
ARCHITECTURAL SUPPORT FOR AUTONOMIC
PROTECTION AGAINST STEALTH BY ROOTKIT

EXPLOITS

A Thesis
Presented to

The Academic Faculty

by

Vikas R. Vasisht

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
Nov 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4719872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ARCHITECTURAL SUPPORT FOR AUTONOMIC
PROTECTION AGAINST STEALTH BY ROOTKIT

EXPLOITS

Approved by:

Professor Hsien-Hsin S. Lee, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor John A. Copeland
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: November 14, 2008

To my Parents.

ACKNOWLEDGEMENTS

Without the support from many people, this work would have been impossible. First,

I am very grateful for my loving family back home in India – I would like thank my

parents and my grandmother, who have always motivated me to perform well and

who have supported me emotionally through the hardest times. Also, I would like to

thank my loving sister and brother-in-law for guiding me at every stage in the U.S.

Then, I would like to extend my sincere regards to my research advisor, Dr. Hsien-

Hsin Sean Lee. He has been an excellent mentor who has guided me throughout my

journey at Georgia Tech and I owe him whatever I have achieved in this country. I

am really lucky to be his student and receive his extended support during my stay at

Georgia Tech.

I would like to thank my fellow colleagues at the MARS lab: Abilash Sekar,

Eric Fontaine, Richard Woo, Dong Hyuk Woo, Mrinmoy Ghosh, Dean Lewis, Pratik

Marolia, Nak Hee Seong, Ahmad Sharif, Sungkap Yeo and Jen-Cheng Huang, who

have inspired me and have helped me to grow professionally.

Last, I would like to thank all my invaluable friends and the great people I have

met at Georgia Tech.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

II ROOTKITS OVERVIEW . 4

2.1 Common Exploit Techniques by Rootkits 5

2.1.1 Import Address Table Hooks (IAT): 5

2.1.2 System Service Descriptor Table Hooks (SSDT): 5

2.1.3 Interrupt Descriptor Table Hooks (IDT): 6

2.1.4 Direct Kernel Object Modification (DKOM): 6

2.2 Sophisticated Rootkits . 6

2.3 Software Anti-Rootkit Techniques 8

2.3.1 Signature-based detection: 8

2.3.2 Heuristic/Behavioral detection: 8

2.3.3 Cross-View-based detection: 8

2.3.4 Integrity-based detection: 9

2.4 Hardware Anti-Rootkit Techniques 9

III EXPLORING ARCHITECTURAL SOLUTIONS 10

3.1 Tagged TLB . 10

3.2 Tracking based on PDBA . 11

IV SHARK: PROCESS CONTEXT AWARE ARCHITECTURE 13

4.1 Hardware-Assisted PID Generation 14

4.2 Process Page Table Encryption and Decryption 15

4.2.1 Counter Mode Encryption 15

v

4.2.2 Decoupled Valid Bit Array Encryption 16

4.2.3 Page Table Translation Encryption and Updates 18

4.3 SSM-managed TLB updates . 20

4.4 Instructions supported in SHARK 21

4.5 Process Authentication . 24

4.6 Stealth Checker . 25

4.7 Strength of SHARK . 27

V EXPERIMENTAL ANALYSIS . 30

5.1 Functionality Evaluation . 30

5.2 Performance Evaluation . 31

VI RELATED WORK . 36

VII FUTURE WORK . 38

VIII CONCLUSION . 40

REFERENCES . 42

vi

LIST OF TABLES

1 Privilege instruction support in SHARK. 24

2 Processor System Configurations . 32

vii

LIST OF FIGURES

1 Architectural support for SHARK processor. 14

2 Counter-mode encryption and decryption 16

3 Valid bit array encryption . 17

4 Page table update in SHARK. 19

5 TLB update handled by the SSM. 21

6 Security enhancement for using the MODPT instruction 23

7 Performance impact with different TLB organizations (Config1) . . . 33

8 Number of D-TLB updates for TLB Config1 and TLB Config2 34

9 Number of context switches (amid 2 billion instructions) 34

10 Average overheads for all the benchmarks with different configurations 34

viii

SUMMARY

Operating system security has become a growing concern these days. As the complex-

ity of software layers increases, the vulnerabilities that can be exploited by adversaries

increases. Rootkits are gaining much attention these days in cyber-security. Rootk-

its are installed by an adversary after he/she gains elevated access to the computer

system. Rootkits are used to maintain a consistent undetectable presence in the

computer system and help as a toolkit to hide all the malware activities from the

system administrator and anti-malware tools. Current defense mechanism used to

prevent such activities is to strengthen the OS kernel and fix the known vulnerabil-

ities. Software tools are developed at the OS or virtual machine monitor (VMM)

levels to monitor the integrity of the kernel and try to catch any suspicious activity

after infection.

Recognizing the failure of software techniques and attempting to solve the end-

less war between the anti-rootkit and rootkit camps, in this thesis, we propose an

autonomic architecture called SHARK, or Secure Hardware support Against RootK-

its. This new hardware architecture provides system-level security against the stealth

activities of rootkits without trusting the entire software stack. It enhances the rela-

tionship of the OS and hardware and rules out the possibility of any hidden activity

even when the OS is completely compromised. SHARK proposes a novel hardware

manager that provides secure association with every software context making use of

hardware resources. It helps system administrators to obtain feedback directly from

the hardware to reveal all running processes. This direct feedback makes it impossible

for rootkits to conceal running software contexts from the system administrator.

ix

We emulated the proposed architecture SHARK by using Bochs hardware simula-

tor and a modified Linux kernel version 2.6.16.33 for the proposed architectural exten-

sion. In our emulated environment, we installed several real rootkits to compromise

the kernel and concealed malware processes. SHARK is shown to be very effective

in defending against a variety of rootkits employing different software schemes. Also,

we performed performance analysis using SIMICS simulations and the results show a

negligible overhead, making the proposed solution very practical.

x

CHAPTER I

INTRODUCTION

The security of an operating system directly affects the security of the entire com-

puting system and hence OS security is crucial. Kernel security is becoming critical

these days as the complexity of software systems has increased.

Currently, to warrant a safe OS kernel, efforts mainly focus the software, either

by changing the architecture of the OS kernel or by fixing the known vulnerabilities.

Due to the increasing complexity and the size of the OS, it is unrealistic to design

a monolithic OS without any vulnerabilities. On the other hand, researchers have

proposed intrusion detection systems (IDS) that aim at periodically monitoring the

integrity of critical software components. Although these techniques were sufficient

in the past, lately they have proven to be useless for emerging sophisticated attacks.

Also, we have recognized that defending against malware in the software stack is not a

proactive approach. The software stack is the common battle ground for both malware

and malware-detection systems - both trying to counteract each other. In fact, it is a

losing battle for software-detection schemes, as it is easy for future malware to devise

attacks against the present solution proposed by anti-malware camps, which results

in a never-ending loop in providing yet another software solution that will useless

in the future. To solve this problem permanently, the correct approach is to make

the hardware more security aware and enhance the relationship of the OS and the

hardware.

Rootkits are gaining more attention these days, as they are dangerous and difficult

to identify.Rootkits are not exploits to gain elevated access to the machine. They are

used to hide all the malware activities from the system administrator after an initial

1

exploit. After an initial exploit, the adversary will gain elevated access to the machine

and he/she will gain the freedom to manipulate any software component of the soft-

ware stack. Rootkits are used to manipulate the operating system to enable hidden

malware activity and hide all the processes, network connections and files used by

malware. This helps the adversary make use of the computing resources consistently

and remain completely hidden from the system administrator. Typical applications

of rootkits include key loggers that collect passwords, utilities to conceal any mal-

ware, network traffic sniffers, utilities to gain control of zombie machines and devise

other attacks such as denial-of-service, email spamming, etc. Recent studies indi-

cate that there has been an exponential growth in the number of rootkit techniques,

and rootkits will conceal an overwhelming (84%) majority of malware by the end of

2008 [21]. After an initial exploit, the rootkit installs itself and conceals all the mal-

ware processes from the system administrator and software anti-malware tools. This

is achieved by manipulating the compromised kernel and hijacking all the utilities

used by system administrators. The system administrator will be under the illusion

of maintaining a clean system by observing a manipulated system state sitting at the

top of the corrupted software stack.

Researchers have proposed software techniques to address the rootkit issue at the

OS and virtual machine monitor levels [10, 31]. However, software-based solutions can

be easily circumvented, as this approach combats the problem at the same privilege

level with the kernel rootkits, which is ineffective for solving the issue once and for

all. Today, detecting virtualization- based rootkits [25] is a challenge in the security

research groups and has proved to be impossible to solve using software techniques.

This necessitates a micro-architectural solution to enhance the relationship of the

OS and hardware and provide direct feedback to the system administrator to reveal

software contexts making use of hardware resources to solve the problem of stealth

permanently. In this thesis, we propose SHARK, which stands for Secure Hardware

2

Against RootKits, a process-context-aware architecture that has the capability to

identify every software context making use of hardware resources. When new pro-

cesses are created, these processes have to go through the secure hardware manager to

register themselves and then they always have to go through a process authentication

phase before making use of hardware resources. This enables hardware to identify ev-

ery software context making use of hardware resources at any point in time. The next

step is to provide direct feedback to the system administrator and expose the master

list of software contexts making use of hardware resources. The system administrator

can make use of this master list of processes exposed by hardware, which cannot be

manipulated, and compare it with the process listing returned by the OS. If the OS

is compromised, and the malware processes are hidden, this comparison will result in

a mismatch that can be used to trigger an alarm. As this solution is at the micro-

architectural level, any hidden software contexts at any layer of the software stack will

be revealed to the system administrator without having to rely on the compromised

OS. To the best of our knowledge, this is the first effort that uses a synergistic micro-

architecture and OS technique to address rootkit exploits. The rest of the thesis is

organized as follows. Chapter 2 gives an overview of rootkits, the nature of stealth,

and existing anti-rootkit solutions. Chapter 3 introduces the explored solution space

we performed before we proposed the new architecture. Chapter 4 gives all the details

of the proposed architecture SHARK, and Chapter 5 discusses the implementation

details and the analyzes our experimental results. Chapter 6 talks about the related

work, Chapter 7 discusses the future work, and Chapter 8 provides the conclusion.

3

CHAPTER II

ROOTKITS OVERVIEW

This chapter gives an overview of rootkits, the techniques used by rootkits to achieve

stealth in a compromised machine, the software anti-rootkit techniques proposed and

their weaknesses, and the emerging and future challenges.

A rootkit is a set of programs used by adversaries to achieve a permanent or co-

sistent undetectable presence on a machine. The attack scenario is as follows: The

adversary first uses a known kernel vulnerability to gain elevated access to the ma-

chine, and then installs rootkits to hide his traces from the system administrator and

anti-malware utilities. A rootkit’s function is to hide all traces of malware activ-

ity on the machine, which includes malware processes, network connections used by

malware, files used, and registry entries used by malware from system administrator

utilities.Malware uses rootkits as an enabler to hide its existence on the machine while

abusing all the hardware resources. Rootkits are of two types - memory based rootk-

its and persistent rootkits. Memory-based-rootkits will not survive a system reboot,

as they operate only on system memory and do not modify any files on disk. But

persistent rootkits change the persistent files on disk to load themselves on a system

reboot. It is comparatively easier for anti-rootkit tools to catch persistent rootkits by

checking the integrity of critical disk data before shutting down the machine. Rootk-

its are gaining more attention these days and are becoming serious security threats

because of the emerging sophisticated attacks.

In the next few sections, we classify different types of rootkits, provide an overview

of existing techniques to detect rootkits, and discuss why they are not sufficient to

tackle the emerging sophisticated rootkits.

4

2.1 Common Exploit Techniques by Rootkits

Rootkits modify the execution flow of the OS to hide malware activities from the

system administrator. Rootkits can operate both in user space and kernel space,

depending on the exploitation level.Kernel mode rootkits are more detrimental than

user mode rootkits because of the unrestricted access privilege. They can manipulate

any software component via the compromised OS and hence are very hard to detect.

Rootkits use the following techniques to achieve malware’s stealth and subvert the

system.

2.1.1 Import Address Table Hooks (IAT):

An IAT hook is a technique that was commonly used by naive rootkits at the user

level. Import Address Table (IAT) contains function pointers that lead to the func-

tions in different shared libraries. When a user-level process makes a function call

that is implemented in a shared library, the IAT is traversed to get the address of

that particular function before transferring the control. User-level rootkits patch this

table to hook these function pointers and install trampoline functions to filter data.

2.1.2 System Service Descriptor Table Hooks (SSDT):

SSDT, also called a system call table, is in the kernel space, which contains function

pointers to handle different system calls. A kernel mode rootkit can modify these

SSDT entries and replace a function pointer with an address of its own to hijack the

system. Loadable kernel modules (LKMs) have access to SSDT, and hooking SSDT

is a simple and popular attack accomplished by LKMs. To know the system state, all

the system administrator utilities use system calls, and it is easy to intercept these

calls and filter data.

5

2.1.3 Interrupt Descriptor Table Hooks (IDT):

IDT is another table in the kernel space used to store the interrupt handlers in the

kernel. The kernel mode rootkit can modify an entry in IDT to replace the legitimate

interrupt handler with the fake handler. Keylogging malware uses this technique

to intercept keystrokes of interest, e.g., passwords, social security numbers, bank

accounts, without any knowledge of the user.

2.1.4 Direct Kernel Object Modification (DKOM):

In the DKOM technique, the rootkit modifies the OS data objects directly to remove

the information pertaining to the processes the malware intends to hide. For example,

the rootkit can modify the linked list that the ”ps” command uses to find what

processes are running. It removes the node of the linked list that has information

about the malware process and hence the utility tools only see this manipulated linked

list and will not report any unintended use of computing resources. This technique

is hard to detect- because it is very difficult to track changes in the OS data.

2.2 Sophisticated Rootkits

Virtual memory subversion is a technique used by the Shadow Walker Rootkit [34]

in which the memory contents are faked when integrity-checking tools read the pages

occupied by malware. Typically, integrity-checking tools scan physical pages to watch

for any modification by malware. This rootkit tries to hide malware’s activities by

returning the original legitimate data when integrity-checking tools try to read these

pages. To accomplish this, the TLB is flushed for malware pages so that any memory

access to these malware pages walks through the page tables. The compromised OS

then manipulates the page table entries of these malware pages and invalidates the

PTEs so that there will be a page fault for every access to these malware pages. Then,

the patched page fault handler will differentiate between memory read and execute

6

operations, return the original legitimate data if it is a non-execute memory access

or the modified contents if it is a memory-execute operation for malware to execute.

This makes all integrity-checking tools useless.

Subvirt is another complex rootkit that was recently demonstrated [16]. This

rootkit makes the host OS a virtual machine and installs a virtual machine monitor

below the host OS. To accomplish this, the boot files are modified so that when the

system reboots, VMM boots before the host OS starts and the VMM takes full control

of the host OS. The host OS will not even know that it is executing as a virtual

machine on top of a VMM. Also, this virtual machine-based rootkit installs other

guest malware OSes completely isolated from the original host OS. Bluepill is another

conceptual rootkit [29] that makes use of advanced hardware-assisted virtualization

support to take control of the host OS without changing any system files. Using secure

virtual machine (SVM) in AMD-V technology and Intel’s VT-X technology, Bluepill

installs a thin hypervisor below the host OS on-the-fly and downgrades the host OS to

become a virtual machine without modifying the boot files. It is proved that, today,

we cannot effectively prove or detect virtualization-based rootkits [25]. Cloaker [6]

is a recent rootkit that exploits hardware to conceal itself without modifying the OS

code and data. One of the hardware configuration registers is modified to change the

location of the interrupt service routines (ISRs) and install malware in this virtualized

environment without modifying the host OS image. Recognizing the sophistication of

these emerging rootkits, we propose a solution at micro-architectural level to control

all software layers above the bare hardware. This solution should be effective in

identifying hidden software contexts in any software layer, including the VMM or

hypervisor level.

7

2.3 Software Anti-Rootkit Techniques

The existing software anti-rootkit techniques use one of the following methods to

examine the corrupted system and trigger an alarm:

2.3.1 Signature-based detection:

In this detection scheme, the memory is scanned to find the sequence of bytes that

comprise the fingerprint of known rootkits. If there is a match with known finger-

prints, an alarm is triggered. The downside of this approach is that it can be used to

detect only known rootkits with known fingerprints.

2.3.2 Heuristic/Behavioral detection:

In this scheme, a deviation of the expected normal system behavior is used as a clue

to detect potential suspicious activity. For example, using the execution time as one

heuristic, if the execution time of a system call has consistently increased, we can

infer that there is additional code inserted by malware and trigger an alarm. The

downside of this approach is that it triggers many false-positives because there can

be deviations in these heuristics that are not deterministic.

2.3.3 Cross-View-based detection:

In cross-view-based detection, a high-level system view obtained by high- level OS

functions is compared with a low-level system view obtained by very low level OS data.

Any mismatch triggers an alarm and concludes that the high -level OS view is changed

because of manipulation in intermediate OS layers. Rootkit Revealer [24], Klister [17],

Blacklight [3], and StriderGhostbuster [11] use this technique.This detection scheme

assumes that the low-level OS view cannot be modified by the rootkit and it cannot

get very complex. But today, rootkits are very complex and this detection scheme

will also fail.

8

2.3.4 Integrity-based detection:

In integrity-based schemes, a current snapshot of system memory is compared with a

trusted baseline. Any mismatch is taken as evidence of suspicious activity. Tripwire

and System Virginity Verifier [27] were developed based on this technique.

The approach followed by current software techniques is inherently flawed because

they operate in the same corrupted software stack. This results in a endless battle be-

tween rootkit and anti-rootkit camps. Subvirt, Shadow Walker, Bluepill, and Cloaker

are new rootkits that are very sophisticated and indicate the complexity of future

rootkits.

2.4 Hardware Anti-Rootkit Techniques

The Copilot hardware detection scheme [23] followed the right approach of having

an OS-independent hardware solution to check the integrity of the host OS in an

isolated environment inaccessible to the compromised machine. A snapshot of the

system memory is sent through the PCI bus to a co-processor where the integrity

is continuously checked. A counter attack against this system was demonstrated

by Rutkowska [30] in which it creates different views of the system memory to the

processor and PCI device to subvert CoPilot solution.

9

CHAPTER III

EXPLORING ARCHITECTURAL SOLUTIONS

As discussed earlier, none of the software solutions are strong enough to defend the

system against rootkits. Detecting hidden VMMs is claimed to be impossible using

software techniques. This makes it necessary to have an OS -independent hardware

solution that enhances the relationship of hardware and OS and makes the system

more security aware. As stealth is the most common exploitation of rootkits, we focus

on the stealth execution of software contexts achieved by memory-based kernel rootk-

its in this work. Viewing the problem of stealth from the hardware perspective, if the

hardware has the capability to identify process contexts, the hardware can expose the

list of software contexts making use of hardware resources to the system administra-

tor. The system administrator can view this list as the master list of processes that

cannot be manipulated and compare it with the software returned list of processes.

Any mismatch implies that the software stack is trying to hide the execution of a few

processes and it can trigger and alarm. Before proposing a new micro-architectural

solution, we explored the current architectures to determine whether small changes

to the current architectures will provide hardware the capability of recognizing soft-

ware contexts. In the following sections we discuss the possible solutions and their

weaknesses.

3.1 Tagged TLB

First we considered using tagged TLB and using the contents of the PID register

to identify processes. In fact, many processors use tagged TLB to avoid flushing

TLB on every context switch. This requires the OS scheduler to load the PID of the

upcoming process in the PID register, which will be compared with the PID stored

10

in the tagged TLB when there is a memory access. Using the PID register, a secured

hardware list of processes can be exported with the PIDs of all running processes. In

the beginning this appeared to be a good approach to track every software process

making use of hardware resources. But when the security evaluation was done, we

saw that this does not prevent the OS from manipulating the hardware list of PIDs.

The compromised OS can use the legitimate process’ PID to run malware. As the

TLB is tagged, it might contain VPN-PPN mappings of the legitimate process, which

will be returned when the malware process is run. To take care of these incorrect

address mappings, the TLB has to be flushed by the OS before context switching to

the malware process. For example, in the x86 architecture, the TLB can be flushed

using the INVLPG <address> instruction.

3.2 Tracking based on PDBA

In x86 architectures, every running process has a unique page global directory (PGD),

and upon a context switch to make the context switching simple, the OS has to load

the page table base address (address of the PGD) into the CR3 register. The CR3

register is used to do a hardware page table walk when there is a TLB miss. Knowing

that the CR3 value of every process is unique, we thought we could use this to

identify every process making use of hardware resources. In the beginning this looked

like a good approach because the compromised OS cannot run the malware process

by making use of the PGD base address of the legitimate process. If it is used,

the malware process will fail to see its address space and will fail to execute. The

dependency between CR3 and the execution context of the malware process appears

to make the security scheme strong. Nevertheless, it is easy for the compromised OS

to subvert this. It is as simple as swapping the page tables of a legitimate process and

malware process before context switching to the malware process and using the PGD

base address of the legitimate process. This will not expose the PGD base address of

11

the malware process to hardware.

12

CHAPTER IV

SHARK: PROCESS CONTEXT AWARE

ARCHITECTURE

After exploring possible architectural solutions, it is evident that all the shortcom-

ings were due to the tightly coupled dependency of these mechanisms with the OS

itself, which could have already been compromised. As such, detecting rootkits with

the OS’s direct intervention will always fail. This makes it necessary to design a

new processor architecture that has the capability to recognize process contexts. The

rationale behind the process context aware architecture includes (1) using hardware

support for creating a new process, (2) isolating and protecting process’ address space

in a hardware-hardened sandbox so that it cannot be circumvented by the compro-

mised OS, (3) providing the capability to recognize the running process without any

direct intervention of the OS. The hardware will be able to identify the running pro-

cess without any dependence on the vulnerable software stack. This enhances the

relationship between the hardware and OS and makes it possible to achieve a process

context-aware architecture.

To achieve the above set of objectives, we propose a process context-aware ar-

chitecture called SHARK, which stands for- Secure Hardware Against RootKits. In

the proposed scheme, the master control of processes is delegated to the SHARK

Security Manager (SSM), which is a hardware engine for enforcing the security of

different process contexts. The OS carries out its regular operations under the su-

pervision and assistance of the SSM. Figure 1 gives an overview of the proposed

architecture, including the software mechanisms. The rootkit detection capability

13

Memory
Access

TLB Miss

T
LB

 H
it

to
 th

e
P

ro
ce

ss
or

.....

.....

.....

.....

.....

.....

PageTable
Decrypt

Counter Mode

Engine (AES)

Software Stack

..

..

..

..

..

SHARK Secure Manager (Microarchitectural Extension)

.........

.........

.........

.........

.........

Counter Mode

Secret Key
Processor

Decryption

Get PID

PID
Generation

HPID Register

Scheduler
Update

EV

Engine (AES)
Encryption

 Page Table

Per−Process
Encrypted Page Table

E(PTE)

PPNTag

TLB

..

..

..

V

Memory Pages

 SHA−256
 Hash Engine

Figure 1: Architectural support for SHARK processor.

is achieved by integrating the following components into one processor: Hardware-

Assisted PID Generation,Process Page Table Encryption and Decryption, and Process

Authentication. These components are implemented within the SSM, a hardware-

based micro-architectural extension that works seamlessly with the software stack.

More details about each component are explained in the following sections.

4.1 Hardware-Assisted PID Generation

We have already seen that the PIDs generated by the OS are vulnerable to attacks,

and using this conventional approach, we cannot prevent the OS from using different

PIDs to run and conceal malware. So, Process ID Registration is the first attribute

that we introduce in the SHARK architecture. This registration of every new process

should be done by the operating system before the hardware gives the respective

process, the permission to make use of hardware resources. In other words, when

a new process is created, the Shark Security Manager (SSM) generates a new PID

14

for the process and not the vulnerable OS. Note that this hardware- generated PID

need not be a secret, as it is simply used as a counter value in our counter-mode

encryption [7], to be described later. When the SSM gets a request from the OS to

generate a PID, it generates a 64-bit PID by just incrementing the PID counter and

returns the same to the OS. Even if a new process is created every cycle on a 1GHz

processor, it takes 584 years for the PID counter to overflow which is long enough

for the system to reboot and initialize the counter. This makes the hardware PID

generator very simple without any PID pool management logic. Thereafter, the OS

has to use the same PID whenever it has to run the respective process. On a context

switch, the OS has to load the PID of the upcoming process into the HPID register

which is an integral part of the SSM.

4.2 Process Page Table Encryption and Decryption

Generating the PID of every process in hardware and asking the OS to load the PID of

the respective process into the HPID register on every context switch will not prevent

the OS from using the PIDs of legitimate processes to run and conceal malware

processes. This makes it necessary to establish an enforced dependency between the

PID of the process and the execution of the process itself. This dependency can be

achieved by the the proposed Process Page Table Encryption/Decryption using the

PID of the respective process as the counter used for counter mode encryption. If the

compromised OS tries to use a different PID to run a particular process, it breaks the

dependency and will prevent the process from running. Before getting into the details

of page table encryption, we briefly review the counter-mode encryption scheme.

4.2.1 Counter Mode Encryption

Counter-mode encryption is a common symmetric-key encryption scheme [7]. It uses

a block cipher (e.g., AES [8]), a keyed invertible transform, that can be applied to

short fixed-length bit strings. To encrypt with the counter mode, one starts with a

15

 128−bit
Plaintext

 128−bit
Encrypted
Ciphertext

 128−bit
Plaintext

key
128−bit AES128

 128−bit counter 128−bit counter

 128−bit counterkey
128−bit AES128

 128−bit
Encrypted
Ciphertext

(a) Counter Mode Encryption (b) Counter Mode Decryption

(c) Counter for Valid Bit Array

64−bit HPID 64−bit HPID

 and Page Table Encryption

Figure 2: Counter-mode encryption and decryption

plaintext, a counter, a block cipher, and a secret key. An encryption key bitstream is

generated, as shown in Figure 2(a). This key bitstream is XORed with the plaintext

bit string, producing the encrypted string ciphertext. To decrypt, the same encryption

pad is computed based on the same counter and key, XORs the pad with ciphertext,

and then restores the plaintext, as shown in Figure 2(b).

Counter mode is known to be secure against chosen-plaintext attacks, meaning

the ciphertexts hide all partial information about the plaintext, even if some a priori

information about the plaintext is known. This has been formally proven in [2].

Security holds under the assumptions that the underlying block cipher is a pseudo-

random function family (this is conjectured to be true for AES) and that a new

unique counter value is used at every step. Thus a sequence number, a time stamp,

or a random number can be used as a counter value. Note that the counter is not a

secret and does not have to be encrypted.

4.2.2 Decoupled Valid Bit Array Encryption

When the OS creates a new process, it requests the SSM to generate a new PID for

the respective process and provides the address of the page global directory (PGD)

and also the first page table entry of the respective process. The SSM generates the

PID as mentioned in section 4.1. Using this newly generated PID as a counter for

encryption, the valid bit array of the PGD and the PTE mapping in the last level page

table are encrypted before returning the generated PID to the OS. In this section, we

16

0

0

1

0

0

0

0

0

0

+HPID HPID

Counter Base

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Translation Array

Counter= (HPID || HPID)+1

Counter= (HPID || HPID)+N−1

Translation ArrayV

Offset

Enc(Valid Bit Array)

stored in Memory(1st level Page Table)

Counter= HPID || HPID

Actual Page Directory

Pipelined

Counter Mode

Encryption

Engine

(AES−128)

1st 128−bit Valid Bit Block

EV

Hardware Secret Key

2nd 128−bit Valid Bit Block

Page Directory − 1 Page Frame

Last 128−bit Valid Bit Block

Figure 3: Valid bit array encryption

describe the valid-bit array encryption in the PGD. In section 4.2.3, we describe the

details of PTE encryption.

A hardware secret key is first implemented that cannot be read out by any means

similar to what was used in prior secure processors [19, 33, 35]. Using the hardware-

generated PID and the secret hardware key, the first step is to encrypt the entire

valid-bit array of the PGD in blocks of 128 bits (i.e., every 128 entries) using the

counter- mode encryption scheme. The 128-bit counter value for encryption is formed

by concatenating the hardware-generated 64-bit PID value, as shown in Figure 2(c).

This guarantees that every process has a different valid-bit array. Starting from 0 for

the first 128-bit block, the counter value will then be incremented by one for each

encrypted block.

Figure 3 shows the entire encryption process of the valid-bit array. The result of

this encryption is an encrypted bitstream stored in the original valid-bit array of the

page table. After this initial encryption, the PID that was used as the counter for

this encryption will be returned to the OS. Note that this PID is returned only after

the initial encryption. The overhead of encrypting the valid-bit array of the PGD is

17

1024 V-bits/128 (input block size for AES) * 80ns = 640 ns without using a pipelined

AES implementation, which is negligible compared to the lifetime of a process.Note

that the 80 ns overhead for AES encryption is much slower than what is reported in

more recent AES engine implementation fabricated using a 0.18µm process in [12].

By means of this initial valid-bit array encryption, we establish the dependency

between the SSM and the software stack using the HPID and the hardware key. For

any subsequent page table walks to be valid, the OS cannot misguide the hardware by

using a fake PID, as the decryptions of the already encrypted page tables will fail.The

importance of valid-bit array encryption will be explained again in section 4.7.

4.2.3 Page Table Translation Encryption and Updates

The translation of the last level page table (PTE) is also encrypted. This section

gives details about this encryption. Again, for this encryption, we use counter mode

encryption and use a counter value, as shown in Figure 2(c). There is no extra

memory overhead or extra lookup logic involved for storing and searching the counter

values. These counter values are nothing but the PIDs of the respective processes

stored in the process context information.

The encryption granularity depends on the maximum physical memory that can

be supported in an architecture. For example, the x86-64 architecture supports a

maximum physical address of 40 bits in the IA-32e mode [14]. Given a 4KB page, the

physical address excluding the offset is 28 bits. According to the AES standard, the

block size for encryption and decryption is 128 bits. Hence, we propose to encrypt

four consecutive PTEs at once. Note that the current Linux uses a 4-byte integer

for each PTE and hence four consecutive PTEs are enough to store the encrypted

text. Therefore there is no memory overhead introduced in an actual implementa-

tion.Figure 4(a) shows the encryption process.

When the OS needs to update the process page table, it has to request the Shark

18

0

0
0

1

Actual Page Table
stored in Memory

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

V

0x00000000
0x00000000
0x00000000

Concatenated Pipelined

Counter Mode

Encryption

Engine

(AES−128)

Counter

EV

Hardware Secret Key

HPID HPID

0x00C00000

Page Table Entry

4 PTEs

Encrypted PTE

(a) Encryption Process

Pipelined

Encryption

Engine

(AES−128)

0

0
0

1

0

0
0

1

EV

0x00011FF0
0x00000000
0x00000320

0x00000000
0x00000000
0x00000000

Ctr Mode
Encryption

Counter Mode

EV

Ctr Mode
Decryption

Ctr Mode
Decryption

Counter

HPIDHPID

Hardware Secret Key

 Encrypted PTE Encrypted PTE
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��
��
��
��
��
��

��
��
��
��
��
��

��������
��������
��������

��������
��������
��������

0 0

0

1

 −−> 00012040
New Translation

1

C
ou

nt
er

 fo
r

H
W

 K
ey

V
al

id
 b

it
bl

oc
k

HW Key

0x00012040

0x00012040

Counter for Valid bit block

(b) Decryption Process

Figure 4: Page table update in SHARK.

19

Security manager to do this. Since the v-bit array of the PGD is encrypted, the SSM

first decrypts the v-bit array of the PGD to continue with the page table walk. Then,

it reaches the last level page table and examines the four PTEs that contain the target

translation. It first decrypts the corresponding 128-bit v-bit array block of the last

level and if none of the four PTEs is valid, SSM simply sets the valid bit, re-encrypts

the 128-bit valid-bit block, and encrypts the new translation with the neighboring

invalid mappings. However, if any of the other three is valid, which means that the

128-bit encrypted PTE contains some valid mappings, SSM decrypts the encrypted

PTEs, adds the new translation, and re-encrypts to update the page table correctly.

Figure 4(b) details this procedure. To maintain the correctness of the contents of the

page tables, every update to the page table should go through the hardware-based

SSM.

4.3 SSM-managed TLB updates

If there is a TLB miss, the TLB has to be refilled by a hardware page table walk. We

target the widely distributed machines used such as the x86 and PowerPC, that use

hardware-managed TLBs and we build our security module on top of it. Since the

TLB cannot be tampered with in our SHARK architecture, we store the plaintext

translation like a regular TLB. Since the page tables are encrypted in memory, every

TLB miss is followed by a hardware page table walk and a series of decryptions before

refilling the TLB. Using the PID value of the respective process from its process

context, the SMM first decrypts the corresponding 128-bit valid-bit block in the page

directory. Then it does a hardware page table walk to reach the last level page table,

decrypts the corresponding 128-bit valid-bit array block, and finally decrypts the

encrypted PTEs before refilling the TLB. Since the right PID value should be used

for correct decryption of page tables, it is compulsory for the compromised OS to

load the PID of the malware’s process and it has to reveal its PID to the hardware

20

Page Table
Walk

Tag

TLB

PPNV

x0023 x0000F001

4 Encrypted
PTEs
(128 bit)

HW Key

Counter Mode
Decryption
(AES−128)

Counter

HPID HPID

Encrypted PTE

Encrypted Page Table

HPID
Counter

1

0

0
0

1

EV

(AES−128)

HW Key

Counter Mode
Decryption

 Encrypted PTE

Encrypted Page Table

HPIDHPID+nHPID
Counter

1

Encrypted Page Directory

0

0
0

1

EV

(AES−128)

HW Key

Counter Mode
Decryption

 PDE

��������
��������
��������

��������
��������
��������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Figure 5: TLB update handled by the SSM.

whenever it executes. This is depicted in Figure 5.

4.4 Instructions supported in SHARK

Three new instructions are supported in the SHARK architecture, which are listed

in Table 1. The GENPID instruction has to be used by the OS when the first

memory page is assigned to a newly created process’ address space. As described in

section 4.1, when there is a request from the OS to generate a new PID, the SSM

increments the PID counter and uses the same PID as the counter to encrypt the

following: (1) valid-bit array of the page directory, (2) valid-bit array of the last level

page table, (3) page table translation (VPN-PPN) in the last level page table, It then

returns the generated PID back to the OS. The MODPT instruction is required by the

memory management module of the OS to directly update the page tables of processes

whenever the kernel swaps out and swaps in memory pages. MODPT decrypts the

encrypted PTE, inserts the new mapping and re-encrypts the PTE back to maintain

21

correctness. In addition to this, in order to track the physical pages of this particular

process, if we are invalidating the PTE (e.g., when swapping a page out), the MODPT

needs to compute the SHA-256 [32] checksum of the memory page and encrypt the

checksum using the PID of the process as the counter for encryption before swapping

out the page.This is illustrated in Figure 6(a). The resulting 32B encrypted checksum

accounts for 0.8% space overhead for every 4KB page, to prevent a particular attack,

as described in section 4.7. This extra operation is designed to further strengthen

the association of the memory page and the owning process.The reverse operation is

performed when a MODPT is used to validate a previously mapped PTE (swapping

a page in). Before updating the respective PTE, it checks whether the memory page

is owned by the process.(Note that this check is not performed while swapping-in the

memory page for the first time and the MAPPED bit (M-bit) in every PTE keeps

track of whether or not the virtual page is mapped and cannot be modified by OS and

is completely managed by SSM. Also note that there is no extra memory overhead

to have this extra bit, as this is present in today’s Linux kernel implementation.)

This authentication is achieved by computing the checksum of the memory page,

encrypting the checksum, and comparing it with the stored encrypted checksum.

Match in the checksums implies that the memory page is truly owned by the process

and the update is legal. After this authentication, the PTE of the page table is

modified, which is illustrated in Figure 6(b). Note that because of maintaining and

encrypting the checksum of the page when we are moving the physical pages from

one PTE to another, SHARK always keeps track of the ownership of this page and so

the compromised OS cannot modify the PTE of a legitimate process and map it to a

malware’s page to conceal malware’s page tables. Finally, the DECPT instruction is

required if the kernel wants to directly read the page table contents.

22

����������
����������
����������

����������
����������
����������

 Memory Page

Secondary Storage

4KB

32B

(AES−128)
HW KeyEncryption

Counter

HPID HPID

Counter Mode

Checksum 256 bits
SHA−256

(a) Swapping Out Memory Pages

����������
����������
����������

����������
����������
����������

 Memory Page

Checksum

Secondary Storage

4KB

32B

Counter Mode

(AES−128)
HW Key

Counter

HPID HPID

Encryption

=?

Valid Page Table Update

Illegal Page Table update

SHA−256
256 bits

(b) Swapping In Memory Pages

Figure 6: Security enhancement for using the MODPT instruction

23

Table 1: Privilege instruction support in SHARK.

Instruction Definition Functions

GENPID Generate a new PID Initial Valid-bit array and PTE encryption is performed,
M-bit of the respective PTE is set, hardware generated
PID is returned

MODPT Update the page table Useful when the kernel directly updates page tables
of a process of processes

(a) If the page is swapped-in for the first time
(M-bit = 0), it sets the M-bit and updates the
PTE with the new mapping.

(b) If M-bit = 1 and MODPT is used to
invalidate a memory page (swapping-out), SHA-256
hash of the memory page is computed and encrypted
before swapping out the page

(c) If M-bit = 1 and MODPT is used to validate a
memory page (swapping-in), SHA-256 hash of the
memory page is computed, encrypted and compared
with the stored encrypted hash to check whether
the memory page is owned by the process before
updating the PTE

DECPT Decrypt a process’ Useful if the kernel needs to know the physical addresses
page table entry by directly reading the page tables

4.5 Process Authentication

If the compromised OS tries to use a hijacked PID from a different process, the

end result of the process page table decryption will result in an incorrect physical

page number, which, if used, will prevent the execution of malware. The proposed

page table encryption and decryption are novel ideas that offer one more level of

virtualization provided by the secure hardware for the OS, putting all processes under

examination by SHARK.From a security standpoint, this consolidates the binding

between the hardware and OS, giving the hardware the capability of controlling and

authenticating the execution of software contexts through the address translation

process. The whole scheme of PID generation in hardware, page table encryption

based on this PID, and decryption based on the same PID in hardware enables the

system to perform Process Authentication.

24

4.6 Stealth Checker

This section discusses the last component of SHARK which is called Stealth Checker.

With the SSM hardware extensions, every running process is controlled and revealed

by the hardware. These hardware extensions make sure that the OS cannot fool

the hardware and enforces the OS to reveal the details of every running process

context to the hardware. But these hardware extensions cannot prevent OS from

manipulating software system administrator utilities to hide malware processes. For

example, even if the hardware knows about every running process, it does not prevent

the malware from manipulating ”ps” and ”top” to hide malware processes from system

administrators. So the hardware list of processes is meaningless if it is not safely

exported to the system administrator. This exported master list of processes can

be compared with the software list returned by the tampered utilities and evaluate

the differences. This functionality is implemented by Stealth Checker and it triggers

an alarm to the system administrator when the information revealed by software

utilities like ”ps” and ”top” is not consistent with the information from bare hardware.

For the above mentioned scheme to be secure and effective, we have to prevent the

compromised OS from intervening and subverting the master list of PIDs exported

by the hardware. Designing such a trusted feedback passage between the hardware

and anti-rootkit software is very crucial for identifying stealthy processes.

We propose to implement the stealth checker in firmware which is caller prior to

every context switch. Every write to the HPID register triggers this exception and

the exception handler reads the contents of the HPID register and gets the PID if the

upcoming process. There are no security implications till this stage because every-

thing is controlled by the hardware or firmware. Even though the firmware can be

upgraded by the OS, it requires a system restart that clears out the memory-based

rootkits that we target. After the HPID read, the PID with previously buffered PIDs

are encrypted and sent to a remote system administrator for examination. This small

25

packet of 128-Bytes accommodates 64-bit PIDs of 16 processes. The firmware sends

this data once every 10 context switches, which reduces the network activity even

more. Unlike CoPilot technique, which send out plain memory pages for examina-

tion, our firmware encrypts this data using a 128-bit key assigned by the system

administrator on firmware installation. Even though we are sending the data packet

to the remote machine by making use of insecure OS services, the OS cannot com-

promise this list as it is encrypted. To make it more secure, sequence numbers can be

employed in each data packet to prevent OS from using replay or blocking attacks.

If the OS attempts to block the packets sent by the handler, the system adminis-

trator sitting on the remote machine can conclude that the OS is compromised and

take appropriate actions. On the other side, the remote machine can decrypt the

data packets from the host machine and maintain an event log of process contexts

running on the host. He can use ssh to remotely connect to the suspected machines

and execute ”ps” like commands to check the process list returned by their OS. This

procedure can be completely automated. Any mismatch will alert one to a probable

security breach.

The major sources of overhead for the exception handler are (1) time taken by the

kernel network stack to update NIC buffers, and (2) network bandwidth utilized. The

minimum time slice in the Linux kernel 2.6 is 5ms, the maximum is 800ms and the

average being 100ms. Taking into account the maximum context switching frequency,

we have to send 128B data over the network every 50ms (once in 10 context switches).

Based on our measurements, the average kernel TCP stack overhead to send 128B is

less than 0.1 ms and the network bandwidth utilized is negligible. This reduces the

overhead of Stealth Checker below 0.2% and makes it highly practical.

26

4.7 Strength of SHARK

In this section, we discuss the potential future threat models and we analyze how

SHARK processor can defend against these attacks. We thought about many future

exploits that can be devised to subvert SHARK knowing that the OS cannot be

trusted. SHARK has the capability to prevent all these malicious attempts carried

out by untrusted OS.

First, if rootkits hijack a legitimate process’ PID to conceal malware’s PID, it

results in incorrect decryption of address mappings and makes sure that the malware

hiding process does not execute. Note that the encryption is seamless, established

using the HPID when the process and its page directory are created.

In another attack, the rootkit may plan to encrypt the page tables of a malware

process using the PID of a hijacked process. Once this is achieved, the malware

process can always run by using the PID of the legitimate process. This attack will

fail because any update to the page table has to first decrypt the Valid-bit array of the

PGD. If the rootkit tries to use a different PID in between and update the respective

page table, the valid bit array of PGD will result in incorrect decryption.

Now, we will talk about the significance of valid-bit array encryption of the first

level page table. If we do not encrypt the first level page table, and just encrypt the

last level translations, one attack model can successfully break the defense mechanism

of SHARK and use a legitimate process’ PID for malware’s execution. The attack

model is described here- We know that the last level page tables are constructed on-

demand, depending on the memory footprint of the application. When the second

last level page table is constructed, the contents will not be encrypted by SSM and

the OS can use MODPT instruction to encrypt the contents based on a legitimate

process’ PID. From this point, all the subsequent translations, will be encrypted based

on the other process’ PID. This will result in just one last level page table, encrypted

using malware’s PID and the rest encrypted based on some legitimate process’ PID.

27

If the malware application uses page tables other than the first one (encrypted based

on malware’s PID), it can successfully execute by using the legitimate process’ PID.

To defend against this attack, we encrypt the root node of the page table (first level)

so that, all the subsequent modifications (on-demand construction of last level page

table) should be first authenticated by the successful decryption of the first level page

table. This makes sure that malware’s page tables are not constructed using other

legitimate process’ PID.

In another attack model is to have the malware invalidate all the allocated malware

pages and swap all the malware pages to the disk. Then the malware will start over

and encrypt the blank page table using a hijacked PID of a legitimate process before

it is brought back to the memory. This is not possible, dues to the encryption of

the valid bit array of the last level page tables. The PTE invalidation will also cause

page table updates that will subsequently encrypt the valid bits of the page table.

Even if the pages are swapped out, the page table will still have valid bits encrypted

and the hardware page walk mechanism will exercise the SSM-enforced decryption

for invoking page faults. If they are not decrypted and re-encrypted correctly, the

page table will never be updated properly.

One may wonder why the OS cannot simply update the page table with its own

encrypted valid bit array and mappings since it knows both the PIDs and the page

tables are in memory. This is impossible since the hardware burn-in secret key cannot

be read by the OS by any means. It is hardwired into AES engine for performing

encryption and decryption. This makes this threat model not feasible.

Another attack could manipulate a legitimate process’ page table and address

space to run malware. Two types of this attack could be launched: (1) Using the

MODPT instruction, modify a duplicate copy of a legitimate process’ page table to

map to malware’s physical pages. Note that the OS has all the information required

— physical pages used for malware and legitimate processes’ decrypted page table

28

structures; (2) Use legitimate process’ address space to run malware— swapping

malware code and data to legitimate process’ memory pages and using manipulated

legitimate process’ page tables to run malware. Note that this attack is an extreme

strategy to hide malware and is very difficult to achieve. Even if the above attacks

can be somehow devised by malware, SHARK will be successful in defending against

them. This is achieved by the SHA-256 checksum mechanism described in section 4.4

and its encryption, which gives SSM the capability to track the ownership of memory

pages. This will not allow the OS to manipulate the page tables to point to memory

pages used by other processes on-the-fly or use other process’ PID to use its memory

pages while it is still executing.

Last but not least, we know that sophisticated virtual machine-based rootkits

[16, 29, 25] are emerging these days; we will discuss the implications of SHARK

architecture on these rootkits in this section. In virtual machine-based rootkits, the

malicious software uses either hardware support for virtualization or modify the boot

files so that the VMM boots under the host OS. Once the VMM starts operating

under the host OS, it is completely compromised. Now let us discuss the challenge of

identifying the nested VMM’s installed using hardware virtualization support in [25].

By using SHARK, we can effectively combat the problem of identifying these hidden

virtual machines. Private page tables, shadow page tables and nested page tables

using hardware technology in AMD processors are the techniques used by BluePill

malware to hide the malware VMMs in memory. By using SHARK hardware, the

new page tables created in the hypervisor must be registered to obtain a key and then

pass through SSM process authentication before executing these contexts. Using this

technique, even if the malware is able to hide its page tables from the host OS and

integrity checking tools, it cannot fake its identity to the hardware. In this way, the

proposed SSM has control over the VMMs, too. The PIDs of contexts inside VMMs

are logged continuously in hardware and revealed to system administrator.

29

CHAPTER V

EXPERIMENTAL ANALYSIS

Two sets of experiments were conducted to evaluate the proposed SHARK architec-

ture. First, we evaluated the practicality and strength of the proposed scheme against

malware running in stealth using real kernel rootkits available on Linux. Following

that, we performed performance experiments to quantify the overheads incurred by

the SHARK architecture.

5.1 Functionality Evaluation

As a proof of concept, several rootkits were installed on Linux OS running on top

of an emulated SHARK architecture. To emulate the entire system, including the

SHARK security manager, Bochs, a highly portable open source x86 PC emulator

was used.

The proposed scheme was verified to be practical by modifying the memory man-

agement unit, process management unit and the scheduler of the Linux kernel versions

2.2.14 and 2.6.16.33 to use the SSM implemented in Bochs to support our proposed

mechanism. Using these new instructions supported by SHARK (shown in Table 1),

the kernel was modified. The modified kernel boots and executes all the processes

perfectly with encrypted page tables. To support pointers to kernel page tables in all

user page tables, on a TLB miss we differentiate between kernel space and user space

memory access and use appropriate counter value for decryption. Shared libraries is

not an issue because of if two page tables lead you to a shared physical page, different

PIDs will be used to encrypt their respective page tables. Also the SHA-256 hash for

the shared page can be encrypted using the respective PIDs of the processes, sharing

the memory page. In virtualization systems, the lowest layer, i.e. the hypervisor,

30

must use the ISA support provided by SHARK.

The security evaluation was performed by installing rootkits over the modified

kernel for SHARK running over the emulated SHARK hardware architecture. The

following five rootkits collected from [22] were inserted into the base kernel as Load-

able Kernel Modules (LKMs): Adore 0.42, Knark 2.4.3, Phide, Enyelkm.en.v1.1, and

Mood-nt-2.3. Note that the above rootkits are for different kernel versions. The first

three rootkits attack Linux 2.2 kernel, while the last two were developed for the linux

2.6 kernel. These rootkits were inserted as LKMs and can access the kernel space

and can modify the system call table, interrupt descriptor table to alter the execu-

tion flow of the compromised OS, and provide utilities to conceal malware’s processes

from the system administrator’s utilities (e.g., ps, top). Using this setup we contrived

a compromised software stack to be able to assess the effectiveness of our SHARK

architecture. The base kernel’s scheduler was modified to load the HPID register

with the PID of the process prior to each context switch and every write to the HPID

triggered an exception service by the stealth checker. As described in section 4.6,

the exception handler in the firmware cannot be compromised as it is a firmware.

In this way, the PIDs of running processes are read by the firmware and a golden

list of processes is created. The compromised utilities such as ps or top were queried

to obtain a list of processes. The rootkit tries to hide the information of malware

processes from this list. By comparing these two lists, hidden malware processes were

detected and it triggered security alarms to reveal the processes running in stealth,

demonstrating effectiveness of our SHARK architecture.

5.2 Performance Evaluation

In order to protect process page tables, SHARK introduces extra encryption/decryption

overhead. In this section we evaluate this overhead’s impact on performance. Cycle

information was obtained from Virtutech’s Simics [20] with its gcache model enabled.

31

Table 2: Processor System Configurations

Configuration freq L1 L2 AES latency SHA-256 Memory
latency latency

Config1

2GHz

2MB, 12 cycles 80

138 200
Config2 32KB, 8-way 8-way, 64B line 160
Config3 64B line,2 cycles 4MB, 19 cycles 80
Config4 16-way, 64B line 160

Config5

4GHz

2MB, 25 cycles 160

276 300
Config6 32KB, 8-way 8-way, 64B line 240
Config7 64B line, 3 cycles 4MB, 38 cycles 160
Config8 16-way, 64B line 240

Note that we could not perform functional evaluation using Simics because some

modules e.g., Page Table Walks, are not open sourced and hence we could not modify

them to model our SHARK implementation. A staller will stall the cycle accounting

mechanism whenever a cache miss occurs. Since Simics does not provide an out-

of-order cycle-level single-processor model and the staller essentially implements a

blocking cache, our overhead estimation may be somewhat pessimistic. To model a

modern processor, we chose our cache and TLB configurations to closely resemble

those in the Core microarchitecture such as Conroe core from Intel.The cache access

times were estimated based on Cacti 4.2 [18] with two target frequencies specified in

Table 2. We assume there are two read/write ports for L1 and one unified read/write

port and one snoop read port for the L2. Note that, x86 ISA supports mixed page

sizes; thus there are two TLBs for two different page sizes: 4KB and 2MB, used for

each machine. We also varied the number of TLB entries to study their sensitivity.

Furthermore, we studied the sensitivity of the AES engine latency. We assume that

a baseline 10-round AES-128 takes 80 cycles on a 2GHz processor, similar to an op-

timized design reported in [15]. Then we increase the latency for different machine

configurations. We assume that a baseline pipelined SHA-256 hashing engine takes

138 cycles on 2GHz processor, similar to the implementation in [5]. Then we increase

32

0
1

2
3

4
5
6

7
8

9
10

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

99
8.

ra
nd

99
9.

ra
nd

C
P

I o
ve

rh
ea

d
(%

)

TLB Config 1
4 KB Page, 128 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 2
4 KB Page, 128 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 3
4 KB Page, 256 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 4
4 KB Page, 256 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 5
4 KB Page, 512 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 6
4 KB Page, 512 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

Figure 7: Performance impact with different TLB organizations (Config1)

this latency for the faster processor. The entire configurations are listed in Table 2.

We chose 28 SPEC 2006 programs as our benchmark, using a reference input

set. For each simulation, we emulated the first two billion instructions including

instructions from the OS code. We did not fast-forward instructions, in order to

obtain more page faults and TLB updates. In reality, the overall overhead should be

much smaller. Linux kernel 2.6.16.33 was recompiled to send requests to the SHARK

security manager whenever a page table update and PTE decryption were needed.

When the SSM gets a request to update PTE, it encrypts the PTE and updates the

page table. This requires one valid bit array decryption + one PTE decryption +

one PTE re-encryption + one valid bit array encryption. Also on every page table

update, we need to compute SHA-256 hash of the 4KB page and encrypt the 32B

hash. This adds an overhead of SHA-256 hashing latency + two AES Encryptions.

The overall overhead for a page table update will be six times the AES latency +

SHA-256 hashing latency. Also, we have to decrypt the the corresponding PTE for

each TLB refill. This requires two valid bit array decryptions + one PTE decryption.

A TLB miss to handle hardware page table walk is conservatively assumed to be

30 cycles. More penalty in the baseline TLB miss will dilute our overhead. The

actual page faults are handled by the OS code and these explicit OS instructions

were accounted for in the emulation. The page table updates, page table decryptions,

and the TLB updates account for the sources of overhead. Also, we need to flush the

TLB upon every context switch as in x86 machines.

33

0

2000000

4000000

6000000

8000000

10000000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

99
8.

ra
nd

99
9.

ra
nd

of

 d
T

LB
 u

pd
at

es

TLB Config 1
4 KB Page, 128 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 2
4 KB Page, 128 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

Figure 8: Number of D-TLB updates for TLB Config1 and TLB Config2

1

10

100

1000

10000

100000

1000000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

99
8.

ra
nd

99
9.

ra
nd

of

 c
on

te
xt

 s
w

itc
he

s

Figure 9: Number of context switches (amid 2 billion instructions)

0

1

2

3

4

5

2GHz, 2MB L2, 80-AES 2 GHz, 2MB L2, 160-AES 2 GHz,4MB L2, 80-AES 2 GHz,4MB L2, 160-AES 4 GHz,2MB L2, 160-AES 4 GHz,2MB L2, 240-AES 4 GHz,4MB L2, 160-AES 4 GHz,4MB L2, 240-AES

Config1 Config2 Config3 Config4 Config5 Config6 Config7 Config8

A
vg

 C
P

I O
ve

rh
ea

ds
 (

%
)

TLB Config 1
4 KB Page, 128 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 2
4 KB Page, 128 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 3
4 KB Page, 256 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 4
4 KB Page, 256 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 5
4 KB Page, 512 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 6
4 KB Page, 512 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

Figure 10: Average overheads for all the benchmarks with different configurations

34

Figure 7 shows the cycle time overhead for all the benchmark programs running

with six different TLB organizations using Processor Config1. We observed that TLB

organizations are critical to the overheads. Obviously, some benchmark programs

such as 401.bzip2, 410.bwaves, 459.GemsFDTD, 470.lbm, 998.rand, and 999.rand require

more than 2MB page mappings in the TLB. For these applications, when we increased

the number of entries in the large TLB (for 2MB page) from eight to 32, the overhead

was drastically reduced below 1%. To gain further insight,figure 8 shows the number

of data TLB updates for TLB Config1 and TLB Config2.We found the numbers of

i-TLB updates of different TLB sizes almost remain the same. The only difference

between these two configurations is the number of TLB entries for 2MB pages. It

is evident that the same benchmark programs show a huge reduction in the d-TLB

updates when more translation entries are employed in the 2MB-page TLB.

In figure 7, 401.bzip2, 410.bwaves, and 470.lbm also demonstrate higher overhead

than the others. This can be explained by examining the context switch frequencies

shown in figure 9. These three show a much higher number of context switches, a few

orders or magnitude higher than the others. As the TLBs are flushed during each

context switch, we will need to refill the TLB more often, causing the extra overheads

in decryption.

Finally, in figure 10, we show the average overhead for all benchmarks across the

eight processor system configurations described in Table 2 with six TLB organizations.

For the same generation processor, moving to a larger L2 cache tends to lower the

overhead (e.g., Config1 vs. Config3). This is because the longer L2 latency for a larger

cache penalizes the baseline and shrinks the overhead proportionally. In general,

SHARK merely introduced 4.7% overhead in the worse case, and the overhead is

below 1% when a larger TLB (e.g., 4-way, 256 entries) is used.

35

CHAPTER VI

RELATED WORK

To detect kernel mode rootkits, many software techniques have been proposed [4,

26, 36, 28, 27]. These software solutions operate in the same corrupted software

stack and they expect that some kernel components cannot be compromised. But,

sophisticated rootkits subvert these trusted kernel components to defeat anti-rootkit

solutions. These software solutions were dependable when they were released, but

because of the increasing complexity of the rootkits, they are not considered to be

secure. The hardware solution, CoPilot, mentioned in section 2.4, was proven to be

insecure by Joanna Rutkowska in [30]. Also, note that this is not a micro-architectural

approach, but rather a system-level solution that was proposed to deal with the

problem.

Many researchers have proposed the idea of checking the integrity of the host OS

using virtual machine monitors (VMMs) [9, 31]. These VMMs are typically optimized

to be a thin software layer, and the security manager inside the VMM verifies the

integrity of the host OS. These techniques are no longer safe because of rootkits,

like Blue Pill , that are exploiting hardware virtualization support [29]. Bluepill

is proved to work under the XEN hypervisor [37]. So we cannot trust the VMM

and run anti-rootkit tools in VMM too. It is shown in [25] that, today, none of the

techniques can detect virtualization-based rootkits. SHARK is a micro-architectural

solution and that can address virtual machine-based rootkits effectively, as discussed

in section 4.7.

Untrusted OS is not a new problem for the micro-architectural research community

[35, 19]. These architectures were proposed to have a secure execution environment

36

without a secured kernel.The main applications that they consider here do not need

interactions with the host OS. Their goal is to protect the application’s code and data

from being tampered with, including the untrusted OS. The attack model that we

are considering in this work is different in that the malicious kernel will not try to

manipulate the code and data of other applications. Instead, malware uses computing

resources stealthily and persists in the system as long as possible without affecting

other applications. In ARM-based TrustZone Technology [1], an isolated on-chip

execution environment is made available for security purposes. This design is not

a solution for any vulnerability, but rather a framework that allows one to devise

secure systems. This approach is not tightly coupled with the OS, which can cause

an endless battle between the secure and non-secure regions. We cannot use Intel’s

TPM technology [13] to solve our particular problem. Even though TPM provides a

trusted base that cannot be modified by the corrupted OS, we cannot use this feature

to recognize processes in TPM firmware. If TPM has to control processes running

in OS, it has to run below the OS as a VMM. It is not possible to implement the

VMM in TPM as TPM runs in its private memory and hypervisor is meant to run in

shared memory under the host OS. To the best of our knowledge, we are the first to

propose micro-architectural support, to enhance the security of the OS to deal with

applications running in stealth.

37

CHAPTER VII

FUTURE WORK

In this section we describe the possible extensions of SHARK that will be very useful

for similar security applications.

We know that SHARK just operates at the process context level and all the threads

of the process share the same PID. To have a more fine-grained control of software

contexts, the next step would be to authenticate every thread running on the system.

This would help if the malware were just spawning new threads and running as a part

of a legitimate process.

The other possible extension to SHARK would be to associate every network

connection (I/O) with its owning process and expose this to the system administrator.

This would be useful if the network were exploited by some hiding malware in the

system. It would provide an opportunity for the system administrator to know what

exactly is happening on the bare hardware.

Virtualization has become the modern trend and is widely used to abstract soft-

ware stacks away from underlying hardware resources. Since the lowest layer of

software (VMM) has the entire responsibility of securing the system and because of

emerging attacks on VMMs to subvert the enitre software stack (e.g., widely used

XEN hypervisor is proved to be vulnerable), we have to closely inspect the loop holes

of VMMs, which can be exploited by hackers. It would be very beneficial to protect

the integrity of this lowest-layer of software(hypervisor) by securely sand-boxing this

layer of software. Instead of running the hypervisor in the shared memory that is

accessible to all the guest domains, we propose running this critical software layer in

a protected memory region that is accessible to a single master core. This results in

38

complete physical isolation of the hypervisor memory from guest OSes. This master-

core also has access to the shared memory of the guest-cores and hence can provide

hypercall services to guest-cores. Master-core does not run any guest domains and

is available only for hypervisor services, making it impossible for guest domains to

modify the hypervisor memory. Additional hardware support should be provided for

hypercall communication from slave cores to the master cores.

39

CHAPTER VIII

CONCLUSION

Rootkit-based exploits have become a serious concern in cyber-security. Once a com-

puter is infected, rootkits are detrimental, tenacious, and difficult to identify and

remove. Typical applications of rootkits perform key-logging to reveal passwords,

sniffing network traffic to steal secrets, and controlling zombie machines to stage

other attacks such as email spamming, denial-of-service attacks, etc. They exploit the

kernel’s vulnerabilities to gain root privileges and continue to run their malware ap-

plications on compromised machines. These malware processes operate completely in

stealth, leaving no trace for system administrators. To address these issues, this the-

sis, proposes an autonomic architecture called SHARK that operates against stealth

achieved by rootkits’ exploits. To the best of our knowledge, this is the first work

addressing rootkit exploits using a synergistic hardware/system software approach to

directly enhance the trust between the hardware and the processes under a compro-

mised OS. SHARK is process context-aware; it employs secure hardware support to

provide system-level security, without trusting the software stack, including the OS

kernel. The proposed mechanisms, including hardware PID, page table encryption,

and process authentication, tightly couple the dependency between the OS and hard-

ware architecture, making the entire system more security-aware. Under SHARK,

the concealed malware at user, kernel and VMM levels of the software stack will

be revealed automatically by the synergistic cooperation between SHARK and the

software stack.

Running Linux OS and installing real-life rootkits, our experimental results show

40

that SHARK is highly effective in identifying rootkits with less than 4.7% perfor-

mance impact in the worst case and less than 1% performance degradation in typical

processor configurations.

41

REFERENCES

[1] ARM, “ARM TrustZone Technology.”

[2] Bellare, M., Desai, A., Jokipii, E., and Rogaway, P., “A concrete security
treatment of symmetric encryption,” in Proceedings of the 38th Annual Sympo-
sium on Foundations of Computer Science (FOCS ’97), p. 394, IEEE Computer
Society, 1997.

[3] Blacklight, “http://www.f-secure.com/blacklight.”

[4] Butler, J., “VICE Catch the hookers,” in
www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf,
2004.

[5] Dadda, L., Macchetti, M., and Owen, J., “An ASIC design for a high speed
implementation of the hash function SHA-256 (384, 512),” in Proceedings of the
14th ACM Great Lakes symposium on VLSI, 2004.

[6] David, F., Chan, E., Carlyle, J., and Campbell, R., “Cloaker: Hard-
ware Supported Rootkit Concealment,” in Proceedings of IEEE Symposium on
Security and Privacy, 2008, 2008.

[7] Diffie, W. and Hellman, M., “Privacy and Authentication: An Introduction
to Cryptography,” in Proceedings of the IEEE, 1979.

[8] Draft, F. I. P. S., “Advanced Encryption Standard (AES). National Institute
of Standards and Technology,” 2001.

[9] Garfinkel, T., “ A virtual machine-based platform for trusted computing,”
in In Proceedings of ACM Symposium on Operating Systems Principles (SOSP),
2003.

[10] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D.,
“Terra: a virtual machine-based platform for trusted computing,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles, pp. 193–206,
ACM Press, 2003.

[11] GhostBuster, “http://research.microsoft.com/Rootkit/.”

[12] Hwang, D. D., Tiri, K., Hodjat, A., Lai, B.-C., Yang, S., Schaumont,

P., and Verbauwhede, I., “AES-Based Security Coprocessor IC in 0.18µm
CMOS with Resistance to Differential Power Analysis Side-Channel Attacks,”
IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 781–791, 2006.

42

[13] Intel, “Intel Trusted Platform Module Technology.”

[14] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:
System Programming Guide, Part 1, 2007.

[15] Kgil, T., Falk, L., and Mudge, T., “Chiplock: support for secure microarchi-
tectures,” SIGARCH Computer Archititecture News, vol. 33, no. 1, pp. 134–143,
2005.

[16] King, S. T., Chen, P. M., Wang, Y.-M., Verbowski, C., Wang, H. J.,
and Lorch, J. R., “SubVirt: Implementing malware with virtual machines,”
in Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006.

[17] Klister, “http://www.rootkit.com/project.php?id=14.”

[18] Labs, H., “CACTI 4.2.”

[19] Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Mitchell, D. B. J.,
and Horowitz, M., “Architectual support for copy and tamper resistant soft-
ware,” in Proceedings of the 9th Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, 2000.

[20] Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hall-

berg, G., Hogberg, J., Larsson, F., Moestedt, A., and Werner, B.,
“Simics: A Full System Simulation Platform,” IEEE Computer, Feb. 2002.

[21] McAfee, “Rootkits,The Growing Threat, McAfee.”
http://www.mcafee.com/us/local content/white papers/threat center/
wp akapoor rootkits1 en.pdf.

[22] PACKETSTORM, “http://packetstormsecurity.org/.”

[23] Petroni, N., “Copilot - a Coprocessor-based Kernel Runtime Integrity Moni-
tor,” in Proceedings of Usenix Security Symposium, 2004.

[24] RootkitRevealer, “http://technet.microsoft.com/en-
us/sysinternals/bb897445.aspx.”

[25] Rutkowska, J., “Security Challenges in Virtualized Enviroments.”
http://invisiblethings.org/papers/Security0Enviroments.pdf.

[26] Rutkowska, J., “Detecting Windows Server Compromises with Patchfinder 2,”
in www.invisiblethings.org/papers/rootkits detection with patchfinder2.pdf, 2004.

[27] Rutkowska, J., “System Virginity Verifier: Defining the
Roadmap for Malware Detection on Windows Systems,” in
http://www.invisiblethings.org/papers/hitb05 virginity verifier.ppt, 2005.

[28] Rutkowska, J., “Thoughts about Cross-View based Rootkit Detection,” in
http://www.invisiblethings.org/papers/crossview detection thoughts.pdf, 2005.

43

[29] Rutkowska, J., “Introducing the Blue Pill,” in
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html, 2006.

[30] Rutkowska, J., “Beyond the CPU: Defeating hardware based RAM acquisi-
tion,” in In Proceedings of BlackHat DC 2007, 2007.

[31] Seshadri, A., “SecVisor: a tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes,” in ACM Symposium on Operating Systems Prin-
ciples, 2007.

[32] SHA-256, “National institute of science and technology fips pub 180-2: Sha256
hashing algorithm,”

[33] Shi, W., Lee, H.-H. S., Ghosh, M., Lu, C., and Boldyreva, A., “High
Efficiency Counter Mode Security Architecture via Prediction and Precomputa-
tion,” in Proceedings of the 32nd Annual International Symposium on Computer
Architecture, June 2005.

[34] Sparks, S. and Butler, J., “Shadow Walker - Raising the bar for Rootkit
Detection,” in In Proceedings of BlackHat, 2005.

[35] Suh, E. G., Clarke, D., van Dijk, M., Gassend, B., and S.Devadas,
“AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing ,”
in Proceedings of the International Conference on Supercomputing, 2003.

[36] Wang, Y.-M., “Detecting Stealth Software with Strider GhostBuster,” in Pro-
ceedings of Dependable Systems and Networks, 2005.

[37] Wojtczuk, R., “Subverting the Xen hypervi-
sor.” http://www.blackhat.com/presentations/bh-usa-
08/Wojtczuk/BH US 08 Wojtczuk Subverting the Xen Hypervisor.pdf.

44

