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SUMMARY 

 

Conventional free-radical miniemulsion polymerization has been well studied 

since its birth in early 1970s. Conventional free-radical miniemulsion polymerizations 

have inherent limitations associated with uncontrolled free-radical polymerization 

mechanism. The goal of this work is to develop a variety of unconventional miniemulsion 

polymerization techniques by applying new polymerization techniques (typically in 

solution or bulk) to miniemulsion systems to overcome their inherent limitations and 

extend the application of free-radical miniemulsion polymerization.  

This work focused on the exploration of kinetic and mechanistic aspects of 

unconventional miniemulsion polymerizations. First, enzyme initiated free-radical 

miniemulsion polymerization, in contrast with those conventional chemical initiated 

miniemulsion polymerization, is demonstrated for the first time as an answer to the 

challenges associated with using the hydrophobic of vinyl monomers in aqueous 

enzymatic reactions. A procedure for enzyme initiated free-radical miniemulsion 

polymerization was formulated and stable poly(styrene) latexes were successfully 

synthesized. The kinetics of enzyme initiated free-radical miniemulsion polymerization 

and the effect of reaction conditions on the polymerization was elucidated. Second, 

RAFT miniemulsion polymerization of hydrophobic monomers was performed in CSTR 

trains and the transient states, previously identified by others in our group, were 

elucidated. Next, RAFT miniemulsion polymerization of a partially water soluble 

monomer was studied. RAFT miniemulsion polymerizations of γ-methyl-α-methylene-γ-

butyrolactone, a partially water soluble lactone monomer derived from renewable sources, 

was successfully formulated. Homogeneous nucleation was found to play an important 

role in the free-radical “miniemulsion” homopolymerization of MeMBL. By using 

styrene as a comonomer, the RAFT miniemulsion polymerizations of MeMBL and 

styrene were well controlled and narrowly distributed copolymers of MeMBL/styrene 

were produced. Following the study of the partially water monomer, RAFT inverse 

miniemulsion polymerization was proposed for the polymerization of hydrophilic 

monomers. The kinetics of RAFT inverse miniemulsion polymerization of acrylamide 



 xx

exhibited the typical behavior of controlled polymerizations up to high conversions. The 

effects of reaction parameters on the polymerization rate and particle size were 

investigated. The dominant locus of radical generation for particle nucleation and the fate 

of desorbed monomeric radicals in inverse miniemulsion polymerizations were evaluated. 

Finally in this work, conclusions and implications are presented and ideas for future work 

are suggested. 

 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Conventional Free-radical Miniemulsion Polymerizations 

1.1.1 Definition of miniemulsions and conventional miniemulsion polymerizations 

 Emulsions are dispersions of liquid droplets (dispersed phase) in another 

immiscible liquid (continuous phase) created with the aid of surfactants. Most emulsions 

are oil-in-water systems and can be roughly classified into three categories according to 

their physical properties such as droplet size, turbidity and stability: macroemulsions, 

miniemulsions and microemulsions.[3]  

Macroemulsions, as the name implies, have the largest average droplet size of the 

three types of emulsions, and the droplets vary from hundreds of nanometers to tens of 

microns. Because of the relatively large size and the coarseness of droplets, 

macroemulsions tend to be milky and liable to phase separation. Microemulsions, 

however, are thermodynamically stable transparent emulsion systems that are only 

heterogeneous on the molecular scale because of a relatively high amount of surfactants 

employed.[4] Under different conditions, different forms of micro domains instead of 

large droplets can be dominant in microemulsions, such as bicontinuous phases, nano-

globules, micelles and liquid crystals. These domains fluctuate in size and shape by 

spontaneous coalescence and break-up, and have a typical equilibrium size about 10-

50nm.  

Conventional miniemulsions are aqueous dispersions of relatively stable oil 

droplets with a size range of 50-500nm prepared by strong shearing of a system 

containing oil, water, surfactants, and costabilizers.[5] A costabilizer is an osmotic agent 

to limit the diffusion degradation of miniemulsions, which will be discussed in the next 

section more in detail. Long chain alkanes and alcohols, e.g. hexadecane and cetyl 

alcohol, have proven to be good costabilizers in miniemulsions. [6-8] Polymers, chain 

transfer agents and comonomers can be also used as costabilizers.[9-11] The most common 
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type of miniemulsion polymerization is free-radical polymerization of oil soluble 

monomers in an aqueous continuous phase, initiated by common chemical initiators such 

as azo initiators or peroxides. “Conventional” is used here to describe such a class of 

miniemulsion polymerizations, in contrast with other types of miniemulsion 

polymerizations that will be discussed in the following chapters. 

1.1.2 Characteristics of conventional miniemulsion polymerizations 

Conventional miniemulsion polymerizations have several features similar to 

either macroemulsion polymerizations or microemulsion polymerizations, but even more 

characteristics distinguishing them from the other two types of emulsion polymerizations. 

Before going through these characteristics, it is important to discuss briefly the stability 

of emulsions and particle nucleation mechanisms in typical emulsion polymerizations. 

Stability of emulsions 

To achieve a good stability, emulsions have to be appropriately formulated 

against two main kinds of degradation: diffusional degradation and droplet coalescence. 

Once an oil-in-water emulsion is created, there exists a distribution of emulsion droplet 

sizes. The size difference results in Laplace pressure which causes a net mass transport of 

monomers from smaller droplets to larger ones by molecular diffusion through the 

continuous phase, or Ostwald ripening. [12] With the disappearance of smaller droplets, 

the average droplet size increases and this leads to phase separation. To avoid the 

diffusional degradation, a small amount of ultrahydrophobe called a costabilizer, can be 

added to the dispersed phase. If there is diffusion of monomers between different sized 

droplets, the concentration of the costabilizer would increase in the small droplets but 

decrease in the large ones. The osmotic pressure of the ultrahydrophobe would thus 

balance the Laplace pressure and stop the diffusion. Meanwhile, destabilization of 

emulsions can also occur by droplet collision and coalescence. Suitable amounts of 

surfactant can be employed in the emulsions to build electrostatic or steric forces and 

prevent droplet coalescence. 

Particle nucleation 
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 Monomers partition in different phases of emulsions: monomer-swollen surfactant 

micelles, the continuous phase, and emulsion droplets. Based on the dominant phases of 

nucleation, the mechanism of particle nucleation can be classified into three categories:[13] 

1. Micellar nucleation 

Initiator radicals generated in the aqueous phase enter the monomer-swollen 

micelles, as primary or oligomeric radicals, and initiate polymerization to form 

monomer-swollen polymer particles. 

2. Homogeneous nucleation[14] 

The initiator radicals propagate to a certain degree by reaction with monomer 

units and precipitate out from the continuous phase. Stabilized with a certain 

amount of surfactants, primary particles can form from the oligomeric radicals. 

The primary particles can keep growing into polymer particles by propagation of 

the oligomeric radical with the absorbed monomer, or coagulation with 

themselves. 

3. Droplet nucleation 

Radicals generated in the aqueous phase enter the emulsion droplets as single or 

oligomeric radicals and propagate in the droplets to form particles. 

With this information, we can now compare conventional miniemulsion 

polymerization and macroemulsion polymerization. There are significant physical 

difference between conventional miniemulsions and macroemulsions:  

1. Average droplet size. Conventional macroemulsions consist of large monomer 

droplets in microns while around droplets are 50-500nm for miniemulsions.  

2. Stability. The droplets in macroemulsions are typically very unstable due to 

coalescence and Ostwald ripening, followed by Stokes law creaming. It has been 

shown that this degradation of macroemulsions can be very fast.[15] For 

miniemulsions, the droplet distribution is relatively narrow due to strong shearing 

force or sonication. The shelf life of miniemulsions is much longer than 

macroemulsions thanks to the use of costabilizers. The small droplet size prevents 

Stokes law creaming. 

3. Surfactant concentration. The desired surfactant concentration in a miniemulsion 

is below critical micelle concentration (CMC), resulting in ideally no micelles or 
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very few micelles in the aqueous phase. On the other hand, the surfactant 

concentration in macroemulsion varies significantly and can be above CMC in 

many cases. 

Moreover, conventional miniemulsion polymerizations are distinguished from 

macroemulsion polymerizations based on the dominant particle nucleation mechanism. 

Conventional macroemulsion polymerizations usually follow a micellar nucleation 

mechanism and the polymerization process can be divided into three intervals. [16] In 

principle, all micelles become nucleated in interval I, usually at a low conversions of  

about 2-10 %. During Interval II, the number of monomer swollen particles keeps 

constant and the particles grow at a constant rate by the polymerization of monomer from 

the droplet reservoirs.  Interval III begins when the droplets disappear (typically at 40-

50% conversion) and continues to the end of the reaction. In contrast, droplet nucleation 

is the dominant process in miniemulsion polymerization. The droplets act as 

nanoreactors, therefore, the kinetics of miniemulsion polymerizations are sometimes 

similar to their bulk or solution counterparts. It is also worthy to note that in an 

miniemulsion polymerization without the intervention of a phase-transfer event, a radical 

in one particle has no direct access to a radical in another particle, i.e. the radicals are 

compartmentalized and therefore, the termination rate can be reduced in miniemulsion 

polymerizations. The effect of compartmentalization has profound effects on the kinetics 

of miniemulsion (and macroemulsion) polymerizations, which will be discussed in the 

following chapters in more detail. 

The differences between conventional miniemulsion polymerizations and 

microemulsion polymerizations are even more significant. Certain physical properties of 

these two emulsions can be criteria to distinguish them: 

1. Interfacial tension. The large amount of surfactants in microemulsions leads to 

complete surfactant coverage of the micro domains, and thus a very low surface 

tension. For conventional miniemulsions, however, a low surfactant concentration 

is required to minimize the potential existence of micelles in the aqueous phase. 

The interfacial tension is much larger than in microemulsions due to insufficient 

surfactant coverage of the droplet surface. 
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2. Average droplet size. The droplet size range of miniemulsions is from 50nm to 

500nm. For microemulsions, the micro domains have a size below 100nm, usually 

in the range of 10-50nm.  

3. Turbidity. Miniemulsions tend to have much higher turbidity than microemulsions. 

Miniemulsions appear milky while microemulsions are usually transparent. 

4. Stability. Conventional miniemulsions are kinetically stable and generally have a 

shelf life from hours to several months with the help of costabilizers. 

Microemulsions are thermodynamically stable phasses whose shelf lives are even 

longer than those of miniemulsions. 

Other than the physical differences, micellar nucleation and homogeneous 

nucleation are dominant nucleation processes for microemulsion while droplet nucleation 

dominates for miniemulsion. 

As a summary, the characteristics of miniemulsions are summarized as follows: 
[17] 

1. Steady-state dispersed miniemulsions are kinetically stabilized systems thanks to 

the use of costabilizers. High shearing forces are needed for the formation of 

miniemulsions. 

2. The interfacial tension between the oil and water phases in a miniemulsion is 

significantly larger than zero. The surface coverage of the miniemulsion droplets 

by surfactant molecules is incomplete. 

3. Particle nucleation in miniemulsions is dominated by droplet nucleation. 

4. During particle formation, the growth of droplets in miniemulsions can be 

suppressed. In miniemulsions, the redistribution of monomer is balanced by a 

high osmotic pressure of the costabilizer which makes the influence of the initial 

structures less important. 

5. Compared with microemulsions and a number of macroemulsions, the amount of 

surfactant required to form a miniemulsion is comparatively small to prevent the 

formation of micelles in the continuous phase. 

1.1.3 Previous work on conventional miniemulsion polymerization 

1.1.3.1 Early work (1973-mid 1980s) 
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A deep understanding of conventional miniemulsions and miniemulsion 

polymerizations has been achieved since the basic conception of miniemulsion 

polymerization was first proposed by John Ugelstad, John Vanderhoff and Mohamed EI 

Aasser in the 1970s.[18] The early work made breakthroughs in the clarification of particle 

nucleation processes in emulsion polymerizations and demonstrated that droplet 

nucleation could play an important role if the droplet size is small enough. [6, 19, 20] Other 

than the understanding of the particle nucleation mechanism, the early work outlined the 

basis of miniemulsion formulations, namely, that high shearing force should be applied to 

reduce the size of the monomer droplets, and that these droplets should be protected 

against both diffusional degradation and droplet coagulation by the use of long chain 

thiols, alcohols, and alkanes and proper surfactants. [19, 21, 22] In addition, various 

approaches for the preparation of miniemulsions was developed, such as by 

ultrasonication or via use of a microfluidizer.  

1.1.3.2 Recent work (mid 1980s-to present) 

 Fundamental research on the kinetics and applications of miniemulsion 

polymerizations made significant progress in this period.  

 Most of work was focused on the kinetic study of batch miniemulsion 

homopolymerizations with styrene as the monomer. The droplet nucleation mechanism 

and robustness of the miniemulsion polymerizations were thoroughly investigated. 

Polymers were found to be one candidate for use as costabilizer and could enhance the 

nucleation of droplets. It was first found by Schork that the addition of a monomer 

soluble polymer to an emulsion can slow the effects of Ostwald ripening and impart 

diffusional stability to the droplets.[11] Droplet nucleation was the dominant nucleation 

mechanism in the polymer-stabilized miniemulsion polymerizations.[11] As a result of the 

robust droplet nucleation, the polymerization rates and the particle number in 

miniemulsion polymerizations were found to be less sensitive to variations in the recipe 

or retarders compared with macroemulsion polymerization controls. Miller et al. carried 

out styrene miniemulsion polymerizations using different costabilizers and a small 

amount of poly(styrene) as a second costabilizer. [23-26] It was found that by adding the 

small amount of poly(styrene), the polymerization rate increased as a result of an 
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increased final particle number. The final number of polymer particles in the 

miniemulsion polymerization stabilized with cetyl alcohol and 1wt% of poly(styrene) 

was insensitive to the initiator concentration, while an increase in particle number was 

observed when cetyl alcohol was used alone. The authors attributed the enhancement in 

nucleation rate to the higher efficiency of the droplets containing polymer in capturing 

aqueous phase radicals. These hypotheses were checked by Blythe et al. who showed that 

the nucleation and polymerization rate enhancement were not affected by the molecular 

weight of the polymer. [27-30] These results ruled out the effect of the internal viscosity on 

the entry efficiency. In addition, neither the number of particles nor the polymerization 

rate was affected by the polymer end group (–SO3, –SO4, -H), indicating that the 

enhanced droplet nucleation was not due to the disruption of the condensed phase by the 

polymer. Therefore, it was proposed that the dominating cause of enhanced droplet 

nucleation was the preservation of monomer droplets by the presence of the polymer.  

 Other than the homopolymerizations, various copolymerizations were also 

performed in miniemulsion. It was found that the copolymer composition can be different 

in miniemulsion and macroemulsion copolymerizations because of different nucleation 

mechanisms. Reimers et al. carried out miniemulsion copolymerizations of methyl 

methacrylate (MMA) with other highly hydrophobic monomers, e.g. p-methylstyrene 

(pMS), and compared the kinetic behavior with that of macroemulsion copolymerization 

controls.[10] Although both the miniemulsion and the macroemulsion copolymerizations 

of pMS and MMA tended to follow the integrated copolymer equation, a copolymer 

richer in the pMS was formed in miniemulsion polymerization while a copolymer richer 

in the methyl methacrylate from macroemulsion polymerization. Droplets would have a 

higher concentration of pMS throughout the reaction which yields a copolymer with a 

higher pMS fraction by droplet nucleation. In contrast, micellar nucleation should lead to 

a copolymer with higher methyl methacrylate content, because it can cross the aqueous 

phase more readily. As the water solubility of the comonomer decreases, the difference in 

incorporation of the hydrophobic monomer between the mini- and macroemulsion 

polymerization becomes more pronounced. Delgado et al. made a comprehensive study 

the miniemulsion copolymerization of vinyl acetate and butyl acrylate and developed a 

mathematical model for the polymerization taking account of the effect of particle 
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equilibrium swelling. [31-34] Delgado also found a higher BA content in the copolymer 

from the miniemulsion copolymerization than the equivalent macroemulsion.[31] 

The particle nucleation mechanism can be also affected by the comonomer in the 

miniemulsion copolymerization. When a partially water soluble monomer, e.g. 2-

hydroxyethyl methacrylate (HEMA), was used with styrene, the fraction of polymer 

particles formed by droplet nucleation decreased by increasing the amount of HEMA 

though the total number of particles formed by droplet nucleation increased because 

HEMA presents some surface activity and yields a higher number of droplets.[35] When a 

completely water-soluble monomer such as acrylic acid (AA) was used, the extent of 

homogeneous nucleation, surprisingly, decreased as the concentration of acrylic acid 

increased, presumably because the water solubility of the oligomers increased with the 

AA content.[36] Oil-soluble initiator promotes nucleation in monomer droplets whereas 

homogeneous nucleation predominates in the system initiated with a water-soluble 

initiator. [31-34]  

 The continuous free-radical miniemulsion polymerization was preliminarily 

studied in this period. Continuous systems are attractive because of their high throughput 

and low operating and labor costs. Additionally, at steady state, continuous processes can 

produce polymers with more consistent composition compared to batch or semibatch 

systems. Barnette et al. performed the pioneering study on the continuous miniemulsion 

polymerization of methyl methacrylate in single CSTR.[7, 37] Unlike oscillation of 

conversion usually observed in continuous macroemulsion polymerizations, the 

continuous miniemulsion polymerization maintained a steady state of monomer 

conversion. Through the investigation of the miniemulsion polymerization of vinyl 

acetate in a CSTR, Aizpurua et al. confirmed the lack of oscillation phenomenon.30,31 

Samer et al compared the kinetic behavior of miniemulsion copolymerization of methyl 

methacrylate with 2-ethylhexylacrylate(EHA) in one CSTR and the batch miniemulsion 

polymerization.[38] The batch miniemulsion copolymerization did incorporate more of the 

less water soluble monomer EHA than a batch macroemulsion. However, this expected 

behavior was not observed in the CSTR, probably due to the presence of monomer-

starved polymerizing particle in the reactor. Other than in CSTR, free-radical 

miniemulsion polymerization was carried out in PFR. The study of Samer et al. showed 
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that with the same residence time, the choice of reactors, either CSTR or PFR, had 

negligible effect on the polymerization rate because of droplet nucleation.[39] Since the 

fouling and mixing issues were greatly eliminated due to droplet nucleation, PFR 

miniemulsion polymerization was proved to be an approach to produce relatively high 

solid content latexes. [40, 41]  

1.2 Selected New Techniques in the Last Decade 

Various new techniques emerged in the last decade, such as enzymatic 

polymerizations, and controlled polymerizations. Applying these new techniques to 

miniemulsion systems will endow conventional miniemulsion polymerizations numerous 

novel or unique features and contribute to the birth of different unconventional 

miniemulsion polymerizations. 

1.2.1 Enzymatic polymerizations 

 Enzymatic polymerizations are defined as chemical polymer syntheses in vitro  

via non-biosynthetic (non-metabolic) pathways catalyzed by an isolated enzyme.[42] 

There were a few reports about enzymatic oligomerization in the 1980s. [43-45] However, 

it was not until the mid 1990s when several families of enzymes highly efficient for the 

polymerization of unnatural substrates were found, that interest in the area of enzyme-

catalyzed polymerizations grew rapidly. [42, 46, 47]  

Compared with common chemical initiated polymerizations, enzyme-catalyzed 

polymerizations have several advantages as follows: 

1. Mild polymerization conditions with regard to temperature, pressure, and pH, 

which can often lead to energy efficiency; 

2. High enantio-, regio-, and chemoselectivities as well as regulation of 

stereochemistry providing development of new reactions to functional compounds 

for pharmaceuticals and agrichemicals; [48-50]  

3. Environmentally friendly synthetic processes. All naturally occurring polymers 

are produced in vivo by enzymatic catalysis. Enzymatic polymerizations can 

greatly contribute to global sustainability by using renewable resources as starting 

substrates of functional polymeric materials. 
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4. A proven new synthetic strategy for useful polymers otherwise difficult to 

produce by conventional chemical catalysts, such as polysaccharides.[49] 

Natural enzymes can be divided into six classes: oxido-reductases, transferases, 

hydrolases, lyases, isomerases and ligases.[51] Among the six classes, three have been 

reported to catalyze or induce polymerization in vitro, i.e. oxido-reductases, transferases, 

and hydrolases. Most oxido-reductases contain metal catalytic centrers, such as iron(III) 

(horse radish peroxidase, HRP), copper(I) (laccase), and manganese(II), (manganese 

peroxidase). Several oxido-reductases, e.g. HRP, can easily polymerize a wide range of 

phenol and aniline derivatives by the decomposition of hydrogen peroxide at the expense 

of aromatic proton donors. [52-57] In addition to polyphenols and polyanilines, HRP can 

also induce polymerization of vinyl monomers, such as styrene and methyl methacrylate, 

with the help of hydrogen peroxide. [58, 59] Transferases, such as phosphorylase and 

glycosyl transferase, catalyze group transfer reactions. The primary example of the 

potential of a transferase is the synthesis of amylase from D-glucosyl phosphate and 

oligomers with a minimum length of four glucosyl-residues as a primer by using potato 

phosphorylase.[60] Lipases, among different hydrolases, are the most-investigated 

enzymes for in vitro synthesis since they are known to catalyze reactions in organic 

media without any cocatalyst. The lipase-catalyzed polymerizations have been well 

reviewed in several papers. [61-64]  

To date, almost all of enzymatic polymerizations were carried out in 

homogeneous media in which the enzymes are either dissolved or suspended. Very 

limited efforts have been taken for enzymatic polymerizations in heterogeneous systems. 

Prior to this work, there was only one paper published about enzyme-catalyzed ring 

opening polymerization of lactones in miniemulsion.[65] 

1.2.2 Controlled free-radical polymerizations 

Controlled free-radical polymerization is a special form of addition 

polymerization where most of polymer chains maintain their livingness, i.e. the ability to 

continue adding monomer units, after the polymerization. Generally, controlled 

polymerizations include the following features: 
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1. Polymer chain livingness, i.e. the ability to grow after the initial monomer charge 

is exhausted. 

2. Pseudo-first order kinetics.  

3. Linear relationship between the number average molar mass of the polymer and 

the monomer conversion. 

4. Narrow molecular weight polydispersity (Mw/Mn) 

Controlled polymerization has become a popular method for synthesizing 

polymers since the polymer structure can be tailored thanks to the polymer chain 

livingness. Block copolymers can be synthesized easily by incorporating a polymer block 

in different stages. Additional advantages of controlled polymerization are predetermined 

molar mass, narrow polydispersity and control over end-groups of polymer products.  

Since anionic polymerization, the first kind of controlled polymerization 

technique, was discovered in 1956, [66, 67] various controlled polymerizations have been 

proposed. In the last decade, three new important controlled polymerizations was 

developed: 

1. Stable free-radical mediated polymerization (SFRP) [68, 69] 

2. Atom transfer radical polymerization (ATRP) [70] 

3. Reversible Addition Fragmentation chain Transfer (RAFT) polymerization[71, 72]  

Among these controlled polymerizations, RAFT polymerization is especially 

suitable for miniemulsion since RAFT polymerization has a faster polymerization rate 

than SFRP and ATRP from a mechanistic perspective, as will be discussed below. At the 

same time, RAFT polymerization is superior to the other controlled polymerization 

methods due to the mild reaction conditions and decreased sensitivity to water and other 

contaminants. 

1.2.2.1 Concept of RAFT polymerization 

The concept of RAFT comes from two different pieces of work first reported in 

the late 1980s. The Australian Commonwealth Scientific and Research Organization 

(CSIRO) group reported the use of poly(methyl methacrylate)  macromonomers as chain 

transfer agents in radical polymerization in 1986. [68, 73] The process was named addition 

fragmentation chain transfer (AFCT). A variety of AFCT agents were reported later,[74-76] 

http://en.wikipedia.org/wiki/End-group�
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however, the polymers prepared from these processes showed high polydispersity in most 

cases. It was not until 1998 that the CSIRO group found with thiocarbonyl thio 

derivatives gave polymers with predictable molecular weights and very narrow 

polydispersities using a wide range of monomers. Furthermore, the polymer end groups 

remained active at the end of the reaction. [71, 77] 

Almost at the same time, Zard et al. report polymerizations using a degenerative 

transfer of radical species to a xanthate (MADIX is used to describe this kind of 

polymerization). [78] In fact, RAFT and MADIX are almost the same, only slightly 

differing in the activating group on the chain transfer agents.  

1.2.2.2 RAFT agent and mechanism of RAFT polymerizations 

A RAFT agent is a special chain transfer agent with a high chain transfer constant. 

Unlike other common chain transfer agents, the chain transfer reaction of the RAFT agent 

is reversible and rapid. Most RAFT agents have a general structure as shown in Figure 

1.1: 

 

SS

Z

R

 
R: leaving group 

Z: activating group 

Figure 1.1 General structure of RAFT agents 

 

The function of Z group is to facilitate the reaction of free radicals with the C=S 

bond. The R group has to be a good leaving group and capable of reinitiating the 

polymerization. Radical stability, polarity, and steric factors all contribute to the leaving 

ability of the R-group. [79, 80]  

RAFT polymerizations are based on reversible chain transfer mechanism. [71, 72]  
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Figure 1.2 Mechanism of RAFT polymerizations 

 

 A conventional free-radical initiator generates radicals in step I. These radicals or 

oligomeric radicals derived from the initiator radicals by adding a few of monomer units 

attack the C=S bond of RAFT agent and form RAFT intermediate radicals reversibly. 

The intermediate radicals can reversibly fragment back to a RAFT agent and a leaving 

group R. In third step, the R group reinitiates the polymerization and grows into a 

polymeric radical. In the main equilibrium step, the growing polymeric chains undergo a 

chain transfer reaction with macro RAFT agents (the R group is substituted by other 

polymeric chains). If the chain transfer reaction is rapid enough, all the polymeric chains 

will grow at the same time, and as a result, RAFT polymerizations have pseudo first 

order kinetics. It is worthy to note that most of the final polymer chains have a RAFT 

functional group at the chain end; therefore, the polymers are “living” and can be used as 

a macro RAFT for chain extension. 

It is worthwhile to note that RAFT differs in mechanism from the other two 

controlled polymerization techniques, i.e. SFRP and ATRP. RAFT is based on chain 
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transfer reactions between propagating radicals and RAFT agents. Therefore, the radical 

concentration, ideally, will not decrease in the presence of RAFT agents since another 

radical is produced once a radical is consumed by the addition reaction to a RAFT agent. 

However, SFRP and ATRP operate via reversible termination of growing radicals, which 

result in a much lower radical concentration compared to the RAFT process. The 

mechanistic difference leads to a much slower polymerization rate in SFRP and ATRP 

compared to RAFT under similar reaction conditions. This is one reason we prefer RAFT 

polymerization to SFRP and ATRP in a miniemulsion system. Of course, retardation and 

inhibition were also found in a few of RAFT systems, e.g. using cumyl dithiobenzoate as 

RAFT agent.[81] The causes of these phenomena are still under investigation and are 

being rigorously debated in the literature. [79-82]  

1.2.2.3 RAFT polymerization in miniemulsions 

In the past ten years, great efforts have been taken in the application of RAFT 

chemistry to miniemulsion polymerizations. RAFT miniemulsion polymerizations are 

significantly different from conventional miniemulsion polymerizations (as mentioned in 

section 1.1.3) in regard to polymerization kinetics, molecular weight distribution and 

colloidal stability, etc. this is why RAFT miniemulsion polymerizations are classified as 

one kind of unconventional miniemulsion polymerizations here. [83-95]  

Lansalot et al. studied the role of RAFT agent structure on styrene 

miniemulsion.[90] The presence of the RAFT agent slowed the polymerization rate for 

miniemulsion polymerization significantly. The author suggested the exit of the RAFT 

agent-leaving group to the aqueous phase could be the reason for the retardation. This 

assumption was supported by the fact that no retardation compared to the conventional 

miniemulsion was observed when using a macro-PEPDTA agent whose R group can not 

exit. A detailed kinetic study of RAFT miniemulsion polymerization of styrene was 

reported by Luo et al.[94] Polymerization rate was found to be determined by both the 

chain transfer constant and the concentration of RAFT agent. Retardation was found to be 

an inherent feature of RAFT miniemulsions as a result of compartmentalization. 

Recently continuous RAFT miniemulsion polymerizations have been developed 

mainly at Georgia Tech. Smulders et al. reported the controlled styrene miniemulsion 
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polymerization in a CSTR and a CSTR train.[2] In spite of a relatively high polydispersity 

(PDI) of polymer in a single CSTR, the PDI can decrease by increasing the number of 

CSTRs. [2, 96] Unexpected transient states, an increase or fluctuation of conversion over 

prolonged times rather than a steady state was observed in the CSTR trains. Living 

gradient copolymers of styrene and n-butyl acrylate (BA) were synthesized in the CSTR 

train by feeding a macroemulsion of BA to a RAFT miniemulsion of styrene.[1] 

Continuous RAFT miniemulsion polymerizations have also been carried out in tubular 

reactor. Well defined polymer latexes, e.g. poly(styrene) and poly(vinyl acetate), were 

successfully produced in the tubular reactor using a surfactant combination of SDS and 

Triton X-405. [97, 98] While the kinetics in the tubular reactors should be compared to 

batch controls theoretically, the RAFT miniemulsion polymerizations in the tubes were 

found to have a small but consistently higher rate. Meanwhile, the PDIs in the tubes were 

consistently higher than in the comparable batch experiments. These differences were 

attributed to axial dispersion within the tubes and fluid slippage at the tube wall.[99] The 

effect of residence time distributions and the flow regime in the tubular reactor on the 

RAFT miniemulsion polymerization were also explored by using a hydrophobic dye as 

tracer.[99] It was found that axial dispersion was generally quite large in the tubes. 

Laminar flow was not observed even when the Reynolds numbers used were below 10. 

This strong axial dispersion was believed to be responsible for the broader molecular 

weight distributions in the tubular reactor. 

1.2.3 Inverse miniemulsion polymerizations 

Conventional emulsion polymerization can only be carried out with monomers 

that are essentially water-insoluble.  However, one can invert the whole process, using an 

organic solvent as the continuous phase, and water soluble monomer dissolved in water 

as the dispersed phase (i.e. inverse emulsion polymerization). In this case, water-in-oil 

surfactants are used to create the emulsion.  Either hydrophilic or hydrophobic initiators 

can be used. Such systems are used commercially to produce very high molecular weight 

water-soluble polymers, e.g. poly(acrylamide), poly(acrylic acid), which can be used for 

flocculants, and other applications.[3]  The pioneering work on this system was done by 

Vanderhoff et al. in 1962, where submicron particles were obtained.[100] Segregation of 
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polymerizing free radicals in these particles contributes to the very high molecular 

weights necessary for flocculants applications. Particle nucleation in these systems is 

thought to be both micellar and droplet nucleation.  High shear may be applied to reduce 

the droplet size. Thus, the classic “inverse emulsion polymerization” appears more like 

inverse miniemulsion polymerization due to the homogenization step and droplet 

nucleation. 

Inverse miniemulsion polymerization has been developed to a limited extent more 

recently. These systems are distinguished by the features of inverse emulsion 

polymerization (organic continuous phase, aqueous dispersed phase), but add in features 

of miniemulsion polymerization (high levels of shear and use of a costabilizer to prevent 

Ostwald ripening). Inverse miniemulsion polymerization has not been investigated to 

near the level of traditional O/W miniemulsion polymerization, but surpasses inverse 

emulsion polymerization due to greater colloidal stability.[101] Both inverse systems allow 

the formation of homogeneous particles consisting of various water soluble polymers 

such as poly(acrylamide) and poly(acrylic acid). 

 Few investigations have been carried out inverse miniemulsion polymerization. 

Landfester et al.  recently reported the inverse miniemulsion polymerization.[102] They 

showed that the principles of aqueous miniemulsions can be transferred to nonaqueous 

media. Relatively stable inverse miniemulsions could be achieved by adding salt as the 

costabilizer. Copolymerization of monomers with different polarities was also carried 

out.[103] Initiators soluble in either the oil or water phase, or residing at the interface were 

used, and the locus of initiation was found to have a large influence on the quality of the 

obtained copolymers. Wang et al. investigated the kinetics of polymerization of 

hydrophilic monomers by both direct miniemulsion and inverse miniemulsion.[104] They 

proposed a mechanism for inverse miniemulsions and further pointed out that dispersants 

can be crucial factor in determining the mechanism. Capek studied inverse miniemulsion 

polymerization of acrylamide.[105] The inverse miniemulsion polymerizations were 

surprisingly fast, reaching final conversion within several minutes. Two different 
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intervals of polymerization rate were observed and were attributed to the combination of 

the gel effect and nucleation mode. 

1.3 Goal and Outline of the Work 

 The goal of the work is to develop various unconventional miniemulsion 

polymerizations by the introduction of new techniques to conventional miniemulsion 

systems; at the same time, explore the kinetics and mechanism of these unconventional 

miniemulsion polymerizations. The outline of the work is shown in Figure 1.3. In 

Chapter 2, enzyme initiated free-radical miniemulsion polymerization is proposed for the 

first time to solve the problems in using enzymes and common vinyl monomers, resulting 

from the hydrophobicity of the vinyl monomers. Chapter 3-5 discuss different types of 

RAFT miniemulsion polymerizations, arranged in the order of increasing monomer 

hydorphilicity. The transient states of RAFT polymerization in CSTR trains, as 

mentioned in section 1.2.2.3, are studied in Chapter 3. Potential reasons and solutions for 

the transient states were given. In Chapter 4, RAFT miniemulsion polymerization of a 

partially water soluble lactone monomers derived from renewable sources is successfully 

formulated. The kinetics of free-radical emulsion and RAFT miniemulsion 

polymerizations of the novel monomer are studied. In Chapter 5, the RAFT inverse 

miniemulsion polymerization technique is developed for the first time. A well defined 

stable inverse hydrogel latex is achieved. The kinetics and special features of the RAFT 

inverse miniemulsion polymerization are investigated. Finally, a summary and 

suggestions for future work are addressed in Chapter 6. 
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CHAPTER 2 

ENZYME-INITIATED MINIEMULSION POLYMERIZATION* 

2.1 Introduction 

Enzyme-catalyzed polymerization in vitro has gained considerable attention in the 

last two decades as an efficient tool in the preparation of various polymers. [46, 60] The 

high selectivity, mild reaction conditions and environmental compatibility inherent in 

enzymatic reactions have made this approach a very attractive alternative in the synthesis 

of complex, stereoselective and bioactive compounds, which are often difficult to obtain 

by conventional chemical routes. To date, polymers such as poly(saccharides), 

poly(esters), poly(phenols) and poly(anilines) have been the synthesized by enzyme-

catalyzed polymerizations.[106-117] The enzymatic polymerization of hydrophobic vinyl 

monomers such as styrene, however, have scarcely been reported.[118, 119] 

Oxidoreductases, especially horse radish peroxidase (HRP), are known to have 

the ability to catalyze the oxidation of phenols, anilines and their derivatives. [107, 113-117] 

The potential of using HRP and other oxidases to catalyze the free-radical polymerization 

of vinyl monomers was first reported by Derango et al. [120] The polymers were formed in 

the presence of a large excess of hydrogen peroxide. They claimed that the oxo-Iron(IV) 

 π-radical cation generated by HRP and H2O2 may contribute to the polymerization. 

Poly(acrylamide), poly(methyl methacrylate) and poly(styrene) were synthesized by HRP 

and other oxidases with β-diketones as initiators. [118, 119, 121-125] It was found that no 

polymer was produced if a low ratio of H2O2:monomer was used in the absence of β-

diketones. Thus another mechanism was proposed where β-diketone radicals generated 

by HRP-catalyzed oxidation of the β-diketone by H2O2 may initiate the polymerizations. 
[118] 

One reason why enzymatic polymerizations of vinyl monomers have not been 

thoroughly investigated could be that the majority of common vinyl monomers are barely 
                                                 

* Portions of this chapter have been published in Biomacromolecules, 2006, 7, 2927-2930. 
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soluble in water, which is the traditional reaction medium for the application of 

biocatalysts. Indeed, hydrophilic vinyl monomers were utilized in most previous studies 

using HRP as an initiator. [120-123, 125] Cosolvents have also been utilized to allow 

polymerization of hydrophobic monomers. [118] However, the yields of polymer were 

relatively low under these conditions, i.e. 21.2% in THF-H2O and only 3.8% in methanol-

H2O cosolvent after 24 h. [118] 

Here we demonstrate a simple way to realize the enzyme-initiated polymerization 

of hydrophobic vinyl monomers in an aqueous system by the use of miniemulsion 

polymerization. The methodology demonstrated here can also achieve enzyme-initiated 

polymerization of various hydrophobic vinyl monomers other than styrene, taking 

advantage over conventional polymerizations in mild and “greener” conditions, 

especially suitable for those thermosensitive monomers or chemoselective 

polymerization.[126] 

 

2.2 Experimental Section 

2.2.1 Materials 

Styrene (J.T. Baker) was purified by removing the inhibitor tert-butylactechol by 

passing the monomer through a column packed with inhibitor remover (Aldrich), 

followed by distillation under vacuum. Hexadecane (Aldrich, 99%), and sodium dodecyl 

sulfate (SDS) (J.T. Baker. 99.8%) were used as received. Deionized water was generated 

with a U.S. Filter Systems Deionizer and was used without further purification. 

Horseradish peroxidase (HRP) (TCI America), hydrogen peroxide (Aldrich, 30% w/w) 

and 2, 4-pentanedione (ACAC) (Alfa Aesar, 99%) were used as received. 

2.2.2 Polymerization 

The miniemulsion was prepared by adding a solution of degassed styrene and 

hexadecane to a solution of sodium dodecyl sulfate in deionized water. The mixture was 

stirred under nitrogen in an ice bath for 10 min, and then sonicated with a Fischer Model 

30 sonic dismembrator operated at 70% power output for approximately 10 min, while 

being stirred under nitrogen and cooled in an ice bath. HRP was dissolved in a small 
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amount of deionized water and purged with nitrogen for 10 min. A portion of the HRP 

solution was injected in the styrene miniemulsion and stirred for 5 min, followed by 

adding ACAC and H2O2 simultaneously. The miniemulsion was stirred under nitrogen 

and samples were drawn at intervals. The samples were poured into a large excess of cold 

methanol. The polymer was precipitated and filtered, washed with cold methanol and 

dried under vacuum at 30°C. 

2.2.3 Characterization 

The dried polymer was dissolved in chloroform (J.T. Baker, HPLC) and filtered 

through a 0.2 μm syringe filter. GPC analyses were carried out using three columns 

(American Polymer Standards styrene-divinylbenzene 100, 1000, and 105 Å) at 30 °C. 

The columns were connected to a Viscotek GPCMax pump and autoinjector, a Waters 

410 refractive index detector, and calibrated with narrow poly(styrene) standards 

(Polymer Laboratories). Chloroform was used as the eluent at a flow rate of 1.0 mL/min, 

and the injection volume was 100 μL. 

Latex particle radius were analyzed using quasi-elastic light scattering (QELS, 

Protein Solutions DynaPro). The conversion of styrene monomer conversion was 

determined gravimetrically. 

2.3 Results and Discussion 

2.3.1 Kinetic study of HRP catalyzed miniemulsion polymerization 

Assuming the polymerization follows the mechanism outlined in the 

introduction[118], it is believed that H2O2 oxidizes HRP and the oxidized metal center is 

reduced by ACAC, yielding ACAC-derived radicals in the aqueous phase.  These radicals 

presumably can do two things to initiate the polymerization, either (i) enter the monomer 

droplets and start the polymerization directly in the droplet, or (ii) oligomerize the small 

fraction of styrene that is present in the aqueous phase, with these active styryl chains 

entering the droplets as they get more hydrophobic with increasing chain length.  
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Figure 2.1 Relationship between of conversion and reaction time of the HRP mediated 
miniemulsion using the recipe in Table 2.1. 

 

The main recipe used for HRP-initiated miniemulsion polymerization is shown in 

Table 2.1.  It is interesting to note that the conversion of styrene proceeded slowly until 

360 min, as shown in Figure 2.1.  After 360 min, the conversion of styrene increased 

significantly, followed by a gradual decrease in polymerization rate after around 800 min. 

There are many possible causes of these observations.  The consumption of ACAC and 

H2O2 with time, which decreases the radical initiation rate, could cause the decreased 

polymerization rate observed at long times. A loss of enzyme activity or degradation of 

HRP with increasing reaction time could also contribute to this phenomenon. Concerning 

the induction time, one potential cause is an imbalanced ratio of ACAC:H2O2 in the 

aqueous phase. Although the molar ratio of ACAC:H2O2 was chosen to be close to an 

optimal ratio reported previously for another polymerization system (set at 1.3:1, (Table 

2.1)) [59], the actual ratio of ACAC:H2O2 in the aqueous phase, where the enzyme is 

presumed to reside, could be much lower due to the preferential partitioning of ACAC 

into the monomer droplets. Additionally, it is possible that a different initiation 
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mechanism operates under these conditions. Derango et al. suggested a different 

mechanism could operate under some conditions, and found that with a low ratio of vinyl 

monomer:H2O2, polymerization could take place even without ACAC (vide supra). [120, 

126]  In the present work, the concentration ratio of styrene to H2O2 in the aqueous phase 

may be quite low. Assuming that all the H2O2 was dissolved in the aqueous phase that 

was saturated with styrene, the molar ratio of styrene to H2O2 was around 0.04 at the start 

of the polymerization. [127]  These conditions may favor the alternate mechanism of 

Derango et al. Furthermore, the drastic changes in polymerization rate at certain times 

throughout the process may be indicative of the system operating via different 

mechanisms at different times.  

Table 2.1 Recipe for HRP-catalyzed miniemulsion polymerization 
Miniemulsion Enzyme and substrates  
H2O 2.88g HRP 2.4mg 
Styrene 0.689g H2O2(30Wt%) 7μL 
SDS 0.0155g ACAC 9μL 
Hexadecane 0.0162g   

 
Although a much smaller amount of HRP and H2O2 were used than the previous 

report, [118] the conversion after 24 h, around 48%, was still much higher than previously 

reported using co-solvent solutions. Moreover, a stable poly(styrene) latex with a 

narrowly distributed particle radius distribution around 50nm was achieved, as shown in 

Figure 2.2. The 1H-NMR spectrum of the poly(styrene) is shown in Figure2.3. 

 

 
Figure 2.2 SEM photograph of poly(styrene) latex nanospheres obtained from HRP-
initiated miniemulsion with the recipe in Table 2.1 after 24 h. 
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Figure 2.3 1H-NMR spectrum of HRP catalyzed poly(styrene) with the recipe in Table 
2.1 after 24 h using CDCl3 as solvent. 
 

There was a discontinuity in the number average molecular (Mn) weight of 

poly(styrene) in this HRP-initiated miniemulsion polymerization, similar to the trend 

observed in conversion. The Mn was almost constant at the beginning of the 

polymerization, and then sharply increased afterwards, as shown in Figure 2.4. It is worth 

pointing out the relatively high molecular weight of the poly(styrene), as high as to 406K, 

compared to the previous enzyme mediated work using a cosolvent, which gave 

molecular weights of ~30K. [118] A low concentration of ACAC in aqueous phase may 

lead to a low total radical concentration, accounting for the high molecular weight of the 

poly(styrene). The radical segregation effect in miniemulsion also favors high molecular 

weights by inhibiting termination of propagating radicals. 
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Figure 2.4 Relationship of Mn, PDI and the conversion using the recipe in Table 2.1. 

2.3.2 Effect of reaction temperature 

It is well known that temperature has significant effects on the reactivity of 

enzymes. Therefore the conversion of styrene at different temperature was measured after 

about 24 h. As shown in Table 2.2, temperature has dramatic influence on the 

miniemulsion polymerization and the conversion was lower at high temperatures. At 

305K, only 9.8% conversion was achieved after 24 h, while a much higher conversion 

could be achieved at a lower temperature at 279-296K. The result is reasonable given that 

a previous study showed that HRP has its highest activity at 5°C and gradually loses its 

activity at higher temperatures. [128] 
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Table 2.2 Effects of reaction temperature on the HRP-catalyzed miniemulsion 
polymerization 
Exp Temperature 

(K) 
Reaction time 
(mins) 

Conversion 
(%) 

Average particle radius 
(nm) 

1 279 1355 50.2 50.63 
2 296 1320 48.3 54.09 
3 305 1375 9.8 47.42 

 

2.3.3 Effect of enzyme amount 

The effect of the amount of enzyme used in the miniemulsion polymerization was 

investigated. The conversion of three experiments with increasing HRP concentration 

was measured after 24 h. With a doubling of HRP in experiment 4, the conversion in 

experiment 5 was greatly improved from 48.3% to almost a full conversion (Table 2.3). 

 

Table 2.3 Effects of the amount of enzyme on the HRP-catalyzed miniemulsion 
polymerization 
Exp HRP 

(mg) 
ACAC 
(μL) 

H2O2 

(μL) 
Conversion 
(%) 

Average particle radius 
(nm) 

4 2.4 9 7 48.3 54.09 
5 5.0 9 7 98.3 62.76 
6 9.0 9 7 100.0 65.16 

 

2.3.4 Effect of H2O2/ACAC ratio 

Previous studies have indicated the ratio of ACAC:H2O2 has a major influence on 

HRP-mediated polymerizations.[118, 119, 121, 122, 125] At low concentrations, hydrogen 

peroxide functions as an electron acceptor and initiator, while at higher concentrations it 

can inhibit enzyme activity. Therefore, a study was carried out for 24 h at 296K to 

determine how the concentrations of hydrogen peroxide and 2,4-pentanedione affected 

the outcome of styrene miniemulsion polymerizations. Four control experiments were 

carried out first. In these control experiments, one component in the reaction (HRP, 

ACAC, H2O2) was removed from the recipe to see the impact of each individual 

component on the polymerization. No poly(styrene) was formed in the control 

experiments except for a trace of polymer in the case where ACAC was not used (Table 

2.4). These results agreed with the results reported before. [118]  
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Table 2.4 Effects of H2O2 and ACAC on the HRP-catalyzed miniemulsion 
polymerization 
Exp HRP 

(mg) 
ACAC 
(μL) 

H2O2 

(μL) 
Conversion 
(%) 

Control 1 2.4 0 0 0 
Control 2 2.4 0 7 trace 
Control 3 2.4 9 0 0 
Control 4 0 9 7 0 
7 2.4 40 7 32.7 
8 2.4 20 7 51.2 
9 2.4 9 7 48.3 
10 2.4 9 15 52.6 
11 2.4 9 40 33.4 
 

As shown in Table 2.4, with an increase of ACAC concentration from 9 μL to 20 

μL, the conversion only slightly increased from 48.3% to 51.2%. Further increasing the 

concentration of ACAC, however, lead a slight decrease in the conversion. A similar 

phenomenon was observed by altering the concentration of H2O2. Increasing the amount 

of from 7uL to 15uL contributed an increase in conversion from 48.3% to 52.6%, while 

further increasing H2O2 resulted in a decrease in the final yield. Thus it is reasonable to 

assume that there should be an optimal ratio range of ACAC:H2O2 in the HRP catalyzed 

miniemulsion polymerization, although such conditions were not identified here. 

2.4 Conclusion 

Enzymatic miniemulsion polymerization was demonstrated in this work for the 

first time to be a way to use enzymes to polymerize hydrophobic vinyl monomers. Stable 

poly(styrene) latexes were synthesized by HRP initiated miniemulsion polymerization. A 

very small amount of HRP, H2O2 and ACAC was required to facilitate the miniemulsion 

polymerization while a relatively high conversion was achieved. 
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CHAPTER 3 

CONTINUOUS RAFT MINIEMULSION POLYMERIZATION 

-TRANSIENTS IN CSTR TRAINS* 

3.1 Introduction 

As mentioned in the first chapter, RAFT polymerization has been demonstrated to 

be a powerful and important new approach to produce polymers with well-defined or 

special architectures.[71, 72] Combining RAFT chemistry with miniemulsion 

polymerization leads to one kind of unconventional miniemulsion polymerization: RAFT 

miniemulsion polymerization.  

From an industrial standpoint, continuous miniemulsion polymerization is very 

attractive because it is robust to contamination and operating errors, and is generally 

considered to be a ‘‘green’’ process since it is based on an aqueous system. In addition, 

miniemulsions can produce polymers of uniform composition and final latexes with 

excellent shear stability exceeding those of conventional emulsion polymerizations. 

Therefore, performing RAFT miniemulsion polymerization in continuous reactors offers 

a promising solution to economically synthesize unique polymers on a large scale. 

However, most RAFT polymerization studies have been performed in batch conditions. 

There is only very limited work focused on controlled radical polymerization in 

continuous systems up to now. Cunningham et al. reported nitroxide mediated 

miniemulsion polymerization in a continuous tubular reactor recently.[129] Zhu, et al. also 

successfully employed continuous ATRP of methyl methacrylate in a tubular reactor.[130, 

131] Our group has performed continuous RAFT miniemulsion polymerizations in tubular 

reactors[97-99] and CSTR trains.[1, 2, 83, 132] 

Stability of CSTRs is a key issue for industrial processing to insure a uniform 

quality of product. It is well known that the kinetics of batch RAFT miniemulsion 

polymerizations are significantly different from conventional free-radical miniemulsion 

polymerizations. Therefore, it is important to understand the stability of CSTRs when 
                                                 

* Portions of this chapter have been published in Ind. Eng. Chem. Res. 2006, 45, 7084-7089. 
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they are used with RAFT miniemulsion systems. During our initial study of continuous 

RAFT miniemulsion polymerization in a CSTR train, some interesting phenomena were 

observed that warranted further investigation:[1, 2] (i) the conversion in each reactor in the 

CSTR train slowly increased with time, and (ii) there was a discontinuity in measured 

conversion values with time, as shown in Figure 3.1. The second effect seemed to suggest 

oscillations in the reactors. Both the conversion variations were of the order of 6-10%, 

which seems beyond the error range of gravimetry, the method used to measure 

conversions in our initial study. These results suggested the questions: is it possible for 

CSTRs carrying out RAFT miniemulsion polymerizations to achieve a steady state? 

What are the possible reasons for the previously observed instability? Here we revisit the 

RAFT miniemulsion polymerization of styrene in a CSTR train to investigate these 

transient phenomena and further explore the above questions.  

3.2 Experimental Section 

3.2.1 Materials  

Styrene (J.T. Baker) was purified by a column packed with inhibitor remover 

(Aldrich) specific for tert-butylactechol. Hexadecane (Aldrich, 99%), sodium persulfate 

(Aldrich, 98%), and sodium dodecyl sulfate (SDS) (J.T. Baker, 99.8%) were used as 

received. Deionized water was generated with a U.S. Filter Systems Deionizer and was 

used without further purification. The RAFT agent 1-phenylethyl phenyldithioacetate 

(PEPDTA), as shown in Figure 3.2, was synthesized according to literature procedures, 
[133] using the following materials: carbon tetrachloride (Aldrich, 99.9%), benzyl chloride 

(J.T. Baker, 99.9%), carbon disulfide (J.T. Baker, 99.9%), magnesium turnings 

(Lancaster, 99+%), methanol (J.T. Baker, 100.0%), ethyl ether (Fischer, certified A.C.S., 

anhydrous), and p-toluenesulfonic acid monohydrate (Aldrich, 98%).  
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Figure 3.1 Unexpected transients in CSTR trains in our previous study.[1, 2] (a) The 
conversion in each reactor slowly increased with time; (b) The discontinuity in measured 
conversion values with reaction time. 
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Figure 3.2 Structure of RAFT agent used in this study. 1-phenylethyl phenyldithioacetate 
(PEPDTA). 
 
 
 

3.2.2 CSTR trains 

A schematic of the CSTR train is shown in Figure 3.3. The train was kept under a 

slight nitrogen pressure. The miniemulsion was fed from a stirred and cooled (using a 

Fischer Scientific Isotemp 3016 cooler) flask into reactor 1 (R1) using a FMI valveless 

piston pump (P1). The sodium persulfate initiator solution was fed separately using a 

kdScientific syringe pump (P2). The CSTRs were 50 mL three-neck round-bottom flasks 

with an overflow weir that maintained each CSTR volume at approximately 40 mL. All 

CSTRs were equipped with a condenser and kept under nitrogen. The temperature in the 

oil baths was set to 71 °C to maintain a temperature of 70 °C inside the CSTRs 

throughout an experiment.[2] Experiments were started after the CSTRs and styrene 

miniemulsion feed were purged with nitrogen for about 1 h. The first two CSTRs were 

filled with miniemulsion and initiator solution in the same mass ratio as the mass flow 

ratio of pumps P1 and P2 during the experiment, and R3 was filled with one-third of its 

volume of miniemulsion. Before the first samples were taken, the system was allowed to 

stabilize for 20 h. Samples were withdrawn and put in hydroquinone-coated pans and 

dried under vacuum at room temperature. The conversion of the samples was analyzed 

gravimetrically. Potential changes in the miniemulsion feed associated with 

oligomerization were checked by monitoring the normalized UV absorbance of the GPC 

at 311nm,[2, 98] which will be discussed in detail below. 
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Figure 3.3 RAFT miniemulsion CSTR train setup. (a) The setup in the previous study[1, 2]; 

(b) The modified setup in this study (P3 was removed). 
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3.2.3 Miniemulsion preparation and recipe 

The miniemulsion was prepared by adding a solution of styrene, hexadecane, and 

RAFT agent to an aqueous solution of sodium dodecyl sulfate. The mixture was first 

homogenized for 10 min using a Virtis Cyclone I.Q.2 at 10,000 rpm in an ice bath and 

then sonicated via a Fischer Model 30 sonic dismembrator operated at 70% power output 

for approximately 2 h, while being stirred and cooled in an ice bath. The initiator solution 

was an aqueous solution of sodium persulfate, purged with nitrogen for 30 min. A typical 

recipe and the corresponding flow rates in the previous study are shown in Table 3.1. 

 

 
Table 3.1 A typical recipe and corresponding flow rates of continuous RAFT 
miniemulsion polymerization in the previous work. 

Miniemulsion feed 
(g) 

Initiator feed 
(g) 

Water 1176 Water 200  
SDS 6.36  SPS 2.45  
Styrene 283    
Hexadecane 6.61    
PEPDTA 2.44   

Flow rate=0.350 mL/min Flow rate=0.888 mL/h 
 

3.2.4 Analysis  

GPC. 

The dried polymer was dissolved in tetrahydrofuran (THF, Baker) and filtered 

through a 0.2 μm syringe filter. GPC analyses were carried out using three columns 

(American Polymer Standards styrene-divinylbenzene 100, 1000, and 105 Å) at 30 °C. 

The columns were connected to a Viscotek GPCMax pump and autoinjector, a Waters 

410 refractive index detector, and a LDC Milton Roy 3000 UV spectromonitor 

(analyzing at 311 nm) and calibrated with narrow poly(styrene) standards (Polymer 

Laboratories; Mn: 580-200K, Mw/Mn: 1.02-1.16). THF was used as the eluent at a flow 

rate of 1 mL/min, and the injection volume was 100 μL.  

NMR. 
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The structure of RAFT agent was verified by 1H NMR using a 300 MHz Varian 

Gemini at room temperature, using CDCl3 as the solvent. 1H NMR (ppm): δ 1.7d (3H, 

=CH-CH3), 4.2s (2H, S=C-CH2-), 5.1q (1H, =CH-CH3), 7.3m (10H, -C6H5). 

3.3 Results and Discussion 

As noted above, there were two types of transients observed in our initial 

experiments using a train of CSTRs. The first one, as shown in Figure 3.1a, is the 

continuous slow increase in conversion over time. The second is the discontinuity of 

conversion observed when taking samples on different days, as shown in Figure 3.1b. 

There are many factors that could contribute to these transient states in our CSTR 

train. Here we classify them into two categories: (i) factors associated with equipment 

design and operation; (ii) factors derived from the polymerization mechanism. These 

possible causes are discussed below. 

3.3.1 Equipment design and operation 

As shown in Figure 3.3, the miniemulsion feed was continuously pumped into the 

first CSTR reactor R1 and at the same time, the initiator was fed to R1 by the syringe 

pump P2. The syringe is of 30ml volume, so typically it is necessary to refill it with 

initiator feed every few days using the flow rate denoted in Table 3.1. It is possible that 

newly-filled syringes may have a slightly different concentration of initiator and this 

could be a cause of the discontinuity observed in Figure 3.1b, where a “gap” of 

conversion was observed. There is another important possible equipment design issue 

that could also lead to the poor performance of the CSTR train. The overflow weir of 

each reactor was relatively small (around 5mm in diameter). Consequently, when gravity 

was used as the only driving force for flow (Figure 3.3a), it was sometimes observed that 

the latex in the reactors did not flow smoothly and even clogged the weirs, likely due to 

the high surface tension of latex in the narrow overflow weir. If latex continued to 

accumulate in the reactor, it would cause an increased residence time in the reactor, thus 

increasing the conversion in the CSTRs. Eventually, once the volume of the latex 

accumulated beyond a threshold, flow would resume and the residence time would return 

to the normal state. This could result in a discontinuity of the type shown in Figure 3.1b. 
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To remove the potential for these effects, the original CSTR train shown in Figure 3.3a 

was modified as shown in Figure 3.3b. The latex overflow was kept flowing smoothly 

under a pressure of nitrogen and pump 3 was removed from the final reactor outlet. To 

probe the stability of the modified reactor train, both one free-radical miniemulsion 

polymerization (Table 3.2) and one RAFT miniemulsion polymerization experiment 

(Table 3.3) were conducted, where the initiator feed concentration was doubled and the 

initiator flow rate was halved relative to the typical recipe used the previous study.  

 

Table 3.2 Recipe and corresponding flow rates for the continuous conventional free-
radical miniemulsion polymerization in this work. 

Miniemulsion feed 
(g) 

Initiator feed 
(g) 

Water 1170  Water 100  
SDS 6.37  SPS 2.44  
Styrene 284    
Hexadecane 6.62    

Flow rate = 0.300 mL/min Flow rate = 0.444 mL/h 
 

 

 

Table 3.3 Recipe and corresponding flow rates for continuous RAFT miniemulsion 
polymerization in this work. 

Miniemulsion feed 
(g0 

Initiator feed 
(g) 

Water 1173 Water 100  
SDS 6.35  SPS 2.45  
Styrene 281    
Hexadecane 6.62    
PEPDTA 2.44    

Flow rate = 0.300 mL/min Flow rate = 0.444 mL/h 
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Figure 3.4 The conventional free-radical miniemulsion polymerization of styrene in 
modified CSTR trains. 
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Figure 3.5 RAFT miniemulsion polymerization of styrene with double initiator 
concentration and half initiator feed flow rate in modified CSTR trains. 
 

As shown in Figure 3.4 and Figure 3.5, there was no evidence of the transient 

behavior found in the previous study. The experiments were repeated several times with 

the new equipment setup and no transient behavior was ever observed. Figure 3.6 shows 

the relationship between Mn, PDI and the conversion in the reactors. With an increasing 

number of reactors, the Mn increased linearly with the conversion and the PDI decreased 

slowly. Clearly, the modified CSTR train exhibited good stability. Compared with the 

conventional free-radical miniemulsion polymerization, the RAFT miniemulsion 

polymerization in Figure 3.7 experienced a slower polymerization rate due to the 

retardation effect of RAFT agent.[134]  However, the conventional miniemulsion free-

radical polymerization seemed to suffer a limited conversion in the third reactor though it 

had a much faster polymerization rate, which could be due to the glass effect at high 

conversion. 
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Figure 3.6 Relationship between Mn, PDI and conversion of RAFT miniemulsion 
polymerization of styrene in the reactors. The recipe is shown in Table 3.3. 
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Figure 3.7 RAFT miniemulsion polymerization of styrene in the CSTR trains over five 
days. 
 

3.3.2 Polymerization mechanism 

3.3.2.1 Micellar nucleation 

Oscillatory transients in conventional emulsion polymerization in a CSTR are well 

known.[135-137] Thus, it was necessary to evaluate whether the discontinuity in conversion 

in Figure 3.1b might be a similar oscillatory transient. 

Oscillation in continuous emulsion polymerization results from the competing 

processes of particle growth and particle nucleation. It results in periods of more particle 

nucleation followed by periods where less nucleation takes place, which generate 

oscillations in particle number and monomer conversion. Miniemulsion polymerizations, 

however, should not be subject to the oscillatory behavior of conventional emulsion 

polymerizations in a CSTR. The locus of nucleation in miniemulsions is typically in the 
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monomer droplets instead of in micelles. In addition, the surfactant concentration in 

miniemulsions is much less than in emulsion polymerization. There should be no 

micelles to cause oscillation, so theoretically continuous RAFT miniemulsion should not 

have oscillations. 

However, to verify this reasoning, one experiment was run that lasted for one 

week, as shown in Figure 3.7. Typically, the frequency of oscillation is approximately 

four times the residence time. For this reactor train, the residence time in each reactor is 

about 2 h; however, as shown in Figure 3.7, the conversion stayed quite steady over one 

week. Thus, oscillation can be safely ruled out. 

3.3.2.2 Possible Feed Changes in the Storage Tank 

Given the above results, changes in the quality of the feed are the most likely 

reasons for the observed steady state drift in Figure 3.1. Several potential changes should 

be considered: 

1. Hydrolysis of the RAFT agent 

Dithioesters have been reported to hydrolyze under certain temperature and pH 

conditions.[138-140] Temperature and pH both play a significant role in the hydrolysis 

process. Higher temperatures and higher pH (above 7) tend to favor hydrolysis.[141, 142] It 

is also well known that PEPDTA shows inhibition and retardation phenomena.[134, 143-146] 

Thus it is reasonable to consider the gradual hydrolysis of PEPDTA in the feed tank as 

one cause of the increasing conversion observed in the CSTRs. However, in our CSTR 

train, both the low temperature and the use of anionic surfactants such as SDS generate a 

low PH environment that should suppress the hydrolysis process. In addition, PEPDTA is 

hydrophobic, and most of the RAFT agent will partition into the styrene droplets, making 

hydrolysis much less likely. Even so, to examine the above argument, the RI and UV 

detectors of the GPC were used to monitor possible changes in the miniemulsion feed. 

The onset of the possible RAFT degradation can be sensitively detected by the evolution 

of the absorbance via the RI and UV detectors. If there is indeed a hydrolysis, the small 

hydrolysis product molecules would cause the peak to slowly move towards lower 

molecular weight in the RI chromatograms and at the same time, the C=S UV absorption 

of the RAFT agent at 311 nm would decrease if there is a loss of C=S functionality. To 
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assess whether a degradation of C=S of PEPDTA might occur, the areas under the UV 

and RI curves of the chromatograms were compared. A relationship between the total 

mass of reactants and the total number of C=S bonds remaining using normalized UV/RI 

curves can be established by taking the ratio of the areas under the UV and RI peaks. 

Since the area under the RI peak is proportional to the total mass of the sample, which 

would not change over time, and that of the UV signal is proportional to the amount of 

C=S moiety or concentration of PEPDTA in the sample, a decrease in the UV/RI area 

ratio would indicate loss of the C=S bond. Figure 3.8 shows the normalized UV/RI area 

ratios plotted against the hydrolysis time for the miniemulsion feed in Table 3.3. It shows 

only marginal evidence of hydrolysis in the miniemulsion feed, even after 2 days. 
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Figure 3.8 Hydrolysis test of PEPDTA in the miniemulsion feed. The UV absorbance at 
311 nm was normalized by the area under the RI curve. 
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2. Oligomerization  

For controlled emulsion or miniemulsion polymerization, it is interesting to note 

that there is often some phase separated oil phase at the vortex. This is not just a special 

characteristic of RAFT miniemulsion polymerization,[83, 86] but occurs often in CSTR 

miniemulsion polymerization. In our previous experiments, there was also a thin layer of 

separated oil phase at the vortex of the miniemulsion feed.[2]   
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Figure 3.9 Evidence of oligomerization in the previous work.[2] The UV absorbance peak 
with higher molecular weight at 311nm increased with time as a sign of oligomerization. 
 

 

In the previous work, it was found that the miniemulsion feed in the storage tank 

was slightly oligomerized, as shown in Figure 3.9 and that the oligomerization rate was 

surprisingly fast.[2] Oligomerization in the feed should have two effects on the total 

polymerization rate. First, it generates RAFT-mediated oligomeric radicals or oligomers. 

If oligomerization occurs in the storage tank, this would eliminate the preequilibrium step 
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or initiation step of RAFT polymerization in which RAFT agent reacts with the 

monomer.[80, 134, 147] This helps to increase the polymerization rate over time. At the same 

time, these oligomeric radicals are less likely to desorb from the miniemulsion droplets. 

With a longer lifetime and the segregation effects in the miniemulsion droplets, these 

radicals have more opportunity to propagate, thus increasing the overall conversion. 

Second, oligomerization may contribute to superswelling of droplets.[86] Due to an 

uneven polymerization in the miniemulsion droplets at the initial stage of an experiment, 

the oligomerized droplets may draw monomer from the unreacted monomer droplets until 

the unoligomerized ones are completely consumed. Thus the total droplet number may 

decrease and this would slow the polymerization rate. These two effects are competitive. 

Whether the conversion increases or not depends on which the two effects dominates the 

process. 

We now consider the assumption of oligomerization in the miniemulsion feed 

tank.[2] Notice that, in Figure 3.1b, the conversion curve for the second day looks like a 

duplicate of that in the first day, and the conversion at 1200 min was even lower than at 

600 min, so the unsteady state was likely not caused just by oligomerization. 

Furthermore, there was no initiator added in the miniemulsion feed and the feed tank was 

cooled with an ice bath. So the question becomes: does oligomerization really happen in 

the miniemulsion feed under all conditions? Figure 3.10 shows that the UV adsorption of 

miniemulsion feed samples (at 311 nm) taken every 12 h. These correspond to the C=S 

content in the polymer chains. If oligomers were formed, the UV adsorption would move 

toward a lower retention time. However, Figure 3.10 shows no change of UV adsorption 

even after 36 h, indicating no oligomerization in the miniemulsion feed using the revised 

reactor setup. 
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Figure 3.10 Normalized UV absorbance at 311 nm of the miniemulsion feed. 

 

 

To further investigate the assumption of oligomerization in the miniemulsion 

feed, the top orange oil phase at the vortex, which should contain RAFT-mediated 

oligomers if there is oligomerization in the miniemulsion feed, was separated and 

analyzed by GPC. The results are shown in Figure 3.11. Again, there is no evolution of 

the curves, indicating no oligomerization in the separated oil phase. This again suggests 

that oligomerization in the miniemulsion feed is not significant. 

In the previous study, [1, 2] there was an oligomerization in the miniemulsion feed 

and it was suggested that the oligomerization process could contribute to the transient 

phenomena in the CSTR. This may be due to small amounts of impurities in the RAFT 

agent and the surfactant SDS. [148, 149] These effects of the impurities are very difficult to 

reproduce because of the different batch of the chemicals used. However, in this work 

there was no oligomerization observed in the miniemulsion feed. 
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Figure 3.11 Normalized UV absorbance of the oil phase separated at vortex of the 
miniemulsion feed tank. 
 

 

3. Redistribution of RAFT agent.  

It is well known that there is a loss of stability for miniemulsions that include a 

RAFT agent compared with conventional miniemulsions.[86] A common observation is 

the presence of a tiny oil phase separated at the vortex.  This was also found in our 

experiments after long periods of time. Thus, concern should be given to the stability of 

the miniemulsion feed since it would directly affect the stability of the following CSTR 

train. 

Up to now there have been very few papers dealing with the stability of controlled 

radical miniemulsions. A superswelling theory was recently proposed to explain the loss 

of stability that is sometimes observed.[86] However for the miniemulsion feed, the 

superswelling theory can not be applied since the superswelling theory requires 

oligomers to form unevenly in different droplets in the miniemulsions, and therefore does 

not account for colloidal instability of the miniemulsion feed prior to the onset of 

polymerization. From a colloidal stability standpoint, RAFT agent can be considered to 
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be a special costabilizer, but not of the same stabilizing effectiveness as costabilizers such 

as hexadecane. RAFT agent improves the stability of miniemulsions as when its 

solubility is comparable to hexadecane; when the RAFT agent is more hydrophilic than 

the costabilizer, it dilutes the costabilizer, making the miniemulsion less stable and 

contributing to oil phase separation. A simple model on the stability of RAFT 

miniemulsion is included in the Appendix A. 

Given the hydrophobicity of the RAFT agent used in this work, the RAFT agent 

is thought to have little effect on colloidal stability. Besides, the experiments showed 

indicate that the miniemulsion feed was stable for one week or more without obviously 

phase separation or creaming. Therefore, the possibility of an unstable miniemulsion feed 

being a key cause for the previously observed transients is ruled out. 

3.4 Conclusion 

Two categories of factors potentially contributing to unstable transients in RAFT 

miniemulsion polymerization in CSTR trains were examined in this work. Possibilities 

from equipment design and operation were first checked. When keeping the CSTR train 

under nitrogen pressure and constant concentration of initiator feed, no significant 

transient state was observed. Possibilities related to the polymerization mechanism were 

then evaluated. However, such possibilities were ruled out after careful analysis. 

Therefore, the transient states in the previous work appear to be a result of the previous 

equipment design and operation (and/or impurities) rater than mechanistic issues 

associated with RAFT miniemulsion polymerizations. A steady state in RAFT 

miniemulsion polymerization in a CSTR train can be achieved. 
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CHAPTER 4 

RAFT MINIEMULSION POLYMERIZATION OF PARTIALLY 

WATER SOLUBLE MONOMER* 

 

4.1 Introduction 

As mentioned in the first chapter, RAFT polymerization has been demonstrated to 

be a powerful tool to produce polymers with well-defined or special architectures. 

Besides the common homogeneous systems,[72, 150] the application of controlled radical 

polymerization to heterogeneous media such as miniemulsion has gained increasing 

interest in the last few years.[1, 2, 83, 97, 151-159]  

In the previous chapter, we discussed RAFT miniemulsion polymerizations in a 

CSTR. The monomer in the study was styrene, a typical hydrophobic monomer widely 

used in different applications. In this chapter, we will explore RAFT miniemulsion 

polymerization of partially water soluble monomers. Here we take γ-methyl-α-

methylene-γ-butyrolactone (MeMBL) as a representative partially water soluble 

monomer. 

One of the reasons why we selected MeMBL as our target monomer is that α-

methylene lactones have numerous unique physical, biological and chemical 

properties.[160-162]  α-Methylene lactones are typically colorless low viscosity liquids but 

with a very high boiling point due to their polar, cyclic structure. As a result, α-

methylene lactones can serve as excellent high boiling solvents for oligomers and 

polymers.[163] α-Methylene lactones are integral building blocks of many known natural 

products, such as the sesquiterpene lactones. [164] They exhibit various important 

biological activity responses, including cytotoxic, antitumoral and bactericidal properties. 
[160]  Some α-methylene lactones are also highly reactive monomers for polymerizations. 

Free-radical and anionic homopolymerization of α-methylene lactones have been 

                                                 

* Portions of this chapter have been published in J. Polym. Sci., Poly. Chem., 2008, 46, 5929-5944. 
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reported. [165, 166]  α-Methylene lactones have also been copolymerized with different 

monomers such as styrene, methyl methacrylate and methoxystyrene.[166-170]   

The unique structure of α-methylene lactones endows their polymers with useful 

properties and potential applications in a wide range of fields.  Poly(α-methylene 

lactone)s can be used as precursors of a class of polymers with multiple pendent 

functional groups on the backbone. Due to the incorporation of the lactone structure into 

the polymeric chain, poly(α-methylene lactone)s usually have high glass transition 

temperatures (Tg) and excellent resistance to common organic solvents.[165]  Therefore 

they can be used for thermoplastic tougheners, heat resist resins and dental resins.[163, 171-

173]  In addition to these favorable properties, poly(α-methylene lactone)s exhibit superior 

optical clarity and brilliance to poly(styrene), which makes poly(α-methylene lactone)s 

excellent candidates for optical fibers, moldings and organic glasses. [174-176] 

Among the α-methylene lactone family, γ-methyl-α-methylene-γ-butyrolactone 

(MeMBL) is of a particular importance. MeMBL is a cyclic analogue of methyl 

methacrylate (MMA) containing an exomethylene functional group and thus it is 

potentially a good substitute for MMA in various applications. Moreover, it has potential 

to be manufactured on an industrial scale from renewable sources. DuPont has developed 

a process for MeMBL synthesis from levulinic acid, a chemical intermediate derived 

from biomass. [162]   

Despite the interesting properties and applications of MeMBL and its polymers, 

only very limited investigations have been reported in the open literature on MeMBL, 

with most studies focused on the synthesis of MeMBL. [162, 177]  The polymerizations of 

MeMBL remain barely explored. To date, free-radical and anionic solution 

polymerizations of MeMBL have been reported in only one paper.[178]   

Many radical polymers are made in aqueous dispersed processes that allow 

production of polymer latexes with tailored properties. Poly(MeMBL) copolymers and 

blends by emulsion polymerization have been reported in several patents.[171, 172, 179]  

However, no detailed emulsion polymerization kinetics of MeMBL have been reported. 

Therefore, it is of significant importance to explore the polymerization properties and 

kinetics of MeMBL in aqueous dispersed systems such as emulsion (micellar nucleation 

dominant) and miniemulsion (droplet nucleation dominant).[180]  As an added benefit, the 



 49

ability to control the course of the polymerization of MeMBL would be a significant 

advantage. 

  Past work has shown that the miniemulsion polymerization of monomers with 

significant water solubility, such as acrylonitrile (~7wt% ), can lead to different reaction 

behavior.[13] [181] In particular, use of monomers with significant water solubility can lead 

to severe latex stability issues. In this chapter, we take MeMBL as a representative 

partially water soluble monomer and present a free-radical and RAFT kinetic study of 

emulsion/miniemulsion homopolymerization of MeMBL and copolymerization with 

styrene.[182] In doing so, we push the limits of the miniemulsion technique, as MeMBL is 

a monomer with significant water solubility (~9wt% based on water). 

4.2 Experimental Section 

4.2.1 Materials 

Styrene (ST) (Aldrich, >99%) and MeMBL (Dupont, >97%; major impurity is 

γ−methyl−γ-butyrolactone) were purified by a column packed with inhibitor remover 

(Aldrich) specific for hydroquinone. Hexadecane (HD) (Aldrich, 99%), sodium persulfate 

(SPS) (Aldrich, 98%), and sodium dodecyl sulfate (SDS) (J.T. Baker, 99.8%) were used 

as received. Deionized water was generated with a U.S. Filter Systems Deionizer and was 

used without further purification. The RAFT agent, 1-phenylethyl phenyldithioacetate 

(PEPDTA), was synthesized according to a literature procedure, [133] using the following 

materials: carbon tetrachloride (Aldrich, 99.9%), benzyl chloride (J.T. Baker, 99.9%), 

carbon disulfide (J.T. Baker, 99.9%), magnesium turnings (Lancaster, 99+%), methanol 

(J.T. Baker, 100.0%), ethyl ether (Fischer, certified A.C.S., anhydrous), and p-

toluenesulfonic acid monohydrate (Aldrich, 98%). The structures of MeMBL and 

PEPDTA are shown in Figure 4.1. 
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γ-Methyl-α-methylene γ-butyrolactone 
(MeMBL) 

1-phenylethyl phenyldithioacetate 
(PEPDTA) 

 
Figure 4.1 The monomer, MeMBL, and the RAFT agent, PEPDTA, used in the study 
 

 

4.2.2 Polymerization 

4.2.2.1 Free-radical “miniemulsion” homopolymerizations of MeMBL [183]   

Table 4.1 shows a representative recipe for free-radical “miniemulsion” 

homopolymerizations (Exp.1-9). The continuous phase of the miniemulsion was made by 

adding 0.28g surfactant, SDS, to 49g water and mixing for 15 min. The dispersed phase 

was a solution of 11.2g MeMBL and 0.22g costabilizer, HD.  The coarse emulsions were 

prepared by adding the dispersed phase to the continuous phase and homogenizing for 5 

min in an ice bath (Virtis Cyclone I.Q.2 at 10000 rpm). The miniemulsions were made by 

sonication of the coarse emulsions for about 5 min (Fischer Model 30 sonic 

dismembrator operated at 70% power output), with stirring in an ice bath. The initiator, 

SPS (0.036g), was dissolved in 1 ml water. After the miniemulsion was heated to the 

reaction temperature, the initiator solution was injected to initiate the polymerization. 

Samples were taken with syringe every certain interval for characterizations. 

 

Table 4.1 Recipe for free-radical miniemulsion homopolymerization of MeMBL. 

Component Mass 
(g) 

Notes 

 water 50.0  
Surfactant SDS 0.28 0.018mol/L 
Initiator SPS 0.036  
Monomer MeMBL 11.2 22 wt% of water 
Costabilizer Hexadecane 0.22 2 wt% of monomer 
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4.2.2.2 Emulsifier free free-radical emulsion homopolymerizations of MeMBL 

11.2g of MeMBL was dispersed into 49g water under magnetic stirring at 80 rpm 

and purged with N2 for 15 min. SPS (0.036g) was dissolved in 1 ml water and injected to 

the dispersion when the dispersion was heated to 60oC to initiate the polymerization. The 

stirring rate was kept at 80 rpm throughout the polymerization. The translucent dispersion 

became milky within 5 min. At a conversion of 15%, the shelf life of resulting latex was 

more than 2 h. However, the latex became less stable with time and aggregation was 

observed during polymerization. 

4.2.2.3 Free-radical miniemulsion copolymerizations and RAFT miniemulsion 

polymerizations of MeMBL and styrene  

A representative recipe for free-radical miniemulsion copolymerizations (Exp. 12-

14) and RAFT miniemulsion polymerizations (Exp. 17 and Exp.18) is shown in Table 

4.2. The continuous phase of the miniemulsions was made by adding 0.17g SDS to 30g 

water and mixing for 15 min. For free-radical miniemulsion copolymerizations of 

MeMBL and styrene, the dispersed phase was a solution of 3.5g MeMBL, 3.25g styrene 

and 0.22g HD. The oil soluble initiator, AIBN, was dissolved in the dispersed phase. For 

RAFT miniemulsion polymerizations, the RAFT agent, PEPDTA, was added to the 

dispersed phase.  The coarse emulsions and the miniemulsions were prepared in the same 

procedure as for the free-radical “miniemulsion” homopolymerizations of MeMBL. 

 

Table 4.2 Recipes for free-radical and controlled miniemulsion copolymerizations of 
MeMBL and styrene. 

 Component 
 Free-radical mini RAFT mini 

Mass 
(g) 

Notes 

 Water water 30.0  
Surfactant SDS SDS 0.17 0.018mol/L 
Monomer MeMBL MeMBL 3.50 22 wt% of water 
 ST ST 3.25 [MeMBL]:[ST]=1:1 
Initiator AIBN AIBN 0.010 [ST]:[Initiator]=500:1 
Costabilizer Hexadecane Hexadecane 0.30 3 wt% of monomer 
RAFT - PEPDTA 0.068 [ST]:[RAFT]=125:1 
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Table 4.3 Experimental parameters for the polymerizations of MeMBL. 

Expt. Temp. 

(°C) 

MeMBL 

(g) 

ST 

(g) 

[MeMBL]
[ST]

SDS 

 (g) 

PEPDTA

(g) 

HD  

(g) 

SPS 

(g) 

AIBN 

(g) 

1 60 11.2 - - 0.28 - 0.22 0.036 - 
2 55 11.2 - - 0.28 - 0.22 0.036 - 
3 65 11.2 - - 0.28 - 0.22 0.036 - 
4 60 11.2 - - 0.28 - 0.22 0.024 - 
5 60 11.2 - - 0.28 - 0.22 0.048 - 
6 60 11.2 - - 0.18 - 0.22 0.036 - 
7 60 11.2 - - 0.42 - 0.22 0.036 - 
8 60 11.2 - - 0.28 - 0.14 0.036 - 
9 60 11.2 - - 0.28 - 0.34 0.036 - 
10 60 11.2 - - - - - 0.036 - 
11 70 5.61 - - - - - - 0.008 
12 70 1.40 5.21 1:4 0.17 - 0.30 - 0.01 
13 70 3.50 3.25 1:1 0.17 - 0.30 - 0.01 
14 70 5.61 1.30 4:1 0.17 - 0.30 - 0.01 
15 70 1.40 5.21 1:4 - 0.068 - - 0.01 
16 70 3.50 3.25 1:1 - 0.068 - - 0.01 
17 70 1.40 5.21 1:4 0.17 0.068 0.30 - 0.01 
18 70 3.50 3.25 1:1 0.17 0.068 0.30 - 0.01 
 

4.2.3 Characterization 

The monomer conversions were measured gravimetrically after the polymers 

were precipitated in chilled methanol and dried under vacuum at 50oC. 

The molecular weight and polydispersity of the polymers were measured by gel 

permeation chromatography (GPC). The dried polymer samples were dissolved in 

chloroform and filtered through a 0.2μm syringe filter. GPC analyses were carried out 

using three columns (American Polymer Standards styrene-divinylbenzene 100, 1000, 

and 105 Å) at 30°C. The columns were connected to a Viscotek GPCMax pump and 

autoinjector, a Waters 410 refractive index detector, calibrated with narrow poly(styrene) 

standards (Polymer Laboratories; Mn: 580-200K, Mw/Mn: 1.02-1.16). Chloroform was 

used as the eluent at a flow rate of 1 mL/min, and the injection volume was 100 μL. 

  The 1H NMR spectra of MeMBL-styrene copolymers were recorded at 24°C with 

a Bruker AMX 400 system. CDCl3 was used as solvent with tetramethylsilane (TMS) as 

a reference.  
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The stability of the emulsions and latexes was evaluated by their shelf lives which 

were measured by the time before significant phase separation of the stored emulsions or 

latexes was visually observed at room temperature. 

Latex particle radius and polydispersities were analyzed using quasi-elastic light 

scattering (QELS, Protein Solutions DynaPro with DynaPro DCS v 5.26 software). The 

particle number pN  was estimated with the following equation: 

 0

34
3

p

p

m xN
rπ ρ

=  (4.1) 

where 0m  is the initial weight concentration of the monomer (g/mL H2O), x  is the 

conversion of the monomer, r  is the average radius of particles and pρ  is the density of 

poly(MeMBL). Here the density of poly(MeMBL) was estimated as 1.4g/cm3. For the 

homopoly(MeMBL) latex, the samples were diluted in pure water, while the copolymers 

of MeMBL were diluted in styrene saturated water. 

4.3 Results and Discussion 

To explore the polymerization of MeMBL in aqueous dispersed systems, we used 

the following approach. First, the free-radical miniemulsion homopolymerization was 

explored to elucidate general reactivity patterns of the monomer and to elucidate basic 

features of dispersed polymerization with this new monomer.  With this information in 

hand, we then developed a strategy to realize the controlled radical polymerization using 

RAFT in a dispersed system. 

4.3.1 Free-radical “miniemulsion” homopolymerization 

Poly(MeMBL) has a high Tg and good solvent resistance that can lead numerous 

process difficulties in industrial production. Miniemulsion polymerizations provide a 

solution to overcome these problems and can be used to produce a poly(MeMBL) latex in 

a “green” environment since it is based on an aqueous system. Since there is no report on 

the kinetics of miniemulsion polymerization of MeMBL so far, a kinetic study was first 

performed to build our knowledge of the properties of the polymerization. 



 54

In the study of miniemulsion homopolymerization of MeMBL, there is significant 

concern about the colloidal stability of the miniemulsion droplets since the solubility of 

MeMBL in water is as high as 9wt% (based on water) at room temperature.  Several 

widely used anionic or cationic surfactants, (i.e. SDS, cetyltrimethylammoniumbromide 

(CTAB)) were tried here with HD as costabilizer to prepare a relatively stable 

miniemulsion of MeMBL. Even after optimization of the recipe, the miniemulsions had 

poor shelf lives of <1 h due to the extremely high solubility of MeMBL in water. 

Combinations of anionic or cationic surfactants with nonionic surfactants such as Triton 

X-405, Tween 80 and polyvinyl alcohol did not achieve a stable miniemulsion of 

MeMBL as well, although similar combinations improved the miniemulsion stability of 

some partially water soluble monomers such as vinyl acetate.[97]  In spite of the above 

difficulties, appropriate formulation of the recipe allowed fairly stable poly(MeMBL) 

latexes with particle radius from 60 to 200 nm to be produced (shelf life more than 4 

months) if the completion of the nucleation process was fast enough to create particles 

before the miniemulsion lost its stability. To simplify the kinetic study of the 

miniemulsion polymerization of MeMBL, a relatively standard recipe for miniemulsions 

(similar to that reported by Landfester for miniemulsion polymerization of acrylonitrile) 

was used here, as shown in Table 4.1.[1, 157, 181]  

The conversion-time plot of free-radical “miniemulsion” polymerization of 

MeMBL (Exp.1) is shown in Figure 4.2. The evolution of the particle radius and particle 

number of Exp.1 is shown in Table 4.4 and Figure 4.3. The polymerization rate increased 

until the conversion reached around 40%. The evolution of particle radius and particle 

number in Exp.1 showed a significant deviation from that of conventional miniemulsion 

polymerizations, even miniemulsions of partially water soluble monomers such as vinyl 

acetate and methyl methacrylate.[9, 184] There was a bimodal distribution of particle radius 

at a low conversion. The small portion of large particles was centered at about 100nm 

while most of the particles were small ones centered at around 35nm, with these smaller 

particles growing with time to about 80nm (Table 4.4). As for the particle number, there 

was a sharp jump at the start of the polymerization and a steady increase until about 15% 

conversion, followed by a slight decrease to almost a constant value. Similar trends in 

particle number for Exps. 2-9 are shown in Figure 4.4. For an ideal miniemulsion 
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polymerization, droplets nucleate to particles in a one to one transformation.[180] 

Therefore, a constant value of particle number and a uniform distribution of particle 

radius should be obtained during the polymerization. The significant deviation in the 

particle number and the particle size distribution in the “miniemulsion” polymerization of 

MeMBL [183] implies there may be mechanisms other than the droplet nucleation that 

generate the particles. That is why quotations are added to the term “miniemulsion” 

polymerization here. 

 

Table 4.4 Particle radius distribution of free-radical “miniemulsion” homopolymerization 
of MeMBL in experiment 1 at 60ºC. 
 
Conversion 
(%) 

Small particles 
<70nm 

Large particles 
>70nm 

 Particle 
radius 
(nm) 

Weight* 
percentage 
(%) 

Particle 
radius 
(nm) 

Weight* 
percentage 
(%) 

0.26 35 76 110 19 
   161 5 
5.6 35  80 110 9 
 50 6 162 4 
   238 1 
13.8 24 40 75 2 
 35 53 110 4 
   162 1 
23.4 35 34 111 1 
 51 63 163 2 
41.5 35 35 76 15 
 52 46 111 3 
   164 1 
58.5 52 61 76 32 
   112 8 
68.8 52 28 77 71 
   113 1 
73.6 52 27 77 72 
78.0   77 99 
   113 1 
* The weight percentage of particles is given by DynaPro DCS v 5.26 software. 
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Figure 4.2 Conversion-time plot of free-radical “miniemulsion” polymerization of 
MeMBL in experiment 1 at 60 oC. 
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Figure 4.3 Particle number evolution in free-radical “miniemulsion” polymerization of 
MeMBL in experiment 1 at 60ºC. 
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Figure 4.4 Particle number evolutions in free-radical “miniemulsion” polymerizations of 
MeMBL. 
 

 

An emulsifier-free emulsion polymerization was carried out in Exp. 10 to validate 

the homogeneous nucleation assumption in the “miniemulsion” polymerization of 

MeMBL. Different mechanisms have been proposed to explain the nucleation process of 

emulsifier-free emulsion polymerizations: homogeneous nucleation,[14, 185] coagulation 

nucleation,[186] and micellar nucleation.[187-190] None of the three mechanisms alone can 

predict nucleation behavior for all the monomers studied.[191]  However, when a monomer 

with high water solubility and little or no surfactant was used (e.g. the conditions in 

Exp.10), the homogeneous nucleation mechanism is highly favored and dominates in 

emulsifier free emulsion polymerizations.[14, 185, 191]  As shown in Figure 4.5, the 

conversion in emulsifier-free Exp.10 increased with reaction time but at a much slower 

rate than in Exp.1. The evolution of particle number in Exp.10 had a similar trend as 

Exp.1 - a burst of particle number at the start of the polymerization and then a decrease to 
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a constant value (Figure 4.5). The number of particles in Exp.10 was significantly lower 

than in Exp.1, mainly due to the absence of surfactant to stabilize the primary particles. It 

is interesting to note that the particle radius at the start of emulsifier free emulsion 

polymerization, as shown in Table 4.5, was around 35nm, almost the same size as that of 

the smaller particles in the bimodal distribution of Exps.1-9. These results show 

significant, although not conclusive, signs of dominant homogeneous nucleation in the 

Exps.1-9. 
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Figure 4.5 Emulsifier free emulsion polymerization of MeMBL at 60ºC. The latex 
became unstable when the conversion was above ~15% (shown as the dotted curve). 
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Table 4.5 Particle radius distribution of emulsifier free emulsion polymerization of 
MeMBL at 60ºC. 
 

Reaction 
time 
(min) 

Particle 
radius 
 
(nm) 

Weight 
percentage 
(%) 

5 39 70 
 58 26 
7.5 39 50 
 58 49 
10 56 85 
 83 14 
15 57 37 
 84 62 
25 59 59 
 86 41 
35 86 100 
45 85 84 
 125 15 

 

4.3.2 Effect of reaction parameters 

Experiments 1-9 were carried out to explore the effects of different reaction 

parameters on the kinetics of free-radical “miniemulsion” polymerization. 

Figure 4.6 shows the conversion-time curves at various reaction temperatures. 

The effect of temperature on the rate of free-radical miniemulsion polymerization of 

MeMBL was evaluated at 55, 60 and 65°C. As expected, the rate of polymerization 

increased with increasing temperature. This is likely due to both a lower propagation rate 

constant and a smaller population of free-radicals generated from initiator at lower 

temperatures. 
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Figure 4.6 Free-radical “miniemulsion” polymerization of MeMBL at different 
temperatures. 
 
 
 
 

Figure 4.7 shows the conversion-time curves at various initiator concentrations. 

Like the effect of temperature, the polymerization rate increased with increasing amount 

of initiator since more radicals can be generated. The amount of initiator seems have no 

effect on the final particle number, as shown in Figure 4.4. All the particle numbers in 

Exp.1, Exp.4 and Exp.5 were close to 1014/L after the conversion passed 40%. 
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Figure 4.7 Free-radical “miniemulsion” polymerization of MeMBL at different initiator 
concentrations. 
 
 
 
 

Figure 4.8 shows the effect of surfactant concentration on the free-radical 

“miniemulsion” polymerization of MeMBL. Higher conversion was achieved at a higher 

concentration of surfactant for the same reaction time. A larger number of particles can 

be obtained with a higher concentration of surfactant, since more primary particles can 

form and survive with the help of surfactant. The higher number of particles can 

contribute to the higher polymerization rate in the Exp.7, compared with Exp.6. 
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Figure 4.8 Free-radical “miniemulsion” polymerization of MeMBL with different 
concentrations of surfactant. 
 

 

 

 

Figure 4.9 shows the effect of costabilizer concentration on the free-radical 

“miniemulsion” polymerization of MeMBL. An increase in the amount of costabilizer 

from 1% to 3% (based on monomer) had no significant effect on the kinetics of 

miniemulsion polymerization. Even with a relatively high concentration of HD, the 

evolution of particle number in Exp.9 still showed a similar trend to Exp.1 (Figure 4.4), 

indicating that an increase of HD might not effectively suppress the non-droplet 

nucleation mechanisms. 
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Figure 4.9 Free-radical “miniemulsion” polymerization of MeMBL at 60 ºC with 
different concentrations of costabilizer. 
 

4.3.3 Controlled miniemulsion polymerization of MeMBL 

4.3.3.1 Strategy for control of the miniemulsion polymerization of MeMBL 

Based on the study of free-radical miniemulsion homopolymerization, several 

problems have to be overcome to achieve a well-controlled miniemulsion polymerization 

of MeMBL.   

1.  Stability of the RAFT miniemulsion.  Although the RAFT agent itself has limited 

influence on the stability of miniemulsions,[192]  RAFT miniemulsions, as 

compared with conventional miniemulsions, can lose their colloidal stability at 

the onset of the polymerization.[83, 90, 193, 194]  Luo has pointed out that this could 

be caused by an uneven nucleation in the controlled polymerizations.[86] 

2.  Homogeneous nucleation for the miniemulsion polymerization of MeMBL 

reported above. As discussed above, homogeneous nucleation may dominate the 

nucleation process of the free-radical miniemulsion polymerization of MeMBL. 
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As a result, the solubility difference of the RAFT agent and MeMBL in the 

aqueous phase where initiation occurs can lead to poor control of the 

polymerization.  

3.  Identification of a suitable RAFT agent for controlled polymerization of MeMBL. 

The choice of a suitable RAFT agent for MeMBL is complicated by the fact that 

the growing polymeric chains are tertiary radicals. MeMBL has a structure similar 

to MMA, and so RAFT agents that are known to work well with MMA would be 

good candidates.  To achieve a good control over the polymerization of MeMBL, 

the R group of the RAFT agent (R-S-(C=S)-Z) should be a very good leaving 

group and also a good reinitiating radical. [80]  At the same time, the Z group is 

required to increase the reactivity of propagating radicals towards the S=C bond. 
[79]  Moreover, the RAFT miniemulsion polymerization of MeMBL must have a 

reasonable polymerization rate before the miniemulsion droplets lose their 

stability. A widely used RAFT agent effective for MMA, cumyl dithiobenzoate, 

showed some level of control over MeMBL in bulk polymerization. However, 

severe aggregation of the latex was observed during the RAFT miniemulsion 

homopolymerization of MeMBL, along with significant rate retardation (data not 

shown). On the other hand, cumyl phenyldithioacetate, which led to less rate 

retardation than cumyl dithiobenzoate, gave only limited control over the 

polymerization of MeMBL. 

To overcome the above difficulties, styrene was used as a comonomer. The 

introduction of styrene enabled controlled miniemulsion copolymerization of MeMBL 

due to several factors. First, the use of styrene can enhance the stability of MeMBL 

miniemulsions. Styrene has a much lower solubility in water compared with MeMBL and 

MeMBL dissolves well in styrene. The addition of styrene thus can shift the partitioning 

of MeMBL between water and the droplets. Both styrene and HD can help lower the 

degradation rate of the droplets by Otswald ripening, thus making MeMBL 

miniemulsions more stable.[192]  Second, styrene is an easily controlled monomer using 

various common RAFT agents.  Here we chose to use PEPDTA. [1]  Thus, we use styrene 

as a comonomer to realize controlled miniemulsion polymerization of MeMBL, 

bypassing for now the difficulty of finding an ideal RAFT agent specific for MeMBL. An 
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added benefit is that the introduction of styrene will improve the solubility and tune the 

toughness of poly(MeMBL), although one may argue that at higher styrene loadings, 

enhanced polymer properties and the unique, “green” attributes of having a renewable 

monomer are lessened. 

Based on the well known RAFT polymerization mechanism,[71] there are two 

possible types of propagating radicals, three possible intermediate radicals, and two 

possible types of macro-RAFT agents in the RAFT copolymerization of MeMBL and 

styrene (see Figure 4.10).  With PEPDTA as a RAFT agent, the styrene-terminated 

radical (b) is a better addition group and a poorer leaving group compared with a 

MeMBL-terminated radical (a).  Therefore, (g) is the dominant form of the RAFT agent 

we expect in the copolymerization of MeMBL/styrene. Thus, the RAFT process would be 

similar to that of RAFT homopolymerization of styrene; MeMBL should be incorporated 

in the copolymer but the polymerization will be under control similar to a 

homopolymerization of styrene. 
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Figure 4.10 Structures of radicals and macro-RAFT agents in the RAFT 
copolymerization of MeMBL and styrene. 
 

4.3.3.2 Kinetic study of miniemulsion copolymerizations of MeMBL and styrene 

Controlled miniemulsion copolymerizations of MeMBL were performed at 70°C 

with different molar ratios of MeMBL and styrene in Exp. 17 and 18.  As a comparison, 

free-radical miniemulsion copolymerizations of MeMBL were also run in Exp. 12-14, 
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and bulk copolymerizations in Exp. 15 and 16 (control experiments). AIBN was used as 

an organophilic initiator to suppress potential homogeneous nucleation.  It should be 

noted that when the molar ratio, [MeMBL]:[styrene]= 4:1, the controlled miniemulsion 

copolymerization was unstable, so limited data for these experiments are presented. 

The conversion-time curves for free-radical miniemulsion copolymerization of 

MeMBL and styrene are shown in Figure 4.11. When the molar ratio of MeMBL to 

styrene was less than 1, the polymerization rate increased as the concentration of 

MeMBL increased. A lower polymerization rate, however, was observed in Exp. 14 when 

the molar ratio of MeMBL to styrene was at 4. 
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 Figure 4.11 Free-radical miniemulsion copolymerization at 70ºC with different ratios of 
MeMBL and styrene. The conversion curve before 120 min was magnified as the inset. 

 
The polymerization rate of the free-radical miniemulsion copolymerization of 

MeMBL depends on several factors, such as the propagation rate constant of the 

monomer and the number of particles in the latex. Figure 4.12 shows the evolution of the 

particle radius and polydispersity as functions of time. As shown in Figure 4.12, the 

particle radius in Exp. 13 (1:1 MeMBL: Styrene) was essentially the same as in Exp. 12 
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(1:4 MeMBL: Styrene); therefore, the number of particles in the two experiments is quite 

similar. Since the bulk homopolymerization rate of MeMBL is much higher than that of 

styrene, the overall copolymerization rate is likely to increase with higher concentrations 

of MeMBL. This may explain why Exp. 13 ([MeMBL]/[ST]=1:1) had a higher 

polymerization rate than Exp. 12 ([MeMBL]/[ST]=1:4). However, it should be noted that 

the average particle radius in Exp. 14 ([MeMBL]/[ST]=4:1) was much larger than in Exp. 

12 and Exp. 13. Landfester et al. also observed a similar phenomenon in the 

miniemulsion copolymerization of styrene and acrylonitrile, a more hydrophilic monomer 

than styrene. The droplet radius for their recipe with 50 wt% styrene was 84 nm vs. 

163nm for the 10 wt% styrene system.[181] They postulated that the reason for the size 

difference was that SDS is not an optimal surfactant for the very hydrophilic monomer 

acrylonitrile, i.e. the binding between the C12 tail of SDS and acrylonitrile was weak. The 

significantly lower particle number in Exp. 14 (Np~8.7×1013/cm3) likely caused the 

slower polymerization rate compared to Exp. 12 (Np~1.0×1015/cm3) and Exp. 13 

(Np~8.0×1014/cm3), even though the concentration of MeMBL was highest in this latter 

case. The nearly constant particle size and the narrow particle size polydispersity 

throughout each of the experiments 12-14 suggest that the addition of styrene and the use 

of AIBN as initiator limited the homogeneous nucleation process seen in the 

“miniemulsion” homopolymerization of MeMBL. 
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Figure 4.12 Particle radius, particle number and polydispersity index of free-radical 
miniemulsion copolymerization with different ratios of MeMBL and styrene at 70ºC. 
 

 

A stable latex of poly(MeMBL-co-styrene) was obtained in the free-radical 

miniemulsion copolymerizations. However, severe coagulation was observed in the 

RAFT miniemulsion copolymerization when the molar ratio of MeMBL to styrene was 

4:1. The stability of RAFT miniemulsion polymerizations is usually inferior to free-

radical miniemulsion polymerizations, as noted above. This has been suggested to be due 

to a super-swelling effect in RAFT miniemulsion polymerizations.[86]  Therefore, the 

kinetics of the RAFT copolymerizations were studied only when the molar ratio of 

MeMBL to styrene was less than 1. The conversion-time curves of RAFT bulk and 

RAFT miniemulsion polymerization of MeMBL/styrene are shown in Figure 4.13. 

Compared with the data in Figure 4.11 describing free-radical miniemulsion 

polymerizations (Exp. 12 and Exp. 13), the RAFT miniemulsion polymerizations (Exp. 

17 and Exp. 18) show a significant rate retardation in the polymerization. Rate retardation 
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is a well known phenomenon in RAFT chemistry. [195, 196]  The cause of the retardation in 

RAFT polymerizations is still under vigorous debate, with a particular focus on the fate 

of the RAFT intermediate radicals that are formed in the pre-equilibrium and main 

equilibrium of the RAFT process. Two theories, slow fragmentation of the RAFT initial 

intermediate radical, [197] and termination of the intermediate radical, were proposed by 

different groups to explain the retardation. [197]  Some recent data support the theory that 

the retardation is caused, at least in part, by intermediate termination.[159]  A higher 

radical desorption rate in RAFT miniemulsion polymerization could be another reason 

for the retardation in miniemulsion polymerizations.[198] For ideal RAFT miniemulsion 

polymerizations, all oligomeric chains grow slowly into polymeric chains in the particles 

at the same time. These oligomeric chains have a higher probability of desorption from 

the particles and the probability decreases as the molecular weight increases and as the 

chains become more hydrophobic. Desorbed radicals can terminate in the continuous 

phase. As a result, the effective number of propagating radicals in the particle can 

decrease and thus rate retardation can ensue.  The exact cause of the rate retardation in 

the present system is not yet clear, but may be due to a combination of the factors 

described above. 

The RAFT miniemulsion polymerizations (Exp. 17 and Exp. 18) also exhibited a 

retardation effect compared with their RAFT bulk polymerization counterparts (Exp. 15 

and Exp. 16). The composition of the organic phase of the miniemulsion polymerizations 

was the same as that of RAFT bulk copolymerizations.  In the case of appropriately 

formulated miniemulsions, the polymerization takes place in the droplets and ideally the 

droplets act as individual batch reactors. As a result, the RAFT miniemulsion 

polymerization rate of MeMBL should be comparable to or higher to its RAFT bulk 

polymerization due to the segregation effect of miniemulsion polymerizations.[197] 

Therefore, the retardation indicated that there were certain atypical mechanisms slowing 

down the RAFT miniemulsion polymerization. 
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Figure 4.13 RAFT bulk copolymerization and RAFT miniemulsion copolymerization at 
70ºC with different ratios of MeMBL and styrene. 
 

 

Several possible mechanisms could contribute to the retardation. First it may 

result from a lower initiator efficiency of AIBN in the RAFT miniemulsion 

polymerizations.  Despite the fact that AIBN may greatly reduce the possibility of 

homogeneous nucleation, its use in miniemulsion polymerizations has been limited since 

it complicates the kinetics of miniemulsion polymerizations. [87]  A low initiator 

efficiency has often been observed,[199] possibly due to a so-called “cage effect“ in 

(mini)emulsion polymerizations.[200] In RAFT bulk polymerization, the pair of primary 

radicals formed from AIBN are surrounded by a solution domain. Before the radicals 

diffuse out this “pseudo cage“, they may experience a bimolecular termination and cause 

lower overall initiator efficiency. In the RAFT miniemulsion polymerizations of Exp.17 

and Exp.18, on the other hand, the primary radicals have the additional restriction of 

being inside a polymer droplet or particle, i.e. an “enforced cage.” Only the fraction of 
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primary radicals that survive both the “pseudo cage“ and “enforced cage“ can effectively 

participate in particle growth. Therefore it is reasonable to expect a lower initiator 

efficiency in Exps. 17-18 (RAFT miniemulsion) compared to Exps. 15-16 (RAFT bulk), 

and thus a rate retardation. Another potential mechanism resulting in the retardation in 

RAFT miniemulsions is radical desorption from the polymer particles.[201]  As mentioned 

above, the average number of propagating radicals in each particle is expected to be 

lower due to the radical desorption in the RAFT miniemulsion polymerization, and this 

may cause rate retardation. The compartmentalization of RAFT miniemulsion 

polymerization can contribute to the retardation as well.[89] Under a zero-one condition of 

miniemulsion polymerizations, the intermediate radicals inside particles do not propagate 

with monomers and thus shorten the time period that is available for the radicals to 

propagate in the absence of a RAFT agent. Both Np (number of particles) and n  (average 

number of radicals per particle) are significantly decreased in RAFT miniemulsion 

polymerizations, and therefore, RAFT miniemulsions can have a more pronounced 

retardation than RAFT bulk polymerizations. Finally, the rates may be retarded by a 

lower effective concentration of the highly reactive MeMBL in the droplets than the 

system stoichiometry might suggest due to the high water solubility of the MeMBL. 

The relationships between Mn, molecular weight polydispersity index and the 

conversion for the controlled copolymerizations are shown in Figure 4.14. The theoretical 

molecular weights for the poly(styrene) and poly(MeMBL) were calculated as:  

 , ,[ ] / [ ]n w monomer w RAFTM M x monomer RAFT M= ⋅ ⋅ +  (4.2) 

where  ,w monomerM was the molecular weight of the monomer and  x  was the conversion. 

The theoretical molecular weight of the copolymer should fall into the area between the 

theoretical Mn of poly(MeMBL) and poly(styrene). As shown in Figure 4.14, the Mn of 

the copolymers made from the RAFT bulk or miniemulsion polymerizations increased 

linearly with conversion but were lower than the theoretical predications. This linearity 

suggests some level of controlled polymerization. The deviations of Mn from predictions 

may result from the GPC method. The Mn of the copolymer is referenced to narrowly 

distributed poly(styrene) standards. However, poly(MeMBL) and poly(styrene) have 

different hydrodynamic volumes and this will result in an error in the measured Mn of the 

copolymers. 
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Figure 4.14 Evolution of Mn and PDI with conversion in controlled RAFT 
copolymerization of MeMBL and styrene at 70°C. 
 

As shown in Figure 4.14, the polydispersity index (PDI) of the polymers from the 

RAFT bulk and miniemulsion copolymerizations decreased with conversion before 

reaching a nearly constant value. There are some noteworthy features in the evolution of 

the PDIs. First, the PDIs were quite broad at low conversions. As shown in Figure 4.15, 

the molecular weight of the copolymer in Exp.17 was bimodally distributed. In general, 

the higher the ratio of styrene to MeMBL, the lower the PDI of the resulting polymer.  

Second, the PDIs of the copolymers made from RAFT miniemulsions (Exp. 17 and Exp 

18) were lower than those from RAFT bulk polymerizations (Exp. 15 and Exp. 16) when 

the conversion was low. As discussed above, PEPDTA allows for good control over 

styrene but poor control for MeMBL. Thus, in this approach, styrene acts as “translator” 

monomer to realize controlled copolymerization of MeMBL. The uncontrolled effect 

from MeMBL was pronounced when the conversion was low, while the degree of control 

was improved as more styrene units were incorporated in the copolymer and when 
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MeMBL concentration is decreased at higher conversions. Therefore, the bimodality 

could be associated with the hypothesized presence of two types of macro-RAFT agents 

or polymer [(f) and (g)], as shown in Figure 4.10, at the beginning of the 

copolymerization. It should also be noted that the molecular weight distribution became 

more monomodal at higher conversions, as shown in Figure 4.15, which is consistent 

with the macro-RAFT agent (g) being the dominant species at that time. In general, the 

higher the ratio of styrene to MeMBL, the more the RAFT copolymerization process was 

like the RAFT homopolymerization of styrene. Therefore, a lower PDI could be achieved 

in Exp. 15 and Exp. 17 at the beginning of the polymerizations. The PDI in RAFT 

miniemulsion polymerizations Exp. 17 and Exp. 18 also tended to be lower than their 

bulk controls Exp. 15 and Exp. 16, respectively, at the beginning of the polymerization. 

The reason for this phenomenon is still under investigation. One possible reason is the 

solubility difference in water between styrene and MeMBL, as noted above. Since the 

real ratio of styrene to MeMBL was higher in the miniemulsion monomer droplets due to 

the high solubility of MeMBL in water, the RAFT miniemulsion copolymerizations 

should be under better control than the RAFT bulk polymerizations, therefore, a lower 

PDI was observed in Exp.17 and Exp.18, respectively, as demonstrated in Figure 4.14. 
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Figure 4.15 Evolution of the RI GPC curve with different reaction times in experiment 
17 (RAFT miniemulsion copolymerization. [MeMBL]/[ST]=1:4). 
 

 

4.3.3.3 Reactivity ratios of MeMBL and styrene in the RAFT bulk copolymerizations 

The reactivity ratios of MeMBL and styrene in the RAFT bulk copolymerizations 

(Exp.15 and Exp. 16) were estimated by both the Kelen-Tudos method and Fineman-

Ross method. [202] The composition of the copolymers was measured by 1H NMR at a 

conversion below 5%.   A typical 1H NMR spectrum of a copolymer is shown in Figure 

4.16. The copolymer composition can be determined with 1H NMR analysis by using the 

areas of peak 2 and peaks 1, 3-5. 
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Figure 4.16 Typical 1H NMR spectrum of the copolymer of MeMBL and styrene 
produced via bulk RAFT copolymerization in experiment 15. 
 

The calculation of reactivity ratios of MeMBL and styrene in the RAFT bulk 

copolymerizations at 70ºC was shown in Figure 4.17. The reactivity ratio of MeMBL, 

0.85MeMBLr =  and the reactivity ratio of styrene, 0.39styrener =  were calculated using the 

Fineman-Ross method and using the Kelen-Tudos method, the ratios were 0.75MeMBLr =  

and 0.33styrener = . It has been reported that the reactivity ratios are 0.46MMAr =  and 

0.52styrener =  for the RAFT copolymerization of methyl methacrylate (MMA) and styrene 

using Mayo-Lewis method.[203] Therefore, the MMA-ended radicals have a higher 

probability of adding a styrene unit than MeMBL-ended radicals. From the reactivity 

ratios there is an azeotropic point at 0.20styrenef =  for the copolymerization of MeMBL 

and styrene, where copolymerization occurs without a drift in monomer composition. 

Since the monomer ratios in Exp. 15 and Exp. 16 were different from the azeotropic 

point, the copolymer composition drifted during the polymerizations. Therefore, gradient 

copolymers were expected to be produced in Exp. 15 and Exp. 16. 
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Figure 4.17 Calculations for the reactivity ratios of MeMBL and styrene in the bulk 
RAFT copolymerization of MeMBL and styrene at 70ºC. (a) Fineman-Ross plots; (b) 
Kelen-Tudos plots. 
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4.4 Conclusion 

In this study, the kinetics of free-radical miniemulsion polymerization of MeMBL 

were assessed and stable MeMBL latexes were prepared. The “miniemulsion” 

polymerization of MeMBL had a significantly different kinetic behavior from 

conventional miniemulsion polymerization. A emulsifier free emulsion polymerization of 

MeMBL gave similar results to MeMBL “mimiemulsion” polymerization.  As the 

emulsifier-free emulsion polymerization operates via a homogeneous nucleation 

mechanism, the similarity between the “miniemulsion” polymerization of MeMBL and 

the emulsifier-free emulsion polymerization suggest a true “miniemulsion” 

polymerization, in the traditional sense, may not be taking place and instead that 

significant homogeneous nucleation may play a role in the “miniemulsion” 

homopolymerization. The effects of different reaction parameters on free-radical 

“miniemulsion” homopolymerization were investigated.  

In the miniemulsion copolymerizations of MeMBL and styrene using an oil 

soluble initiator, the potential homogeneous nucleation process appeared limited. Both 

the RAFT miniemulsion polymerizations and RAFT bulk polymerizations were well 

controlled and narrow polydispersity copolymers of MeMBL/styrene were produced. 

Rate retardation was observed in the RAFT miniemulsion polymerizations compared 

with the free-radical polymerization and RAFT bulk polymerization controls. The 

reactivity ratios of MeMBL and styrene in RAFT bulk copolymerization were measured 

and compared with that of MMA and styrene. It was found that the MeMBL radicals 

were less monomer preferential in the propagation reaction compared with MMA 

radicals. 
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CHAPTER 5 

RAFT INVERSE MINIEMULSION POLYMERIZATION* 

 

5.1 Introduction 

In chapters 3 and 4, we have discussed the RAFT miniemulsion polymerizations 

of a hydrophobic monomer in CSTR trains and a partially water soluble monomer in 

batch, respectivly. In this chapter, we will discuss the RAFT miniemulsion 

polymerizations of hydrophilic monomers. 

Synthetic hydrophilic polymers are widely used in numerous applications and are 

a billon dollar market each year, including uses as flocculants,[204] drag reduction agents, 

drilling fluids,[205, 206] paper making additives,[207] and in drug delivery.[208-210] However, 

there are various process challenges such as non-uniform mixing and heat transfer 

limitations that exist in large scale industrial production of hydrophilic polymers by 

solution polymerization.[3] Free-radical inverse emulsion polymerization was used to 

overcome these problems, and has evolved into one of the main routes in industry to 

produce synthetic hydrophilic polymers. As mentioned in the introduction, understanding 

of the process originated from the pioneering work of John Vanderhoff and coworkers in 

1962.[100] Recently, a free-radical inverse miniemulsion polymerization was 

developed.[102] An inverse miniemulsion disperses an aqueous monomer or solution in a 

continuous oil phase and forms droplets range from 50nm to 500nm in radius. Free-

radical inverse miniemulsion polymerizations maintain typical properties of conventional 

miniemulsion polymerizations such as droplet nucleation and are superior to free-radical 

inverse emulsion polymerizations in process robustness, particle size uniformity, and 

colloidal stability. However, free-radical inverse miniemulsion polymerization still offers 

only limited ability to precisely design the structures and properties of the polymer 

products. As a potential answer to this challenge, RAFT inverse miniemulsion 

polymerization is proposed here by applying RAFT chemistry to inverse miniemulsion 

                                                 

* Portions of this chapter have been published in Macromol. Rapid Commun., 2007, 28, 1010-1016. 
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polymerizations.[158] By combining RAFT polymerization with inverse miniemulsion, 

RAFT inverse miniemulsion polymerization can in principle take the advantages of both 

of these techniques and offer a convenient way to synthesize unique or well-defined 

structured copolymers and colloids such as hydrophilic nanogels.  

For inverse miniemulsions, the prevailing surfactants have to be steric surfactants 

or a combination of steric and ionic surfactants.  In contrast, conventional miniemulsions 

are generally stabilized by solely ionic surfactants or a combination of ionic and steric 

surfactants. When steric surfactants are used, the kinetic behavior of the inverse 

miniemulsion can be dramatically different from ionically stabilized conventional (o/w) 

miniemulsion polymerizations. Unfortunately, no effort has been devoted to investigate 

systematically the polymerization kinetics and mechanism of sterically stabilized inverse 

systems. Therefore, it is of significant importance from both industrial and academic 

perspectives to perform a detailed study of RAFT inverse miniemulsion polymerization. 

5.2 Experimental Section 

5.2.1 Materials 

All chemicals were purchased from Aldrich unless otherwise stated. Acrylamide 

(Am, >99.5%) was recrystallized from chloroform (>99.8%). Acrylic acid (AAc, 

>99.0%) was distilled under reduced pressure prior to use. B246SF (Uniqema), sodium 

sulfate (>99.0%), 2,2-azobisisobutyronitrile (AIBN, >99.0%), 4,4’-azobis(4-cyanovaleric 

acid) (ABCP, >99.0%), 2,2-Diphenyl-1-picrylhydrazyl (DPPH, ~95%), and cyclohexane 

(>99.5%) were used without further purification. The water soluble initiator, 2,2'-

Azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044, >98% ) was purchased 

from Wako and used as received. Deionized water was generated with a U.S. Filter 

Systems Deionizer and was used without further purification.  

5.2.2 Synthesis of RAFT agents  

The RAFT agent, 2-(2-carboxyethyl-sulfanylthiocarbonylsulfanyl) propionic acid 

(CTA), was synthesized according to literature procedures,[211] using the following 

materials without further purification: 3-mercaptopropionic acid (99%) and acetone 
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(>99.5%) from Alfa Aeser, as well as chloroform (>99.8%) from J. B. Baker. The macro-

RAFT agents were synthesized from the above RAFT agent by the solution 

polymerization of acrylamide in water at 45oC. As an example, in a 50ml flask 1.59g AM, 

0.81g CTA, and 0.010g VA-044 were dissolved by 10ml water. The mixture was purged 

with N2 and heated to 45oC. After polymerization for 4 h, the reactant mixture was slowly 

poured into 100ml chilled methanol under rigorous stirring. The macro-RAFT agent was 

separated by centrifuge at 0oC and then dried in vacuum oven at 40oC for 48 h. For 

macro-RAFT1, Mn=623, PDI=1.43 and macro-RAFT2, Mn=2305, PDI=1.25, as 

measured by GPC. 

5.2.3 Inverse miniemulsion polymerization 

Preparation of inverse miniemulsions 

Before performing an in-depth study of RAFT inverse miniemulsion 

polymerization, a preliminary study was carried out to understand the basic kinetic 

features. Two kinds of initiators were used in the preliminary study. Hydrophobic 

initiator, AIBN, was dissolved in the continuous phase while hydrophilic initiator, ABCP 

in the aqueous phase. The RAFT inverse miniemulsions were prepared by the following 

procedure. As an example, the continuous phase was a solution of 1.0g B246SF in 50g 

cyclohexane. In the dispersed phase, 5.0g acrylamide, 0.12g MgSO4, 0.089g RAFT and 

0.039g ABCP were dissolved in 7.5g water. The inverse emulsion was prepared by 

dropwise addition of the dispersed phase to the B246SF cyclohexane solution. The 

emulsion was stirred under nitrogen at 7 °C using an ice-water bath for 90 min and 

purged with nitrogen, then sonicated with a Fischer Model 30 sonic dismembrator 

operated at 70% power output for approximately 10 min under nitrogen while cooled in 

an ice bath. A representative recipe in the preliminary study is shown in Table 5.1. 
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Table 5.1 Typical recipe for the RAFT inverse miniemulsion polymerization of 
acrylamide at 60 °C in the preliminary study. 

Component 
Continuous phase Dispersed phase 

Mass Notes 

B246  1.00 g 2 Wt% of continuous phase 
Cyclohexane  50.0 g  
 H2O 7.5 g  
 Acrylamide 5.0 g  
 MgSO4 0.12 g 1 Wt% of dispersed phase 
 RAFT agent 0.089 g [monomer]/[RAFT]=200 
 ABCP (85 Wt %) 0.039 g [RAFT]/[ABCP]=3 
 

In the subsequent detailed study of RAFT inverse miniemulsion polymerizations, 

an optimized water soluble initiator, VA-044, was employed in the aqueous phase. The 

RAFT inverse miniemulsions were prepared according to the following procedure. As an 

example, 0.6g B246SF was dissolved in 40g cyclohexane to prepare the continuous phase 

of the inverse miniemulsion. The dispersed phase was prepared separately by  adding 

2.5g acrylamide, 0.028g VA-044, 0.089g RAFT agent and 0.10g MgSO4 (costabilizer) to 

7.5g water and degassed under vacuum for 5 min. The inverse emulsion was prepared by 

dropwise addition of the dispersed phase to the B246SF cyclohexane solution and stirred 

under nitrogen at 10 °C for 40 min. The coarse inverse emulsion was then ultrasonicated 

with a Fischer Model 30 sonic dismembrator operated at 70% power output for 

approximately 5 min under nitrogen. The free-radical inverse miniemulsions were 

prepared in a similar manner as RAFT inverse miniemulsions except that no RAFT agent 

was added in the aqueous phase. A typical recipe for the inverse miniemulsions is shown 

in Table 5.2. 

 

Table 5.2 Typical recipe for free-radical and RAFT inverse miniemulsion 
polymerizations of acrylamide at 60 °C in the in-depth study.  

 Component 
 Free-radical mini RAFT mini 

Mass 
(g) 

Notes 

 cyclohexane cyclohexane 40  
Surfactant B246 B246 0.60 1.5 wt% based on oil 
Monomer acrylamide acrylamide 2.5 3.62 M 
Initiator VA-044 VA-044 0.028 [AM]:[initiator]=400:1 
Costabilizer MgSO4 MgSO4 0.10 1 wt% of aqueous phase 
RAFT - CTA 0.089 [AM]:[CTA]=100:1 
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Polymerization 

The RAFT inverse miniemulsion prepared above was transferred into a 100ml 

flask with a magnetic stirring bar. Inverse miniemulsion polymerizations were carried out 

in an oil bath preheated to 60 oC unless otherwise specified. The stirring rate was kept 

around 300rpm. Samples were taken during the polymerizations to provide kinetic data. 

For RAFT inverse miniemulsion polymerizations, the samples were separated into two 

parts, one part for particle size determination and another was quenched with drops of 

1wt% hydroquinone acetone solution for conversion measurements. For free-radical 

inverse miniemulsion polymerizations, the samples were also divided into two parts. A 

small portion of the samples was diluted with cyclohexane for particle size analysis and 

the other was quickly precipitated in excess chilled acetone containing 0.1wt% 

hydroquinone for measurements of conversion. 

5.2.4 Characterization 

The molecular weight of the poly(acrylamide) samples was measured by aqueous 

gel permeation chromatography (GPC) at 30°C. In the preliminary study, the GPC 

system was comprised of a Shimadzu LC-20AD pump, a Shimadzu RID-10A RI 

detector, a Shimadzu SPD-20A UV detector, a Shimadzu CTO-20A column oven, and 

Viscotek TSK Viscogel PWXL Guard, G3000, G4000 and G6000 columns mounted in 

series. In the in-depth study, it was found that G3000 and G6000 have a high resolution 

of polymer separation. Therefore, the column G4000 was removed in the in-depth study 

to save analysis time. 

The mobile phase was 0.05M Na2SO4 and the flow rate was maintained at 0.5 

mL/min. Poly(ethylene oxide) narrow standards were used to calibrate the GPC by the 

universal calibration method. The Mark-Houwink parameters of poly(acrylamide) in 

0.05M Na2SO4 aqueous are: α=0.66 and K=0.000373; for poly(ethylene oxide), α=0.693 

and K=0.000365.[212] The GPC samples were prepared according to the following 

procedure: latex aliquots of 1 ml were removed during the polymerization, quenched with 

drops of 0.1wt% hydroquinone acetone solution and ice bath, followed by vacuum drying 

at 30°C to remove the volatile organics and water. The dried samples were redispersed in 

10ml 0.05M Na2SO4 aqueous solution, stored in the dark for 24 h at 5oC and then filtered 
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with a 0.2µm nylon filter.  Shimadzu EZ-start V7.3 software was used for the analysis of 

molecular weight and polydispersity of poly(acrylamide). 

For RAFT inverse miniemulsion polymerizations, the conversions of the 

monomer were determined with GPC by comparing the area of the RI signal 

corresponding to the monomer and the polymer.[213]  For free-radical inverse 

miniemulsion polymerization, the conversions were measured gravimetrically: 3ml 

miniemulsion aliquots were taken at certain intervals during the polymerizations, and 

precipitated with chilled acetone containing 0.1wt% hydroquinone. The polymers were 

washed with copious chilled acetone and separated by centrifuge. The polymer samples 

were then vacuum dried at 70°C for 48 h and the conversion was measured 

gravimetrically. Low molecular weight poly(acrylamide) has a finite solubility in the 

precipitating solvent, which lead to significant errors using the gravimetric method for 

the RAFT polymerizations at a low conversions, that is why GPC method was used for 

conversion measurement for RAFT polymerizations.  

Latex particle radius and polydispersities were analyzed using quasi-elastic light 

scattering (QELS, Protein Solutions DynaPro with DynaPro DCS v 5.26 software). The 

inverse latexes were diluted with filtered pure cyclohexane to a volume fraction of 0.5% 

of the dispersed phase. The total particle number pN  was estimated with the following 

equation: 

 
34

3

p
mN
rπ ρ

=  (5.1) 

where m  is the initial mass of the dispersed phase (g), ρ is the density of the particles, 

and r  is the average particle radius. 

5.3 Results and Discussion 

5.3.1 Preliminary study of RAFT inverse miniemulsion polymerization 

All the experiments in the preliminary study were carried out at 60°C and the 

ratio of monomer, RAFT agent and initiator was fixed to 600: 3: 1, as outlined in Table 

5.3. The recipe for RAFT solution polymerization (Table 5.3, Exp. P1) was the same as 
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the dispersed phase of the inverse miniemulsion polymerizations (Table 5.3, Exps. P2 

and P3).  

 

Table 5.3 Experimental recipe for the RAFT inverse miniemulsion polymerization of 
acrylamide at 60 °C in the preliminary study. 
Exp Polymerization type Initiator [B246]/[(CH2)6] [monomer]/[RAFT]/[initiator] 
P1 RAFT solution ABCP 0 600:3:1 
P2 RAFT radical mini AIBN 2 Wt% 600:3:1 
P3 RAFT radical mini ABCP 2 Wt% 600:3:1 
 

 

The RAFT solution polymerization (Exp. P1) was first performed to check the 

polymerization recipe since the appropriate selection of the RAFT agent is important for 

achieving well controlled RAFT polymerizations, especially for RAFT polymerizations 

in an aqueous environment.[138, 139] As shown in Figure 5.1, the polymerization initially 

followed pseudo first order kinetics, followed by a deviation with a lower polymerization 

rate after about 60 min.  
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Figure 5.1 Evolution of the conversion as a function of reaction time in RAFT solution 
polymerization of acrylamide (Table 5.3, Exp. P1). 
 

The molecular weight of poly(acrylamide), as shown in Figure 5.2, falls on the 

theoretical line at first and then deviates from the predicted line with a higher value. The 

PDIs also show an increasing trend with the conversion up to 1.35, although it is still far 

below the typical PDI of about two for free-radical polymerization of acrylamide with 

disproportionation termination. The reduced control at higher conversions could result 

from the hydrolysis and aminolysis of the RAFT agent, among other factors, a common 

problem in aqueous RAFT polymerizations.[139] McCormick and coworkers have reported 

very similar behavior in systems where RAFT agent hydrolysis and aminolysis were 

shown to be problematic.[139] Albertin et al. also observed the above phenomena in the 

RAFT polymerization of methacrylic glycomonomer in the presence of added base. They 

claimed that hydrolysis of the free RAFT agent and the end-of-chain dithiobenzoyl 
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groups was promoted by the high pH of the solution and this process could lead to the 

deviation from a well-controlled RAFT process.[214]  
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Figure 5.2 Evolution of Mn and PDI as a function of conversion in RAFT solution 
polymerization of acrylamide (Table 5.3, Exp. P1). 
 

Figure 5.3 shows the RI curve from the gel permeation chromatograph (GPC) 

overlaid with the UV curve monitored at 311nm.  The UV curve monitored at 311nm 

corresponds to the C=S bond in the RAFT agent. The absorption indicates the polymer 

chains contain a RAFT agent functional group and they could be ‘living chains’.[194]  It is 

worth noting that there is a small shoulder in the RI curve with a shorter retention time in 

the GPC. This likely corresponds to the dead chains associated with the coupling 

termination of the polymeric radicals or terminated RAFT intermediates. The increase of 

this shoulder with prolonged reaction time suggests a loss of control, which might be 
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attributable to hydrolysis or aminolysis of the RAFT agent and/or a higher content of 

terminated RAFT intermediates.86,159,232-234 The overall RI signal has a very good overlay 

with the UV curve throughout the RAFT solution polymerization of acrylamide in spite 

of the small shoulder, which suggests that a species with a C=S bond is associated with 

most polymer chains, even at long times where the kinetics and molecular weight deviate 

from the theoretical curve. Therefore, the same recipe was utilized as the dispersed phase 

in inverse miniemulsion polymerizations of P2 and P3 (as shown in Table 5.3). 
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Figure 5.3 GPC chromatogram (RI and UV traces at 311nm) evolution during the 
polymerization RAFT solution polymerization of acrylamide (Exp. P1): (i) 18min, 
conversion=44%, Mn=5774, PDI=1.27; (ii) 30min, conversion=69%, Mn= 25802, 
PDI=1.15; (iii) 86min, conversion=91%, Mn= 57329, PDI=1.16). 

 

The results of RAFT inverse miniemulsion polymerization of acrylamide with 

AIBN as initiator (Table 5.3, Exp. P2) and ABCP as initiator (Table 5.3, Exp. P3) are 
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shown in Figure 5.4-5.9. The two systems behaved similarly in some aspects. As shown 

in Figure 5.4, the poly(acrylamide) latexes produced in both experiments had good 

colloidal stability, with no phase separation observed after 5 days. From Figure 5.5, there 

was an induction time in both inverse miniemulsion polymerizations, probably due to a 

small amount of O2 or other impurities trapped in the aqueous phase.[215, 216] Another 

cause of the induction time may be related to radical desorption from the particles, which 

will be discussed later in this chapter. 

 

 
a 

 
b 

Figure 5.4 Poly(acrylamide) latexes produced from (a). Exp. P2; (b) Exp. P3 after the 
completion of polymerization for 5 days. 
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Figure 5.5 Evolution of the conversion as a function of reaction time in RAFT inverse 
miniemulsion polymerization of acrylamide with AIBN (Exp. P2), and ABCP (Exp. P3) 
as initiator. 
 

 

The polymerization rates in experiments of P2 and P3, as shown in Figure 5.5, 

both decreased with reaction time. As in the RAFT solution polymerization, Figure 5.6 

showed the molecular weights in both Exp. P2 and Exp. P3 had a deviation from the 

predicted value after the conversions reached ~50%. However, despite these similarities, 

there were some significant differences between the two inverse miniemulsion 

polymerizations. The molecular weight of poly(acrylamide) in Exp. P2 was much higher 

than that of Exp.P3 at the same conversion. The PDIs in Exp. P2, as high as 1.7, were 

much broader than in Exp. P3, indicative of less control in Exp. P2.  
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Figure 5.6 Evolution of Mn and PDI as a function of conversion in the RAFT inverse 
miniemulsion polymerization of acrylamide. (a). AIBN as initiator (Exp. P2), and (b). 
ABCP as initiator (Exp. P3). 
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Furthermore, the overlay of the RI and UV GPC curves from Exp. P2 and Exp. 

P3, as shown in Figure 5.7 and Figure 5.8 respectively, suggest a significant loss of 

control in Exp. P2. A bimodality in the RI signal and poor overlay of the RI and UV 

curves were observed in Exp. P2, suggesting AIBN, an oil-based initiator, leads to poor 

control in this system.  In contrast, a good overlay of the curves was achieved in Exp. P3. 

Several potential reasons could contribute to the difference in the overlay of the RI and 

UV curves. The first that we considered is homogeneous nucleation in the continuous 

phase. The acrylamide radicals can diffuse out of the droplets,[105] and the most likely fate 

these radicals is to propagate in the continuous phase. Any homogeneous nucleated 

polymers could lead to a different controlled behavior in each locale. The water soluble 

initiator, ABCP, would greatly suppress the chance of homogeneous (organic phase) 

nucleation while the use of AIBN could result in an increase in this occurrence, and thus 

increased termination in the continuous phase where the primary radicals are generated. 

A second cause we considered was a boundary layer barrier of the nonionic surfactant 

between the cyclohexane continuous phase and the aqueous droplets. The desorbed 

radicals may reenter the particles after growth to a critical degree in the continuous phase; 

However, these propagated radicals will have a much lower diffusion coefficient than the 

initially desorbed monomeric radicals, an this should greatly limit the reentry rate of 

radicals.[216, 217] This could also lead to an increase in termination in the continuous phase 

if oil soluble initiators are utilized.  
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Figure 5.7 GPC chromatograms (RI and UV traces at 311nm) evolution in RAFT inverse 
miniemulsion polymerization of acrylamide with AIBN as initiator (Exp. P2): (i) 60min, 
conversion=49%, Mn=9320, PDI=1.42; (ii) 100min, conversion=92%, Mn= 62218, 
PDI=1.65; (iii) 186min, conversion=97%, Mn= 74235, PDI=1.70). 
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Figure 5.8 GPC chromatograms (RI and UV traces at 311nm) evolution in RAFT inverse 
miniemulsion polymerization of acrylamide with ABCP as initiator (Exp. P3). (i) 
120min, conversion=37%, Mn=6530, PDI=1.34. The RI curve deviated slightly from the 
baseline in this case due to a partial overlap of the salt peak at the retention time around 
63 min; (ii) 180min, conversion=54%, Mn= 13828, PDI=1.32; (iii) 250min, 
conversion=70%, Mn= 23677, PDI=1.38). 
 

The above data suggest that ABCP-initiated inverse miniemulsion RAFT 

polymerization of acrylamide produces polymer chains with kinetics and molecular 

weights that deviate from the theoretical line at high conversion but that still contain the 

C=S bond on most chains.  To further probe this, the polymers from Exp. P2 and P3 were 

extended with another aliquot of acrylamide.  The final polymer products of Exps. P2 and 

P3 were collected, precipitated with acetone and dried in vacuum at 40 °C for 4 days. 

After fully dissolving the dried RAFT-bearing polymers in water, acrylamide and ABCP 

were added and the mixture polymerized at 60 °C. These chain extension experiments 

clearly showed a difference in the ‘livingness’ of the poly(acrylamide)s made in Exps. P2 
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and P3. As shown in Figure 5.9, only the relatively low molecular weight 

poly(acrylamide) chains were extended when using the samples prepared by AIBN 

initiation in Exp. P2, while nearly all the poly(acrylamide) chains prepared via ABCP 

initiation in Exp. P3 grew in Figure 5.9b. These data suggest that like the solution 

polymerization, the ABCP-initiated inverse miniemulsion polymerization proceeds in a 

controlled manner up to about 40% conversion, after which the polymerization proceeds 

in a pseudo-living manner.[218]  Thus, ABCP is a suitable initiator for RAFT inverse 

miniemulsion polymerization, which is demonstrated to proceed under pseudo-living 

conditions here for the first time. 
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Figure 5.9 RI traces of GPC chromatograms for the chain extension of poly(acrylamide) 
in solution at 60°C. The poly(acrylamide)s made from the final products of Exp. P2 
(Mn=79975, PDI=1.66) and Exp. P3 (Mn=49926, PDI=1.43) were used as the chain 
transfer agents. [Acrylamide]/[CTA]= 800 and [CTA]/[ABCP]=0.5. (a) Chain extension 
of the poly(acrylamide) from Exp. P2 and (b) Chain extension of the poly(acrylamide) 
from Exp. P3. 
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5.3.2 In-depth study of RAFT inverse miniemulsion polymerization 

From the above preliminary study, a formulation for RAFT inverse miniemulsion 

polymerization was developed and used to successfully synthesize stable hydrophilic 

polymer latexes. The preliminary study also made progress in the understanding of the 

kinetics of inverse miniemulsion polymerization in the following aspects: 

1. The RAFT inverse miniemulsion polymerizations followed similar kinetics to 

RAFT solution polymerizations.  

2. The nature of the initiator had a great effect on the kinetics and controllability of 

RAFT inverse miniemulsion polymerization of acrylamide. Hydrophilic initiators 

can have certain advantages over hydrophobic ones in the control of the inverse 

miniemulsion polymerizations. When the water soluble initiator ABCP was used, 

the polymerization proceeded in a controlled/living manner at low conversion and 

pseudo-living manner at high conversion, both in inverse miniemulsion and 

solution. When the oil soluble initiator AIBN was utilized, however, a significant 

loss of control was observed with prolonged reaction time.  

3. A deviation from well controlled polymerization was observed at higher 

conversions, e.g. a nonlinear increase of Mn with the conversion. However, it 

should be noted that the degree of livingness/control at low conversions is 

comparable to the only other report of controlled inverse miniemulsion 

polymerization where ATRP was used as the control methodology.188,189 In those 

works, good control was achieved up to a conversion of 65-80%.  The RAFT 

polymerizations in this preliminary work appear well-controlled at conversions up 

to 40% and only deviate at higher conversions. RAFT agent hydrolysis could be 

the problem that caused the loss of control.[138, 139, 219] 

Based on the preliminary study, a recipe for a follow-up in-depth study (Table 5.2) 

was optimized with the goal of suppressing the uncontrolled behavior. Compared with 

the recipe in the preliminary study (Table 5.1), another hydrophilic initiator VA-044 was 

used. VA-044 has a much faster radical generation rate than ABCP, and this can allow 

completion of the polymerizations in a shorter reaction time and thus less time for the 

hydrolysis of the RAFT agent. In addition, the pH of the aqueous phase in Table 5.2 was 

adjusted to 4 instead of pH=8 used in the preliminary study to further slow down the 
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hydrolysis of RAFT agent. With these changes in recipe, a detailed study of RAFT 

inverse miniemulsion polymerizations was carried out. The effect of the reaction 

parameters on the kinetics was first studied. The polymerization mechanism, including 

the possible fates of desorbed monomeric radicals and the effect of steric surfactant on 

the desorption rate of radicals, was then investigated. 

5.3.2.1 Effect of reaction parameters 

Table 5.4 Recipes for RAFT inverse miniemulsion polymerization of acrylamide in the 
in-depth study. 

Exp reaction Monomer 
(M) 

initiator 
(mM) 

CTA 
(mM) 

CTA
initiato
 

monomer
CTA

 

B246 
(wt%) 

temp 
oC 

pH wr  
(nm) 

1 RAFT 
solution 

3.62 9.08 36.2 3.99 100  60 4  

2 free-radical 
mini 

3.62 9.08    1.5 60 4 98 

3 RAFT mini 3.62 9.08 36.2 3.99 100 1.5 52 4 102 
4 RAFT mini 3.62 9.08 36.2 3.99 100 1.5 60 4 105 
5 RAFT mini 3.62 4.54 36.2 7.98 100 1.5 60 4 103 
6 RAFT mini 3.62 9.08 36.2 3.99 100 1.5 60 7 107 
7 RAFT mini 3.62 9.08 36.2 3.99 100 1.5 60 10 99 
8 RAFT mini 3.62 9.08 57.9 6.37 63 1.5 60 4 108 
9 RAFT mini 3.62 9.08 36.2 3.99 100 1.0 60 4 112 
10 RAFT mini 3.62 9.08 36.2 3.99 100 2.5 60 4 103 
11a RAFT mini 3.62 9.08 36.2 3.99 100 1.5 60 4 110 
12b RAFT mini 3.62 9.08 36.2 3.99 100 1.5 60 4 114 

a macro-RAFT1 was used as CTA. 
b macro-RAFT2 was used as CTA. 

 

Experiments 1-10, as shown in Table 5.4, explored the effects of different 

reaction parameters on the kinetics of RAFT inverse miniemulsion polymerization. The 

effect of temperature on the polymerization is shown in Figure 5.10. The rate of 

polymerization increased with increasing temperature. A longer induction time was 

observed at the lower temperature of 52oC. This is likely due to both a lower propagation 

rate constant and a smaller population of free-radicals generated from initiator at lower 

temperatures.  
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Figure 5.10 RAFT inverse miniemulsion polymerization of acrylamide at different 
reaction temperatures. 
 

Figure 5.11 shows the conversion-time curves at two different initiator 

concentrations. The polymerization rate increased with an increasing amount of initiator 

since more radicals can be generated. The amount of initiator seemed have no effect on 

the final particle radius, as shown in Table 5.4. This is consistent with droplet nucleation. 

The entire particle radius in Exp. 4 and Exp. 5 were close to 100nm throughout the 

polymerization. 
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Figure 5.11 RAFT inverse miniemulsion polymerization of acrylamide at 60oC with 
different amount of initiator. 
 
 

The pH of the dispersed phase is one of the key parameters that can affect the 

kinetics of RAFT inverse miniemulsion polymerizations. The aqueous solutions of Exp. 4, 

Exp. 6 and Exp. 7 were adjusted to a pH of 4, 7 and 10, respectively, before the 

preparation of the inverse miniemulsions, with all other recipe variables kept constant, as 

shown in Table 5.4. Figure 5.12 shows the evolution of monomer conversion with 

reaction time at the different pHs. When the aqueous solution was in a weak acidic or 

neutral environment, the conversion-time curves overlaid very well. At pH=10, the 

polymerization rate was trivially affected by pH before the conversion reached around 

50% when a higher polymerization rate was observed compared to the lower pH runs. 

The relationship between molecular weight and conversion is shown in Figure 5.13. 

There is a deviation of the experimental Mn from the theoretical prediction that may be 
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caused by the GPC calibration method.[220] The Mn generally increased with conversion 

in a linear manner except that slightly higher Mn was found at high conversions in Exp. 7 

(pH=10). The PDI in Exp. 7, however, showed a significant difference from Exp. 4 and 

Exp. 6 (Figure 5.13). The PDI at pH=10 remained below 1.5 before 50% in conversion, 

although it was slightly larger than in the experiments at pH=4 and pH=7, followed by a 

sharp increase of PDI up to 3.5. The evolution of the RI curve from the GPC compared 

with the UV curve monitored at 311nm is shown in Figure 5.14 for the experiments at 

different pH values.  As mentioned in the preliminary study, the UV curve corresponds to 

the signal from the C=S bond in the RAFT agent, giving a measure of the polymer chains 

that contain a RAFT functional group (potentially “living chains”), while the RI curve 

accounts for all the polymer species in the system.[194] Therefore, the content of living 

chains among all the polymer chains can be estimated by the overlapping degree of the 

two curves. At pH=4 and pH=7, the overall RI signal had a very good overlay with the 

UV curve throughout the RAFT inverse miniemulsion polymerization in spite of the 

small shoulder in the RI curve with shorter retention time. This is likely caused by the 

termination between the propagating radicals or propagating radicals and RAFT 

intermediates. However, significant deviation of RI and UV curves was observed at 

pH=10 with increasing conversion. The RI curve skewed to high molecular weight and 

this resulted in a much broader PDI. The reduced control at higher conversions at pH=10 

may result from the hydrolysis of the RAFT agent, among other factors, a well known 

issue in aqueous RAFT polymerizations.[139] Different groups have reported very similar 

behavior in RAFT solution polymerizations as a result of RAFT agent hydrolysis.141-

143,149 Although trithiocarbonate was found to be a more preferable RAFT agent than 

dithioesters for the polymerization of acrylamide and is thought to be fairly stable when 

the pH is lower than 7, it can be hydrolyzed in basic solution. 112,113 The good overlap 

between the RI and UV signals in Exp. 4 and Exp. 6 and the significant increase in the 

high molecular weight shoulder with prolonged reaction time in Exp. 7 at pH=10 

suggests a loss of control in Exp. 7 is likely attributable to hydrolysis of the RAFT agent. 

The poor overlap of the GPC curves at pH=10 is also consistent with the significantly 

broader PDI in Exp. 7. 
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Figure 5.12 RAFT inverse miniemulsion polymerization of acrylamide at 60oC at 
different pH values. 



 102

0 20 40 60 80 100
1.0

1.5

2.0

2.5

3.0

3.5

4.0

PD
I

conversion /%

0 20 40 60 80 100
0

5000

10000

15000

20000

25000
 pH=4
 pH=7
 pH=10
 theoretical Mn

M
n

conversion /%

 

Figure 5.13 Relationship between Mn, PDI and conversion in RAFT inverse 
miniemulsion polymerization of acrylamide at 60oC at different pH values. 
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Figure 5.14 GPC chromatograms (RI and UV traces at 311 nm) showing the evolution of 
the RAFT inverse miniemulsion polymerization of acrylamide at different pH values. 
 

 

The effect of RAFT on the polymerization was studied by the comparison of Exp. 4 and 

Exp. 8. With an increase of RAFT concentration from 36.2mM (Exp. 4) to 57.9mM 

(Exp.8), Figure 5.15 shows significant rate retardation in Exp. 8 compared with Exp. 4. 



 104

More retardation is usually observed in conventional o/w miniemulsion polymerizations 

in the presence of a larger amount of RAFT agent. Different reasons have been proposed 

for such a phenomenon and these may be applicable to the RAFT inverse miniemulsion 

polymerization studied here. First, a retardation effect may come from the RAFT 

chemistry because of cross-termination of intermediate and propagating radicals. The 

retardation factor for bulk RAFT polymerization has been evaluated by: [81] 

 , 0.5
0

,

2(1 [ ] )p RAFT ct

p blank tc

R k K RAFT
R k

−= +  (5.2) 

From this equation, retardation would be more pronounced at a higher 

concentration of RAFT agent. Second, RAFT-induced exit and oligomeric radical 

desorption from the polymer particles may lead to retardation.[156, 221] More shorter chain 

radicals will be produced at a higher concentration of RAFT agent and these are more 

likely to desorb from the particles and lead to a lower average number of propagating 

radicals in each particle. From the conversion-time curves of Exp. 4 and Exp. 8, the 

apparent total propagating radical concentration [ ]Pi  during the polymerizations of Exp. 

4 and Exp. 8 can be roughly estimated by the following equation: [144] 

 [ ln(1 )][ ]
p

d xP
k dt

− −
=i  (5.3) 

Where x is the conversion of monomer and the apparent propagating coefficient of the 

monomer at 60oC is 62.58 10pk = × L/mol⋅min-1. [222] To avoid the potential influences of 

the gel effect and chain length dependence of pk in the polymerizations, only the 

conversion data between 25-55% were used for analysis. As shown in Figure 5.16, the 

apparent total propagating radical concentration [ ]Pi  in Exp. 4 and Exp. 8 appeared to 

decrease slightly with reaction time but still remained on the same order of 10-8 mol/L. 

When a higher concentration of RAFT agent was used, a lower [ ]Pi  resulted in the 

system. Third, the compartmentalization of RAFT miniemulsion polymerization can also 

contribute to the retardation. [87] If the RAFT miniemulsion polymerization is a zero-one 

system, the intermediate and propagating radicals are segregated in separate particles. 

There is a quantitative relationship between the average number of radicals per particle of 
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a RAFT miniemulsion polymerization, RAFTn , and that of free-radical miniemulsion 

polymerization free radicaln − :[87]  

 0
1 1 2 [ ]

RAFT free radical

K RAFT
n n −

= +  (5.4) 

A larger RAFT concentration will result in a lower average number of radicals per 

particle and thus a more pronounced retardation. It should be noted that it is difficult to 

tell conclusively based on the data here whether RAFT chemistry, radical desorption or 

both caused the lower apparent total propagating radical concentration at the higher 

RAFT concentration. 

It is helpful to compare the change of average number of radicals per particle with 

the concentration of RAFT and shed some light on the above compartmentalization 

assumption. The average number of radicals per particle, n , can be calculated with the 

following equation: 

 0

[ ]
A

p p t

M N dxn
k M N dt

=  (5.5) 

Where 0M  is the initial total monomer amount (mol) in the system, AN  is Avogadro’s 

constant, pk  is the propagation coefficient of the monomer (L/mol⋅min), [ ]pM is the 

monomer concentration in the latex particles (mol/L), tN  is the total particle number, and 

x  is the conversion of the monomer. From Figure 5.17, the n values in both Exp. 4 and 

Exp. 8 were far below 0.5. The theoretical predication of the average number of radicals 

per particle for Exp. 4 and Exp. 8 with Eqn. 5.4 is in very good agreement with the 

experimental results.  

Figure 5.18 shows the relationship between Mn and the conversion in Exp. 4 and 

Exp. 8. The Mn increased linearly with the conversion and as expected, decreased with 

an increase in RAFT agent concentration. In both cases, the PDIs remained below 1.3 

until the end of the polymerizations. 
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Figure 5.15 RAFT inverse miniemulsion polymerization of acrylamide at 60oC with 
different RAFT agent concentrations. 
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Figure 5.16 Apparent total propagating radical concentrations in RAFT inverse 
miniemulsion polymerization of acrylamide with varying RAFT agent concentration. 
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Figure 5.17 Evolution of the average number of propagating radicals per particle as a 
function of conversion in RAFT inverse miniemulsion polymerizations at 60oC. The 
theoretical average number of propagating radicals per particle was calculated from 
Eqn.5.4 using the following parameters: 0.2free radicaln − = , and K=300. 
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Figure 5.18 Relationship of Mn, PDI and conversion in RAFT inverse miniemulsion 
polymerization of acrylamide at 60oC with different RAFT concentrations. 
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Figure 5.19 RAFT inverse miniemulsion polymerization of acrylamide at 60oC with 
different surfactant concentrations. 
 

The effect of the surfactant concentration on the polymerization kinetics was 

evaluated in Exp. 4, Exp. 9 and Exp. 10 with an increasing amount of surfactant from 

1wt% to 2.5wt% based on the oil phase. Compared to normal emulsion polymerizations, 

the correlation of the polymerization rates with the surfactant concentration is 

complicated in inverse emulsion polymerizations by the reaction temperature, the 

continuous oil solvent (temperature and the oil solvent can affect the micelle formation 

and the interaction between surfactants and droplets) and the nature of the initiator 

(which affects the primary radical location, in the continuous phase vs. in the monomer 

droplets). It was found that when oil soluble initiators were used, polymerizations carried 

out at higher temperatures and using aromatic solvents as the continuous phase tended to 

have positive reaction orders with respect to surfactant concentration, while negative 
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reaction orders can occur when using aliphatic media at low reaction temperatures and 

with high surfactant levels; [223-225]  If water soluble initiators are used, the polymerization 

kinetics of inverse emulsion polymerizations are similar to the solution or bulk 

polymerization controls.[223-225] Steric surfactants used in inverse emulsion or 

miniemulsion polymerizations can dramatically change the reaction kinetics because of 

the barrier effects of the surfactant, as well as potential chain transfer reactions to the 

surfactant molecules. [224, 226] As shown in Figure 5.19, there seems to be no significant 

change in the polymerization rate at the different surfactant concentrations in our study. 

The average particle radius remained almost constant at ~105nm under different 

surfactant concentration levels, as shown in Table 5.4. These results agree with previous 

inverse microsuspension polymerizations of acrylamide where the polymerization rate, 

the average particle diameter, and the radical capture efficiency were essentially 

independent of the emulsifier,[224] indicative of the pure physical role of B246 and the 

dominant droplet nucleation feature in our inverse miniemulsion polymerizations.  

5.3.2.2 Location of radical generation for particle nucleation and fate of desorbed 

monomeric radicals in inverse miniemulsion polymerization 

For emulsion or miniemulsion polymerizations, initiators are usually dissolved in 

the continuous phase and the polymerization mechanism has been well studied.197,198  

When an initiator in the dispersed phase of an emulsion or miniemulsion (e.g. 2,2’-

azobis(isobutyronitrile) [AIBN] is used in the conventional oil-in-water emulsion 

polymerization of styrene), the polymerization kinetics are more complicated. Although 

the kinetic behavior of such emulsion or miniemulsion polymerizations is known to be 

very similar to that with water-soluble initiators, the apparent initiation efficiency is 

usually significantly lower than that of solution and bulk polymerizations.[227] To clarify 

the reason for the low initiation efficiency, two primary theories have been proposed and 

have been subject of a vigorous debate over the last decade. The focus has been on the 

dominant radical generation location resulting in particle nucleation. Nomura et al. 

claimed that the fraction of initiator partitioned in the continuous phase plays a decisive 

role in radical generation since these radicals produced in a pairwise manner in the 

particles may result in geminate termination instantaneously.[228] Asua et al., however, 
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suggested that the locus of radical generation is in the particles due to initiator 

decomposition in the particles, followed by desorption of one of the radicals.[229] Both of 

the two theories have been supported by various, and in many cases conflicting 

experimental evidence and theoretical simulations.[230-233]  

The initiator used in this study, VA-044, was dissolved in the dispersed phase 

since the preliminary study showed that using a water-soluble initiator had some 

advantage over an oil-soluble initiator in achieving controlled polymerization by limiting  

homogeneous nucleation.[158] Identification of the main radical source for particle 

nucleation and the fate of desorbed radicals is, therefore, very important in understanding 

the mechanism of RAFT inverse miniemulsion polymerizations. A set of experiments 

(Table 5.5, Exp. 13-22) was used to explore this issue. 

 

Table 5.5. Effects of radical scavengers on the inverse miniemulsion polymerizations. 

Exp Monomer 
(M) 

initiator 
(mM) 

CTA 
(mM)

CTA
initiator

 

monomer
CTA

DPPH 
amount 
(mM) 

acrylic 
acid 

(mM) 

addition 
conversion 

(%) 
13 3.62 9.08 36.2 3.99 254 1.24  24 
14 3.62 9.08 36.2 3.99 254 1.24  42 
15 3.62 9.08 36.2 3.99 254 1.24  56 
16 3.62 9.08 36.2 3.99 254  195 39 
17 3.62 9.08    1.24  37 
18 3.62  36.2  254 2.32  0 
19  9.08    2.32  0 
20  9.08 36.2 3.99  2.32  0 
21 3.62 9.08    2.32  0 
22 3.62 9.08 36.2 3.99 254 2.32  0 

 

DPPH, a water insoluble radical scavenger, was added to the cyclohexane to trap 

the active radicals in the continuous phase. The effects of DPPH on the kinetics of RAFT 

inverse miniemulsion polymerizations were quite different from the free-radical inverse 

miniemulsion polymerizations. For the RAFT inverse miniemulsion polymerizations Exp. 

13, Exp. 14 and Exp. 15, DPPH was added to the continuous phase at a conversion of 

24%, 42%, and 56% respectively. As shown in Figure 5.20, the conversion-time curves 

generally were all identical, up to the point of DPPH addition when a plateau occurred. 

The duration of the plateau period was shorter in Exp. 13, compared with Exp. 14 and 
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Exp. 15, where DPPH was added at a higher conversion, but the plateau periods were 

similar. Once the added DPPH was consumed, the polymerization continued again and 

the conversion increased with reaction time. These results indicate that radicals in the 

continuous phase may be the dominant source of initiation of the controlled 

polymerizations. Since there was a concern that a trace fraction of DPPH might diffuse 

into the particle and terminate the polymerizations, Exp. 16 used acrylic acid instead of 

DPPH to check the main radical location. In this experiment, 0.72g of acrylic acid was 

added to cyclohexane (~195mM) when the conversion of RAFT inverse miniemulsion 

polymerization was at ~39%. No loss of colloidal stability and particle radius change was 

observed in the experiment. In Exp. 16, the aqueous phase had a pH=4 and the volume 

ratio of the aqueous phase to cyclohexane was around 0.19, therefore, it is estimated that 

most of acrylic acid was partitioned in the cyclohexane.[102] The active radical species in 

the continuous phase preferred to react with acrylic acid due to its significant 

concentration in cyclohexane. The portion of acrylic acid dissolved in the aqueous phase 

should not inhibit the polymerization in the particles. A plateau was observed again once 

acrylic acid was added and no copolymer of acrylamide and acrylic acid formed during 

the plateau period. This evidence further suggests that the continuous phase cyclohexane 

is the main source of radical generation for the particle nucleation in the controlled 

polymerizations. 

When DPPH was added to a free-radical inverse miniemulsion system, however, 

there is no such plateau (Exp17). Indeed the polymerization continued, but at a slower 

rate than in the control (Exp2). This result suggests that a portion of the radicals was 

produced inside the particles and there was another fraction of radicals in the continuous 

phase that appeared to terminate due to reaction with DPPH, with these also contributing 

to the polymerization under normal circumstances. Clearly, the dominant locus of radical 

generation for nucleation changes with the presence of the RAFT agent.  

The variation of the dominant locus of radical generation for nucleation could be 

attributed to the chain transfer reaction of initiator-derived radicals with RAFT agent 

within the particles. For free-radical inverse miniemulsion polymerizations, the newly-

born radicals from the initiator inside the particles will propagate by adding monomer 

units, terminate via radical recombination or with an incoming radical from the oil phase, 
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or desorb from the particle into the continuous phase. For RAFT inverse miniemulsion 

polymerizations, other than the above fates, those initiator-derived radicals may suffer an 

additional chain transfer reaction with the RAFT agent and form a leaving radical which 

can desorb into the continuous phase. Thus, the overall effect of the RAFT agent is to 

decrease the chance of formation of propagating radicals in the particles for nucleation. 

Therefore, the donation of radicals within the particle for nucleation was lessened in 

RAFT inverse miniemulsion polymerizations compared with free-radical inverse 

miniemulsion polymerizations. 

On the other hand, the difference of viscosity and diffusivity between free-radical 

and RAFT inverse miniemulsion polymerizations can also lead to a change in the primary 

radical production. The average molecular weight of polymer is much higher in the free-

radical inverse miniemulsion polymerization. The higher viscosity and lower diffusivity 

in the free-radical inverse miniemulsion polymerization can lead to a pronounced gel 

effect, limiting the mutual termination reaction of radicals in the particles. The higher 

radical survival probability makes free-radical inverse miniemulsion polymerizations 

more like a “pseudo-bulk” polymerization.[13] Thus, the fraction of radicals generated in 

the particles for nucleation can be “magnified” in free-radical inverse miniemulsion 

polymerization compared with RAFT inverse miniemulsion polymerizations.  

One advantage of using DPPH as radical scavenger is the significant color change 

with the consumption of DPPH.[234] Depending on the consumption of DPPH, the color 

of a DPPH solution can change significantly: from the original purple color to grey, and 

brown. Then, once all the DPPH is consumed, it turns into an orange color. The color 

evolution of DPPH seems to be independent of DPPH radical consumption resources.[234, 

235] To further exam the correlation between the color of DPPH solution and DPPH 

consumption, AIBN and benzoyl peroxide (BPO) were dissolved in DPPH cyclohexane 

solution and heated to 70oC to produce different radicals. As shown in Figure 21a and 

21b, the color evolution of DPPH followed the same trend in spite of the difference of 

radicals. Therefore, the consumption rate of DPPH can be qualitatively assessed from the 

color change of DPPH. Figure 21c-21g shows the color evolution of inverse 

miniemulsions with the addition of DPPH in the oil phase. Initially, all the inverse 

miniemulsions were purple in the presence of DPPH. Figure 21c shows that the 
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miniemulsion in Exp18 remained purple after 100 min, suggesting that RAFT and 

acrylamide by themselves cannot generate radicals, as expected. For Exp19, VA-044 was 

added to the aqueous phase without RAFT agent and monomer, and in this case the 

miniemulsion color became brown (as shown in Figure 21d) after 100 min, suggesting no 

significant radical flux was produced into the continuous phase, i.e. there was significant 

geminate termination (two radicals generated in the particle were terminated pairwise) of 

VA-044 radicals in the particles.  

From Figure21c and 21d, no significant amount of desorbed radicals was 

generated when either RAFT agent or VA-044 was used separately. However, a 

combination of RAFT agent and VA-044 in Exp20 did result in a fast color change of 

DPPH, as shown in Figure 21e, indicative of a significant flux of desorbed radicals into 

the continuous phase. Comparing Figure 21e with 21c and 21d, it can be inferred that the 

initiator radicals can react with the RAFT agent and increase the radical desorption rate 

into the continuous phase, providing support for the above assumption of the chain 

transfer reaction of initiator-derived radicals with the RAFT agent resulting in the 

significantly different behavior of RAFT and free-radical inverse miniemulsion in the 

presence of DPPH. From Figure 21f and 21g, the loss of radicals in free-radical inverse 

miniemulsion polymerization (Exp21) was significantly lower than in the RAFT inverse 

miniemulsion polymerization (Exp22) since the RAFT inverse miniemulsion turned 

orange in a much shorter period. The brown color of Exp21 suggested there was certain 

amount of unreacted DPPH remaining. Besides, poly(acrylamide) was produced in Exp21, 

while no polymerization occurred in Exp22 until the complete DPPH consumption after 

~40 min, as indicated by the orange color of the miniemulsion at that time. Exp21 and 

Exp22 suggest that free-radical inverse miniemulsion polymerization has more “pseudo-

bulk” character than RAFT inverse miniemulsion polymerization. 
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Figure 5.20 Effect of radical scavenger on the RAFT and free-radical inverse 

miniemulsion polymerizations. 
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Figure 5.21 Evolution of color change of DPPH cyclohexane solution using different 
initiators. (a). AIBN; (b). BPO; and the evolution of color of inverse miniemulsions after 
the addition of DPPH at reaction time= 0 min. (c). Exp18, with only RAFT agent and 
AM in the aqueous phase. From left to right: t=0, 50min, 100min; (d). Exp19, with only 
VA-044 in the aqueous phase. From left to right: t=0, 50min, 100min; (e) Exp20, with 
only RAFT agent and VA-044 in the aqueous phase. From left to right: t=0, 30min, 
40min; (f) Exp21, free-radical inverse miniemulsion polymerization of AM. DPPH was 
added in the continuous phase at the beginning of the polymerization. From left to right: 
t=0 (before adding DPPH), t=0 (after adding DPPH), 30 min, 60 min; (g) Exp22, RAFT 
inverse miniemulsion polymerization of AM. DPPH was added in the continuous phase 
at the beginning of the polymerization. From left to right: t=0 (before adding DPPH), t=0 
(after adding DPPH), 30 min, 40 min. 
 
 
 

Steric surfactants can significantly change the kinetics of emulsion 

polymerizations and result in a barrel effect, a sharp decrease both in the exit and entry 

rate of oligomeric radicals. [13, 216, 226, 233, 236-238] Since the desorption of oligomeric 

radicals and RAFT induced radical loss can cause retardation of RAFT miniemulsion 

polymerizations, [197, 221] it is important to understand the fate of oligomeric radicals 

exiting to the continuous phase. Generally, these radicals can either reenter into the 

particle, propagate in the continuous phase to a critical degree, or suffer a termination 

with other radicals or dormant species in the continuous phase, as can be estimated by the 

following equations:12,255,256   
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For the entry rate of monomeric radicals adsR  

( )[ ] 4 [ ]
/

p ps s
ads ads h

oil Av s h oil oil

N Nr rR k R D R
V N r D D V

δπ
δ

+
= =

+
i i  

Where adsk is the absorption coefficient, pN is the particle number, and AvN is the 

Avogadro constant. sr , δ are the average radius of particles and thickness of the 

surfactant hairy layer. hD , oilD  are the diffusion coefficient of monomeric radicals in the 

surfactant layer and in oil phase. [ ]Ri  is the concentration of monomeric radicals in the 

oil phase. oilV is the volume of the continuous phase. 

The propagation rate pR  

 [ ] [ ]p p oilR k M R= i  (5.6) 

The termination rate tR  

 [ ] [ ]t t oilR k T R= i i  (5.7) 

And the total radical concentration in the continuous phase [ ]T i  can be estimated by 

 [ ][ ] d oil

t

k IT
k

≈i  (5.8) 

where pk , and tk  are the coefficient of propagation, and termination reactions in the 

continuous phase. dk is the decomposition coefficient of the initiator in the oil phase. 

[ ]oilI  is the concentration of the initiator partitioned in the oil phase.  

Figure 5.22 compares the relative values of the three rates with a variation of hD  

and the related parameters listed in Table 5.6. The absorption rate decreases with a 

lower hD  while propagation, and termination reactions remained constant. Considering 

that the hD  usually has a value around 10-11 to 10-12 m2/s,[123, 124] the most likely fate of 

monomeric radicals is to propagate in the continuous phase. The particle number and 

radius did not change significantly during the RAFT inverse miniemulsion 

polymerizations. Therefore, it is suggested that the radicals of a critical degree chain 

length are captured by the particles, reentry into the particles or are terminated in or 

around the surfactant hairy layer instead of precipitating from the continuous phase. 
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Table 5.6 Parameters value for the evaluation of the fate of desorbed monomeric radicals. 

parameter value (units) ref 
sr  105nm This work 

δ  11nm [224] 
oilD  92.9 10−× m2/s [105] 

AvN  236.0 10× mol-1  

pN  152.0 10× /L This work 

pk  44.3 10× Lmol-1s-1 [222] 

dk  41.4 10−× s-1 [222] 

tk  51.5 10×  Lmol-1s-1 [222] 
[ ]oilI  44.5 10−× molL-1 This work 
[ ]wM  0.0069 molL-1 This work 

oilV  51 mL This work 
 

  

Since hD  decreases with an increase of chain length, the barrel effect of the steric 

surfactant would be more pronounced for these oligomeric radicals. As shown in Figure 

5.22, the termination rate of the critical chain length radical is very close or even higher 

than the entry rate when 131.1 10hD −< × m2s-1. Therefore, the fate of desorbed monomeric 

radicals could be propagation in the continuous phase to a critical degree and then reentry 

into the particles. At the same time, a significant number of radicals may suffer a 

termination during the reentry step. The overall barrel effect on the monomeric radicals is 

to decrease significantly the reentry rate while boosting the termination rate. 
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Figure 5.22 Relative rates of absorption, propagation and termination reactions of 
monomeric radicals in the continuous phase. 
 
Figure 5.23 shows the induction times in the inverse miniemulsion polymerizations. 

Unlike benzyl dithioesters, trithiocarbonates usually do not result in a significant 

induction time for RAFT polymerizations since their RAFT intermediate radicals are less 

stable.44,138 There was no induction time in the RAFT solution polymerization (Exp.1). 

Compared with the free-radical inverse miniemulsion polymerization of Exp.2, the RAFT 

inverse miniemulsion polymerization of Exp.4 had a much longer induction time of 

~15mins. The induction time of Exp.11 and Exp.12 using macro-RAFT agents tended to 

be shorter than Exp.4. The polymerization degree of the R group in macro-RAFT1 

(Exp.11) was about 5 while for macro-RAFT2 (Exp.12) it was ~28. The shorter induction 

times in Exp.11 and Exp.12 indicate that the induction time can be affected by the chain 

length of the R group of RAFT agent. It was reported that the critical chain length of 

acrylamide in isooctane was 3.6. [222]  Thus, there can be a significant loss of monomeric 
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R group radicals from the RAFT agent as well as oligomeric radicals; As mentioned 

above, after propagation in the continuous phase, these radicals can have a very low 

reentry rate but a high termination rate. Therefore, the loss of oligomeric radicals, among 

other potential reasons, can contribute to the induction time in the RAFT inverse 

miniemulsions.  
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Figure 5.23 Comparison of induction times in RAFT inverse miniemulsion 
polymerizations with different RAFT agents, along with the RAFT solution 
polymerization and free-radical inverse miniemulsion polymerization. 
 

5.4 Conclusion 

In this contribution, RAFT inverse miniemulsion polymerization was proposed as 

one way to synthesize well defined hydrophilic polymer latexes. The kinetics of RAFT 

inverse miniemulsion polymerization were investigated in detail. Under the optimized 

conditions in the in-depth study, the RAFT inverse miniemulsion polymerization of 

acrylamide exhibited typical behavior of controlled polymerizations when limited 
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hydrolysis of the RAFT agent is taking place up to high conversions. These include a 

linear relationship between Mn and the conversion, narrow PDI, and overlap of the RI 

and UV traces in the GPC curves. The effects of different reaction parameters on RAFT 

inverse miniemulsion polymerization were studied. Under the reaction conditions 

employed, a higher reaction temperature, and a larger amount of the initiator increases 

the polymerization rate. When the aqueous phase is a neutral or slightly acidic 

environment, the RAFT inverse miniemulsion polymerizations were better controlled 

compared with experiments at a pH above 7 (due to hydrolysis of the RAFT agent at high 

pH). An increase in the RAFT agent concentration tended to retard the polymerization 

and lower the average radical number per particle. The surfactant concentration had no 

significant effect on the polymerization rate and particle radius. 

  The dominant location of radical generation for particle nucleation in the inverse 

miniemulsion polymerizations was studied by the use of radical scavengers. It was found 

that the dominant locus of radical generation for particle nucleation varied depending on 

whether the polymerizations were conducted in the presence or absence of RAFT agent. 

In the RAFT inverse miniemulsion polymerizations, the radicals leading to particle 

nucleation mainly came from the fraction of the dissolve initiator in the continuous phase. 

In the free-radical inverse miniemulsion polymerizations, both initiator in the continuous 

phase and inside the particles contribute to the particle nucleation. The fate of desorbed 

monomeric radicals in inverse miniemulsion polymerizations was evaluated by the 

relative rates of propagation, reentry and termination. One of the potential reasons for the 

induction time observed in the RAFT inverse miniemulsion polymerizations is suggested 

to be associated with desorption of oligomeric radicals below a critical chain length. 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY* 

 

6.1 Summary of Current Work 

Conventional free-radical miniemulsion polymerization has been well studied 

since its birth in early 1970s. In spite of numerous advantages over macroemulsion 

polymerizations, conventional free-radical miniemulsion polymerizations have some 

inherent limitations, e.g. an inability to achieve precise control of polymer structure. This 

work extended the applications of free-radical miniemulsion polymerizations and helps to 

overcome these limitations. By introduction of new techniques to miniemulsion systems, 

new types of various kinds of unconventional miniemulsion polymerization techniques 

were developed. At the same time, the kinetics and mechanism of these unconventional 

miniemulsion polymerizations were explored in this work. 

In Chapter 2, enzyme initiated free-radical miniemulsion polymerization was 

proposed for the first time as an answer to the challenges associated with aqueous 

enzymatic polymerization of hydrophobic vinyl monomers. A recipe for HRP initiated 

free-radical miniemulsion polymerization was formulated and stable poly(styrene) latexes 

were successfully synthesized. Compared with enzymatic polymerizations performed 

with homogeneous cosolvents, enzyme initiated free-radical miniemulsion 

polymerization in the work achieved much higher monomer conversion and higher 

polymer molecular weight. The kinetics of enzyme initiated free-radical miniemulsion 

polymerization was briefly studied. The effect of reaction conditions on the 

polymerization was investigated. It was shown that only a very small amount of H2O2 

and ACAC was required for HRP to facilitate the miniemulsion polymerizations. 

In chapters 3-5, to precisely control polymer properties and latex morphology, 

RAFT chemistry was employed in miniemulsion systems to polymerize monomers of 

different hydrophilicities. Chapter 3 described RAFT miniemulsion polymerization of 

                                                 

* Portions of this chapter are to be submitted. 
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styrene in CSTR trains, focusing on the transient states observed in a previous Gatech 

study.[2] Potential causes of the transient states were summarized and solutions were 

suggested. Two categories of factors potentially contributing to unstable transients in 

CSTR trains were examined in this work. Possibilities from equipment design and 

operation were first checked. When keeping the CSTR train under nitrogen pressure and 

a constant concentration of initiator feed, no significant transient states were observed. 

Other causes related to the polymerization mechanism were then evaluated. However, 

such possibilities were ruled out after careful analysis. Therefore, the transient states in 

previous work appear to result from the previous equipment design and operation rather 

than from mechanistic issues associated with RAFT miniemulsion polymerizations. A 

steady state in RAFT miniemulsion polymerization in a CSTR train was achieved in this 

work. 

In chapter 4, RAFT miniemulsion polymerization of MeMBL, a partially water 

soluble lactone monomer derived from renewable resources, was successfully formulated 

and a stable poly(MeMBL) latex was produced. The water-solubility limit of monomers 

in the oil-in-water miniemulsion polymerization technique was extended from ~7wt% 

(acrylonitrile) to ~9wt% (MeMBL). The kinetics of free-radical “miniemulsion” 

polymerization of MeMBL were assessed. The effects of reaction parameters on free-

radical “miniemulsion” homopolymerization were investigated. Homogeneous nucleation 

was found to play an important role in the free-radical “miniemulsion” 

homopolymerization. RAFT miniemulsion polymerizations of MeMBL were achieved by 

the use of styrene as a comonomer. In the miniemulsion copolymerizations of MeMBL 

and styrene using an oil soluble initiator, the homogeneous nucleation process appeared 

limited. The RAFT miniemulsion polymerizations of MeMBL and styrene were well 

controlled and narrow polydispersity copolymers of MeMBL/styrene were produced. 

Rate retardation was observed in the RAFT miniemulsion polymerizations compared 

with the free-radical polymerization and RAFT bulk polymerization controls. The 

reactivity ratios of MeMBL and styrene in RAFT bulk copolymerization were measured 

and compared with that of MMA and styrene. It was found that the MeMBL radicals 

were less monomer preferential in the propagation reaction compared with MMA 

radicals. 
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In Chapter 5, a RAFT inverse miniemulsion polymerization technique is 

developed for the first time to synthesize well defined hydrophilic polymer latexes. The 

kinetics of RAFT inverse miniemulsion polymerization were investigated in detail. After 

optimizing the recipe, the RAFT inverse miniemulsion polymerization of acrylamide 

exhibited typical behavior of controlled polymerizations up to high conversions. The 

effects of reaction parameters, such as reaction temperature, initiator amount, pH value of 

the aqueous phase, concentration of RAFT agent and surfactant, on the polymerization 

rate and particle radius were investigated. The dominant location of radical generation for 

particle nucleation in the inverse miniemulsion polymerizations was studied by the use of 

radical scavengers. It was found that the dominant locus of radical generation for particle 

nucleation varied depending on whether the polymerizations were conducted in the 

presence or absence of a RAFT agent. In the RAFT inverse miniemulsion 

polymerizations, the radicals causing particle nucleation mainly came from the fraction of 

the dissolved initiator in the continuous phase. The fate of desorbed monomeric radicals 

in inverse miniemulsion polymerizations was evaluated by the comparison the relative 

rates of propagation, reentry and termination. 

6.2 Recommendations for Further Inquiry 

6.2.1 Enzymatic miniemulsion polymerization 

The kinetics of HRP initiated miniemulsion polymerization was preliminarily 

studied in Chapter 2. Figure 2.1 showed there was an initialization period at the 

beginning of HRP initiated miniemulsion polymerization in which the polymerization 

rate was relatively slow. We suggested that the slow polymerization rate could be the 

result of ACAC partitioning leading to an atypical initiation mechanism using HRP. In-

depth investigation of the enzymatic polymerization mechanism, especially 

understanding the fundamental reasons resulting in the initial slower polymerization rate, 

is needed before drawing a conclusive answer. 

The enzymatic polymerizations can also be applied to inverse miniemulsions to 

immobilize enzymes in situ. Compared to free enzymes, immobilized enzymes are 

superior in maintenance of their activity, storage convenience, and tolerance to undesired 
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reaction conditions.[239] As an example, the enzyme (HRP), H2O2 and hydrophilic 

monomers such as acrylamide can be dissolved in the aqueous phase of an inverse 

miniemulsion. HRP will initiate the polymerization of acrylamide and simultaneously be 

immobilized in situ by the poly(acrylamide) gel formed. A tentative recipe is shown in 

Table 6.1. 

 

Table 6.1 Tentative recipe for in situ immobilization of HRP at room temperature. 
Component 

Continuous phase Dispersed phase 
Mass 
(g) 

B246  1.00  
Cyclohexane  50.0  
 H2O 7.5  
 Acrylamide 1.0  
 N,N’-methylene bisacrylamide 0.2 
 MgSO4 0.12  
 H2O2(30wt%) 0.015  
 HRP 0.005  

 

6.2.2 RAFT miniemulsion polymerizations of MeMBL 

In Chapter 4, styrene was used as comonomer to improve the stability of the 

miniemulsions and gain control over the polymerization of MeMBL. The introduction of 

styrene also allows one to tune the glass transition temperature of the copolymer and 

increase its solubility in common solvents. However, one may prefer a homopolymer of 

MeMBL to the copolymer for certain applications because of the unique properties of 

poly(MeMBL), e.g. solvent resistance and an extremely high Tg above 200 oC. 

RAFT miniemulsion homopolymerization of MeMBL can be a promising way to 

prepare well defined poly(MeMBL) and at the same time, avoid processing challenges 

such as heat transfer and polymer solubility. As mentioned in Chapter 4, the stability of a 

miniemulsion of MeMBL can be a significant concern in achieving the miniemulsion 

homopolymerization. Two tentative strategies are proposed here to improve the stability 

of miniemulsions of MeMBL. 

1. Dissolve MeMBL in a nonreactive hydrophobic solvent and then prepare the 

miniemulsion. This strategy is similar to the use of styrene. The hydrophobic 
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solvent, however, doesn’t react with MeMBL, therefore, a homopolymer of 

MeMBL will be produced. 

2. Addition of a proper amount of poly(MeMBL) as a costabilizer to improve the 

stability of miniemulsions of MeMBL. As mentioned in Chapter1, poly(MeMBL) 

may also enhance the nucleation of MeMBL droplets. If most of the MeMBL 

droplets are nucleated fast enough before the miniemulsion loses its stability, a 

stable poly(MeMBL) can be produced. 

Other than the miniemulsion stability issue, selection of a suitable RAFT agent is 

another challenge in RAFT miniemulsion homopolymerization of MeMBL. As 

mentioned in Chapter 4, PEPDTA has shown little control of the homopolymerization, 

therefore, the Z group of the suitable RAFT must be a group that is better than the phenyl 

group to promote the formation of the intermediate RAFT radicals.[79] Potential RAFT 

agents for homopolymerization of MeMBL are shown in Figure 6.1. However, these 

RAFT agents may result in an induction time in the homopolymerization of MeMBL. A 

compromise of the two factors, i.e. miniemulsion stability and control of the 

polymerization, must be achieved to prepare a stable, well-defined poly(MeMBL) latex.  
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Figure 6.1 Potential RAFT agents for homopolymerization of MeMBL. 

6.2.3 RAFT inverse miniemulsion polymerization 

Chapter 5 has reported a detailed experimental investigation on the kinetics of 

RAFT inverse miniemulsion polymerization of acrylamide. A schematic mathematical 

modeling on the RAFT inverse miniemulsion polymerization needs to be developed since 
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it can help to further understand the mechanism and related phenomena such as the 

induction time in the polymerizations. 

As mentioned in Chapter 5, the dominant radical source for particle nucleation 

comes from the small fraction of initiator dissolved in the continuous phase. The average 

number of radical per particle is significantly lower than 0.5. There is no rapid reentry 

and redesorption of monomeric radicals due to the barrel effect of the steric surfactant. 

Therefore, RAFT inverse miniemulsion polymerization of acrylamide can be 

approximated as a “0-1” (instantaneous termination) system, i.e. a poly(acrylamide) 

particles contain either one or no radical during the polymerization. Based on the RAFT 

polymerization mechanism (as shown in Figure 1.2), there are six kinds of particles in the 

system, as shown in Figure 6.2: (1) 0,0N , particles containing no radical; (2) mN 0,1 , 

particles containing only one monomeric radical; (3) pN 0,1 , particles containing only one 

polymeric radical; (4) mN 1,0 , particles containing one RAFT intermediate radical whose 

two arms are less than critical degree; (5) mpN 1,0 , particles containing one RAFT 

intermediate radical whose one arm is less than critical degree while the other is larger 

than critical degree; and (6) pN 1,0 , particles containing one RAFT intermediate radical 

whose two arms are larger than critical degree. 
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Figure 6.2 Different kinds of particles in the RAFT inverse miniemulsion polymerization 

of acrylamide. 

A few of assumptions are required for the model: 

1. Monomeric radicals are the only radical species within the particles that can desorb 

to the continuous phase;  

2. Initiator-derived oligomeric radicals are irreversibly captured by the particles once 

their chain length is larger than the critical degree;  

3. All RAFT intermediate radicals stay in the particles and undergo either 

fragmentation or termination, but no propagation. 

From these assumptions, we can derive the following equations for “0-1” RAFT 

inverse miniemulsion polymerization systems: 
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The above equations 6.1-6.8 describe the evolution of different types of particles 

in the RAFT inverse miniemulsion polymerization. From these equations, the average 

number of radical per particle n can be derived and related to the polymerization rate pR : 

 1,0 1,0 1,0
m p pn N N N= + ≈  (6.9) 

 [ ] /p p p p AR k M N n N=  (6.10) 

Therefore, the kinetics of RAFT inverse miniemulsion polymerization can be 

predicted quantitatively from equations 6.1-6.10. Currently, the modeling of the kinetics 

of RAFT inverse miniemulsion polymerization is under investigation. 

The study in Chapter 5 focused on the kinetic aspects of RAFT inverse 

miniemulsion polymerizations. The practical applications of RAFT inverse miniemulsion 

polymerization in different fields, such as the synthesis of polymer-inorganic 

nanocomposites, are worth further study. As an example, the synthesis of ZnO-polymer 

nanocomposites by RAFT inverse miniemulsion polymerization is under investigation. 

The first step towards this aim has been achieved by using free-radical inverse 

miniemulsion polymerization. A typical recipe is shown in Table 6.2. The prepared stable 

composite latex is shown in Figure 6.2. The next step will use RAFT chemistry to control 

the properties of the polymer matrix and the morphology of the nanocomposite. 

 

 

Table 6.2 Typical recipe for the synthesis of ZnO nanocomposite. 
Component 

Continuous phase Dispersed phasea 
Mass 
(g) 

B246  0.5  
Cyclohexane  40.0  
 H2O 12  
 Acrylamide 1.0  
 VA-044 0.05 
 Zn(NO3)2 0.10  
 NH4NO3 0.30  
a The pH of dispersed phase was adjusted to 10 by NaOH. 
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Figure 6.3 Stable ZnO/(polyacrylamide) nanocomposite latex prepared from the recipe in 

Table 6.2.  
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APPENDIX A 

EFFECT OF RAFT AGENT ON THE STABILITY OF 

MINIEMULSION FEED* 

 

The effect of RAFT agent on the stability of the miniemulsion feed (as discussed 

in Chapter 3) is evaluated here. It should be pointed out that the following derivation 

describes a different situation from the superswelling theory.[86] The situation here is 

from a purely physical process before the onset of oligomerization in the miniemulsion 

feed. The superswelling theory describes a situation after the oligomerization or 

polymerization when there is an uneven oligomerization in the RAFT miniemulsion. The 

RAFT oligomers are assumed to have interaction with the monomers in the superswelling 

theory. 

 As mentioned in the first chapter, a miniemulsion is a metastable emulsion of 

fine oil droplets dispersed in water. The droplets must be stabilized against coalescence 

by collisions and against Ostwald ripening by diffusion processes. Stabilization against 

coalescence can be achieved by adding appropriate surfactants, such as sodium dodecyl 

sulfate (SDS). Diffusional stabilization is achieved by adding a small quantity of a highly 

monomer-soluble and extremely hydrophobic costabilizer such as hexadecane. Since only 

a small amount of RAFT agent is utilized in controlled miniemulsion polymerization, 

which is partitioned in the monomer droplets and structurally different from surfactants, 

the addition of RAFT agent has very limited effects, if any, on changing the collision 

environment around the droplets. Therefore, we will focus on the Ostwald ripening 

process after introduction of RAFT agents. In the following, subscripts 1, 2, 3 refer to the 

monomer, RAFT agent and costabilizer respectively. 

The following derivation is based on the Lifshitz-Slyozov-Wagner (LSW) 

theory.[240, 241] The main results of LSW theory are the following: 

                                                 

* Portions of this appendix have been published in Langmuir, 2006, 22, 9075-9078. 
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(1) During the ripening process, there exists a critical radius ca  in polydisperse 

droplets. Particles with a larger radius grow while smaller ones shrink. For those radius 

equals ca , the radius of the particle does not change. ca  increases during the ripening 

process.  

(2) The Ostwald ripening rate w  is constant  
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The derivation proposed here is based on the following assumptions: 

(1) The surfactants will not interfere with the mass transfer of different species. The 

present of RAFT agent does not change the surface tension of the miniemulsions. 

(2) The molar fraction of RAFT agent and costabilizer in a RAFT miniemulsion 

system is small. There is no reaction between RAFT agent and the monomer. 

(3) The concentration of the dispersed phase is the same throughout the medium 

except the neighborhood of the droplet surfaces. 

(4) The dispersed phase transport is by molecular diffusion from one droplet to the 

others, following the Fick’s first law. 

(5) The solubility of RAFT agent in water is comparable or less than that of the 

monomer. 

The chemical potential of component i in one droplet of miniemulsion is 

 i
mi

i
drop
i xRT

a
V ln2' ++=

σμμ  (A.3) 

The chemical potential of component i in bulk is 

 ' 0 'lni i iRT Cμ μ= +  (A.4) 
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When the droplets and the medium reach equilibrium, the chemical potential of 

composition i in the droplets should equal that close to the surface of the droplets. 

 
surf
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The chemical potential of component i around the droplet surface can be written 

as 
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From the above equations,  
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From Fick’s first law, the mass transfer rate 
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At every instant, there exists a critical radius ca in the polydisperse distribution of 

droplet radius at which the flux of the droplets close to zero. For an arbitrary droplet, the 

mass flux of costabilizer is: 
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Since miniemulsions can be stable for a relatively long time, there should be a 

quasi-stationary state in which 01 ≈J ( 2J  and 3J  are therefore close to zero too since the 

monomer flux 1J accounts for the main part of the total mass transfer), that is 
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From the Equation (A10), considering that the molar fraction of RAFT agent and 

costabilizer in a RAFT miniemulsion system is typically quite small, by expanding the 

exponents in a Taylor series truncated at the second term, we have 
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Two observations have been made in previous reports of RAFT miniemulsions: [2, 

83, 159, 197] 

(1) The stability of RAFT miniemulsions was found to be reduced to some extent 

compared with those without RAFT; however, the stability was still quite good in these 

situations. There is no obvious phase separation or cream except a thin layer of oil at the 

vortex over a long storage times. 

(2) The molecular weight distribution (PDI) of the polymer product is very narrow. The 

particle size distribution (PSD) of the final polymer latex is also quite narrow though 

slightly broader than the free-radical miniemulsion protocol. The living non-growing 

chains in RAFT miniemulsion polymerization only accounts for a very small part of the 

total polymer produced.[2] 

The above phenomena indicate that the relative concentration change of the 

components in RAFT miniemulsion droplets is relatively small for most cases. Therefore, 

the ratio of the component fluxes is assumed to be approximately equal to the volume 

fractions iφ  of the components in the droplets though it is a multivariable function of 

volume fractions, diffusion coefficient and solubility of the components: 

 321321 //// φφφ=JJJ  (A.12) 

This leads to: 
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Note that Equation (A.13) has a form similar to that of one-component particle 

evolution equation described decades before by Lifshitz, et al.[240] From LSW theory, the 

rate of droplet growth should be: 
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The one-component droplet system without costabilizer and RAFT agent should 

be: 



 136

 '
11

1
3

9
8 CD

RT
V

dt
adw m σ

==  (A.15) 

A retardation factor F, defined as the droplet growth rate ratio of a miniemulsion 

and an emulsion, could evaluate the relative stability of a miniemulsion system. 

So the retardation factor F for miniemulsions with both RAFT agent and 

costabilizer is: 
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and the retardation factor F for a miniemulsion system having only costabilizer is: 
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The effect of RAFT agent can be evaluated by a factor R 
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Unfortunately, there is no experimental report of diffusion coefficient of RAFT 

agents so far. Since the diffusion coefficient is around 0.5×10-9 to 2 ×10-9 m2/s for a wide 

range of systems, for simplification, by assuming 32 DD ≈  the above equation can be 

simplified as 
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Figure A.1. Relative stability comparison R of the miniemulsion containing RAFT agent 
with the miniemulsion without RAFT agent. Assuming that the volume of monomer 
equals 100, and costabilizer equals 1. 
 
 

Figure A.1 shows the effect of RAFT agent on the stability of miniemulsions. 

With higher hydrophilicity of the RAFT agent, the miniemulsions tend to be less stable. It 

is noteworthy that there is a low boundary when 0/ '
2

'
3 =CC , that is, when the 

costabilizer has zero solubility. However, when the hydrophobicity of the RAFT agent is 

comparable to that of the costabilizer, the miniemulsions are even more stable than 

conventional miniemulsions. To understand the above result, RAFT agent can be 

considered to be a special costabilizer, but not of the same stabilizing effectiveness as 

costabilizers such as hexadecane. On one hand, RAFT agent improves the stability of 

miniemulsions as when its solubility is comparable to hexadecane; on the other hand, 

when the RAFT agent is more hydrophilic than the costabilizer, it dilutes the costabilizer, 

making the miniemulsion less stable and contributing to oil phase separation. Considering 
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that typically the solubility of RAFT is much higher than that of hexadecane, the stability 

of miniemulsions with RAFT should be close to the lower boundary 0/ '
2

'
3 =CC . 

There are some supplementary explanations that need to be made for the 

derivation: 

(1) It is worthy of pointing out here that even after introducing RAFT agents, the critical 

radius aac = , which is similar to the conventional emulsions. [242] This relationship can 

be derived easily from the mass conservation. For N droplets, 

 0])11()(4[)( 1
'
33

3
'
22

2
1321 =−+=++ ∑∑ −

dropleti

N

i c

N

i
dropleti aaCDCD

JJJ φφπα  (A.20) 

Thus 

 aa
N

a
N

i
c == ∑1  (A.21) 

(2) The derivation is not limited to miniemulsions with RAFT agents. Actually it can be 

applied to evaluate the stability of miniemulsions with any small amount of controlled 

agents similar to RAFT agents, such as, many controlled agents utilized in ATRP. [243] 

(3) Although the assumption that the ratio of the component fluxes is approximately 

equal to the volume fractions of the components in the droplets works well for most of 

RAFT miniemulsion systems previously reported; there maybe few cases the assumption 

does not apply under certain conditions. For example, when the RAFT agent is extremely 

hydrophilic or there is a significant different diffusion behavior between RAFT agent and 

the other components in the droplets. In these cases, RAFT agent will redistribute in the 

droplets due to Oswald ripening and cause an unevenly distribution of RAFT 

concentration in the droplets. The high concentration of RAFT in certain droplets could 

favor the retard the following polymerization process in these droplets which leads to a 

much broader PDI in the final latex.[134, 146, 244, 245] 
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