
 

 

 

 

 

 

 

 

Electro-kinetically Enhanced �ano-metric Material 

Removal 
 

 

 

 

 

 
A Thesis Presented to the Academic Faculty 

 
By 

 
Travis Lee Blackburn 

 
In Partial Fulfillment 

of the Requirements for the Degree 
Master of Science in the  

School of Mechanical Engineering 
 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4719819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Acknowledgements  

 There have been a multitude of individuals who have helped me along the way 

with this project.  Although it is impossible to include everyone, I will do my best.  First 

of all, I would like to thank my advisor, Dr. Steven Danyluk.  Dr. Danyluk has provided 

guidance, patience, and support through this strenuous process. His technical knowledge 

has been a huge benefit as I grew to understand the concepts and mechanisms governing 

my work.  The countless hours that he spent discussing concepts and offering suggestions 

on the direction of my work were priceless.  Also, the time he spent reading and 

correcting my thesis have vastly improved my technical writing skills.  I also would like 

to thank Dr. Danyluk for sending me to Singapore to perform my research.  This 

experience has not only benefited me educationally and professionally, but socially.  The 

cultural experience of living overseas for ten months will be something I carry with me 

for the rest of my life. 

 I also would like to thank Dr. David Butler, who acted as my advisor while I was 

at Nanyang Technological University (NTU) in Singapore.  Dr. Butler not only provided 

guidance and support on my project, he also helped me to become acclimated to living in 

a new country.   He trained me on numerous types of metrology equipment that was 

crucial for analysis of my results.  Dr. Butler was always available any time I had a 

concern that needed to be addressed.  The knowledge and generosity that Dr. Butler 

shared with me throughout this project have benefited me as an engineer and as a person. 

 I would also like to thank Dr. Yang Chun (Charles), associate professor at NTU.  

He and I spent many hours discussing micro-fluidic and electro-kinetic concepts which 

led to the realization of my mathematical model.  Dr. Yang was very active throughout 



3 
 

the project helping to understand the mechanisms behind our material removal approach.  

Along the same lines, I would like to thank Dr. Ng Sum Huan (Gary) of the Singapore 

Institute of Manufacturing Technology (SimTech).  Dr. Ng is a former student of Dr. 

Danyluk and his previous work greatly influenced the direction of this project. Gary 

helped with the original design concept and fabrication of the micro-fluidic device.  He 

provided many of the resources that were required to complete the project.  I also would 

like to thank him for the many technical conversations that he had with me while I was 

performing my research.  I would also like to thank two other professors, Dr. Peter 

Hesketh and Dr. Minami Yoda, for agreeing to be on my masters thesis committee.  Their 

patience and suggestions have been un-measureable in completing my thesis. 

 One of the most important people I need to thank is Leo Cheng Seng, a masters 

student of Dr. Butler’s at NTU.  Cheng Seng and I worked hand in hand on this project.  

He and I constantly bounced ideas off of one another and discussed key concepts which 

led to the development of a non-contact nano-metric material removal approach.  Cheng 

Seng spent countless hours helping with the fabrication of the micro-fluidic device.  His 

fresh ideas and vast knowledge greatly enhanced the quality of my work.  I cannot 

imagine having worked with a better student than Cheng Seng on this project and I’m 

greatly appreciative of all of his support.  Cheng Seng is continuing my work in this field 

and I look for additional impressive results out of him in the future. 

 Many thanks go out NTU and SimTech for allowing me to perform my research 

in Singapore and for providing all of the necessary resources for completing this project.  

I would like to thank Tan-Ong Pek, technician in the metrology lab at NTU, for handing 

all of my purchase orders.  My appreciation also goes out to Lisa Teasley, administrative 



4 
 

assistant to Dr. Danyluk at Georgia Tech, for scheduling my appointments with Dr. 

Danyluk and providing any additional resources that I needed.  Gratitude should also be 

extended to Glenda Johnson, mechanical engineering academic advisor at Georgia Tech, 

who helped make since of the confusing administrative tasks that go into submitting a 

thesis.   

 I would like to offer special thanks to the members of Dr. Butler’s metrology lab 

group, Ho Shook Foong (Jessica), Toh Guek Geok (Alicia), and Kitamura Mariko.  These 

girls not only provided me with individuals to exchange ideas with during my research 

process but they also helped me to get acclimated to living in Singapore.  My transition 

would not have been nearly as smooth without their support, and for that I thank them.  I 

would also like to thank my lab mates at Georgia Tech, Frank Mess, Sergey Tsiareshka, 

Fang Li, Yury Pyekh, Vicky Garcia, and Megan Dukic for their support and feedback 

during this process. 

 Lastly, I would like to thank my friends and family for their support.  I could not 

ask for a better supporting cast in dealing with the emotional stress that comes with 

completing a masters thesis.  My friends and family provided a shoulder to lean on 

anytime I encountered frustrating problems or difficulties acclimating to a different 

country.  I will always remember them when I think back on this time. 

 

 

 

 



5 
 

Table of Contents 

Acknowledgements                                                                                        2 

List of Tables                                                                                                  6 

List of Figures                 7 

1  Introduction                                                                                               9 

2  Literature Review              11 

2.1  Material Removal Processes            11 

2.2  Electro-kinetic phenomenon            16 

3  Micro-fluidic device design and fabrication          18 

3.1  Mask Design              19 

3.2  Substrate Preparation and Photolitography Process                           21 

3.3  Clamp Design              23 

3.4  Device Assembly              24 

4  Experimental Setup              27 

4.1  Experimental Variables             27 

4.2  Apparatus Setup              30 

4.3  Design of Experiments             31 

5  Mathematical Model              36 

5.1  Particle Behavior and Force Balance           36 

5.2  Material Removal Model             42 

6  Results and Discussion             47 

6.1  Particle Visualization Experiments           47 

6.2  Material Removal Experiments            51 

7  Conclusions               70 

8  References                 73 



6 
 

List of Tables 
 
1   Statistical analysis of particles used for experimentation                        29 

2   Varied parameters for particle visualization experiments        31 

3   Input parameters for abrasive wear experiments          32 

4   Experimental matrix for abrasive wear experiments         33 

5   Abrasive wear control experiments            35 

6   Constants and their respected values used to solve force balance 

equations                         46 

7   Average, minimum, and maximum average experimental material         

removal rates for AC voltages ranging from 0-40 Vpp         64 

 8   Numerical values of forces acting on a silica particle in the  

y-direction               66 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

List of Figures 

1    Electrophoresis of a charged particle in an external electric field          17 

2    Original design concept for the micro-fluidic device                              18 

3    2 masks used to create channels and through-holes in 101.6 mm            

 silicon wafers               20 

4    Photolitography process used to create base substrate                            22 

5    A Pro-Engineer™ drawing of the clamping mechanisms                       23 

6    Assembled micro-fluid device                                                         25               

7    Photograph of the experimental setup for visualization and wear 

 experiments               30 

8    Schematic of work-pieces             34 

9    Particle motion in micro-channel resulting from pressure driven         

 flow, DC biasing, and an AC signal           37 

10  Free body diagram of the forces acting on a particle during the 

electro-kinetic process              39 

11  Mechanism governing metallic material removal from work-piece        

surface                42 

12  Summary of the effects of DC bias on PS particle motion        49 

13  Area scans of metallic coated work-piece at a DC bias of 5V at 

various AC voltages              53 

14  Metallic wear vs. time:  5V DC, 5 Vpp           56 

15  Metallic wear vs. time:  5V DC, 10 Vpp           57 

16  Metallic wear vs. time:  5V DC, 15 Vpp           58 

17  Metallic wear vs. time:  5V DC, 20 Vpp           59 

18  Metallic wear vs. time:  5V DC, 25 Vpp           60 

19  Metallic wear vs. time:  5V DC, 30 Vpp           61 

20  Metallic wear vs. time:  5V DC, 35 Vpp           62 



8 
 

21  Metallic wear vs. time:  5V DC, 40 Vpp           63 

22  The effect of AC voltage on factors influencing the material  

removal process              66 

23  Experimental and Predicted Material Removal Rate vs.  

AC voltage               68 

  



9 
 

Chapter 1:  Introduction 

The further development of miniaturized semiconductor devices requires short 

device node and lower-k dielectrics in order to reduce the gate and interconnect delay 

times.  In the past, chemical mechanical planarization (CMP) techniques have been 

widely used for removing uneven topography in the multilevel metallization process.  

CMP was first developed by IBM in the 1980s in order to produce flat surfaces on silicon 

wafer substrates or partially-processed wafers during the manufacturing of integrated 

circuits (IC’s).  CMP has been very successful in meeting the demand for dimensional 

accuracy of devices in the micrometer (10-6 m) range.  However, as demand has shifted to 

dimensional accuracy of devices in the nanometer (10-9 m) and angstrom (10-10 m) range 

conventional CMP techniques face problems.  CMP is a high downforce-dependent 

process which causes excessive amounts of dishing and erosion, resulting in high 

electrical resistance across various pattern densities.  Also, high downforce-dependent 

processes tend to cause mechanical failures in fragile low-k dielectrics.    

 Several techniques have been developed to meet the need for miniaturization with 

minimal defects.  These techniques will be explained in detail in Chapter 2.  One such 

technique is electrochemical CMP, which is a high removal rate process that minimizes 

downforce and uses an applied voltage to control removal rate.  Also, ultra-precision 

polishing has gained attraction for producing geometrically dimensional surface features 

in the nanometer range.  This process is able to produce a very smooth surface with 

minimal damage and strain which is a fundamental requirement for miniaturized 

functional semiconductor components.  Recently, non-contact ultra-precision polishing 

techniques have generated interest because these processes eliminate polishing tool-
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work-piece interaction which can lead to defects such as scratching on the work-piece 

surface.  Two processes which fall under non-contact ultraprecision techniques are float 

polishing and elastic emission machining.  These processes use slurries containing 

abrasive particles suspended in fluid to remove material from a work-piece surface.   

 The purpose of this thesis is to investigate an ultra-precision material removal 

technique based on the electro-kinetic phenomenon with the desire of enhancing 

planarization performance.  The goal is to prove the concept that electric field-activated 

abrasive particles in solution can remove metallic material from a silicon wafer test 

substrate.  The objective of this thesis is to validate three concepts: 

1. Abrasive particles in solution can be influenced and controlled by changes in 

electric field. 

2. Abrasive particles controlled by an electric field can remove metallic 

material from a test substrate. 

3. Changes in electric field can control the amount of metallic material removed 

from the test substrate in a given amount of time.   

A micro-fluidic device was designed and fabricated in order to prove the preceding 

concepts.  The following chapters of this thesis will provide a literature review of the 

techniques and concepts which led to the development of the electo-kinetic nanometric 

material removal process followed by a detailed description of the development of the 

process.  A mathematical model predicting the removal rate of metallic material from a 

silicon wafer test substrate will also be presented and compared with the experimental 

material removal rates.  
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Chapter 2:  Literature Review 

2.1  Material Removal Processes 

 Chemical mechanical planarization (CMP) has been the preferred planarization 

step in deep sub-micron IC fabrication.  CMP is a process that can remove topography 

from silicon oxide, metal and polysilicon surfaces.  Essentially, CMP is the process of 

smoothing surfaces through the combination of chemical and mechanical forces.  It 

employs a combination of concepts from chemical etching and free abrasive polishing.  

Mechanical grinding of surfaces alone may produce desired planarization but the process 

produces significant surface damage.  Chemistry alone also cannot attain planarization 

because most chemical reactions are anisotropic.  Therefore, the planarization achieved 

with the CMP process cannot be explained solely by the individual physical and chemical 

effects.  CMP also utilizes the fact that high points on a wafer surface are subjected to 

higher pressures from the pad which enhances the material removal rates in those areas 

[1]. 

 CMP has most widely been utilized in back-end IC manufacturing.  These 

processes involve using thin layers of metal and dielectric materials to form electrical 

interconnections between IC components.  Interconnects are formed by depositing thin 

films of materials and removing or changing the properties of the material in certain 

areas.  CMP is used in the interconnect process to planarize step heights caused by 

depositing thin films over existing features so that levels can be added to the planarized 

surface. [2,3]  CMP has faced challenges producing the desired planarization necessary 

for interconnect technology without causing surface damage.  Pan et al [4] reported 

problems during the process of removing overburden copper deposited above the 
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dielectric surface.  During the copper CMP process, a degree of over-polish has to be 

used to remove metallic material from the dielectric surface to ensure electrical isolation 

between adjacent circuits.  The over-polish required to remove the metallic material has 

been reported to cause copper dishing and oxide erosion.  Dishing and erosion are also 

reported to be a function of surface feature size and pattern density.  The problems 

associated with copper dishing and oxide erosion include deviation from the desired line 

resistance required due to copper thickness loss and excess surface topography which 

complicates the fabrication of the next metal layer.  

The concept for the nano-metric material removal process investigated in this 

thesis was partially developed from research performed on langasite polishing and 

electrochemical mechanical planarization techniques [5].  Both of these techniques 

employ variations of the typical CMP process in order to increase material removal rates 

while limiting surface damage effects.  Grover et al [6] reported that increasing the 

material removal rate without generating surface damage is difficult because CMP is a 

complex process involving chemical and mechanical interactions between the polishing 

pad, slurry, and substrate material.  Therefore, techniques have been developed which 

employ DC potentials into the polishing process to increase wear rate. 

 Lim et al [5] investigated the effect of DC electric fields on material removal rates 

of single crystal langasite during the CMP process.  In this process, langasite wafers were 

sliced from a single crystal.  The backside of the langasite wafers were electroplated with 

copper foil so that an electric field could be applied during polishing experiments.  

Electrical connections were made with the copper electrode and ground.  A DC potential 

ranging from -300 to +300 V/mm was applied to these electrical connections during 
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polishing experiments.  The polishing experiments enhanced by the DC electric field 

resulted in a 30% increase on material removal rates of the langasite crystal.  The 

influence of the electric field was explained by the increased number of particles near the 

work-piece surface.  It was found that that an increased number of abrasive silica 

particles were present near the langasite surface during the presence of a DC electric 

field.  The study hypothesized that the polishing rate increased with the applied electric 

field because of the increase in the number of particles involved in the polishing process  

This hypothesis made from prior work suggested that the presence of an electric 

field would increase the material removal rate because the hardness of the polishing 

surface decreased.  Yost and Williams [7] suggested that by applying an electric field, the 

surface charge would weaken the surface bonds, decreasing the surface hardness making 

the generation of dislocations easier.  However, the research by Lim concluded that the 

hardness of the langasite crystal was not affected by an applied electric field.  Therefore, 

it was concluded that it was the slurry action which was modified by the electric field and 

affected the material removal rates, not the surface hardness. 

Another promising alternative to the typical CMP process is electrochemical 

mechanical planarization (ECMP), which was developed by Applied Materials [8].  In 

electrochemical mechanical planarization (ECMP), an electrolyte chemistry with no or 

very low concentrations of abrasive slurry (colloidal particles) is used, and thus features 

high planarization efficiency. A DC electric potential instead of the oxidizer is the driving 

force to oxidize metal to metal ions.  Metal ions can then react with components in 

electrolyte to either go in solution or form a passivation layer. A polishing pad is used to 

help achieve planarization. Since this passivation layer can be removed easily, 
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mechanical downforce is not a limiting factor to achieve high removal rate, enabling a 

virtually zero downforce (<3.5 kPa) planarization process that produced material removal 

rates exceeding 6,000 Å/min. The advantages of the electrochemical mechanical 

planarization include reduction of dishing, erosion, metal loss, enhancement of overall 

planarization performance, higher process stability and lower consumables required. In 

addition, since the electrochemical mechanical planarization can be performed using 

electrolytes with no or very low concentrations of abrasive particles, several 

disadvantages of conventional CMP associated with the use of slurries containing high 

concentrations of abrasive particles, such as lack of within-wafer uniformity, particle 

coagulation, slurry-handling and waste disposal are minimized or eliminated.   

  Non-contact ultra-precision polishing techniques have generated interest because 

these processes eliminate polishing tool-work-piece interaction which can lead to defects 

such as scratching on the work-piece surface.  One such technique is elastic emission 

machining (EEM) [9,10] which is capable of machining silicon in the atomic order with 

minimal surface roughness.  In EEM, ultra-fine powders such as SiO2, Al2O3 and ZrO2 

with diameters much smaller than 1 µm are uniformly mixed with water to create a 

slurry.  The slurry is accelerated and transported to a silicon work-piece surface using a 

rotating polyurethane sphere with an applied vertical load.  The vertical load is optimized 

so that the sphere nearly comes into contact with the work-piece.  This creates a fluid 

film thickness between the sphere and the work-piece of 1 µm, much larger than the 

diameters of the particles.  The load and the fluid pressure are balanced to maintain a 

uniform film thickness, which enables a constant flow rate between the polyurethane 

sphere and the work-piece.  This ensures that the slurry is transported without scratching 
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the surface.  Before coming into contact, the ultra-fine powders and silicon work-piece 

react with water to form hydroxide species.  When the particles are accelerated and 

transported into contact with the surface, hydrogen bonding occurs between the two 

surfaces.  Because oxygen atoms have high electronegativity, silicon atoms on the work-

piece surface are removed as the powders begin to separate from the work-piece surface.  

This mechanism produces atomic-level material removal from a silicon work-piece. 

 Another non-contact ultra-precision technique which has been employed for the 

fabrication of optical, electronic, and magnetic components with damage-free surfaces is 

float polishing [11,12].  The mechanism for removal of surface material is similar to that 

of EEM.  In float polishing, a weighted sample and a lap are submerged in slurry 

containing DI water and polishing powder.  The sample and the lap are rotated in the 

same circular direction and normally at the same rate.  Under equilibrium, the sample 

floats on top of a fluid layer of approximately 1 µm above the lap and is bombarded by 

the polishing particles in the slurry.  The removal mechanisms could be kinetic, chemical, 

diffusive, or a combination of all three.  Material removal rates depend on several process 

variables including type of polishing powder, the sample, the lap materials, the groove 

pattern (removal areas), the rotational rates of the sample and the lap, and the sample 

loading.  The polishing particles’ diameter typically ranges from 1 nm for SiO2 to 100 nm 

for TiO2, Al2O3, CeO2, and MgO.  Soares et al [12] found that pressure gradients in the 

grooves cause the sample to float above the lap layer of the slurry and fluid flow is 

laminar which results in a high quality polish since the substrate is not in contact with the 

lap.  The study concluded that subsurface damage was much lower for 100 µm material 

removal compared to 10 µm removal.  Therefore, this process probably is not optimal for 
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producing nano-metric size geometric features on a substrate since smaller amounts of 

material removal led to more subsurface damage.   

The previous techniques are all processes that are capable of removing nano-

metric amounts of metallic material from substrates.  The remainder of this thesis is 

devoted to presenting a non-contact nano-metric material removal technique based on the 

electrokinetic phenomenon.   

2.2  Electro-kinetic Phenomena 

 In order to remove metallic material from a work-piece, abrasive, negatively 

charged silica particles have to be accelerated vertically through the micro-channel to the 

work-piece surface.  The concept which governs this particle movement is the Electro-

kinetic phenomenon.  Electro-kinetic phenomena arise whenever relative movement 

occurs between a charged interface and the adjacent electrolyte solution, so that part of 

the double layer charge moves with the liquid.  As the charged surface moves in the 

appropriate direction, ions in the mobile part of the double layer undergo a net migration 

in the opposite direction.  Migration of the ions carries solvent along with it and an 

electric field is created if the charged surface and the diffuse part of the double layer 

move relative to each other.  Electrophoresis is one type of phenomena that arises out of 

relative motion between charged phases and electrolytes. [13,14] 

 Electrophoresis is the movement of a charged surface, such as a colloidal silica 

particle, relative to a stationary liquid caused by an applied electric field [13,14].  Figure 

1 is a schematic of electrophoresis of a charged particle in an external electric field.  The 

presence of the anode and cathode terminals establishes an electric field from top to 
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bottom.  The electric field causes a negatively charged colloidal particle to migrate 

toward the anode.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 The electrophoresis concept describes the motion of a charged particle in solution 

under the influence of an externally applied electric field.  Later, this concept will be 

extended to describe the forces which act on the particle during electrophoresis.  With the 

general motion of a negatively charged particle realized, the concept that these particles 

can be effectively controlled to remove metallic material from a work-piece surface has 

to be proved.  In order to validate this concept, a micro-fluidic device was designed and 

fabricated. 
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Figure 1.  Electrophoresis of a charged particle in an external electric field [14] 
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Chapter 3:  Micro-fluidic Device Design and Fabrication 

 
 A micro-fluidic device was designed and fabricated in order to validate the 

concept that the motion of electro-kinetically enhanced abrasive particles in solution can 

effectively be controlled to remove metallic layers deposited onto a silicon wafer.  At the 

onset of the experiments, a general experimental configuration was designed in order to 

view the motion of particles in solution under the influence of electric field.  Figure 2 

shows the design of the device for visualization experiments.   

  

  

  

 

 

 

 

 

 

 

 

 

 

 
 

The MEMS device uses a silicon wafer base containing an etched micro-fluidic channel.  

Gold has to be deposited at the base of the channel in order to create an electrode.  The 

silicon wafer has through-holes etched at the ends of the channel to allow for fluid to be 

Micro-fluidic channel 

Si wafer 

ITO cover slip 
or work-piece 

DI H20/particles soln. out 

+ 

DI H20/particles soln. in 

- 

Au Coating 

Figure 2.  Design concept for micro-fluidic device 

Objective Lens 
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pumped in one end of the channel and exit out the other (not seen in Figure 2).   The base 

silicon wafer is covered with an ITO coated glass cover slip through which the particles 

in motion may be viewed with a microscope.  The ITO is the second conductive electrode 

to which a potential may be applied vertically between the two substrates.  The glass 

cover slip is clamped to the silicon plate to prevent any fluid from leaking out of the 

channel. In order to select the most effective process for creating channels on a 

wafer the device needed the following characteristics; Fluid leakage out of the channel 

during fluid flow is minimized, gold must be absent from the walls of the micro-fluidic 

channel so that only a vertical electric field should exist to manipulate particle motion, 

and areas had to be allotted on each substrate to solder leads onto without the leads 

interfering with fluid motion or sealing between the two substrates.  For example, it is 

obvious that a lead cannot be soldered onto the gold at the bottom of the channel because 

that would affect the fluid flow and make it extremely difficult to create a tight seal 

between the two substrates with a wire causing an obstruction.  Preventing fluid leakage 

was essential because a loss of solution out of the channel decreases the number of 

particles that will interact with the surface in wear experiments. 

3.1 Mask Design 

 Photolitography was used to create channels in the silicon wafer.  The process 

involved creating a mask with multiple channels of the same dimensions and dicing the 

wafer into equally sized substrates.  The length and width of the substrates was based on 

the size of the ITO coated cover slips.  The cover slips were procured from SPI 

Supplies® with a resistivity of 8-12 ohms and measure 22 x 40 mm with a thickness 

between 0.16 and 0.19 mm. 
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 The plan at the beginning of research on this project was to visualize how particle 

motion was affected by different channel dimensions.  Therefore, originally three 

separate masks were designed with various channel depths and widths.  Four channels 

were created on each mask with four equivalent substrate dimensions.  However, using 

various dimensions for the channel proved troublesome because an extra variable 

influencing particle motion was introduced.  Instead, channel dimensions were kept 

constant and only one mask was required for creating the channels.  The channel 

measured 0.3 mm wide and 30 mm long, with a depth of 0.4 mm.  For each substrate to 

be diced, the dimensions were chosen to be 27 x 40 mm.  Note that the length of the 

substrate is equal to that of the ITO cover slip but that the width of the substrate is 5 mm 

larger than the cover slip.  This is due to the fact that 5 x 5 mm square section was 

designed onto the left side of the substrate in order to create an area for a wire to be 

soldered to it.  A second negative mask was designed to create through-holes in the 

wafers which provide reservoirs for fluid to enter and exit the channel.  These through-

holes measured 2 mm in diameter and were located flush with both ends of a channel.   

Figure 3 illustrates the two designs used to create the micro-fluidic channels and through-

holes reservoirs.  

 

 

 

 

 

 

Figure 3.  Two masks used to create channels and through-holes in 101.6 mm silicon 
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3.2 Substrate Preparation and Photolitography Process 

 Photolitography was used to create the surface features of the base substrate.  This 

process is highlighted in Figure 4.  The lithography process was performed on 101.6 mm 

N-type single side polished silicon wafers.  The wafers were first oxidized to form a 1µm 

layer of silicon dioxide (SiO2). The SiO2 provides a barrier layer which prevents electric 

charge penetration into the silicon wafer after application of an electric field.  A layer of 

gold was then coated onto the layer of SiO2 using a Magnetron sputter system.  The 

Magnetron sputter system uniformly deposits films of material onto a substrate.  The 

process is done in an evacuated chamber at relatively low pressure. The sputter guns are 

controlled by a radio frequency or DC power supply.   

The Au layer had to be sufficiently thick to ensure that no breakdown occurred 

due to the electro-kinetic process.  Chen et al. [15] reported that conductivity increases 

rapidly with film thicknesses approaching 100 nm and decreases for thicknesses between 

100-200 nm with a max conductivity occurring at 100 nm.  Therefore, an Au film 

thickness of 100 µm was chosen.  Photo-resist was then patterned on top of the gold layer 

to form the channel structures.  Backside alignment and exposure of resist was performed 

on a Karl Suss mask aligner and deep reactive ion etching (DRIE) was employed to 

create the through-hole reservoirs at the ends of each channel.  Polydimethylsiloxane 

(PDMS) was applied onto the wafer and cured.  The PDMS was cured for three hours 

under vacuum at approximately 30 in Hg at a temperature of 90oC.  PDMS was chosen as 

the material to form channels because its adhesive properties provided a tight seal 

between the base substrate and ITO coated cover-slip or metal coated work-piece.  After  
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curing the PDMS, reactive ionic etching was employed to remove the PDMS to form the 

channel structures. 

The wafers were developed and diced to create four equally sized base substrates 

per wafer.  Dicing was done on a DISCO DAD 341 automatic wafer dicing machine 

using fine blade 35HEEE cutting fluid.  The final step of fabrication for the base substrate 

was to connect two NanoPortTM fluid connectors to the backside of the substrate centered 

over the two reservoirs at the end of the micro-fluidic channel.  The connectors allowed 

for solution to be pumped into one reservoir, flow through the channel, and exit out of the 

other reservoir.  Double-sided adhesive rings were placed around both reservoirs and 

onto the connectors themselves and the connectors were attached and cured at 121 oC for 

95 minutes.  This completed the process of preparing the base substrate.  

 A set of top substrates which served as the work-piece for the wear experiments 

also were fabricated.  The selections of metal materials deposited onto the wafer were 

(c) (d) 

 (e) (f) 

(a) (b) 

Figure 4.  Photolitography process used to create base substrate including (a) deposition of 1µm SiO2 (b) 
sputtering 100 nm Au (c) application of resist (d) DRIE to create through-hole reservoirs (e) application and 
curing of PDMS (f) RIE removing resist to form channels. 
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carefully considered when preparing the work-piece substrates.  The main requirements 

for the material were that it should be inert as well as able to easily deposit onto the 

substrate.  It was also important to use at least two different metal material layers to 

prove that multiple layers can be eroded by the same process.  The two metals chosen as 

the coatings for the work-pieces were copper and gold.  1 µm of SiO2 were first grown 

onto each wafer to prevent electric charge from leaking into the silicon.  A 1µm layer of 

Cu was then spin coated onto the layer of SiO2 followed by a 100 nm layer of Au.  Each 

coated wafer was diced into four equally sized pieces measuring 27 x 40 mm which is 

equivalent to the dimensions of the base substrate.   

3.3 Clamp Design 

 A clamp was designed in order to create a tight seal between the base substrate 

with both the ITO coated cover-slips for visualization experiments and the metal coated 

work-piece for wear experiments.  The clamp consisted of two machined aluminum 

plates, depicted in Figure 5.   

 

 

 

 

 

 

 

 

(a) (b) 

Figure 5.  A Pro-Engineer drawing of the clamping mechanism which includes (a) a base plate and 
(b) a top plate  
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Both the base plate and top plate of the clamp were 22 mm wide and 60 mm long with 

the base plate and top plate measuring 4 mm and 3 mm thick, respectively.  The width of 

the plates were designed to be 5 mm shorter than the width of substrates which allowed 

the edge of the base substrate to hang outside of the clamp so that a wire could be 

soldered to the 5 x 5 mm square section of exposed Au.  The length of plates were 

designed to be 20 mm longer than the length of the substrates allowing for screw holes to 

be machined into the four corners of the plates.  Two 9 mm holes were machined into the 

base plate to allow for the NanoportTM connectors on the backside of the base substrate to 

stick through the plate which allowed for tubing to be connected between the connectors 

and the syringe pump.  Four 3.5 mm threaded holes were also machined into the corners 

of the base plate.  The top plate was designed to have a 4 x 26 mm window machined out 

of the center of the aluminum so particle motion in the micro-fluidic channel could be 

observed under an inverted microscope.  Four screw holes measuring 3.2 mm in diameter 

were machined in the four corners of the top plate allowing for the screws to be inserted 

into the clamp.  With a clamping mechanism in place, the entire device was then ready to 

be assembled.   

3.4 Device Assembly 

 The final stage of constructing the micro-fluidic device was to solder leads to the 

base substrate, ITO coated cover-slip, and metal coated work-piece.  After soldering was 

completed, the device was clamped together and prepared for experimentation.  Figure 6 

is a representative side and top view of the constructed device.  Note that soldered wires 

are not represented in this diagram.  The base substrate was placed on top of the base 

plate of the clamp with the channel facing up and the connectors going through the 
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allotted holes on the base plate.  For visualization experiments, an ITO coated cover-slip 

was placed on top of the base substrate with the ITO coated side facing down.  The 

cover-slip was slightly staggered in order for the soldered wire to hang off the edge of the  

 

 

 

 

 

 

 

 

 

 

 

 

 

clamp as to not interfere with the seal.  For wear experiments, the metal coated work-

piece was placed on top of the base substrate with the metal coated side facing down.  

The work-piece was also staggered so that a wire soldered to the top gold layer would not 

interfere with the seal.  A plastic insert was placed around the edges of the bottom of the 

top plate of the clamp creating a stronger seal between the substrate and the cover-slip or 

work-piece.  

ITO coated 
cover-slip or 
work-piece 

Aluminum 
clamps 

Base substrate 

Tubing 
Connectors 

Hex head 
screws 

Plastic insert 

(a) 

(b) 

Figure 6.  Assembled micro-fluidic device with (a) representing the side view and (b) representing 
the top view.  Designed and constructed at Nanyang Technological University. 
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 Hex head screws were used to tighten the device together.  It is important to note the 

clamping procedure was very carefully executed as to not crack the wafer pieces and 

cover-slips by over tightening.  Finally, tubing was attached to the connectors and the 

device was ready for experimentation. 
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Chapter 4:  Experimental Setup 

4.1 Experimental Variables 

Once the micro-fluidic device was constructed, particle visualization and abrasive 

wear experiments were designed and conducted.  Before these experiments could be 

executed, a set of experimental variables were defined.  These experimental input 

variables are listed below in order of importance: 

• AC Voltage/Electric Field Intensity 

• Fluid flow rate 

• Signal frequency 

• DC coupling 

• Particle size and type 

• Solution concentration 

The most important variable was the AC voltage because the primary concern of this 

thesis was to determine how various field intensities affected the wear rate of the metal 

work-piece.  The magnitude of the AC voltage was the only parameter varied during the 

course of experimentation.  Voltages were incremented by 5 Vpp over a range of 0-40 

Vpp for this project.  The solution was pumped into the channel at a rate controlled by a 

digital syringe pump.  A flow rate of 0.25 µL/min was chosen so that particles were given 

sufficient time to reach the work-piece and remove material before the solution exited the 

channel.  A frequency for the AC signal also had to be specified.  At high frequencies, it 

was expected that more particles would approach the surface of the work-piece at a 

higher pace.  However, Fagan et al [16] used a similar experimental setup to the one used 

in this thesis and reported that the height levitation of particles decreased with 
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frequencies increased past 100 Hz.  Therefore, the frequency of the AC electric field was 

chosen to be 100 Hz.  A positive DC bias was applied to the AC signal to force particles 

closer to the work-piece surface.  The DC voltage was chosen based on particle 

visualization underneath the microscope.  A bias of 5V was chosen because this was the 

highest possible DC bias that could be applied without creating cavitation.  It was 

desirable to limit cavitation effects because the formation of bubbles in the micro-channel 

block fluid flow and hinder particles from reaching the work-piece surface.  If fluid flow 

and particles are blocked by bubbles, material removal rates could be significantly 

lowered.  Li and Cheng [17] reported that micro-channel size, mass flow rate, and heat 

flux play important roles in cavitation formation in liquid.  The study concluded that 

large contact angles between the fluid and the substrate can effectively lower the 

nucleation temperature in a micro-channel. Also, higher mass flow rates tend to suppress 

bubble formation in a micro-channel.  Lastly, the study concluded that axial heat 

conduction in the substrate may play an important role in the heat transfer process leading 

to cavitation formation.  These factors effecting cavitation were important in designing 

the micro-fluidic device and for defining the experimental parameters.  Because a 

rectangular micro-channel was used, it was realized that corners in the micro-channel 

were areas susceptible to cavitation formation.  Also, since a low mass flow rate was used 

electric field strengths had to be lower than if higher mass flow rates were used.   

Particle type and size were also specified.  The sizes and zeta potentials of the 

particles in DI solution were measured using a Malvern™ Instrument Zeta-sizer nano ZS.  

Fluorescent spherical polystyrene (PS) particles measuring 0.964 µm in average diameter 

with an average zeta potential of  
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-69.88 mV were used for particle visualization experiments.  Abrasive spherical silica 

particles were chosen for wear experiments because their electrical properties were 

similar to those of the PS beads.  The silica particles measured 1.034 µm in diameter with 

a zeta potential of -54.8 mV.  Table 1 lists the statistical analysis of the particles used for 

experimentation.   

 

 Average 
diameter (µm) 

Diameter 
standard 
deviation (µm) 

Average Zeta 
potential (mV) 

Zeta potential 
standard 
deviation (mV) 

Polystyrene 
particles (PS) 

0.964 0.021 -69.88 2.70 

Colloidal Silica 
Particles (SiO2) 

1.034 0.151 -54.80 0.67 

 

The solvent used in all experiments was deionized (DI) water.  A dilute PS colloidal 

solution of 99.5 % volume DI water and 0.5% volume PS was used for visualization 

experiments so individual particle motions could be examined.  This concentration was 

realized through a trial and error approach.  Fluorescent PS particle concentrations 

needed to be low in order to visualize individual particle movement in the micro-channel.    

Higher PS concentrations were originally used and lowered until individual particle 

motion could clearly be observed. A higher concentrated silica colloidal solution of 

98.13% vol. DI Water and 1.87% vol. colloidal SiO2 particles was used for wear 

experiments.  Higher concentrations of particles were used in the wear experiments 

compared to the visualization experiments because more particle interaction with the 

work-piece surface was desirable for material removal. Also, the concentration of SiO2 

particles for wear experiments is comparable to SiO2 concentrations used in conventional 

CMP techniques. 

Table 1.  Statistical analysis of the particles used for experimentation 



30 
 

4.2 Apparatus Setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows a photograph of the experimental setup for performing both the 

visualization and wear experiments.  For visualization experiments, the micro-fluidic 

device was placed cover-slip down onto the platform of a LEICA DMILM inverted 

micro-scope in order to observe particle motion.  This was not required for wear 

experiments because the non-fluorescent silica particles could not be seen underneath the 

microscope.  A NE-1000 syringe pump manufactured by New Era Pump Systems was 

used to propel solution through the channel at a constant flow rate.  A Tektronix AFG 

3022 Function Generator was used to generate the AC and DC signal.  Since voltages 

Figure 7.  Photograph of the experimental setup for visualization and wear experiments containing 
voltage amplifier, function generator, oscilloscope, and inverted microscope with CCD camera, 
syringe pump, and computer. 
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exceeding the threshold of the function generator were required for experimentation, an 

EPA-102 Piezo Amplifier procured from Piezo Systems Inc. was used to amplify the 

output signal from the function generator.  The positive lead was connected to the ITO 

for visualization experiments and to the metal work-piece for wear experiments and the 

negative lead was connected to the base substrate.  The negatively charged particles 

defined this orientation because particle movement to the work-piece surface was 

required for material removal.  A Tektronix TDS 2014B oscilloscope was used to 

monitor the signal during experimentation.  

4.3 Design of Experiments 

 Particle visualization experiments were conducted to observe particle motion in 

the channel at varying field intensities.  The PS solution was pumped into the channel 

using the syringe pump and particle reactions were observed through the microscope at 

various AC signals, DC biases, frequencies, and flow rates.  Table 2 gives the values of 

these tested parameters.   

 

Input Parameter Values Tested Incremental Step 

AC Signal 0-50 Vpp 1 Vpp 

DC bias 0-10V 1 V 

Frequency 0-100 Hz 10 Hz 

Flow Rate 0-1 µL/min 0.1 µL/min 

Solution Concentration 99.5% DI H2O/0.5%PS N/A 

    

Table 2.  Varied parameters for particle visualization experiments 
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Note that every combination of these parameters was not tested and no physical data was 

acquired from the visualization experiments.  The goal of these experiments was to gain a 

better understanding of how each parameter affected particle motion to determine 

reasonable values of the input parameters for wear experiments.  In Section 3.1 it was 

stated that only the AC signal was varied during wear experiments to determine how 

differences in electric field influenced metal wear rate.  All other parameter values were 

held constant and resulted from particle observations and previous literature review.  

These values were also stated in Section 3.1 but are highlighted once again in Table 3 for 

convenience.    

 

Input Parameter Values Tested Incremental Step 

AC Signal 0-40 Vpp 5 Vpp 

DC bias 5V N/A 

Frequency 100 Hz N/A 

Flow Rate 0.25 µL/min N/A 

Solution Concentration 98.13% DI H2O/1.87%SiO2 N/A 

Particles per unit volume 1.4 E10 SiO2 particles/ml N/A 

 

 Abrasive wear experiments were conducted at the nine specified AC voltages.  An 

experiment was run for each voltage over time frames of 15, 30, 45, and 60 minutes, 

resulting in four experiments per voltage.  Experiments for each voltage were repeated 

five times yielding a total of 180 experiments.    The experiments in each trial were 

Table 3.  Input parameters for abrasive wear experiments 
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randomly conducted to reduce the possibility of systematic errors.  Table 4 shows the 

experimental matrix used for the abrasive wear experiments. 

 

 

Trial 1 

  0 Vpp 5 Vpp 10 Vpp 15 Vpp 20 Vpp 25 Vpp 30 Vpp 35 Vpp 40 Vpp 

15 min 10 8 23 4 22 2 35 14 27 

30 min 17 32 33 18 11 19 6 28 13 

45 min 31 24 5 34 29 25 36 20 12 

60 min 9 21 30 15 16 1 3 26 7 

Trial 2 

  0 Vpp 5 Vpp 10 Vpp 15 Vpp 20 Vpp 25 Vpp 30 Vpp 35 Vpp 40 Vpp 

15 min 20 18 11 32 22 9 7 12 5 

30 min 25 34 33 16 15 28 14 23 35 

45 min 19 24 36 31 27 30 29 13 6 

60 min 4 26 17 21 8 2 1 10 3 

Trial 3 

  0 Vpp 5 Vpp 10 Vpp 15 Vpp 20 Vpp 25 Vpp 30 Vpp 35 Vpp 40 Vpp 

15 min 12 28 30 18 14 21 10 5 22 

30 min 24 23 11 26 25 15 32 16 4 

45 min 35 3 29 34 2 36 8 33 27 

60 min 7 31 19 13 20 1 6 9 17 

Trial 4 

  0 Vpp 5 Vpp 10 Vpp 15 Vpp 20 Vpp 25 Vpp 30 Vpp 35 Vpp 40 Vpp 

15 min 24 4 16 10 6 32 2 20 8 

30 min 29 31 26 28 23 13 19 14 22 

45 min 11 5 35 1 34 36 33 27 3 

60 min 17 30 12 25 15 9 18 7 21 

Trial 5 

  0 Vpp 5 Vpp 10 Vpp 15 Vpp 20 Vpp 25 Vpp 30 Vpp 35 Vpp 40 Vpp 

15 min 6 8 4 16 25 13 30 2 24 

30 min 18 22 27 32 9 35 10 19 11 

45 min 28 17 33 14 31 20 34 36 29 

60 min 5 7 21 26 15 1 23 12 3 

 

One metal coated work-piece was used for each column underneath each trial in Table 4.  

Each work-piece was slightly staggered to the side before an additional experiment was 

conducted, so that a separate trench was created in the metal for the given time periods.  

Figure 8 shows a schematic of three metal coated work-pieces with wear trenches for 

Table 4.  Experimental matrix for 180 abrasive wear experiments.  Each number represents the order each 
experiment was conducted for each trial. 
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each timed experiment used in Trial 2 of material removal experiments.  After all four 

experiments were run on each work-piece, five surface scans per trench were taken using 

a Taylor Hobson Precision Talyscan 150 surface profilometer in order to determine the 

material removal rate.  The five surface scans were taken at locations ranging from the 

beginning to the end of the trench.  The scan locations were held as constant as possible 

for each work-piece.  Upon completion of the experiments, all surface scans per trench 

which displayed material removal were averaged which yielded an average step height 

change per trench. 

 

 

 

 

 

Table 5 lists a set of control experiments that were conducted so that additional 

insight into the removal mechanism could be obtained.  These experiments were run to 

determine if there are other mechanisms other than mechanical material removal present.   

Surface scans were also performed on the work-pieces used for the control experiments 

to determine material removal rates, if present.  

 

 

 

 

 

60 45 45 15 30 45 60 15 45 15 60 30 

Figure 8.  Schematic of work-pieces used in Trial 2 for 5, 10, 15 Vpp, respectively.  The 
numbers underneath each trench corresponds to a time period in minutes. 

60 45 45 15 30 45 60 15 45 15 60 30 
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Experiment DI 

H2O 

Vol 

[ ] 

(%) 

SiO2 

Solution 

Vol [ ] % 

AC 

Voltage 

(Vpp) 

DC 

bias 

(V) 

Flow Rate 

(µL/min) 

Frequency 

(Hz) 

1 100 0 25 5 0.25 100 
2 100 0 0 0 0.25 0 
3 98.13 1.87 25 5 0 100 
4 98.13 1.87 0 0 0.25 0 
5 98.13 1.87 0 5 0.25 0 
 

 

  

Table 5.  Abrasive wear control experiments 
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Chapter 5:  Mathematical Model 

 
 In order to determine how to properly model material removal using the electro-

kinetic approach, the behavior of PS and silica particles under the influence of electric 

field had to be understood.  This chapter presents the behavior of a particle in a micro-

channel as well as the forces which act on the particle during the electro-kinetic process.  

Defining the particle behavior and force balance on a single particle allowed for a 

mathematical model of the metallic material removal to be realized.   

5.1 Particle Behavior and Force Balance 

 As mentioned in the previous chapter, a syringe pump injects colloidal solution 

into the channel of the micro-fluidic device at a constant velocity and an electric field is 

induced to bring particles to the surface and oscillate against it.  Figure 9 illustrates the 

particle motion in the micro-channel.  Step 1 in the figure represents horizontal motion of 

the particle in the x-direction due to pressure driven flow.  The particle moves in the 

horizontal direction until influenced by a positive DC bias in step 2.  The DC bias raises 

the negatively charged particles to the positively charged top work-piece or ITO cover-

slip.  It was necessary for the DC bias to be implemented so that a greater percentage of 

particles were present at the work-piece to participate it material removal.  Step 3 

represents the response of the particle with the addition of the AC signal to the DC bias.  

The particles repeatedly collide with the work-piece and thus participate in metallic 

material removal.   
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There are a number of forces that act on an abrasive particle in a colloidal solution 

moving through a micro-channel.  Forces act in both the x and y direction, however, the 

primary focus was to determine the net force acting in the y-direction in order to 

determine the pressure exerted on the work-piece by an abrasive particle.  Before the 

forces are defined, it is important to state the assumptions governing the force balance.  

These assumptions are listed below: 

1. The electric field is uniform, acting only in the y-direction.  Therefore, the 

particle would experience no dielectrophoretic force due to the electric field.  

The force due to the electric field is simply an electrostatic force. 

2. Fluid flow is steady state at a low Reynolds number.  Reynolds number is 

given by: 

�� = ����
�                  (5.1)      

where ρ, v, and η  are the fluid density, velocity, and kinematic viscosity, 

respectively, and dc is the channel depth.  The Reynolds number for fluid flow 

in experimentation is 0.031 which is safely in the range for laminar flow. 

Therefore, the colloids move at the same velocity as the fluid. 

Metal coated work-piece 
or ITO cover-slip 

Bottom metal coated wafer 
DC bias 

AC response 

Particle 

+ 

- 

1 
2 

3 

Figure 9.  Particle motion in micro-channel resulting from pressure driven flow, DC biasing, and an AC signal 

y 

x 
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3. Forces can be described as acting on the center of the particle although these 

act on the surface.  This allows the equation of motion on the cell to be 

simplified without losing generality. 

The main forces that are acting on the particle in are the pumping force Fpump, the 

electrostatic force FE, the natural forces FN, and the drag force Fdrag.  Figure 10 is a free 

body diagram of the forces acting on the particle.  Since this situation represents a low 

Reynolds number, steady state flow has been assumed so that there is no need to 

complete the force balance in the x-direction.  It is reasonable to assume that the colloidal 

particles are moving at the same velocity as the solution since acceleration is equal to 

zero.  As mentioned earlier, the solution was pumped into the channel at a constant 

volumetric flow rate, Q.  The fluid flow rate was converted into the fluid velocity using 

the following equation: 

	
��� = �
��

= �
����

                                                (5.2) 

where Ac is the area of the channel and dc and wc are the channel depth and width, 

respectively.   As a result of the fluid flow assumptions, it can be stated that 

 vfluid = vpart_x. 

  

The forces acting on the particle in the y-direction are the electrostatic force, FE, 

the normal forces, FN, and the drag force, Fdrag_y.  The force balance in the y direction is 

written as 

                                             
dt

dv
mFFF

y

ydrag�E =−− _                    (5.3) 

where �� is the velocity of the particle at a certain position and time. 
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The mass of the particle is given by 

                                                       � = �
�                                                                      (5.4) 

where � is the density of the spherical particle and the volume is 

                                                       	 = �
� ���                                                                (5.5) 

with a being the radius of the particle.   

 

The electrostatic force [14] exerted on a particle by an applied electric field is given by 

)(4 aEfaF orE κςεεπ=                                             (5.6) 

where εr is the permittivity of the DI H2O medium, εo is the permittivity of a vacuum, and 

ζ is the measured zeta potential of the particle.  The equation for the applied electric field 

is written as 

        FN, Fdrag_y 

Fpump            Fdrag_x 

 

    FE (AC + DC) 

Figure 10.  Free body diagram of the forces acting on a particle during the electo-kinetic 
process. 
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DCAC EEE +=                                                        (5.7) 

where EAC and EDC are the alternating and direct current components of the electric field, 

respectively.  The AC component of the electric field is given by 

c

AC
kd

tA
E

)sin(ω
=                                                      (5.8) 

where A is the amplitude of the AC signal, ω is the frequency, t is time, k is the dielectric 

constant of the medium, and dc is the channel depth.  The DC component of the electric 

field is given by 

c

BiasDC

DC
kd

V
E

_
=                                                        (5.9) 

where VDC_bias is the amplitude of the applied DC bias.  Henry’s function, f (κa), relates 

the particle’s zeta potential to its electrophoretic mobility and is written as 

3]
)21(
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1
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aea
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κκ

κ

−
+

+

+=                          (5.10) 

where e is the fundamental unit of charge and κ is the Debye parameter given by 

   
Tk

nze

bor

o

εε
κ

222
=                                                   (5.11) 

where z is the valence on the particles in at the symmetric electrolyte, no is the ionic 

concentration in bulk solution, kb is the Boltzmann constant, and T is the temperature of 

the solution. 

 The natural forces on a colloidal particle include its weight and the buoyancy 

force.  The equation for the natural force on a particle is given by Stokes drag equation 

  dt

dy
dF� πη3=                    (5.12) 
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where η is the viscosity of the medium, and d is the diameter of particle. 

 An additional force acting in the y-direction is the drag which resists the 

movement of the particle in the DI H2O medium.  The drag equation is given by 

�����_� = 6� � ��
�!                                              (5.13) 

Substituting equations 5.6-5.13 into equation 5.3 yields the complete force balance 

equation in the y direction 

2
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κ
ω

ςεεπ                       (5.14) 

The dominant force in the electro-kinetic process is the electrostatic force.  However, the 

drag force and the normal forces acting on the particles have a small effect.  Therefore, a 

close approximation of the net force acting on a particle in the y-direction is 

�"#!_� ≈ �% − �' − �����_�                              (5.15) 
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5.2 Material Removal Model 

 Once the net force in the vertical direction, Fnet_y, was determined, the model 

governing material removal was analyzed.  Figure 11 depicts the mechanism leading to 

metallic material removal from the work-piece surface.   

 

 

 

 

 

 

 

 

 

 

 

 

During the electro-kinetic material removal process, each individual SiO2 particle exerts a 

net force in the y-direction nearly perpendicular to the work-piece surface.  As a particle 

makes contact with the work-piece surface, a pressure is exerted on a very small circular 

contact area on the surface.  The horizontal velocity of the particle then slightly drags it 

across the surface removing a small portion of the metallic surface material before the 

particle is forced away from the surface by the negative portion of the AC signal.   

Figure 11.  Mechanism governing metallic material removal from work-piece surface 
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 The mechanism for material removal by the electo-kinetic phenomena is 

analogous to the CMP process.  The Preston equation [18] was derived from observation 

of glass polishing processes and was adopted as the standard for modeling CMP.  The 

equation predicts that material removal rate is proportional to pressure applied and pad 

velocity 

(�)�*+�, ���.��, ��)� = /0 1 2*�334*� 1 	�,.5+)6  

where kp is the Preston constant that could be a function of all other input variables in the 

process.   

 Electro-kinetic metallic material removal is a mechanical process which is similar 

to mechanical abrasion models presented for CMP.  Luo et al. [19], Zhao et al. [20], and 

Ng [21] proposed that abrasive particles caught between the tips of the asperities in a 

polishing pad and the silicon wafer were responsible for material removal from the wafer.  

Luo modeled the abrasive-wafer and abrasive-pad-solid-solid contacts as plastic contact 

between wafer and abrasives.  Zhao’s approach was a bit different as he modeled elastic 

contact between the pad and abrasives, and plastic contact between the wafer and 

abrasives.  Both models predicted mean material removal from the wafer surface. 

 The model presented for the electro-kinetic process is based on mechanical 

abrasion using Preston’s equation and Hertzian analysis to determine the contact area and 

pressure exerted by a SiO2 particle on the work-piece surface.  Hertz [22] postulated two 

solids coming into contact under a normal load will have normal displacements at the 

surface in a circular contact area.  Given that the significant dimension of the contact 

area, a, and the relative radius of curvature, R, of the radii of each body R1 and R2, and 
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the significant dimensions of the bodies both laterally and in depth by l , Hertz made the 

following assumptions that govern Hertzian theory for elastic contact: 

1.  The surfaces are continuous and non-conforming:  a<<R 

2. The strains are small:  a<<R 

3. Each solid can be considered an elasitic half space:  a<<R1,2, a<<l 

4. The surfaces are frictionless:  qx=qy=0 

These assumptions allow for the pressure distribution acting over a surface area of two 

elastic half-spaces to produce normal displacements in the two surfaces.   

 The maximum pressure in the distribution had to be found because the maximum 

pressure results in highest MRR at a given area of the work-piece surface.  The highest 

MRR for the model is desired because the maximum depths of the surface scans for the 

experimental results were taken as experimental data.  The peak Hertzian pressure is 

given by 

27 = (9:;<=>%∗@

ABC@ )E
B                                                (5.16) 

where the contact radius R=a because the particle comes into contact with a rigid flat 

work-piece.  The effective Young’s modulus is given by 

F∗ = (GHIJKLMN@

%KLMN
O + QHIJRSMS�T@

%USMS�T
V)IH                       (5.17) 

where νgold, Egold, νsilica, and Esilica  are the Poisson’s ratio and Young’s modulus of the 

gold work-piece surface and the SiO2 particles, respectively.  Once the maximum 

pressure is calculated, the material removal rate is found by the following equation: 

(�� = /0	0��!_W27                                          (5.18) 

This equation evaluates the maximum depth of material removal per time per SiO2 

particle in solution.  The width of removal for a single particle is very small and a number 
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of particles colliding within a localized area cause the larger removal widths seen in the 

experimental results in the following chapter.  Ng [21] reported a Preston’s coefficient 

kp= 4.70E-13 during the CMP process and this number was used to calculate model 

material removal rates for this thesis.  Recall from equations 5.6-5.9, 5.15, and 5.16 that 

the material removal rate is directly proportional to electric field strength.  Combining 

these equations yields: 

(�� = /0	0��!X(9Q��YZYL[%
(к�)I����I9��N>
N=V%∗@

]@C@ )E
B                      (5.19)                                             

The effect of electric field on the material removal rate is explained later in section 5.2.   

Table 6 lists the constants and their respected values used to solve the equations in the 

model. 
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Constant Value Units 
Q 2.5 E-10 m3/min 
η  8.90 E-4 kg/ms 
d (SiO2 particles) 1.034 E-6 m 
d (PS particles) 0.964 E-6 m 
ρ (SiO2 particles) 2000 kg/m3 
ρ (PS particles) 1050 kg/m3 
ρw (DI H2O medium) 1000 kg/m3 
εr 80 N/A 
εo 8.854 E-12 C2/Nm2 
ζ (SiO2 particles) -69.88 E-3 V 
ζ (PS particles) -54.87 E-3 V 
k  76.7 N/A 
dc 400 E-6 m 
wc 300 E-6 m 
e 1.602 E-19 C 
z 1 N/A 
no 6.023 E19 N/A 
kb 1.381 E-23 J/K 
T 298 K 
m (SiO2 particles) 1.158 E-15 kg 
m (PS particles) 4.925 E-16 kg 
vpart_x 3.47 E-5 m/s 
vy (approximate) 1.3E-5 m/s 

 

 

 

 

 

 

 

 

Table 6.  Constants and their respected values used to solve force balance equations. 
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Chapter 6:  Results and Discussion 

 The results from the particle visualization experiments and material removal 

experiments are presented in this chapter.  The visualization results were used to 

understand how the electric field affected particle motion and the material removal 

process.  The metallic material removal results are compared to the mathematical 

material model and the discrepancies are discussed. 

6.1 Particle Visualization Experiments 

 In chapter 3.3 the design of experiments was presented and the input parameters 

which were tested during visualization experiments were listed in Table 2.  Fluorescent 

PS particles in solution were observed in the micro-channel of the device underneath the 

inverting microscope.  The first experiment was to observe horizontal motion of the 

particles at various flow rates.  A small amount of solution was pumped into the channel 

and allowed to settle without propelling the particles forward with pressure driven flow.  

The particles exhibited Brownian motion, moving around slightly with unpredictable 

motion.  As the flow rate was incremented 0.1 µL/min over a range of 0-1 µL/min, the 

PS particles exhibited an expected increase in horizontal velocity.  Each particle held its 

horizontal path through the channel unless it was struck by another particle, which 

slightly altered its trajectory.   

 The effect of DC biasing on particle motion was then tested by incrementing the 

DC bias by 1V over a range of 0-10 V.  The horizontal flow rate was held constant at 0.5 

µL/min and the AC Voltage was set to 0 Vpp.   The positive DC bias caused the particles 

to move toward the top ITO cover-slip which served as the positive electrode.  Increasing 

the DC bias caused a greater percentage of the particles to reach the surface of the cover-
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slip.  This observation was expected because the negatively charged particles are 

attracted to the positively charged surface.  Higher positive potentials create higher 

magnitudes of forces that push the particles toward the surface.  The DC bias also caused 

particles to align near the side walls of the channels.  This was an unexpected observation 

but makes sense because the electric field lines bend toward the side channel walls, 

causing a highly concentrated potential in that area. The bias was switched from positive 

to negative to further prove the point that DC biasing brings particles toward the desired 

surface.   This took the particles out of focus of the microscope which meant the negative 

bias forced particles away from the cover-slip surface.  Once again, this was expected 

because the negatively charged cover-slip electrode repels the negatively charged PS 

beads.    DC biases surpassing 5 V caused cavitation to form in the channel.  Therefore, a 

5 V DC bias was selected for material removal experiments. Figure 12 summarizes the 

study of DC bias on particle motion. 

  

 

 

 

 

 

 

 

 

 



49 
 

                          

  
  
 

 

 

 

 

                                                                                

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

(a) (b) 

(e) 

(c) (d) 

Figure 12.  Summary of the effects of DC bias on PS particle motion  (a) Particle dispersion at 0V DC 
bias (b) Particle movement transitioning from 0V to +5V DC bias (c) Particle alignment resulting from 
+5V DC bias for ~20 seconds (d) Particle positioning after DC bias switched from +5V to -5V for ~5 
seconds (e)  Cavitation due to AC voltage exceeding 25 Vpp and DC biases exceeding 5 V 
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Lastly, the effect of AC voltage on particle motion was examined by incrementing 

the AC voltage by 5Vpp over a range of 0-50 Vpp.  Frequency effects were also observed 

by increasing the frequency by 10 Hz over a range of 0-100 Hz for each AC voltage.  The 

horizontal flow rate was held constant at 0.5 µL/min and the DC bias was set to 0V.   

The inverting microscope was focused on an area near the top cover-slip surface.  

Applying an AC signal caused the particles to “blink” because the particles were going in 

and out of focus.  The “blinking” phenomena is the result of the AC signal cycling from 

positive to negative which changes the direction of the forces acting on the particle.    

Increasing the AC potential caused more violent particle “blinking”. Increasing the AC 

frequency caused the particles the “blink” more rapidly.  This is expected because a 

frequency increase produces more AC cycles per second.  Cavitation began to form at 25 

Vpp and became more significant at AC voltages exceeding 25 Vpp.  This bubbling 

phenomenon raised uncertainty on the effect the AC voltages exceeding 25 Vpp would 

have on material removal experiments before the experiments were completed.  The 

effect of cavitation on the material removal results will be more thoroughly discussed 

later in the chapter.  

 The particle visualization experiments provided insight on how the different 

parameters affect particle motion.  This set of experiments led to the values selected in 

Table 3 for material removal experiments.  The visualization experiments also supported 

the hypothesis for the mechanism of material removal, although a completely vertical 

uniform electric field was desired at the onset of the project.  The material removal 

experimental results will provide further insight on how field lines bending to the side 

channel walls affect metallic wear.   
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  6.2 Material Removal Experiments                        

 The particle visualization experiments provided some valuable insight into the 

material removal process.   The parameters tested in Table 2 provided the input 

parameters for the material removal experiments, listed in Table 3.  Table 5 listed the 

control experiments that were completed to gain further insight into the material removal 

mechanism.  Each of the control experiments was subjected to the process for 1 hour.  

Experiments 1 and 2 were run without SiO2 particles in order to prove that abrasive 

particles in solution are necessary for metallic material removal.  Zero wear was recorded 

for both experiments, which proved that SiO2 particles were required to cause material 

removal.  For experiment 3, solution was injected into the micro-channel and the electric 

field was induced but the solution was not propelled forward by a flow rate.  Zero wear 

was recorded for this experiment, which proved that the particles required a horizontal 

velocity in order to remove material.  Experiment 4 was completed with a horizontal flow 

rate, but no electric field.  As expected, there was zero wear caused by the experiment 

which proved that an electric field must be present to induce wear.  Lastly, experiment 5 

was completed with a DC bias and horizontal flow rate, but no AC Voltage.  Zero wear 

was recorded for this experiment which proved that both AC and DC electric fields must 

be present to remove metallic material from the work-piece surface. 

 The results presented no surprises about the mechanism for metallic material 

removal.  Therefore, the experimental matrix laid out by Table 4 was completed to 

determine the effect of AC Voltage on metallic material removal.  Figure 13 depicts area 

scan performed on all of the work-pieces in order to determine how material was being 

removed from the work-piece surface.  Notice for each of the eight area scans 
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corresponding to each AC Voltage, material was removed in line segments across the 

width of the channel.  These results were somewhat surprising due to the fact that 

uniform material removal across the width of the channel was desired.  However, upon 

further evaluation the particle visualization results explained why material was being 

removed in the line segment fashion.  Recall from section 5.1 that the DC bias caused 

particles to line up in the channel.  Although Figure 12c showed only one line of 

particles, there were multiple lines present in the channel.  These particle lines were 

present in approximately the same areas where material removal is shown on the work-

piece surfaces in Figure 13.  As the AC Voltage was increased the areas where material 

removal is present became darker which represents an increased penetration depth.  

These results were very encouraging because increased material removal was expected as 

AC Voltage was increased.   

 

 

 

 

 

 

 

 

 

 
 
 
 



 

 
 
 
 
 
 
 

(a) 

(c) 

Figure 13.  Area scans of metallic coated workpiece at a DC Bias of 5V and an AC Voltage of (a) 5 Vpp (b) 
10 Vpp (c) 15 Vpp (d) 20 Vpp (e) 25 Vpp (f) 30 Vpp (g) 35 Vpp (h) 40 Vpp
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(b) 

(d) 

Area scans of metallic coated workpiece at a DC Bias of 5V and an AC Voltage of (a) 5 Vpp (b) 
10 Vpp (c) 15 Vpp (d) 20 Vpp (e) 25 Vpp (f) 30 Vpp (g) 35 Vpp (h) 40 Vpp 

Area scans of metallic coated workpiece at a DC Bias of 5V and an AC Voltage of (a) 5 Vpp (b) 



 

(e) 

(g) 

Figure 13 cont.  Area scans of metallic coated 
(b) 10 Vpp (c) 15 Vpp (d) 20 Vpp (e) 25 Vpp (f) 30 Vpp (g) 35 Vpp (h) 40 Vpp
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(f) 

(h) 

Figure 13 cont.  Area scans of metallic coated workpiece at a DC Bias of 5V and an AC Voltage of (a) 5 Vpp 
(b) 10 Vpp (c) 15 Vpp (d) 20 Vpp (e) 25 Vpp (f) 30 Vpp (g) 35 Vpp (h) 40 Vpp 

workpiece at a DC Bias of 5V and an AC Voltage of (a) 5 Vpp 
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 Line scans were also performed on the work-pieces in order to determine the wear 

depths creating by the electro-kinetic process.  As mentioned in Section 3.3, five scans 

were taken of each trench created by the material removal process.  Outliers representing 

wear data points which were excessively large compared to the rest of the data were 

removed.  The remaining data was averaged yielding an average wear depth per AC 

voltage and time.  These results are reported graphically in Figures 14-21.   

 Each figure represents average wear vs. time for a specified AC Voltage.  Note 

that at time equal to zero, wear is equal to zero.  The slopes of the three trend-lines on 

each graph represent a minimum, average, and maximum average material removal rate 

for each specified AC Voltage.  Note that the minimum and maximum material removal 

rates acquired from the slopes in Figures 14-21 are average values as well because the 

five wear depths per trench were averaged together.  Table 7 lists average, minimum, and 

maximum average material removal rates for each AC voltage. The general trend for each 

graph was an increase in material removal depth with increasing time.  With increasing 

time, the areas of material removal were larger because the particles had more time to 

interact with the surface.  As the areas of material removal grew, the larger the average 

wear depths became because the percentage of a line scan hitting a removal area was 

greater.  Thus, the increasing average wear depth per time was an expected result. 
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Figure 14.  Metallic wear vs. time:  5 V DC, 5 Vpp 

y = 0.0046x

R² = 0.5456

y = 0.006x

R² = 1

y = 0.0015x

R² = 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70

W
e

a
r 

(m
ic

ro
n

s)

Time (min)



57 
 

 
 
 
 
 
 
 
  

y = 0.0054x

R² = 0.5685

y = 0.0024x

R² = 1

y = 0.0082x

R² = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70

W
e

a
r 

(m
ic

ro
n

s)

Time (min)

Figure 15.  Metallic wear vs. time:  5 V DC, 10 Vpp 
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Figure 16.  Metallic wear vs. time:  5 V DC, 15 Vpp 
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Figure 17.  Metallic wear vs. time:  5 V DC, 20 Vpp 
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Figure 18.  Metallic wear vs. time:  5 V DC, 25 Vpp 
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Figure 19.  Metallic wear vs. time:  5 V DC, 30 Vpp 
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Figure 20.  Metallic wear vs. time:  5 V DC, 35 Vpp 
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Figure 21.  Metallic wear vs. time:  5 V DC, 40 Vpp 
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Discrepancies were still present in the data.  For example, in Figure 14 the 

average wear data point for 30 minutes is lower than that of 15 minutes.  Even though 

care was taken to ensure that line scans were taken on the same areas of each work-piece, 

it was impossible to ensure no error in the process.  Therefore, data points which seem 

low were probably influenced by user error in performing the scans.  There also could 

have been unknown variables in the process which caused data points to be lower than 

expected.  Further investigation into defining such variables should be attempted in future 

work. 

 

AC Voltage 
(Vpp) 

Avg. Exp. MRR 
(Å/min) 

Min. Exp MRR 
(Å/min) 

Max Exp. MRR 
(Å/min) 

0 0 0 0 

5 54 24 82 

10 46 15 60 

15 49 18 71 

20 61 26 79 

25 83 39 134 

30 61 35 107 

35 45 22 58 

40 85 58 121 

Table 7.  Average, minimum, and maximum average experimental material removal rates for AC Voltages 
ranging from 0-40 Vpp. 
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The goal of this thesis was to prove that the electro-kinetic process could be used 

to remove material from a metallic coated work-piece.  The previous wear data proved 

that metallic material was removed from the work-piece surface.  The material removal 

rate was predicted by equation 5.18 which is shown again below for convenience.  

(�� = /0	0��!_W27                                          (5.18) 

In order to show the dependence of the electric field on the material removal rate, the 

maximum pressure was substituted into equation 5.19 which yielded: 

   (�� = /0	0��!X(9Q��YZYL[%
(к�)I����I9��N>
N=V%∗@

]@C@ )E
B          (5.19)                                

Since the horizontal particle velocity and Preston’s coefficient were constant, the 

maximum pressure was the only variable factor.  The maximum pressure is directly 

proportional to the net normal force acting on the particle, which in turn is directly 

proportional to the amplitude of the AC signal.  An approximation of the net force acting 

on a silica particle in the y-direction was found using equation 4.18.  The values of the 

electrostatic, drag, normal, and net force acting on a particle in the y-direction are listed 

in Table 8.   
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AC Voltage 
(Vpp) 

FE (N) FN (N) Fdrag_y (N) Fnet_y (N) 

0 8.35E-14 5.68E-15 3.60E-14 4.19E-14 
5 1.25E-13 5.68E-15 3.60E-14 8.36E-14 
10 1.67E-13 5.68E-15 3.60E-14 1.25E-13 
15 2.09E-13 5.68E-15 3.60E-14 1.67E-13 
20 2.50E-13 5.68E-15 3.60E-14 2.09E-13 
25 2.92E-13 5.68E-15 3.60E-14 2.51E-13 
30 3.34E-13 5.68E-15 3.60E-14 2.92E-13 
35 3.76E-13 5.68E-15 3.60E-14 3.34E-13 
40 4.17E-13 5.68E-15 3.60E-14 3.76E-13 
 

Figure 22a shows that the net normal force increases linearly with an increase in AC 

Voltage.  Figure 22b shows that the maximum pressure exerted on the work-piece surface 

also increases with increasing AC voltage.  Since the material removal rate is directly 

proportional to the maximum pressure, the material removal rates should increase with 

increasing AC Voltage. 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 22.  The effect of AC Voltage on factors influencing the material removal process using the  
equations from the mathematical model and the constants listed in Table 5: (a) Net Force acting on a 
SiO2 particle in the y-direction and (b) Maximum pressure exerted on the work-piece by a SiO2 particle. 

Table 8.  Numerical values of forces acting on a silica particle in the y-direction 
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It was also desirable to control wear rates by adjusting the AC Voltage.  From the 

force and pressure graphs from Figure 22, it was predicted that wear rate should increase 

with increasing AC Voltage.  Figure 23 is a plot of the experimental and predicted 

average material removal rates vs. AC Voltage.  The experimental average material 

removal rates are plotted as data points and the error bars represent the difference 

between those average data points and the minimum and maximum average material 

removal rates.  These values were procured from the slopes of the trend lines in Figures 

14-21 and were listed in Table 7.  The predicted material removal rates were obtained 

from equation 4.22. 

 The predicted material removal rates increased with an increased AC Voltage.  

The experimental material removal rates followed this trend through 25 Vpp.  Through 

the data point at 25 Vpp, the predicted and experimental material removal rates were very 

similar.  However, experimental data points at 30, 35, and 40 Vpp displayed curious 

behavior.  The experimental wear rates decreased for both 30 and 35 Vpp, and then 

increased significantly again at 40 Vpp.  It was predicted that the wear rate should have 

continued to increase through 40 Vpp, however the particle visualization experiments 

shed some light on what could have caused the strange phenomenon following 25 Vpp.  

Recall from the particle visualization experiments that cavitation began to form in the 

micro-channel at 25 Vpp, and was significant at 30 Vpp.   Wang et al. [23] reported that 

electrically-driven flow rates decreased significantly with increased cavitation in micro-

channels.  Therefore, it was reasonable that cavitation decreased the horizontal velocities 

of the SiO2 particles which decreased the experimental material removal rates. 
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However, the decreased horizontal particle velocity does not explain why the 

experimental material removal rate increased at 40 Vpp.   There could be a couple of 

different explanations as to what happened at the 40 Vpp data point.  One explanation is 

that the bubbles began to burst at 40 Vpp.  The energy released from bursting bubbles 

could have weakened and broken the gold and copper bonds at the surface which would 

have allowed the material to be easily removed.   

A second explanation could be that galvanic corrosion was occurring at the work-

piece surface which caused pitting to occur.  Wranglen [24] stated that pitting is a 

localized attack, generally on dielectrics, which occurs due to the stimulation of the 

anode reaction by activating anions of the cathode reaction by the presence of oxidizing 

agents and by effective cathode surfaces with low polarization.  A pit is initiated by the 
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Figure 23.  Experimental and predicted material removal rate vs. AC voltage 
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absorption of activating anions on the defective sites in the dielectric.  When the pitting 

potential is attained, the electric field strength above the thinnest parts of the dielectric 

will be so high that the anions will penetrate the film and a subsequent local dissolution 

of the gold surface might occur.  Therefore, if pitting was occurring at the relatively high 

electric potential at 40 Vpp the experimental wear rates would be higher even if the wear 

caused by the mechanical removal process was decreased. 

The model did not take into account the external factors which caused un-

predicted material removal rates at AC voltages exceeding 25 Vpp.  Beyond that point, 

the process was too unpredictable to accurately model.  However, the model was 

effective at predicting material removal rates through 25 Vpp.  The electro-kinetic 

process removed nano-metric amounts of metallic material from the work-piece surface 

and the process was effectively controlled over a range of 0-25 Vpp. 
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Chapter 7:  Conclusions 

 The fundamental concept that electro-kinetically enhanced abrasive particles can 

remove metallic material from a silicon wafer substrate has been investigated 

experimentally and by numerical calculation.  A micro-fluidic device was designed and 

fabricated in order to determine the effect that electric field has on particle motion 

suspended in solution and to prove that abrasive particles manipulated by an external 

electric field can remove metallic material from a silicon wafer substrate.  A model based 

on the electrokinetic phenomena, particle force balance, Hertzian contact mechanics, and 

fluid mechanics was developed in order to determine theoretical material removal rates.  

The experimental and model results show agreement.  The conclusions of this research 

are listed below. 

• Applying a positive DC bias caused the negatively charged particles to move 

toward the work-piece, which was the positive electrode.  Increasing the DC bias 

caused a greater percentage of the particles to reach the work-piece surface.  DC 

biasing also caused particles to line up parallel with the side walls of the channel 

as a result of the concentrated electric potential at the channel side walls. 

• Applying an AC voltage caused particles to exhibit a desired “blinking” motion 

which meant the particles were moving closer and further away to the work-piece 

surface through one period of the AC signal.  Increasing the AC peak to peak 

voltage created more violent particle “blinking” and increasing the frequency 

caused the particles to blink more rapidly. 
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• Cavitation was seen at DC voltages exceeding 5 V and at AC voltages exceeding 

25 Vpp.  Material removal rates were undoubtedly affected when cavitation 

occurred. 

• Area scans of the work-pieces which were subjected to material removal 

experiments exhibited material removal in line segments parallel to the side walls 

of the micro-fluidic channel.  Metallic material was removed in this fashion due to 

the fact that the DC bias caused the particles to line up parallel to the side channel 

walls. 

• Average metallic wear depth increased with time.  Increasing the time allowed for 

the particles to remove material from more areas of the work-piece which 

increased the average wear depth.   This was due to the fact that the line scans, 

which were perpendicular to the side channel walls, traced more removal areas on 

work-pieces influenced by material removal experimentation for longer periods of 

time. 

• Average metallic material removal rates increased with increasing AC Voltage up 

to 25 Vpp.  Increasing the AC Voltage caused an increase in the electrostatic 

force acting on each particle normal to the work-piece surface which increased the 

pressure that each individual abrasive silica particle exhibited on the work-piece 

surface. 

• The experimental material removal rates and theoretical material removal rates 

predicted by the Hertzian model were in agreement up to 25 Vpp.  Experimental 

material removal rates ranged from ~40-80 Å/min and theoretical material 

removal rates ranged from 34-75 Å/min over the specified range of AC voltages.  
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It is hypothesized that cavitation effects and galvanic corrosion led to the 

discrepancies of the material removal rates exceeding 25 Vpp.  The model did not 

account for these effects due to a lack of predictability when these effects 

occurred.   
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