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SUMMARY

In this thesis, we investigate the oscillatory Belousowa@dtinsky (BZ) reaction
determined by a reversible Lotka-Volterra model in a closadhermal chemical system.
The reaction consists in two zones, oscillation zone antsitian zone. By applying geo-
metric singular perturbation method, we prove the existesfche central axis\y, in the
oscillation zone, and a strongly stable two-dimensionadiiant manifoldM;, .. in the tran-
sition zone. AndM}, . contains a one-dimensional stable invariant manitfd, which is
the part of the central axis in the transition zone. We alsd tirat the time spending in the
oscillation zone is in the algebraic orderdn And in the vicinity of the equilibrium, there
is no oscillation as indicated by Onsager’s reciprocal swtmynrelation. Furthermore, the
damped oscillation is studied in terms of the action-actiogle variables. In the end, we
apply the model reference control technique to control $@llation amplitude in the BZ

reaction.



CHAPTER |

INTRODUCTION

Chemical and biochemical oscillations are one of the mopbmant aspects of nonlinear
dynamics of living cellular systems [23, 49, 53]. The stuflgscillating chemical reaction
has a long history. The first discovery of the oscillation inhemical system dates back
to 1828 when G.T. Fechner published a report, in [17], aboeetoiscillating current in an
electrochemical cell. Throughout the nineteenth centilmy,related work on oscillating
reaction was done by F. Schonbein in 1836, J.P. Joule in 4844V. Ostwald in 1898, etc,
see [56]. However, because the system they studied wersgeteous, it was believed
that no homogeneous oscillation exists.

The theoretical discussion of the oscillating reaction vest formulated by Alfred
Lotka in 1910. It mainly appeared in his series of work in tlegipd between 1910 and
1920. But cited from [45], he also remarked thab“reaction is known which follows the
above law. This may be one of the reasons why no further analysis orotiudlating
reaction continued along Lotka’s idea during that periodwdver, just as Lotka remarked
in [45] that “as a matter of the fact the case here considered was sugdegttéed con-
sideration of the matters lying outside the field of physatemistry, his ideas leads to
a successful development in the ecological problem witlioger behavior. Inspired by
Lotka’s idea, Vito Volterra, an Italy mathematician and pityst, studied the mutual inter-
action of two species and found the periodic fluctuation [86¢

Nevertheless the oscillating chemical reaction was naigeized widely in the chem-
istry community. One reason is the wrong impression thathedlsolutions of chemical
reagents must approach the equilibrium state in the mormoteay, because of the laws

thermodynamics. The other is the relatively low level depehent of the theoretical tools



for analyzing the mechanism behind complex reaction [22].

In 1951, Boris Belousov, a Russian chemist, discovereddhmporal oscillation in a
liquid phase reaction consisting of bromate, citric acid aaric ions C& and started the
modern study of oscillating reaction. But his manuscripgiwttihis discovery was rejected
for some journal publication because of the resistance ¢dlaigng reaction, and finally
was published in an unrefereed abstract in a conferencedowbialogy in 1957.

In 1961, Anatol Zhabotinsky redid the experiment by Belatscecipe and confirmed
Belousov’s discovery. In the following years, at least tepgrs about the BZ reaction
were published. Especially after Zhabotinsky presentedesof his work at a conference
in Prague in 1968 where Western and Soviet scientists wére/ed to meet, the study
on BZ reaction was immediately widely spread. And becaugbefjreat contribution to
the oscillating reaction, Belousov and Zhabotinsky weraraed Lenin Prize in 1980, the
highest medal in Soviet Union. Unfortunately, Belousov padsed away ten years eariler.

A short survey on this history can be found in [16, 22, 77].

In reality, there are two types of reactions where the asindh can be observed. The
first type isopensystem, where the exchange of matter and energy with suiiogs is
allowed [16]. Open systems have a wide range of dynamicabeh Most of currently
existing models exhibiting oscillating reaction dynamaes of this type. For example [35]
studied composite double oscillation, [65] the chaos, [&%,48] for period-doubling bi-
furcation and so on. The advantage of this type of mathemalatiodels is that the system’s
long-time behavior can be defined in rigorous mathematarai$[52, 36]. One of the lead-
ing group in this field, especially thermodynamics [51, Gglthe Brussels school of which
Prigogine is a member.

The second type islosedsystem. According to the second law of thermodynamics,
closed system eventually tend to the equilibrium state. #aoh the law of mass action
kinetics [62], there exists a free energy function whichyplthe role of a Lyapunov func-

tion. But to study the chemical oscillation in a closed reacsystem, one has to deal with



the quasi-stationary phenomenon, which is usually mdifecdit to be rigorously defined
in mathematics. And such a system usually involves in nadéile dynamics and becomes
a singular perturbation problem.

Actually studying the singularly perturbed systems, sushmadels of physical phe-
nomena with multiple dierent scales in time and space, is an important branch oieappl
mathematics. Phenomena withfdrent scales are widely observed in many areas of sci-
ence and engineering such as population dynamics, nelwg@jecology, and so on. For
example, the singular perturbation method is employedudysa predator-prey model of
three dimensions with two fierent time scales in [44], and the traveling wave solution in
a tissue interaction model with thredidrent time scales in [1].

Compared with the regular perturbation, in singular pdyation, one always has to deal
with the non-uniform limiting behavior. Therefore singufgerturbation techniquefiers a
lot for understanding the physical phenomena with mulaks®ehavior.

When studying singularly perturbed problem, one often enters a problem about
the persistence of invariant manifold under the pertudmatilt was proved in [47] that
an invariant manifold is persistent under any smooth phkation if and only if it is nor-
mally hyperbolic. Roughly speaking, an invariant manif@dormally hyperbolic if the
growth the rate of the linearized flow about the invariant ifdd dominates in the normal
direction.

A straightforward way is to first locate the invariant matifdéor the unperturbed sys-
tem; second, linearize the unperturbed system around tlaiamt manifold; and then
study the stability which allows one to determine the péesise of the invariant manifold
under perturbation. The first two steps are relatively easlot but the last one is not trivial
at all because the cficient matrix of the linearized system will depend heavilyton

Mainly there are two approaches for checking normal hypesityin the last step, and
essentially they are equivalent. One is to calculate siea¢alyapunov type numberg and

oL. This is the key of the Fenichel’s geometric singular pdragion theory [21], which is



the consequence of his previous work on the invariant mihtfeeorem in [18, 19, 20].
Fenichel proved that iy, < 1 ando. < 1, then the invariant manifold is persistent under
perturbation. The second one is to study the exponentialotleny, see [60, 9]. If the
codticient matrix of the linearized system has uniform exporardichotomy, then the
invariant manifold is persistent.

The application of singular perturbation technique to clvahreaction was introduced
by Roussel and Fraser in [57]. Mathematically it involvesntyain the invariant manifold
theorem and system reduction.

In this thesis, we will mainly consider the Belousov-Zhabhsky(BZ) reaction given
by a reversible Lotka-Volterra(LV) model

kq Ko ks

2X, X+Y 2Y, Y
K 1 k.o k.3

A+ X

wherek_4, k., k_3 are reverse reaction rates akdk,, ks are forward reaction rates. Note
that if all the reverse reaction rates are equal to zero, themwill have the standard LV
system of irreversible reaction considered in [45]. By aprapriate rescaling and the
assumption that the reverse reaction is much slower thafotivard reaction, then we will
have a three-dimensional LV system with two small paranseiédifferent order. It results

in a singularly perturbed system.

%’ = uw-vV) - glou? —V?)

-

av _ v(u—1)—sv2+s(§—u—v—W)
dr v
dw 5

— = —o(Wu-—eouw),

dr

Note that the unperturbed system, where- £ = 0, is a standard Lotka-Volterra system
and admits a first integral. Thus it is a conserved system.

It is important to notice that introduce a singular perturbation, and the partially per-
turbed system, where = 0,00 > 0, connects the periodic orbits inftérent levels of
unperturbed system in certain way. In addition, it has amriant manifoldW,. which

serves as the oscillation axis. HoweWgr is not normally hyperbolic by the computation



of Lyapunov type numbes| > 2, thus it is not ensured th&V, can persist under any
smooth perturbation.

Furthermore, the reaction zone of the perturbed systemtevhe 0, consists of two
zones, oscillation zone and transition zone. In the osmhazone,s produces a regular
perturbation. Because, > 2 for W,,, the existence of the invariant manifof) . cannot
be obtained directly from the persistenceV§f by Fenichel's theorem. Nevertheless, the
existence oM. under the specific perturbation we study is true and it canrbeem,
instead, by means of exponential dichotomy, which is an maod technique to study
the invariant manifold in a singularly perturbed system][@ad integral manifold and its
stability [79, 80], etc.. While in the transition zone produces a singular perturbation.
By Fenichel’s geometric singular perturbation theory, weve that there exists a two-
dimensional strongly stable manifoM_ , in there. And there is also a one-dimensional
stable manifold\. . on M .. All the solutions away fronW. . will eventually approach
W, in the monotonic way.

Due to the regular perturbation efin the oscillation zone, we can approximate the
oscillation time by studying the partially perturbed systeand show that the total time
spending in the oscillation zone is in the algebraic order oivhich means the oscillation
will last in a long but finite time. And in the transition zonthe time spending on the
transition from the oscillation axis to the vicinity of theulibrium is in the algebraic
order ofe.

By computing the eigenvalues of the linearized system atdi@ unique interior equi-
librium point, we can show that all the eigenvalues are negaind real, thus this equilib-
rium point is stable but there can be no trace of oscillatiearrihe equilibrium, as dictated
by Onsager’s reciprocal relations. Moreover, a Lyapunowfion, the total free energy
of the reaction system, can be constructed to show that thidil@qm point is a global
attractor in the reaction zone. This is exactly what the sddaw of thermodynamics [24]

states, that is, the free energy of a closed isothermal myderreases until it reaches its



minimum which corresponds to the equilibrium state of thetem.

To study the damped oscillation, we study the action vagialble area of the enclosed
region swept by a complete unperturbed oscillation, and/githat it is monotonically
decreasing in time. Thus the reaction shows the dampedatgmil around and shrinking
to the oscillation axis. But considered in the framework ainidltonian system, the action
variable is not monotone but oscillatory instead from thenetical simulation.

The reversible LV model in the open system yields a two-disiamal system with two
parametersv andg. It is proved that the oscillation around equilibrium egigt a wide
range ofw, but does not whew < § = oe. Thus the open system exhibits the similar
dynamical behavior to the closed systenwagarying monotonically. Mathematically, the
open reaction system is a two-dimensional approximatidhéahree-dimensional closed
reaction system by treating slowly changing quantitiesastant.

According to all the theoretical analysis and numericaldation, the important ob-
servation of this reversible LV system is summarized andlwarfiound in [43], where a
mechanical analog to this chemical system is also provigea imechanical system with
time-dependent increasing damping. The analytical resulitches the lab observation
of BZ reaction. The reaction starts with the nonlinear datidn of varying frequencies.
After a long time, the oscillation disappears. And the riegceventually approaches the
equilibrium state.

At the end, we study the control of the BZ reaction. Chemigateam is a complex
system because the reaction mechanism is not well unddri8h Model reference con-
trol has advantage of controlling unknown system(plants tomposed of two processes,
system identification and controller generation. Once #a plant is identified, the con-
troller will be trained to drive the plant’s output to follotlie reference signal. So far model
reference control(MRC) already has a wide application igie@ering such as controlling
robot’s arm [26, 41], flight vehicles [37, 38, 39, 40, 68], rmanical oscillators [32], etc.

Some applications of MRC to biological system like susd#etinfectious-recovered(SIR)



epidemic disease models are given in [6]. Here we apply MR@ddZ reaction and suc-
cessfully control the oscillation amplitude and elimintte oscillation to have a monotonic
reaction. This provides another example of application &@/o a biological system.
The rest of this thesis will be arranged in the following wlyst, we will introduce the
BZ chemical reaction, its history, lab experiment and mathtcal modeling in Chapter 2.
Then we study the open reaction in Chapter 3. Chapter 4 accola®s a large paragraph
of the analysis about closed reaction, which is carried tep by step from unperturbed
system, partially perturbed system to the perturbed sysfemd the damped oscillation is
considered in terms of action-action-angle variables immglete this chapter. Chapter 5
is about the model reference control of the BZ closed reaatith numerical simulation

provided.



CHAPTER II

BELOUSOV-ZHABOTINSKY CHEMICAL REACTION

2.1 History of BZ Reaction

The oscillating chemical reaction was first discovered bghRer in 1828 and some re-
lated work followed throughout the nineteenth century. ldear, because of the lack of
mathematical tools for analysis on such systems, and thegmraderstanding during that
time that chemical oscillation is not allowed due to the sectaw of thermodynamics,
oscillating reaction was not recognized in the science camty

The modern study on the chemical oscillation was started lbigsRn chemist Boris
Belousov. Belousov finished his chemical education in Zuriéfter the World War |
began, he returned to Russia and served in a military latwrat_ittle is known about
how he started the research and discovered the chemicdlomac the lab. In 1951,
when he already retired from the army, he wrote a paper allwutemporal oscillation
he discovered. But his paper was rejected for publicaticsome journals, and even with
a comment that his “supposedly discovered discovery wa®ssiple”, see page 161 in
[78]. Years later, his paper finally was published in a cogrfiee on radiobiology 1958. His
original manuscript in English translation can be foundia Appendix in [22].

In the middle of 1950's, a young biochemist, S.E. Shnoll, wfas interested in peri-
odic behavior in biochemistry, learned about Belousov’'skwdHe got Belousov’s origi-
nal recipe of oscillating reaction and suggested a gradstatient, A.M. Zhabotinsky, in
Moscow State University to look into this reaction in 196 habotinsky repeated and con-
firmed Belousov’'s oscillating reaction. After an intermmeial meeting held in Prague in
1968, where Zhabotinsky presented some results on thisestieg phenomenon, BZ re-

action inspired the interest of chemical experimentahsid theoreticians. Since then, the



biological and biochemical oscillation becomes a widelydsd subject and BZ reaction
is regarded as a standard model of oscillating chemicaticeac

In 1980, ten years after Belousov passed away, Belousovlaaloafinsky were awarded
the Lenin Prize, the highest medal in the Soviet Union, f&irtpioneering work in the

chemical oscillation. A detailed history about the BZ réacican be found in [77].

2.2 Lab Experiment of BZ reaction

Belousov’s original recipe of oscillating reaction is aidws

Citric acid, 2.00g
Ce(SQ)., 0.169
KBrOs, 0.20g

H,SOu(1:3),  2.0ml,

H,0, to a total volume of 1@ml.

When all the reagents above are well mixed at the room teriyetahere will be several
quick color change from yellow to colorless and back. As atematf fact, C&" shows
yellow and Cé* colorless. Oxidized by bromate, €ds changed to C&, and then C&
is reduced to C&. This oxidation-reduction process repeats and thus theisnolcolor

changes from yellow to colorless, back and forth.

2.3 Mathematical Modeling of BZ Reaction

The first theoretical study on oscillating chemical reati®due to Alfred Lotka in his pa-
pers [45, 46]. Because at that time, no chemical reactiorkwawn to follow Lotka’s rule,
his model was not widely recognized in the chemistry comityuilowever, ecologist did
benefit a lot from his idea. Motivated by Lotka’s idea, Vitoldora successfully studied
a variety of ecological problems where the oscillation asciBecause of the great con-

tribution of Lotka and Volterra, the oscillating model oighype is cited as Lotka-Voltera



model, which is already the standard model widely studiednyy scientists and mathe-
maticians. Takaguchi even wrote a book [64] mainly to stuaydlobal dynamics of this
model.

Besides Lotka-Volterra model, there are many othéiedent models for BZ reaction,
for example, Field-Koros-Noyes model. The detailed aéston about it can be found in
[49]. In this thesis, we mainly consider the Lotka-Voltemadel.

The standard Lotka-\Volterra reaction system consists af éhemical specie8, B, X

andY and three irreversible steps given by

A+ X5 ox
X+Y %oy
Y% B,
wherek; is the reaction rate in each step. Because each step isrgitgee a system of
differential equations can be written as

X kiCaX — KoXy

(1)

y kaXy — Kay
wherex, y, ¢ andcg denote the concentration of the corresponding speti¥sA andB.
Note that if we consider a reaction in an open system, thttes,eaction system allows
exchange of energy afa matter with the environment, then by addiAdo keep it con-
stant, system (1) will have periodic oscillation for any givinitial condition &, o) with
X0, Yo > 0. And the period of the oscillation varies and depends orirtii@l conditions.
In contrast, if the reaction is in a closed system, then alslioc, will be decreasing and
satisfy equation

CA = —k]_CAX.

In section 4.3, we will see that the reaction in a closed systél oscillate when it is away
from the equilibrium, and eventually approach the equilibrin the monotonic way.

On the other hand, if we assume that all the reactions arasiele with backward

10



reaction rate&_;, then we will have

ky ke ks
A+ X 2%,  X+Y 2y, Y 2)
(& Ko, K 3
Similarly, the reversible Lotka-Volterra system in a cldsgstem will be given by
% = KiCaX — K.1X% — KoXy + K_oy?,

% = koxy- szz — ksy + K_3Cg,

! (3)
Cf;(;,:/.\ = —kchX + k_1X2,
0t

dt
For the sake of simplicity, under the following transforioat

= k3y - k_3CB.

—k — ke —k —k
u= k3X’ V= kay’ W = k3CA’ = k3CB’ (4)
_ _ ki1 _ ko _ kg _ ki _
T = Kat, ce=g=2=3 o=, 0=¢e0

we will have an equivalent system in the dimensionless form

du
g—v = vu-1)-&v+ez
I (5)

— = —o(Wu- o),
g‘r
gz
dr

= u(w-V) —g(ou?—V?)

= V-¢gz
In addition, if we assume that the first forward reaction isclnglower than the second
one, and all the reverse reactions are even much slower kieaoadrresponding forward
reactions, then we have @ ¢ < o < 1. By the law of mass actiony + v+ = + zis

conservative. Lef = u+ v+ + z then system (5) is reduced into a 3D system

% = u(w-V) —g(cu? - V?)

v v(u—l)—gv2+g(§—u—v—"—;’)
dr ¢
dw 5

— = —o(Wu-egou).

dr

In the case of open system in whighandB can be kept constant by the experimenter

by providing chemical energy, the reaction is given by

% kchX - k_1X2 - kzxy+ k_zyz, ( )
6

d

d—i/ kaxy — K_2y” — Kay + K_3Ca,

11



and its dimensionless form is

du- _ u(w — v) — e(ou? — v?)
il

— = vu-1)-ev?+p
dr

wherew andg = ez are treated as parameters.
In the following chapters, we will first study the 2D revelsilbotka-Volterra reaction
in an open system, and then analyze in details the 3D relensibreaction in a closed

system.

12



CHAPTER Il

REVERSIBLE LV REACTIONS IN AN OPEN SYSTEM

In this section, we will consider the reversible BZ react{@hin an open chemical system,

that is, a system that can exchange matteya@nehergy with its surroundings, see [16].

Suppose that specigsand B in system (2) are being controlled by an experimenter at

constant level o€, andcg, by providing chemical energy, then only the concentratioh

speciesX andY are dynamic, and satisfy equation (6)

% = kicaX — k 12 — koXy + K_oy?,
d
d_)t/ = kzxy— k_2y2 - k3y + K_3Cpg.

Such a reaction is calledriven The amount of energy for eve molecule becomind

molecule is the diference between, andusg:

_ _ kikokaCa
Appg = pa— g = In (m) (7)
and the driving force for the chemical reaction system iegily
e _Kkoen -

k_lk_zk_ch @
in the representation of dimensionless form. Under thealesg in (4) withg = &(é — u—

v—¥), we will have the following dimensionless system of drivewersible reaction

u U(W — V) — 6U? + V2

(9)

vV = vu-1)-eV?+8.

Mathematically, system (9) can also be regarded as a twestsinnal approximation

of 3D closed system to some extent. Note that this is not thal@gpproximation by letting

small parametes- = 0, but by treatings andw as constant, instead. This makes sense

13



because botlhw andg are slow variables. It is obvious fav, and also foiB by setting
B = sz and resulting i3 = (v — B) in (5). According to the analysis in the following
sections, we can see that both open system and closed sydtdmt the similar dynamical
transition from oscillation to non-oscillation asis varying.

From the following argument, we see that reversible drivéhdystem (9) behaves

significantly diferent from the traditional LV system.

Theorem 3.0.1.For any w3 > 0, system (9) has a unique positive equilibri(umv), and
it is asymptotically stable.

Proof. Note that the positive equilibrium point,, (), satisfies

v=f(u) =4 “éz_l)mﬂa, v = g(u) = —SU% + wu + 8.

Becausef (u) is increasing iru, —g is convex with lim—-g(u) = c and
U—oo

f(o)_—1+\/r4;88_ 28
- 2 1+ \T+4Be

we know that the two curves determined by= f(u) andv = g(u) intersect at only one

<p=9(0).

point foru > 0, that is, (I, V) is unique.

The Jacobi matrix of system (9) is

_ _ _ _ &P _
wW-—V-—26U 2eV —U —6u—ST 2V —U
J: = u
v u-—1-2ev v —g\7—’§_
v
and _2
) = —su-L _ev-B
T 8\
detg) = (ou+ ‘%) (8\7+ V—) —V(2eV - ),
A=tr?—4det = [(W-V-26U) - (U-1-2eV)]? + 4v(2sV — L)

2

- + 428V - 0)

Obviously the trace t) < 0. And since

- >(5J+ f) (e 'g)

2 2
detQ) = (5U+ %) €_ + &6V + ? —V(2ev - U)

14



and

AV v Y

— —W(2ev- 1) = a_(,92\72 + 0P - 26V) = ~(eV - u)? > 0,

we can see that the determinant dgt¢ 0. Therefore the equilibriumu(v) must be
asymptotically stable, and it is a stable node if the disgrantA > 0 and a stable spiral
point if A < 0. AndA = 0 provides the critical values for transition from a node wpaal

point.
Lemma 3.0.2. The following statements are equivalent.
_ _ w w
V= (<, u=_>,<)—= =— =(<,>)L
(<,>)B = > <)5 == vy = (<,>)

Proof: Note thaty = gm’ﬁ in terms of new variableg3(w). If v = g, thenu =0 oru = ¥.

Asu=0,8=v= f(u) = f(0) < gis a contradiction. Thua = ¥, and then

W Y1)+ /(¥ -12+48¢
0

2e

=>WwW=ef=>y=1

Similarly, if v = g(u) < g, thenu > ¥ and

Wo1)+ /(¥ -12+48¢

2¢

,8>\7:f(ﬂ)>f(vgv): = W< 838,
This completes the proof because all the above derivati@sesertible.

Lemma 3.0.3.1f w < 6B, theA > 0.

Proof: Note that the discriminant
A=[(w-V-26U) — (U-1-2eV)]? + 4V(2sV — U))
Sincew < &6 is equivalent tos < g, then

UZSV—%+1S8\7< 2¢eV,

which implies thatA > O. m|
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Theorem 3.0.4.Let D be the domain where the discriminant is nonpositiva, i)
DB,w) = {(8,w), B,w>0 and A(B,w)<O0}.

Then D is bounded an§i< mlnw < — 125

Proof: Set
2w

= 2ev.
1+dey =Y

. —

Claim thatv, > (=, <)f(u,) ifand only if 8 < (=, >)v.(1—eV,). Becausd is monotone and

its inversef%(v) = ev - £ + 1, we have

B

v, > f(u) &= 2ev,=u, < fVv)=sv, - vt 1 = B<Vv.(1-eVw).

*

Similarly we can prove the rest of the claim. On the other hantbllows from u(w —

V) - 62 + &V = 0 thatu > 2% = u, because the existence of real roots infers that
u? — 4e(wu— 6u?) > 0, that is,u, is the minimum ofu.”

Note that the discriminant
= [(W— V- 26U) — (U— 1 - 2&V)]? + 4V(2eV — 1))

andA > 0if 2ev—u> 0. AspB > v.(1 - ev,),

1+ /1-48¢

_:f f k) = Vi Z ’
v=fU) > f(u)>v, > >

thuseV? — v+ B > 0, thatis, 2V - U = 3(sV? - V+ B) > 0 and consequently > 0. This

shows that
DcU-={B,w), 0<B=<v.(l-ev.)}c]|O, ]><[0 1 +26]

which is bounded.

In addition, if3 = 0 andw = thenu = ¥ andv = 0 and hencé = 0. Moreover, if

16'

(B,w) € D, thenB < v,(1-¢&v,). From Lemmas 3.0.2 and 3.0.3 it follows thatgf {v) € D,

thenw > &3 or equivalentlyu < ¥. Whenw < g we knowp < é. Hence

u< V < Vinax = g( )—ﬁ+ﬁ<26

I\?.II—‘
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and
A=[(1+w)—(1+25)u—(1-2s)V]*+ 4v(2sV — 1) > 0.
Thus it follows immediately thag < mDinws o m|

1+6
The contour plot of the discriminant is given in Figure 1.

30F

Figure 1: Contour Plots(and zoomed in) of the discriminant agaig.siy.

Theorem 3.0.5.Set

= min v
Ye = swep eoBf”
Theny, is well defined. Suppose the minimum is attaine{Batw;) € D, then (8., W)

satisfiesA(B¢, w.) = 0 and the following equation

W Ag ASI(L+4e8)(V - T) — (1 - 26)W] + 2(4eV — T)(w — 260) — 4V
B Ay AS[-CP+UL+V—wW)+w-— V1 2sw)] + 2V(1 — 2&V)

(10)

whereA8 = w— V- 25U — U+ 1+ 2V. Furthermorey ~ 5.
Proof: From the fact thaD is bounded and Dmiw > 0, we know that if g, w) € D, then

LW . . . .
% >0 and |an% exists. And sinc® is closed, inf can be replaced by min and then

= min w >0
7o = Gwep | 598
is well defined. Note that
+ 2&6,

min{ }> min w =  min L+des 1
BwWeU (B ] welo,£+26] Vi(1—ev.) wel0, £ +26] 2(1 — 1%4\,:6) 2

17



thus

. w : w 1
Ye= MINS—3> MIN{— 7 >2+ —.
BweD | €0 BweU | g6B 2e0
On the other hand, whem,(V) = (u,,Vv.), 8 = V.(1 — &v,) andA = (w — 1)°. Therefore if
w=1andg = 229 A = 0, that is %,1)6 D. Thus

(T+4e0)2
- 1 (1 +4e05)? <2+3+i
Ve = 2 2ertees T 2p5(1— 26+ 4e0) 0 | 260
(L+4e6)?

And from geometric viewpoint, it is obvious thatyf is attained atf4., w.) € D, then

(Bc, We) solvesA = 0 and satisfies

W Aﬁ
B A
which provides an exact expression for the switching pgint O

The dependence of ono is given in Figure 2.

BEIny,
aof
2s5f
20f
1]
10}

sk

Figure 2: Log-Log plot of the critical driving force against paramete
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CHAPTER IV

REVERSIBLE LV REACTION IN A CLOSED SYSTEM

4.1 Overview of the 3D LV system

As shown in the introduction, the closed reaction systemviergby a three dimensional

Lotka-\olterra system

% = u(Ww-Vv) —glou? -2

?’ = Wu-1)-a?+s(f—u-v-1) (12)
-

dw )

— = —o(Wu-—eoud).

dr

In this section, we will first take an overview on this systesn $ome general properties

like invariance and global stability.
4.1.1 Positively Invariant Set.

To study the closed BZ chemical reaction, we propose a matheah model in terms
of the 3D reversible Lotka-Volterra system (11) where edettesvariable represents the
concentration of corresponding chemical reactant. Bedosefurther detailed analysis on
this system, we must ensure that this system is properlyethos the sense that each
variable remains positive during the time evolution. Irsteéction, we will find, in the first
octant, an invariant set under the flow induced by systemdd)then we can see that all

the variables remain positive if they start at a positivéiahpoint.

Definition 4.1.1. Consider a vector field (k) onR". The sefl is calledflow-invariantfor
V if all the trajectories &) of x = V(X) meetingl at ty will remain in 7 fort > ty. That is,
if X(tp) € 7, then Xt) € 7 fort > t,.
There are several filerent versions about the invariant set theorem due to LigSal

[63], Bony [4], Brezis [5] and so on. La’'Salle’s invarianttgeeorem mainly deals with
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stability by constructing a Lyapunov function, but it is grdbout the local invariance.
Bony and Brezis’ theorems are more geometric and they aqg@yleennected, see [55] for

the detailed discussion between these two theorems. Henellese the one due to Bony.

Definition 4.1.2. Let xe 7 and BX’) be an open ball centered at such that xe 9B(Xx')
and Bx) N I = 0. Then the vecto¥(x) = X' — x is callednormalto I at x in the sense of

Bony.
Theorem 4.1.3.[4]. Let V(X) be a vector field iR" and 7 c R" such that
1. Forany xy e 7, |V(X) — V(y)| < K|x-Y], K > 0is the Lipchitz constant;
2. V(X) - V(X) < 0if ¥(x) is normal to7.
Then is flow-invariant for V.
Theorem 4.1.4.For any fixed¢ > 0, let7 be the tetrahedron defined by
T = {(u,v,w) e R%,u,v,w> 0, and u+ v+ :/;v < f}.
Then7 is positively invariant under the flow induced by equatioh)(1

Proof: Letd7 be the boundary surface @f, thend7 = S; U S, U S3 U S4, where

Si={(uv,w)e7, u=0}, S;={uv,w)e7, v=_0},
Sz={(uv,w) €7, w=0}, Ss= {(u,v,w) €T, u+v+2 :f}.
Denote byV(X) the vector field on the right side of equation (11) wKh= (u, v, w), and

by fi the regular outer normal vector 85 (perpendicular té#77). Then

V(X) - Ay = —eV < 0, A= (-1,0,0, on Sy
V(X) = -s(¢-u-%<0, =(0-L0), on S,
V(X) - iz = —s02W < 0, As=(0,0,-1)T, on S,
V(X) Ay = -v <0, f=(LLL)T,  on S.
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Note thatf is also the normal vector t@ in the sense of Bony becaugeis convex.
Therefore it follows, from Bony'’s flow-invariant set theomngthat7™ is a positively invariant
set under the flow induced by equation (11). O

We will call 7~ the reaction zonén the closed system (11), over which all the analysis

is carried on in the rest of the paper.
4.1.2 Dissipative Dynamics.

Because System (11) allows a positively invariant/Sethich is compact, there must exist
at least one equilibrium poiin 7. And if P is asymptotically stable, the system may be
dissipative. In this section, we will prove the dissipatdygamics by finding the unique
interior equilibrium point and its global stability .

First we will recall some useful results on thefistient conditions for all the roots of a

polynomial to be real and negative and the estimate of thengegjues.
Theorem 4.1.5.[30, 33]. The real parts of all roots of the polynomial
P(X) = X + aX® + ayX+a = 0
are negative if and only if
a, > 0, aa; —ag > 0, ao(azxa; — ag) > 0.

Theorem 4.1.6.[42]. Let p(X) = a,X" + a,_1 X" +- - - + a; X+ 8 be a polynomial of degree

n > 2 with positive cofficients a > 0. If
& -4a.18,, >0, i=12...n-1

then all the roots of the polynomialy are real and distinct. See [42].

Let A = (a;) be a square complex matrix. Around every elergnon the diagonal of
the matrix, we draw a circle with radius equal to the sum ofrtbens of the other elements
on the same row; = Z |ajj|, or on the same columm; = Z lajil. Such disks are called

j#i j#i
Gershgorin’s disks.
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Theorem 4.1.7.[31]. For any square matrix A, every eigenvalue of A mustti@ne of
Gershgorin’s disks.

Now we are ready to prove a main result.

Theorem 4.1.8.System (11) has a unique interior equilibrium point

g% & o0&’
(o i 7)™

And the Jacobian (P3) at P; has three negative real eigenvalues satisfying

Ps = rie) =1+e+e2+ &

M+ (L+ &) ~ &% 1A + &é| ~ €2, |/13 + Gszfl ~ 0%,

and hence PRis an asymptotically stable node,

Proof. It follows from the simple calculation that system (11) Ha®e equilibrium points

_ _ (5 o0& _ & 2
P, = (0,0, 0¢), Pz—(1+8,0,1+8), Ps = (6,1,06).

Note thatP; andP, are on the boundar§7-, and onlyPs is in the interior of7". First we

will consider the Jacobi matrix dts,

—e(1+ og?)é g% g%

J(Ps) = % —er(e) + & —(L+e)r(e) — &% —8r0(_8)

o3¢ 0 —os
whose characteristic polynomial %) = A3 + a,42 + a;4 + ap, where
a = Ti)(l +e)[r(e) + e(1+ oe)é] > 0, ap = %)08352 >0,

a; = L[r(e) - 1+0e(r(e) - 1) + oed)]é + 5 (r(e) - 1% > 0.

r¥(e)

Because, for < o sufficiently small,a, ~ 1, a; ~ &€ anday ~ o£3¢2, we have
a, > 0, aa; — ap > 0, ao(azxa; — ag) > 0.

Thus it follows from Routh-Hurwitz Theorem 4.1.5 that aleteigenvalues od(Ps) have

negative real parts. In addition, sinag a;, a, > 0 and
a3 — 4ayag > 0, a,—4a; >0,
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Kurtz’'s Theorem [42] implies that all the eigenvalul®;) are real. And consequentBg
is an asymptotically stable node.

On the other hand, note that the diagonal entrie& ef J(P3) are
a1 = —e(1 + 0&?)é, Az = —(1+ &)r(e) + €%, ags = —0&%¢
and the radii for the three Gershgorin’s disks with centex;ata,, andagsz are
r, = 2e%, ro = gr(s) + gl€ = r(e)l, rs = o23¢.
respectively, by row, and
C1 = €l¢ — r(e)| + 023, C, = €%, C3 = 02e3¢ + gr(s).
respectively, by column. Since the following three Gersinge disks
Di = {z |z—a&;| < min{r;, c}}, =123

are not overlapping, by Theorem 4.1.7, there must be exaatyeigenvalue in one disk.

Thus we have the following estimate

M+ (1 +¢&)| ~ &2 |1 + €] ~ €2, |/13 + 082§| ~ 028,

And the associated eigenvectors are approximately given by

0 1 0
Vi~(1], Vo~ (-1 | Vs~ 0
0 0 1

O

Remark 4.1.9. Theorem 4.1.8 indicates that when the reaction is closedetfuilibrium
state, the oscillatory behavior disappears. This is thealiphenomenon observed in most
of the chemical experiments. Moreover, the three eigeegadi JPs) are all of diferent

scales. By intuition, around4the solution must be attracted tg i the following way,
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first along the direction of; (associated with the negatively largest eigenvalde then of

v, and finally ofv; (associated to the negatively smallest eigenval)e This can be also

observed by asymptotic expansion arounddhave

{(u, v, W), u = €%,V = e&,W = oed(¢ + Ce ),

as shown in Figure 3.
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Figure 3: In the Vicinity of Equilibrium.

Furthermore, we will draw a stronger conclusion tRais a global attractor ifr".

Setz=¢—-u-v-¥and denot®" = {(u,v,w, 2)|u,v,w, z> 0}. Due to the invariance

of 7, we may consider the 4D version of system (11)

where

Y=V(), YeR*,

u WU — UV — g(oU? — V?)

v . VU-V-—¢g (v2 -~ z)
Y = . () =

w —o(Wu — gou?),

z » uv — €7,

Let P; = (U, v\, w) andz = £ —u* — v* — % Define function

L(Y) = uln(%) ; v|n(l) Y |n(ﬂ) ; z|n(§).

V* o W
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Lemma 4.1.10.Under the side condition Y = &, wherefi = (1,1, 2, 1), L(Y) > 0, and
L(Y) = 0ifand only if Y= Y* = (u*, V", w", Z°).

Proof: Under the side conditiolf - i = ¢ additionally, the Lagrange multiplier method
reads

VL(Y) = AR,
or more explicitly
In(£)+1: In(1)+1: In(ﬂ)+1: In(E)+l:/l
u* v W z
which implies that
u=uel, v=vel, w=we&tl, z=ze"l
Thus we havel = 1 and consequently
u=u, v=V, w=w, z=7.

Note thatl(Y) is smooth ink*, and its Hessian matrix?L(Y) = diag{%, 1, X, 1} is pos-

itive definite, thusL(Y) is convex orR*" and it cannot attain the maximum in the interior.

ThereforeX* must be the minimum and(Y) > L(Y*) =0forY-f = ¢&. m|

Lemma 4.1.11.L/(Y) < Ofor all Y € R* and under the constraint ¥ii = &, L’(Y) = 0 if
and only if Y= Y*,
Proof: Itis easy to calculate that
L’(Y) = VL(Y) - Y = VL(Y) - V(Y)
[In (uﬂ) + 1] [u(w— V) — g(ou? — v2)] + [In (%) + 1] [vu —uv—g(V? — yZ)]
+% [In (%) + 1] [—o-(wu— go-uz)] + [In (%) + 1] [uv — suz]
= In (%) [u(w— V) — g(ou? — vz)] +1In (%) [vu —uv —g(V? — ,uz)]
+ In(m—vrk)(—wu+ goU?) + In(%)(,uv— £u2)
= (Uw-eou?)In (%) +(uv-ev?)In (\J—L;) + (uv — guz)In (%)
i o Ll ey A ) Ll ) A G L

eou EV &Z
= uwf(—) + uvf(—) + uvf (—)
w u %
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wheref(x) = (1 - xX) In x. Because functiofi(x) < 0 for all x > 0 andf(x) = O if and only

if x =1, itimplies thatL’(Y) < 0 for all Y € R* andL’(Y) = 0 if and only if

()0 i()ea (20
w u \'

that is,

See Figure 4. O
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Figure 4: Lyapunov Functiori.

Note that7 = R* N {Y - i = ¢}, thus we have

Theorem 4.1.12.P; is the global attractor of system (11) 9.

Indeed,L is a Lyapunov function, and physically it is exactly the fexeergy function.
By the Second Law of Thermodynamics [24], the chemical feadh the closed system
must approach the equilibrium state eventually with the fe@ergy decaying. Theorem
4.1.12 provides a mathematical statement for it. In addljtree also notice that system (11)
is not a gradient system, this explains mathematically leyréaction does not proceed in
the most rapidly decreasing direction, the negative ofigratdof the free energy. However,

the physical interpretation behind is not well understoetl y
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4.2 Unperturbed Lotka-Volterra System

In the previous section, we studied the long term behaviat, h the closed system, the
reaction ends up at the equilibrium state in the monotonig \Bait as a matter of fact, the
oscillation lasts long before it vanishes. Experimentallg may observe that the chemical
solution changes color alternatively and the frequency raay. To study this nonlinear
oscillation, we have to concentrate on the region far awamfthe equilibrium. And since
the unperturbed LV system with = o = 0 exhibits oscillation, it is reasonable to think
that the oscillatory behavior in chemical reaction is inteet directly from the oscillation

in the unperturbed LV system

u = uw-v)
v = v(u-1) (12)
w =0

Sincew remains constant in (12) and hence can be treated as a paramewill have

a standard 2D LV system. And it admits a first integral
w
E:(u—l—lnu)+[(v—w)+w|n(v)] Yw > 0.

For fixedw > 0 andE > O, it produces a closed orbit. This simple system was already
widely studied by many authors, especially on its periocctiom T, such as the mono-
tonicity of T with respect to energk [71], critical point of T [7] and so on.

To study the oscillation time for the perturbed system (49,need to know not only
the dependence df on E, but also the dependence wnon which no work is done to my
knowledge. In this section, we will study the dependenceeaiyl functionT on parameter

w. For completeness, the dependencg& o E is also included.
4.2.1 Period Function of planar Hamiltonian System.

In this section, we will temporarily replacé by h to denote the energy. And we will
provide a representation of period functidith) and its derivativel’(h) with respect to

energyh. A similar form for the separable Hamiltonian was first givey Sabatini in

27



[59] by the argument in terms of normalizer. And our proof @sbd on the elementary

differential geometry.

Lemma 4.2.1. Suppose that function(B, V) > 0 is differentiable on an open sé c R?

andVF(u,v) = 0 only at(up, Vo) € O. Let Iy > 0 be such that the level curve
I'h = {(u,v) € O,F(u,v) = h}
is a Jordan closed curve for anyeh(0, hg). Then, for any continuous functior{ipv),

A(h) = f fF e P(u, v)dudy, L(h) = fr h P(u,v)ds

are well-defined and gerentiable for he (0, hy) if P is differentiable, and

A _ [Py, dL _ ([P  VP-VF|
dh =R WE S dn T . |IvE T IVER

wherex is the curvature of ..

Proof. Leth € (0, hy) be fixed and: > 0 suficiently small such that + ¢ € (0, hy), then

Ah+¢e) - A(h) = ff P(u, v)dudv
h<F(uv)<h+e

Forany (,V) € I't,, choose(+61, V+6,) € I'y,. such that = (61, 5,) has the same direction

asVF(u, V). Note that
F(u,v) = h, F(u+d,v+d2) =h+eg,
it follows that
F(U+6,v+68)—FUu,v)=e=6-VF +0(d]) = &,

that is,
16][VF| + o(lo]) = &,

becausé andVF(u, v) have the same direction. Therefore, by inverse functieoteém,

)
0| = —= +0(e).
o1 = e + o)
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Furthermore, by the mean value theorem and by the uniforniraaty of P(u, v) on the

o-neighborhoodN;(T'y) of I'y,, we have

A+ ) —Ah) = 56

Ih

[P(U,V) + r(e)]1olds = 56

Ih

[P(u,v) +r(e)] [W + o(e)]

wherer(g) — 0 ase — 0. Hence it follows that

ds

dA Ah+¢e) — Ah) _ 96 P(u, v)

dh !s—>0 e IVF|

This completes the proof of the first part of the lemma.

For the second part, consider a pair of poinisvj, (U, V) € I’y suficiently close to
each other. Letsbe the length of the infinitesimal arc @i with two end points (, v)
and (r,Vv), ds the length of the according portion with end points+ 61,V + 6,) and

(U + 67,V +6,) onlh,,, then

ds |6|

= +0(ldl) =

= = +0(16]) = 1 + «l6] + o(|6])

wherex is the curvature of the cundg, at point {1, v) andR s the radius of curvature. Thus

f P(uy, v1)ds
[Chie
P(U+ 61, V+62) [1 + «|6] + o(|6])] ds

I

L(h+eg)

[P(u,V) + VP(u,V) - 6 + o(|6])][1 + «I6] + o(|6])|ds

Ih

and then

L(h+¢e) - L(h)

f [P(u,Vv) + VP(u,v) - § + o(|6])][1 + «|5] + o(|d])] — P(u, v)ds

f [P(u, v)xls] + VP(u, V) - 6]ds+ o(|6]).

Recall that
F

)
6 o= —=+0
|||VF| 101 VE (&),
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then we can obtain that

2L+ ) - £(h)]

= }f[P(U,V)K|5|+VP(U,V)'VFﬂ]dS+O(@)
e Jrn, IVF| £
1

1 £
= ; jl:h «P + VP - VFW) [W + 0(8)]ds+ 0(1)

f «P +VP'VF q
. | IvE T T vER |98

that is,
dL kP VP-VF
— = + d
dh i, | IVFI IVF|2
O
Lemma 4.2.2.Consider a two-dimensional system
u = f(uv
(u,v) 13)
v = g(uv)

with analytic functions f and g on an open regiéh ¢ R?. Then this system can be

converted into a Hamiltonian system

(14)
y = Hy
under a transformation x x(u,v) and y= y(u, v) if and only if this system admits a first
integral F(u, v).

Proof:  Since the Hamiltonian is a conservative quantity, the reargscondition is triv-

ial. Now let us assume that this systems has a first intégralv), then

(?j_f =VF- (V)" =VF-(f.9" =0=F,f +F,g=0.
Let
v(u,v) = — = —?,
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which, obviously, is an integrating factor. Let= x(u,Vv) andy = y(u, V) be a transform

such that
xy) 0X OXx
B . _oxy) ou v
det®) = v with A= auv) | oy
ou  ov
It is easy to check that under this transform, the originatey becomes
x= Zuy 2% - | f
T :[x I
Yy %U + a—vv Yy Vv g

andH(x,y) = F(u(x,y), v(x,Y)) is the corresponding first integral. And on the other hand,

H(x(u, v), y(u,Vv)) = F(u, V) implies that

0X oy
X y
f o ox H f
11 30 ~ 3o - 1
= ( }:_ 65/ ov [ y]:[ ]:—A*JVH:AlJVH
v _9y ox v
9 ou éou X g

whereA" is the adjoint matrix ofA and
0 -1
J= :
1 0
Therefore we can obtain the Hamiltonian system
X -H
=JvH=| 7|
y H
Now it sufices to show the existence of such a transform. It is readig&that

X =U, y= fv(u, v)dv

satisfies
oy _| L9
a(u, V) Al dv v
ou
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Remark. Note that the transform converting a two-dimensional systeth first integral

to a Hamiltonian system is not unique, for example, we cam eé®ose

X = fv(u,v)du, y=v
or

X = fv(u, v)dy, y=-u
or

X = -V, y= fv(u, v)du.

Lemma 4.2.3. Suppose that system (13) admits a first integr@l, ¥) which satisfies the
conditions in Lemma 4.2.1 andis the integrating factor. Then, for any & (0, hy), its

period function can be represented as

T(h) = A'(h), where ﬂ:ff lvlds
F<h

Proof. Itis the immediate consequence of Lemma 4.2.1 that

TO) 191 /F2 + o2 T(h)
y('(h):sg b ds:f Mf—Jrgdt:f dt=T(h).
T 0 0

V| IVF|

Lemma 4.2.4. Suppose that system (14) is the Hamiltonian form of syst8jmlgdth (13)
and (14) admit period annulus ang Bnd Ty are their period functions, respectively. Then
Te(h) = Ty(h) for any he (0, hy).

Proof. Consider the following two area integrals
A:(h) = ff [v|[dudv= ff lv|| detd~1)|dxdy = f dxdy= Au(h).
F<h H<h H<h
Immediately from Lemma 4.2.1, it follows that
Te(h) = AL() = A () = Tu(h).
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Now we will consider a planar Hamiltonian system

X = JVH(X). (15)

Theorem 4.2.5.Suppose F= H satisfies the conditions in Lemma 4.2.1, then the period
function T(h) of system (14) and its derivative have the following représ#on

(VH)T (J7.23 - ) VH

1
T(h) = —d T’(h) =
=P s () 9§ VHE

ds

wheres# is the Hessian matrix of H.
Proof: For the Hamiltonian system the integrating factor is 1, then, by Lemma 4.2.3,

we have
1
T(h) = A'(h) :56 —~ ds A :f dxdy
H=h [VH| H<h
By letting P = 5y, Lemma 4.2.1 also implies
1
sy « (Vi) VH
Tm= 5@ N T

Note that the curvature of the level curkkXx, y) = his given by

-y
K= ——%.
(X2 +y2)?

Let.7”Z be the Hessian matrix ¢, note that

X =— 62_Hx+82_H —82_Hx+82_H
oy T2 YT 5T oy

therefore
PH PH \,
y-y= 0| 2 B | = HTITravH
ooy o )\

and hence
_ (VH)TJTo#JVH
B IVH? '
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In addition,

1 __%TVH__%VH
IVH|/  |[VHF ~  |VHPB’

then we have

dr (VH)TJT£0VH 1 (VH)'ZTVH 1 ]d
dh “ IVH]3 IVH[2 IVHE  |[VHP
56 [(VH)TJT%JVH B (VH)T%”VH]dS

T [VH[? [VH[?

Therefore

ds (16)

(VH)T (3757 — 5#) VH
T'(h) = Séh ( VHP )

Remark 4.2.6. Note that
O(x,y) = (VH)T (70 = ) VH = (HZ = H2)(Hy — Hyy) — 4HHyHy,

which first appears in [59] where the author applied the nolizer to study the period
function, but it seems to only provide afatient condition for the monotonicity of period
function. By contrast, the equivalent representation‘gh)igiven in (16) provides a neces-
sary and sgficient condition. And from this representation, we can seeltrivative of the
period function depends only on the geometric property efgtaph of the Hamiltonian
H. By Lemma 4.2.2, any planar system with a first integral hasHtonian structure.
And Lemma 4.2.4 implies that, to find period function of a ptasystem with first inte-
gral, it is enough to calculate the period function for theipd function of the associated

Hamiltonian system.

Corollary 4.2.7. Suppose that € C?(R*) is convex and {0) = 0. Then the period func-
tion Ty, of the Hamiltonian system with Hamiltonian ¢k, y) = f(Ix)) + f(lyl) is monoton-
ically decreasing when’fis increasing inR* and Ty, increasing when 'f is decreasing.

Proof: Letg(x) = f(|X)), then
g = f’(IXI)l—;, g’ (x) = ().
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Note thatH is separable, that i$]y, = O, thus

O(x.y) = (HZ = H2)(Hyo— Hyy) = [(F(¥D)? = (F(x0)2] (F7(1x1) = £ (1y1))

Becausef is convex, that isf’ increasing, we know that’ > 0 in R*. Then® < 0 and

henceT’(h) < 0 asf” increasing ink*, and similarlyT’(h) > 0 asf” decreasing. m|

Example 4.2.8.For anya > 2, define H(x,y) = |X|* + |y|%, then the corresponding period
function is decreasing becauséxf = x* is convex, {0) = 0and f”’ increasing inR*. And
the period function for Kix,y) = |x| + €™ + |y| + eM is increasing because(f) = x + e*

is convex, f(0) = 0 and f” decreasing.
4.2.2 Dependence of onE.

For the standard Lotka-Volterra system, the period fumcisostudied by many authors in

many diferent ways. Here we only list the result in the following trera.
Theorem 4.2.9.For any w> 0, the period function of system
u=uw-v), v=v(u-1) a7)

is monotonically increasing in energy E.
See [71] for details of the proof.

In this section, we will go further to take a closer look at gegiod function to see how
T depends ore. For this purpose, we will use an alternative representaticthe period

function. Note that the 2D Lotka-Volterra system in (17) hdgst integral
w
Fluuv)=uU-1-Inu)+|(Vv-—w) + wln(v)] = E = constant
Becausd- is a separable function, we introduce the following transiation
U-1-Inu=Ecogs, (v—w)+w|n(vvv):Esir128, (18)

see [71] for the general discussion of the transformatioséparable first integral. Under

this transformation, we will have an equivalent system

- - (V(6,w) —w)(u(®) - 1)
E=0, 0= 2Esindcosd

(19)
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Thus the period function can be written as

2n dt 2" 2E sinf cosd

Lemma 4.2.10.Suppose that(f) = y— 1 —Iny. Then, for any x R, f(y) = x> has a

series solution y= Z ax‘whereg=18a =+V2 & =2and
k=0

k-1
1 .
A1 = m [Zak - ;(' + 1)ai+lak—i+l] ) k> 2

Proof: Consider equatiori(y) = x2. Then, by implicit diferentiation, we have
1
(1 - ;/)y(x) =2Xx= (Y- 1)y = 2xy. (21)
Suppose that (21) has series solutyon Z a.x’, then

[i a X — 1] (i ka<x"‘1] = in a X<
k=0 k=0 k=0

which implies thay = 1. And then we have

= A+1X )(i(k + 1)ay,1X ) 2 § akx
&0 k=0

= Z [: ‘(I + 1)ai+1ak_i+1) XK =2 E aka
k=0 \i=0 o

therefore we find the recurrent relation

k
a=+V2, &=% Y (+Daaaii=2a k=23...
i=0
and
1

=2
1= KT 2

a— ) (i+ 1)a4+1ak_i+1} . k22
i=1
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that is,

Lemma 4.2.11.For fixed w> 0, the period function TE, w) satisfies the following in-

equality

<T(AwE, as Ex>1
ETE<T = T(E,w)

>T(A,wWE, as E<1

Proof:. From the transformation in (18), it follows that

! _ ucogé y _vsirte
ET -1 ETvow’

Hence

T fz”( 2sindcosd  2Esindcosy ucogd  2Esingcosd vsinze) 0
E b \v-wu-1) @u-12(v-w) u-1 (uU-1)V-w2v-w
_ fz” 2 sing cosd ( _choszG_vEsinze)de
o (v-w)(u-1) (u-17  (v-w)p?
2" 2singcosy (1 uu—1-Inu) V(V—W+W|nvvv)]d9
o (V-w)(u-1) (u-1) (V—w)?

Define
_X(x=1-1Inx)
g(x) = -1

theng(x) is an increasing function and€©g(x) < 1 for x> 0, and

SinceT is increasing irE and (2\,3‘\2)9(3‘351‘; > 0 for 6 € [0, 2n], we have

T(Lw) <T(E,w)<T(L,WE, as E>1
ETE<T =

TAWE<T(E,w) <T(L,w), as E<1
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for any fixedw > O. O
A more accurate estimate is possible when the maximum-efglu) — g(vlv) on the

compact seF(u, V) = E is obtained.
4.2.3 Dependence of onw.

In the previous section, we discuss the dependence of th@ddenctionT on the energy
and know thafl is a monotone increasing function of energy. Becausdll vary under
the perturbation, it is also important to know how the periodiepends orw. In this
section, we will provide an estimate of the period in termgvdbr fixed energy.

We already know that the period function can be written as

2 2E sinf cosh
T(EwW = [ Z53N0Cosv 4
EW=], vowu-1

Now we define a Poincaré section
Y={(uvyw),u>0uxlv=w>w =X, UX_,
for somew > 0 which will be determined later, where
2, ={(uv,w) e Z,u> 1}, > ={uv,w)eX0<u<l}

Obviously the flow meets transversely when the intersection is away from 1. Define

"™ 2E sing cosd 2 2FE sing cosd
T(Ew) = | =202 TA(Ew) = | =020
1(Ew) 0 (v—w)(u—l)dg’ 2(E,w) . (v—w)(u—l)dg’

thenT, is the first return time when starting frol,, andT, is the first return time when
starting fromX_. ApparentlyT = T; + T, when the return point fof, is the starting point

for T,.

Lemma 4.2.12.For any fixed E> 0 and any w> 0, the period function T is monotonically

decreasing in w. AndTand T, satisfy the following inequalities

Ti(E, )< Ty(Ew) < HE IEU < T,(Ew) < BB, as 0<w<1
BE<TEW<T(ED, FRE<T,(Ews< R as w>1
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Proof: Note that the dependence Bfonw is explicit and also implicit througk. From

(18), it follows that
ov Iny

oW 1—VV"'

Then we have that

<l=

2”—2Esinecose(ﬂ_l)d6_fz” 2E sing cosd (1—"7“+In )de
o (V—=w)2(u-12)\ow o (V—w)3(u-1) 1-7

Note that, for allx € R*, function

X(1-x+1InXx) <0

== =

hence

27T .
2E sinfd coso f(v—\:l)de <0,

o (v-w(u-1)

that is,T is monotonically decreasing im. In addition,f is also monotonically decreasing

wT,, =

onR*, -1 < f(X) < 0andf(1) = -3, then

T 2E sinfcost | /w 1 (™ 2Esinfcosd T
wTy, = (v)de > — = -2

o (V-w)(u-1) 2Jo v-wW)(u-1)" 2’

becausg < 1 as# € [0, n]. Consequently it follows from the abovefiirential inequality

that

1 1 T.(E, 1) 1. (1 T.(E, 1)
fw dinT; > fw —Z\—NdW: ln(Tl(E,w)) > -3 In(v—v) = T1(E,w) < v

asw < 1 andT,(E,w) > L\/Ev_vl) asw > 1. Plus the monotonicity of in w, we have

T1(E,1)
N7

Ti«(E,w) < Ti(E,1), as w> 1.

as O<wx<1

IA
IA

T.(E, 1)

Tu(E1)
w

Tl(E, W)

IA

Similarly, as¢ € [r,27], ¥ > 1 and-1 < f (¥) < -3, thus we can obtain that

L\/Ev—;l) <TH(Ew) < ZED as 0<w<1

EE < To(Ew) < &, as w> 1
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Lemma 4.2.13.For w > 0 syficiently small, T < -Clnw.

Proof: Consider

™ 2E sin6 cosd
T(E.w) = | =2N7C0%0 4
EW = | W wu-D

By the transformation (18) and series expansion given inrba™.2.10, we have

sing 1 ) cosd 1

0kt V—W  2Ew o~k+z U—1  \DE

cosd .
Therefore$® is continuous on [0r] and setM = mg;v]({ 1} And it is also easy to see
€|V,

that whenw < 1,

sing 1
< , for 6¢€]0,n].
V-W  +2Ew 0.7

Consequently we can have the following estimate.

Tl(E,W) = |1+ |2+ |3

where

\/V—V .

|1=f 2Esm90059d 2EMf 40 = M V2E

o (V-w(u-1) V2Ew
and similarly

|3=f ZESInHCOSGdesM\/E,

v (Vv=w)(u-1)

and

W 2E sing cosd
I :f ! do.

wi  (V=-w)(u-1)
Note that a® € [0, z], v > wand hence — w > E sir? . Then

"W 2E sing G| tan(*5~
I, < Mf sl dG:ZMf —do=2Min tan(*5") ~ —4M Inw.
w  Esinfo v Sing tan(@’)

Therefore there exists a constadt which is independent ofv, such thatT,(E,w) <

—CInw for w suficiently small.

Lemma 4.2.14.For w > 0 syficiently small, T > —cInw for some ¢ 0.

cosd
Proof: Becausé@ is continuous and has no zero onAf) setm = en[gn] {u—l} > 0, we
€|V, —

have

™ 2E sinf
Ty(E,wW) > m f de.
0 V-W
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Note that

3 2E sing ? 2Esing ¢ 2Esing
[ - [ e o) = [ i

5 ™ 1
fo vcos@dv(g)>fw yav=nn (W)
and similarly

™ 2E sing a A | W1 Vu
o = - dv> [ =d :ln(—).
f% V-Ww fz VCcosH ave) = va Vv CcosH v fw v v W

On the other hand, sinog, > w solvesv — w + Wln("vv) = E, we havevy > E+w > E,

therefore we may s&t= 2min E and have
T1(E,w) > —clnw.

Lemma 4.2.15.Let u,, < uy be such that they solve-ul — Inu = E. Then

3 ol
TE.W) > =,  &=max M,In L ()
w (U + Up) Um Um

Proof: Itis obvious that

T2 T2
Tz_f dt_f }du—f u(wl—v)du
Um

Note that to calculat&,, v < w, thus

Um
Tsz idU:h"I(U—M)i
u,  UW Um ) W
And by Holder inequality,

Um Um :‘2L Um 1 :‘2L
du< f uw—vdu) (f du)
[, e e RN TR
1 Um 2 1 1
< TZ (f uwdu) =T? [VEV(uf,I—uﬁq)]z,
Um

from which it follows that

UM — Um

> 2(UM - Um)
~ W(um + Um)'

Unm
Note thatuy — uy, = In(

Um

) anduy + Uy > 2, therefore

(Uv +Umn) ~ \Un

2(Un — Um) <|n(u_M)'

41



Theorem 4.2.16.As defined above, when w isfaiently small, T(E,w) ~ —Inw and

1
To(E, W) ~ —.
2EwW) ~ =

. . 1
Theorem 4.2.17.When w> 0 is syficiently small, T(E,w) ~ In (B—M) e

m
Proof: Consider

Mo w Um tm v
WTZ(E,W)_fum u(W_V)du:>WTz(E,W)—In(u—m)_fum u(w—v)du'

Under the polar-like transformation, it becomes

de.

21 . 21 H
—2Evsing cosd -vsing

To(E, W) = dg < 2ME

WT2(E. W) f (W—v)(u-1) f w-v

Setg(0) = %_'V”G and it is easy to calculate

v cosH [ZWE sirf 6 — (w — V)Z]

/ 0 —
g'() WV
Because , by L'Hopital’s rule,

i 2WE sir? 6 — (W — V)2 i AWE sinf cost + 2(W — V) %
i (w—v)3 Rt ~3(w — V)22
i U -1)-2w-v) 2

= m = —
palia 3(w—v)?2 3w’

we know thaiy'(6) = 0 only atd = ¥. Then

3 3\ W Vm | _ W
max o(0) = max{g(n),g(zfr),g(f)} - max{ N Vm} -

wherev,, = er[nigln] v solvesvy, —w+ win (Vﬂ) = E from which it follows that
e[, m

w _E Vim 1 w
win| —|>E=vVpy<wev = < — S
Vm W—=Vmn ew-1 2E

Therefore
Uwm 2 w
wTL(E, W) — In(u—) < 2MEf Ede = 27M V2Ew
m w

which shows that

m m

. Um uy) 1
limwT,(E,w) = In[— T(E,wW) ~ In[— ] —.
lim WT(E. w) (u)= 2(E. W) (U)W
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4.3 Partially Perturbed System with o > 0 and ¢ = 0.

In the original 3D reversible Lotka-Volterra system in (1tf)e perturbation is introduced
in the two diferent scaless < o. Therefore, intuitively it is reasonable to consider the
partially perturbed system ior by dropping the higher order perturbationén And the
following discussion shows that this is a good strategy.

In this section, we will ignore the high order terms involgia in (11) and mainly

consider system

u = uw-v)
v o= vu-1) (22)
W = —owu

which is calledpartially perturbed system this paper.
4.3.1 Stable Invariant Manifold W,,..

Note that wherr = 0, the unperturbed 3D system (12) admits a critical manifold

Wo = {(u,v,w),u=1,v=w> 0} (23)

which consists of all the centers of the two-dimensionasiaer (17) of system (12) wittv

as parameters. This, cannot survive under all the smooth perturbations. Indb&hé
proved in [47] that a compact manifold is persistent if anty @it is normally hyperbolic.
However the center type critical manifolfy produces all the eigenvalues with zero real
parts and hence it is not normally hyperbolic.

Nevertheless, system (22) does have an invariant manifosd ¢oV\,.

Lemma 4.3.1. System (22) has an invariant manifold

W, ={(u,v,W)u=pu,, v=w>0}, Uy = . (24)
l1+o0
which is close to \§/
Proof: Itis trivial by substitution. m|
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Lemma 4.3.2. W, is a stable invariant manifold.

Proof: Consider function

E,(Uuv,W) = (1+ ) [(u 1) +ug|n(“l;’)] + [(v—w) +w|n(vvv)] .

ObviouslyE,; is convex and attains the absolute minimumgat, (v, w) for anyw > 0.

Moreover,

E, = (1+0)(1-%)u+(1-%)v+In(¥)w

(L+ YU 1)W=V) + (V= W)(u— 1)~ owuln (2)

[(1+c)u—1)(W—V)+ (V—w)u-1)- awuln(;
(TU(W—V)—(TWUln(VvV):—(TUW[( ) ( )]

which shows thaE,. plays the role of a Lyapunov function. Because
W, c {E, = 0} = {(u,v,w),v=w> 0}

is invariant, by La’Salle’s invariant set theorem, see [68¢ can conclude thal, is a
stable invariant set. |

The Lyapunov function along the trajectory of (22) is givarHgure 5.

0.018
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0.014

0.012

0.008 -

0.006
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0.002
0

L L L L L L L
50 100 150 200 250 300 350 400
t

Figure 5: Lyapunov function for the partially perturbed system.

Theorem 4.3.3.The partially perturbed system (22) has a stable invariaatifold W,.
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It is observed that whear = 0, the Lyapunov functiork,, of the partially perturbed
system becomes, = F, which is exactly the first integral of the unperturbed systé&nd
o-perturbation changes the center type critical manifd}do an invariant manifol®&,. on
which the exponential decays occurs with exporent. Since the decay rate is smalldn
order, it is natural to suspect théf, is approached in the oscillatory way even though the
periodic orbits are all broken.

To see the oscillation, we will introduce the following tediarmation, which is similar

to (18) for the unperturbed system,

(1+0)|(u=po) + o In (%)| = E, cog 6,
(vV-w) +win (%) = E, sir’ g,

under which, system (22) becomes

E, = -—ouE,sire,
6 = GO (L) (L) - 2 singcoss, (25)
W = —oUuw.

Obviouslyé indicates the angle about the oscillation awfs. The first equation in (25)
shows thate, = 0 is a stable equilibrium, in other word#y, is stable. And the second

equation shows that the oscillation takes plac&asw ~ o2 because

o s (0)

ou .
- — —sinfcosd > 0
2E, cosg /\ sing

2

which can be easily checked.

Also from equation (25), it follows that

A& _ B sig < Eo.
dw W w

Thus the comparison lemma for ODEs [27] implies that

E,(1) _ w(t)
E,(t)) W(to)

> 1o.
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4.3.2 Lyapunov Type Numbers forW,.

In the previous section, we shows thé is a stable invariant manifold in two fiierent
way, by constructing a Lyapunov function and by introducingolar-like transformation.
In this section, we will try to compute the Lyapunov type nwerdwhich show not only
the stability ofW,,, but also the persistence ¥bf, under any smooth perturbation. And the
latter will be very important for studying the existence atdlation axis in the perturbed
system (11).

Consider a general autonomous system Witlvector fieldV(x), that is,
x = V(X), xeR" (26)

Let M c R" be a closed connectéll manifold with boundary. Denote b (P), P € M,

the flow generated by (26).

Definition 4.3.4. Manifold M isoverflowing invariantindergy if ¢.(P) € M for any Pe M
and t< 0, and the vector field V is pointing strictly outward and is mero on the bounary
oM of M.

The definition of Lyapunov type numbers has severfiedent versions, here we will use a

more computable form as follows.

Definition 4.3.5. Thegeneralized Lyapunov type numberg defined as

_ L — log||Deu(p)rl||
= | ND ° = | P, if 1,
y(p) = Jim [z Dgu(p) ou(p) = Jim og[oa) | nu(p) <

where|| - || can be any matrix norm.

Theorem 4.3.6.[18] Suppose that M is a Cmanifold with boundary, and overflowing
invariant underg; with y, (P) < 1 ando(P) < % for all P € M. Then, for any Cvector
field V which is G-close to V, there exists a @anifoldM with boundary such tha¥l is
C'-close to M, has the same dimension as M, and is overflowiragiant under the flow

induced byv.
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Some useful properties of generalized Lyapunov type nusiéied more details about

normal hyperbolicity can also be found in [74, 76].

Theorem 4.3.7.The portion of Wy,

2,2
g
W(,,—:{(U,V,W), u::uo'a\/:WZv_V: 4lu{r>0}’

is overflowing invariant. And its Lyapunov type numbersyare 1 ando > 2.

Proof: Because the solution oW, is given byu = u, andv = w = w,e ! for any
w, > 0, it is obvious thatV,. is aC* overflowing invariant manifold. Note that for any
p = (u.,v.,w,) € W, the tangent space at T,W,, is exactly the straight line on which

W, is lying, and the normal space is
NoW, = {X, (X-p,f) =0}, n=1[0,11]".

Denote byn{, andn’g the projection onto the tangent space and normal spaceatbsgy,

then they can be characterized by the matrices

0O O

o
o

NI

0 1

T _ —

T, =10 , m={0 % -
0 0

NI NI
NI NI

-1 1
2 2

Let ¢; be the flow induced by the vector field in (22), avift is the Jacobian of this vector

field, then we have the ajoint equation abbgt(p)

E (Do) = VF () [Da(p)].

where, precisely

W—VvV -—-u u 0 —U Us
VE=| v u-1 0 |[=VF(P=| we' _—ou, O
—oW 0 -ou —oW, e Hot 0 —O Uy
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and consequentiPg,(p) = eb TFPIS with
0 —ut Ut
t
P= [ VE(RMs=| 2 @-e) —out O
0 o
% (e7Hot — 1) 0 —ou,t

Sincep € W., that is,w, > w, we can see that for arty< 0, A has three eigenvalues

4w, t

1 .
/ll = /ll’ = _O-I’LO'ta /12,3 = E(/ll’ + I/li)a /li = J (eﬂr - 1) - /lrz

o

Note thatl, 3 are complex. The associated eigenvectors are

i=| 1], Vo3 = -1
1 o
Define
0 M 0o ow
Q=1 =1 1 |=Qt= i@j;fﬁ aoldiit) i)
1 o o i(ﬂ_?‘;ﬂtﬁ u(r(_aizz:ar) u(r(azi;mr)
and then we will have
A4 0 O el 0 0
Q'PQ=A=|0 1, 0 |>€e'=| 0 e+ 0
0 0 A 0 0 @3 (4r-id)
Therefore
¢’ = QerQ!
—Cos%iﬁ sn3 —j—itsin”—zi j—itsin”—zi
= ot 7(“2;?;:”% oet + &sing +cosy €% — Lsing - cosg
7”%2_2?;;”% o-(e'%r - 2sing - cos%) et + o4 sing + o cosy

Now we can consider the generalized Lyapunov-type numlsetdefned below

—_ ! — log||Deu(p)ry||
= | ND t = | P, if 1,
(P = lim 7D, ou(p) = lim og 7300 if y(p) <
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1

n 2

where|| - || is |, norm, that is, for any matriA of nx n, ||All, = (Z |ai,-|2] :
=1

Because
A A ain Ai 2ot i A Ut ain A
COSE - A—ismi N smf TiS|n§
i 22422) sin o _ . .
my Dy (p) = €2 % 3(4sing +cosy) -3 (4sing +cosy)
2, 22)sini . _ . .
(ﬂfjﬂ)”j'? 2 -1 (j— sind + Cos”—Z') %(j— sind + cos%)
and
00O
T T
Dé(p)rp, =e'| 0 : 3 :érﬂ.pa
1 1
035 3
and asw, > w > 0 andt negatively large enough,
Ar
1 t 22+ 22 4w, ez
<, ‘—<1, = (e‘r—1)~ :
Aj Aj At O',U(T/li 2 v —w,t
we will have
. et |t . A
y(p) = lim -| = lim et =g <1,
t—>—o0 (_t)§ to—o00

which implies that- (p) is well defined. And obvioustngt(p)ngH = et thus

Remark 4.3.8.1n Theorem 4.3.7y. < 1 infers the stability of \}, that is, W. is a stable
overflowing invariant manifold. To apply Fenichel’s restdtshow the persistence of’W
we need the conditiom < % if we suppose Wis a C manifold. However Theorem 4.3.7
also shows thatr, > 2 > 1, Fenichel’s theorem is not applicable. Thus at this stage, w
cannot draw any conclusion about the persistence pf But the persistence of Wander
the perturbation given in (11) will be proven in section 4.4y using the exponential

dichotomy.
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4.3.3 Oscillation Time.

We already show that the oscillation remains in the paytipbrturbed system (12), but
no periodic orbit exists because of the dissipation, whih loe seen frork,, < 0. Thus
we need a reference to study the oscillation time. RecalPiiacaré sectiok used for
analyzing period function. Since the invariant manifoldls andW,. for the unperturbed
and partially perturbed systems are alléinand they all play the role of oscillation axis,
we will still useX as the reference to consider the oscillation time. But andX_ will be

changed to
27 ={(u,v,w) € Z,U > .}, 27 ={(u,v,W) € Z,U < u,}.

Apparently the partially perturbed flow crossedransversely when it is away froW,,.

This is also because the transversality is robust and pensisnder the perturbation.

Lemma 4.3.9.For any E > 0 and w> 0, the period function for system (17) has the

following bounds

min{E, 1}

maxE, 1}
P~ 1}T(l, D<TEW ———

. T(1,1).
min{w, 1} (L.1)
Proof: This is the direct consequence of Lemma 4.2.11 and Lemma2}.2. O

For any fixedE* > 0 andw, > O given in Theorem 4.3.7, define

maxE*, 1} . )
- — . < S .

Clearly any periodic orbit it7, is uniformly bounded above bi. The following theorem

is a modified version of Proposition 2.1 in [75] for our system

Theorem 4.3.10.Let )@’W(t) be a periodic orbit of unperturbed system (12) with period
T(E,w) < K. Then for sfficiently smallo- > 0, there exists a perturbed solutiorE-X(t)
such that

XE(t) = X5(1) + o XEM(D) + o(0)
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uniformly for te [0, T(E, w)], where )f’w is the solution of the first variational equation of
(12).

It follows from Theorem 4.3.10 that the partial perturbatia o is a regular perturba-
tion in the oscillation zone. So is the complete perturbatios. And the first return time
T, onZX, is also close to the periot, of the unperturbed periodic solution.

To be more precise, €ty = (Ux, W, Wox) € X, andPy,; € X_ such that

Pai1 = ¢ty (P2, Poki2 = Ptyes (P2re1),
whereg, is the flow induced by the partially perturbed system (22).

Lemma 4.3.11.Suppose that Pand t, are as defined above, then

1
the1 = 0__ (ln W — In Wn+1) .

o

Proof: Note that
rovo 1w
Inw#)| =-+=—=@u-1)-u=-1
[(vw)] v ow u-1)-u

from which it follows that
1 1
ter =1In (vnwg) —1In (vn+1wg+l) )
Sincev, = W, andv,,1 = Wp,1, We finally have

1 1
tn+1 = (1 + _) (ln Wn - In Wn+1) = — (In Wn - |n Wn+1) .
o ou

o

Theorem 4.3.12.Suppose that Ew,, K and7° are as given above. Then for any initial
Po with wy > w,, there exists () — 1 complete oscillations as w decreasing fromta/w,

where
Inwp — Inw,

>
)= —5 %

Proof. Becausevis monotonically decreasing, there must existuch that

¢¥\21n—3(P0) = W, ¢¥\2’n_1(P0) < W,, n>1
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whereg}' is the projection of the flowy; ontow andt_y = 0 fork > 0. By Lemma 4.3.11,

we know that

n-1

1
Z (tac + tas) = — (INWo — I, (Po)).
k=0 0-/’10'

On the other hand, Theorem 4.3.10 implies that- ta.1 = T (Pt +ty_, (Po))[1 + O(c)]

with T < K. Therefore we have

1
— (In Wo — In ¢¥anl(P0)) < 2nK

o

and consequently
Inwp — Inw,

n >
@)z —5 %

Theorem 4.3.13.Suppose that £€ X, N 7, is the initial point in the oscillation zone.

Then the time Tspent in the oscillation zone is given by

Proof: It follows directly from Lemma 4.3.11 that

1
T° = — (Inwp — Inw,)

o

2,2
wherew, > w = “F< andw,,; < w. Therefore

1o L[ 20)

oy \oPuZ

Remark 4.3.14.By Theorem 4.3.12, we know that the number n of completdatmilin
the oscillation zone is in the algebraic order®f?, that is, the smalles will produce more
oscillations. And Theorem 4.3.13 shows that the osciltdtiime T° spent in the oscillation
zone is finite but also in the algebraic orderwof!, thus smaller results in the oscillation
lasting in a longer time. Moreover, from the discussion ia fbllowing section, we will
see that in the perturbed system (1dptroduces a regular perturbation in the oscillation
zone. Therefore all the discussion in this section is aldilwia the oscillation zone of the

perturbed system.
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4.4 Perturbed Lotka-Volterra System.

In this section, we will study the perturbed Lotka-Voltesggstem. The discussion consists
mainly in two parts. One is about the oscillation, the otlsexbout the dynamical transition

from oscillation into a non-oscillation zone.
4.4.1 Existence of Oscillation Axis

In this section, we will consider the oscillation zone bywirg the existence of oscillation
axis for the perturbed Lotka-Volterra system (11).

Recall that the partially perturbed system admits an oweifig invariant manifold
W, = {(uv.w), u=p,, v=w>w,

which plays the role of the oscillation axis for that systérhus it is natural to ask if there
is an oscillation axis for the perturbed system.

SinceW. is the oscillation axis in the partially perturbed syster®)(2t is a natural idea
to show the existence of oscillation axis in the perturbeddesy by studying the persistence
of W... However, Theorem 4.3.7 shows tlat > 2 > 1, thus Fenichel’'s theorem cannot be
applied directly. In other word, it is not ensured tNét can persist under any small smooth
perturbation. Nevertheless, it is enough to show the pgersie under the specific pertur-
bation we study. And indeed this is true. Inspired by the ioleGakamoto in [61], | will
prove the persistence by considering the exponential thehy of the invariant manifold
W... But the diterence from Sakamoto’s proof is that we will only considex bounded
portion of W._in the reaction zone and in the finite time interval. The fiestriction will
provide boundedness of the vector field on the right handdidgl), and second one will
ensure that the portion of central axis, which is enterirgyttansition layer, approaching
the equilibrium and resulting in singular perturbationeiscluded. Indeed, it must be a
regular perturbation in the oscillation zone.

In the following, we will prove the existence of such an dstibn axis. Before doing

that, we will first review some results on exponential dicmoy.
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Lemma 4.4.1.[29] Suppose that for some integer k wilic k < n and some real number
v > 0, matrix A has k eigenvalues with real paRt(1) < —2v and n— k eigenvalues with
R(1) > 2v. Then there exist projection operators P and Q and constant &such that

P+Q=1and
|D(t, s) o P| < Ke(-9), t>s

(t, ) 0 Q < Ke't9, t<s

where® is the fundamental matrix solution of syst&m A(t)x. And an operator satisfying
the above equalities is called to haseponential dichotomy,

For anyp > 0 and a normed spac®iT, | - |), define

I, = supe™ |y (t)|

teR*

foranyy : R - R™, and
BO'(R™) = {w € CO®™. I, < o).

Lemma 4.4.2.[58] (a) For p > 0 and we BC’(R™), define w(t,s) = fstw(r)e”dT for
steR*and s<t. Then w(t, 0) € BO’(R™) and wo(t, 0)), < 1w,

(b) For anyy; € BC’2(R"), the solutiony of ' = A(W(t))y + v1(9) is given by

s//(t)=E f D7 (t, s, W1 (9)ds teR*

2K lelpl
v+op1

andlyl,, < forany0 < p; < p2, whered?(t, s, w) is the fundamental solution matrix

of the linear system = A(w(t))X for any given \{t).
Proof. (a) Note that

t t
Wi
Wi (t, 9)| = f wW(r)€dr| < Wi, f e Tdr = i(ew)t—e(ﬁ”)S).
S s P +Tr
Thus
| |p t _ ot |W|p
Wo(t. O)), < — sup|(e” -~ 1)e™} < ——.
P ter+ P
(b)

(b)) = lelpzi f |D7(t, s, w)| e”2°ds < ——2 W’l""" f e - (-9¢gr25ds
o 0

Klwllp _; ( +p2 )SI _ K|l//1|p2 (e"zt ——t)
(2 +p2) SO v+op:
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which implies that

K|wl|p2 < K|wl|p1
v+op,  v+op:

becauséy.l,, < Iyl,, aspz > p1. O

(), <

Leta, b > 0 be such tha&(c), b(c) — 0 aso- — 0. By the following transformation
u—x+1-a, Vo Y+W+Db, W — W,

system (11) can be rewritten as

o X

AW)X + G(X, w, o) 27)

w FOX,w, o)

whereX = (x,y)" and

FX,w,0) = —(x+1-a)[w-eo(x+1-a)]
Some) - ’ —xy— (0 = y2) + (1 — a)b + &(W + b)2 — s (1 — a)?
_ xy—(a+s)(w+b)+(o-w—s)(l—a)—a[azx2+y2+(W+b)2—§+:’—rv+o-2(1—a)2]
Aw) — —b-2s0(1-a) 26(w+b) - (1-2) |
| (L+oW+b-g-2e0?(1-a) -a—-2s(W+b)-¢
Then
0 2e0(X+1—-a)—w
A(w) = , VxF = , DWF=x+1-a
1l+0) -2 0
-y — 20X 2ey— X 2s(W+ b
DG = y y DG (w+b) ’
y—2e0%X X-— 2gy oc(l-a)—(a+e&)—2e(w+b) - £

Lemma 4.4.3.For o > 0 syficiently small and \{t) € C°(R*) satisfying vit) > w ~ ‘72[{‘5,

systenurX’ = A(w(t))X has uniform exponential dichotomy with exponen&t%’.

Proof: Note that
tr(A)=—-a-b-¢e[l+20(1l-a)+2w+b)] <-a-b

and

A = tr(A)? — 4 det@) = W + W + C3
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where

C1 =4e(2+ 20 + &),
C = —4[1+ c+&(1+20+40%) —be(B+2c+20)—a(l+e+ 0+ 2s%0(1+ 20'))]
C3 = b2 (1 + 26)? + &[4 + &(1 — 20)? + 80%] + @%[(1 + 2&07)? + 8e0?]
~-20b[2 + &£ — 280 + £%(2 + 40 + 80?)] — 2ag[1 + 20(1 - &) + 40%(2 + &)]
+2ab[1 + 2¢(1 - o) + 4?0 (1 + 20)].
Note that
C1 ~ 4s, C ~ —4, Cs ~ max(4b, a, 4s},
we will see thaih < 0 as$ ~ w < w < o¢. ThereforeA will have two complex eigenvalues
whose real parts are exactﬂ,?@. Denote byd(t, s) the fundamental matrix solution of
oX = Aw()X and setv = %b, then tr@) < —4v. Because all the eigenvalues have

negative real parts, there exists constant 0 such that
|D7(t, s W) < Kewd,  t>s

Note thatv is independent ofv > w, thus the exponential dichotomy is uniform. O
Since system (11) is positively stable and we are interestdy in its forward dy-
namics, the following discussion is fore R*. And it can be verified that for any initial

n = W(tp) at fixed initial timety > 0, the solution of (27) can be written as

X(t) % fo D7 (t, s, W(S))G(X(9), W(s), o)ds

n+ ft F(X(s),W(s),0)ds

to

w(t)

see [58, 61] for the general setup tos R.
Denote byg, the flow of system (11), the® = &, (7)) € 7 is compact becausg is

compact and positively invariant under the continuous ffewSet

U= max{u,(u,v,w) e‘f‘}, V= max{v, (U, v, W) e‘f’}, W= max{w, (U, v, W) e‘f’}

u= min{u,(u,v,w) e‘f’}, V= min{v,(u,v,w) e‘f’},

then functiond= andG areC' bounded for any > 0 on7.
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On the other hand, for any given functidit) and initialw(tp) = n € [w, w], the second

equation in (27) has a unique solution, denotedHpyn, X)(t). More precisely, we have
t t
Hy (7, X)(t) = e fotOr-a0s o f (X(8) + 1 - @)% Lo+i-adrgg
to

Lemma 4.4.4.For fixed § > 0, n € (w,w) and a > 0 syficiently small, ifiX| < ¢, then

there exists(n) > 0 such that
w < H(p, X)(t) < €+° (n + o) ,

fort € [0,t1(n)], whereu, = 1—a+ 4.
Proof: SupposéX| < é. Fort € [0, tg],

Hy (1, X)(t) < net+® 4 g0 ftto w2e+Vds < et + sou, (e”*(to‘t) - 1).

o
Ho (1, X)(t) > net-® — gopi? f e+ Vds= pe-o) _ goyy, (e“*(to_t) - 1) >n
t

because < o andn > w ~ ¢2. And fort > to, we have

t 2
Ho (17, X)(t) < pe#-(t) 4 80'f ,uie_”*(t_s)dS: per-(-ho) 4 sa& (1 - e_”’(t_tO)) ,
to M-

which implies thatH, (17, X)(t) < w ~ o2 for t sufficiently large. On the other hand, we

know thatH(r, X)(0) = n > w, thus
t1(n) = min{t > 0, H(n, X)(t) <w forall |X| <d} >t

is well defined. Preciselti(n) > to + ﬂi (Inn —In v_v) for all n € (w,w). Then it follows

immediately that, for any € (w, w) and|X| < 6,
W < Ho (7, X)(1) < €° (n+eopy),  te[0,t(n)].

O

Denote byly|,, = sup €*'|y| the weighted norm on the finite time interval fg(n)].
te[0,t ()]

Lemma 4.4.5.With t,,n,a,6 > 0 and t,() as given in Lemma 4.4.4,||, | X,| < 6, then

207, sou?

n N |
p-—p (- —20)(u- — 26 - p)

IHy (7, X) = Ho (12, X0)l,,,, < T elo+2o)to
T e

X = Xolpy-
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forp € (O, u_ — 296).

Proof: Defineh(x) = &=. For anyX, X, such thatX|, |Xo| < §, and

Ww=X%+1l-a u=x+l-aefu,u]clu]

Lety; = X— X = U— Uy andys(t) = fstwldT for s;t € [0,t:1(n)], then|yy| < 26 and

Y| < 26|t — 9. Thus,

IA

IA

IA

<

<

|H(r(77, X) - H(r(n’ XO)|

ne

- ﬁ; Upds

t t
e— ﬁO(U_UO)dS (|u2 u2|e—f + u e f updr

(¥S)"
Z

—1}4—80‘

to
f[zﬂ |¢1|eult51+ 2 g H-It=s
t

e hu-wydr _ 1‘) %

Al

k=1

neylh(y ")) + s U (2uilyale™ 5 + 2 e =Sy Sh(ly® D)

to

t
ne™h(20lt - o)yl + eo ‘ f (2pelyale™ = + p2e3h(2slt - )iyl d%
o

ne_“*tez‘slt_t"'h//tol + &0

t
[ (ulolers +uie‘°"2‘$"“s‘"”s')d%
to

becausén(x) < e for x > 0. Then, fort € [to, t1(1)],

IA

IA

IA

IA

<

|H0'(77a X) - Ha(ﬂ, xO)l
t
ne—(p_—25)te—25t0|wto| + go_f (2M+|l//1|e—/t_(t—s) + MZ e—(/l_—25)(t—5)|w5|) dS
o

ge—(ﬂ—%)te—%towﬂp,n(eot _ eoto) + 2e0 €M t W/llp” ( gu-+p)t _ e(/17+p)to)

t -tp
+eop? f g (-—20)(t-9) Wil (et - 605) ds
0

fo
_ lu _
|l/’1|pz7 Z (- 26)t 2(Sto(eat e"to) - ;(eot (lL+p)to y,t)
LETH el(1 — e -—2)(t-b)) e"t(l g (u-—20+p)(t-to))
P 9 M- — 25 _ - 26 +p

2e0
el | T2 e—p@—to)) )

2 11 ~(u-—26)(t- K
L ETH l1-ew to) B 1 — g (u-—25+p)(t-to) )]
p p-—26 U-—26+p

) 2e011, sop? ( 1- e—(/l_—26)(t—to))
potp o (pu- = 20) (-~ 26+ p)

n - ot
Walpq€”" /_Je (u-—20)t (1 — et t0)) +

that is, for any > 0,

|H0'(’77 X) - HO’(n7 XO)lpn = |w1|ﬂ77 [n

280',uJr sou?
H-+p (/u —20)(u--25+p)|
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And fort € [0, tg] andp < u_ — 26,

|H0'(779 X) - Ho’(na X0)|
to
ne U Bty 4 oo f (2uelale 9 + 209y ) ds
t

IA

IA

ge—(p_+26)te26t0|wl|p’n(eoto _ eot) + 280',u+e‘“t;w_llp’" (e(p—y_)to _ e(p—/t_)t)
o
+eou? f glu-~20)(t=) —lw;'p’" (e°-eM)ds
t

2e
Wil [ge_(ﬂ_ﬂ&)temo(emo -+ # (e(ﬂ—u—)tow_t _ eot)

IA

p
sop? (€M1 — en-—2p)t-)) @] — i--20)(t-))
o\ T w-—z-p T a-2 )]
W1l neot Qe—(;u+26)tezato(ec>(to—t) -1)+ % (e(P—/L)(to—t) _ 1)

p p—
. s [1— g2t ] _ gi-2)t-to)
p H-—26—-p M- —26

IA

ey,  eou’ (1 gkm20)
+
u-—p  (u-—25)(u_ — 26 — p)

IA

W1l €" ge—(ﬂ+25>t626to (eo(to—t) _ 1)

that is,

2e0 o>
IHo(2. X) = Ho(n, Xo)lp,n < Walpwy [/ﬂ)e(“%)to + L - ]

+ .
p-—p  (u-—20)(u- - 26 - p)
Therefore

2e07 4, sop?

PRI R —p)] Wb

T e

Define

TN = 5 [ ©7s HEXENGXE. O X(9). o)

and

8, = {X € C([0.tu(m)]. ). [Xlo < }.

Lemma 4.4.6.[58]. Let o be syficiently small,y € BC’(R?) andp < X. Suppose that

w,wp € C* ([0, ta(7)]. (. W) and

i=- f o7(t, s W(9)(9ds
0
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then

b= f O7(t, 5 wo(9) [ (AW(S)) — AMo(9)F(S) + w(9)] ds
0

Proof: Note that if

R TOVELE
0

theny solves the following equation
o = AW + . (28)

We can also rewrite equation (28) as

o = AWo)D + [(AW) — A(Wo)) & + |

whose solution can also be written as

b= f 7 (t, 5, o) | (AW(S) — AWo(9))F(S) + ¥(9)] ds

Lemma 4.4.7.F is Lipschitz in Xe C([0, t1(1)], R?).
Proof: From Lemma 4.4.6, we know that
t
% f D7(t, s, H(n, X))G(X, H(n, X), o)ds
0
1 t
= 7 fo D7(t, s, H(n, Xo)) [(A(H (12, X)) — A(H (17, X0)))F (X) + G(X, H(n, X), 0)] ds

Therefore

OO -T06) =+ [ ©7(t s HE X)) [AG(.30) - ARG Xo)] 7 (0ds

+ 2 [ 078 HO ) (GO HE. ). ) - B0, HE X, )] ds
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Consequently, by Lemma 4.4.2, we have the following esemat

|7:(X) - 7j(xO) |p,7]

< IA(H(, X)) — A(H (72, Xo))l,.., 17 (X)lo
v+ op
+ IG(X, H(1. X), &) = G(Xo, H(17, X0), 7).,
v+op
S S op Tl AW, IHE@. X) ~H@. X)l,,
v (IDxGlo 1X = Xol,,, + IDWG(X)lo H(7. X) = H(2. Xo)l,.,)
< (1 IF (K)o 1A' (W)lo + IDxGClo + €1 IDWG(X)lo ) IX = Kol »
v+ op
wherec; is the Lipschitz constant dfi(n, X) given in Lemma 4.4.5. m|

Lemma 4.4.8.Let a= —ou, and b= 0 and hencer = Z<. If ¢ is such that

(HD) B(cad? + c32) < 6,

(H2) C16(L + 20) + 25(1 + 2078) + Za& < 1o,

where g, C,, C3 are some constants independentog, then¥ is a self contraction map-
ping ontoB,, for any fixed; € (w, w).
Proof: Note that,
IA(W)o = sup |A'(w)| <1+ 20, sup|DxG| < 2(1+ 20€)6.
H(U’BI7) 87]

And if a = o, andb = 0, theny = ¢ and

—Xy—&(ox® —y? — W2 + ou? 2eW
G(X,w, o) = Y ( Y ”‘) , DuG =
Xy—s(y2+V\12+0'2X2—§+#(r+W+:’;V) £—2ew— £
and hence
2¢
Glo = SUPIG| < C26° + Cs—,  |DuGlo = Sup |DxG| < =.
By o H(1.8,) o
Therefore

G t v K G , KG
Flo < [Clo f Ke 2t-9ds— IGlo (1 B e—(—rt) < | |o,
g 0 v Vv
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and|¥ o < 6 only if (H1) holds
K
—(C252 + Cgi) < 0.
v g
In addition, by Lemma 4.4.5, we know that
|H(77’ X) - H(U, XO)|p,z1 < Cl|x - X0|p,z7
wherec; < oo is independent of because ~ £ = £, It follows from Lemma 4.4.7 that

|7—~(X) - T(X0)|p,7] < le - X0|p,7]9 L<1

if (H2) holds
K 2Ce
C1o(1+20) +26(1+ 20e) + — | < L.
v+ op o
Thus¥ : 8, — B, is a contraction mapping under conditions (H1-H2). O

Lemma 4.4.9. For syficiently smallo > O, lete = o(c") with n > 3. Then for any

n € (w, w), there exists a unique, ¥= (X,, w;) such that

X, (t) % fot D (t, s, W, (9))G(X,(9), W, (s), o)ds

W) = n+ f F(X,w,.0)ds
Moreovery — X, defines a Lipschitz map.
Proof: Whene = o(c™") with n > 3, there exist$ > 0 such that conditions (H1-H2) hold
and thusf is a contraction mapping af,,. DefineXy,1 = ¥ (X«), k> 0, with Xy € 8. For

any positive integek, m > 0, obviously
| Xicem — Xk|p,,7 < Lm|xk - XQ|IDJ7 <25L™ >0

asm — oo, thus{X,} is a Cauchy sequence. Note that if the normed spRég (|) is
complete, thenK?,| - |,,) is also complete fop > 0. By the same argument in [58],

we know that there exists aX, such thatklika = X, in the| - |,,-norm. Therefore
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Ilim X (t) = X, (t) uniformly in [0, t1(77)]. Consequently, for any< [0, t1], X, (t) = 7 (X,)(t)

which implies thatX,(t)| < ¢ whent < [0, t;]. Apparently
W, (1) = H(m, X)),  te[0,ti(n)]
is uniquely determined, ang, = (X,, w,) satisfies

X, (1)

W, (1)

1 f D7(t, 5 W, (9)G04,(S), W (9, o)
0 Jo

t
n+ f F(X,, w,,o)ds

to

for t € [0, t1(5p)]. It follows, from the fact thafF is a contraction mapping, tha, is unique

(29)

and hencav, is unique. Thu¥, is unique.

Lemma 4.4.10.There existg > t, such thaty — Y, defines a Lipschitz mapping from
(2w, w) to BC’(R3).

Proof: By Lemma 4.4.4, set = t; + ﬂi > to, thenH(n, X) > 2w for all n € (2w, w) and
X € 8 = {X e C([0,t],R?), |X| < &}. Denote by, the flow induced by (29). By the same
argument in [61], we know thaj; is a Lipschitz mapping from (& w) to BC*(R3) for t

fixed.

Theorem 4.4.11.For syficiently smallo- > 0, ¢ = o(c™") with n > 3, and0 < w < w, there
exists a function fw, o) such that W, = {(w, h(w, €)), w € (2w, w)} is invariant and as
o — 0,

suf|h(w, o) — h(w)|, w € (2w, w)} — O.

Proof: The same as in [61], it stices to show thdt(w, o) = h(w)+¢y, (W) with w € (2w, w)
is invariant, wheren(w) = (1,w)". To indicate the explicit dependence %f on n, we
replaces (-) by # (i, -) in the proof.

First we claim thaiy, x (s+,)) (to) = X, (s+to) foranys € [0, t1—to) if X, (t) = F(n, X,)(t)

fort € [0, t,]. For any fixeds € [0, t; — tg), define
X5(t) = X,(s+1), wi(t) = H(n, X,)(s+ 1), te[0,t; - 9.
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BecauseX; is the unique fixed point of (i, X) and (X, H(n, X,))(t) solves equation (27)
fort € [0, 1], we know that K, H(n, X,))(s+1) also solves (27) for € [0, t; — s]. Therefore
X% is the unique fixed point of (W(tp), -). And note that the fixed point of (W5(tp), -) is

given by Xus(,), the uniqueness of fixed point f implies that
X3(t) = Xusqeo) (1), te[0,t; - 9.
In particular, we have
Xy(s+to) = X3(to) = Xusio) (to) = Xrigr.x,)(s+t0)(t0) se[0,t; —to).

For any &, wo) € W, letw(t) = H(Wp, Xy, (t)) andZ(t) = h(w(t)) + Xu,(t). Then
(Z(t), w(t)) solves equation (11) with initial conditior&ty) = h(wp, o) = Zy andw(tp) =

Wo. Thus, fort € [to, t4],
Z(t) = h(w(t)) + X, () = h(w(t)) + XH(Wo. X)) (to) = h(w(t)) + Xug(to) = h(w(t), o),

that is, €(t), w(t)) remains o\, in [to, t;] when Z(to), W(to)) € W,... Therefore we can
conclude thatV, . is the portion of the invariant manifold of equation (11). Xy, (t)| <

infers that, asr — 0,
sudlh(w, o) — h(w)|, we (2w,w)} <a+d =ou, +36 — 0.

sinces — 0 aso — 0, see conditions (H1-H2).

This completes the proof. m|

Corollary 4.4.12. Suppose that = o(c™") with n> 3, then

sup{|V\/(,,8 -W,|, we [v_v,vﬂ} ~ g.

Proof: This is trivially from the fact that = ou, andé can be taken to the order gfto

make conditions (H1-H2) still satisfied. O
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Remark 4.4.13. Corollary 4.4.12 shows that the oscillation axis of the pebed system

is very close to the oscillation axis of the partially petted system. Therefore, in the
oscillation zone, it is enough to approximate. Wby W,. And also the oscillation time
with respect to the Poincaré secti@can also be approximated by the counterpart of the

partially perturbed system.

4.4.2 Approximation of Oscillation Axis.

After having the existence of the oscillation a¥s, ., in this section, we will study the
approximation toN,. .. Even thoughV,. is already a good approximation in the oscillation
zone7 °, especially in the upper level(large) of 77°, it is not so clear how good it is in
the lower levelfv small). By finding a better approximation, we may see thetlonaof
the passage, from the oscillation zone into the transitmea !, where the convergence
of approximation fails, and how the oscillation is drivemdhe transition zon&™.

Because the computation involved in this section reliesherBessel function, we will
first provide a brief review on the Bessel functions.

The Bessel dferential equation is given by

dy dy
29y Y 2 _ 2w —
de2+xdx+(x vIy=0 (30)
and its solutions of first and second kindgx) andY, (x), are given by
v+2k
160 - (-1)(3) Y = Lo = 3,09
Y KT+ k+ 1) Y sinvn '
And the Wronskian of], andY, is
3OOY,00 - Y00 L) = = (31)
/s

For any given constants 3, y, under the following two transformations
X — BX and y— x'f,
the Bessel equation (30) can be modified into the followingifo

2

f df
2 2,22y 02 226 _
xdx2+(2a+l)xdx+(ﬁyx +a°—-ny)f =0. (32)
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In particular, set

1 1
n= 19 a = _57 Y = Ea
equation (32) becomes
2d f2 2
X W-Fz)(f =0, (33)

whose solutions arg/xJ, (8 vx) and v/xY1(8 vX). Please refer to [66] for the details about
this modified Bessel equation.
Let o > 0 be fixed. Suppose th¥¥, . has a series expansion representation in terms of
g, thatis,
U=y, + i fi(w)eX, V=W+ i ge(w)eX.
k=1 k=1

By substitution into (11), we can obtain

—o(ef] + &0, + . Yo +efr+ 20+ ) [W—s0(u, + ey + 26+ )
= —8[0‘(/1(,+8f1+82f2+...)2—(W+sgl+8292+...)2]
—(e01 + 2 + %03+ .. )y + ef1 + 26+ ..))
and
—o(L+eg; + &G, + .. Yo + efr+ 2+ ) W s0(uy + sy + 26+ .. )]
= [—o-ug+(gf1+32f2+...)] (WH+eth +&20+...)—e(W+ef +2f, +...)?

+&

g—(ﬂg+gf1+ng2+...)—(w+ggl+gzgz+...)-‘é"].
Comparing the cd&cients of the first order terms yield the following two eqoats
opeWE — et = O_:u(zr - W
TG, — o + (L+ o)Wy = o2 + WP+ [f — Uy — (1 + %)W]

from which we can obtain an equation of second order alboas follows

WA + QW = CWP + CaW + Cy (34)
where
140\ 1-o7? 1+ 0)? l1+o
C1:( ) ’ C = 2 C3:( 3) P Cq = 2 ('f_:u()')
o o o o
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Theorem 4.4.14.Let w= O(c®) for k > 0 and y = maxk + 3,2k + 2}. If ¢ ~ ¢" with

n > ny, then
W, = {(U, V, W), U = p1r + f1(W) + 0(c"™), v=w+egi(w)+o(c" )},

where { and g are given by

b= |-t [ ttpmws f [ tumpdn].
(35)
o = omw| -t [ tatwpmws , [ tupidn - o, + 2
and
fi1 = VW (2+/Cw), and fio = VWY (2/Cw).
Proof. Note that the corresponding homogeneous equation of (34)
w2 f] + cwiy = 0. (36)

is exactly a modified Bessel function wigh= 2 4/C;, and it admits two linearly independent
solutions,fi; = Vw3 (2+/;W) and f1, = vWwY;(2+/CW). To find a particular solution to

equation (34), the following formula for variation of paratars(see [15]) will be used

fip = — 1y f f12\(/\\//\/() p)(W) + 1y f f11\(/\\//\/() p)(W)

wherep(w) = ¢, + C—Vj + % andW = f], fi, — f/,f11 is the Wronskian determinant ¢f; and

f1,. By the property (31), we can attain

W= VeW[J; (2vEW) Y; (2 VW) - Ya (2 vew) I (2 vew)| = =

and consequently

fip=m [— f11 f fio(W)p(w)dw + f1o f f12(w) p(W)dW]-

Because

, WP
O =owWf + — — o,

(on
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it immmediately follows that

W2

O = mrw[—fl’1 f fro(w)p(w)dw + fi, | fra(w) p(w)dw] — O, + =

Note that ag ~ 0" with n > 3, ep(w) ~ "2 becausec; ~ o"3. Furthermore, we may
also write out the equations fofx g,), (f3, g3) up to any ordem, and we will have similar

equations with ca@cients of the same order in. Therefore

U=, +&fip+0(c"3), V =W+ &gy, + 0(0"3).

Remark 4.4.15. Theorem 4.4.14 shows that as-wo, the perturbed system allows os-
cillation approximately around the axisl = u,,Vv = w} because the high orderf,; can
be neglected. However, becausei$ given in terms of Bessel’s function of the second
kind, when w is decreasing to the higher ordewini.e. qo) or O(e), ef14 is not negligible
any more, and the asymptotic expansion becomes invalidsegpently the dynamics is
forced to be driven away from the oscillation into the traiogi layer.

By doing the series expansion to approximate the oscitladixis, we encounter the
Bessel's function which make the series convergence a luglgm. In the rest of this
section, we will redo the approximation in affdirent way. This may not be rigorous,
however we may show that the results we will obtain is a gogu@pmation indeed.

The idea traces back to Corollary 4.4.12. Becalg is very close toN,, in the order
of £ andW, is a straight line and hence its curvature is zero. Intuyivee may suspect that
the curvature of\, . is also very small, and it is the only one solution has suclhoagty
because other solutions show oscillation around it. Tleeeive may solve equation= 0
along the trajectories of (11) to find an approximate cunetwen show it is close t@/, .
by showing that it almost solves (11).

Consider a smooth vector fiekl(X) which determines a curve satisfying = F(X).

Let T be the tangent vector to this curve, ther - = £k And its curvature is

<[l Iral -
ds|| = |liperl| =
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Note that
7 X7 XXX
[IX“]] IXE
where.# is the Jacobian matrix d¥, thus we have a formula for the curvature
|IFIEZF - (F, ZF)F||
) IF I

X" = FX' = FF(X)

and at any nonequilibrium point &f,

k=0 < |FI’ZF - (F,.ZF)F — JF = —<F|’“i2|:>
In other word, if« = 0 at some poinK such that~(X) # 0, thenF(X) must be an eigen-
vector of.# (X) associated to eigenvalue= (T (X), .7 (X) T (X)).

Now we will consider the vector fiel& given in the following equation

%J = uw-v)

d—;’ = Vu-1)-s(¢-Y) (37)
&

- = —OWu

dr

which is obtained by dropping some terms of ordén (11). Then

u(w —v) wW-Vv -—u u
F= v(u—l)—s(g—(“—r’) , F=| v u-1 -£
—oWu -ow 0 —ou

It follows from % F = AF that

v:g(w):%(w+ \/W2+40'8,u(,§), u:f(w):,u(,(l—g(f_g).

a(w)

And the simple calculation shows that

2 2.2,,2 2
g e /.lo.fu vV — g,(W)V\/ — 20 8U,u(,-§

WP = g W 2g-w

Because {(w), g(w)) is an approximation of the central axis of (37), and (11hesregular
e-perturbation of (37) whenr is fixed, we have the following approximation

W, ~ {(u,v,w),u = fhor (1— 8(‘5; ‘f;’)) V= :—ZL(W+ W2 +4o-3;1(,§),we [v_v,vﬂ}. (38)
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4.4.3 Transition of Dynamics

From the previous sections, we already know that the remstarts with oscillation around
W, and ends at the equilibrium staffg = (u*, v*, w*). However, the distance froW, to
the pointP; is significantly large, thus, there must exist a stage in betwto transit the
dynamics from oscillation to asymptotic approd@fi Note that the oscillation disappears
whenw is of ordero?, which implies that the transition layer is a very thin lay&o study
the transition dynamics, somehow we need to zoom in this trarylayer. The spatial
rescaling is naturally a simple way to do it.

Even though the oscillation will disappear whan~ o2 for the partially perturbed
system, it may not work for the perturbed system becaygerturbation deform the oscil-
lation axis and oscillation can still proceed around thevdekd axis but notV,.. Thus the
natural rescalingv — ow is not good enough for amplifying the transition layer. This
does not seem to be a trivial job.

To choose an appropriate scale, let’s recall Theorem 3.8idhwsays that the minimum
w in the oscillation zone of 2D open system satistgeg mDinW < %5 whereé = &o.
Because 2D open system can be thought of as an approximdti® olosed system,
and rBinw is a critical value ofw through which the dynamics transits from oscillation to

non-oscillation, it is reasonable to take the followingoadsg
u—u, Vo eV, W — oEW.

And the following discussion shows that this is correct ceoBYy above rescaling, equation

(11) becomes

%J = & [u(aw —V) — (oW - 82\,2)]

(c]il_v = Vu-1)-&?+ (¢ —u—sv—ew) (39)
dw

el —ou(w — u).

Now we have another singular perturbation problem. A wetiin theory for studying this

system is the geometric singular perturbation theory amesd by Fenichel in [21], which
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is based on a series of his previous work about the invariamifold theorem [18, 19, 20].
Mainly it says that a normally hyperbolic invariant mandas$ persistent under any smooth
perturbation. In [47], it was proved that normal hyperbityids not only suficient but
also necessary for the persistence. Roughly speaking,vanant manifold is normally
hyperbolic if the growth rate of the linearized flow in its nual direction of the manifold
dominates the growth rate along the tangent direction ofrthgifold.

However, because there are threffaient time scales in system (40) wher(e <«
o < 1, that is,v is the fast variableu the slow variable anav in between. Fenichel’s
theorem cannot be applied directly. But thifidulty can be overcome simply by applying

the singular perturbation twice as shown below.

Theorem 4.4.16.For some0 < n < 1 andog > 0, system (39) has a two-dimensional

stable manifold

M = {(u,v,w), V= % + O(0), u,we [0, n]}.

for all o € [0, og].

Proof: Wheno = 0 and s = 0, system (39) has a two-dimensional critical manifold

Mo = {(u,v,w), v = hp(u) = i%z,u * 1}.

For anyu < 1 fixed,v = hg(u) is asymptotically stable. Hence, for certairGy < 1,
Mg = {(u,v,w), v=ho(u), uwel0,n]}

is normally hyperbolically stable and positively invariamith respect to (39) as- = 0.
More precisely, we know thatl] is a collection of equilibria and can be parametrized by
s = (u, ho(u), w), thus it is invariant and has normal direction

£-1
(1-u?

S X Sw _

1
A= = a,-1,0), a=hy(u) =
1S X Sull \/—1—a2( ) o)
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Therefore for anyp € My, the projection onto the tangent space and normal spagesrat

characterized by the matrices

a -a 0 1 a O
1 1
N _ T _ N _
np_l_az —a 1 O ’ ﬂ-p_l_ﬂ-p_l_az a a2 O s
0 0 O 0 0 1-8&?

respectively. Let; be the flow induced by the vector field in (39)@s= 0 andVF is the

Jacobian of this vector field, then we have the equation abe¢yp)

d
o [Dgi(p)] = VF(p) [Dge(p)] s
where, precisely
0 0 O 0 0 0
VF=|v-1 u-1 0|=VF(P=| & u-1 0|=@Uu-1)|-a 1 0
0

0 0O O

o
o

and consequentiPg,(p) = eb TFPIS with

1 0 0
t
f VF(p)ds= —a(e-Dt—1) et Q
0
0 0 1

Now we can consider the generalized Lyapunov-type numbdrs/6] as defined below

_ . __log||De(p)=T|
= Tim =D ‘ =1 |
7P =fim [ Da® . onP) =Im e

, ify(p) <1,

where|| - || is thel, matrix norm. Because

a2 -a o0

N Ut u-1)t, N

ﬂ-p D¢t(p) = 1_ a2 —a 1 O = e( ﬂ-p
0 0 O
and
1 a 0
1

Dgr(p)ry = T—=l2a @& 0 |= p»

0 0 1-&?
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we will have

=

=lime <1,

t—oo

yu(p) = lim [€]

and

. log V2 _im log V2 _o,
toeo log et toe0 (U— 1)t

which impliesM{ is normally hyperbolic. It follows, from Fenichel's invamt manifold
theorem, thaM] will be persistent under sficiently small smooth perturbation, that is,
there existerg > 0 such that for any- € [0, o], system (39) admits a normally hyperboli-

cally stable invariant manifold

M2 = {(u,v,w), Vv =nh(u)+O(c), uwel[0,n]}.

Under the time rescaling = or, we have the slow system associated with (39)

du

= = 2 [u(aw —V) — (ou? - szvz)]
o-di\j = VU-1)- &V + (£ —U—eVv—e&W) (40)
dr’l = —u(w-u).

Aso = 0, we have the slow manifoldl]. And Theorem 4.4.16 ensures ti\ag is persistent
under perturbation, that is, there existd such that it is an invariant manifold of system
(39) and close td1]. Indeed M, is a slow manifold of (39). Now we can consider system
(39) restricted on the slow manifoM_, then we reduce (39) into a two-dimensional system

on M, which is written as

o [u(ow - h(u,w, @) — (2 - £22(u, w, )]
dr (41)
o - —u(w — u),

wheres = 6(0) = <1
g
Theorem 4.4.17.Forn < 1anddy > 0, system (41) has a one-dimensional stable manifold
W] = {(u,w), w=u+0(s),uel[0,n]},
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forall 6 € [0, do].

Proof. The slow system with = 67’ of (41) is given by

du u(ew - h(u,w, o)) = (ou? - £2h*(u, . ))

G -
6_

dt

—u(w — u).

Thus asy = 0, system (41) has a critical manifold
W, = {(u,w), w=uce[0,n]}.

Under the same argument as in Theorem 4.4/6is normally hyperbolic invariant man-
ifold and hence is persistent. Namely, there exigts 0 such that there exists an invariant
manifold

W/ = {(u,w), w=hy(u,o)=u+0(),u e [0,n]}

diffeomorphic and close /] for anys € [0, ). O

When we use the original variablag ¢, w) without spatial rescaling, we will have

Corollary 4.4.18. For some0 < np < 1, system (11) has a two-dimensional strongly stable

manifold

v &é-u w
M. = {(U’V’W), = 1-u + O(0), U—¢ [0’77]},

and a one-dimensional stable invariant manifold

W, = {(u, v, W), :;’ - H 1+ 0(0r), % —u+ j((‘i__‘:)) +0(2), ue [o,n]} (43)

onit, thatit, W, c M7..

Proof: This follows immediately from Theorem 4.4.16 and Theoreth/. For the better

approximation tow , as given in (43), the series expansion can be used as in Theore

4.4.14 for central axis in the oscillation zone. m]
Note that along the stable invariant manif¥ig ., the solution will first reach the vicin-

ity of the equilibriumP; and then approadhs; along the eigendirection associated to eigen-

value of the smallest modulus. Thus we may estimate the Tihepent on the transition
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alongW, , into the vicinity of P;. By equation (42) withr = 0, we approximately have

du _u(¢-u) ¢ 4 u(0) & —u(0)
- L o Rl =) |

Sinceu(0) < u, < 1 andu(T!) ~ &%, we have

Theorem 4.4.19.The transition time Tinto the vicinity of the equilibrium pointfalong
W, , is approximately given by
e, _Ine

&
Theorem 4.4.16 shows that in the transition layer, all th®tsmare attracted onto the two-
dimensional strongly stable invariant manifdif’,. And furthermore, Theorem 4.4.17
shows that oM’ ., the orbits are attracted onto a one-dimensional stab#iemt manifold
W, , c M. Therefore, before the time rescaling, system (11) als@ta®-dimensional
stable invariant manifold which is a slightly curved stripwvery tiny width and thus not
seen in the numerical simulation for (11). And Theorem @4says that it will take a

longer time of order—"‘f to get really “close” to the equilibrium poirR;.

4.4.4 Numerical Simulation

Recall that if initialwg and energyE are relatively large, Theorem 4.3.12 states that there
will be n ~ % oscillations in the oscillation zone. As showed in Figure léeve larges
allows largewy and thus many oscillation can be observed. In contragtjsfsmall and
hencew, must be small, then the number of complete oscillations ishrlass than the
case for large, as in Figure 7.

On the other hand, if the enerdyis large, then each complete oscillation will sweep
a large area because it is away from the central @kls. While if E is small, that is, the

initial point is chosen to be very close Y°

o,

then the oscillation will be proceeding very

closely around\°

o,e

which can be observed from the following figures 8 and 9.
The transition layer is as in Figure 10, where the analycaVe of the central axis is
drawn by using the the approximation¥f., given in (43). Figure 10 shows that all the

numerical solutions are eventually attracted onto theyaical curve.
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Figure 6: Oscillation foré large.

Small & Projection onto uv plane
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Figure 7: Oscillation foré small.
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Figure 8: Oscillation forE large.
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Figure 10: Transition Layer.

Figure 11 provides a closer look of the dynamical transitfrom oscillatory to mono-

tonic behavior.

4.5 Analysisin Terms of Action-Action-Angle Variables

In the previous sections, we already studied the three1usineal reversible Lotka-Volterra

system by the method of geometric singular perturbatiorw Mave reconsider this system
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— — — Numerical Solution| '

Figure 11: Transition Layer.

in the oscillation zone, we notice that the unperturbedsyss a standard LV system which
has Hamiltonian structure. The application of Hamiltoweala theory to an integrable LV
system can be found in [14]. In this section, we will study tbeersible LV system by

tools of Hamiltonian system, mainly in terms of action-antangle variables.
4.5.1 Action-Action-Angle Variables.

Consider the unperturbed LV system (17). Under the follginansformation
x=1Inu, y=Inv-Inz Z=W,

system (17) becomes

dx = z(1—ey):—ﬁ
dy _ g_q_H
dr X

with the Hamiltonian
H(x,y;2) =(e"-x-1)+z(&-y-1) >0.

Note that the level set of the Hamiltoni&his a closed plane curve, by Arnold-Liouville’s

theorem [2], there exists a canonical transformation

X = X(l4, 6; 2), y=VY(l1,6; 2
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such that under this transformation, the unperturbed Hamdn system (44) can be rep-
resented in terms of action-angle variable as
I, = 0

0 Q(l4; 2).

whereQ(l1,2) = g—:*l is the frequency antl(x(11, 8; 2), (11, 8; 2); 2) = H(ly; 2).

For the partially perturbed system (22), we may rewrite it as

u = uw-v)
vV = (1+0)Vu-p,)-ouv (45)
W = —0oUw.
Consider
u = uw-v
(wW-Vv) (46)
Vo= (1+o)v(u-uo)
whose first integral is exactly
Ho w
E7(U,v,W) = (1+ ) | (U= ) + 1o I (U)] ; [(v— w) +win (V)] .
By the similar transform
Xx=Inu-Inu,, y=Inv-Inz Z=W,
(46) becomes a Hamiltonian system
dx = zZ(1-¥¢)
g; (47)
=2 = -1
dr ¢
with
Hxy;2 = E7(Uv,wW) = (1+0)us (& -x-1)+z(e"-y-1)
= (e-x-1)+z(e@-y-1)>0.
Then (45) becomes a perturbed Hamiltonian system
dx = z(1-¢)
gT
oo e (48)
i
& - —O i, Z€&
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and

H = —ou,z& @ -y-1) <0.

By applying the canonical transforr= X(I1, 6; 2), y = y(l4, 6, 2) of action-angle variable to
(48) and treating = 1, as the second action variable, we will have the action-aeingle

form of equation (45)

I, = —ofi(ly, 15, 6)
I, = —ofls,15,6) (49)
0 = Q1p) - ofa(ls. 12 6)
where
f1(l, 12, 6) = 1, €1, det g((é’y)g fo(l, 12, 6) = pao | o€"
fo(l, 12, 6) = €1, det aa((|)1(,y2) :

andH(x(11, 12, 6), (11, 12,6); 2= 1) = H(l3; 12) andQ(ly, I2) = 5. Note that

oxy)| oxay oOxay 0= dH ox  oH dy

1 = det _ OXOY_OX9Y
ool " a,00  d00l; X 90 dy 00
imply that
ox 1H gy 1oH
90 Qay’ 40~ Q ox
Therefore
8(%.Y) l, (0H  oH
det _ 22
a0 T O (al2 az)

Now by averaging principle [28], we will consider the avezdgequation
Jo= —ofi(d )
J = —ofy(di, )

To this end, we need

Ii = Ji + O'gi(Jl, \]2,9).

Thus we can obtain that
691

J —0 | 1131, 3, 0) = =2 Q(J1, ) | + 0(0)

692

Jo = —o|fa(Jd1, 3 0) - =5 201 %) | + o)
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To eliminate the the oscillation df(J;, J, 6) = (31, o, 6) — ﬁJl, J>), we need averaging

by setting

ag.

f (Jla J2a 9) - Q(‘Jla JZ) I = 19 2.

Note that

— 1 (= poly [
f2(|17 IZ) = Zf f2(|19 |29 9)d9 = - ;ﬂ' f exde
0 0

By the following facts,

oH oH oH
a—ex—l, a—y—Z(ey—l), E—ey—y—l,

we notice that

21
fexde f(—H+1)d9 f(Qa—y+1)d9:27r,
0X 0 00

becaus& is independent of. Hence

fol1, 12) = —pto 1.

Consequently
jz = —0'/1(,-\]2 = J, = Jz(O)e_(m”t.
In addition,
qel QW) | 9xdy _oxdy _ LoHox | 1.0H oy
A, 0) 01,00 90dl, QX dl, Q’ ay dl,
_ 1[0H ax aHay 1@_@_1@_@ 1)
T Qloxal, aya,| ala, dz| als y=3
then
e _ _M(rIZ %_
i) = szo [mz @-y- 1)]eXde
Because

2r oH

fo ex(j—y—l)de_fo (8—+1)(ev y—1)de
y

fo (Q%+1)(ey y—1)dg = f ©—y-1)do

10oH Qox
——df - f do = —f ——do - f do = -2ny,
jc; l2 0y 0 Y o l200 y 4
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where

_ 1 ("
We finally have
(1) = Mtz (o OH o o Hel2 (OH
f1(|1,|2)— 27TQ(27T6|2+27Ty)_ %) (a|2+ﬁ

On the other hand, becaulleis independent of, we can see that

1 = 1 (=
H - _f Hde:—f [(65— x— 1)+ Io(¢/ =y — 1)] df
2n 0 2n 0
1 (= Lo
= ch; (=x=1y)dg = —x— 1,y.

from which it follows that

oH _  ox 8_)7

oL Y= oL 2,

And by Jessen’s inequality, we have

1 (% 1 [~
ZL Xd9$|n[Zf(; exd9]=|nl:0

1 1 (=

Now we have the averaged equation

. Jo [ OX 0
i = m—z( X Jz—ﬂ

x|
I

<]
Il

— +
Q\ol, I, (50)

jz = —O'/.l(,-Jz.

The averaged equation shows that the second action vadablas exponentially decay.
However it is not so obvious how the first action variable ges But we have the nu-
merical simulation as in Figure 12. (In the top two figures igufe 12, the colored closed
curves correspond to the first action variable at that tinme, the area of each enclosed

region is exactly equal to the action)

Remark 4.5.1. By using the same canonical transform, the completely gegtlisystem
can also be rewritten in terms of action-action-angle vates to find the corresponding

averaged equation. And as< o, we will have the similar averaged equation.
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Figure 12: Change of the First Action Variable of System (47) in Time.

4.5.2 Action Variable from Geometric Viewpoint

Note that the geometric meaning of the first action variabthé area of the region enclosed
by the level curve of the HamiltoniaH. In this section, we will study; in the geometric
way. Suppose thatl(X; 2) is C? differentiable in X, 2) and convex inX for anyz And

suppose that for ang there existsXy(2) such that
H(X;2) > H(Xy(2);2 =0, VX

For any fixedh > 0 and appropriate, H(X; 2) = h determines a closed curve and denote

by A(h, z) the area of its enclosed region.

" . 0A " e
Proposition 4.5.2. Suppose that H is the convex, thsﬂ > 0. Additionally, if H is the
o A . . o
Hamiltonian of system (44), the%??H < 0; and if H = F(u, v;w) is the first integral of

OAF
system (17), theg— > 0.
y (17) v
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Proof: Consider the transform

cosa
X = Xo(2) + R(e; h, 2)A, n= l ‘

Sina
where R(a, h; 2) is the distance fronXy(2) to the level curveH = h in the directionni.

(actuallyXo(2) above can be replace by any interior poinHr< h), then

21
Ah; 2) = % fo Rlda.

As a matter of fact, this area plays the role of action vadgaiflHamiltonian system in the

action-variable setup. And

oA AR oA 7 HR
= R—d = R—d
oh fo oh 0z jc; P

And it follows from H(X,(2) + R, 2) = h that

R oy OR.OH
or furthermore
0R OR [(O6H )
E = _% (E + <VH, X0(2)>) .

BecauseH is convex, we know thatVH, i) > 0 and thus® > 0. ThereforeZ® > 0.

WhenH is given by

Hx,y;2) = (- x-1)+z(&-y-1),

then
0 e-1
Xo(2) = , VH = , H,=¢ -y-1,
0 (e -1)
and consequently
oH o OH
E+<VH,XO>—E—GV Yy 1207

which implies thatl} < 0 and thus?2 < 0. While if H is the first integral of system (17),
that is,

H=F(v,w) = (u—1—|nu)+[v—w+wln(vvv)].
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with w as the parameter, then

1
H 0 1-= OF  w
= ! = VF = u — =In—
Xo(W) . = X{ . , 1_%/ , T nV

and consequently

w w
Fu+(VEX)=In=+1-— <
wt < 9XO> nV+ V_O
which implies thal® = —%% (% + (VF, X)) > 0 and thusi > 0.

Proposition 4.5.3.1n system (22), the enclosed area A is decreasing in time.
Proof: Obviously,A = :TA,E‘T + g—v’jv'v. And Under the same discussion as that in section
4.5.2, we will havef® > 0 and%} > 0. Becausd,, < 0 andw < O for system (22), it is

easy to see thak < 0. O

Remark 4.5.4. Proposition 4.5.3 indicates that, in the situation of pafperturbation, the
area swept by a complefr unperturbed oscillation aroungl,,, w) is decreasing in time,
that is, the oscillation is shrinking to the oscillation axiThis is also verified by the numer-
ical simulation in Figure 13, where the red line denotes thetiplly perturbed trajectory,
and the blue closed curves denote the unperturbed periathitsan the corresponding

level of w.

o L L T T T
0 200 400 600 800 1000 1200
\Y u t

Figure 13: Change of Action Variable of System (22) in Time.
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CHAPTER V

MRC CONTROL OF BZ CHEMICAL REACTION

Model reference control(MRC) is a mature engineering adriéchnique applied to many
different plants and has a broad application such as controdinat’s [26, 41], flight vehi-
cles [37, 38, 39, 40, 68], mechanical oscillators [32] an@isoBecause it works directly
with the input-output data to identify the unknown systelat), no mathematical model
determined by a system of equationgfigliential equations or fierence equations) is re-
quired.

On the other hand, biological system is a complex system.alsxthere is no first
principle, like Newton’s law in mechanics, available inloigy, it is hard to set up a mathe-
matical model in terms of equations even though peopledstiit in this way by the limited
knowledge. Without a good model, it becomes even harderntr@osuch a system.

Motivated by these two facts, we think it reasonable to haitiee idea of MRC to con-
trol a biological system. By the numerical simulation, th&®! control for SIRS disease
models shows the validity of this new biological control hmad, see[6].

In this chapter, we will briefly provide a mathematical framwek for MRC and neural
network(NN) structure in which MRC can be manipulated. Thenwill consider the
MRC control for the reversible BZ reaction described in (1d eliminate the oscillation

exhibiting during the reaction.

5.1 Modd Reference Control.

There are two important processes involved in the MRC con@oe is the system identifi-
cation in which the plant can be identified in the sense tleidéntified system and the real

plant have almost the same response to the same input sigmalother is the controller
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generation in which a controller can be trained and genénaterive the plant to behave

in the desired manner described by the reference model.
5.1.1 System ldentification.

Let X andY be two spaces and : X — Y be an operator. TheR can be regarded as a
plant,X andY as input and output spaces. AnyY) € X x Y, an input-output pair ofx, y)
with y = F(X), is called a pattern. The collection of patterns is callédmming set.

For a real plant, if we can embed the input signal iRfband the output signal inf&",
and also assume that vector-valued funckonD — R" is continuous, wher® c R™ is
compact, then the system identification is simply to find gereximation ofF onD. With

these notations, the training set can be representéd by{(x,y),y = F(X), x € D}.

Theorem 5.1.1.(Stone-Weierstrass) [10]: Let domain © R™ be compact and le¥ c

C(D) satisfy the following criteria:
1. Identity Function: The constant functioixj = 1is in .%#.
2. Separability: For any x# X, € D, there is an fe .# such that {x;) # f(x).
3. Algebraic Closure: If fge .7, then fgaf + bge .# forany ab e R.

Then cl(%)= C(D), the set of continuous real-valued functions on D.

Indeed, Stone-Weierstrass theorem ensuresRhezdn be always approximated by some
functions in the prescribed function sét. For example,# may be chosen to be the set
consisting of all the polynomials. However, the structureZdis not unique, and what is
preferred is the one easy to be generated. To have a simpleowaystruct# and to take
into account the manipulation of MRS by neural network whigh be introduced later,

the following theorem is useful.

Definition 5.1.2. A functiono is discriminatory if for a measureu € M(l,),

f o-(yTx+,8) du(x) =0 (51)

Im
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forally e R™andg € R, implies thaju = 0. Ando is sigmoidalif o(—c0) = 0, o(+0) = 1.
Sayo(t) = %

1+et”

Theorem 5.1.3.(Cybenko, [11]) Suppose thatis a continuous discriminatory sigmoidal
function. Then finite sums of the form
k
G(X) = Z cjo (WJ-Tx +,8,-)
=1
is dense in @), where |, is a unit cube of m-dimension. In other words, givea E(l,)

ande > 0, there is a sum (X) of the above form, such thig(x) — F(X)| < e for all X € Ip,.

Remark 5.1.4. Theorem 5.1.3 makes it possible to approximate a continonuis-variate
function by functions of one variable function(sigmoidatdtion) composed withffene
functions. Since both sigmoidal function arfiiree functions have simple forms, this type of
approximation will have a relatively simple representatidloreover, the resultin Theorem
5.1.3 can be strengthened by restricting the componentsamid to be integers, see [8],

or by kth-degree sigmoidal functions satisfying

lim x¥o(x) = 0, lim xKor(x) = 1, (52)

X——00

Note that Theorem 5.1.3 says tliatan be approximated by
K
Gi(x;c,w,pB) = Zc,-o-(ijx+B,-) (53)
=1
on a compact sdd for certainc, w andg, which, however, depends dhand the approx-
imation accuracy and are unknown. S&t = (c,w,s), we can define the identification

error

& (Wh) = max{dist(Ga(x, Wh), F(x))} (54)

In the mathematical literature, system identification canfdrmulated to the following

minimization problem

min {e (Wh)} . (55)
Wi
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And in the control theorye, (W,) should be the feedback signal sent back to the identifica-
tion system to modify the parametét; accordingly, see the following block diagram for

system identification.

Identification System Output

System
T ,—\/dentification e
\_/  Error '
Input System/Plant
Plant Output

Figure 14: Block Diagram of System Identification.

5.1.2 Controller Generation.

Once the plant is identified, we are ready to consider thercbanh it. Now the reference
model plays an important role. Roughly speaking, referencdel is a model whose output
is what the plant is expected to have. The controller geoeratll produce a controller
according to the reference output such that such a conticdle drive the plant to follow

the reference output. See Figure 15.

Reference Reference Output

Model
Controller OReference
Generator ") Error
Controller
Input System/Plant System Output

Figure 15: Block Diagram of Controller Generation.

Note that the controller should be designed to be capablmaoijeing all the admissible
control for the plant. Suppose that the controller generags a similar structure to the

system identification and is given by

u = Gy(y; Wik), y = Ga(x, u; Wh) (56)
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whereW, collects all the parameters in the construction of corgrajenerator. Here we
abuse notation and replacen (53) by (x, u) and insteadD will denote the set of plant
input and control input. This is because the complete inpuhé plant consists of the
genuine plant input and the control input in MRC control, d@he identification process
will be based on both of them.

Then the reference error will be defined as
er(Wa, Wy) = max{distGa(x u; Wo). r()} . u= Galy; Vib) (57)

wherer(x) is the reference signal. Note tretdepends not only o directly, but also on
W, indirectly through controli. And the controller generation is to searaht;(\W5) such
thateg is minimized.

If we reconsider the controller generation by treating #ference model as a plant, this
procedure will be same as system identification, but whatisé® be identified is not the
real plant but the reference signal. Therefore, from thigsfaf view, system identification
and controller generation are essentially the same. Andiffexence between them occurs
in two aspects. One is that the roles they play in MRC afiedint, which is a trivial fact.
The other is the algorithm to complete these two processeseay diferent, as shown in

the following section.
5.1.3 Learning and Training in MRC.

By gluing the two block diagrams for system identificatiordaontroller generation, we
will have a complete picture for the model reference cordsoh whole, see Figure 16. And
MRC is mathematically to minimize both the identificatiomagre, and reference errag
simultaneously.

In a word, MRC becomes a minimization problem. The algoritiymvhich the optimal
solution can be achieved is called learning and trainingrétlym. A well known approach
for minimization is the gradient method. However, we mustheeful to apply gradient

method to these two processes.
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Reference /\_Reference
Model Error

Identification System iOutput
System ‘
fldentification
Error 1
Controller !
: System/Plant :
Generator 'Control y Plant !

! Input Output |

Figure 16: Block Diagram of Model Reference Control.

First, even thouglu depends oW\, € is independent o\, because the identification
is according to X, u) by thinkingu as the part of the plant input, but not odyDue to the
explicit dependence @& on W, the gradient method reads

W;«rl — VW _ 8‘9_(3'
oW,
wheree is called learning rate. This generates a feedforward ndtand relatively easy
to be trained.

Second, in (56), we can see thiandy are strongly coupled. When the second equation
ony is substituted into the first one in (56) and repeat this ecewill be an composition
of infinitely many times. In other words, due to the indireepeéndence adz onW, through
u, the gradient methods will induce a recurrent or feedbadkork which makes training
harder than identification. A detailed discussion in terfsswral network will be provided
in the next section.

Since the delay occurs only at the network input, and the ostwaontains no feedback
loops, the network plant model can be trained using the bagiggation for feedforward

networks, which will be discussed with neural network. Taligorithm is called fline.
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5.2 NN Structureof MRC

Cybenko’s Theorem 5.1.3 provides a mathematical foundati@onstruct artificial neural
network and make it capable of universal approximation. sTheural network is a good
choice to implement MRC. In this section, we will mainly iotiuce the neural network

structure of MRC.
5.2.1 Neural Network

In [3], J.P. Aubin studied neural network in the mathematimework and brought up
some mathematical description about neural network in tiferdnt viewpoint. The fol-
lowing is a brief introduction of the neural network by Aulimotation in [3].

A neural network is a collection of "formal neurons” linked in certain way. @hode
of network is calledsynapseand its strength the synaptic weight. Each individual neuro
is a functiony; which receives input signad from the presynaptic neuran- 1, processes
the dferent signal and releases an output signal to the postsgmeguironi + 1. Precisely,

it can be written as
@i - X = (XJuer = @i(X). (58)
Suppose that thg" neuron is linked with othem presynaptic neurons, then it is excited by
n
> Wied) ~ B, (59)
k=1
if the thresholds; is taken into account, whesg; is the synaptic weight. The sign of;

indicates the excitation faw; > 0 and inhibition forw; < 0, and its modulus the strength.

Consequently the output of thjeth neuron is a function of the neuron potential as
n
Yi =9 [Z Woi(X) —ﬁj), (60)
k=1
whereg; is the nonlinear function in SW theorem, or precisely a sigtabfunctiono in

Cybenko’s theorem. Figure 17 shows the general structuaeneuron.

Whengy(X) = X, a one-layer network can be represented by

y=gWx-8), xeX Vy.,peY, WeL(XXY) (61)
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ORI

Figure 17: Structure of a neuron.

where£L(X, Y) denotes the space of linear operatéérom X to Y. For simplicity, we will
useW to represent all the parameters involved in one neuronudhich synaptic weights
w; and thresholg.

If there areL > 1 layers in the network, the sequence of signals is repreddmt
% =g(Wix_1),  xeX, Wel(X.,X), i=1....L (62)

whereX, = X andX_ = Y are the input and output spaces, and ot&rare the spaces of

"hidden layers”. Then the input and output are related infttiewing way

X = gL (WLGL-1 (.. (91 (WiXp)) .. ) . (63)

Note that the sequence of superposition implies the conatita of several layers of neu-

.....

regarded as a one-layer network controlledﬁtyas shown below
y =X = D0, W) = (%o, Wi, ..., WL). (64)
The following theorem is useful for choosing the number gEla of neurons.

Theorem 5.2.1.Let g be a bounded, increasing real functi&d,c RY is compact and
f : Q — RYis continuous. Then for any> 0, there exist some a N and W, Wij, Bj € R,

such that

n d
ryegxly(x) - f(X) <&, where ¥x)= ZW‘Q(Z Wij X; —,8,-).

i=1 =1
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It follows from this theorem that the feedforward neuralwetk of two layers is capable
of universal approximation to any continuous functions aompact set. By convention,
neural network of finite layers is calleynchronousand governed by a discrete dynamical
system (64). In contrast, the network of infinite layers iBethasynchronousand given
by a diferential equation

X (t) = f(x(t), W(t)), (65)
which maps the initial inpuxy € X to the output signal

(%o, W()) = Xw(y(T) (66)
wherex(+) is the solution of equation (65) controlled by»> W(t).
5.2.2 Learning Algorithm via NN

Following the notation in [3], we set

L
Wew=|[L£60X),  y=o(xW). (67)

i=1
In control theory, the system governeddy. X x ‘W — Y can be regarded as an adaptive

system with inputx, outputy and controMW € ‘W. For a given training sei € X x Y, a
pattern &°,yP) is recognized by the adaptive system programmed by suchtaot®V if
yP = ®(xP, W). And the choice of such a control is made learningthe patterns irk.

Namely one should find a contrdV satisfying
Y= 0P, W),  (x,yP) e K. (68)

Then the learning process can be formulated by the minimoizatroblem

1

O:irlf{ Z E(q)(xp,\K/),yp)"} , (69)
(xP.yP)eX

w

wherea € [1, o] andE is a distance olY. Suppose that the linear operafpey € L(X,Y)

is defined by

pey: X (PAY)(X) = (P, XY, peX*,yeY,xeX (70)
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whereX* is the dual space of and(p, x) = p(X). Let E, g and henceb be diferentiable
andW be a solution ofb,(a, W) = b for K = {(a, b)}, then one may start with an initial

synaptic matrid\°, defineW™?! as
W = W = —enXly @ g/ (WIX)* T (71)
whereg, is the learning ratex® = gi(W"X" ;) (starting atx) = a) and
Pl = WG 06" - W gL E (4 ~ b) (72)
We start with modifying the synaptic weights of the last lalydy computing
Pl =W gl () *E'(x] - b). (73)

andW! from (71), then all the synaptic matric®¥" in each layer can be obtained from
the last one back to the first one. Thus this algorithm is dadd@ckpropagation.
In particular, ifK = {(@%,b%)g=1,..., Q}, then (71) becomes
Q
W= W =~ > X @ g (WX ) pl (71y
=1

wherex™ = g(W"x"}) (starting atg? = a%) and
P = WG 00D - W gl () "B/ (! — bY). (74)

Certainly the solution o®, (a, W) = b may not exist for 4, b) € € when% is of large size.
In this situation, we can reconsider to search for its leqsase solution. Please refer to [3]

for details.

5.3 MRC Control of BZ Reaction

Model reference control has a wide application in engimgghbut not in biological sys-
tems. Few examples about MRC control of SIRS disease modelg\aen in [6]. In this
section, we will apply MRC to the BZ reaction determined by thversible Lotka-Volterra

system (11). By the analysis in Section 4.4.1, we know thatelaction exhibits nonlinear
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oscillation far away from the equilibrium point. Our goalteseliminate the oscillation, or
lower the oscillation amplitude by applying some control.

First, we need to choose the control variable. It is reaslentabhave each reactant of
(u, v, w) as the controller by adding the corresponding reactamtdiiease its concentration.

For instance, suppose thais the control variable, then the system with control is give

below
%‘ = uw-V) —g(ouw? —V?) + X (1)
v v(u—l)—sv2+s(§+x(1)—u—v—f;v) (75)
I 2
el —o (WU — gouf).

Second, we need to have a measure about the oscillationtad®liSince we know that
there exists an oscillation axW/ . in the oscillation zone, we can calculate the distance
from the surrounding solution té/° _ in the same level ofv. Here, we use the version

o,e

given in (38) to approximaté/y . Define

L(t) = VIu(t) — ha(w(t), )12 + [V(t) — ha(W(t), )]

where

MW@:m%lgg_%y de=%@+vw+%wﬁy

 hy(w, o)
Then we may think that there is no oscillation whHe) is small. Therefore our target is to
find a control to minimize_(t).
Third, we need to find a reference model. Actually there areymaptions for the
reference model as long as it can have the desired output.example, to control the

robot’s arm determined by

d?¢ _ do

gg = ~10sing— =+ u, (76)
the reference model can be chosen as

d?y, dy;

gz = "W -6+, (77)

and the numerical simulation is shown in Figure 18, see [26F may notice that the
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Figure 18: MRC control of robot arm.
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reference output smooths out its piecewise constant inpighwallows the robots arm can
move in any angle. However, generically speaking, it is isgiole to make the biological
system behave in any way we want because of its self-orgémzand robustness. But
since we care only about the long time behaviok pfetting smaller with time evolution,

we will simply choose the reference model as
r=-—r (78)

which gives the exponential decay to zero.

In this example, we will assume that the plant given by (75)riknown. Mainly we
will use (75) to generate input-output data set, namely ridiaing setX, for the learning
purpose in the system identification and controller geinamnat

We will consider both the plant and reference model in theetinterval [Qt] with t

given. For any partition of this time interval
O=tg<ty<...,<ty=t
whereN is the number of the sample data, define , far iL< N,
Xt)=x, as te[tgt),

wherex;’s are randomly picked in the range,[@1]. With x(t) as the input signal to the
plant, letL(t) be the corresponding output of (75) which is sampled at tiraed defined

by L, = Lp(t). Denotex = (Xi,...,Xy) andLp = (L3,...,LY), then we can generate
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the training set for the system identification’&s = (X,Lp). For the given NN plant, let
Ln(W1) = (Ln(t))1<icn be the corresponding NN plant output to the inguvhere W,
collects all the weights involved in the network of NN plahtow we are ready to define,

respectively, the identification error and cost functidioalidentification by
& (W) = ILp — Ln(Wy)l, Fi(W1) = e4(Wy).

The system identification is to minimize the functioﬁaﬂVY/l) over the parametehgll.
Next, similar to the random inpwt for identification, under a time partition 8 s <
S < --- < sy = t, for a random reference inpyt = (X1, . .., %m) WhereM is the number
of samples, let = (ry,...,ry) be the reference output of (78). Then the training set for
the controller is given byK, = (X;,r). And the reference error and the associated cost

functional are defined similarly as follows
(W) = ILp—rl,  Fr(Wo) = (Wo).

WhereWZ contains all the weights and biases in the NN controller.

In the numerical simulation, set
o =0.04 =0, & =500

The network of system identification is trained under the izgile control iru € [0.0, 0.1],
that is, the plant input ig = (x); with x; € [0, 0.1].

By the backpropagation, all the parameters in the NN platteijustified for the best
performance of the NN plant, that is, for the NN plant outpgagéng as close to the plant
output as possible. Here the Levenberg-Marquardt algarithemployed for backpropa-
gation. This algorithm is a variation of Newton’s method asdesigned for minimizing
functions which are in terms of the square sums of other fans{see [25]), like5, and
Fr. The built-in function for this algorithm in the SIMULINK isalledtrainim.

Usually the network processes one pattern in the traininggGeat a time, feed the

input into the network, processes with the weights and fonstin the layers and then
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compare the resulting output with the desired output. Theretrors are propagated back
to the network so that the weights can be adjusted correspglgdand carried into the
processing of the next pattern. One sweep through all therpatin’ is called an epoch,
that is, the number of the iteration of NN plant training togeeformed. In the simulation,
we use 300 training epochs for the system identification.

With the well-trained network of NN plant which provides aogbapproximation to the
plant (75), the system identification is complete. Now weraggly to train the controller.
It will always take much more time to train a controller thanidentify a plant because
the dynamic backpropagation is needed for the recurremtarktof controller. Therefore,
instead of processing the entire training $&tin one epoch, first we will dividé<; into
several segments, and then process them one by one in theansgnae for identification
until all the segments are presented to the network. Here Wehwose, for the controller
training, 30 segments for the training sk and 10 epochs for the processing of each
segment.

The network for controller is trained under the random reffiee inputs in [010], that
is, the reference input is = (r;); with r; € [0, 10]. After the controller is trained, we can
start the simulation, see the following figures.

As shown in Figure 19, without control, the plant outpuft) oscillates in the rela-
tively large amplitudes, and the oscillation lasts in atreédy long time around = 200.
But when the control is imposed, the oscillation amplituderdases dramatically and be-
comes very small after = 30. We can also compare the, ¥) output with and without
control given in Figure 20. We may observe that without colntn andv oscillates with
large amplitudes and small frequencies because they aagvigr from the oscillation axis.
While after the control is turned on, we can see that theyslliates with much smaller

amplitudes and high frequencies because they are drivem ¢tobe to the oscillation axis.
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Figure 19: MRC of BZ reaction given by reversible LV Model.
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Figure 20: Output of {, v) with and without control.
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