (point), two dimensional (such as lines and arcs), and

three dimensional shapes (Sphere and Cuboid) are defined as specializations of the Shape

block. The Shape_Representation_2D and Shape_Representation_3D blocks are parent

blocks for the representation of two dimensional and three dimensional shapes

respectively.

 347

Figure A3: Generic Properties Meta-Model

 348

The second type of specialization to the CoreProperty block is the

CoreBehaviorProperty block as the parent block for representing parameters used in

defining ABBs. The parameters represented in the Generic Properties Meta-Model

represent the following aspects of the concepts represented by ABBs:

- definition of the dimensionality and units for representing the concept

- definition of the type of quantity used for representing the concept, such as scalars,

vectors, or tensors

- definition of symbols used for denoting the concepts, such as F for force

In general, the representation of parameters is equivalent to the representation of

specialized data types with symbolic notation.

The CoreBehaviorProperty block is specialized into five blocks—each

representing a type of parameter—as defined below. Note that these types and the

specializations within each type are based on the parameters required for demonstrating

the KCM using specific test cases. Additional types of parameters and their

specializations must be defined to make this meta-model useful for representing ABBs in

general.

 Interial_Parameter_Type block is used for representing the inertial parameters of an

artifact, such as mass and moment of inertia. These parameters are shown as

specializations of the Inertial_Parameter_Type block.

 Temporal_Parameter_Type block is used for representing time and related temporal

parameters that are useful in representing the dynamic behavior of artifacts. KCM shall

leverage other standards such as OMG MARTE (MARTE 2008) that extensively

define these temporal concepts.

 DOF_Parameter_Type block is used for representing degrees-of-freedom (DOFs)

parameters associated with different types of behaviors of an artifact. The

DOF_Parameter_Type block can be specialized for representing DOFs for a specific

type of behavior. For example, Structural_DOF_Parameter_Type block and

Thermal_DOF_Parameter_Type block represent the DOF parameters for structural and

thermal behavior respectively.

 Behavior_Parameter block is used for representing behavior parameters for different

analysis disciplines. The Behavior_Parameter block is specialized for each type of

 349

analysis discipline. For example, the Behavior_Parameter block is specialized as

Structural_Behavior_Parameter and Thermal_Behavior_Parameter block for

representing behavior parameters for structural and thermal behavior of artifacts

respectively. Additionally, the Material_Behavior_Parameter block represents the

parameters used for defining the behavior of materials (constituting artifacts).

 Load_Parameter_Type block is the base block for representing parameters used for

characterizing loads. It is specialized into Structural_Load_Parameter_Type and

Thermal_Load_Parameter_Type block for representing structural and thermal load

parameters respectively. Parameters used for representing force, moment, and pressure

are examples of structural load parameters; and parameters used for representing heat

generation rate and heat flux are examples of thermal load parameters.

Note that parameters defined in the Generic Properties Meta-Model are not the

representation of the concepts themselves but only the definition of parameters used for

denoting those concepts. For example, the force parameter is not the definition of force.

The Force ABB (type of Load ABB) is used for representing the concept of force.

 350

RREEFFEERREENNCCEESS

Addanki, S., Cremonini, R. and Penberthy, S.J. (1991). "Graphs of models." Artificial
Intelligence 51(1-3, Special issue: Qualitative reasoning about physical systems II): 145-
177.

Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S., Plump, D.,
Schürr, A. and Taentzer, G. (1999). "Graph transformation for specification and
programming." Science of Computer Programming 34(1): 1-54.

Arabshahi, S., Barton, D.C. and Shaw, N.K. (1991). "Towards integrated design and
analysis." Finite Elements in Analysis and Design 9(4): 271-291.

Arabshahi, S., Barton, D.C. and Shaw, N.K. (1993). "Steps towards CAD-FEA
integration." Engineering with Computers 9(1): 17-26.

Armstrong, C.G., D.J. Robinson, R.M. McKeag, T.S. Li, S.J. Bridgett, R.J. Donaghy,
C.A. McGleenan (1995). Medials for Meshing and More. 4th International Meshing
Roundtable, Sandia National Laboratories, Albuquerque, NM October 1995.

Atkinson, C. and Kuhne, T. (2001). The Essence of Multilevel Metamodeling. 4th
International Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools Toronto, Canada. October 1-5, 2001, Springer-Verlag, London,
UK.

Bajaj, M. (2006). "A Composable Knowledge Methodology for Efficient Analysis
Problem Formulation in Simulation-based Design," PhD Proposal thesis, Mechanical
Engineering, Georgia Institute of Technology, Atlanta

Bajaj, M., Peak, R., Zwemer, D., Thurman, T., Klein, L., Liutkus, G., Brady, K.,
Messina, J. and Dickerson, M. (2006). Automating Thermo-Mechanical Warpage
Estimation of PCBs/PCAs Using a Design-Analysis Integration Framework. Mentor
U2U, San Jose, CA, USA May 3-5, 2006.

Belaziz, M., Bouras, A. and Brun, J.M. (2000). "Morphological analysis for product
design ". Computer-Aided Design 32(5-6): 377-388.

Calvanese, D., Lenzerini, M. and Nardi, D. (1998). Description Logics for Conceptual
Data Modeling. Logics for Databases and Information Systems. J. Chomicki and G.
Saake, Springer. 436: 229-264.

Chen, P.P. (1976). "The Entity-Relationship Model: Toward a Unified View of Data."
ACM Transactions on Database Systems 1(1): 9-36.

 351

Chen, Y., Lee, J. and Eskandarian, A. (2006). Meshless Methods in Solid Mechanics,
Springer.

Czarnecki, K. and Helsen, S. (2006). "Feature-based survey of model transformation
approaches." IBM Systems Journal 45(3): 621-645.

"SIMULIA (Abaqus FEA) Version 6.8"(2006), Dassault Systemes. Retrieved June 9,
2008, from http://www.simulia.com/products/abaqus_fea.html.

de Kleer, J. (1992). Qualitative Physics. Encyclopedia of Artificial Intelligence, John
Wiley & Sons.

de Kleer, J. and Brown, J.S. (1984). "A Qualitative Physics Based on Confluences."
Artificial Intelligence 24(1-3): 7-83.

"DFXpert", DFXpert (SFM Technology Inc.). Retrieved April 13, 2008, from
http://sfmtech.com/products.htm.

Diaz-Calderon, A., Paredis, C.J.J. and Khosla, P.K. (2000). Organization and selection of
reconfigurable models. Proceedings of WSC 2000, Winter Simulation Conference,
Orlando, FL, USA 10-13 Dec., IEEE; Piscataway, NJ, USA.

Donaghy, R.J., W. McCune, S.J. Bridgett, C.G. Armstrong, D.J. Robinson, R.M. McKeag
(1996). Dimensional Reduction of Analysis Models. 5th International Meshing
Roundtable, Sandia National Laboratories, Albuquerque, NM.

Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G. (1999). Handbook of Graph
Grammars and Computing by Graph Transformation: Applications, Languages and
Tools (Volume 2), World Scientific Publishing Company.

Engels, G. and Heckel, R. (2000). "Graph Transformation and Visual Modeling
Techniques." Bulletin of the European Association for Theoretical Computer Science
(EATCS) 71.

"iSIGHT"(2007), Engineous Software. Retrieved October 19, 2008, from
http://www.engineous.com/iSIGHT.cfm.

Falkenhainer, B. and Forbus, K.D. (1991). "Compositional modeling: finding the right
model for the job." Artificial Intelligence 51: 95-143.

Fenves, S.J. (2004). CPM 2: A Revised Core Product Model for Representing Design
Information (NISTIR 7185), National Institute of Standards and Technology, NISTIR
7185,

 352

Fenves, S.J., Choi, Y., Gurumoorthy, B., Mocko, G. and Sriram, R.D. (2003). Master
Product Model for the Support of Tighter Integration of Spatial and Functional Design,
National Institute of Standards and Technology, NISTIR 7004,

Finn, D.P. (1993). "A Physical Modeling Assistant For The Preliminary Stages Of Finite
Element Analysis." Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 7(4): 275-286.

Fishwick, P.A. (1995). Simulation model design. Winter Simulation Conference,
Arlington, Virginia, USA December 3-6, 1995.

Friedenthal, S.A. (2006). MDA For Systems Engineering Concepts. Systems Engineering
Domain Special Interest Group (SE DSIG) Meeting, St. Louis, MO, USA April 25, 2006.

Gamma, E., Johnson, R., Helm, R. and Vlissides, J.M. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. 1, Addison-Wesley.

Gere, J.M. and Timoshenko, S.P. (1997). Mechanics of Materials, PWS Publishing
Company.

Gero, J.S. (1990). "Design Prototypes: a knowledge representation schema for design."
AI Magazine 11(4): 26-36.

Giarratano, J.C. and Riley, G.D. (1998). Expert Systems: Principles and Programming.
3rd, Brooks/Cole.

Gordon, S. (2001). An Analyst’s View: STEP-Enabled CAD-CAE Integration. NASA’s
STEP for Aerospace Workshop, JPL, Pasadena, CA Jan 17, 2001.

Gross, J.L. and Yellen, J. (2003). Handbook of Graph Theory. Edition 1, CRC Press
LLC.

Grosse, I.R., Milton-Benoit, J.M. and Wileden, J.C. (2005). "Ontologies for supporting
engineering analysis models." Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (AI EDAM) 19(1): 1-18.

"Ontology"(2007), Gruber, T. Retrieved Mar 23, 2008, 2008, from
http://tomgruber.org/writing/ontology-definition-2007.htm.

Gruber, T.R. (1992). Model Formulation as a Problem Solving Task: Computer-assisted
Engineering Modeling, Knowledge Systems Laboratory, Computer Science Department,
Stanford University, KSL 92-57, http://www-ksl.stanford.edu/KSL_Abstracts/KSL-92-
57.html

Gruber, T.R. (1995). "Toward principles for the design of ontologies used for knowledge
sharing." International Journal of Human-Computer Studies 43(5-6): 907-928.

 353

Hoffman, C.M. and Joan-Arinyo, R. (1998). "CAD and the product master model."
Computer-Aided Design 30(11): 905-918.

"AP209 ARM Overview"(2001), Hunten, K. Retrieved Jun 20, 2006, from
http://pdesinc.aticorp.org/graphics/aps/ap209_tutorial.ppt.

"IDA-STEP v4.0"(2008), IDA-STEP (LKSoft). Retrieved April 13, 2008, from
http://www.ida-step.net/.

"STEP Part 11, Description method: The EXPRESS language reference manual "(2001),
ISO 10303-11. Retrieved Jun 20, 2006, from http://www.tc184-sc4.org/SC4_Open/SC4
Legacy Products (2001-08)/STEP_(10303)/1-99/documentation.cfm.

"STEP Part 42, edition 2, Integrated generic resource: Geometric and topological
representation"(2000), ISO 10303-42. Retrieved April 12, 2008, from http://www.tc184-
sc4.org/SC4_Open/SC4 Legacy Products (2001-08)/STEP_(10303)/1-
99/documentation.cfm.

"STEP Part 104, Integrated application resource: Finite element analysis "(2000), ISO
10303-104. Retrieved Jun 20, 2006, from http://www.tc184-
sc4.org/SC4_Open/SC4_Work_Products_Documents/STEP_(10303)/100-199/.

"STEP Part 203, Application protocol: Configuration controlled 3D designs of
mechanical parts and assemblies "(2000), ISO 10303-203. Retrieved Jun 20, 2006, from
http://www.tc184-sc4.org/SC4_Open/SC4 Legacy Products (2001-
08)/STEP_(10303)/200-299/documentation.cfm.

"STEP Part 209, Application protocol: Composite and metallic structural analysis and
related design"(2001), ISO 10303-209. Retrieved Jun 20, 2006, from http://www.tc184-
sc4.org/SC4_Open/SC4 Legacy Products (2001-08)/STEP_(10303)/200-
299/documentation.cfm.

"STEP Part 210, Application protocol: Electronic assembly, interconnect, and packaging
design"(2001), ISO 10303-210. Retrieved Jun 20, 2006, from http://www.tc184-
sc4.org/SC4_Open/SC4 Legacy Products (2001-08)/STEP_(10303)/200-
299/documentation.cfm.

"STEP Part 214, Application protocol: Core data for automotive mechanical design
processes"(2003), ISO 10303-214. Retrieved April 12, 2008, from http://www.tc184-
sc4.org/SC4_Open/SC4 Legacy Products (2001-08)/STEP_(10303)/200-
299/documentation.cfm.

"STEP Part 215, Application protocol: Ship arrangement"(2001), ISO 10303-215.
Retrieved April 12, 2008, from http://www.tc184-sc4.org/SC4_Open/SC4 Legacy
Products (2001-08)/STEP_(10303)/200-299/documentation.cfm.

 354

"STEP Part 216, Application protocol: Ship moulded forms"(2000), ISO 10303-216.
Retrieved April 12, 2008, from http://www.tc184-sc4.org/SC4_Open/SC4 Legacy
Products (2001-08)/STEP_(10303)/200-299/documentation.cfm.

"STEP Part 218, Application protocol: Ship structures"(2000), ISO 10303-218.
Retrieved April 12, 2008, from http://www.tc184-sc4.org/SC4_Open/SC4 Legacy
Products (2001-08)/STEP_(10303)/200-299/documentation.cfm.

Konigs, A. (2005). Model Transformation with Triple Graph Grammars
Model Transformations in Practice Workshop - MoDELS 2005 Conference October 3,
2005.

Krauthammer, T. and Ventsel, E. (2001). Thin Plates & Shells: Theory, Analysis, &
Applications, New York, Marcel Dekker, Inc.

Law, A.M. and Kelton, W.D. (2000). Simulation Modeling and Analysis. 3rd edition,
McGraw-Hill.

Li, X. (1991). Quality time-What's so bad about rule-based programming? IEEE
Software. 8: 103,105.

Ling, R., Steinberg, L. and Jaluria, Y. (1993). "MSG: A Computer System for Automated
Modeling of Heat Transfer ". Journal of Artificial Intelligence in Engineering Design,
Analysis and Manufacturing 7 (4): 287-300. .

MARTE (2008). OMG Modeling and Analysis of Real-time and Embedded systems
(MARTE) -- UML Profile for MARTE (Beta 2), http://www.omgmarte.org/

Mortenson, M.E. (1997). Geometric Modeling. 2nd edition, John Wiley & Sons.

Mullins, S. and Rinderle, J.R. (1991). "Grammatical Approaches to Engineering Design,
Part 1: An Introduction and Commentary." Research in Engineering Design 2(33): 121-
135.

NSF (2006). Simulation-Based Engineering Science, National Science Foundation,
http://www.nsf.gov/pubs/reports/sbes_final_report.pdf

"Design Simulation Environment", NX CAE (Siemens PLM). Retrieved November 15,
2008, from
http://www.plm.automation.siemens.com/en_us/products/nx/simulation/index.shtml.

Pahl, G. and Beitz, W. (1996). Engineering design: A Systematic Approach. 2nd, London,
U.K., Springer-Verlag.

 355

Paredis, C.J.J., Diaz-Calderon, A., Sinha, R. and Khosla, P.K. (2001). "Composable
Models for Simulation-Based Design." Engineering with Computers 17(2): 112-128.

"PCB Layer Stack Editor"(2008), PCB Layer Stack Editor (LKSoft). Retrieved April
21, 2008, from http://www.ida-step.net/components/editors/pcb-layer-stack.

Peak, R., Fulton, R., Chandrasekhar, A., Cimtalay, S., Hale, M.A., Koo, D., Ma, L.,
Scholand, A.J., Tamburini, D.R. and Wilson, M.W. (1999). Design-Analysis Associativity
Technology for PSI, Phase I Report: Pilot Demonstration of STEP-based Stress
Templates, Georgia Institute of Technology,
http://www.eislab.gatech.edu/pubs/reports/boeing-psi-1998/

Peak, R., Wilson, M., Kim, I., Udoyen, N., Bajaj, M., Mocko, G., Liutkus, G., Klein, L.
and Dickerson, M. (2002). Creating Gap-Filling Applications Using STEP Express,
XML, and SVG-based Smart Figures - An Avionics Example. NASA-ESA Workshop on
Aerospace Product Data Exchange, ESA/ESTEC, Noordwijk (ZH), The Netherlands
April 9-12, 2002.

Peak, R.S. (1993). "Product Model-Based Analytical Models (PBAMs): A New
Representation of Engineering Analysis Models," PhD thesis, Mechanical Engineering,
The Georgia Institute of Technology, Atlanta, GA, USA

Peak, R.S. (2003). Characterizing Fine-Grained Associativity Gaps: A Preliminary Study
of CAD-CAE Model Interoperability. ASME International DETC / CIE, Chicago Sep 2-6,
2003.

Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M. and Kim, I.
(2007). Simulation-Based Design Using SysML Part 1: A Parametrics Primer. The
Seventeenth International Symposium of the International Council on Systems
Engineering, San Diego, California, USA June 24 -28, 2007.

Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M. and Kim, I.
(2007). Simulation-Based Design Using SysML Part 2: Celebrating Diversity by
Example. The Seventeenth International Symposium of the International Council on
Systems Engineering, San Diego, California, USA June 24 -28, 2007.

Peak, R.S. and Fulton, R.E. (1994). A Multi-Representation Approach to CAD/CAE
Integration: Research Overview,

Peak, R.S., Fulton, R.E., Nishigaki, I. and Okamoto, N. (1998). "Integrating engineering
design and analysis using a multi-representation approach." Engineering with Computers
14(2): 93-114.

Peak, R.S., Paredis, C.J.J. and Tamburini, D.R. (2005). The Composable Object (COB)
Knowledge Representation: Enabling Advanced Collaborative Engineering
Environments (CEEs), COB Requirements & Objectives (v1.0), The Georgia Institute of

 356

Technology, http://www.eislab.gatech.edu/projects/nasa-
ngcobs/COB_Requirements_v1.0.pdf

Peak, R.S., Scholand, A.J., Tamburini, D.R. and Fulton, R.E. (1999). "Towards the
Routinization of Engineering Analysis to Support Product Design." Invited Paper for
Special Issue: Advanced Product Data Management Supporting Product Life-Cycle
Activities, International Journal of Computer Applications in Technology 12(1): 1-15.

"ModelCenter"(2007), Phoenix Integration. Retrieved June 9, 2008, from
http://www.phoenix-int.com/products/modelcenter.php.

Pratt, M.J. (1995). Virtual Prototypes and Product Models in Mechanical Engineering,
National Institute of Standards and Technology, NISTIR 5650,
www.citeseer.ist.psu.edu/article/pratt95virtual.html

"RacerPro"(1997), RacerPro. Retrieved April 12, 2008, from http://www.sts.tu-
harburg.de/~r.f.moeller/racer/.

Rachuri, S., Han, Y.-H., Foufou, S., Feng, S.C., Roy, U., Wang, F., Sriram, R.D. and
Lyons, K.W. (2006). "A Model for Capturing Product Assembly Information." Journal of
Computing and Information Science in Engineering 6(1): 11-21.

Reddy, J.N. (1993). An Introduction to the Finite Element Method. 2nd Edition, USA,
McGraw-Hill Book Company.

Robinson, S., Nance, R.E., Paul, R.J., Pidd, M. and Taylor, S.J.E. (2004). "Simulation
model reuse: definitions, benefits and obstacles." Simulation Modelling Practice and
Theory 12(7-8): 479–494.

Rumbaugh, J., Jacobson, I. and Booch, G. (2004). The Unified Modeling Language
Reference Manual, Pearson Education.

Schenck, D.A. and Wilson, P.R. (1994). Information Modeling: The EXPRESS Way, New
York, NY, Oxford University Press.

Sellgren, U. (2003). Architecting Models of Technical Systems for Non-Routine
Simulations. International Conference on Engineering Design (ICED), Stockholm,
Sweden Aug 19-21, 2003.

Shephard, M.S., Beall, M.W., O'Bara, R.M. and Webster, B.E. (2004). "Towards
simulation-based design." Finite Elements in Analysis and Design 40(12, Special Issue:
The Fifteenth Annual Robert J. Melosh Competition): 1575-1598.

"Simulation Application Suite"(2006), Simmetrix Inc. Retrieved Jun 20, 2006, from
http://simmetrix.com/products/SimulationApplicationSuite/main.html.

 357

"Associative Interfaces for CAD Systems"(2008), Simulia ABAQUS. Retrieved April
12, 2008, 2008, from
http://www.simulia.com/products/associative_interfaces.html?SolidW?im04#SolWork.

Sinha, R., Paredis, C.J.J. and Khosla, P.K. (2000). Integration of mechanical CAD and
behavioral modeling. Proceedings 2000 IEEE/ACM International Workshop on
Behavioral Modeling and Simulation, Orlando, FL, USA 19-20 Oct., IEEE Computer
Society; Los Alamitos, CA, USA.

"OMG Systems Modeling Language (OMG SysML)"(2006), SysML. Retrieved Jun 20,
2006, from http://www.omgsysml.org/.

SysML (2007). OMG Systems Modeling Language (OMG SysML) v1.0 -- OMG
Available Specification, http://www.omgsysml.org/

Tamburini, D.R. (1999). "The Analyzable Product Model Representation to Support
Design-Analysis Integration," PhD thesis, Georgia Institute of Technology, Mechanical
Engineering

Taylor and Francis (Inverse Problems in Science and Engineering) (2008). Inverse
Problems in Science and Engineering

Timoshenko, S.P. and Goodier, J.N. (1970). Theory of Elasticity. 3rd Edition, Singapore,
McGraw-Hill Book Company.

Turkiyyah, G.M. and Fenves, S.J. (1996). "Knowledge-based assistance for finite-
element modeling." IEEE Expert: Intelligent Systems and Their Applications 11(3): 23-
32.

"OMG Unified Modeling Language (UML)"(2004), UML 2. Retrieved Feb 12, 2007,
from http://www.uml.org/.

"OMG Unified Modeling Language (UML), Superstructure, V2.1.2"(2007), UML 2.
Retrieved May 19, 2008, from http://www.uml.org/.

"OMG UML 2.0 Object Constraint Language"(2004), UML 2 OCL. Retrieved Feb 12,
2007, from http://www.uml.org/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL.

Valiente, G. and Martinez, C. (1997). An algorithm for graph pattern-matching. Fourth
South American Workshop on String Processing, Valparaso, Chile November 14-15,
Carleton University Press.

Varro, D. and Balogh, A. (2007). "The model transformation language of the VIATRA2
framework." Science of Computer Programming 68(3): 214-234.

 358

Varro, D., Varro, G. and Pataricza, A. (2002). "Designing the automatic transformation
of visual languages." Science of Computer Programming 44(2): 205-227.

Ventsel, E. and Krauthammer, T. (2001). Thin Plates and Shells - Theory, Analysis, and
Applications, New York, Marcel Dekker, Inc.

VIATRA (2007). VIATRA2 sub-project and specifications, Eclipse Generative Model
Transformer project (GMT).

"W3C HTML Specifications"(1999), W3C. Retrieved Mar 23, 2008, 2008, from
http://www.w3.org/TR/REC-html40/.

Wilson, M. (2000). "The Constrained Object Representation for Engineering Analysis
Integration. ," MS thesis, Mechanical Engineering, The Georgia Institute of Technology,
Atlanta, GA, USA

Wilson, M., Peak, R.S. and Fulton, R.E. (2001). Enhancing Engineering Design and
Analysis Interoperability - Part 1: Constrained Objects. First MIT Conference
Computational Fluid and Structural Mechanics (CFSM), Cambridge, Massachusetts,
USA Jun 12-15, 2001.

"Mathematica"(2008), Wolfram Mathematica. Retrieved April 1, 2008, from
http://www.wolfram.com/products/mathematica/index.html.

"XaiTools"(1999), XaiTools (Georgia Tech). Retrieved April 21, 2008, 2008, from
http://www.eislab.gatech.edu/tools/xaitools/.

Yip, K.M.-k. (1993). Model Simplification by Asymptotic Order of Magnitude Reasoning.
11th National Conference on Artificial Intelligence, Washington, DC, USA July 11-15,
1993, The AAAI Press.

Zeng, S. (2004). "Knowledge-based FEA Modeling Method for Highly Coupled Variable
Topology Multi-body Problems," PhD thesis, Mechanical Engineering, Georgia Institute
of Technology, Atlanta

Zeng, S., Peak, R.S., Xiao, A. and Sitaraman, S. (2008). "ZAP: a knowledge-based FEA
modeling method for highly coupled variable topology multi-body problems."
Engineering with Computers 24(4): 359-381.

"System Designer - Design entry tools and utilities", Zuken CR-5000 PSpice & HSpice.
Retrieved April 13, 2008, from http://www.zuken.com/cr-5000/system_designer.asp.

Zwemer, D., Bajaj, M., Peak, R., Thurman, T., Brady, K., McCarron, S., Spradling, A.,
Dickerson, M., Klein, L., Liutkus, G. and Messina, J. (2004). PWB Warpage Analysis
and Verification Using an AP210 Standards-based Engineering Framework and Shadow
Moiré. IEEE EuroSimE, Brussels, Belgium May 10-12, 2004.

	Knowledge Composition Methodology for Effective Analysis Problem Formulation in Simulation-based Design
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Summary
	Chapter 1 : Introduction
	Part 1: Problem Definition
	Chapter 2 : Problem Description
	2.1 Description of basic concepts
	2.2 Aspects of simulation-based design foundational to this research
	2.2.1 Integrated Functional and Spatial Design
	2.2.2 Simulation Templates
	2.2.2.1 Effort in creating simulation templates
	2.2.2.2 Robustness of simulation templates

	2.3 Variable Topology Multi-Body (VTMB) Problems
	2.4 Primary Research Question and Gaps
	2.4.1 Primary Research Question
	2.4.2 Research Gaps

	2.5 Summary

	Chapter 3 : Related Research
	3.1 Design Information and Knowledge Modeling
	3.2 Behavior Modeling
	3.2.1 Types of behavior models
	3.2.2 Formulating behavior models
	3.2.2.1 CAD-FEA integration
	3.2.2.2 Heuristic frameworks
	3.2.2.3 Simulation templates

	3.2.3 Analysis knowledge and reuse

	3.3 Model Definition and Transformation
	3.3.1 Model Definition
	3.3.2 Model Transformations

	3.4 Summary

	Chapter 4 : Research Gaps, Questions & Hypotheses
	4.1 Primary Research Question (PRQ) and Hypothesis (PRH)
	4.2 Secondary Research Questions and Hypotheses (SRQ/Hs)

	Part 2: Knowledge Composition Methodology (KCM)
	Chapter 5 : KCM Overview
	5.1 Requirements
	5.2 Use Cases
	5.3 Organization of KCM Components

	Chapter 6 : CPM2_xKCM - An Artifact Meta-Model
	6.1 Description of CPM2_xKCM
	6.1.1 CPM2_xKCM View 1: CPM2 with minor modifications for the Knowledge Composition Methodology
	6.1.2 CPM2_xKCM View 2: New concepts added to CPM2 for the Knowledge Composition Methodology

	6.2 VTMB Artifact Design Models – Abstractions and Examples
	6.3 Summary

	Chapter 7 : Core Behavior Model (CBM) – An Artifact Behavior Meta-Model
	7.1 Core Behavior Model
	7.1.1 Overview
	7.1.2 Description

	7.2 ABB Meta-Model
	7.2.1 Analysis building block (ABB) model
	7.2.1.1 ABB Context - what concept is being represented?
	7.2.1.2 ABB Property - how is this concept represented?
	7.2.1.3 ABB Application Conditions – what are the conditions for using this concept?
	7.2.1.4 ABB Transformation Rules – how does one use this concept?

	7.2.2 Analysis building block (ABB) system model

	7.3 ABB Model Library
	7.3.1 Analysis Body ABBs
	7.3.2 Material Behavior ABBs
	7.3.3 Behavior ABBs
	7.3.4 Analysis Feature ABBs
	7.3.5 Analysis Body Interaction ABBs
	7.3.6 Analysis Body System ABBs
	7.3.7 Load ABBs
	7.3.8 Behavior Condition ABBs

	7.4 Behavior Models
	7.4.1 Abstractions
	7.4.2 Examples

	7.5 Analysis Knowledge Dimensions
	7.5.1 Behavior Dimension
	7.5.2 Analysis Body Dimension
	7.5.3 Load Dimension
	7.5.4 Behavior Condition Dimension

	7.6 Summary

	Chapter 8 : Behavior Model Formulation Method
	8.1 Overview
	8.2 Composing Behavior Model Structures and Simulation Templates
	8.2.1 Stages of composition
	8.2.2 Semantics of composition
	8.2.3 Mechanics of composition

	8.3 Behavior Model Formulation Specifications
	8.3.1 Conceptual Specifications
	8.3.2 Computable Specifications

	8.4 Artifact Model Transformation Library (AMTL)
	8.4.1 Stage 1 composition - transformation rules and patterns
	8.4.2 Stage 2 composition – transformation rules and patterns
	8.4.3 Stage 3 composition – transformation rules and patterns
	8.4.4 Stage 4 composition – transformation rules and patterns
	8.4.5 Analyzable artifact model patterns

	8.5 Summary

	Part 3: Verification & Validation, Future Work, and Closure
	Chapter 9 : Test Cases
	9.1 Models in VIATRA Model Transformation Framework
	9.2 Test Case Family 1 (TCF1): Thermo-mechanical Analysis of Multi-Layered Printed Wiring Boards
	9.2.1 Behavior Model Formulation Specifications 1 (BMFS1)
	9.2.1.1 Simulation Template 51: Simulation template for 5-stratum analyzable PWB design model structure and BMFS1
	9.2.1.2 Simulation Template 91: Simulation template for 9-stratum PWB design model structure and BMFS1

	9.2.2 Behavior Model Formulation Specifications 2 (BMFS2)
	9.2.2.1 Simulation Template 52: Simulation template for 5-stratum PWB design model structure and BMFS2
	9.2.2.2 Simulation Template 92: Simulation template for 9-stratum PWB design model structure and BMFS2

	9.3 Test Case Family 2 (TCF2): Thermo-mechanical Analysis of Ball Grid Array (BGA) Chip Packages
	9.3.1 Behavior Model Formulation Specifications 1 (BMFS1)
	9.3.1.1 Simulation Template 161: Simulation template for 16-solder ball analyzable BGA model structure and BMFS1
	9.3.1.2 Simulation Template 361: Simulation template for 36-solder ball analyzable BGA model structure and BMFS1

	9.3.2 Behavior Model Formulation Specifications 2 (BMFS2)
	9.3.2.1 Simulation Template 162: Simulation template for 16-solder ball analyzable BGA model structure and BMFS2
	9.3.2.2 Simulation Template 362: Simulation template for 36-solder ball analyzable BGA model structure and BMFS2

	9.4 Execution of Simulation Templates
	9.5 Validation of Research Hypotheses
	9.5.1 Validation of Secondary Research Hypothesis 1
	9.5.2 Validation of Secondary Research Hypothesis 2
	9.5.3 Validation of Primary Research Hypotheses
	9.5.3.1 VTMB Design Variations
	9.5.3.2 Idealization Variations
	9.5.3.3 Formulation Efficiency

	9.6 Summary

	Chapter 10 : Research Contributions and Future Work
	10.1 Research Contributions
	10.2 Recommended Future Work

	Chapter 11 : Closure
	Appendices
	References

