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Dedicated to that mysterious Power:

Who requires odd holes for imperfection in graphs

And ensures unimodularity of network flows

Who converges large numbers towards normality

And lets greediness work for the spanning tree

Who animates the intelligence inside us

And creates the world-illusion around us

She is the seed of all creativity

And without Her grace

This work would forever remain

a mere potentiality
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SUMMARY

We study the facial structure of the independent set polytope using the con-

cept of conflict hypergraphs. A conflict hypergraph is a hypergraph whose vertices

correspond to the binary variables, and edges correspond to covers of the constraint

matrix of the independent set polytope. Various structures such as cliques, odd holes,

odd anti-holes, webs and anti-webs are identified on the conflict hypergraph. These

hypergraph structures are shown to be generalization of traditional graph structures.

Valid inequalities are derived from these hypergraph structures, and the facet defining

conditions are studied. Chvatal-Gomory ranks are derived for odd hole and clique

inequalities. To test the hypergraph cuts, we conduct computational experiments on

market-share (also referred to as market-split) problems. These instances consist of

100% dense multiple-knapsack constraints. They are small in size but are extremely

hard to solve by traditional means. Their difficult nature is attributed mainly to the

dense and symmetrical structure. We employ a special branching strategy in com-

bination with the hypergraph inequalities to solve many of the particularly difficult

instances. Results are reported for serial as well as parallel implementations.

ix



CHAPTER I

INTRODUCTION

We begin by defining an independence system. Let N = {1, . . . , n} be a set of base

elements. Let I be a collection of subsets of N such that ∅ ∈ I, and I1 ⊂ I2 ∈ I

implies I1 ∈ I. Then the pair S = (N, I) is called an independence system. Members

of I are called independent sets. Any H ⊂ N such that H /∈ I is called a dependent

set. The combinatorial optimization problem associated with S is the following:

Given a weight wj for each j ∈ N , find the independent set that has the maximum

possible total weight. This combinatorial optimization problem is referred to as the

independent set problem.

The independent set problem occurs in many areas of operations research. Some

of the well known problems in graphs theory (such as vertex packing and maximum

clique problem) can be shown to be equivalent to the independent set problem. Knap-

sack problem is another well-known problem that can be modeled as an independent

set problem. Many variants of packing and covering problems are also closely related

to it. The reader may refer to [35, 38] for a detailed exposition.

In this thesis we are concerned with the following form of the independent set

problem: ISP = {x ∈ {0, 1}n : Ax ≤ b}, where A ∈ Rm×n
+ , and b ∈ Rm

+ (m and n

being positive integers).

Many of the successful strategies for solving ISP involve generation of strong

cutting planes. Among all the cutting planes, the strongest are those that define

facets of the independent set polytope P ISP = conv(ISP ), which is the convex hull

of feasible solutions to ISP [17, 26, 32, 35, 27].

Research concerning the facial structure of P ISP has been reported since the early
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1970’s. In this thesis, we investigate the facial structure of P ISP via the concept of

conflict hypergraphs.

Padberg [36] introduced the notion of intersection graphs in context of set packing

problems. He showed that various graph structures such cliques and odd holes on

the intersection graph can be used to derive facets of the set packing polyhedra.

Another early paper on covering, packing and knapsack problems is by Padberg [37].

Cornuéjols and Sassano [15] studied the facial structure of the set covering polytope

by defining a bipartite incidence graph, and using critical edges and cutsets on that

graph to derive facets.

Several researchers have extended these ideas. Golumbic talked about interval

graphs [24]. Others used conflict graphs that can be defined on any constraint matrix

(not just 0 − 1 matrices found in set covering and packing). The vertices of such

a conflict graph correspond to the binary variables, and two vertices are connected

by an edge if the associated variables cannot both be equal to 1. This concept was

utilized by Lee and Bixby [30, 10] to solve truck dispatching and scheduling problems.

Atamtürk et al. [5] developed algorithms and data structures for effective and efficient

construction, management, and utilization of dynamically changing conflict graphs.

Atamtürk et al. [6] also studied the mixed vertex packing problem. Borndörfer [12]

studied set packing, covering and partitioning problems.

A number of researchers have tried to generalize the notion of graph structures

such as cliques and cycles. Euler et al. [21] generalized cliques, odd cycles and

anticycles to get facets of independence system polyhedra. Laurent [29] generalized

antiwebs. Müller and Schulz [33] presented the idea of transitive packings. Another

important paper is by Sekiguchi [40]. He investigated the node packing problem

on hypergraphs, and mentioned the connection between the knapsack polytope and

hypergraphs. Easton et al. [18] extended the idea of conflict graphs, and used conflict

hypergraphs to generate facets for P ISP . They identified hypercliques in the conflict

2



hypergraph, and derive facet-defining inequalities from them.

In this thesis, we identify structures such as odd holes, odd antiholes, cliques,

webs and antiwebs in the conflict hypergraph. We utilize these structures to obtain

valid inequalities for P ISP , and identify conditions under which these valid inequal-

ities become facet-defining. We also investigate the Chvatal-Gomory ranks of these

inequalities, and investigate the separation problem. Computational experiments will

be presented to verify the usefulness of conflict hypergraphs. Results from serial as

well as parallel implementations are presented.
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CHAPTER II

THEORETICAL INVESTIGATION

In this chapter, we present the theoretical results pertaining to conflict hypergraphs,

valid inequalities and facets. We begin by describing the notation and summarizing

some of the preliminary fundamental concepts. We then provide definitions of vari-

ous hypergraph structures, and derive theoretical results related to these structures.

We derive valid inequalities, and investigate the facet-defining conditions. Chvatal-

Gomory ranks are studied for some of the valid inequalities. Finally, we investigate

the issue of separation.

2.1 Preliminaries

The concepts of graphs and hypergraphs are used extensively in this work. Berge [8]

is a good reference for both subjects. Formally, a graph G consists of a finite set of

vertices V (G) = {1, . . . , n} and a set of edges E(G) = {e1, . . . , eq} where elements

of E(G) are subsets of V (G) of size 2. A hypergraph H = (V (H), E(H)) consists

of a set of vertices V (H) and a set of edges E(H) ⊆ 2V (H) where 2V (H) denotes the

power set of V (H). Hypergraphs with a constant edge size are also known as uniform

hypergraphs. A uniform k-hypergraph is a hypergraph in which the cardinality of each

edge is k. A graph is equivalent to a uniform 2-hypergraph. Figure 1 visually depicts a

hypergraph H with vertex set V (H) = {1, . . . , 21} and edge set E(S) = {e1, . . . , e6}.

A hypergraph S = (V (S), E(S)) is called an induced sub-hypergraph of a hy-

pergraph H if E(S) ⊆ E(H). In Figure 1, hypergraph S with vertex set V (S) =

{1, 2, 3, 4, 19, 20, 21} and edge set E(S) = {e1, e2} can be considered an induced sub-

hypergraph in H.

A vertex packing I ⊆ V (H) on a hypergraph H is defined as a set of vertices for
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Figure 1: Example of a hypergraph.

which there does not exist an edge e ∈ E(H) such that e ⊆ I. Thus, a vertex packing

cannot contain all the vertices of an edge. A vertex packing on a hypergraph will

be called maximum if there does not exist another packing with a higher cardinality.

For brevity, we will sometimes refer to vertex packing as simply a packing.

Refer again to Figure 1. The set I1 = {5, 6, 7, 8} is a vertex packing. So is the

set I2 = {2, 3, 19, 21, 20, 17, 18}. Neither of these packings are maximum. The set

{1, 2, 19, 20} is not a valid packing because all the vertices of the edge e1 are selected.

For a hypergraph H, we denote by uj the unit vector of length |V (H)| with a 1 in

jth place and 0’s elsewhere. Thus, uj is the characteristic vector to denote that the

vertex j ∈ V (H) is selected. Also, let uP =
∑

j∈P uj for any P ⊆ V (H). Thus, uP is

the characteristic vector to denote that the subset P of vertices in the hypergraph H

is chosen.

The dimension of polytope P is d, denoted by dim(P ) = d, if the maximum

number of affinely independent points in P is d + 1. An inequality (π, π0) ∈ Rn × R
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is valid for a polytope P if πx ≤ π0 ∀ x ∈ P . In this case, F = {x ∈ P : πx = π0} is

called a face of P . If the dimension of F is one less than the dimension of P , then F

is called a facet of P and the valid inequality (π, π0) is said to be facet-defining for

P . The reader can refer to Nemhauser and Wolsey [35] for details.

Consider the independent set polytope P ISP (defined earlier). Without loss of

generality, we assume aij ≤ bi for all j = 1, . . . , n, i = 1, . . . ,m. Under these as-

sumptions, the set of unit vectors {uj : j = 1, . . . , n} along with the 0 vector are

n + 1 affinely independent points that are feasible to P ISP . Therefore, P ISP is full-

dimensional, that is, dim(P ISP ) = n.

Every ISP instance induces a conflict hypergraph H, where V (H) = {1, . . . , n},

and E(H) = {e ⊂ V (H) :
∑

j∈e Aj ! b} where Aj indicates the jth column of matrix

A.

Thus, every variable of the ISP instance corresponds to a vertex of H, and a

subset of vertices comprises an edge if and only if the corresponding variables in

the ISP instance form a dependent set (cover). We will use the words vertex and

variables interchangeably because of the one-to-one correspondence between them.

An edge is said to be minimal if it represents a minimal dependent set (or a

minimal cover) in the ISP instance. A conflict hypergraph will be called minimal if

all of its edges are minimal. The concept of a minimal conflict hypergraph will be

used later to facilitate the derivation of certain theoretical results.

Consider the following ISP instance given in Example 2.1.1. The minimal conflict

hypegraph induced by this instance is shown in figure 2. The hypergraph contains

vertices {1, . . . , 20}. There exists an edge for every minimal cover. For example,

{x1, x19, x20} form a minimal cover in the second constraint of the ISP instance.

Therefore, the hypergraph contains the edge {1, 19, 20}. Similarly, {x10, x11} form a

minimal cover in the sixth constraint of the ISP instance. Hence, the hypergraph

contains the edge {10, 11}. Other edges are generated in a similar manner.
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Example 2.1.1.

2x1 + 4x2 + 3x3 + x4 + x5 ≤ 10

x1 + x19 + x20 ≤ 2

x4 + x5 + x6 + x7 ≤ 3

3x19 + 2x18 + 5x11 ≤ 9

2x6 + 3x7 + x11 ≤ 5

x10 + x11 ≤ 1

x10 + 2x12 + 3x17 + 4x19 ≤ 9

x10 + x13 ≤ 1

x13 + x16 ≤ 1

x13 + x14 + x15 ≤ 2

2x6 + 5x7 + 10x8 + 7x9 ≤ 23

x9 + x11 ≤ 1

23x6 + 13x7 + 17x10 ≤ 50

29x9 + 84x10 ≤ 86

xj ∈ {0, 1} ∀j = 1, . . . , 20

The vertex packing problem on H is defined as V PP = {x ∈ {0, 1}n :
∑

j∈e xj ≤

|e| − 1, e ∈ E(H)}. Let P V PP = conv(V PP ).

Observe that a feasible solution to the ISP instance represents a feasible vertex

packing on the conflict hypergraph, but a feasible vertex packing on the conflict

hypergraph may not represent a feasible solution to the ISP instance. However, a

feasible vertex packing on a minimal conflict hypergraph represents a feasible solution

to the ISP instance.

For an induced sub-hypergraph S of H, we define P ISP
S to be P ISP restricted only

to variables in S; that is, P ISP
S = conv{x ∈ {0, 1}n : Ax ≤ b, xj = 0 ∀j /∈ V (S)}.

7



Figure 2: Conflict hypergraph for the
ISP instance given in Example 2.1.1.

2.2 Hypergraph Structures

In this section we define several hypergraph structures that will be investigated in

subsequent sections. A conflict hypergraph generated from an ISP instance can have

a very broad range of structures. Herein, the definitions are somewhat restrictive,

as they are defined to facilitate the proof of certain theoretical results for a large

group of hypergraph structures. The definitions and results will be extended to more

general cases in Section 2.5.

Definition. 2.2.1 For integer d ≥ 3, let P 1, . . . , P d be finite, mutually disjoint, non-

empty sets. Let S be a hypergraph with vertex set V (S) =
⋃d

j=1 P j. We will refer to

P j’s as partitions of S, j = 1, . . . , d. Let k be an integer such that 1 ≤ k ≤ d
2 .

1. If d is odd and S has the edge set E(S) = {P i∪P i+1 : i = 1, . . . , d, P d+1 ≡ P 1},

then S is called an odd hole.

2. If d is odd and S has the edge set E(S) = {P i∪P j : |i− j| ≥ 2, i, j = 1, . . . , d},

then S is called an odd antihole.

8



Figure 3: Odd hole with five partitions.

3. If S has the edge set E(S) = {P i ∪ P j : i, j = 1, . . . , d, i -= j}, then S is called

a clique.

4. If S has the edge set E(S) = {P i ∪ P j : i = 1, . . . , d, j = i + k, . . . , i + d − k},

where P d+l ≡ P l for all l = 1, . . . , d, then S is called a web.

5. If S has the edge set E(S) = {P i ∪P j : i = 1, . . . , d, j = 1, . . . , i + k− 1, i + d−

k + 1, . . . , d}, where P d+l ≡ P l for all l = 1, . . . , d, then S is called an antiweb.

For the the last two definitions, we will call k the step size of the web or the

antiweb.

In all these definitions, if all the partitions were singletons, then the cardinality

of all edges becomes two, in which case they reduce to the corresponding graph

structures.

Figures 3, 4, 5, 6 and 7 give examples of each of the defined hypergraph structures.

The hypergraph shown in Figure 3 represents an odd hole consisting of five partitions.

The edges and the partitions are labeled. For example, vertices 1, 2, 3 comprise one

9



Figure 4: Odd antihole with seven parti-
tions.

Figure 5: Clique with four partitions.
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Figure 6: Web with eight partitions and
step size three.

Figure 7: Antiweb with eight partitions
and step size three.

11



(a) Hypergraph (b) Reduced graph

Figure 8: Odd hole with five partitions and the associated reduced graph.

partition, P1. Similarly, the lone vertex 6 comprises another partition, namely, P3. An

edge is comprised by vertices in two partitions. For example, the edge e5 is comprised

by the vertices in partitions P5 and P1. Thus, e5 = {P5 ∪ P1} = {1, 2, 3, 10, 11, 12}.

Observe that the clique in Definition 2.2.1 is more relaxed and general than the

hyperclique described by Easton et al. [18]. In [18], a hyperclique Km,k is defined as

a uniform k-hypergraph with m vertices such that each of the
(

m
k

)
combinations of

vertices comprise an edge. Our definition of the clique does not insist on a uniform

hypergraph, and does not requires as many edges.

For any structure S defined above, construct a graph G with vertex set V (G) =

{1, . . . , d} and edge set E(G) = {{i, j} : P i ∪ P j ∈ E(S)}. We will refer to G as the

reduced graph of S. The reduced graph concept is illustrated in figure 8. As shown

in the illustration, the partition Pj in the hypergraph corresponds to the vertex j in

the reduced graph, j = 1, . . . , 5.

2.3 Facets

We will now derive results for the various structures defined in Section 2.2. Note that

Propositions 2.3.1 and 2.3.2 are for these structures as stand-alone hypergraphs and

do not necessarily relate to conflict hypergraphs generated from ISP instances.

Proposition 2.3.1. Let S be an odd hole, odd antihole, web, antiweb or clique. Let G

12



be the associated reduced graph. Let I(G) ⊆ V (G) be a maximum vertex packing on G.

Then the cardinality of a maximum vertex packing on S is |V (S)| − |V (G)|+ |I(G)|.

Proof. Observe that in any maximum vertex packing, a partition either contributes

all of its vertices, or all-but-one of its vertices. To prove this, suppose there exists a

maximum vertex packing in which a partition contributes at most all-but-two of its

vertices. Now, each edge in S consists of two partitions. Therefore, we could always

select one more vertex from that partition, since each edge can contribute all-but-one

of its vertices. Thus, we can increase the cardinality of the original packing, which

contradicts the assumption that we started with a maximum vertex packing.

Let P 1, . . . , P d be the partitions of S. We claim that the set I(S) = {
⋃

j∈I(G) P j}∪

{
⋃

j∈V (G)\I(G) P̄ j} represents a maximum vertex packing on S, where P̄ represents a

set obtained by removing an element of P . Let X = {j : j ∈ V (G)\I(G)}. Therefore,

|I(S)| = |V (S)| − |X|.

To show that I(S) indeed represents a maximum vertex packing on S, suppose

there exists a maximum packing, say I ′(S), with a higher cardinality than that of

I(S). This implies that every partition contributes either all of its vertices, or all-but-

one of its vertices to I ′(S). Let Y be the index set of the partitions that contribute

all-but-one of their vertices, respectively. Therefore, |I ′(S)| = |V (S)| − |Y |. Now, by

assumption, |I ′(S)| > |I(S)|. Therefore, |X| > |Y |. This shows, that a lesser number

of partitions contribute all-but-one of their vertices to I ′(S). Hence, a greater number

of partitions contribute all of their vertices in I ′(S).

Let Z be the index set of all the partitions that contribute all of their vertices

in I ′(S). Now, because of one-to-one correspondence between vertices of G and par-

titions of S, Z should represent a vertex packing on G (because no two partitions

that contribute all of their vertices can be connected by an edge). Also, I(G) repre-

sents the index set of partitions contributing all of their vertices to I(S). Therefore

13



|Z| > |I(G)|. But this contradicts the original assumption about I(G) being a maxi-

mum vertex packing on G. This contradiction proves that there cannot exist a vertex

packing that has a higher cardinality than I(S). In other words, I(S) is a maximum

vertex packing.

It now remains to compute the cardinality of I(S).

|I(S)| =
∑

j∈I(G)

|P j| +
∑

j∈V (G)\I(G)

(|P j| − 1)

=
∑

j∈V (G)

|P j| −
∑

j∈V (G)\I(G)

(1)

= |V (S)| − (|V (G)| − |I(G)|)

We remark that vertex packings on graph structures have been well-studied in

cases related to the independent set problem. Padberg [36] has investigated cliques,

odd holes and odd antiholes. Trotter [41] gives a detailed exposition on webs and

antiwebs, and shows that these are a generalized form of odd holes, antiholes and

cliques.

The next proposition enumerates maximum vertex packings with affinely inde-

pendent characteristic vectors. This result will be used in proofs related to facets of

P ISP .

Proposition 2.3.2. Let S be an odd hole, odd antihole, web, antiweb or clique. Let

the step size k for the web or antiweb be such that k and d are relatively prime.

Then, there exist |V (S)| maximum vertex packings on S with affinely independent

characteristic vectors.

Proof. Let P 1, . . . , P d be the partitions of S. For j = 1, . . . , d, let the elements of P j

be indexed such that P j
i indicates the ith element, where 1 ≤ i ≤ |P j|. The vertex

set V (S) =
⋃d

j=1 P j.
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Let G be the reduced graph derived from S. Recall that there exists a one-to-one

correspondence between the vertices of G and partitions of S. Let V (G) = {1, . . . , d}.

We will prove the proposition by constructing the requisite vertex packings on S.

We will perform this construction by using maximum vertex packings on G.

Let x1 be a characteristic vector of a maximum vertex packing in G such that

x1
1 = 0. Construct xi such that xi+1

j+1 = xi
j, i = 1, . . . , d, j = 1, . . . , d, where index

d + 1 ≡ 1. Therefore, xi, i = 1, . . . , d are affinely independent vectors representing

maximum vertex packings on G, and xi
i = 0 for all i = 1, . . . , d. This is true for odd

holes, odd antiholes and cliques. Because k and d are relatively prime, this also holds

for webs and antiwebs [41].

Now, for a given i ∈ {1, . . . , d}, let Y i ∈ {0, 1}|V (S)| such that

Y i = {
∑

xi
j=1

uP j +
∑

xi
j=0,j $=i

uP j\{P j
1 }

+ uP i\{P i
l } : l = 1, . . . , |P i|}

The collection {Y 1, . . . , Y d} contains a total of
∑d

i=1 |P i| = |V (S)| characteristic

vectors. Moreover, each of these vectors represents a maximum vertex packing on S,

and all the vectors are affinely independent.

We will now illustrate the construction of these vectors using an odd hole with

d partitions as an example. The following matrix illustrates the maximum vertex

packing on the reduced graph (whose vertices are indexed 1 through d).

15







x1 x2 x3 · · · xd−2 xd−1 xd

1 0 0 1 · · · 1 0 1

2 1 0 0
. . . 0 1 0

3 0 1 0
. . . 1 0 1

...
...

. . . . . . . . . . . . . . .
...

d− 2 0 1 0
. . . 0 0 1

d− 1 1 0 1
. . . 1 1 0

d 0 1 0 · · · 0 0 0





Using the above matrix, we can construct the characteristic vectors for the odd

hole. First, we need to define the following matrices. Let 1m,n be a matrix with m

rows and n columns consisting of all 1’s. Let Im = 1m,m−Im, where Im is the identity

matrix. Finally, let Am,n = (ai,j)i=1,...,m;j=1,...,n be a matrix such that

ai,j =






0 if i = 1;

1 otherwise

Thus, Am,n is a matrix with 0’s in the top row, and 1’s elsewhere.

Now consider the following matrix:





Y 1 Y 2 Y 3 · · · Y d−2 Y d−1 Y d

P 1 I |P 1| A|P 1|,|P 2| 1|P 1|,|P 3| · · · 1|P 1|,|P d−2| A|P 1|,|P d−1| 1|P 1|,|P d|

P 2 1|P 2|,|P 1| I |P 2| A|P 2|,|P 3|
. . . A|P 2|,|P d−2| 1|P 2|,|P d−1| A|P 2|,|pd|

P 3 A|P 3|,|P 1| 1|P 3|,|P 2| I |P 3|
. . . 1|P 3|,|P d−2| A|P 3|,|P d−1| 1|P 3|,|P d|

...
...

. . . . . . . . . . . . . . .
...

P d−2 A|P d−2|,|P 1| 1|P d−2|,|P 2| A|P d−2|,|P 3|
. . . I |P d−2| A|P d−2|,|P d−1| 1|P d−2|,|P d|

P d−1 1|P d−1|,|P 1| A|P d−1|,|P 2| 1|P d−1|,|P 3|
. . . 1|P d−1|,|P d−2| I |P d−1| A|P d−1|,|P d|

P d A|P d|,|P 1| 1|P d|,|P 2| A|P d|,|P 3| · · · A|P d|,|P d−2| 1|P d|,|P d−1| I |P d|




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Each column of this matrix represents a maximum vertex packing on the odd hole.

All these vectors are in fact linearly independent.

The next theorem derives the valid inequality associated with a structure (odd

hole, odd antihole, web, antiweb or clique) existing as an induced sub-hypergraph in

a conflict hypergraph.

Theorem 2.3.3. Let H be a conflict hypergraph generated from an ISP instance. Let

S be an odd hole, odd antihole, web, antiweb or clique existing as an induced sub-

hypergraph in H. Let G be reduced graph associated with S. Let I(G) ⊂ V (G) be a

maximum vertex packing on G. Then the following is a valid inequality for P ISP :

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + |I(G)| (1)

Proof. Clearly, the number of vertices that can be selected from S can never exceed

|V (S)|−|V (G)|+ |I(G)|, because this is the cardinality of a maximum vertex packing

on S (Proposition 2.3.1). Therefore, the inequality is valid.

Theorem 2.3.4. Let H be a minimal conflict hypergraph induced by an ISP instance.

Let S be an odd hole, odd antihole, web, antiweb or clique existing as an induced sub-

hypergraph in H. Let the step size k of the web and antiweb be such that k and d are

relatively prime. Then inequality (1) is facet-defining for P ISP
S .

Proof. Consider the unit vectors uj, j ∈ V (S), along with the 0 vector. These |V (S)|+

1 vectors are affinely independent and feasible for P ISP
S . Therefore, dim(P ISP

S ) =

|V (S)|.

Therefore, we need to show that there exist |V (S)| affinely independent points that

satisfy (1) at equality. These points may be constructed from the packings described

in Proposition 2.3.2 because all the edges of S are minimal.

Theorem 2.3.4 is similar to results derived for some of the graph structures in

the past (see Padberg [36], Nemhauser and Trotter [34], and Trotter [41]) because
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it proves that the valid inequality is facet-defining for P ISP
S , but not necessarily for

P ISP . We would need to lift the valid inequalities to get facets for P ISP . A detailed

exposition on lifting can be found in Nemhauser and Wolsey [35].

However, hypergraph structures can, under certain conditions, induce facets for

P ISP . This eliminates the computationally expensive task of lifting. This is shown

in the next theorem.

Theorem 2.3.5. Let S be an odd hole, odd antihole, web, antiweb or clique existing

as an induced sub-hypergraph in a minimal conflict hypergraph H generated from an

ISP instance. Let the step size k of the web and antiweb be such that k and d

are relatively prime. Then inequality (1) is facet-defining for P ISP if the following

condition is satisfied: for any edge e ∈ E(H) such that e \ V (S) -= ∅, e∩ V (S)∪ {u}

is independent in H for every u ∈ e \ V (S)

Proof. From Theorem 2.3.4 we know that inequality (1) is facet-defining for P ISP
S .

Therefore, there exist |V (S)| affinely independent vectors that satisfy inequality (1)

at equality. Let I(S) ⊂ V (S) be a maximum vertex packing on S. Now, consider

a vertex v ∈ V (H) \ V (S). Let e ∈ E(H) be an edge such that v ∈ e. Now, if

e ∩ V (S) = ∅, then {v} ∪ I(S) represents a feasible packing whose characteristic

vector will satisfy inequality (1) at equality. On the other hand, if e∩V (S) -= ∅, then

the condition of the theorem would ensure that {v} ∪ I(S) still represents a feasible

packing in H. Since v ∈ V (H) \ V (S), the characteristic vector of the packing

{v} ∪ I(S) satisfies the inequality (1) at equality.

Therefore, we can get |V (H) \ V (S)| such characteristic vectors. It can be eas-

ily verified that these vectors, along with the original |V (S)| vectors, are affinely

independent. This proves the theorem.
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2.4 Special Cases

We will now state valid inequalities for the specific cases of odd hole, odd antihole,

web, antiweb and clique.

Corollary 2.4.1. Let H be a conflict hypergraph generated from an ISP instance.

Let S be an induced sub-hypergraph in H. Let G be the reduced graph associated with

S.

1. If S is an odd hole, then the following inequality is valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + 1

2
(2)

2. If S is an odd antihole, then the following inequality is valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + 2 (3)

3. If S is a web with step size k, then the following inequality is valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + k (4)

4. If S is an antiweb with step size k, then the following inequality is valid for

P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| +
⌊
|V (G)|

k

⌋
(5)

5. If S is a clique, then the following inequality is valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + 1 (6)

Proof. Let G be a graph with vertex set V (G) and edge set E(G). The following

results can be found in previous literature:

1. If G is an odd hole, then the cardinality of the maximum vertex packing on G

is |V (G)|−1
2 (Padberg [36]).
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2. If G is an odd antihole, then the cardinality of the maximum vertex packing on

G is 2 (Padberg [36]).

3. If G is a web with step size k, then the cardinality of the maximum vertex

packing on G is k (Trotter [41]).

4. If G is an antiweb with step size k, then the cardinality of the maximum vertex

packing on G is
⌊
|V (G)|

k

⌋
(Trotter [41]).

5. If G is a clique, then the cardinality of the maximum vertex packing on G is 1

(Padberg [36]).

The proof now follows from the above results and Theorem 2.3.3.

Corollary 2.4.2. Let H be a minimal conflict hypergraph generated from an ISP

instance. Let S be an induced sub-hypergraph in H. Let the step size k of the web

and antiweb be such that k and d are relatively prime. Then the inequalities given in

Corollary 2.4.1 are facet-defining for P ISP
S .

Proof. The proof follows from Theorem 2.3.4.

Corollary 2.4.3. Let H be a minimal conflict hypergraph generated from an ISP

instance. Let S be an induced sub-hypergraph in H. Let the step size k of the web

and antiweb be such that k and d are relatively prime. Inequalities given in Corollary

2.4.1 will be facet-defining for P ISP if the following condition is satisfied: for any

edge e ∈ E(H) such that e \V (S) -= ∅, e∩V (S)∪{u} is independent in H for every

u ∈ e \ V (S)

Proof. The proof follows from Theorem 2.3.5.
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Example 2.4.4.

2x1 + 3x7 ≤ 4

x1 + x8 ≤ 1

x1 + 2x9 + 8x10 ≤ 10

4x2 + x3 + 8x8 ≤ 12

x2 + x3 + x9 + x10 ≤ 3

2x2 + 10x3 + 2x11 ≤ 13

x4 + x5 + x6 + x9 + x10 ≤ 4

x4 + x5 + x6 + x11 ≤ 3

x4 + x5 + x6 + x12 ≤ 3

2x7 + x11 ≤ 2

4x7 + 8x12 ≤ 11

4x8 + 5x12 ≤ 8

xj ∈ {0, 1} ∀j = 1, . . . , 12

Consider the ISP instance in Example 2.4.4. Here, variables {x1, x7} form a

dependent set in the first inequality, and therefore constitute an edge in the conflict

hypergraph. Similarly, the ninth inequality contains a dependent set formed by the

variables {x4, x5, x6, x12}. Therefore, these variables constitute an edge in the conflict

hypergraph. In fact, these inequalities generate a conflict hypergraph that is the

same as the one depicted in Figure 6. Thus, we have a web having twelve vertices,

eight partitions, and step size three. This gives us the valid inequality
∑12

j=1 ≤ 7 (See

Corollary 2.4.1). Observe that all the edges of this web are minimal dependent. Hence,

this valid inequality is also facet-defining (Corollary 2.4.2) for the web structure.

In fact, (0.25, 0.125, 1, 0, 1, 1, 0.5, 0.75, 0.875, 1, 1, 1) is an extreme point in the LP-

relaxation polytope that is cut-off by this valid inequality.
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Example 2.4.5.

4x1 + 2x2 + 5x3 ≤ 9

2x1 + 8x4 + x5 + x6 ≤ 11

x2 + x3 + x4 + x5 + x6 ≤ 4

x2 + 2x3 + 3x7 ≤ 5

3x4 + 10x5 + x6 + x7 ≤ 14

x4 + x5 + x6 + x8 ≤ 3

10x7 + 21x8 ≤ 27

7x7 + 9x9 + 10x10 ≤ 25

x8 + x9 + x10 ≤ 2

8x8 + x11 ≤ 8

x9 + 2x10 + 3x11 ≤ 5

x9 + x10 + x12 ≤ 2

5x11 + 7x12 ≤ 7

9x11 + x1 ≤ 9

4x12 + 5x1 ≤ 6

x12 + x2 + x3 ≤ 2

xj ∈ {0, 1} ∀j = 1, . . . , 12

Consider the ISP instance shown in Example 2.4.5. The conflict hypergraph

generated from inequalities in Example 2.4.5 is the same as the one depicted in

Figure 7. Thus, this hypergraph is an antiweb with twelve vertices, eight partitions

and step size three. Therefore, we can get the valid inequality
∑12

j=1 xj ≤ 6 (Corollary

2.4.1). Since all the edges are minimal dependent, this valid inequality is facet-defining

(Corollary 2.4.2). The extreme point, (0.913, 1, 0.5, 0.5, 1, 1, 1, 0.5, 0.696, 0.804, 0.898),

of the LP-relaxation polytope is cut-off by this valid inequality.
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In both Examples 2.4.4 and 2.4.5, the conditions of Corollary 2.4.3 are satis-

fied. Therefore the valid inequalities are facet-defining for the entire polytope (this is

also trivially true since the structures themselves constitute the entire conflict hyper-

graph). However, there are cases when the structure, say, an odd hole, forms only a

part of the conflict hypergraph. This is illustrated in Example 2.4.6.

Example 2.4.6.

7x1 + 3x2 + 2x3 + x4 + 2x5 ≤ 14

x4 + x5 + x6 ≤ 2

x6 + x7 + x8 + x9 ≤ 3

4x7 + 5x8 + x9 + 2x10 + 2x11 + 3x12 ≤ 16

x10 + x11 + x12 + x1 + x2 + x3 ≤ 5

2x1 + 4x2 + 2x3 + 2x13 + 7x14 + 3x15 ≤ 19

x4 + 2x5 + 3x13 + 4x14 + 5x15 ≤ 14

x6 + x13 + x14 + x15 ≤ 3

15x7 + 14x8 + 13x9 + 9x13 + 8x14 + 7x15 ≤ 65

5x10 + 7x11 + x12 + 9x13 + 7x14 + 7x15 ≤ 35

xj ∈ {0, 1} ∀j = 1, . . . , 15

Consider the ISP instance shown in Example 2.4.6. The conflict hypergraph

induced by inequalities in Example 2.4.6 is shown in Figure 9. Observe that the

vertices {1, . . . , 12} form an odd hole. This gives us the valid inequality
∑12

j=1 xj ≤ 9.

Since all the edges of the odd hole are minimal dependent, the valid inequality is facet-

defining for the odd hole sub-structure. Moreover, the conditions of Corollary 2.4.3 are

satisfied. Hence the same inequality is facet-defining for the entire polytope. Further,

the valid inequality
∑12

j=1 xj ≤ 9 cuts off an extreme point to the LP relaxation,

(0.33, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0.67, 1, 1, 0.80).
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Figure 9: Conflict hypergraph for the
ISP instance given in Example 2.4.6.

2.5 Hypergraph Structures With Vertices Outside Edge In-
tersections

In the definitions of the various hypergraph structures described in Section 2.2, every

vertex was in the intersection of two or more edges. In this section, we relax this

condition, and explore hypergraph structures that have vertices lying outside of edge

intersections.

If all the vertices of a hypergraph structure lie inside edge intersections, then such

a structure will be referred to as a separable structure. If one or more vertices of

a hypergraph structure lie outside edge intersections, then such a structure will be

referred to as a non-separable structure.

Interestingly, the valid inequalities for non-separable structures are the same as

those derived previously for separable structures (Section 2.2). However, we are able

to derive facet-defining conditions for odd holes and cliques only.

We will first expand some of the previous definitions.

Definition. 2.5.1 For integer d ≥ 3, let P j, P i,j, i, j = 1, . . . , d, i -= j be finite,

mutually disjoint, non-empty sets. Let k be an integer such that 1 ≤ k ≤ d
2 .
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1. For odd d, let S be a hypergraph with edge set E(S) = {P j ∪ P j,j+1 ∪ P j+1 :

j = 1, . . . , d}, where P d+1 ≡ P 1. Then S is called a non-separable odd hole.

2. For odd d, let S be a hypergraph with edge set E(S) = {P i∪P i,j∪P j : |i−j| ≥

2, i = 1, . . . , d, j = 1, . . . , d}. Then S is called a non-separable odd antihole.

3. Let S be a hypergraph with edge set E(S) = {P i∪P i,j ∪P j : i, j = 1, . . . , d, i -=

j}. Then S is called a non-separable clique.

4. Let S be a hypergraph that has the edge set E(S) = {P i ∪ P i,j ∪ P j : j =

i + k, . . . , i + d − k}, where i + l ≡ l for all l = 1, . . . , d. Then S is called a

non-separable web.

5. Let S be a hypergraph that has the edge set E(S) = {P i ∪ P i,j ∪ P j : j =

1, . . . , i + k − 1, i + d− k + 1, . . . , d}, where i + l ≡ l for all l = 1, . . . , d. Then

S is called a non-separable antiweb.

We will refer to P j’s as end partitions and P i,j’s as middle partitions of S, i, j =

1, . . . , d. For the last two definitions, we will call k the step size of the non-separable

web or the antiweb.

Observe that in the case when all the middle partitions are empty, we get the

separable structures that were described earlier.

As described in the previous sections, a reduced graph may be constructed for

each of these structures. Let G be a graph with vertex set V (G) = {1, . . . , d} and

edge set E(G) = {{i, j} : P i ∪ P i,j ∪ P j ∈ E(S)}. Then G is the reduced graph

associated with S.

Lemma 2.5.2. Let S be a non-separable odd hole, odd antihole, web, antiweb or

clique. Let G be the associated reduced graph. Let I(G) ⊂ V (G) be a maximum

vertex packing on G. Let I(S) ⊂ V (S) be a packing on S such that all the middle

partitions of S contribute all their vertices. Then |I(S)| ≤ |V (S)| − |V (G)| + |I(G)|.
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Proof. We begin the proof by showing that, in a maximum vertex packing, any par-

tition (end or middle) must contribute either all or all-but-one of its vertices. To

show this, suppose there exists a packing that is maximum and where one of the

partitions contributes all-but-two of its vertices. In such a case, we can always select

one more vertex from that partition because of the mutual disjointness of partitions,

thereby allowing us to increase the cardinality of this packing. But this contradicts

the assumption that the packing was maximum. This shows that all the partitions of

a maximum vertex packing contribute all or all-but-one of their vertices. Now, con-

sider the vertex packing I(S) = {
⋃

j∈I(G) P j}
⋃
{
⋃

{ij}∈E(G) P ij}
⋃
{
⋃

j∈V (G)\I(G) P̄ j},

where P̄ represents the set obtained by removing one element of the set P .

To prove the lemma, consider an arbitrary vertex packing I ′(S) where all the

middle partitions contribute all of their vertices. Suppose |I ′(S)| > |I(S)|. We

showed that in a maximum vertex packing all the partitions contribute either all or

all-but-one of their vertices. This fact, along with the supposition |I ′(S)| > |I(S)|

implies that a greater number of end partitions must be contributing all of their

vertices in I ′(S) (since all the middle partitions in I(S) as well as I ′(S) contribute all

of their vertices).

Now, because of the correspondence between the vertices of G and the end parti-

tion of S, the set I ′(G) = {j : Pj contributes all of its vertices in I(S)} must repre-

sent a feasible packing on G. Since a greater number of end partitions contribute all

of their vertices in I(S), we can infer that |I ′(G)| > |I(G)|. But this contradicts the

assumption that I(G) is a maximum vertex packing on G. This contradiction proves

the lemma that the cardinality of any vertex packing on S where the all the middle

contribute all of their vertices can never exceed |I(S)|.

It can be easily verified that |I(S)| = |V (S)| − |V (G)| + |I(G)|.

Proposition 2.5.3. Let S be a non-separable odd hole, odd antihole, web, antiweb or

clique. Let G be the reduced graph derived from S. Let I(G) ⊂ V (G) be a maximum
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vertex packing on G. Then the cardinality of maximum vertex packing on S is |V (S)|−

|V (G)| + |I(G)|

Proof. Let I(S) = {
⋃

j∈I(G) P j}
⋃

{
⋃

{ij}∈E(G) P ij}
⋃

{
⋃

j∈V (G)\I(G) P̄ j}, where P̄

represents the set obtained by removing one element of the set P . We claim that I(S)

represents a maximum vertex packing on S. It can be easily verified that |I(S)| =

|V (S)| − |V (G)| + |I(G)|.

To prove the claim, consider an arbitrary vertex packing where all the middle

partitions contribute all their vertices. Lemma 2.5.2 implies that the cardinality of a

vertex packing where all the middle partitions contribute all their vertices can never

exceed |I(S)|.

Now consider a packing I ′(S) where some of the middle partitions contribute all-

but-one of their vertices. Let P ij be a middle partition that contributes all-but-one of

its vertices in I ′(S). The mutual disjointness of all the partitions and the definitions

of the hypergraph structures imply that a middle partition is connected to exactly two

end partitions. Among the two end partitions (P i and P j) connected to P ij, at least

one must contribute all of it vertices. If this were not true, then we could increase

the cardinality of I ′(S) simply by selecting one more vertex from P ij. Let P i be the

partition that contributes all of its vertices. Now, we will modify I ′(S) such that P ij

contributes all of its vertices and P i contributes all-but-one of its vertices. Clearly,

this does not make the packing infeasible, and the cardinality remains the same.

Because, we picked the middle partition arbitrarily, we can perform this operation for

all the middle partitions that contribute all-but-one of their vertices. Let I ′′(S) be the

new packing that emerges after this operation. Clearly, |I ′′(S)| = |I ′(S)|. Therefore,

|I ′′(S)| > |I(S)| (by assumption). But, all the middle partitions in I ′′(S) contribute

all of their vertices. Thus the maximality of I(S) is violated. This contradiction

proves that I(S) is indeed a maximum vertex packing on S.

This completes the proof.
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Proposition 2.5.4. Let S be a non-separable odd hole or clique. Then there exist

|V (S)| maximum vertex packings on S with affinely independent characteristic vec-

tors.

Proof. Let P 1, . . . , P d denote the end partitions of S. Let G be the reduced graph

associated with S. Let x1 be a characteristic vector of a maximum vertex packing

on G such that x1
1 = 0. Construct xi such that xi+1

j+1 = xi
j, i, j = 1, . . . , d, where

index d + 1 ≡ 1. Therefore, x1, . . . , xd are affinely independent characteristic vectors

representing maximum vertex packings on G, and xi
i = 0 for all i = 1, . . . , d. Let

X = {x1, . . . , xd}. For any (end or middle) partition P , let the elements of P be

indexed such that Pj denotes the jth element of P , j = 1, . . . , |P |. Now, for a given

i ∈ {1, . . . , d}, let Y i ∈ {0, 1}|V (H)| such that

Y i = {
∑

xi
j=1

uP j +
∑

xi
j=0,j $=i

uP j\{P j
1 }

+ uP i\{P i
l } +

∑

{i,j}∈E(G)

uP i,j : l = 1, . . . , |P i|}

For every vertex that belongs to an end partition of S, the collection Y =

{Y i, . . . , Y d} contains a characteristic vector that that represents a maximum ver-

tex packing on S. Moreover, all these points are affinely independent.

To obtain the rest of the affinely independent points, we will need the following.

Let P i,j be a middle partition of S, with P i, P j the associated end partitions. That

is, {P i∪P i,j∪P j} ∈ E(S). For every such middle partition P i,j, we need a maximum

vertex packing on S such that either P i or P j satisfies the following condition:

The end partition P i (or P j) contributes all-but-one of its vertices, and every

partition P k such that P k, P i (or P k, P j) belong to the same edge, k -= j (or

k -= i), contributes all-but-one of its vertices.

Observe that these conditions are satisfied for all middle partitions for cliques and

odd holes, as shown below.
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Consider an odd hole with an edge {P i ∪ P i,i+1 ∪ P i+1}, i ∈ {1, . . . , d}. Because

of the structure of odd holes, we can construct a maximum vertex packing such that

the partitions P i+3, P i+5, . . . , P i+d−1 contribute all their vertices, and the rest of the

partitions contribute all-but-one of their vertices. Therefore, P i+d−1 contributes all its

vertices, and the partitions P i and P i+1 contribute all-but-one of their vertices. Apart

from P i+d−1 (which contributes all its vertices), the only partition P i is connected

to is P i+1. Both P i and P i+1 contribute all-but-one of their vertices. Therefore,

the conditions are satisfied. Because the edge was chosen arbitrarily, all the middle

partitions of the odd hole will satisfy these conditions.

Now consider a clique with an edge {P i ∪ P i,j ∪ P j}, where i, j ∈ {1, . . . , d},

i -= j. Because of the special structure of cliques, we can construct a maximum

vertex packing such that P i contributes all of its vertices, and all the other partitions

contribute all-but-one of their vertices. This means P j contributes all-but-one of its

vertices, and all the partitions (excluding P i) connected to it contribute all-but-one

of their vertices. Therefore, the condition prescribed above is satisfied for cliques too.

Now, for every {i, j} ∈ E(G), we define the collection of packings X i,j = {x :

x ∈ X, xi = 1, xj = 0, xk = 0 ∀ {j, k} ∈ E(G), k -= i}. Now, for {i, j} ∈ E(G), let

Zi,j ∈ {0, 1}|V (S)| such that

Zi,j = {
∑

xk=1

uP k +
∑

xk=0,k $=j

uP k\{P k
1 } + uP j +

∑

{m,n}∈E(G)\{i,j}

uP m,n + uP i,j\P i,j
l

:

l = 1, . . . , |P i,j|}

where the packing x ∈ X i,j.

For every vertex belonging to a middle partition, the collection Z = {Zi,j : {i, j} ∈

E(G)} contains a characteristic vector that represents a maximum vertex packing on

S. Moreover, all these points are affinely independent.

The collections Y and Z together contain |V (S)| feasible, affinely independent
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points that represent maximum vertex packings on S. This completes the proof.

Theorem 2.5.5. Let H be a conflict hypergraph generated from an ISP instance.

Let S be a non-separable odd hole, odd antihole, web, antiweb or clique existing as

an induced sub-hypergraph in H. Let G be the reduced graph derived from S. Let

I(G) ⊂ V (G) be a maximum vertex packing on G. Then the following is a valid

inequality for P ISP :

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + |I(G)| (7)

Proof. Proof follows from Proposition 2.5.3.

Theorem 2.5.6. Let H be a minimal conflict hypergraph generated from an ISP

instance. Let S be a non-separable odd hole or clique existing as an induced sub-

hypergraph in H. Then the inequality (7) is facet-defining for P ISP
S .

Proof. Consider the unit vectors uj, j ∈ V (S), along with the 0 vector. These

|V (S)|+1 vectors are affinely independent and satisfy the constraints of P ISP
S . There-

fore, dim(P ISP
S ) = |V (S)|. Thus, to prove that the inequality is facet-defining, we

need to show that there exist |V (S)| feasible, affinely independent points that satisfy

inequality (7) at equality.

The vectors constructed in Proposition 2.5.4 satisfy these conditions for non-

separable clique and odd hole.

Observe that the valid inequalities remain the same for both the non-separable and

the separable cases. However, facet-defining conditions are more restrictive for non-

separable structures. Theorem 2.5.6 shows that non-separable odd holes and cliques

can induce facets for P ISP
S . The following theorem shows that the non-separable odd

hole and clique can also induce facets for P ISP under certain conditions.

Theorem 2.5.7. Let S be a non-separable odd hole or clique existing as an induced

sub-hypergraph in a minimal conflict hypergraph H generated from an ISP instance.
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Inequality (7) is facet-defining for P ISP if the following condition is satisfied: for any

edge e ∈ E(H) such that e \ V (S) -= ∅, e∩ V (S)∪ {u} is independent in H for every

u ∈ e \ V (S)

Proof. From Theorem 2.5.6 we know that inequality (7) is facet-defining for P ISP
S if S

is a clique or an odd hole. Thus, there exist |V (S)| affinely independent vectors that

satisfy inequality (7) at equality. Let I(S) ⊂ V (S) be a maximum vertex packing

on S. Now, consider a vertex v ∈ V (H) \ V (S). Let e ∈ E(H) be an edge such

that v ∈ e. Now, if e ∩ V (S) = ∅, then {v} ∪ I(S) represents a feasible packing (in

H) whose characteristic vector will satisfy inequality (7) at equality. On the other

hand, if e ∩ V (S) -= ∅, then the condition specified in the theorem would ensure

that {v} ∪ I(S) still represents a feasible packing in H. Since v ∈ V (H) \ V (S), the

characteristic vector of the packing {v} ∪ I(S) satisfies the inequality (7) at equality.

Therefore, we can get |V (H) \ V (S)| such characteristic vectors. It can be eas-

ily verified that these vectors, along with the original |V (S)| vectors, are affinely

independent. This proves the theorem.

Corollary 2.5.8. Let H be a conflict hypergraph generated from an ISP instance.

Let S be an induced sub-hypergraph in H. Let G be the reduced graph associated with

S.

1. If S is a non-separable odd hole, then the following inequality is valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + 1

2
(8)

2. If S is a non-separable odd antihole, then the following inequality is valid for

P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + 2 (9)
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3. If S is a non-separable web with step size k, then the following inequality is valid

for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + k (10)

4. If S is a non-separable antiweb with step size k, then the following inequality is

valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| +
⌊
|V (G)|

k

⌋
(11)

5. If S is a non-separable clique, then the following inequality is valid for P ISP

∑

j∈V (S)

xj ≤ |V (S)| − |V (G)| + 1 (12)

Proof. Let G be a graph with vertex set V (G) and edge set E(G). The following

results can be found in previous literature:

1. If G is a separable odd hole, then the cardinality of the maximum vertex packing

on G is |V (G)|−1
2 (Padberg [36]).

2. If G is a separable odd antihole, then the cardinality of the maximum vertex

packing on G is 2 (Padberg [36]).

3. If G is a separable web with step size k, then the cardinality of the maximum

vertex packing on G is k (Trotter [41]).

4. If G is a separable antiweb with step size k, then the cardinality of the maximum

vertex packing on G is
⌊
|V (G)|

k

⌋
(Trotter [41]).

5. If G is a separable clique, then the cardinality of the maximum vertex packing

on G is 1 (Padberg [36]).

The proof now follows from the above results and Theorem 2.5.5.
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Corollary 2.5.9. Let H be a minimal conflict hypergraph generated from an ISP

instance. Let S be an induced sub-hypergraph in H. Then inequalities (8) and (12)

are facet-defining for P ISP
S .

Proof. The proof follows from Theorem 2.5.6.

Corollary 2.5.10. Let H be a minimal conflict hypergraph generated from an ISP

instance. Let S be an induced sub-hypergraph in H. Then inequalities (8) and (12)

will be facet-defining for P ISP if the following condition is satisfied: for any edge

e ∈ E(H) such that e \ V (S) -= ∅, e ∩ V (S) ∪ {u} is independent in H for every

u ∈ e \ V (S)

Proof. The proof follows from Theorem 2.5.7.
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Example 2.5.11.

2x1 + 4x2 + 3x3 + x4 + x5 ≤ 10

x1 + x19 + x20 ≤ 2

x4 + x5 + x6 + x7 ≤ 3

3x19 + 2x18 + 5x11 ≤ 9

2x6 + 3x7 + x11 ≤ 5

x10 + x11 ≤ 1

x10 + 2x12 + 3x17 + 4x19 ≤ 9

x10 + x13 ≤ 1

x13 + x16 ≤ 1

x13 + x14 + x15 ≤ 2

2x6 + 5x7 + 10x8 + 7x9 ≤ 23

x9 + x11 ≤ 1

23x6 + 13x7 + 17x10 ≤ 50

29x9 + 84x10 ≤ 86

xj ∈ {0, 1} ∀j = 1, . . . , 20

Consider the ISP instance shown in Example 2.5.11. The conflict hypergraph

generated by the inequalities in Example 2.5.11 is shown in Figure 10. The vertices

in the set V1 = {1, 2, 3, 4, 5, 6, 7, 11, 18, 19, 20} comprise a non-separable odd hole with

five edges. Therefore, the inequality
∑

j∈V1
xj ≤ 8 is valid. All the edges of this odd

hole are minimal dependent. Therefore, the inequality is facet-defining for the odd

hole induced sub-hypergraph. Similarly, there is a non-separable clique comprised of

the vertices in the set V2 = {6, 7, 8, 9, 10, 11}. Therefore, inequality
∑

j∈V2
xj ≤ 3 is

valid. It is also facet-defining for the entire convex hull.
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Figure 10: Conflict hypergraph for the
ISP instance given in Example 2.5.11.

2.6 Chvatal-Gomory Ranks of Hypergraph Inequalities

In this section, we investigate the Chvatal-Gomory (C-G) ranks of the valid inequal-

ities we derived earlier. An inequality πx ≤ π0, valid for P ISP , is said to be of rank

k if it is not equivalent to or dominated by any non-negative linear combination of

valid inequalities, each of which can be determined by no more than k−1 applications

of the C-G procedure. (See Nemhauser and Wolsey [35] for a detailed exposition on

C-G ranks.)

Let S be a non-separable odd hole or clique. Let G be the associated reduced

graph. Let I(G) ⊂ V (G) be a maximum vertex packing on G.

Theorem 2.6.1. The rank of the odd hole inequality
∑

j∈V (S) xj ≤ |V (S)| − |V (G))|+1
2

is 1.

Proof. The odd hole inequality in a conflict hypergraph can be written as

d∑

j=1

(
∑

i∈P j

xi) +
d∑

j

(
∑

i∈P j,j+1

xi) ≤
d∑

j=1

(|P j| − 1) +
d∑

j=1

|P j,j+1| + d− 1

2
(13)

where d = |V (G)|.
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We will show that this inequality can be obtained by applying a single round of

the C-G procedure on rank 0 inequalities. Consider the following rank 0 inequalities

associated with the edges in a conflict hypergraph:

∑

i∈P j

xi +
∑

i∈P j,j+1

xi +
∑

i∈P j+1

xj ≤ (|P j| − 1) + |P j,j+1| + (|P j+1| − 1) + 1 ∀j = 1, . . . , d

∑

i∈P j,j+1

xi ≤ |P j,j+1| ∀j = 1, . . . , d (14)

Adding them together, we get the inequality

2
d∑

j=1

(
∑

i∈P j

xi) + 2
d∑

j

(
∑

i∈P j,j+1

xi) ≤ 2
d∑

j=1

(|P j| − 1) + 2
d∑

j=1

|P j,j+1| + d (15)

Dividing both sides by 2 and rounding down, as per the C-G procedure, we obtain

the odd hole inequality. We obtained the odd hole inequality by applying exactly one

round of the C-G procedure on rank 0 inequalities. Therefore, the odd hole inequality

has rank 1.

Theorem 2.6.2. The rank of the clique inequality
∑

j∈V (S) xj ≤ |V (S)| − |V (G))| +

|I(G)| is O(log(|V (G)|).

Proof. The clique inequality in a conflict hypergraph can be written as

d∑

j=1

(
∑

i∈P j

xi

)
+

∑

j,k=1,...,d,j $=k

(
∑

i∈P j,k

xi

)
≤

d∑

j=1

(
|P j| − 1

)
+

∑

j,k=1,...,d,j $=k

|P j,k| + 1 (16)

where |V (G)| = d.

We claim that the rank of inequality (16) is ρ if 2ρ−1 + 2 ≤ d ≤ 2ρ + 1, ρ ∈ Z+.

This is proven by induction on ρ. When ρ = 1, 2ρ−1 + 2 = 3 ≤ 2ρ + 1 = 3. Therefore,

d = 3. Hence, according to the claim, the rank of inequality (16) is 1 for d = 3. This
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can be shown by considering the following edge inequalities:

∑

i∈P 1

xi +
∑

i∈P 1,2

xi +
∑

i∈P 2

xi ≤ (|P 1| − 1) + |P 1,2| + (|P 2| − 1) + 1

∑

i∈P 1,2

xi ≤ |P 1,2|

∑

i∈P 2

xi +
∑

i∈P 2,3

xi +
∑

i∈P 3

xi ≤ (|P 2| − 1) + |P 2,3| + (|P 3| − 1) + 1

∑

i∈P 2,3

xi ≤ |P 2,3|

∑

i∈P 3

xi +
∑

i∈P 3,1

xi +
∑

i∈P 1

xi ≤ (|P 3| − 1) + |P 3,1| + (|P 1| − 1) + 1

∑

i∈P 3,1

xi ≤ |P 3,1| (17)

Adding the inequalities (17), we get

2
3∑

j=1

(
∑

i∈P j

xi

)
+ 2

∑

j,k=1,2,3,j $=k

(
∑

i∈P j,k

xi

)
≤

2
3∑

j=1

(
|P j| − 1

)
+ 2

∑

j,k=1,2,3,j $=k

|P j,k| + 3 (18)

Dividing inequality (18) by 2, and then rounding down according to the C-G proce-

dure, we get the clique inequality. We applied the C-G procedure exactly once on the

rank 0 inequalities. This establishes that the rank is 1 for ρ = 1.

Suppose the claim holds for ρ ≤ u; that is, inequality (16) is of rank ρ if 2ρ−1 +

2 ≤ d ≤ 2ρ + 1 for all ρ ≤ u. Now, consider the case ρ = u + 1. Therefore,

2ρ−1 + 2 = 2u + 2 ≤ d ≤ 2u+1 + 1 = 2ρ + 1.

Now, observe that any two end partition in a clique lie in the same edge. Therefore,

any subset of end partitions of a clique also form a clique. This implies that out the d

end partitions of a clique, any combination of 2u +1 end partitions also form a clique.

This property of cliques gives us the following set of valid inequalities:
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∑

j∈Q

(
∑

i∈P j

xi

)
+

∑

j,k∈Q,j $=k

(
∑

i∈P j,k

xi

)
≤

∑

j∈Q

(|P j| − 1) +
∑

j,k∈Q,j $=k

|P j,k| + 1

∀Q ⊂ {1, . . . , d}, |Q| = 2u + 1 (19)

From the induction hypothesis, each of the inequalities (19) have rank u. Note

that there are
(

d
2u+1

)
such inequalities. In the inequalities (19), each end partition

term occurs
(

d−1
2u

)
times, and each middle partition term occurs

(
d−2
2u−1

)
times.

Now,
( d−2
2u−1)
(d−1

2u )
= 2u

d−1 < 1. Therefore,
(

d−1
2u

)
>

(
d−2
2u−1

)
. Let α =

(
d−1
2u

)
−

(
d−2
2u−1

)
.

We also have the following valid inequalities (each of rank 0):

α
∑

j,k∈Q,j $=k

(
∑

i∈P j,k

xi

)
≤ α

∑

j,k∈Q,j $=k

|P j,k|

∀Q ⊂ {1, . . . , d}, |Q| = 2u + 1 (20)

Adding inequalities (19) and (20), we get

(
d− 1

2u

) d∑

j=1

∑

i∈Pj

xi +

(
d− 1

2u

) ∑

j,k=1,...,d,j $=k

∑

i∈P j,k

xi ≤

(
d− 1

2u

) d∑

j=1

(|P j| − 1) +

(
d− 1

2u

) ∑

j,k=1,...,d,j $=k

|P j,k| +
(

d

2u + 1

)
(21)

Dividing both sides by
(

d−1
2u

)
we get

d∑

j=1

∑

i∈Pj

xi +
∑

j,k=1,...,d,j $=k

∑

i∈P j,k

xi ≤

d∑

j=1

(|P j| − 1) +
∑

j,k=1,...,d,j $=k

|P j,k| + d

2u + 1
(22)

Now, 2u + 2 ≤ d ≤ 2u+1 + 1. Therefore 2u+2
2u+1 ≤

d
2u+1 ≤

2u+1+1
2u+1 , or 1 + 1

2u+1 ≤
d

2u+1 ≤ 1 + 2u

2u+1 . Therefore,
⌊

d
2u+1

⌋
= 1.

Therefore, after rounding down, (22) reduces to the form represented by (16).

This shows that the rank is at most u + 1.
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To show that the rank is at least u + 1, we merely need to show that the valid

inequality just obtained is not dominated by any inequality of rank u or less.

Let x∗ be the characteristic vector representing a feasible solution to the LP-

relaxation of a V PP instance for this clique (S) such that

x∗j =






1 if j ∈ P i \ {P i
1}, i = 1, . . . , d

1
2u+1 if j = P i

1, i = 1, . . . , d

1 if j ∈ P ik, i, k = 1, . . . , d, i -= k

x∗ satisfies the inequality (16) when d ≤ 2u +1. But it does not satisfy (16) when

2u + 2 ≤ d ≤ 2u+1 + 1. Hence the rank is at most u + 1. This completes the proof of

the claim.

Now, according to the claim, the rank of the clique inequality (16) is ρ if 2ρ−1+2 ≤

d ≤ 2ρ + 1, ρ ∈ Z+. Therefore, ρ− 1 ≤ log(d) ≤ ρ. Hence the claim implies that the

rank ρ is O(log(d)). This proves the theorem.

Observe that the Chvatal-Gomory ranks remain unchanged for odd hole and clique

inequalities. It is our conjecture, based on the correspondence between elements of

the hypergraph structures and the associated reduced graphs, that Chvatal-Gomory

ranks for other hypergraph inequalities should be same as those of graph structures.

2.7 Separation

2.7.1 Introduction

We will now investigate separation algorithms for the hypergraph structures described

in the preceding sections. We will first discuss the general separation problem in con-

flict graphs. We will then discuss how to extend separation algorithms from conflict

graphs to conflict hypergraphs.

For an ISP instance and an x∗ /∈ P ISP , the solution to a separation problem
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instance gives a valid inequality gives a valid inequality πx ≤ π0 such that πx∗ >

π0. If no such inequality can be obtained, then it should imply that none exist. It

can be shown that the complexity of separation is equivalent to optimization. (see

Nemhauser and Wolsey [35] for details).

In the context of conflict graphs, a separation algorithm identifies a graph struc-

ture (like clique or odd hole) such that the violation, for a given solution to the LP

relaxation, of the associated valid inequality is maximized. The algorithm is designed

such that the graph structure returned by the algorithm conforms to the definition

of the structure. Thus, a separation algorithm for cliques, for example, would return

a set of vertices from the conflict graph such that each vertex is connected to every

other vertex, and the violation of the associated clique inequality is maximized. The

separation algorithm for hypergraphs is similar. The hypergraph structure returned

by the separation algorithm should conform to its original definition, and the violation

of the associated valid inequality should be maximized.

In the conflict graph, a given structure’s definition rests solely upon the connec-

tivity among the vertices. In a conflict hypergraph, the definition of the structures

depends on connectivity among the end partitions. In addition, all the partitions

must be mutually disjoint. A separation algorithm for conflict hypergraphs must

take this into account.

Our basic strategy will be to construct a reduced graph from the conflict hyper-

graph, and use graph algorithms and heuristics to separate graph structures on the

reduced graph. We can then use the relationship between the reduced graph and the

conflict hypergraph to obtain the hypergraph structure from this graph structure.

2.7.2 Constructing the Reduced Graph

Let V (H) be the set of vertices of the conflict hypergraph, and let E(H) be the

set of edges. We define the collection of end partitions as PE = {
⋂

e∈M e : M ⊂

40



2E(H), |M | ≥ 2}. Thus, an end partition is an intersection of two or more edges.

Similarly, let PM = {P {i,j}e = e \ {P i ∪ P j} : P i, P j ∈ PE, P i, P j ⊂ e, e ∈ E(H)} be

the set of middle partitions.

We will now create a graph G as follows. For every end partition P i ∈ PE, there

exist vertices i ∈ V (G). If any two end partitions P i, P j ∈ PE are contained in the

same edge e ∈ E(H), then we create edges {i, j}e ∈ E(G). The subscript for the edge

e ∈ E(H) is necessary because there might be more than one hypergraph edges that

contain both P i and P j.

Thus, every vertex in the graph G corresponds to an end partition in the hyper-

graph H, and every edge in the graph G corresponds to an edge in the hypergraph

H.

2.7.3 Valid Structures

Observe that a structure that might be valid on the reduced graph may not be valid

in the conflict hypergraph. This is due to the following two requirements that need

to be satisfied in order to ensure the validity of the hypergraph structures:

1. All partitions must be mutually disjoint

2. An edge contains exactly two end partitions

Therefore, for reduced graph structure S to represent a valid hypergraph structure,

for any {i, j}e1 , {k, l}e2 ∈ E(S), the partitions P i, P j, P {i,j}e1 , P k, P l, P {k,l}e2 must

be mutually disjoint.

A number of researchers have investigated the separation problem of graph struc-

tures on conflict graphs. See [4], [10] and [25] for examples. We will now illustrate

this concept by extending a separation algorithm for odd cycles in directed graphs

(described in [25]) to hypergraphs.
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2.7.4 Separation Algorithm for Odd Cycles

In this section, we investigate the separation problem for the case of odd cycles. We

begin by describing the graph algorithm given in [25]. We will then show how this

algorithm can be extended to the case of conflict hypergraph and odd cycles therein.

2.7.4.1 Detecting Minimum Weight Odd Cycles in Directed Graphs

Here we summarize the algorithm for detecting minimum weight odd cycles in directed

graphs. The details of the algorithm can be found in [25]. Consider a directed graph

D with node set N(D) and arc set A(D). Let there be a non-negative weight w(i,j)

associated with every arc (i, j) ∈ A(D). To detect a minimum weight odd cycle on

this graph, create a new directed graph D′ with node set N(D′) such that for every

i ∈ N(D), there exists i, i′ ∈ N(D′). The set of arcs A(D′) for the new directed

graph is constructed in the following manner. For every arc (i, j) ∈ A(D), the new

directed graph contains arcs (i, j′), (i′, j) ∈ A(D′). The weights w(i,j′), w(i′,j) of the

arcs (i, j′), (i′, j) ∈ A(D′) are same as the weight w(i,j) of the original arc (i, j) ∈ A(D).

Now, in the directed graph D′, any path from node i to i′ represents an odd cycle

on the original directed graph D. Thus, finding the minimum weight odd cycle on

(N, A) entails the solution of at most |N(D)| shortest path problems on D′.

2.7.4.2 Separating Odd Cycles on Conflict Hypergraphs

Let H be the conflict hypergraph generated by an ISP instance. Let V (H) be the

set of vertices of the conflict hypergraph, and let E(H) be the set of edges. Let x∗

be the optimal solution to the current LP relaxation.

The separation strategy works in the following manner. We will first construct

the reduced graph in the manner described earlier. Since the reduced graph has

undirected edges, we will convert it into a directed graph (by creating two opposite

directed arcs for every undirected edge). We will then create another directed graph

so that the odd cycle problem can be modeled as a shortest path problem.
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Let PE = {
⋂

e∈M e : M ⊂ 2E(H), |M | ≥ 2} be the collection of end partitions

(intersection of two or more edges). Let PM = {P {i,j}e = e \ {P i ∪ P j} : P i, P j ∈

PE, P i, P j ⊂ e, e ∈ E(H)} be the set of middle partitions.

We construct the reduced graph G as described previously. For every end partition

P i ∈ PE, there exists a verticex i ∈ V (G). If any two end partitions P i, P j ∈ PE are

contained in the same edge e ∈ E(H), then we create edges {i, j}e ∈ E(G).

Thus, every vertex in the graph G corresponds to an end partition in the hyper-

graph H, and every edge in the graph G corresponds to an edge in the hypergraph

H.

The reduced graph G is an undirected graph. We will convert G into a directed

graph D. We will refer to the node set of D with N(D) and the arc set with A(D).

Let N(D) = V (G). For every {i, j}e ∈ E(G), create (i, j)e, (j, i)e ∈ A(D).

We now create another directed graph D′, with node set N(D′) and arc set A(D′),

in the following manner. For every i ∈ N(D), create i, i′ ∈ N(D′). For every (i, j)e ∈

A(D), create (i, j′)e, (i′, j)e ∈ A(D′). Observe that every node in the directed graph

D′ corresponds to an end partition in the hypergraph H, and every arc corresponds

to an edge in the hypergraph H. For any (j, k)e ∈ A(D′), let P {j,k}e = e \ {P j ∪P k}.

We will now formulate a separation problem for the odd cycles. The formulation

is essentially a shortest path problem with the added constraints for ensuring mutual

disjointness of the associated partitions.

For a given feasible solution to the ISP instance x∗, let

w(i,j)e =
1

2

∑

k∈P i

(1− x∗k) +
∑

k∈P {i,j}e

(1− x∗k) +
1

2

∑

k∈P j

(1− x∗k)

where (i, j)e ∈ A(D′), P i, P j ∈ PE.

We define the following decision variables. For every (i, j)e ∈ A(D′), let

x(i,j)e =






1 if (i, j)e ∈ A(D′) is selected

0 otherwise.
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We also define the following constants.

For every j ∈ N(D′), let

αj =






1 if j = i

−1 if j = i′

0 otherwise.

For every (j, k)e ∈ A(D′), let

βj,k =






1 if P j ∩ P k = ∅

0 otherwise.

For every (j, k)e1 , (l, m)e2 ∈ A(D′), let

γ(j,k)e1 ,(l,m)e2
=






1 if P j, P k, P {j,k}e1 , P l, Pm, P {l,m}e2 are mutually disjoint

0 otherwise.

Recall that for every node i ∈ N(D), we created nodes i, i′ ∈ N(D′). Consider

such a pair i, i′ ∈ N(D′). For the pair of nodes i, i′ ∈ N(D′), we formulate the

following problem:

Z(i,i′) = Minimize
∑

(j,k)e∈A(D′)

w(j,k)ex(j,k)e

subject to
∑

(k,j)e∈A(D′)

x(k,j)e −
∑

(j,k)e∈A(D′)

x(j,k)e = αj ∀j ∈ N(D′)

x(j,k)e = 0 ∀(j, k)e ∈ A(D′) : βj,k = 0

x(j,k)e1
+ x(l,m)e2

≤ 1 ∀(j, k)e1 , (l, m)e2 ∈ A(D′) : γ(j,k)e1 ,(l,m)e2
= 0

x(j,k)e ∈ {0, 1} ∀(j, k)e ∈ A(D′) (23)

The solution to (23) represents a minimum weight (shortest) path on D′. The

objective function contains the coefficients necessary to select the minimum weight
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path so that it would represent the most violated odd cycle on the hypergraph.

The first constraint set enforces the continuity of the path from i to i′. The second

constraint set ensures that the path does not contain any arcs such that the associated

end partitions are not mutually disjoint. The third constraint set ensures that the

path does not contain any pair of arcs such that the corresponding end and middle

partition are not mutually disjoint. Finally, the fourth constraint set enforces the

binary condition of the decision variables.

The path obtained by solving (23) can be used to construct a valid odd cycle on

D, which in turn can be used to construct a valid odd cycle on G, from which one

can obtain an odd cycle on H.

Observe that the original odd cycle separation algorithm for a directed graph

D entailed solution of at most N(D) shortest path problems. Therefore, it was

polynomial in the size of the directed graph. However, the shortest path problem for

conflict hypergraph carries additional constraints for ensuring mutual disjointness of

the partitions. In addition, a conflict hypergraph might contain a multitude of edges

intersections, thereby considerably increasing the problem data. This makes it much

harder to implement to implement the separation routine for hypergraphs.

2.8 Concluding Remarks

In the preceding sections, we laid down a theoretical framework for obtaining facets

of the independent set polytope from conflict hypergraphs. We provided generalized

definitions for odd holes, odd antiholes, cliques, webs and antiwebs. Results for

maximum vertex packing on hypergraph structures were derived. These yielded valid

inequalities, which under certain conditions, were shown to be facet-defining for the

entire independent set polytope. Later, the definitions were generalized further to

include non-separable structures, and valid inequalities and facet-defining conditions

were derived for them. We also derived Chvatal-Gomory ranks for the odd hole
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and clique inequalities. Finally, we provided a framework for creating separation

routines for conflict hypergraphs, and illustrated the concept by extending the odd

cycle separation algorithm.

However, some open questions remain. It would be interesting to investigate facet-

defining conditions for valid inequalities derived from non-separable odd antiholes,

webs and antiwebs. Currently, we have been able to get results only for cliques

and odd holes. Another interesting question concerns the Chvatal-Gomory ranks for

structures other than cliques and odd holes. It is our conjecture, due in large part

to the correspondence between hypergraph structures and the associated reduced

graphs, that Chvatal-Gomory ranks for other hypergraph inequalities should be same

as those of the corresponding structures. It would also be interesting to investigate the

theoretical complexity results for the separation problems for hypergraph structures.

In fact, much more research is needed for creating practical separation routines that

would be effective in real-world branch-and-cut algorithms.
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CHAPTER III

COMPUTATIONAL EXPERIMENTS

In this chapter, we present computational experiments with hypergraph cutting planes.

We first describe the problem instances. We explain their structure and discuss the

factors that make them difficult to solve. We then describe implementations with

hypergraph cutting planes, and present the computational results. We experiment

with serial as well as parallel implementations.

3.1 Problem Instances

We chose a suite of multiple knapsack problems taken from JE Beasley’s OR Library

web-site [7]. These instances were developed by Chu and Beasley [14, 7].

The structure of these problem is of the form max{
∑

j∈N cjxj :
∑

j∈N aijxj ≤

bi∀i ∈ M}, where N, M are sets of columns and rows, respectively, and xj ∈ {0, 1}

for all j ∈ N .

For our computational experiments, we chose 30 instances with 250 variables and

10 constraints each. In these instances, each aij is a uniformly, randomly chosen

integer between 0 and 1000. Each bi =
∑

j∈N aij×α for all i ∈ M , where α = 0.25 for

the first 10 problems, 0.5 for the next 10 problems, and 0.75 for the final 10 problems.

The objective coefficients are computed as cj =
∑

i∈M
aij

|M | + (500 × pj) where pj is

a uniform (0, 1) random variable. Thus, the objective coefficient for a column is

obtained by summing the coefficients of that column over all the rows, and offsetting

that column by a positive amount (this offsetting is necessary to avoid degeneracy).

These problems are especially suited to test the hypergraph cutting planes because

of the following reasons. First, the tightness ratios ensure that it is highly unlikely that

there exists a pair of binary variables that are in conflict with each other. Therefore,
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the use of conflict graphs is precluded. Second, because of the 100% dense nature of

the problems, there exists a huge number of covers. Therefore, traditional lifted cover

inequalities are not very effective. This is aptly demonstrated when CPLEX tries to

solve these problems and generates thousands of cover inequalities in the process.

Problems of this nature have been discussed in [16, 1]. In literature, they are often

referred to as market-share or market-split problems. These problems are particularly

difficult to solve due to their dense and random nature. The effect of the density can be

especially observed when CPLEX tries to generate its own cuts. Since every coefficient

is a non-zero, CPLEX ends up generating hundreds of covers. The randomness is also

quite problematic as it induces symmetry, leading to an explosion of the branch-and-

bound nodes. Moreover, the uniform random distribution of the coefficients creates

a constraint matrix that is approximately (as opposed to exactly) symmetric, which

makes it difficult to employ symmetry breaking techniques. This effect can be seen

in branch-and-bound progression, wherein the gap between upper and lower bounds

tends to vary very little across the tree, and changes very slowly over time.

3.2 Implementation of Hypergraph Cuts

We experimented with a heuristic that generated odd hole and clique cuts. We chose

these cuts because we were able to identify facet-defining conditions for the non-

separable case. Moreover, there is considerable past research attesting to the efficacy

of graph odd holes and cliques. Therefore, they provide a good starting point for

testing hypergraph cuts.

3.2.1 Constrained Cover Generation

Here we describe a heuristic method that generates covers that include and exclude

specified variables. Let N be the set of variables. Given a solution x∗ of the current

LP-relaxation, let N1 ⊂ N be the set of variables that must be included in the cover,

and let N2 ⊂ N be the set of variables that must be excluded from the cover. For a
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given i ∈ M , the constrained cover generation heuristic attempts to solve the following

optimization problem:

minimize
∑

j∈N

(1− x∗j)zj

subject to
∑

j∈N

aijzj > bi

zj = 1 ∀j ∈ N1

zj = 0 ∀j ∈ N2

zj ∈ {0, 1} ∀j ∈ N

Clearly, a feasible solution to this problem represents a cover. The heuristic begins

by selecting all the variables in the set N1. The remaining variables are then sorted

in the non-decreasing order of
1−x∗j
aij

, j ∈ N \ N1. The heuristic then picks up rest of

the variables in this order until a cover is obtained. The heuristic is applied to every

row i ∈ M , and the cover with maximum violation is selected.

3.2.2 Recursive Clique Generation

We generate cliques recursively using constrained cover generation in the following

manner. Let S be a clique with partitions P i, P i,j, i, j = 1, . . . , d, i -= j. Let V (S)

be the set of variables currently in S. We increment S in the following manner.

Generate an edge e1 such that it includes at least one variable in P 1 and excludes

all variables in V (S) \ P 1. Generate another edge e2 such that it includes at least

one variable in P 2, includes at least one variable in e1 \ V (S), and excludes all the

variable in V (S) \ P 2. Observe that e1 ∩ e1 -= ∅. Finally, for j = 3, . . . , d, generate

edge ej such that it includes at least one variable in Pj, includes at least one variable

in ∪j−1
k=1ek, and excludes all variables in V (S) \P j. Thus, the original clique S can be

recursively grown starting from an odd hole of size 3.
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3.2.3 Recursive Odd Hole Generation

We generate odd holes recursively using constrained cover generation in the following

manner. Let S be an odd hole with partitions P 1, P 1,2, P 2, . . . , P d−1, P d−1,d, P d, P d,1.

Let V (S) be the set of variables currently in S. We increment S in the following

manner. Generate an edge e1 such that it includes at least one variable from P 1,

includes at least one variable from N\V (S), and excludes all the variables in V (S)\P 1.

Next, generate an edge e2 such that it includes at least one variable from P 2, excludes

all the variables in V (S) \ P 2, and excludes all the variables in e1. Finally generate

an edge e12 such that in includes at least one variable in e1 \ V (S), includes at least

one variable in e2 \ V (S), and excludes all the variables in V (S). Remove the edge

represented by {P 1 ∪ P 1,2 ∪ P 2} from the odd hole, and append the edges e1, e12, e2.

Thus, we have incremented the odd hole. This way, bigger odd holes can be recursively

obtained starting from smaller ones.

3.2.4 Branch-and-Cut Implementation

We employed the hypergraph odd hole and clique cuts in a branch-and-cut scheme.

The cut generation routine was initialized by generating an edge (cover) e1 without

any constraints. Then another edge e2 was generated such that it included at least

one variable in e1, included at least one variable in N \ e1, and excluded at least one

variable in e1. This creates an edge-pair with two intersecting edges. Then an attempt

was made to generate a third edge e3 such that it included at least on variable from

e1 \ e2, and excluded all variables in e1 ∩ e2. If this edge intersected both e1 and e2,

then we have a clique of size 3. This clique was then grown recursively as described

earlier.

On the other hand, if e3 did not intersect e2, then a fourth edge e4 was generated

such that it it included at least one variable in e3 \ e1, and excluded all variables

in e1 ∪ e2. Finally, a fifth edge e5 was generated such that it included at least one
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variable in e4 \ e3, included at least one variable in e2 \ e1 and excluded all variables

in edges {e1 ∪ e3}. Thus we have an odd hole of size 5. this odd hole was then grown

recursively as described earlier.

The entire process is illustrated in Figure 11. Each elipse in the illustration repre-

sents a cover or an edge. The illustration depicts the how the heuristic progressively

builds the odd hole or clique structure.

Cliqu!

Odd Hol!

Figure 11: Clique and Odd Hole Cut Generation.

CPLEX 9 was used for the branch-and-bound implementation. All presolve fea-

tures and CPLEX cuts were turned off for comparison. One round of cut generation

was performed every 100000 branch-and-bound nodes. Maximum number of cuts

added were limited to 10 (the number of rows in the constraint matrix). Lifting was

performed for every cut and global validity of the cuts was maintained. The maximum

limit on the size of the branch-and-bound tree was set at 6000 MB.

3.2.5 Computational Results

Our tests revealed that the current implementation of hypergraph odd hole and clique

cuts is not very effective at solving the instances in our test suite. This is due to the
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following reasons. The effectiveness of the cuts rests heavily on the cover generation

method, and the subsequent recursion. Being a heuristic, all the edges of the clique or

odd hole generated might not be minimal. Therefore, the dimensionality of the cuts

might be lower. Another reason is that the inherent nature of instances is such that

the typical cover size is very large, primarily due to the tightness ratios described in

Section 3.1. This leads to a lot of variables lying in the middle partitions, thereby

increasing the right hand side of the valid inequalities and rendering them quite loose.

3.3 Implementation of Uniform Hypercliques

The computational experience with hypergraph odd holes and cliques led us to ex-

periment with other types of valid inequalities derived from conflict hypergraphs. In

particular, we decided to experiment with uniform hypercliques. These experiments

are described below.

3.3.1 Uniform Hypercliques

In this section we summarize some of the important results related to uniform conflict

hypergraphs and uniform hypercliques from Easton et al. [18]. Recall that a uniform

k-hypergraph is a hypergraph such that all its edges have cardinality k. A hyperclique

Km,k in a uniform k-hypergraph Hk is defined as a set of m vertices such that every
(

m
k

)
combination of vertices comprises an edge. A hyperclique Km,k is said to be

maximal if {v} ∪Km,k is not a hyperclique for all v ∈ Hk \ Km,k.

Theorem 3.3.1. [18] If Km,k is a hyperclique containing m vertices in a conflict

k-hypergraph generated from an ISP instance, then
∑

i∈Km,k
xi ≤ k − 1 is a valid

inequality for P ISP .

Theorem 3.3.2. [18] Let Km,k be a maximal hyperclique containing m elements in

Hk with n ≥ m ≥ k ≥ 2 (where n is the number of vertices in Hk). If for each vertex

v ∈ Km,k there exists an edge e ∈ E(Km,k) such that v ∈ e and e is generated from a
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minimal dependent set, then
∑

i∈Km,k
xi ≤ k − 1 is facet-defining for P ISP .

Initial empirical tests revealed that the uniform hyperclique cuts by themselves

are not very effective when the conventional branch-and-bound scheme is followed.

Therefore, the original problem was partitioned into a number of sub-problems at

the root node using a strategy similar to that mentioned in [18]. Each of these

sub-problems was solved as an independent integer program with regular variable

dichotomy, with the hypergraph cutting planes added to these sub-problems.

In the following sections, we describe the details of the computational strategy.

3.3.1.1 Aggregate Branching

The original problem was partitioned into sub-problems in the following manner. Let

S ⊂ N be a subset of the original variables. The first sub-problem was created

by fixing xj = 1 for all j ∈ S. A second set of |S| sub-problems was created by

setting xj = 1 for all j ∈ S \ {k}, and xk = 0 for all k ∈ S, j -= k. A third set

of |S|×(|S|−1)
2 sub-problems was created by fixing xj = 1 for all j ∈ S \ {k, l}, and

xk = xl = 0 for all all k, l ∈ S, j -= k -= l. Finally, a fourth sub-problem was created

by appending the inequality
∑

j∈S xj ≤ |S| − 3 to the original instance. Therefore,

this scheme partitions the original problem into (1+|S|+ |S|×(|S|−1)
2 +1) sub-problems.

Each of these sub-problems is then solved as an independent integer program. This

partitioning process called aggregate branching, is illustrated in the Figure 12. Note

that aggregate branching is performed at the root node only. Thereafter, each of the

sub-problems is solved independently using regular variable dichotomy.

For our experiments, the construction of subset S was guided by the solution of the

LP-relaxation of the original problem. Let r be reduced costs of the primal variables.

We chose S = {j : rj ≥ ε}. The value of ε was chosen such that |S| ≈ ρ × |N |. We

chose parameter ρ = 0.2.

The aggregate branching strategy helps in a number of ways. First, if the set
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Root Node

xk = 0
xl = 0

∑

j∈S

xj ≤ |S|− 3∑

j∈S

xj = |S|
∑

j∈S\{k}

xj = |S| − 1

xk = 0

∑

j∈S\{k,l}

xj = |S| − 2

|S| sub-problems
|S|*(|S|-1)/2 sub-problems

For all k ∈ S For all {k, l} ⊂ S

Figure 12: Aggregate Branching.

S is chosen such that it contains a lot of the variable that would have value 1 in

the optimal solution, then we can get good lower bounds early in the optimization.

This helps in pruning a lot of branch-and-bound nodes. This is critical since these

instances tend to exhaust all branch-and-bound nodes before proven-optimality is

reached (e.g., in CPLEX runnings, it is typical to see 20 million branch-and-bound

nodes being generated.) Second, because so many of the variables are fixed, the

dimensionality of the resulting sub-problem is reduced, thereby aiding the process

of growing the hyperclique (see Section 3.3.1.2). Finally, because a large proportion

of the variables is fixed, it reduces the symmetry of the problems. All these factors

together help in speeding up the solution times.

3.3.1.2 Generating Uniform Hyperclique Cuts

The uniform hyperclique cuts were generated in the following manner. Let aj =
∑

i∈M aij, j ∈ N . Let b =
∑

i∈M bi. We sum up the coefficients like this because

we found that the summed constraint provides a better relaxation to the original

problem by reducing much of the randomness in the constraint matrix.
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Without loss of generality, let a1 ≥ a2 ≥ . . . ≥ a|N |. Let k be a fixed inte-

ger. The uniform hyperclique can be constructed by finding the largest q such that
∑q

j=q−k+1 aj > b. Clearly, all subsets of size k of the set Kq,k = {1, . . . , q} form a

dependent set. Therefore Kq,k represents a uniform k-hyperclique of size q, and the

inequality
∑

j∈Kq,k
xj ≤ k − 1 is valid.

In the interest of stronger valid inequalities, we would like to get as large a hy-

perclique as possible. Therefore, we employed a strategy that iteratively grows the

hyperclique obtained above. This strategy, which is similar to sequential lifting, is as

follows.

For any l ∈ N \ Kq,k, consider the following integer program:

maximize
∑

j∈Kq,k

xj

subject to
∑

j∈N

aijxj ≤ bi ∀i ∈ M

xl = 1

xj ∈ {0, 1} ∀j ∈ N (24)

If the optimal value of the integer program (24) is k − 2 or less, then l can be

added to Kq,k. Clearly, it is difficult to solve this optimization problem repeatedly

for different l. However, solution time may be controlled by employing some heuristic

strategies. First, because k is known beforehand, we can set the cut-off value at k−1.

Also, one can set a parameter δ such that the optimization is halted if the solution

of LP-relaxation exceeds δ. Finally, a limit can be set on the maximum number of

branch-and-bound nodes processed during the optimization.

Since the process of generating uniform hyperclique inequalities is computation-

ally expensive, it is not feasible to generate them frequently (as in a branch-and-cut

scheme). Initial empirical tests showed that first sub-problem (where all the elements
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of S ⊂ N were fixed to 1), and the last sub-problem (where none of the variables

were fixed and an inequality was added), took longer than the others. Therefore,

hyperclique cuts were generated for these two sub-problems only.

Specifically, two hyperclique inequalities were added to each of the aforementioned

sub-problems. The choice of k for both the inequalities was guided by the solution of

the initial LP relaxation. For the first hyperclique inequality, we set k = 0
∑

j∈N x∗j1,

and for the second hyperclique, we set k = 0
∑

j∈N x∗j1 − 1.

3.3.2 Results

The tests reported here were run on a Linux cluster with eight quad-core 2.33 GHz

Intel(R) Xeon(R) processors, and 12 GB of RAM. The experiments were performed

using CPLEX 9 as an LP solver.

In this section, we describe the results from the serial implementation running on a

single processor (see Section 3.4 for the parallel implementation). For comparison, we

benchmarked against CPLEX running time. We set a limit of 6000 MB on the size of

the branch-and-bound tree. We found that the CPLEX performed best with the MIP

emphasis parameter set to best bound. For the purpose of comparison, CPLEX cuts

were turned off when implementing uniform hypercliques and aggregate branching.

The results are summarized in the table 1.
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The first column of the table contains the names of the instances. The second

column contains the optimal IP objective value. The third column contains the time

taken by CPLEX to solve the instance to optimality. All times reported in this

table are in CPU seconds. The entry “CPXERR” indicates that the limit on the

branch-and-bound tree was reached. The fourth column total time taken to solve

the instances to optimality with uniform hypercliques and aggregate branching strat-

egy. The fifth column contains the times taken by the first aggregate branching sub-

problem. The sixth column contains the times taken by the last aggregate branching

sub-problem. Finally, the last column contains the time spent in generating the uni-

form hyperclique cuts (recall that two cuts were generated for the first sub problem,

and two for the last sub problem).

The tests are reported for ten instances. Our implementation with uniform hy-

perclique cuts and aggregate branching produces much better solution times than

CPLEX. All implementations were solved to proven optimality by our implementa-

tion of uniform hyperclique cuts. CPLEX, however, was able to solve only eight of

these ten instances. CPLEX exceeded the tree limit memory for the two instances,

namely mk5-08, and mk5-16. Hence, branch-and-bound was terminated.

The total computational time varied widely. The minimum time taken by CPLEX

was 6399 CPU seconds for instance mk5-07. Among other instances that CPLEX was

able to solve, it took the longest for mk5-18 (40458 CPU seconds).

Our implementation of uniform hyperclique cuts combined with aggregated branch-

ing decreases the solution times significantly. For the instances mk5-08 and mk516

(for which CPLEX ran out of memory), our implementation took 108522 and 40458

CPU seconds, respectively. For instance mk5-09, CPLEX took 23015 CPU seconds,

while our implementation took 6547 CPU seconds. For instance mk5-03, our imple-

mentation took 2828 CPU seconds, against the 8395 CPU seconds taken by CPLEX.
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For instance mk5-07 (for which CPLEX performed the best, taking 6399 CPU sec-

onds), our implementation took 2780 CPU seconds. Our implementation took the

most amount of time for instance mk5-08, and the least amount of time for instance

mk5-07.

The total cut generation time for our implementation was fairly uniform, varying

from 464 CPU seconds for mk5-08 to 631 CPU seconds for mk5-07. Interestingly, our

implementation performed best for mk5-07 and worst for mk5-08.

It is interesting to compare the solution time for the first and the last aggregate

branching sub-problems. Intuitively, the first sub-problem should take less time (be-

cause the maximum number of variables were fixed in it), and the last sub-problem

should take longer (because no variables were fixed). This is indeed the case for

instances mk5-07, mk5-08, mk5-09, and mk5-10.

However, the reverse is true for other instances. For example, in case of instance

mk5-01, the first sub-problem took 1009 CPU seconds, while the last sub-problem

took 70 CPU seconds only. The time for the first sub-problems for instances mk5-11,

mk5-16 and mk6-18 were 20077 CPU seconds, 39981 CPU seconds and 26981 CPU

seconds, respectively. On the other hand, the last sub-problem took merely a fraction

of a second for each of these instances. In case of these instances, the first sub-problem

contained a lot of the columns that would take value 1 in the optimal solution. This

generated strong feasible solutions early on in the tree. Moreover, the nature of the

instances is such that in case of last sub-problem, nodes were heavily pruned due to

reduced cost fixing. In fact, in case of instances mk5-11, mk5-16 and mk6-18, all the

columns could be fixed at the (subproblem)root node itself.

It is also interesting to observe that even though the coefficients are uniformly

randomly distributed, there is such a wide disparity in the solution times with CPLEX

as well as uniform hypercliques with aggregate branching.

Another important observation relates to the tightness ratio of the instances.
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Recall that the right hand sides of the knapsack constraints are generated by simply

adding up the coefficients and using a multiplier to reduce the sum. This multiplier

is referred to as the tightness ratio. There are three tightness ratios used: 0.25, 0.50,

and 0.75. The first seven instances reported in the table have a tightness ratio of

0.25. CPLEX performs particularly poorly in these instances. On the other hand,

the rest of the instances have a tightness ratio of 0.50. In these last three instances,

CPLEX performance is much more comparable with our implementation.

This observation can be explained by considering a traditional knapsack problem.

If the size of the knapsack is small, then there might be a lot of different combinations

that can give a high objective value. However, when the knapsack capacity is large,

most of the valuable items can be easily put in. The resulting number of combinations

due to the remaining low value items is not that high. In other words, one need not

consider as many possible choices with a large knapsack as one might need to consider

with a smaller knapsack. The same principle can be observed here. With a larger

tightness ratio, most of the columns with high objective coefficients can be easily

set to one. This leads to a smaller gap between the LP relaxation and the feasible

solution. It also reduces the number of good combinations remaining, which leads to

large number of nodes getting pruned.

3.4 Parallel Implementation

In this section, we describe a parallel implementation of computational experiments.

We first describe the motivating factors that led us to consider parallel computing.

We then describe the parallel implementation itself, and the issues involved therein.

Finally, we report the results of our experiments.

3.4.1 Motivation

There are a number of reasons that motivate a parallel implementation of the com-

putational experiments described in the previous sections.
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Observe that the serial computational strategy described relies heavily on parti-

tioning of the problem (through aggregate branching). Moreover, the branch-and-

bound process itself creates a number of sub-problems, each of which can be solved

separately. In fact, the nature of our problem instances is such that the number

of branch-and-bound nodes processed is extremely large. These factors make the

problem particularly suited for parallel computing.

The issue of cutting planes is another factor that motivates a parallel implemen-

tation. In regular parallel branch-and-cut algorithms, if the number of cuts generated

is large, then the transfer of cuts from one processor to another can become a big

issue, adding significantly to communication time. However, our single-processor

computational strategy involves very few cutting planes. Therefore, this additional

communication overhead among processors may be avoided by generating the cuts

locally.

Another issue in parallel branch-and-bound involves the branching process which

uses the dual-basis resident in the parent node to initialize the dual-simplex algorithm

for solving the children. If the LP relaxation takes a large number of iterations to

converge, then one needs to some how transfer the resident basis along with the

branch-and-bound nodes. However, the LP solution time for our test-set is very low.

Therefore, nodes can be transferred without the basis information, thereby incurring

less communication overhead.

To summarize, our single-processor computational strategy involves aggressive

partitioning and few cutting planes. Moreover, the nature of the problems is such

that the LP relaxation solution times are very small, but the the number of branch-

and-bound nodes is extremely high. Therefore, parallel implementation is a natural

extension of the current work.
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3.4.2 Previous Research

Literature concerning parallel branch-and-bound dates back to 1970’s. Pruul et al.

[39] report results of a simulated parallel branch and bound algorithm for solving

traveling salesman problem. Gendron and Crainic [22, 23] provide a survey of work

on parallel branch and bound. Ashford et al. [3] present a more sophisticated branch

and bound algorithm for a transputer network of up to eight nodes. Eckstein was

among the first to write an industrial strength parallel branch and bound code for

general mixed integer programming. An implementation is discussed in [20]. In a later

work, he discusses the possibility that knowledge of advanced features of computer

architecture might not be necessary to write effective parallel solvers [19]. Cannon

and Hoffman [13] were the first to report results of a parallel branch and cut imple-

mentation. Bixby et al. [9, 11] use a parallel software platform called TreadMarks

[28] for implementing parallel branch-and-cut. There has also been some research on

employing parallel computing for structured integer programs. [2] describe a paral-

lel implementation for the traveling salesman problem. Linderoth [31] investigates

parallel schemes for set partitioning problem.

3.4.3 Parallel Implementation Strategies

We used the Message Passing Interface in a distributed memory environment for our

implementation. We followed a master-slave paradigm wherein the master processor

does not perform any optimization. All optimization is done by the slave processors.

Master only keeps track of global data (such as the global best feasible solution) and

acts as an intermediary to facilitate communication among difference slaves.

3.4.3.1 Work Distribution

Initially, a queue of the aggregate branching sub-problems is kept by the master

processor. It polls for work-requests from each of the slave processors. If a slave is

idle, it sends a request for work to the master. When the master receives a request
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from a slave, it sends the next sub-problem from the queue. This strategy is followed

until the master processor runs out of aggregate branching sub-problems. Thereafter,

upon arrival of new work-requests, master queries a busy slave for some of its unsolved

branch-and-bound nodes, and transfers those nodes to the idle slave. When the

master determines that all the slaves are idle, it sends a signal for global exit, which

terminates the program across all processors.

Whenever a busy slave receives a new request from the master, it allocates a buffer

to store the nodes that will be sent over. Upon allocation of this buffer, every time

this slave is about to branch on a node, it evaluates whether to add this node to the

buffer or to process it locally. If the decision is made to add the node to the buffer,

then no branches are created, and the node is added to the buffer. Otherwise, the

node is processed as usual locally. The process continues until the requisite number

of nodes have been added to the buffer. When this occurs, the buffer is sent to the

master. The master, acting as an intermediary to facilitate communication, forwards

this buffer to the idle slave that sent the original work request.

3.4.3.2 Cut Generation

The cut generation strategy for the parallel implementation is same as the one de-

scribed in the serial implementation (see Section 3.3.1.2). Two hyperclique inequal-

ities are added to the first aggregate branching sub-problem, and two are added to

the last sub-problem. The inequalities are generated locally by the slave processors

upon receiving the appropriate aggregate branching sub-problem from the master

processor.

3.4.3.3 Lower Bounds

During the course of the optimization, new lower bounds (feasible solutions) are found

by the slave processors. Whenever a slave discovers a new lower bound, it transmits

it to the master processor. The master compares it with the currently stored value
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Figure 13: Master - Module 1.

of the global lower bound. If the new value sent by the slave is greater than than the

current lower bound, then the master updates the current stored value of the global

lower bound and broadcasts it to all the slaves.

Figures 13 and 14 pictorially depict the implementation in the master processor.

Figures 15 and 16 illustrate the implementation for the slave processors.

3.4.3.4 Work Distribution Issues and Trade-offs

When a busy slave receives requests for some of its nodes, some important decisions

need to be made. The first of these decisions is related to the number of nodes to send.

If too few nodes are sent, then there might be too many “request-send” transactions,
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adding to communication overhead. On the other hand if too many nodes are sent, the

sender itself might become idle quite soon. In fact, if a large, fixed number of nodes are

sent every time, there is a possibility of entering a cycle wherein two slaves exchange

their sender and recipient status endlessly. Also, whenever communication between

two processors takes place, a buffer has to be allocated on each of the processors. If

the number of nodes transferred in a single transactions is very large, then the buffer

needs to be sufficiently large too. If these buffers are excessively large, it may lead to

memory problems.

One way to make this decision is to send a fraction of the nodes left. In the

current implementation, we send min(l, n
s+1) nodes, where l is a pre-decided limit on

the maximum number of nodes to send, n is the number of nodes left, and s is the

number of idle slaves. We refer to l as the node transfer limit. This pre-decided limit

is necessary because the receiving processor needs to allocate a sufficient buffer to

store the incoming data.

Note that this node transfer limit imposes an upper limit on the total number

of nodes transferred at one time. This is different from the total number of nodes

transferred during the course of the optimization. For example, if the node transfer

limit is 1000, it simply means that at most 1000 nodes may be transferred in a single

transaction. Over the course of the optimization, a number of such transactions may

occur, and the total number of nodes transferred may be much greater.

There also needs to be a minimum number of nodes left for the transfer to occur.

If the number of nodes left is less than this minimum value, then the busy slave should

not send any nodes. This limit is needed so that the busy slave does not run out of

nodes by sending too many of its nodes. In the current implementation, we chose the

node transfer limit itself as this minimum requirement. Thus, if the number of nodes

left at a slave is less than this minimum requirement, then no nodes are sent.

Another decision is related to the selection of the nodes to send. Ideally, one
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would like to send nodes that are likely to generate large sub-trees. However, this

is very difficult to predict for any given node. The gap between the node objective

value and the current incumbent solution is one indicator that can be used (nodes

large gaps are likely to large sub-trees, and vice versa).

In this implementation, we chose the percentage gap of a branch-and-bound node

as an indicator for the size of the sub-tree generated by this node. We defined the

percentage gap as (ub−lb)×100
lb , where ub is the node objective value, and lb is the

current best lower bound. If this percentage gap is high, then the sub-tree is likely to

be large too. We chose a minimum percentage gap requirement to decide whether a

given branch-and-bound node should be transferred or not. If the percentage gap at

a node is less than this minimum requirement, then that node is not transferred and

processed locally instead.

Again, there are trade-off associated with the minimum required percentage gap.

If this minimum requirement is too low, then nodes with small sub-trees might start

getting transferred. This means that the slave receiving these nodes will quickly

process them and become idle again. On the other hand if this requirement is too

high, the busy slave might not be able to find too many nodes to send over, and

might take a long time to build up the buffer of nodes to send over. As a result, the

idle slave might have to wait a long time before it receives work. This will lead to

excessive wait times.

3.4.4 Results

In this section, we report the results from our computational experiments with parallel

implementation. We experimented with two values of the maximum node transfer

limit (100 and 1000). As mentioned earlier, this refers to the limit on node transfer

at a given time. It is different from the total number of nodes transferred throughout

the running of the program. We also experimented with two values of the minimum
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percentage gap (0.1 and 0.0). Thus, there was no minimum percentage gap required

for node transfer in the latter case.

The results of computational experiments from the parallel implementation are

reported in the tables 2 through 7.

There is a separate table for each instance. In each table, the term MinPctGap

refers to the parameter minimum percentage gap. Similarly, the term NodeTransfer-

Lim refers to the parameter maximum node transfer limit.

Each table is divided into two halves. The top half reports results when the mini-

mum percentage gap was set at 0.1 percent, and the bottom half reports results when

this parameter was set at 0.0 percent. Each of these halves is again divided into two

halves - left and right. The left half reports the results for the parameter maximum

node transfer limit set at 100, and the right half reports the results maximum node

transfer limit at 1000. Thus, each table is partitioned into four quadrants. Each

quadrant contains five columns. The first of these column is labeled Processors and

refers to the total number of processors used. The second column is labeled Total

Time and reports the total solution time (in CPU seconds). The third column is

labeled Max Wait Time and reports the maximum total waiting time (CPU seconds)

among all the slave processors. A slave processor is considered to be waiting if it

has sent a request for additional work to the master, but has not yet received any

problems. Total waiting time of a slave refers to the total time it spent in waiting

state. The fourth column labeled Nodes Transferred reports the total number of

branch-and-bound nodes transferred from one slave to another (via the master act-

ing as an intermediary). Finally, the the fifth column labeled Speedup reports the

ratio of total solution time with multiple processors to the total solution time with

a single processor. In all tables, the times with single processor are also reported for

comparison.

Figures 17 through 23 plot the total time taken against the number of processors
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employed for different combinations of the parameters. The y-axis values represent

the total CPU seconds taken, and the x-axis values represent the number of processors

used.

The total times for all instances seem to show significant decrease up to five pro-

cessors. The decrease is not significant thereafter. The maximum speedup obtained

is 5.43 for instance mk5-10. In general, it is noticed that speed ups are much better

when the solution time with a single processor is also high. Speed ups are not signifi-

cant for cases where the single processor solution time is less. For example, the single

processor solution time for instance mk5-03 is 2828 CPU seconds, and the maximum

speedup obtained is merely 2.49.

It is interesting to note how the instances behave for different values of the pa-

rameters. The total number of nodes transferred increases significantly when the

maximum node transfer limit is increased and the minimum percentage gap require-

ment is relaxed. However, this does not necessarily translate into better performance.

This can be seen by observing the wait time values, which do not seem to follow the

number of nodes transferred in a consistent manner. This can be attributed to the

increased communication overhead encountered when a large number of nodes are

transferred from one processor to another.

We also observed an anomaly. Normally, solution time decreases as the number

of processors increase. This is the case even when speed ups are small. However,

for instance mk5-09, the total solution time jumps significantly with seven processors

when the minimum percentage gap requirement is 0.0 and maximum node transfer

limit is 100. In this case, it was observed that most of the nodes transferred to the

recipient idle slave were quickly processed (because minimum percentage gap was 0.0),

and the slave would become idle almost immediately. As a result, the master would

enter long cycles where it would repeatedly serve the request from this one slave, while

other slave requests were neglected. This behavior of the system manifested in the
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unusually high maximum waiting time (4305.07 CPU seconds) and nodes transferred

(693869 branch-and-bound nodes).

Clearly, the very nature of parallel computing makes it unpredictable, forcing any

investigations to be of a largely empirical character. This is due to the multitude

of factors influencing system performance, and the sensitivity of the system to even

small changes in these parameters.
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3.5 Concluding Remarks

In this chapter, we reported our computational investigations into the efficacy of hy-

pergraph cutting planes. We chose a suite of test problems that are completely dense

and are very difficult to solve by conventional methods. The current implementation

of the hypergraph odd hole and clique cuts was not very effective at solving this

problem set. We then decided to test the effectiveness of the uniform hyperclique

cuts. These performed much better on these dense instances. Our implementation of

uniform hypercliques combined with aggregate branching scheme beat CPLEX by a

substantial margin. We also experimented with parallel computing. The experiments

with parallel implementation yielded deeper insights into how these instances behave.

There are a number of areas that need further research. The question of effective

implementation of hypergraph odd hole and clique cuts is still open. We experimented

with just one set of problems. More experiments are needed to test how different prob-

lem types respond to these cuts. We believe that these cuts along with innovative

branching schemes may be effective in solving some of the problems encountered in

cancer treatment optimization. More research is also needed for exploiting parallel

computers. The world of computing is moving into the direction of increasing paral-

lelism. Clearly, the traditional thinking in optimization needs to be modified to take

that into account.
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CHAPTER IV

CONCLUSION

4.1 Contributions

In this thesis, we laid down a theoretical framework for obtaining facets of the inde-

pendent set polytope from conflict hypergraphs. We provided generalized definitions

for odd holes, odd antiholes, cliques, webs and antiwebs. Results for maximum ver-

tex packing on hypergraph structures were derived. These yielded valid inequalities,

which under certain conditions, were shown to be facet-defining for the entire in-

dependent set polytope. Later, the definitions were generalized further to include

non-separable structures, and valid inequalities and facet-defining conditions were

derived for them. We also derived Chvatal-Gomory ranks for the odd hole and clique

inequalities. Finally, we provided a framework for creating separation routines for

conflict hypergraphs, and illustrated the concept by extending the odd cycle separa-

tion algorithm.

We also reported computational investigations into the efficacy of hypergraph

cutting planes. We chose a suite of test problems that are completely dense and

are very difficult to solve by conventional methods. The current implementation

of the hypergraph odd hole and clique cuts was not very effective at solving this

problem set. We then decided to test the effectiveness of the uniform hyperclique

cuts. These performed much better on these dense instances. Our implementation of

uniform hypercliques combined with aggregate branching scheme beat CPLEX by a

substantial margin. We also experimented with parallel computing. The experiments

with parallel implementation yielded deeper insights into how these instances behave.

83



4.2 Future Research

On the theoretical side, many open questions remain. It would be interesting to in-

vestigate facet-defining conditions for valid inequalities derived from non-separable

odd antiholes, webs and antiwebs. Currently, we have been able to get results only

for cliques and odd holes. Another interesting question concerns the Chvatal-Gomory

ranks for structures other than cliques and odd holes. It is our conjecture, due in

large part to the correspondence between elements of the hypergraph structures and

reduced graph, that Chvatal-Gomory ranks for other hypergraph inequalities should

be same as those of the corresponding structures. It would also be interesting to inves-

tigate the theoretical complexity results for the separation problems for hypergraph

structures. In fact, much more research is needed for creating practical separation

routines that would be effective in real-world branch-and-cut algorithms.

On the computational side, the question of effective implementation of hypergraph

odd hole and clique cuts is still open. There are many ways to implement these cuts.

More experiments are needed to study how different problem-sets respond to various

branch-and-cut implementation. We believe that these cuts along with innovative

branching schemes may be effective in solving some of the problems encountered in

cancer treatment optimization. More research is also needed for exploiting parallel

computing platforms. It would also be interesting to investigate how the information

contained in conflict hypergraphs may be used for designing better branching schemes

and heuristics.
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