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SUMMARY

This thesis is concerned with the efficient numerical simulation of finite element

based flexible multibody systems. Scaling operations are systematically applied to

the governing index-3 differential algebraic equations in order to solve the problem of

ill conditioning for small time step sizes. The importance of augmented Lagrangian

terms is demonstrated. The use of fast sparse solvers is justified for the solution of

the linearized equations of motion resulting in significant savings of computational

costs.

Three time stepping schemes for the integration of the governing equations of

flexible multibody systems are discussed in detail. These schemes are the two-stage

Radau IIA scheme, the energy decaying scheme, and the generalized-α method. Their

formulations are adapted to the specific structure of the governing equations of flexible

multibody systems. The efficiency of the time integration schemes is comprehensively

evaluated on a series of test problems.

Formulations for structural and constraint elements are reviewed and the prob-

lem of interpolation of finite rotations in geometrically exact structural elements is

revisited. This results in the development of a new improved interpolation algorithm,

which preserves the objectivity of the strain field and guarantees stable simulations

in the presence of arbitrarily large rotations.

Finally, strategies for the spatial discretization of beams in the presence of steep

variations in cross-sectional properties are developed. These strategies reduce the

number of degrees of freedom needed to accurately analyze beams with discontinuous

properties, resulting in improved computational efficiency.
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CHAPTER I

INTRODUCTION

Flexible multibody systems are characterized by three distinct features: system com-

ponents undergo finite relative rotations, system components are connected by means

of mechanical joints, and a large number of degrees of freedom is required to accu-

rately model flexible components. Finite rotations cause the resulting equations of

motion to be highly nonlinear, whereas the presence of mechanical joints results in

a set of algebraic constraints. Hence, when using finite-element based formulations,

the governing equations for such systems form a set of nonlinear differential algebraic

equations (DAEs), which is typically of index-3 and can be written as

M(q, t)q̈ +BT (q, t) λ = F (q, q̇, t), (1.1a)

C(q, t) = 0, (1.1b)

where M(q, t) is the configuration dependent, symmetric and positive definite mass

matrix, q is the array containing the generalized coordinates, C(q, t) is the array of

algebraic constraints, B(q, t) is the constraint Jacobian, λ is the array of Lagrange

multipliers, and F (q, q̇, t) are the remaining inertial, elastic and externally applied

forces. The notation ˙(·) is used to denote a derivative with respect to time.

If n denotes the number of redundant generalized coordinates of the system and

m the number of algebraic constraints, then n is typically significantly larger than m

due to the presence of the flexible components. Furthermore, the governing equations

are usually formulated in terms of generalized coordinates, which will render system

matrices highly sparse.
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This research is concerned with the efficient numerical simulation of flexible multi-

body systems described by eqs. (1.1). Scaling operations are systematically devel-

oped and the importance of augmented Lagrangian terms is emphasized. Thereby,

the index-3 formulation of the governing equations can be solved for arbitrarily small

time step sizes. Moreover, sparse solvers can be used to solve the differential algebraic

system, which yields savings in computational costs. Three time stepping schemes for

the integration of the governing equations of multibody systems are discussed. Their

formulations are adapted to the specific structure of the equations of motion and their

efficiency is comprehensively evaluated on a series of test problems. Formulations for

structural and constraint elements are reviewed and the problem of interpolation of

finite rotations in geometrically exact structural elements is revisited. This results in

the development of a new improved interpolation algorithm. Finally, strategies for the

spatial discretization of beams in the presence of high gradients in sectional properties

are developed. These strategies reduce the number of unknowns needed to accurately

analyze beams with discontinuous properties, resulting in improved computational

efficiency. The remainder of this chapter contains the background, previous work,

objectives, and present approaches for the methods and techniques proposed in this

thesis.

1.1 Scaling of Constraints and Augmented Lagrangian For-

mulations

1.1.1 Background and Previous Work

A main characteristic of multibody systems is the presence of mechanical joints,

which impose restrictions on the relative motion of structural components connected

by them. These mechanical joints result in algebraic constraints leading to a set

of governing differential algebraic equations. Orlandea et al. [70, 71] developed an

approach to the analysis of multibody systems based on the direct solution of the

governing index-3 DAEs. While the number of generalized coordinates used in their
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approach is larger than the minimal set, they argue that the numerical solution of the

resulting equations can be efficiently obtained by taking advantage of their sparsity,

through the use of appropriate algorithms. To overcome the numerical problems

associated with the solution of DAEs, numerically dissipative time integrators were

used that are specifically designed for stiff problems. It is interesting to note that

this early approach proposes a purely numerical solution to the challenges posed by

Lagrange’s equations of the first kind: stiff integrators are used to deal with DAEs.

Gear and coworkers [45,46] have studied DAEs extensively and concluded in 1984:

“If the index does not exceed 1, automatic codes [...] can solve the problem with no

trouble.” Furthermore, “If [...] the index is greater than one, the user should be

encouraged to reduce it.” These recommendations stem from the well-known fact

that the amplification of small errors and perturbations in the solution of DAEs

causes severe numerical difficulties. For example, Petzold and Lötstedt [72] have

shown that the index-3 DAEs characteristic of constrained multibody systems are

severely ill conditioned for small time step sizes when discretized using backward

differentiation formulæ. Their analysis indicates that, unless corrective actions are

taken, the condition number of the iteration matrix is O(h−3), where h is the time

step size. Furthermore, errors propagate in the displacement, velocity, and multiplier

fields at rates of O(h−1), O(h−2), and O(h−3), respectively.

These observations prompted the multibody community to engage along two dis-

tinct avenues of research. First, coordinate reduction techniques that eliminate La-

grange’s multipliers all together, reducing the DAEs to ODEs. Second, index reduc-

tion techniques that reduce the governing equations of motion to index-1 equations.

For instance, Borri et al. [24] have developed a general index reduction procedure

that splits the solution of systems represented by index-3 DAEs into separate ODE

and algebraic problems. Clearly, such procedures are only attractive when leading

to computationally efficient algorithms. In recent years, however, the direct solution
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of index-3 DAEs has regained popularity, especially when finite element formulations

are used to model flexible multibody systems. Because of the likely presence of high

frequencies associated with the spatial discretization process, time integration relies

almost exclusively on implicit schemes such as the HHT-α integrator [55], or more

recently, the generalized-α scheme [34]. These schemes are second order accurate, un-

conditionally stable for linear systems, and present high frequency numerical damping;

these three features are considered indispensable for the successful integration of large

finite element systems, see textbooks such as Hughes [59] or Bathe [5].

In view of the difficulties associated with the solution of index-3 DAEs, consid-

erable effort was devoted to the development of time integration techniques suitable

for large flexible multibody systems. Cardona and Géradin [28, 30] showed that the

classical Newmark [69] trapezoidal rule is unconditionally unstable for linear systems

in the presence of constraints. However, the use of dissipative algorithms such as

HHT-α [55] resulted in stable behavior, even for nonlinear systems. Further work by

Farhat et al. shows that both HHT-α and generalized-α [34] methods achieve stabil-

ity for a class of constrained hybrid formulations. In these approaches, stabilization

of the integration process is inherently associated with the dissipative nature of the

algorithms. While stability is mathematically proved for linear systems, there is no

guarantee when it comes to nonlinear systems [58].

While dissipative time integration schemes seem to be indispensable to the suc-

cessful integration of constrained flexible systems modeled with index-3 DAEs, scaling

of the governing equations and constraints seems to be an equally important tech-

nique, which is, in fact, hardly new. In the framework of engineering optimization,

scaling of constraint equations is a well-known practice that is recommended in nu-

merous textbooks, such as Fox [43], 1971, or Reklaitis et al. [76], 1983. In his 1984

textbook, Vanderplaats [91] specifically mentions: “Often, numerical difficulties are

encountered because one constraint function is of different magnitude or changes more
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rapidly than the others and therefore dominates the optimization process. [...,] we

have normalized the constraints so they become of order of unity. This improves the

conditioning of the optimization problem considerably, and should always be done

when formulating the problem.” Although engineering optimization and multibody

dynamics are numerically similar problems that must both deal with constraints, it

is disturbing to note that scaling of the constraint equations is rarely mentioned in

multibody dynamics papers or textbooks.

Within the framework of multibody dynamics, Petzold and Lötstedt [72] discuss

a simple scaling transformation of the index-3 governing equations, which yields a

condition number of the iteration matrix of O(h−2) and an improvement of one order

in the errors for all solution fields. Although the sensitivity to perturbations is reduced

with respect to the unscaled problem, difficulties can still be expected in practice.

Cardona and Géradin [31] showed that the condition number of the iteration matrix

obtained from the HHT-α integrator is of O(h−4) and stated that “If we try to solve

this problem without scaling, the Newton algorithm will not converge since round-

off errors would become of the same order as the Newton correction itself.” To

remedy this problem, they proposed symmetric scaling of the equations of motion

that renders the condition number of the system matrix independent of the time

step size and of the mean value of the mass matrix. A more systematic analysis of

the scaling procedure was discussed by Bottasso et al. [25] who proposed a simple

scaling transformation for backward differentiation formulæ. The approach amounts

to a left and right preconditioning of the iteration matrix, in an effort to decrease

solution sensitivity to perturbation propagation. A remarkable result was obtained:

both error propagation and iteration matrix conditioning are O(h0), and hence, the

behavior of the numerical solution of index-3 DAEs is identical to that of regular

ODEs. Bottasso et al. [26] later extended the same ideas to the Newmark family

of integration schemes and provided a better theoretical foundation to explain how
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perturbations affect the solution process.

1.1.2 Objective and Present Approaches

In chapter 2, physical arguments are used to derive a simple scaling procedure that is

directly applied to the governing equations of motion, before the time discretization

is performed, and an augmented Lagrangian term is added to the formulation. Ap-

plication of any time discretization scheme followed by a linearization of the resulting

nonlinear algebraic equations then lead to a Jacobian matrix that is independent of

the time step size, h; hence, the condition number of the Jacobian and error propaga-

tion are both O(h0): the numerical solution of index-3 DAEs behaves as in the case

of regular ODEs. Since the scaling factor depends on the physical properties of the

system, the proposed scaling decreases the dependency of this Jacobian on physical

properties, further improving the numerical conditioning of the resulting linearized

equations. Finally, the additional benefits stemming from the augmented Lagrangian

term are discussed. Specifically, this term enables the use of sparse solvers that do

not rely on pivoting for the stable and accurate solution of the linearized equations

of motion. Finally, a number of numerical examples demonstrate the efficiency of the

proposed approach to scaling.

1.2 Time Integration Procedures for Flexible Multibody Sys-

tems

1.2.1 Background and Previous Work

Time integration schemes are at the heart of flexible multibody dynamics. They are

required in order to transform the governing differential algebraic equations (1.1) into

a set of nonlinear algebraic equations. These nonlinear equations can be linearized

and solved using computers.

The governing equations (1.1) can be rewritten in numerous ways. Some pop-

ular expressions include the augmented index-3 formulation, the index-2 or GGL
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formulation, the index-1 formulation, or the state-space formulation. Bauchau and

Laulusa [11,66] presented a comprehensive review of the many formulations that have

been successfully used to formulate the equations of motion of constrained multibody

systems.

A comparison of the numerical efficiency of different formulations was presented by

Cuadrado et al. [38]. The comparison included (1) the index-3 augmented Lagrangian

formulation, (2) the index-1 augmented Lagrangian formulation with projections, (3)

a state-space formulation and (4) a fully-recursive formulation. It should be noted

that no scaling of the governing equations was used. All formulations were applied

to rigid multibody systems and integrated using the trapezoidal rule. The authors

concluded that both state-space and fully-recursive formulations were not suitable for

general-purpose applications since they failed when applied to stiff systems and/or

systems involving singularities. Furthermore, the index-1 formulation failed in cases

of large time steps due to the drift phenomenon, whereas the index-3 formulation did

not converge if time steps were too small.

The latter problem can be explained by the fact that the iteration matrix for index-

3 systems is ill conditioned for small time steps. As previously discussed, a solution

to this problem is developed in chapter 2. Hence, the augmented index-3 formulation

appears to be appropriate for the numerical analysis of flexible multibody systems

and will be exclusively used in this thesis.

A large number of time integration methods have been proposed in the literature

either for general differential algebraic systems or specifically for structural dynamics

or multibody dynamics problems. Hairer and Wanner [51] provide detailed descrip-

tions of construction and properties of one-step methods such as implicit Runge-Kutta

methods and multi-step methods such as backward differentiation formulæ. These

methods were designed for general differential algebraic equations and they were not

adapted to the specific properties of flexible multibody systems. One scheme, the
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two-stage Radau IIA method, appears to be particularly promising for the simulation

of flexible multibody systems: (1) It is unconditionally stable if applied to linear

problems, (2) it exhibits asymptotic annihilation of high-frequency transients, which

is essential for the analysis of stiff systems with flexible components, (3) it is third

order accurate, and (4) it involves in its standard formulation 4n + 4m algorithmic

unknowns for systems with n generalized coordinates and m constraints, which can

be reduced to 2n+ 2m algorithmic unknowns if the scheme is adapted to the specific

structure of multibody systems.

The generalized-α scheme was proposed by Chung and Hulbert [34] and is the

workhorse in many structural dynamics applications. The scheme, which contains

the widely used HHT-α method [55] as a special case, was introduced specifically for

linear structural dynamics problems. It seems natural to extend its application to

the analysis of flexible multibody dynamics problems since the linearized equations

of motion of flexible multibody systems resemble those of linear structural dynamics

problems. As in case of the two-stage Radau IIA scheme, the generalized-α method

is unconditionally stable if applied to linear problems and exhibits asymptotic anni-

hilation of high-frequency transients if the algorithmic parameters are chosen appro-

priately. However, it is only second order accurate. It involves n + m algorithmic

unknowns for systems with n generalized coordinates and m constraints.

The energy decaying scheme [8,9] is based on the application of a time-discontinuous

Galerkin approximation to the equations of motion. It is primarily used within the

framework of flexible multibody dynamics. The time stepping method is uncondi-

tionally stable if applied to any flexible multibody dynamics problem since constraint

forces are guaranteed not to generate work. It exhibits asymptotic annihilation of

high-frequency transients, it is second order accurate, and it contains 2n + 2m algo-

rithmic unknowns for systems with n generalized coordinates and m constraints.
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1.2.2 Objective and Present Approaches

In chapter 3, the multibody systems analysis process is reviewed. Differences between

static problems, linear structural dynamics problems, nonlinear structural dynamics

problems, and multibody dynamics problems involving holonomic and nonholonomic

constraints will be highlighted. Properties and formulations of the two-stage Radau

IIA scheme, the generalized-α scheme, and the energy decaying scheme will be re-

viewed. The two-stage Radau IIA scheme will be adapted to the special structure

of flexible multibody systems. Thereby, the number of algorithmic unknowns can be

reduced by 50%. Additionally, implications of solver choice for software development,

maintenance, and expansion will be discussed.

In chapter 6, the performance of the two-stage Radau IIA scheme, the generalized-

α scheme, and the energy decaying scheme will be extensively tested by solving a series

of test problems. The goal of these numerical experiments is to identify the solver

that is best suited for dynamic simulations of flexible multibody systems.

1.3 Interpolation of Finite Rotations in Geometrically Ex-
act Structural Elements

1.3.1 Background and Previous Work

When dealing with flexible multibody systems, each component of the system could

be flexible, adding to the complexity and nonlinearity of the problem. Hence, suitable

mathematical formulations have to be available in order to model flexible components

as parts of multibody systems. The most commonly used models are beams, plates,

and shells.

The elastic deformation of a slender beam was first treated by Euler [39]. Major

advances in beam theory came with the work of Reissner [73–75], who considered prob-

lems involving finite strains and spatially curved members, Hegemier and Nair [53],

Hodges [56] as well as Borri and Mantegazza [23]. Simo and coworkers [85,88] coined
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the term geometrically exact beam theory in their work. Small strain assumptions

are typically used in these models, but the strain-displacement equations are exact

for arbitrarily large displacements and rotations. Since strains are assumed to remain

small, linear constitutive laws are mainly used.

While classical formulations of flexible multibody systems are based on the floating

frame of reference approach [1,82], other approaches have been proposed such as the

co-rotational formulation [36]; a comprehensive review of the various methods in use is

given by Shabana [80]. More recently, the finite element method has found increasing

use in the analysis of flexible multibody systems, see Belytschko and Hsieh [17],

Cardona et al. [30], or Bauchau [8]; a textbook by Géradin and Cardona [48] is

devoted to this topic.

Formulations of beams can be generalized to two-dimensional structures such as

plates and shells. Simo and coworkers, for example, presented [86, 87] geometrically

exact models for shells. A more recent treatment of plates and shells was provided by

Yu et al. [94–96]. Several shell formulations have been recently developed that have

distinguished themselves from other shell formulations because of their versatility,

accuracy, and robustness. Of particular interest, is the mixed interpolation of tensorial

components (MITC) element developed by Bathe and his co-workers [6, 7, 27]. The

MITC approach is based on the interpolation of strains at chosen sampling points

(so-called “tying points”). The key issue of this approach is the selection of the tying

points and corresponding interpolation functions.

The representation and manipulation of finite rotations is an essential component

of flexible multibody systems dynamics. To achieve computational efficiency, flexible

components are often idealized as thin structures, such as beams or shells, which

are often modeled based on a Cosserat curve and surface approach, respectively. The

kinematics of these problems are then described in terms of two fields, a displacement

field and a rotation field.
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The exact treatment of finite rotations is particularly important in flexible multi-

body dynamics because finite rotations associated with the finite relative motions of

the system’s components are combined with the finite elastic motions of the flexible

components. Consider, for instance, the motion of a helicopter rotor blade or the

motion of a highly flexible solar panel attached to a rotating satellite. In both cases,

elastic deformations are superimposed onto the rigid body rotation of the entire sys-

tem. Finite rotations do not form a linear space. This problem traces back to the

work of Rodrigues [77] who was the first to study how two rotations are combined

into a single rotation; in this thesis, the expression “composition of finite rotations” is

used to denote the combination of rotations to underline the fact that these quantities

are not additive.

At the heart of the finite element method is the interpolation of displacement

fields within each element. Interpolation is a linear operation that has been used for

decades to interpolate displacement fields, which form a linear space. Application of

the same, linear interpolation technique to finite rotation fields has been the subject

of controversy, because finite rotation fields do not form a linear space. Crisfield

and Jelenić [37] were the first to point out a major deficiency of this interpolation

technique: its lack of objectivity. By definition, a rigid body motion generates no

strains; hence, the strain field, which is generated by a given deformation, has to be

unaffected by the addition of a rigid body motion to the displacement field. If a com-

putational scheme satisfies this condition, it is said to be “objective.” Crisfield and

Jelenić [37, 62] showed that classical interpolation formulæ applied to finite rotation

fields violate the objectivity criterion. They proved the non-objectivity of the direct

interpolation of total rotations [60], incremental rotations [29], and iterative rota-

tions [88]. Crisfield and Jelenić argue that “all of these formulations can be regarded

as stemming from the same family for which the following is valid: the interpolation

is applied to the rotation between a particular reference configuration and the current
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configuration. With hindsight, the nature of this interpolation is bound to make all

of these formulations non-objective. The rotations interpolated in this way in gen-

eral include rigid body rotations, so that the error, introduced by the interpolation,

makes the resulting strain measures dependent on the rigid body rotation.” They also

point out, however, that while the errors in the computed strain field are small and

decrease with mesh p- or h-refinement, lack of objectivity persists if rotation incre-

ments or Newton-Raphson updates are interpolated. Crisfield and Jelenić proposed

a novel interpolation technique that guarantees objectivity by splitting rotations into

rigid and elastic components: the sole elastic component is interpolated. This ap-

proach is akin to the co-rotational formulation [36], but retains the fully nonlinear

strain-configuration equations, rather than their linearized counterparts.

Betsch and Steinmann [19] proposed an alternative approach to achieve objec-

tivity: instead of interpolating finite rotation parameters, they interpolate the unit

vectors forming the columns of the finite rotation tensor and proved that this approach

also satisfies the objectivity criterion. Linear interpolation of unit vectors, however,

does not yield unit vector, nor does it preserve their orthogonality. Special procedures

were developed to guarantee that the interpolated results lead to orthogonal rotation

tensors. Numerical examples were shown that demonstrate the accuracy of numerical

predictions. Romero et al. [78, 79] presented a comparison of different interpola-

tion methods including the direct interpolation of finite rotations, the interpolation

method proposed by Crisfield and Jelenić [37], and two new approaches, based on 1)

the non-orthogonal interpolation of rotations with modification of geometrically exact

beam theory and 2) the isoparametric interpolation of rotations followed by orthog-

onalization using polar decomposition. Numerical tests of all four methods showed

that with the exception of the direct interpolation of finite rotations, all methods

are objective, path-independent, and preserve the orthogonality of the rotation ten-

sor. However, the proposed interpolation approaches were shown to soften structural
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responses, and could converge to erroneous solutions. They recommend the use of

the interpolation approach of Crisfield and Jelenić. Finally, Ibrahimbegović and Tay-

lor [61] also proposed interpolation techniques that satisfy the objectivity criterion for

geometrically exact structural models. Update formulæ are based on an incremental

approach and rely on the representation of finite rotations based on quaternion quan-

tities, which must be stored at each node of the model. Special attention was paid

to the implementation details for applied support rotations and the corresponding

modifications of the residual vector and tangent stiffness matrix introduced by the

follower forces and moments.

Because of the many difficulties associated with the treatment of finite rotations,

“rotation-less formulations” have appeared in recent years. For instance, in the ab-

solute nodal coordinate formulation [81], absolute displacements and global slopes

are used as nodal coordinates, bypassing the need for finite rotations. Betsch and

Steinmann [18] have advocated the use of the direction cosine matrix to represent fi-

nite rotations. It should be noted, however, that these rotation-less formulations use

more coordinates than the minimal set required to represent finite rotations. Hence,

they typically require more computational resources than their counterparts based on

minimal set representations.

Clearly, the properties of finite rotations are key to their manipulation and in-

terpolation. A geometric interpretation of finite rotations was provided by Euler’s

theorem on finite rotations [40], which states: “any rigid motion of a body leaving

one of its points fixed may be represented by a rotation about a suitable axis passing

through that point.” This implies that every rotation can be described by a single

rotation of magnitude φ about a unit vector n̄. A direct consequence of this theo-

rem is that every three-dimensional rotation can be described by three parameters,

called a “minimal set.” Euler himself introduced the Euler angles [42] that form

widely used parameterizations of finite rotations. Many other parameterizations were
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proposed later, and comprehensive reviews of the topic can be found in [33, 64, 84].

Stuelpnagel [90] provided a concise analysis of different parameterizations of finite

rotations. He showed that the six-parameter representation consisting of the first

two columns of the rotation tensor yields a set of linear differential equations for the

motion of a rigid body. Furthermore, he proved that a minimum of five parameters

is required to obtain a bijective mapping to SO(3). This parameterization yields a

set of nonlinear equations of motion for a rigid body and is not recommended for

practical applications. Stuelpnagel showed that four-parameter representations, such

as the quaternion representation [32,52,89], are singularity free. Finally, Stuelpnagel

proved that minimal set parameterizations always involve a singularity. Bauchau and

Trainelli [13], however, have shown that a simple rescaling operation enables the use

of a minimal set representation of finite rotations, while avoiding all singularities.

This option is available for the vectorial parameterization of finite rotations that en-

compasses a number of popular representations such as the rotation vector, Rodrigues

parameters [77] or the Wiener-Milenković parameters [68,93], among others.

1.3.2 Objective and Approaches

Chapter 4 reviews geometrically exact formulations of structural elements such as

beams and shells. The governing equations of these elements are discussed. Addi-

tionally, a brief summary of the mathematical formulation of mechanical joints in

multibody systems is given.

In chapter 5, the problem of interpolation of finite rotations within the frame-

work of geometrically exact structural elements is revisited. For computational ef-

ficiency, it is desirable to use a minimal set representation of finite rotations, i.e.

three parameters only. While quaternions have been used in multibody dynamics

simulations [47,92], the computational costs of dealing with four parameters and the

enforcement of the associated normality condition have limited their use. A rescaling
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operation [13] is systematically used to eliminate singularities associated with such

minimal set representations. The rescaling operation is based on the observation

that the addition of a rotation of magnitude φ = ±2π to a finite rotation leaves the

associated rotation tensor unchanged. While the concept of objectivity is based on

the invariance of the strain field with respect to the addition of a rigid body mo-

tion to the rotation field, the concept of rescaling is based on the invariance of the

rotation tensor with respect to the addition of a rotation of magnitude φ = ±2π,

i.e. R(φ, n̄) = R(φ ± 2π, n̄). In turn, this raises the question of invariance of the

interpolation of finite rotations with respect to rescaling. It is shown that the basic

interpolation algorithm proposed by Crisfield and Jelenić [37] to achieve objectivity,

is also invariant with respect to the rescaling operation. However, a modified inter-

polation strategy is required to guarantee consistent linearizations of the equations

of motion.

Chapter 5 is structured in the following manner. Section 5.1 summarizes the

salient properties of finite rotations that are relevant to the present investigation. Fi-

nite rotation interpolation techniques for finite element implementations are described

in section 5.2, with special attention devoted to the impact of the rescaling operation.

Rescaling also impacts the choice of unknowns, as discussed in section 5.3, and a new

algorithm is proposed for the interpolation of incremental quantities. The new algo-

rithm guarantees the consistency of linearizations of the governing equations. Finally,

numerical examples are discussed that demonstrated the simplicity and efficiency of

the proposed approach when applied to complex, flexible multibody systems.

1.4 Spatial Discretization of Beams in the Presence of High

Gradients in Sectional Properties

1.4.1 Background and Previous Work

A large number of flexible systems can be efficiently modeled using beam elements.

For realistic designs, the property distributions of these beam-like structures present
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often rapid variations along the beam axis. Abrupt changes in mass properties are

encountered, for example, in robotic manipulators due to the presence of motors

and various hardware components. Similarly, drive train shafts of automobiles and

helicopter transmissions often present abrupt changes in diameter. Rotor blades

present discontinuous changes in cross-sectional properties due to weights for mass

balancing, local blade reinforcements, composite material ply drop-offs, and geometry

changes due to swept and tapered blade tips.

Some comprehensive multibody analysis codes predict the dynamic response of

structural components based on modal reduction techniques. In this approach, the

eigenmodes of the beam are computed first, using a finite element approach, for

instance. In view of the rapid variations in sectional properties, a large number

of elements are used in the finite element discretization: typically, properties are

constant within each element, resulting in high computational costs. However, since

modes are computed once only prior to evaluating the dynamic response of the system,

this cost remains a very small portion of the total cost of the analysis.

In recent years, in an effort to obtain more accurate predictions, some comprehen-

sive multibody dynamics analysis codes [3,10,63], have used an alternative approach

to the problem: rather than exclusively relying on a modal reduction approach, full

finite element representations are maintained throughout the dynamic analysis. Con-

sequently, the cost of the computation becomes directly proportional to the number

of elements used in the discretization. If a very fine discretization is required to

capture the rapid variations in sectional properties, the cost of the analysis becomes

overwhelming.

A potential solution to this problem would be to use coarse finite element meshes.

While this approach will reduce computational costs, the accuracy of the analysis

becomes questionable. In typical finite element formulations, the stiffness and mass

matrices of an element are evaluated using Gaussian integration [5]. Figure 7.4 shows

16



a hypothetical distribution of mass per unit span over a typical finite element and the

locations of the three Gauss points that would be used to evaluate integrals over the

element, assuming a four noded element based on a reduced integration scheme [5].

For this hypothetical example, the variation in mass properties will be ignored in the

integration process: the numerical scheme does not “see” the property variations. Of

course, this problem will disappear with finer meshes, but higher computational costs

will result.

1.4.2 Objective and Approaches

In chapter 7, an alternative approach is proposed. First, an optimization technique

is developed that automatically generates finite element meshes featuring smaller ele-

ments in the area of maximum variation of the physical beam properties. Second, the

original, discontinuous properties are replaced by smeared or averaged properties that

enable accurate solutions to be obtained with coarse meshes. The mesh optimization

procedure is described in the first section of chapter 7, while the smoothing procedure

is described in the second section. Numerical examples documenting the computa-

tional advantages of the proposed procedures are described in the third section.

1.5 Chapter Summary

The presence of mechanical joints, finite rotations, and flexible components described

by a large number of degrees of freedom are the main characteristics of flexible multi-

body systems. Each of these characteristics causes distinct problems in the numerical

solution of the governing equations of flexible multibody systems. In this thesis,

methods are developed to solve or alleviate these problems.

The scaling and augmentation of constraints is discussed in chapter 2. In chapter 3,

three time stepping schemes, the two-stage Radau IIA scheme, the generalized-α

scheme, and the energy decaying scheme are reviewed. Chapter 4 presents a review of

formulations of geometrically exact structural elements. The formulation of kinematic
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constraints is briefly described too. The interpolation of finite rotations is addressed

in chapter 5 and results from numerical experiments are presented in chapter 6.

Strategies for the treatment of high gradients in sectional properties are proposed in

chapter 7. Finally, conclusions of this thesis and recommendations for future work

are summarized in chapter 8.
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CHAPTER II

SCALING OF CONSTRAINTS AND AUGMENTED

LAGRANGIAN FORMULATIONS

Flexible multibody systems are governed by a system of index-3 differential algebraic

equations. These equations become ill conditioned if very small time step sizes are

used. This behavior prevents the efficient use of time step refinement methods and

variable step size solvers in the case of direct integration of the index-3 equations.

In this chapter, a simple scaling approach based on physical arguments is developed.

It is shown that the resulting set of scaled equations allows the unrestricted use of

time step refinement methods and variable step size solvers if an augmented term is

added.

2.1 Scaling of the Equations of Motion

In this section, very simple, physical arguments are used to scale the index-3 DAEs

characteristic of multibody systems, which may be written in the form

M(n×n)

d2q
(n)

dt2
+BT

(n×m)λ(m) = F (n), (2.1a)

C(m) = 0, (2.1b)

whereM = M(q, t) is the symmetric, positive-definite mass matrix, and F = F (q, q̇, t)

the array of dynamic and externally applied forces. The system features n general-

ized coordinates stored in array q, t denotes time, and the subscripts indicate the

sizes of the corresponding arrays. It is assumed that the system is subjected to m

holonomic constraints, C = C(q, t); for simplicity of the exposition, the constraints

are all assumed to be holonomic, but the derivation presented here equally applies to

non-holonomic constraints, or a mixture thereof. The array of Lagrange’s multipliers
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used to enforce these constraints is denoted λ. As expected, due to the presence of

Lagrange’s multipliers, these equations form a set of index-3 DAEs, as defined by

Gear, Petzold and co-workers [46,67,72]. To ease the following discussion, the damp-

ing and stiffness matrices will be explicitly shown in the equations of motion and

eqs. (2.1a) and (2.1b) are restated as

M
d2q

dt2
+D(n×n)

dq

dt
+K(n×n)q +BTλ = G(n), (2.2a)

C(m) = 0, (2.2b)

where D = D(q) is the damping matrix, K = K(q) the stiffness matrix, and G =

G(q, q̇, t) the array of remaining dynamic and externally applied forces.

At first, following the advice of Vanderplaats [91] for optimization problems, the

constraints are normalized so as to become of order of unity. This can be readily

achieved by introducing normalized generalized coordinates, q̂, such that q = ℓrq̂,

where ℓr is a reference or characteristic length of the system. For dynamical systems,

it is also important to introduce a normalized time variable, τ , such that t = hτ , where

h is the time step size. Note that the equations of motion, eqs. (2.2a) and (2.2b),

have not yet been discretized in time, but the time step size is anticipated to become

an important characteristic time of the problem from a numerical standpoint. The

equations of motion now become

M ¨̂q + hD ˙̂q + h2Kq̂ +BTh2λ = h2G, (2.3a)

C = 0. (2.3b)

It is clear that matrices M , D, K, and B as well as arrays G and C are now expressed

in terms of the normalized generalized coordinates. Matrices M , D and K have

been multiplied by ℓr; for simplicity, the same notation is used from here on. The

notation ˙(·) is used to denote a derivative with respect to the nondimensional time

τ . The equations of motion, eq. (2.3a), were multiplied by h2 to avoid division by a

potentially small number, h2.
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A cursory examination of the normalized equations of motion, eqs. (2.3a) and (2.3b),

reveals two obvious numerical problems. First, if the mass and/or damping and/or

stiffness of the system become large, one or more of the first three terms of the

equations of motion will become large, whereas the constraint equations remain un-

changed. In other words, for systems with large mass, damping or stiffness, the con-

straint equations become “invisible” to the numerical process. Second, the unknowns

of the problem are of different orders of magnitude: displacements are typically very

small quantities, whereas Lagrange multipliers are force quantities, and hence, typi-

cally much larger.

The first problem is easily solved by multiplying the constraint equations, eq. (2.3b),

by a scalar factor, called the scaling factor, s, so that the constraint equations and

the equations of motion, eq. (2.3a), become of comparable magnitudes. Clearly, se-

lecting s = mr + drh+ krh
2 accomplishes this goal. In this expression, mr, dr and kr

represent characteristic mass, damping and stiffness coefficients of the system, which

can be selected as mr = ‖M‖∞, dr = ‖D‖∞ and kr = ‖K‖∞; another convenient

choice is to select mr, dr and kr as the average of the diagonal terms of the mass,

damping and stiffness matrices, respectively. The second problem can be solved by

scaling Lagrange’s multipliers by writing h2λ = sλ̂. Clearly, in view of Newton’s

law, selecting s = mr + drh + krh
2, makes λ̂ a quantity of magnitude comparable to

that of displacement quantities. The equations of motion of the problem, eqs. (2.3a)

and (2.3b), now become

M ¨̂q + hD ˙̂q + h2Kq̂ +BT sλ̂ = h2G, (2.4a)

sC = 0. (2.4b)

It is important to understand that the techniques used here are well-known scaling

techniques for systems of equations, as discussed in textbooks on matrix computa-

tions. For instance, Golub and Van Loan [50] state: “The basic recommendation
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is that the scaling of the equations and unknowns must proceed on a problem-by-

problem basis. General scaling strategies are unreliable. It is best to scale (if at all)

on the basis of what the source problem proclaims about the significance of each aij

[i.e. each matrix entry].” In the proposed scaling strategy, the scaling factor was

selected on the basis of physical arguments about the nature and order of magnitude

of each term appearing in the equations of motion.

At this point, it is convenient to simplify the notation and write the scaled gov-

erning equations of index-3 multibody systems as

M ¨̂q +BT sλ̂ = h2F , (2.5a)

sC = 0, (2.5b)

where the scaling factor is defined as,

s = mr + drh+ krh
2. (2.6)

It is important to remember that the notation ˙(·) indicates a derivative with respect

to the nondimensional time τ = t/h, and that all generalized coordinates have been

normalized by the reference length ℓr.

2.2 The Augmented Lagrangian Term

An augmented Lagrangian term is now added to the scaled formulation of the equa-

tions of motion, as proposed by Bayo et al. [14, 15],

M ¨̂q +BT sλ̂+BTρsC = h2F, (2.7a)

sC = 0. (2.7b)

The penalty factor, ρs, was defined as the product of the scaling factor, see eq. (2.6),

by ρ; for ρ = 1, the penalty factor is equal to the scaling factor. A modified Lagrange
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multiplier µ̂ = λ̂+ ρC is introduced to simplify the above equations, which become

M ¨̂q +BT sµ̂ = h2F , (2.8a)

sC = 0. (2.8b)

Note that the equations were scaled first, then the augmented Lagrangian term was

added. Had this latter term be added from the onset, the penalty factor would become

h2p, i.e. the penalty factor would vanish for small time step sizes, negating any

advantage this term could have. It is possible to include the augmented Lagrangian

term from the onset of the formulation by using a penalty factor written as ρ̄s = ρs/h2,

which yields results identical to those presented here.

2.3 Time Discretization of the Equations

To understand the implications of the scaling factor and augmented Lagrangian term

presented above, the equations of motion will now be discretized in the time domain.

A simple mid-point scheme is used for this task

M(v̂f − v̂i) +BT
msµ̂m

= h2Fm, (2.9a)

q̂
f
− q̂

i
= (v̂i + v̂f )/2, (2.9b)

sCm = 0. (2.9c)

Subscripts (·)i and (·)f indicate quantities at the beginning and end times of the time

step, denoted ti and tf , respectively, Bm = (Bi+Bf )/2, Cm = (Ci+Cf )/2, Fm = (F i+

F f )/2, and µ̂
m

are the mid-point, modified Lagrange multipliers. Equation (2.9b) is

the discretized velocity-displacement relationship obtained from the mid-point rule;

with the present notation, v̂ = ˙̂q = dq̂/dτ = h dq̂/dt. In view of the scaling of the

time dimension performed in the previous section, the formulæ associated with time

discretization are independent of the time step size, which is, in fact, taken to be

unity; see eq. (2.9b), for example. This means that the time step size dependency of
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the various terms of the equations of motion indicated in eqs. (2.8a) and (2.8b) will

not be affected by the time discretization, no matter what time integration scheme is

used.

The unknown velocity, v̂f , is easily eliminated from the discretized equations,

leading to

2M(q̂
f
− q̂

i
− v̂i) +BT

msµ̂ = h2Fm, (2.10a)

sCm = 0. (2.10b)

Next, these nonlinear algebraic equations will be solved using a Newton-Raphson

iterative process based on the following set of linear algebraic equations

Ĵ∆x̂ = −b̂. (2.11)

The Jacobian of the system, Ĵ , is

Ĵ =




2M + s(BT µ̂),q̂ − h2F ,q̂ sBT

sC,q̂ 0




m

, (2.12a)

=



Ĵ11 Ĵ12

Ĵ21 0




m

, (2.12b)

where the notation (),q̂ was used to indicate a derivative with respect to the gen-

eralized coordinates, and the subscript [·]m indicates that the Jacobian matrix is

evaluated at the mid-point. The corrections to the unknowns of the problem are

∆x̂T =
[
∆q̂T

f
,∆λ̂

T

m

]
, and the residual array is

b̂ =




2M(q̂
f
− q̂

i
− v̂i) +BT sµ̂− h2F

sC




m

. (2.13)

It is important to realize that the asymptotic behavior of the Newton corrections ∆x̂

as the time step size tends to zero depends on the asymptotic behavior of both the

Jacobian, Ĵ , and the right hand side, b̂. In fact,

lim
h→0

(Ĵ∆x̂) = lim
h→0

(Ĵ) lim
h→0

(∆x̂) = − lim
h→0

b̂, (2.14)
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and therefore, if limh→0(Ĵ) = O(h0) and limh→0(b̂) = O(h0), then limh→0(x̂) = O(h0).

The following results are easily obtained from examination of eqs. (2.12a) and (2.13),

Ĵ =




O(h0) O(h0)

O(h0) 0


 , and b̂ =




O(h0)

O(h0)


 . (2.15)

Furthermore, it is readily verified that the inverse Jacobian matrix is

Ĵ−1 =




O(h0) O(h0)

O(h0) O(h0)


 . (2.16)

It then follows that the condition number of the Jacobian matrix, κ(Ĵ) = ‖Ĵ‖∞‖Ĵ−1‖∞,

is clearly independent of the time step size, κ(Ĵ) = O(h0). And in view of eq. (2.11)

and (2.14), it follows that

∆q̂
f

= O(h0), ∆λ̂m = O(h0). (2.17)

Of course, scaling of the variables has to be considered when the criterion for conver-

gence of Newton iterations is evaluated.

This behavior is markedly different from what happens when scaling of the equa-

tions is not performed. Indeed, applying the mid-point time discretization to the

unscaled, augmented equations of motion, eqs. (2.1a) and (2.1b), leads to

2M

h2
(q

f
− q

i
− h

dq
i

dt
) +BT

mµm
= Fm, (2.18a)

Cf = 0, (2.18b)

where the unscaled modified Lagrange multiplier is defined as µ = λ+ρC. A Newton-

Raphson approach is taken again to solve this set of nonlinear algebraic equations;

linearization leads to J∆x = −b, where the Jacobian of the system, J , is

J =




2M/h2 + (BTµ),q − F ,q BT

C,q 0




m

, (2.19)
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and the residual array is

b =




2M

h2
(q

f
− q

i
− h

dq
i

dt
) +BTµ− F

C




m

. (2.20)

The following results are easily obtained from examination of eqs. (2.19) and (2.20),

J =




O(h−2) O(h0)

O(h0) 0


 , and b =




O(h−2)

O(h0)


 . (2.21)

In appendix A, it is shown that the inverse Jacobian matrix is

J−1 =




O(h2) O(h0)

O(h0) O(h−2)


 . (2.22)

It then follows that the condition number of the Jacobian matrix, κ(J), exhibits a

strong dependency on the time step size, κ(J) = O(h−4), and

∆q
f

= O(h0), ∆λm = O(h−2). (2.23)

2.4 Two Simple Examples

Two very simple examples are described in this section, to illustrate applications of the

proposed procedure. Consider a simple pendulum of length ℓ and bob of mass m, as

depicted in fig. 2.1. This problem will be treated with two generalized coordinates: the

bob’s horizontal and vertical Cartesian coordinates, denoted q1 and q2, respectively.

Since the system features a single degree of freedom, a single constraint must be

enforced: the pendulum arm must remain of constant length, ℓ. The governing

equations of problem I are

M
d2q

dt2
+BTλ = 0, (2.24a)

C = 0, (2.24b)
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where M = diag(m,m), B = 2qT , C = qT q − ℓ2, and λ = λ1. The Jacobian of the

unscaled system is readily obtained from eqs. (2.24a) and (2.24b) as

J =




2M/h2 + (BTλ),q BT

C,q 0




m

. (2.25)

These equations of motion can be scaled then augmented using the proposed

approach, and with the help of the mid-point time discretization method, the Jacobian

of the linearized system then becomes

Ĵ =




2M + s(BT µ̂),q̂ sBT

sC q̂ 0




m

. (2.26)

It is readily verified that all blocks of this Jacobian and of the corresponding right

hand side are O(h0). For this simple problem, this is true even without the augmented

Lagrangian term, i.e. for ρ = 0.

m

f

k

q2

q1

l

Figure 2.1: Simple pendulum.

Next, consider the same problem with an additional root torsional spring of stiff-

ness constant k, as depicted in fig. 2.1. This problem will be treated with three

generalized coordinates: the bob’s horizontal and vertical Cartesian coordinates, and

the root rotation angle, φ. Since the system features a single degree of freedom, two

constraints must be enforced, the pendulum arm must remain of constant length,
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ℓ, and angle φ can be obtained from elementary trigonometric considerations. The

governing equations of problem II are

M
d2q

dt2
+BTλ = 0, (2.27a)

kφ+ C2,φλ2 = 0, (2.27b)

C = 0, (2.27c)

where Cφ = cosφ, Sφ = sinφ, λT = [λ1, λ2], CT = [C1, C2] =
[
qT q − ℓ2, q1Cφ + q2Sφ

]
,

and

B =




2q1 Cφ

2q2 Sφ


 . (2.28)

Note that the relative root rotation angle, φ, is an algebraic variable, which, in

contrast with the Lagrange multipliers λ, explicitly appears in the constraint equa-

tions, eq. (2.27b). This equation simply represents the static equilibrium of the spring

and hence, involves no time derivative of this angle. The explicit definition of the

relative displacements and rotations at joints as additional algebraic variables rep-

resents an important detail for the practical implementation of multibody dynamics

formulations [10]. It allows for the introduction of springs and/or dampers in the

joints, as was done in this model problem, and furthermore, the time history of joint

relative motions can be driven according to suitably specified time functions. The

Jacobian of the unscaled system is readily obtained from eqs. (2.27a) to (2.27c) as

J =




2M/h2 + (BTλ),q (BTλ),φ BT

(C2,φλ2),q k + (C2,φλ2),φ CT
,φ

C,q C,φ 0




m

. (2.29)

These equations of motion can be scaled and augmented using the proposed ap-

proach, and with the help of the mid-point time discretization method, the Jacobian
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of the linearized system then becomes

Ĵ =




2M + s(BT µ̂),q̂ s(BT µ̂),φ sBT

s(C2,φµ̂2),q̂ h2k + s(C2,φµ̂2),φ sCT
,φ

sC q̂ sCφ 0




m

. (2.30)

Here again it is readily verified that all blocks of this Jacobian and of the correspond-

ing right hand side are O(h0). The key to this proof is in the fact that

sµ̂ = sλ̂+ sρC = h2λ+ sρC = O(h0). (2.31)

In contrast with the previous example, the augmented Lagrangian term is indispens-

able to achieving this result; indeed, if ρ = 0,

sµ̂ = sλ̂ = h2λ = O(h2). (2.32)

Clearly, the proposed scaling of the unknowns and equations is sufficient to achieve

time step size independent Jacobians when the problem only features Lagrange mul-

tipliers among its algebraic variables. However, when the problem also involves ad-

ditional algebraic variables, such as the relative rotation of the second example, the

scaling of the unknowns and of the equations must be used in conjunction with the

augmented Lagrangian formulation to achieve time step size independent solutions.

2.5 Relationship to the Preconditioning Approach of Bot-

tasso et al. [25]

A preconditioning approach for index-3 DAEs was proposed by Bottasso et al. [25,26].

The starting point of their development is the Jacobian matrix resulting from the

linearization of the governing equations (2.1a) and (2.1b). The Jacobian is multiplied

by left and right preconditioning matrices, denoted L and R, respectively, such that

J̄ = LJR, where L = diag(hαi) and R = diag(hβi). The powers of the time step size,

i.e. the coefficients αi and βi, are selected to render the preconditioned Jacobian, J̄ ,

independent of h. To prevent confusion, it must be noted the scaling factor defined in
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the present work, s, and that defined by Bottasso et al., s′ (but noted s in refs. [25,26]),

are different: s′ = s/h2.

For problem I, the preconditioning and scaling approaches yield identical Ja-

cobians if the preconditioning matrices are selected as L = diag(h2, s) and R =

diag(1, s/h2). For problem II, identical Jacobians are obtained by selecting L =

diag(h2, h2, s) and R = diag(1, 1, s/h2). Clearly, left and right preconditioning matri-

ces can be found that will yield identical Jacobians for the two approaches.

For problem II, a time step size independent Jacobian is only obtained with the

addition of an augmented Lagrangian term; indeed, without these terms, the Jacobian

becomes

J̄ =




2M + (BTh2λ),q (BTh2λ),φ BT

(C2,φh
2λ2),q h2k + (C2,φh

2λ2),φ CT
,φ

C,q C,φ 0




m

. (2.33)

Clearly, not all blocks of this Jacobian are O(h0). The reasons why this feature is

desirable is discussed in the next section. While the use of the augmented Lagrangian

term was not addressed in ref. [25, 26], it is clear that if such a term is added to the

equations of motion from the onset of the formulation, the two methods become

entirely equivalent.

2.6 Benefits of the Augmented Lagrangian Formulation

In practical implementations of the finite element method, the linearized set of gov-

erning equations is solved in two steps [5,50]: first, the system Jacobian is factorized

as J = LDLT , where L is a lower triangular matrix and D a diagonal matrix, and

second, the solution is found by back substitution. The advantage of this approach is

that it preserves the banded structure of the Jacobian, if its factorization is performed

without pivoting. In general, the factorization of the Jacobian without pivoting is nu-

merically unstable, unless the Jacobian is symmetric and positive definite [50]. This

is always the case for the stiffness and mass matrices of structures because they can
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be derived from the minimization of quadratic energy functionals; hence, factoriza-

tions without pivoting, also called “skyline solvers,” are used systematically in finite

element codes.

However, the Jacobian matrices of constrained multibody systems are not identical

to the mass and stiffness matrices of structures. Consider the Jacobian obtained

without the augmented Lagrangian term given by eq. (2.33), and note the presence

of the factor h2 along some columns of the matrix. Consider next the very simple

linear system, Jx = b, where

J =




1 0 0

0 h2 1

0 1 0



, and b =




1

1

1



, (2.34)

which shares the characteristics of eq. (2.33); although symmetric, the Jacobian is

not positive definite. It is easy to show that the condition number of this Jacobian is

unity, and for h = 0.001, the exact solution is x1 = x2 = 1, and x3 = 0.999999. Using

finite precision arithmetic with five significant digits, the solution of the system with

full pivoting is x1 = x2 = 1, and x3 = 0.99999, whereas the solution without pivoting

is, x1 = 1, x2 = 10, and x3 = 0.99999, which is obviously incorrect. Clearly, when

using a skyline solver, i.e. when factorization of the Jacobian is performed without

pivoting, the condition number of the system matrix is not a good indicator of the

accuracy of the solution.

While a low condition number is a necessary condition for obtaining accurate

solutions of linear problems, it is not a sufficient condition when skyline solvers are

used. Consider the problem II Jacobian matrices defined in eqs. (2.30) and (2.33),

obtained with and without the augmented Lagrangian term, respectively. Because of

the presence of the multiplicative factor, h2, across entire columns of the Jacobian

in eq. (2.33), pivoting will be required to ensure accurate solutions. On the other

hand, all the sub-matrices of the Jacobian obtained from the present approach, see
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eq. (2.30), are independent of the time step size, enabling the safe use of skyline

solvers.

The augmented Lagrangian term of the proposed formulation was shown above

to be key to achieving time step size independent Jacobians, see eq. (2.12a). The

Hessian of the system, see eq. (2.12b), can be expressed as Ĵ11 = 2M + s(BT λ̂),q̂ −

h2F ,q̂ + sρBTB, where the last term represents the contribution of the penalty term,

which provides two further benefits.

First, consider problem II described earlier and assume the system to be at rest

at t = 0. Since the first Lagrange multiplier represents the tension in the rod and

the second the moment in the spring, it is clear that λ = 0 at t = 0. Hence, in the

absence of penalty term, i.e. for ρ = 0, the Jacobian of the linearized system at that

instant becomes

Ĵ =




2M 0 sBT

0 0 sCT
,φ

sC q̂ sCφ 0




m

. (2.35)

Although this Jacobian is not singular, a skyline solver will obviously fail if pivoting

is not used. Clearly, if a skyline solver is used, the augmented Lagrangian term is

indispensable to the success of the simulation’s first time step.

Second, Gill et al. [49] showed that there always exists a ρ∗ such that the Hessian

of the augmented Lagrangian, Ĵ11, is positive definite for all ρ > ρ∗. As mentioned

earlier, positive definiteness is key to the reliable use of skyline solvers: this implies

that the sub-system Ĵ11∆x̂
∗ = −b̂∗, where x̂∗ and b̂

∗
are arrays of appropriate dimen-

sions, can be solved without pivoting. Experience shows that ρ = 1 is a good choice;

this implies that the penalty factor is taken equal to the scaling factor.

Finally, now that it has been proved that the Hessian of the augmented La-

grangian, Ĵ11, can be factorized without pivoting, it must also be proved that the

complete solution can be obtained without pivoting. At first, consider a system with

32



a single constraint: Ĵ12 and Ĵ21 are then column and row vectors, respectively. Since

the constraint matrix is assumed to be of full rank, its single column, Ĵ12, must

contain a least one non-zero element, and hence, factorization without pivoting can

safely proceed. Mathematical induction then implies that factorization without piv-

oting can proceed for systems with an arbitrary number of constraints, for as long as

columns and rows of Ĵ12 and Ĵ21, respectively, are linearly independent, a property

that is guaranteed by the fact that the constraint matrix is of full rank.

As a last note of interest, the proof presented above assumes that the degrees

of freedom of the system are segregated: first, all the generalized coordinates of the

system, then, Lagrange’s multipliers. In practice, this ordering is not desirable be-

cause it does not minimize the bandwidth of the system of equations. It can be easily

shown that generalized coordinates and Lagrange’s multipliers can be interspersed,

as desired for minimization of the bandwidth, while still using a skyline solver. The

only requirement is that Lagrange’s multipliers must be placed after the generalized

coordinates that participate in the corresponding constraint equation, as was already

observed by Cardona [28].

2.7 Using Other Time Integration Schemes

While the proposed scaling method has been presented so far within the framework

of the mid-point time integration scheme, it is easily extended to the more advanced

integration methods, which are used for the analysis of realistic mechanical systems.

Consider, for example, the generalized-α method [34], which will be discussed in more

detail in chapter 3, applied to the scaled general equations of motion of a multibody

system, see eqs. (2.8a) and (2.8b). The resulting discretization is

MÂ+BT s(Λ̂ + ρC) = h2F , (2.36a)

sC = 0. (2.36b)
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Here, the mass matrix, constraints, constraint Jacobian, and forces are evaluated

using the following variables

Q̂ = (1 − αf )q̂n+1
+ αf q̂n

, (2.37a)

V̂ = (1 − αf )v̂n+1 + αf v̂n, (2.37b)

Â = (1 − αm)ân+1 + αmân, (2.37c)

Λ̂ = (1 − αf )λ̂n+1 + αf λ̂n, (2.37d)

T = (1 − αf )τn+1 + αfτn, (2.37e)

which are the algorithmic displacements, velocities, accelerations, Lagrange’s multi-

pliers, and time, respectively. The corresponding variables at the end of the time step

are related to their values at the beginning of the time step through the following

expressions

q̂
n+1

= q̂
n

+ v̂n + ân/2 + ∆q̂, (2.38a)

v̂n+1 = v̂n + ân + γ∆q̂/β, (2.38b)

ân+1 = ân + ∆q̂/β, (2.38c)

λ̂n+1 = λ̂n + ∆λ̂, (2.38d)

τn+1 = τn + 1, (2.38e)

where ∆q̂ and ∆λ̂ are the increments in displacements and Lagrange multipliers.

Note that the time step size does not appear in these expressions because the non

dimensional time variable has been selected in such a manner that ∆τ = ∆t/h = 1.

Linearization of eqs. (2.36a) and (2.36b) with respect to these increments yields a

system of algebraic equations identical to eq. (2.11) with a Jacobian matrix presenting

the same structure as in eq. (2.12b), where the sub-matrices are Ĵ11 = (1−αm)/β M+

h(1 − αf )γ/β F ,v̂ + h2(1 − αf )F ,q̂ + s(1 − αf )(B
T µ̂),q̂, Ĵ12 = s(1 − αf )B

T , and

Ĵ21 = s(1 − αf )C,q̂, respectively, and their asymptotic behavior is independent of the

time step size as was observed for the simple mid-point scheme.
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The developments presented above can be repeated for other integration schemes

such as the well-known HHT-α scheme [55], implicit Runge-Kutta methods including

the class of Radau schemes [51], or backward difference formulæ (BDF) [44]. In all

cases, the application of the time integration scheme to the proposed scaled equations,

see eqs. (2.8a) and (2.8b), leads to a Jacobian matrix that is independent of the time

step size.

2.8 Numerical Examples

The performance of the proposed scaling method will be illustrated by means of

simple examples first. Consider the simple pendulum problem described in section 2.4,

with m = 1 kg, k = 10 N·m/rad, and ℓ = 1 m, simulated within the time range

t ∈ [0, 1] sec. Table 2.1 lists the condition numbers of iteration matrix, κ(J), at

convergence of the last time step, for time step size h ∈ [10−1, 10−5] sec. These results

clearly demonstrate the need for scaling: the condition number rapidly degrades with

decreasing time step sizes in the absence of scaling.

Table 2.1: Condition numbers of the iteration matrix, κ(J), at convergence of the
last time step for various time steps sizes. Scaling 1 is for s = 1; Scaling 2 is for s as
in eq. (2.6).

h No scaling Scaling 1 Scaling 2
1 10−1 4 104 10. 12.
5 10−2 6 105 8.9 13.
1 10−2 3 108 9.2 14.
5 10−3 5 109 9.2 14.
1 10−3 3 1012 9.2 14.
5 10−4 5 1013 9.2 14.
1 10−4 3 1016 9.2 14.
5 10−5 5 1017 9.2 14.
1 10−5 3 1020 9.2 14.

Next, the same problem is solved with a fixed time step size, h = 0.01 sec, and

fixed spring stiffness constant k = 10 N·m/rad, but for a range of mass values,
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m ∈ [10−2, 104] kg. Table 2.2 lists the condition numbers of the iteration matrix

at convergence of the last time step. Here again, the need for scaling is obvious: as

the mass of the system increases, the condition number of the Jacobian matrix in-

creases. This example highlights the importance of scaling the problem with respect

to its dependency on physical properties. Note the rapid rise of the condition number

for the case s = 1, whereas the use of s as in eq. (2.6) makes the condition number

of the Jacobian independent of the value of the mass. Of course, varying the spring

stiffness constant would yield similar results.

Table 2.2: Condition numbers of the iteration matrix at convergence of the last time
step. Scaling 1 is for s = 1; Scaling 2 is for s as in eq. (2.6).

Mass No scaling Scaling 1 Scaling 2

10−2 3 106 2 101 13.

10−1 3 108 9 100 14.

100 3 1010 4 102 14.

101 3 1012 3 104 14.

102 3 1014 3 106 14.

103 3 1016 3 108 14.

104 3 1018 3 1010 14.

The last example is a more realistic, flexible multibody system consisting of a

cantilevered beam actuated by a crank mechanism, as depicted in fig. 2.2. The beam

of length L = 1 m has a rectangular cross-section of depth h = 0.1 m and width w =

2.5 mm; it is made of aluminum, Young’s modulus E = 73 GPa and Poisson’s ratio

ν = 0.3. This beam is modeled by eight cubic beam elements. The tip of the beam is

connected to a spherical joint at point C by means of a short connector modeled by

two cubic elements and featuring physical properties identical to those of the beam.

In turn, the spherical joint is connected to a flexible steel link of length Lℓ = 0.5 m

with a hollow circular cross-section of outer radius Ro = 15 mm and thickness t =

8 mm. Next, the link connects to a crank of length Lc = 30 mm through a revolute
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joint at point L; the cross-section of the crank is identical to that of the link. Finally,

the crank is attached to the ground by means of a revolute joint at point G. Points G,

L and C define the plane of the crank-link mechanism, which is offset by a distance

d = 5 mm from the plane (̄ı1, ı̄3) of the cantilevered beam. The relative rotation of

the revolute joint at point G is prescribed as φ = 1.6(1− cos 2πt/T ) rad, where T =

1.6 sec.

L = 1m

h= 0.1 m

L = 0.5m
l

L = 30 mmc

+

+

+

Spherical joint

Revolute joint
Link

Link

Crank

G

L

i3

i1

Beam

Cross-
section

w = 2.5 mm

~

R T

T C

C

d = 5 mm

Connector

Figure 2.2: Beam actuated by a tip crank.

As the crank rotates up, the vertical transverse shear force in the beam increases,

and the beam suddenly buckles laterally. Figure 2.3 shows the three displacement

components at the beam’s mid-point: at about 0.05 sec in the simulation, the lateral

displacement component, u2, suddenly increases. Lateral buckling is accompanied

by a rotation of the beam’s mid-section. The following observations will be made

concerning this simulation. First, in the absence of augmented Lagrangian terms,

the simulation failed at the first iteration of the first time step. Indeed, as shown
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earlier, the skyline solver used in the solution process is unable to deal with the

structure of the system Jacobian. Next, augmented Lagrangian terms were included

in the simulation, but no scaling was used. In this case, the skyline solver was able

to factorize the Jacobian at the first time step, however, iterations failed to converge

because of the poor conditioning of the system. Finally, when using the proposed

scaling, the simulation ran smoothly, as shown in fig. 2.3.
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Figure 2.3: Displacement components at the beam’s mid-span: u1: solid line; u2:
dashed-dot line; u3: dashed line.

The same example will also be used to demonstrate the applicability of the pro-

posed scaling to various time integration schemes. Simulations were run with three

integration schemes: the two-stage Radau IIA scheme [51], the energy decaying

38



scheme [8], and the HHT-α scheme [55] with α = −0.3. Figure 2.4 demonstrates

the convergence characteristics of the three schemes by plotting the solution error as

a function of the inverse of the time step size. Errors were computed with respect to

a reference solution obtained by using the two-stage Radau IIA scheme with a time

step size h = 5 µsec. Note the good convergence of all three schemes, even for very

small time step sizes.
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Figure 2.4: Convergence characteristics of three integration schemes: Radau IIA:
solid line; energy decaying scheme: dashed-dot line; HHT-α scheme: dashed line.

2.9 Chapter Summary

For the several past decades, the numerical solution of DAEs has been known to

be fraught with difficulties, mainly due to their undesirable behavior for vanishingly
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small time step sizes. Previous papers have demonstrated that scaling of both equa-

tions of motion and solution fields can cure this problem. The present work sheds

additional light on this important matter, and has established the following facts.

(1) Scaling can be performed at the level of the equations of motion, prior to time

discretization. By curing problems a priori, benefits are reaped for all time integra-

tion algorithms. (2) The proposed scaling factor depends both on time step size and

system physical properties, further improving the numerical conditioning of the prob-

lem. (3) In many multibody formulations, algebraic variables stem from the presence

of Lagrange multipliers, but also from the definition of additional algebraic variables

such as relative motions. In such cases, scaling in conjunction with an augmented

Lagrangian term was shown to yield time step size independent Jacobians. (4) The

combined use of scaling with an augmented Lagrangian term also enables the safe

use of sparse linear equation solvers that do not rely on pivoting to ensure stable,

accurate solutions. While finite element codes routinely rely on such skyline solvers,

their safe use for DAEs has been justified in this thesis and considerably improves

the efficiency of the solution process; this point is seldom addressed in the literature.

Although further theoretical work is needed before more general conclusions can

be drawn, specific facts are emerging from the work presented in this thesis and in

refs. [25, 26, 31]. (1) High index DAEs, once properly scaled, are not more difficult

to integrate than ODEs. Unless leading to computational savings, there is no rea-

son to avoid Lagrange multipliers, the main source of algebraic variables. (2) While

numerous researchers have advocated the use of specific time integration schemes to

overcome the ill conditioning of the linearized index-3 equations, the present work

shows that these problems can be resolved a priori, for all stable integration schemes.

It should be noted that scaling does not alter the basic properties of time integration

schemes such as energy preservation or performance in the presence of singular config-

urations. (3) Promoting index reduction techniques to avoid the perceived numerical
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problems associated with DAEs might be ill advised: the present results indicate

that these techniques are not required. Furthermore, they might create difficulties

that were not present in the original formulation based on DAEs; for instance, index

reduction techniques often enforce constraints through their higher order derivatives,

leading to the drift phenomenon, which does not affect the direct solution of high

index DAEs. While the drift problem may be alleviated or completely eliminated by

the use of projections onto the constraint manifold, the present index-3 approach is

conceptually simpler and possibly more efficient since it does not incur in the extra

costs of computing and applying projection operators.
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CHAPTER III

TIME INTEGRATION PROCEDURES FOR FLEXIBLE

MULTIBODY SYSTEMS

Time integration schemes are at the heart of flexible multibody dynamics. They are

required in order to transform the governing differential algebraic equations into a set

of nonlinear algebraic equations, which can be linearized and solved using computers.

Numerous time discretization techniques have been proposed in the literature, all

differing with respect to stability characteristics, accuracy, efficiency, and implemen-

tation complexity.

In this chapter, the multibody systems analysis process will be reviewed. This

is followed by the introduction of three time integration methods: the two-stage

Radau scheme, the generalized-α scheme, and the energy decaying scheme. The

application of all three integration schemes will be discussed in detail and their main

characteristics will be compared.

3.1 Multibody Systems Analysis Process

The complete analysis of flexible multibody systems proceeds in a number of phases.

First, a static analysis is needed in order to find equilibrium configurations as initial

values for a dynamic analysis. Next, the dynamic equations are solved using time

stepping methods. The analysis is concluded with the post-processing and signal

processing phases, in which data for visualization and interpretation of simulation

results are generated.
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Typical formulations of a number of statics and dynamics problems will be pre-

sented in the following sections. First, statics problems will be discussed in sec-

tion 3.1.1. Then, for reference, linear structural dynamics problems will be reviewed

in section 3.1.2; nonlinear structural dynamics problems are then presented in sec-

tion 3.1.3. Next, multibody dynamics problems are introduced, first in the presence

of holonomic constraints, see section 3.1.4, then in the presence of nonholonomic

constraints, see section 3.1.5.

3.1.1 Statics Problems

In the simple case of a linear, unconstrained system, the statics problem is character-

ized by a system of linear equations

Kq = f, (3.1)

where array q stores the n generalized coordinates of the system, K is the constant

stiffness matrix of the system, and f are the externally applied forces. The solution of

this system will yield the initial conditions for a linear structural dynamics problem;

see section 3.1.2.

In the more complicated case of a nonlinear, unconstrained system, the statics

problem is governed by a set of nonlinear equations

f(q) = 0, (3.2)

where array q stores the n generalized displacements of the system and f = f(q) is the

array of elastic and externally applied forces. This system has to be solved iteratively,

e.g. using the Newton-Raphson method, in order to find the initial configuration for

the nonlinear structural dynamics problem presented in section 3.1.3.
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The most general case is a nonlinear, constrained system. Here, the statics prob-

lem is defined by a set of nonlinear equations

f(q) +BT (q)λ = 0, (3.3a)

C(q) = 0. (3.3b)

Equation (3.3a) represents the static equilibrium of the system: f = f(q) is the

array of elastic and externally applied forces. The constraints, which are assumed

to be holonomic in this case, are given by eq. (3.3b). These constraints are enforced

using the Lagrange multiplier technique. The associated constraint forces, BTλ, affect

the static equilibrium conditions of the system. Again, the statics problem has to be

solved iteratively in order to find the initial configuration for the multibody dynamics

problem with holonomic constraints presented in section 3.1.4.

Statics problems corresponding to multibody dynamics problems with nonholo-

nomic constraints can be easily found by setting velocities and accelerations in the

equations of motion equal to zero. The basic characteristics of the resulting nonlinear

algebraic equations are the same as in the case of holonomic constraints.

3.1.2 Linear Structural Dynamics Problems

Consider a linear structural dynamics problem characterized by the following equa-

tions of motion

Mq̈ + Cq̇ +Kq = f(t), (3.4)

where array q stores the n generalized coordinates, M , C andK are the constant mass,

damping and stiffness matrices of the system, respectively, and f(t) the externally

applied time dependent forces. The notation ˙(·) is used to denote a derivative with

respect to time t. The mass matrix has full rank. It will be convenient to introduce

the generalized velocity and acceleration arrays,

v = q̇, (3.5)
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and

a = q̈, (3.6)

respectively; both arrays are of size n. The initial conditions of the problem are the

initial displacements and velocities of the system,

q(ti) = q
i
, v(ti) = vi, (3.7)

where ti is the initial time. The initial accelerations can be obtained from expressing

the dynamic equilibrium conditions, eq. (3.4), at time ti,

ai = M−1
[
f(ti) − Cvi −Kq

i

]
. (3.8)

The equations of motion for linear structural dynamics problems are second-order,

coupled, linear, ordinary differential equations, as can be seen from eq. (3.4). In some

cases, it will be necessary to recast these governing equations as a first-order system,

hq̇ = hv, (3.9a)

h2v̇ = h2a, (3.9b)

0 = Mh2a+ hChv + h2Kq − h2f(t), (3.9c)

where the first two equations simply define the velocity and acceleration components.

The equations were scaled by the time step size, h.

3.1.3 Nonlinear Structural Dynamics Problems

Many practical engineering problems involve dynamical systems presenting large dis-

placements and rotations, i.e. geometric nonlinearities, or large deformations re-

sulting in nonlinear material behavior, i.e. material nonlinearities. Such nonlinear

structural dynamics problems are described by the following dynamic equilibrium

equations

M(q, t)a+ f(q, v, t) = 0, (3.10)
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where arrays q, v and a store the n generalized displacement, velocity and acceleration

variables of the system, respectively; M = M(q, t) is the symmetric, positive-definite

full rank mass matrix, and f = f(q, v, t) the array of dynamic and externally ap-

plied forces. The equations of motion for nonlinear structural dynamics problems are

second-order, coupled, nonlinear, ordinary differential equations, as can be seen from

eq. (3.10). However, these equations exhibit a linear dependency on the accelerations

because they are derived from Newton’s second law.

For general systems, the degrees of freedom might involve both displacements and

finite rotations; for instance, at each node of a beam, six degrees of freedom are

typically used: three displacements and three rotations. The degrees of freedom at a

node would then be written as qT =
[
uT , cT

]
, where u are the nodal displacements and

c the nodal rotations represented by a proper parameterization of finite rotations [13].

The corresponding velocity and acceleration arrays are vT =
[
u̇T , ċT

]
, aT =

[
üT , c̈T

]
,

respectively.

In some cases, it is necessary to use the governing equations in first-order form,

hq̇ = hv, (3.11a)

h2v̇ = h2a, (3.11b)

0 = Mh2a+ h2f(q, v, t). (3.11c)

The above equations were scaled by the time step size h.

Since the problem is nonlinear, it will be necessary to linearize the equations of

motion and the following partial derivatives will be used,

K(q, v, a, t) =
∂(Ma+ f)

∂q
, (3.12a)

G(q, v, t) =
∂(Ma+ f)

∂v
, (3.12b)

M(q, t) =
∂(Ma+ f)

∂a
, (3.12c)
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where K, G and M are the stiffness, gyroscopic and mass matrices, respectively.

Consider a state of the system characterized by known displacement, velocity and

acceleration arrays denoted q, v and a, respectively, and let perturbations in these

arrays be denoted ∆q, ∆v and ∆a, respectively. Assume now that this known state

of the system is near its dynamic equilibrium configuration at time t, i.e.

M(q + ∆q, t)(a+ ∆a) + f(q + ∆q, v + ∆v, t) = 0. (3.13)

These equations imply that the perturbed state of the system characterized by dis-

placement, velocity and acceleration arrays, denoted q + ∆q, v + ∆v and a + ∆a,

respectively, exactly satisfy the dynamic equilibrium conditions, eq. (3.10). If the

perturbations are assumed to be small, a series expansion of eq. (3.13) leads to

M(q, t)a+ f(q, v, t) +K(q, v, a, t)∆q +G(q, v, t)∆v +M(q, t)∆a+ h.o.t = 0. (3.14)

If the higher order terms are neglected, the linearized equations of motion for the

small perturbations become

K(q, v, a, t)∆q +G(q, v, t)∆v +M(q, t)∆a = −M(q, t)a− f(q, v, t). (3.15)

In their linearized form, the governing equations of the system now resemble their

counterparts for linear systems, eq. (3.4). However, the mass, gyroscopic and stiffness

matrices are now all three functions of the states of the system. The scaled form of

the linearized equations is

h2K∆q + hGh∆v +Mh2∆a = −
(
Mh2a+ h2f

)
. (3.16)

3.1.4 Multibody Dynamics Problems with Holonomic Constraints

Next constrained, nonlinear multibody systems featuring n generalized coordinates

will be discussed. Systems with m holonomic constraints will be considered in the

present section. Next, the formulation will be expanded to include nonholonomic

constraints, see section 3.1.5.
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Nonlinear multibody systems with holonomic constraints are characterized by the

following governing equations

0 = M(q, t)a+ f(q, v, t) +BT (q, t)λ, (3.17a)

0 = C(q, t). (3.17b)

Equation (3.17a) represents the dynamic equilibrium of the system: M = M(q, t) is

the symmetric, positive-definite full rank mass matrix, and f = f(q, v, t) the array

of dynamic and externally applied forces. The holonomic constraints imposed on the

system are given by eq. (3.17b). These constraints are enforced via a set of Lagrange

multipliers, denoted λ. The associated constraint forces, BTλ, affect the dynamic

equilibrium conditions of the system. The equations of motion describing a fully

nonlinear multibody system have a linear dependency on the Lagrange multipliers.

In first-order form, the governing equations of multibody systems with holonomic

constraints are

hq̇ = hv, (3.18a)

h2v̇ = h2a, (3.18b)

0 = M(q, t)h2a+ h2f(q, v, t) + sBT (q, t)µ̂ (3.18c)

0 = sC(q, t). (3.18d)

Here, the equations were scaled, according to the scheme described in chapter 2.

Due to the nonlinearity of the dynamic equilibrium equations, it will be necessary

to linearize them. The linearization of the dynamic terms, M(q, t)a+ f(q, v, t), gives

rise to the stiffness, gyroscopic and mass matrices defined in eqs. (3.12). Linearization

of the constraint forces gives rise to two additional matrices

∂(BTλ)

∂q
= Kb(q, λ, t),

∂(BTλ)

∂λ
= BT (q, t). (3.19)

Similarly, since the constraint equations are all nonlinear, it will be necessary to
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linearize them and the following partial derivative is defined

∂C
∂q

= Kc(q, t). (3.20)

Following a procedure identical to that developed in section 3.1.3 for the equations

of nonlinear structural dynamics, the linearized equations for nonlinear multibody

dynamics systems are

(h2K + sKb)∆q + hGh∆v +Mh2∆a+ sBT ∆µ̂ = −Mh2a− h2f − sBT µ̂, (3.21a)

sKc∆q = −sC(q, t). (3.21b)

3.1.5 Multibody Dynamics Problems with Nonholonomic Constraints

The governing equations of nonlinear multibody systems subjected to nonholonomic

constraints are

0 = M(q, t)a+ f(q, v, t) +BT (q, t)λ, (3.22a)

0 = B(q, t)v + d(q, t). (3.22b)

where eq. (3.22a) represents once again the dynamic equilibrium of the system. The

nonholonomic constraints imposed on the system are defined by eq. (3.22b) and are

assumed to present a linear dependency on the velocities. Again, these constraints are

enforced using an array of Lagrange multipliers, denoted λ. The corresponding con-

straint forces are BTλ. The dependency of the governing equations on the Lagrange

multipliers is linear.

The governing equations of motion can be written as a first-order system,

hq̇ = hv, (3.23a)

h2v̇ = h2a, (3.23b)

0 = M(q, t)h2a+ h2f(q, v, t) + sBT (q, t)µ̂ (3.23c)

0 = sB(q, t)hv + shd(q, t). (3.23d)
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The scaling of the dynamic equilibrium equation is identical to that presented in the

previous section, whereas the scaling factor used for the nonholonomic constraint is

sh rather than s, as was used for the holonomic constraint, see eq. (3.18d).

Again, the dynamic equilibrium equations are nonlinear. As in the previous case,

the linearization of the dynamic terms, M(q, t)a+f(q, v, t), gives rise to the stiffness,

gyroscopic and mass matrices defined in eqs. (3.12), whereas the linearization of the

constraint forces gives rise to the two additional matrices defined in eq. (3.19). The

linearization of the nonholonomic constraints yields following partial derivatives

∂(Bv + d)

∂q
= Kc(q, t),

∂(Bv + d)

∂v
= B(q, t). (3.24)

The linearized equations of motion are

(h2K + sKb)∆q + hGh∆v +Mh2∆a+ sBT ∆µ̂ = −Mh2a− h2f − sBT µ̂, (3.25a)

shKc∆q + sBh∆v = −sB(q, t)hv − shd(q, t). (3.25b)

3.2 Time Integration Schemes

This section presents three time integration schemes. First, the two-stage Radau

scheme, which is part of the broader class of implicit Runge-Kutta methods, will

be introduced. Next, the generalized-α time integration scheme, which contains the

well-known HHT-α scheme as a special case, will be discussed. Finally, the energy

decaying scheme will be presented.

3.2.1 The Two-Stage Radau Time Integration Scheme

This section presents the application of the two-stage Radau time integration scheme [51]

to nonlinear multibody dynamics problems. Section 3.2.1.1 presents the two-stage

Radau time integration scheme for general problems, whereas the subsequent sec-

tions focus on the integration of structural and multibody dynamics problems.
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3.2.1.1 Introduction

Consider a set of nonlinear, first-order, ordinary differential equations written as

ẏ = f(y, t), (3.26)

where y(t) are unknown functions of time, t denotes times, and f an arbitrary, non-

linear function of y and t. Arrays y(t) and f(y, t) are of size n. The initial conditions

of the problem are defined at time t = ti as y(ti) = y
i
.

In the two-stage Radau scheme [51], these equations are discretized in the following

manner

Y1 = f(Y 1, T1), (3.27a)

Y2 = f(Y 2, T2), (3.27b)

where Y 1 and Y 2 are called stages, T1 and T2 are discrete time values, and arrays Y1

and Y2 are approximations to the function derivatives. The stages are defined as

Y 1 = y
i
+ hβ11Y1 + hβ12Y2, (3.28a)

Y 2 = y
i
+ hβ21Y1 + hβ22Y2, (3.28b)

where β11, β12, β21 and β22 are coefficients that characterize the time integration

scheme, and h is the time step size. The discrete time values are defined as

T1 = ti + α1h, (3.29a)

T2 = ti + α2h, (3.29b)

where α1 and α2 are coefficients that characterize the time integration scheme. Equa-

tions (3.27) and (3.28) are nonlinear algebraic equations that can be solved for the

approximate derivatives, Y1 and Y2. Once these two arrays have been solved for, the

solution can be advanced to the end of the time step using the following equations

y
f

= y
i
+ hγ1Y1 + hγ2Y2, (3.30)
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where γ1 and γ2 are coefficients that characterize the time integration scheme, and

y
f

is the approximate solution of the differential equation, y(ti + h) ≈ y
f
.

The coefficients characterizing two-stage Radau schemes can be summarized using

a Butcher table, which takes the following form




α1 β11 β12

α2 β21 β22

γ1 γ2



. (3.31)

For the two-stage Radau IA scheme, the coefficients are




α1 β11 β12

α2 β21 β22

γ1 γ2




=




0 1/4 −1/4

2/3 1/4 5/12

1/4 3/4



, (3.32)

whereas for the two-stage Radau IIA scheme, which will be used for all computations

in this work, the coefficients are




α1 β11 β12

α2 β21 β22

γ1 γ2




=




1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4



. (3.33)

It will be convenient to define the following matrix

β =



β11 β12

β21 β22


 , (3.34)

and the following array

γ =



γ1

γ2


 . (3.35)

3.2.1.2 Compact Notation

To simplify the statement of the two-stage Radau time integration scheme described

above, it is convenient to introduce the following compact notation for the stages,
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approximate derivatives, and initial conditions

Y =



Y 1

Y 2


 , Y =




Y1

Y2


 , Y

i
=



y

i

y
i


 , (3.36)

respectively, which are now arrays of size 2n. Similarly, the following notation is

introduced for the nonlinear function

F =



f(Y 1, T1)

f(Y 2, T2)


 . (3.37)

The implicit discrete equations of the problem, eqs. (3.27), now become

Y = F(Y , T ), (3.38)

whereas the stages, see eq. (3.28), can now be defined in a more compact manner as

Y = Yi + hβY. (3.39)

Finally, the solution at the end of the time step, see eq. (3.30), becomes

y
f

= y
i
+ hγT Y. (3.40)

3.2.1.3 Linearization Procedure

The discretized equations resulting from the two-stage Radau time integration scheme,

eq. (3.38), are nonlinear algebraic equations that will be solved using an iterative pro-

cess based on linearization. At first, the following stiffness matrix is defined

K(y, t) =
∂f(y, t)

∂y
. (3.41)

Assume that an approximate value of the stages, Y 1 and Y 2, has been obtained.

Taylor series expansion then yields

f(Y 1 + ∆Y 1, T1) ≈ f(Y 1, T1) +K(Y 1, T1)∆Y 1, (3.42)
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where higher order terms have been neglected. The same process can be applied to

f(Y 2, T2), and the two results are then combined using the previously defined compact

notation

F(Y + ∆Y , T ) ≈ F(Y , T ) + K(Y , T )∆Y , (3.43)

where the compact stiffness matrix, of size 2n× 2n, was defined as

K(Y , T ) =



K(Y 1, T1) 0

0 K(Y 2, T2)


 . (3.44)

Linearization of the discrete equations, eq. (3.38), then yields

Y + ∆Y = F(Y , T ) + K(Y , T )∆Y = F(Y , T ) + K(Y , T )hβ∆Y, (3.45)

where the last equality follows from the linearization of the definition of the stages,

eq. (3.39). It is now possible to solve for the increment in the derivatives

(I − hKβ)∆Y = F − Y. (3.46)

This equation is solved iteratively up to convergence. Once convergence is reached,

eq. (3.40) is used to obtain the desired solution at the end of the time step.

3.2.1.4 Linear Structural Dynamics Problems

The two-stage Radau scheme will now be applied to the problem of linear structural

dynamics described in section 3.1.2. For such problems, the dynamic equations of

equilibrium recast in first order form are given by eqs. (3.9). The discrete equations

of the problem obtained from the Radau scheme are written in a compact manner as

hQ = hV ; (3.47a)

h2V = h2A; (3.47b)

0 = Mh2A+ hChV + h2KQ− h2F . (3.47c)
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The following notations were introduced for the stages

Q =



Q

1

Q
2


 , V =



V 1

V 2


 , A =



A1

A2


 , (3.48)

approximate derivative

Q =




Q
1

Q
2


 , V =




V1

V2


 , A =




A1

A2


 , (3.49)

and initial conditions

Q
i
=



q

i

q
i


 , V i =



vi

vi


 , Ai =



ai

ai


 . (3.50)

Finally, the following matrices were defined

M =



M 0

0 M


 , C =



C 0

0 C


 , K =



K 0

0 K


 , (3.51)

together with array F

F =



f(T1)

f(T2)


 . (3.52)

According to the Radau scheme, see eq. (3.39), the stages are defined as

Q = Q
i
+ βhQ; (3.53a)

hV = hV i + βh2V; (3.53b)

h2A = h2Ai + βh3A. (3.53c)

Finally, the solution at the end of the time step, see eq. (3.40), is found as

q
f

= q
i
+ γThQ; (3.54a)

hvf = hvi + γTh2V; (3.54b)

h2af = h2ai + γTh3A. (3.54c)
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The discrete equations of the problem, eqs. (3.47), involve three approximate

derivatives, Q, V and A. To simplify the solution process, these three derivatives

are solely expressed in terms of V, by taking advantage of the fact that the two first

discrete equations of motion of the problem, eqs. (3.47a) and (3.47b), are vector,

rather than matrix equations. Straightforward algebraic manipulations lead to the

following results

Q = Q
i
+ βhV i + β2h2V = Q

i
+ βhV , (3.55a)

hV = hV i + βh2V = hV i + βh2A, (3.55b)

h2A = h2V = h2V. (3.55c)

The discrete equations of motion of the problem, eq. (3.47c), now become

Mh2V + hC( hV i + βh2V) + h2K(Q
i
+ βhV i + β2h2V) − h2F = 0. (3.56)

The approximate derivative, h2V, is readily solved for as

h2V =
[
M + hCβ + h2Kβ2

]−1 [
h2F − h2KQ

i
− (hC + h2Kβ)hV i

]
. (3.57)

Finally, the solution at the end of the time step then follows from eq. (3.54) as

q
f

= q
i
+ γT (hV i + βh2V) = q

i
+ hvi + γTβh2V; (3.58a)

hvf = hvi + γTh2V; (3.58b)

h2af = h2ai + γTβ−1(h2V − h2Ai). (3.58c)

In the first equation, the property
∑
γi = 1, which holds for the two-stage Radau IA

scheme and the two-stage Radau IIA scheme, was used to simplify the final result.

3.2.1.5 A Simple Example

Consider a simple, single degree of freedom spring, mass, dashpot system character-

ized by a mass, m, a spring constant, k, and a dashpot constant, c. Using the notation

of eq. (3.4), it is clear that for this single degree of freedom problem, M = m, C = c
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and K = k. The following notation is introduced: k/m = ω2, where ω is the un-

damped natural frequency of the system, and c/ωm = 2ζ, where ζ is the damping

of the system, expressed as a fraction of the critical damping rate. It is now easily

shown that

M + hCβ + h2Kβ2 = m
[
I + 2ζµβ + µ2β2

]
= mG, (3.59)

where µ = ωh. If the undamped period of the system is T , ω = 2π/T , and hence,

µ = 2πh/T , where h/T is the number of time steps per period of the undamped

system.

Equation (3.57) can also be recast as

Gh2V =
h2

m
[F − kqi1 − (c+ hkβ)vi1] =

[
h2F
m

− µ2qi1 − (2ζµ+ µ2β)hvi1

]
, (3.60)

where 1T = [1, 1]. Finally, the displacement at the end of the time step follows from

eq. (3.58a)

qf = qi + hvi + γTβh2V = qi + hvi + dT

[
h2F
m

− µ2qi1 − (2ζµ+ µ2β)hvi1

]
, (3.61)

where dT = γTβG−1. The velocity at the end of the time step is found with the help

of eq. (3.58b) as

hvf = hvi + γTh2V = hvi + eT

[
h2F
m

− µ2qi1 − (2ζµ+ µ2β)hvi1

]
, (3.62)

where eT = γTG−1. The displacement and velocity at the end of the time step can

be expressed in terms of their counterparts at the beginning of the time step as




qf

hvf


 =

h2

m



dTF

eTF


+ A




qi

hvi


 . (3.63)

The amplification matrix, A, is defined as

A =




1 − µ2dt 1 − 2ζµdt − µ2dTβ1

−µ2et 1 − 2ζµet − µ2eTβ1


 , (3.64)
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where dt = dT 1 and et = eT 1. Figure 3.1 shows the spectral radius of the amplification

matrix corresponding to the two-stage Radau IIA scheme as a function of h/T for

ζ = 0.
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Figure 3.1: Spectral radius of the two-stage Radau IIA scheme as a function of h/T .

3.2.1.6 Nonlinear Structural Dynamics Problems

The two-stage Radau scheme will now be applied to the problem of nonlinear struc-

tural dynamics described in section 3.1.3. For such problems, the dynamic equations

of equilibrium recast in first order form are given by eqs. (3.11). The discrete equations

of the problem obtained from the Radau scheme are written in a compact manner as
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hQ = hV ; (3.65a)

h2V = h2A; (3.65b)

0 = Mh2A+ h2F(Q, V , T ), (3.65c)

where the stages are defined in eqs. (3.53). The solution at the end of the time step is

then found using eqs. (3.54). Linearization of the discrete equations of motion yields

Mh2A+ h2F(Q, V , T ) + Kh2∆Q+ Gh2∆V + Mh2∆A ≈ 0, (3.66)

where the following 2n× 2n matrices were defined

M =



M1 0

0 M2


 , G =



G1 0

0 G2


 , K =



K1 0

0 K2


 , (3.67)

and Mi = M(Q
i
, Ti), Gi = G(Q

i
, V i, Ti) and Ki = K(Q

i
, V i, Ai, Ti), i = 1, 2. In view

of eqs. (3.55), stage increments can be written as

∆Q = β2h2∆V, (3.68a)

h∆V = βh2∆V, (3.68b)

h2∆A = h2∆V, (3.68c)

and the linearized equations of motion become

[
M + hGβ + h2Kβ2

]
h2∆V = −Mh2A− h2F(Q, V , T ), (3.69)

This equation is solved sequentially as part of an iterative procedure up to conver-

gence. Once convergence has been reached, the solution at the end of the time step

is given by eqs. (3.58).

3.2.1.7 Multibody Dynamics Problems with Holonomic Constraints

The two-stage Radau scheme will now be applied to the problem of multibody dy-

namics with holonomic constraints described in section 3.1.4. For such problems, the
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dynamic equations of equilibrium recast in first order form are given by eqs. (3.18).

The discrete equations of the problem obtained from the Radau scheme are written

in a compact manner as

hQ = hV , (3.70a)

h2V = h2A, (3.70b)

0 = Mh2A+ h2F(Q, V , T ) + sBT (Q, T )L, (3.70c)

0 = sC(Q, T ), (3.70d)

where the displacement, velocity and acceleration stages are defined by eqs. (3.53),

and additionally the Lagrange multiplier stages are written as

L = Li + hβL. (3.71)

The following notations were introduced for the Lagrange multipliers

L =



L1

L2


 , L =




L1

L2


 , Li =



µ̂

i

µ̂
i


 . (3.72)

The following matrices and arrays were also defined

M =



M(Q

1
, T1) 0

0 M(Q
2
, T2)


 , BT =



BT (Q

1
, T1) 0

0 BT (Q
2
, T2)


 , (3.73)

and arrays

F =



f(Q

1
, V 1, T1)

f(Q
2
, V 2, T2)


 , C =




C(Q
1
, T1)

C(Q
2
, T2)


 . (3.74)

Linearization of the discrete dynamic equations of motion, eq. (3.70c), leads to

Mh2A+h2F +sBTL+Kh2∆Q+Gh2∆V +Mh2∆A+sKb∆Q+sBT ∆L ≈ 0. (3.75)

Similarly, linearization of the holonomic constraints, eq. (3.70d), yields

sC + sKc∆Q ≈ 0. (3.76)

60



The following matrices were defined

K =



K(Q

1
, V 1, A1, T1) 0

0 K(Q
2
, V 2, A2, T2)


 , (3.77a)

Kb =



Kb(Q

1
, L1, T1) 0

0 Kb(Q
2
, L2, T2)


 , (3.77b)

G =



G(Q

1
, V 1, T1) 0

0 G(Q
2
, V 2, T2)


 , (3.77c)

Kc =



Kc(Q

1
, T1) 0

0 Kc(Q
2
, T2)


 , (3.77d)

With the help of eqs. (3.68), the linearized equations, eqs. (3.75) and (3.76), become




M + hGβ + (h2K + sKb)β2 sBTβ

sKcβ2 0






h2∆V

h∆L


 (3.78)

= −




Mh2A+ h2F + sBTL

sC


 .

These equations are solved sequentially as part of an iterative procedure up to con-

vergence. Once convergence has been reached, the solution at the end of the time

step is given by eqs. (3.58) for the displacements, velocities and acceleration, whereas

the Lagrange multipliers become

µ̂
f

= µ̂
i
+ γThL. (3.79)

3.2.1.8 Multibody Dynamics Problems with Nonholonomic Constraints

The two-stage Radau scheme will finally be applied to the problem of multibody

dynamics with nonholonomic constraints described in section 3.1.5. For such prob-

lems, the dynamic equations of equilibrium recast in first order form are given by
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eqs. (3.23). The discrete equations of the problem obtained from the Radau scheme

are similar to those developed for holonomic constraints, eqs. (3.70),

hQ = hV , (3.80a)

h2V = h2A, (3.80b)

0 = Mh2A+ h2F(Q, V , T ) + sBT (Q, T )L, (3.80c)

0 = sB(Q, T )hV + shD(Q, T ), (3.80d)

where

D =



d(Q

1
, T1)

d(Q
2
, T2)


 . (3.81)

The linearization of the nonholonomic constraints, eq. (3.80d), yields

sBhV + shD + shKc∆Q+ sBh∆V ≈ 0. (3.82)

With the help of eqs. (3.68), the linearized equations, eqs. (3.75) and (3.82), become




M + hGβ + (h2K + sKb)β2 sBTβ

sBβ + shKcβ2 0






h2∆V

h∆L


 (3.83)

= −




Mh2A+ h2F + sBTL

sBhV + shD


 .

These equations are solved sequentially as part of an iterative procedure up to con-

vergence. Once convergence has been reached, the solution at the end of the time

step is given by eqs. (3.58) for the displacements, velocities and acceleration, whereas

eq. (3.79) gives the Lagrange multipliers.

3.2.2 The Generalized-α Time Integration Scheme

This section presents the application of the generalized-α time integration scheme

to nonlinear multibody dynamics problems. Sections 3.2.2.1 and 3.2.2.2 present

the generalized-α time integration scheme for linear structural dynamics problems,
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whereas the subsequent sections focus on the integration of nonlinear structural and

multibody dynamics problems.

3.2.2.1 Linear Structural Dynamics Problems

The generalized-α scheme [34] was introduced for linear structural dynamics problems

of the form described in section 3.1.2. The equations of motion are in the form given

by eq. (3.4). The solution at the end of the time step is written as

q
f

= q
i
+ hvi +

[(
1

2
− β

)
h2ai + βh2af

]
, (3.84a)

hvf = hvi +
[
(1 − γ)h2ai + γh2af

]
. (3.84b)

The discrete equations of motion are stated as

Mh2A+ hChV + h2KQ = h2f(T ), (3.85)

where the stages have been defined as

Q = α̂fqf
+ αfqi

, (3.86a)

hV = α̂fhvf + αfhvi, (3.86b)

h2A = α̂mh
2af + αmh

2ai, (3.86c)

T = α̂f tf + αf ti. (3.86d)

Coefficients αm, αf , β and γ characterize the generalized-α family of integration

schemes and will be selected to optimize the accuracy and stability characteristics of

the algorithm. The following simplifying notation was adopted: α̂f = 1 − αf and

α̂m = 1 − αm.

For the generalized-α scheme [34], the four coefficients are expressed in terms of

the spectral radius at infinity, denoted ρ∞. At first, αm and αf are chosen as

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, (3.87)
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with ρ∞ ∈ [0, 1]. The two remaining coefficients are then computed as

γ =
1

2
− αm + αf , β =

1

4
(1 − αm + αf )

2. (3.88)

The HHT-α scheme [55] is a subset of the generalized-α scheme for which the first

two coefficients are selected as

αm = 0, αf = −α. (3.89)

with α ∈ [−0.3 0]. The two remaining coefficients are then computed using eq. (3.88)

To facilitate the solution process, the solution at the end of the time step given

by eqs. (3.84) is recast as

q
f

= q
i
+ hvi +

1

2
h2ai + βh2(af − ai) = q

i
+ hvi +

1

2
h2ai + ∆q, (3.90a)

hvf = hvi + h2ai + γh2(af − ai) = hvi + h2ai +
γ

β
∆q, (3.90b)

h2af = h2ai + h2(af − ai) = h2ai +
1

β
∆q. (3.90c)

Equation (3.85) then becomes

[
α̂m

β
M +

γα̂f

β
hC + α̂fh

2K

]
∆q = h2f(T ) (3.91)

−Mh2ai − hC
[
α̂fh

2ai + hvi

]
− h2K

[
α̂f

2
h2ai + α̂fhvi + q

i

]
.

Once ∆q is solved for, the complete solution at the end of the time step is found with

the help of eqs. (3.90).

3.2.2.2 A Simple Example

Consider again the simple, single degree of freedom spring, mass, dashpot system

introduced in section 3.2.1.5. It is now easily shown that

α̂m

β
M +

γα̂f

β
hC + α̂fh

2K = m

[
α̂m

β
+ 2

γα̂f

β
ζµ+ α̂fµ

2

]
= mG, (3.92)

where µ = ωh = 2πh/T and ζ is the damping of the system, expressed as a fraction

of the critical damping rate.
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Equation (3.91) can also be recast as

G∆q =

[
h2

m
f − h2ai − 2ζµ

(
α̂fh

2ai + hvi

)
− µ2

(
α̂f

2
h2ai + α̂fhvi + qi

)]
. (3.93)

Finally, the displacements, velocities, and accelerations at the end of the time step

can be expressed in terms of their counterparts at the beginning of the time step with

the help of eqs. (3.90) as




qf

hvf

h2af




=
h2

mG f




1

γ

β

1
β




+ A




qi

hvi

h2ai



. (3.94)

The amplification matrix, A, is defined as

A = A1 −
1

GA2A
T
3 , (3.95)

where

A1 =




1 1 1
2

0 1 1

0 0 1



, A2 =




1

γ

β

1
β




(3.96)

and

A3 =




µ2

2ζµ+ µ2α̂f

1 + 2ζµα̂f + µ2 α̂f

2



. (3.97)

Figure 3.2 shows the spectral radius of the amplification matrix as a function of h/T

for ζ = 0 and several values of ρ∞.

3.2.2.3 Nonlinear Structural Dynamics Problems

Nonlinear structural dynamics problems were investigated in section 3.1.3, with equa-

tions of motion cast in the form of eq. (3.10). The linearization process described in

this section leads to the linearized equations of motion given by eq. (3.16). Since

the generalized-α scheme was introduced for linear structural dynamics problems, it
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Figure 3.2: Spectral radius of the generalized-α scheme as a function of h/T for
ρ∞ = 1.0: solid line; ρ∞ = 0.5: dashed-dot line; ρ∞ = 0.2: dashed line; ρ∞ = 0.0:
dotted line.

seems logical to extend its application to nonlinear structural dynamics problems by

applying the scheme to the linearized equations of motion. The scaled, linearized

equations are recast here as

h2K∆Q+ hGh∆V + Mh2∆A = −
(
Mh2A+ h2F

)
, (3.98)

where Q, V and A are the stages defined in eqs. (3.86), and the following notations

were defined for the mass, gyroscopic and stiffness matrices,

M = M(Q, T ); G = G(Q, V , T ); K = K(Q, V ,A, T ), (3.99)
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respectively, and the dynamic load vector,

F = f(Q, V , T ). (3.100)

Increments in the stages are readily obtained from eq. (3.86) as

∆Q = βα̂fh
2∆af = ∆Q = α̂f∆q, (3.101a)

h∆V = γα̂fh
2∆af =

γ

β
∆Q =

γα̂f

β
∆q, (3.101b)

h2∆A = α̂mh
2∆af =

α̂m

βα̂f

∆Q =
α̂m

β
∆q, (3.101c)

where the second set of equalities were obtained from eq. (3.90). Introducing these

results into eq. (3.98) and multiplying by β leads to

[
α̂mM + γα̂fhG + βα̂fh

2K
]
∆q = −β

(
Mh2A+ h2F

)
. (3.102)

These linearized equations are solved sequentially as part of an iterative procedure

up to convergence. Increments in the displacement, velocity and acceleration stages

are then obtained from eq. (3.101).

3.2.2.4 Multibody Dynamics Problems with Holonomic Constraints

Multibody dynamics problems with holonomic constraints were investigated in sec-

tion 3.1.4, with equations of motion cast in the form of eqs. (3.17). The linearization

process described in this section leads to the linearized equations of motion given

by eqs. (3.21). Since the generalized-α scheme was introduced for linear structural

dynamics problems, it seems logical to extend its application to multibody dynam-

ics problems with holonomic constraints by applying the scheme to the linearized

equations of motion. The scaled, linearized equations are recast here as

(h2K + sKb)∆Q+ hGh∆V + Mh2∆A+ sBT ∆L (3.103a)

= −
(
Mh2A+ h2F + sBTL

)
,

sKc∆Q = −sC, (3.103b)
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where the stiffness, gyroscopic, and mass matrices were defined in eq. (3.99), the

dynamic load vector by eq. (3.100), and L = µ̂ are the Lagrange multiplier stages.

Additionally, the following notations were introduced

B = B(Q, T ); Kb = Kb(Q,L, T ); Kc = Kc(Q, T ). (3.104)

Introducing the increments in the stages as defined in eqs. (3.101) into eqs. (3.103)

yields the following discrete equations



α̂mM + γα̂fhG + βα̂f (h

2K + sKb) βα̂fsBT

α̂fsKc 0







∆q

∆µ̂


 (3.105)

=




−β
(
Mh2A+ h2F + sBTL

)

−sC


 .

These linearized equations are solved sequentially as part of an iterative procedure

up to convergence.

3.2.2.5 Multibody Dynamics Problems with Nonholonomic Constraints

Multibody dynamics problems with nonholonomic constraints were investigated in

section 3.1.5, with equations of motion cast in the form of eqs. (3.22). The lineariza-

tion process described in this section leads to the linearized equations of motion given

by eqs. (3.25). Since the generalized-α scheme was introduced for linear structural

dynamics problems, it seems logical to extend its application to multibody dynamics

problems with nonholonomic constraints by applying the scheme to the linearized

equations of motion. The scaled, linearized equations are recast here as

(h2K + sKb)∆Q+ hGh∆V + Mh2∆A+ sBT ∆L (3.106a)

= −(Mh2A+ h2F + sBTL),

shKc∆Q+ sBh∆V = −(sBhV + shd). (3.106b)
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where the stiffness, gyroscopic, and mass matrices were defined in eq. (3.99), the

dynamic load vector by eq. (3.100), the constraint related matrices by eq. (3.104),

L = µ̂ are the Lagrange multiplier stages, and the following notation was used d =

d(Q, T ).

Introducing the increments in the stages as defined in eqs. (3.101) into eqs. (3.106)

yields the following discrete equations



α̂mM + γα̂fhG + βα̂f (h

2K + sKb) βα̂fsBT

βα̂fshKc + γα̂fsB 0







∆q

∆µ̂


 (3.107)

=




−β
(
Mh2A+ h2F + sBTL

)

−β(sBhV + shd)


 .

These linearized equations are solved sequentially as part of an iterative procedure

up to convergence.

3.2.3 The Energy Decaying Scheme

This section presents the application of the energy decaying scheme [8] to nonlinear

multibody dynamics problems. Sections 3.2.3.1 and 3.2.3.2 present the energy decay-

ing scheme for linear structural dynamics problems, whereas section 3.2.3.3 focuses

on the integration of nonlinear, constrained problems.

3.2.3.1 Linear Structural Dynamics Problems

The discretized equations of motion for the energy decaying scheme mimic those ob-

tained for the application of a time discontinuous Galerkin approximation, which will

be demonstrated in the following for linear structural dynamics problems described

in section 3.1.2.

With the introduction of the momentum array p = Mq̇ the equations of mo-

tion (3.4) become

ṗ+ Cq̇ +Kq = f(t). (3.108)
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Timeti tj tf

Figure 3.3: Time discontinuous Galerkin approximation.

In the time discontinuous Galerkin approximation, the solution is allowed to

present discontinuities in the displacement and velocity fields at discrete times. Fig-

ure 3.3 shows a time interval from ti to tf and the approximate solution over that

interval. At the initial instant, the solution presents a jump. Subscripts (.)i will be

used to denote the value of a discontinuous quantity on the left side of the jump,

whereas a subscript (.)j indicates the value of that quantity on the right side of the

jump. The equations of motion and initial conditions are enforced in a weak, integral

manner. The time discontinuous Galerkin approximation of the equations of motion

in implicit symmetric hyperbolic form may be written as

∫ tf

tj

{
w1

[
q̇ −M−1p

]
+ w2[ṗ+ Cq̇ +Kq − f ]

}
dt (3.109)

+w1,j(qj
− q

i
) + w2,j(pj

− p
i
) = 0.

Using integration by parts and a linear in time approximation for the displacements,
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momenta, forces and test functions, the following discrete equations are obtained

h2

2

(
f

f
+ f

j

)
= M

(
hvf − hvi

)
+ hC

(
q

f
− q

j

)
+
h2

2
K
(
q

f
+ q

j

)
, (3.110a)

−h
2

6

(
f

f
− f

j

)
= M

(
hvj − hvi

)
+
h2

6
K
(
q

j
− q

f

)
, (3.110b)

q
f
− q

i
=

1

2

(
hvf + hvj

)
, (3.110c)

q
j
− q

i
=

1

6

(
hvj − hvf

)
, (3.110d)

where the equations were scaled using the time step size h = tf − ti. These four

equations can be solved for the unknowns q
j
, q

f
, vj = q̇

j
, and vf = q̇

f
.

3.2.3.2 A Simple Example

In this section, the simple, single degree of freedom spring, mass, dashpot system

introduced in section 3.2.1.5 is revisited again. It can be readily seen that eqs. (3.110)

become

h2

2m
(ff + fj) = (hvf − hvi) + 2ζµ (qf − qj) +

µ2

2
(qf + qj) , (3.111a)

− h2

6m
(ff − fj) = (hvj − hvi) +

µ2

6
(qj − qf ) , (3.111b)

qf − qi =
1

2
(hvf + hvj) , (3.111c)

qj − qi =
1

6
(hvj − hvf ) , (3.111d)

where µ = ωh = 2πh/T and ζ is the damping of the system, expressed as a fraction

of the critical damping rate. These discrete equations imply a discrete energy decay

inequality Ef ≤ E i. It can be readily shown that for ζ = 0 the spectral radius of the

amplification matrix of this system is given by

ρ = 2

√
µ2 + 9

µ4 + 4µ2 + 36
, (3.112)

which is shown in fig. 3.4.
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Figure 3.4: Spectral radius of the energy decaying scheme as a function of h/T .

3.2.3.3 Multibody Dynamics Problems

The developments presented for linear structural dynamics problems are readily gen-

eralized for multibody dynamics problems. For simplicity of the exposition, the case

of holonomic constraints will be treated here. The scaled and discretized equations

of motion become

h2F I
g + h2FE

g + sBgµ̂g
= h2Fg; (3.113a)

h2F I
h + h2FE

h − s

3
[Bg − Bh] µ̂g

= h2Fh, (3.113b)

sCf = 0, (3.113c)

sCj = 0 (3.113d)
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The velocity-displacement relationships are approximated as

q
f
− q

i
=

1

2

[
hvf + hvj

]
, (3.114a)

q
j
− q

i
= −1

6

[
(hvf − hvi) − α(hvj − hvi)

]
, (3.114b)

where α ∈ [0 1] is a coefficient that controls the amount of numerical dissipation in

the algorithm. For α = 0 the scheme is L-stable, for α = 1 it is energy preserving.

In these equations, F I , FE and F denote the inertial, elastic, and externally applied

forces, respectively. Subscripts (·)g and (·)h indicate the “mid-point value” of the

corresponding quantity within time intervals [tj, tf ] and [ti, tj], respectively. The

discretization of the constraint Jacobians Bg and Bh will be selected so as to satisfy

the following relationships

Cf − Cj = BT
g (q

f
− q

j
), (3.115a)

Cj − Ci = BT
h (q

j
− q

i
). (3.115b)

This relationship guarantees that the work done by the constraint forces vanishes

and that at each time step the energy decaying scheme satisfies the following energy

balance statement

Ef − Ei = ∆WA − α

2
c2, (3.116)

where ∆WA is the work done by the externally applied forces and c2 is a positive

constant. In the absence of externally applied loads, this statement implies the decay

of the total mechanical energy of the system across the time step and the stability of

the proposed numerical scheme in the presence of constraints.

3.2.4 Properties of Time Integration Schemes

This section summarizes the main characteristics of the two-stage Radau IIA scheme,

the generalized-α method, and the energy decaying scheme. In practical applica-

tions of flexible multibody dynamics, five properties, which will be discussed in the
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following, are of particular importance: stability, numerical dissipation, convergence

behavior, number of algorithmic unknowns, and complexity of implementation.

3.2.4.1 Stability

An important property of a time integration scheme is its stability when applied to

linear or nonlinear problems. Schemes that are unconditionally stable when applied

to linear problems are commonly referred to as A-stable. It can be proved that all

schemes discussed in this chapter possess this property. Hence, a guarantee of al-

gorithmic stability exists for the two-stage Radau IIA scheme, the energy decaying

scheme, and the generalized-α scheme, if the coefficients αm, αf , β and γ associated

with the last method are chosen according to eqs. (3.87) and (3.88). Proofs of uncon-

ditional stability in the nonlinear case exist only for the energy decaying scheme.

3.2.4.2 Numerical Dissipation

The presence of flexible components in multibody systems renders the resulting equa-

tions of motion highly stiff. Here, the spatial discretization of flexible components

introduces high frequency transients, which will not damp out if the system is energy

preserving. This can prevent the integration scheme from converging. Hence, numer-

ical dissipation or damping of high frequency transients in the system response is a

desirable property of a time stepping scheme for the efficient integration of dynamic

equations associated with flexible multibody systems, see [51]. The case of asymp-

totic annihilation, i.e. the spectral radius at infinity is equal to zero, is commonly

referred to as L-stability.

Hairer and Wanner [51] proved that the two-stage Radau IIA scheme is L-stable.

Proofs of L-stability do not exist for the two-stage Radau IA scheme, which makes

this scheme inappropriate for the integration of flexible multibody systems. Similarly,

Bauchau [8] showed that the energy decaying scheme also exhibits L-stable behavior.

The generalized-α scheme allows the user to choose the spectral radius at infinity.
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Figure 3.5: Spectral radii of three integration schemes: Radau IIA: solid line; energy
decaying scheme: dashed-dot line; generalized-α scheme: dashed line.

The choice ρ∞ = 0 yields an L-stable scheme.

Spectral radii ρ were derived in sections 3.2.1.5, 3.2.2.2, and 3.2.3.2 for the two-

stage Radau IIA scheme, the generalized-α scheme, and the energy decaying scheme,

respectively. For better comparison, fig. 3.5 shows these quantities plotted in a single

graph. Similarly, figs. 3.6 and 3.7 show the algorithmic damping 1 − ρ and the

period elongation ∆T/T for all three schemes. It should be noted that spectral radii,

algorithmic damping, and period elongation are identical for the two-stage Radau IIA

scheme and the energy decaying scheme. Indeed, eq. (3.57) can be substituted into

eqs. (3.58a) and (3.58b). This and the use of the coefficients in Butcher table (3.33)

75



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

h / T

A
LG

O
R

IT
H

M
IC

 D
A

M
P

IN
G

Figure 3.6: Algorithmic damping of three integration schemes: Radau IIA: solid
line; energy decaying scheme: dashed-dot line; generalized-α scheme: dashed line.

allow to rewrite the discrete equations corresponding to the two-stage Radau IIA

scheme as (
2M +

4

3
hC +

5

9
h2K

)
q

f
−
(

1

3
hC +

2

9
h2K

)
vf (3.117)

= h2f(ti +
h

3
) +

(
2M +

4

3
hC − 4

9
h2K

)
q

i
+ 2Mhvi

and
(
−6M + h2K

)
q

f
+ (4M + hC) vf (3.118)

= h2f(tf ) − 6Mq
i
− 2Mhvi.
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Figure 3.7: Period elongation of three integration schemes: Radau IIA: solid line;
energy decaying scheme: dashed-dot line; generalized-α scheme: dashed line.

Similarly, q
j

and vj can be eliminated from eqs. (3.110). The resulting discrete equa-

tions for the energy decaying scheme are
(

2M +
2

3
hC +

5

9
h2K

)
q

f
−
(
−1

3
hC +

2

9
h2K

)
vf (3.119)

=
h2

3

(
f(tf ) + 2f(ti)

)
+

(
2M +

2

3
hC − 4

9
h2K

)
q

i
+ 2Mhvi

and (
−6M +

2

3
hC + h2K

)
q

f
+

(
4M +

1

3
hC

)
vf (3.120)

= h2f(tf ) −
(

6M − 2

3
hC

)
q

i
− 2Mhvi.

It can be readily seen that the discrete equations for both schemes are identical if the

linear system is undamped, i.e. C = 0, and if the externally applied forces are linear
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within each time step such that f(ti + h
3
) = 1

3

(
f(tf ) + 2f(ti)

)
holds. Hence, both

schemes are equivalent if applied to undamped linear systems with stepwise linear

forces. Numerical results presented in chapter 6 show, however, that both schemes

behave significantly different from one another when applied to nonlinear problems.

3.2.4.3 Convergence Behavior

The order of convergence is an important indicator for the efficiency of a time inte-

gration scheme. A higher order of convergence indicates more reduction of error if

the time step size is reduced by a certain amount. Hence, a high order of convergence

is desirable for the integration of flexible multibody systems.

For general differential algebraic equations up to index 2 Hairer and Wanner [51]

proved that global convergence of a two-stage Radau IIA scheme is of order 3 for the

displacement and velocity components and of order 2 for the Lagrange multipliers.

Local error estimates for the displacement and velocity components are of order 4,

those for the Lagrange multipliers are of order 2. The generalized-α method is glob-

ally second order accurate in displacements, velocities and Lagrange multipliers for

linear systems if the coefficient γ is chosen according to eq. (3.88), see Chung and

Hulbert [34]. Finally, the energy decaying scheme can be shown to be globally third

order accurate in the displacements, velocities and Lagrange multipliers for linear

systems and is observed to be second order accurate in the nonlinear case.

3.2.4.4 Number of Algorithmic Unknowns

The computational effort for solving systems of equations resulting from the lineariza-

tion of the equations of motion of flexible multibody systems is directly proportional

to the number of algorithmic unknowns. Therefore, a low number of algorithmic

unknowns is desirable.

In case of a flexible multibody system with n generalized coordinates and m

kinematic constraints, both the two-stage Radau IIA scheme and the energy decaying
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scheme result in 2n + 2m algorithmic unknowns whereas the generalized-α scheme

only involves n +m unknown quantities. It should be noted that the application of

the two-stage Radau IIA scheme in its general form, see section 3.2.1.1, would result

in 4n + 4m algorithmic unknowns. However, this number can be reduced by 50%

by adapting the scheme to the special structure of the equations of motion of linear

structural dynamics, nonlinear structural dynamics, and flexible multibody dynamics

systems; see sections 3.2.1.4 to 3.2.1.8.

3.2.4.5 Complexity of Implementation

A comprehensive software for simulations of flexible multibody systems requires ca-

pabilities for both static and dynamic analysis as outlined in section 3.1. A static

routine is required to obtain an initial configuration in which the system is in static

equilibrium. The dynamics problem can be solved from this initial condition using

one of the time stepping techniques discussed in this chapter. Missing or erroneous

initial conditions can slow down the solution process or even cause it to fail. Hence,

static analysis is an essential part of any flexible multibody analysis software.

A significant disadvantage of the energy decaying scheme is its inability to share

major code components with the static analysis module as visualized in fig. 3.8. It

necessitates the dual implementation of most routines. The implementation of static

and dynamic routines for a nonlinear beam element, for example, requires 2105 lines

of code if the energy decaying scheme is used. However, if either the two-stage Radau

IIA scheme or the generalized-α scheme is implemented as dynamic solver, major

software components can be shared between dynamic and static modules as shown in

fig. 3.9. The size of the beam implementation reduces to 1330 lines for the two-stage

Radau IIA scheme and 1312 lines for the generalized-α scheme. Hence, the effort for

implementation, modification, and maintenance of comprehensive flexible multibody

analysis software is approximately 60% higher if the energy decaying scheme is used
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as dynamic solver. This is a significant disadvantage since comprehensive software

packages for simulations of flexible multibody systems typically consist of a large

library of structural elements, constraints, and other components requiring constant

modification and expansion.

From a software development perspective it is highly beneficial to implement both

the two-stage Radau IIA scheme and the generalized-α scheme, which can share

major code components with each other as well as the static analysis module. The

combined implementation of both solvers results in 1392 lines of code for static and

dynamic routines corresponding to a nonlinear beam element. Compared to the

energy decaying scheme, this is still a significant reduction of implementation effort

while choices and flexibility for software users are improved.

3.3 Chapter Summary

The multibody systems analysis process was reviewed in this chapter. First, statics

problems, which are required to obtain initial equilibrium configurations for dynamic

simulations, were briefly discussed. Next, linear dynamics problems, nonlinear dy-

namics problems, and multibody dynamics problems with holonomic and nonholo-

nomic constraints were described.

In the second part of this chapter three time integration methods, the two-stage

Radau scheme, the generalized-α scheme, and the energy decaying scheme were intro-

duced. Their application to the solution of linear, nonlinear and constrained problems

was discussed in detail. It was possible to reduce the number of algorithmic unknowns

of the Radau scheme by 50% through adaptation of the scheme to the special struc-

ture of the governing equations of linear structural dynamics, nonlinear structural

dynamics, and multibody dynamics problems.

Stability characteristics, numerical dissipation, convergence behavior, and number

of algorithmic unknowns were discussed for the two-stage Radau IIA scheme, the
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generalized-α scheme, and the energy decaying scheme. It was shown that all schemes

exhibit A-stable and L-stable behavior, which is essential for the solution of practical

flexible multibody dynamics problems. Furthermore, the two-stage Radau IIA scheme

was shown to be third order accurate whereas the generalized-α scheme and the energy

decaying scheme are only of second order accuracy. However, the direct comparison of

the two-stage Radau IIA scheme and the generalized-α scheme shows that the increase

in convergence order comes at the price of twice as many algorithmic unknowns.

Special consideration was given to the complexity of implementation of all three

schemes in comprehensive simulation software. It was shown that the combined

implementation of the two-stage Radau IIA scheme and the generalized-α scheme

results in software of significantly lower complexity than the implementation of the

energy decaying scheme.
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Figure 3.8: Flowchart for the implementation of a beam element using the energy
decaying scheme.
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Figure 3.9: Flowchart for the implementation of a beam element using the two-stage
Radau IIA scheme or the generalized-α scheme.
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CHAPTER IV

FORMULATION OF STRUCTURAL AND CONSTRAINT

ELEMENTS

This chapter reviews the formulation of structural elements such as beams and shells.

In all cases, geometrically exact formulations are considered, i.e. the displacements

and rotations of the elements are arbitrarily large, although the strains are assumed to

remain very small at all points of the structure. With this small strain assumption, the

problem formulation and the resulting governing equations simplify significantly. The

discussion of the formulation of structural elements is concluded with a brief review of

the mathematical formulation of kinematic constraints in flexible multibody systems

and a more detailed discussion of the revolute joint.

4.1 Formulation of Curved Beam Elements

4.1.1 The Kinematics of the Curved Beam Problem

Consider an initially curved and twisted beam of length L with a cross-section Ω of

arbitrary shape, as depicted in fig. 4.1. The volume of the beam is generated by

sliding the cross-section along the reference line of the beam, which is an arbitrary

curve in space. An inertial frame of reference I = (̄ı1, ı̄2, ı̄3) is used. Let x0(α1) be

the position vector of a point on the reference line of the beam; α1 is a curvilinear

coordinate that measures length along the beam reference line. The position vector

of a material point of the beam can be written as

x(α1, α2, α3) = x0 + α2 b̄2 + α3 b̄3, (4.1)

where unit vectors b̄1(α1), b̄2(α1), and b̄3(α1) span the orthonormal frame B0. Vector

b̄1 is tangent to the reference line. Vectors b̄2 and b̄3 define the plane of the cross
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Figure 4.1: Curved beam in the reference and deformed configurations.

section of the beam, and α2 and α3 are material coordinates along those axes. The

coordinates α1, α2, and α3 form a natural choice of coordinates to represent the beam.

In the deformed configuration of the beam, the position vector of a material point

is written as

X(α1, α2, α3) = X0 + w1 B̄1 + (w2 + α2) B̄2 + (w3 + α3) B̄3, (4.2)

where X0(α1) = x0 + u is the position of a material point on the reference line

of the beam expressed as the sum of the position vector x0(α1) of this point in

the reference configuration and u(α1), the reference line displacement vector. Vari-

ables w1(α1, α2, α3), w2(α1, α2, α3), and w3(α1, α2, α3) are the components of a (small)

warping displacement field.

The orthonormal frame B = (B̄1, B̄2, B̄3) is defined at each point of the de-

formed reference line such that B̄1(α1) is normal to the deformed beam reference

cross-sectional plane and vectors B̄2(α1) and B̄3(α1) are contained in this plane. Let
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R0(α1) be the rotation tensor that brings the inertial frame to basis B0 and let R(α1)

be the rotation tensor that brings basis B0 to basis B. Then,

B̄i = R b̄i = RR0 ı̄i. (4.3)

With this the position vector of a material point in the deformed configuration may

be written as

X(α1, α2, α3) = x0 + u+RR0 (w + α2 ı̄2 + α3 ı̄3) (4.4)

where w = w1 ı̄1 + w2 ı̄2 + w3 ı̄3. Even when warping is present, it should be noted

that unit vectors B̄i are orthonormal by definition although the material lines in the

deformed beam that were along b̄i are neither necessarily straight nor orthogonal in

the deformed beam. The warping will ultimately be eliminated through dimensional

reduction as described in [57].

The definitions of the one-dimensional generalized strains for beams with shallow

curvature, measured in basis I, are given as

e = E1 −RR0 ı̄1 (4.5a)

κ̃ = R′RT (4.5b)

where E1 = x′0 +u′ and the notation (·)′ is used to denote a derivative with respect to

α1. The strain components measured in the convected materials basis, B, are denoted

e∗ = (RR0)
T e and consist of the sectional axial and shear strains. The curvature

components measured in the convected material basis are denoted κ∗ = (RR0)
Tκ

and consist of the sectional twisting and bending curvatures; κ is the axial vector of

κ̃. The superscript (·)∗ will be used here to indicate the components of vectors and

tensors measured in the convected material frame, B.

By definition, a rigid body motion is a motion that generates no strains. This

implies that the following rigid body motion u(α1) = uR + (RR − I)x0(α1), R(α1) =

RR, consisting of a translation, uR, and a rotation about the origin characterized by
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a rotation matrix, RR, should generate no straining of the beam. It can be readily

verified with the help of eqs. (4.5) that such rigid body motion results in e = 0 and

κ = 0, as expected.

4.1.2 Governing Equations

The principle of virtual work will be used to obtain the governing equations of the

problem. ∫ L

0

(δe∗TN∗ + δκ∗TM∗) dα1 = δWext, (4.6)

where N∗ and M∗ are the forces and moments in the beam, respectively, which are

related to the strain measures through the sectional constitutive law



N∗

M∗


 = C∗



e∗

κ∗


 , (4.7)

where C∗ is the beam’s 6 × 6 sectional stiffness matrix. Details for the computation

of the sectional properties using variational asymptotic methods as implemented in

the software VABS are provided by Hodges in his 2006 textbook [57].

The variations in strain components are expressed using eq. (4.5) to find

δe∗ = (RR0)
T (δu′ + Ẽ1δψ), δκ∗ = (RR0)

T δψ′. (4.8)

where δ̃ψ = δRRT is the virtual rotation vector. The principle of virtual work

becomes

∫ L

0

[
(δu′T + δψT ẼT

1 )(RR0)N
∗ + δψ′T (RR0)M

∗
]

dα1 = δWext. (4.9)

The beam internal forces and moments in the inertial system, N = (RR0)N
∗ and

M = (RR0)M
∗, respectively, are defined. The virtual work done by the externally

applied forces is expressed as

δWext =

∫ L

0

[
δuTf + δψTm

]
dα1, (4.10)
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where f andm denote the forces and moments per unit span of the beam, respectively.

The governing equations of the static problem then follow as

N ′ = −f, (4.11a)

M ′ + Ẽ1 N = −m. (4.11b)

4.1.3 Extension to Dynamic Problems

The inertial velocity V of a material point is found by taking a time derivative of the

inertial position vector, eq. (4.4) to find

V = u̇+ ṘR0 s = u̇+RR0 ω̃
∗ s = u̇+RR0s̃

Tω∗, (4.12)

where contributions of warping are ignored and s = α2 ı̄2 +α3 ı̄3. Notation ˙(·) is used

to denote a derivative with respect to time and ω∗ are the components of the angular

velocity vector in the material system

ω̃∗ = (RR0)
T ṘR0. (4.13)

The components of the inertial velocity vector of a material point, measured in the

material frame, may be written as

V ∗ = (RR0)
T V = (RR0)

T u̇+ s̃T ω∗. (4.14)

The total inertial velocity of a material point has two components: a term (RR0)
T u̇

due to the translation of the cross-section, and a second term s̃T ω∗ due to its rotation.

The kinetic energy K of the beam is now

K =
1

2

∫ L

0

∫

Ω

ρ V ∗TV ∗dΩdα1, (4.15)

where ρ is the density of the material per unit volume of the reference configuration.

Introducing eq. (4.14) for the inertial velocity yields

K =
1

2

∫ L

0

∫

Ω

ρ
(
u̇TRR0 + ω∗T s̃

) (
(RR0)

T u̇+ s̃Tω∗
)
dΩ dα1. (4.16)
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The following sectional mass constants are defined

m =

∫

Ω

ρ dΩ; η∗ =
1

m

∫

Ω

ρ s dΩ; ̺∗ =

∫

Ω

ρs̃s̃T dΩ; (4.17)

where m is the mass of the beam per unit span, η∗ the position vector components of

the center of mass of the section relative to the reference line, and ̺∗ the components

of the sectional tensor of inertia per unit span; all measured in the material system.

After integration over the cross-section of the beam, the kinetic energy expression

becomes

K =
1

2

∫ L

0

(mu̇T u̇+ 2mu̇TRR0 η̃
∗Tω∗ + ω∗T̺∗ω∗) dα1, (4.18)

and can be written in a compact form as

K =
1

2

∫ L

0

V∗TM∗V∗ dα1. (4.19)

The sectional mass matrix in the material system is

M∗ =




m mη̃∗T

mη̃∗ ̺∗


 ; (4.20)

and the sectional velocities in the material system

V∗ =




(RR0)
T u̇

ω∗


 . (4.21)

It is clear that the components of the sectional linear momentum h∗ and angular

momentum g∗ measured in the material system can be written as



h∗

g∗


 = M∗V∗. (4.22)

The variation in kinetic energy is

δK =

∫ L

0

δV∗TM∗V∗ dα1, (4.23)
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where the variations in velocities are


δ(u̇TRR0)

δω∗T


 =




(δu̇T + δψT ˙̃u
T
)RR0

˙δψ
T
RR0


 . (4.24)

Introducing these variations in the expression for the kinetic energy yields

δK =

∫ L

0

[
(δu̇T + δψT ˙̃u

T
)RR0 h

∗ + ˙δψ
T
RR0 g

∗
]

dα1, (4.25)

The components of the sectional linear momentum h and angular momentum g,

measured in the inertial system I are

h = RR0h
∗; g = RR0g

∗. (4.26)

The variation in kinetic energy finally can be written as

δK =

∫ L

0

(δu̇T h+ δψT ˙̃u
T
h+ ˙δψ

T
g) dα1. (4.27)

The governing equations of motion of the problem are obtained from Hamilton’s

principle ∫ tf

ti

(δK − δV + δWext)dt = 0. (4.28)

Introducing eqs. (4.9) and (4.27) yields

∫ tf

ti

∫ L

0

{
(δu̇T + δψT ˙̃u

T
)h+ ˙δψ g − (δu′T + δψT ẼT

1 )N − δψ′TM (4.29)

+δuTf + δψTm
}

dα1dt = 0.

Integration by parts yields the equations of motion of the problem

ḣ−N ′ = f ; (4.30a)

ġ + ˙̃uh−M ′ − Ẽ1N = m. (4.30b)

4.2 Formulation of Shell Elements

4.2.1 Kinematics of the Shell Problem

Consider a shell of thickness h and mid-plane surface Ω, as depicted in fig. 4.2. An

inertial frame of reference I = (̄ı1, ı̄2, ı̄3) is used. Let x0(α1, α2) be the position
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Figure 4.2: Shell in the reference and deformed configurations.

vector of an arbitrary point on the mid-surface of the shell, and let α1 and α2 be the

material coordinates used to represent this surface. It is clear that general surfaces

are very complex to handle, and hence, it is natural to use lines of curvatures to

represent the mid-surface of the shell. In fact, shell theories are developed almost

exclusively with the help of lines of curvatures. Unit vectors b̄1(α1, α2) = x0,1/
∥∥x0,1

∥∥,

b̄2(α1, α2) = x0,2/
∥∥x0,2

∥∥ and b̄3(α1, α2), the normal to the mid-surface, now form

an orthonormal basis B0. Here, the notations (.),1 and (.),2 were used to denote a

derivative with respect to α1 and α2, respectively.

The position vector x(α1, α2, ζ) of an arbitrary point on the shell in its reference

configuration is then

x(α1, α2, ζ) = x0 + ζb̄3 (4.31)

where ζ is the material coordinate measuring length along the normal to the mid-

surface. The coordinates α1, α2, and ζ form a set of curvilinear coordinates that is a
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natural choice of coordinates to represent the shell.

In the deformed configuration of the shell, the position vector for a material point

is written as

X(α1, α2, ζ) = X0 + w1 B̄1 + w2 B̄2 + (w3 + ζ) B̄3, (4.32)

where X0(α1, α2) = x0 +u is the position vector of a material point on the shell mid-

surface, expressed as the sum of the position vector x0(α1, α2) of this material point

in the reference configuration, and u(α1, α2), the mid-surface displacement vector.

Variables w1(α1, α2, α3), w2(α1, α2, α3), and w3(α1, α2, α3) are the components of a

warping displacement field of the normal-line element.

The orthonormal frame B = (B̄1, B̄2, B̄3) is defined at each point of the deformed

mid-surface such that B̄3(α1, α2) is normal to the deformed mid-surface and vectors

B̄1(α1, α2) and B̄2(α1, α2) satisfy B̄T
1 X0,2 = B̄T

2 X0,1. Let R0(α1, α2) be the rotation

tensor that brings the inertial frame to basis B0 and let R(α1, α2) be the rotation

tensor that brings basis B0 to basis B. Then,

B̄i = R b̄i = RR0 ı̄i. (4.33)

With this the position vector of a material point in the deformed configuration may

be written as

X(α1, α2, ζ) = x0 + u+RR0 (w + ζ ı̄3) (4.34)

where w = w1 ı̄1 + w2 ı̄2 + w3 ı̄3. Even when warping is present, it should be noted

that unit vectors B̄i are orthonormal by definition. The warping is assumed to be

small and will be solved using variational asymptotic methods, see [94,95].

The two-dimensional generalized strains for shallow shells are defined in the fol-

lowing. The mid-surface in-plane strain components are

e11 =
1

2

[
Ê

T

1 Ê1 − 1
]
; e22 =

1

2

[
Ê

T

2 Ê2 − 1
]
; 2e12 =

[
Ê

T

1 Ê2

]
, (4.35)

the transverse shearing strains

2e13 = Ê
T

1 Ê3; 2e23 = Ê
T

2 Ê3, (4.36)
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and the curvatures

κ11 = Ê
T

1

Ê3,1√
a11

+
1

R1

; κ22 = Ê
T

2

Ê3,2√
a22

+
1

R2

; κ12 = Ê
T

1

Ê3,2√
a22

+ Ê
T

2

Ê3,1√
a11

, (4.37)

where R1 and R2 are the principal radii of curvature and a11 =
∥∥x0,1

∥∥2
and a22 =

∥∥x0,2

∥∥2
. The strains can be expressed in terms of five parameters: the three com-

ponents of the displacement field u, appearing in Ê1 = b̄1 + u,1/
√
a11 and Ê2 =

b̄2 + u,2/
√
a22, and the two parameters defining the orientation of the unit vector

Ê3 = B̄3.

4.2.2 Governing Equations

The governing equations of the problem are obtained from the principle of virtual

work that states ∫

Ω

δe∗TF ∗ dΩ = δWext (4.38)

where the virtual strain array is

δe∗T = [δe11, δe22, δe12, δe13, δe23, δκ11, δκ22, δκ12] , (4.39)

and the stress resultant array

F ∗T = [N∗
11, N

∗
22, N

∗
12, N

∗
13, N

∗
23,M

∗
11,M

∗
22,M

∗
12] . (4.40)

The stress resultants are related to the strains through the constitutive law

F ∗ = C∗e∗. (4.41)

where C∗ is the shells’s 8 × 8 sectional stiffness matrix. Details for the computation

of the sectional properties using variational asymptotic methods as implemented in

the software VAPAS are provided, for instance, in [94,95].

Introducing the strain components, eqs. (4.35) to (4.37), into the principle of

virtual work, eq. (4.38), then yields

∫

Ω

{
δuT

,1N1 + δuT
,2N2 + δÊ

T

3,1M1 + δÊ
T

3,2M2 + δÊ
T

3N3

}
dΩ = δWext, (4.42)
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where the following quantities were introduced

N1 =
1√
a11

[
N∗

11Ê1 +N∗
12Ê2 +N∗

13Ê3 +M∗
11

Ê3,1√
a11

+M∗
12

Ê3,2√
a22

]
; (4.43a)

N2 =
1√
a22

[
N∗

12Ê1 +N∗
22Ê2 +N∗

23Ê3 +M∗
12

Ê3,1√
a11

+M∗
22

Ê3,2√
a22

]
; (4.43b)

N3 = N∗
13Ê1 +N∗

23Ê2; (4.43c)

M1 =
1√
a11

[
M∗

11Ê1 +M∗
12Ê2

]
; (4.43d)

M2 =
1√
a22

[
M∗

12Ê1 +M∗
22Ê2

]
. (4.43e)

The virtual work done by the externally applied forces is expressed as

δWext =

∫

Ω

[
δuTf + δψTm

]
dΩ, (4.44)

where f and m denote the forces and moments per unit area of the shell mid-surface,

respectively.

Vector Ê3 is a director. Hence, it can be expressed as

Ê3 = (RR0) ı̄3, (4.45)

where R0 is the finite rotation tensor that brings basis I to basis B0, and R a two-

parameter rotation tensor that brings b̄3 to Ê3. Note that the finite rotation tensor

R is distinct from the finite rotation tensor R. Indeed R indicates the rotation from

basis B0 to basis B, a finite rotation operation involving three independent parameters,

whereas R indicates the rotation of director b̄3 to Ê3, a finite rotation involving two

independent parameters. A virtual change in Ê3 can be written as

δÊ3 = (RR0) ı̃
T
3 b δα

∗, (4.46)

where δα∗ is a two-parameter virtual rotation vector expressed in the rotated system

and b = [̄ı1, ı̄2]. The work done by the applied moments becomes

δψTm = δψ∗Tm∗ = δα∗T bTm∗, (4.47)
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where m∗ is the applied moment expressed in the rotated system, m∗ = (RR0)
Tm.

The principle of virtual work, eq. (4.42), now becomes

∫

Ω

{
−δuTf − δα∗T bTm∗ + δuT

[
−N1,1 −N2,2

]
(4.48)

+δα∗T bT ı̃3(RR0)
T
[
N3 −M1,1 −M2,2

]}
dΩ = 0.

The governing equations finally become

N1,1 +N2,2 = −f ; (4.49a)

bT ı̃3(RR0)
T
[
M1,1 +M2,2 −N3

]
= −bTm∗. (4.49b)

4.2.3 Extension to Dynamic Problems

The velocity of a material point of the shell is computed as a time derivative of the

position vector, eq. (4.34), to find

Ẋ = u̇+ ζ ˙̄B3, (4.50)

where the notation ˙(·) indicates a derivative with respect to time and contributions

of the warping terms were ignored. The kinetic energy of the shell then becomes

K =
1

2

∫

Ω

∫

h

ρ (u̇T + ζ ˙̄BT
3 )(u̇+ ζ ˙̄B3) dζdΩ, (4.51)

where ρ is the material density. Integration through the shell thickness then yields

K =
1

2

∫

Ω

V∗TM∗V∗ dΩ, (4.52)

where the velocity vector V∗ is defined as

V∗ =




u̇

˙̄B3


 , (4.53)

and the 6 × 6 mass matrix M∗ is defined as

M∗ =




mI m∗I

m∗I M∗I


 , (4.54)
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where I is the 3 × 3 identity matrix. The following mass coefficients were defined

m =

∫

h

ρ dζ; m∗ =

∫

h

ρζ dζ; M∗ =

∫

h

ρζ2 dζ, (4.55)

where m is the mass of the shell per unit mid-surface area, m∗/m the location of the

center of mass, and M∗/m the square of the radius of gyration. Virtual changes in

the kinetic energy become

δK =

∫

Ω

(δu̇Th+ δ ˙̄BT
3 g) dΩ, (4.56)

where h and g are the linear and angular momentum vectors, respectively, and

h = mu̇+m∗ ˙̄B3; g = m∗u̇+M∗ ˙̄B3. (4.57)

The governing equations of motion are then obtained from Hamilton’s principle

∫ tf

ti

(δK − δV + δWext)dt = 0. (4.58)

Introducing eqs. (4.48) and (4.56) yields

∫ tf

ti

∫

Ω

{
δuTf + δα∗T bTm∗ + δuT

[
−ḣ+N1,1 +N2,2

]
(4.59)

+δα∗T bT ı̃3(RR0)
T
[
−ġ −N3 +M1,1 +M2,2

]}
dΩdt = 0.

The governing equations of motion finally become

ḣ−N1,1 −N2,2 = f ; (4.60a)

bT ı̃3(RR0)
T
[
ġ +N3 −M1,1 −M2,2

]
= bTm∗. (4.60b)

4.2.4 Mixed Interpolation of Tensorial Components

Several recently developed shell elements have distinguished themselves from other

shell formulations because of their versatility, accuracy and robustness. One of these

is the mixed interpolation of tensorial components (MITC) element developed by

Bathe and his co-workers [6,7,27]. The MITC approach is based on the interpolation
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of strains at chosen sampling points (so-called “tying points”). The key issue of this

approach is the selection of the tying points and corresponding interpolation functions.

In case of the nine-noded MITC9 element, the interpolated strain components are

defined as

e11 =
∑

α

gα
rre

α
11; e22 =

∑

α

gα
sse

α
22; e12 =

∑

α

gα
rse

α
12; (4.61a)

e13 =
∑

α

gα
rre

α
13; e23 =

∑

α

gα
sse

α
23. (4.61b)

where gα
rr, g

α
ss, and gα

rs are the strain interpolation functions and eij the strain compo-

nents at the α tying point, which are obtained by direct interpolation using the finite

element displacement assumptions. The location of the tying points and correspond-

ing strain interpolation functions can be found, for example, in [7,27] for each strain

component. For the MITC9 element, the strain components e11 and e13 are interpo-

lated based on six tying points, using the shape functions gα
rr. The strain components

e22 and e23 are interpolated based on six tying points, using the shape functions gα
ss.

Finally, the in-plane shearing strain component e12 is interpolated based on four tying

points, using the shape functions gα
rs. This approach takes care of both membrane

and transverse shearing strain locking problems. The stiffness matrix of the element

is then formed based on these interpolated strain components and full integration is

used. The element does not present any spurious mechanism. In view of the more

complicated strain interpolation and full integration scheme, the MITC9 element is a

more computationally expensive element, but it is accurate and fairly insensitive to

element deformations.

4.3 Formulation of Constraint Elements

A distinguishing feature of multibody systems is the presence of a number of joints

that impose constraints on the relative motion of the various bodies of the system.

Most joints used for practical applications can be modeled in terms of the so-called

lower pairs [2]: the revolute, prismatic, screw, cylindrical, planar, and spherical joints,
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depicted in fig. 4.3. In many cases, however, joints with specialized kinematic condi-

tions must be developed.

Cylindrical Prismatic Screw

Revolute Spherical Planar

Figure 4.3: The six lower pairs.

The kinematics of lower pair joints can be described in terms of two orthonormal

bases Bk = (ēk
1, ē

k
2, ē

k
3) and Bℓ = (ēℓ

1, ē
ℓ
2, ē

ℓ
3), and two position vectors Xk = x + uk

and Xℓ = x + uℓ. Xk and Bk represent the position and orientation of a point on

a rigid or flexible body denoted body k, whereas Xℓ and Bℓ are the corresponding

quantities for body ℓ. If the two bodies are rigidly connected to one another, their

six relative motions, three displacements and three rotations, must vanish at the

connection point. If one of the lower pair joints connects the two bodies, one or more

relative motions will be allowed.

Let di be the relative displacement between the two bodies in the direction aligned

with ēk
i , and θi the relative rotation about ēk

i . Table 4.1 then formally defines the

six lower pairs in terms of the relative displacement and/or rotation components that

can be either free or constrained to a null value.

All lower pair constraints can be expressed by one of the following two equations

ēkT
i (uk − uℓ) − di = 0, (4.62)
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Table 4.1: Definition of the six lower pair joints. “Yes” or “No” indicate that the
corresponding relative displacement di or relative rotation θi is allowed or inhibited,
respectively. For the screw joint, p is the screw pitch.

Joint type d1 d2 d3 θ1 θ2 θ3

Revolute No No No No No Yes
Prismatic No No Yes No No No
Screw No No = pθ3 No No Yes
Cylindrical No No Yes No No Yes
Planar Yes Yes No No No Yes
Spherical No No No Yes Yes Yes

and

(ēkT
k ēℓ

k) sin θi + (ēkT
k ēℓ

j) cos θi = 0. (4.63)

The first equation constrains the relative displacement if di = 0, whereas if di is a

free variable it defines the unknown relative displacement in that direction. Similarly,

the second equation either constrains the relative rotation if θi = 0, or defines the

unknown relative rotation θi if it is a free variable.

The explicit definition of the relative displacements and rotations in a joint as

additional unknown variables represents an important detail of the implementation.

First of all, it allows the introduction of generic spring and/or damper elements in

the joints, as usually required for the modeling of realistic configurations. Second, the

time histories of joint relative motions can be driven according to suitably specified

time functions or by actuators presenting their own physical characteristics.

4.3.1 Example: The Revolute Joint

Consider two bodies denoted k and ℓ linked together by a revolute joint, as depicted

in fig. 4.4. In the reference configuration, the reference points of both bodies and

their orientations are identical, implying uk
0 = uℓ

0 and Bk
0 = Bℓ

0. In the deformed

configuration, the orientations of the bodies are defined by two distinct bases Bk

and Bℓ, respectively. No relative displacement is permitted between the bodies, i.e.
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Figure 4.4: Revolute joint in the reference and deformed configurations.

uk = uℓ. The bodies are allowed to rotate with respect to each other in such a way

that ēk
3 = ēℓ

3. This condition implies the orthogonality of ēk
3 to both ēℓ

1 and ēℓ
2. The

revolute joint is characterized by the following kinematic constraints

C1 = uk − uℓ = 0, (4.64)

that prevents relative displacement between the bodies, and

C2 = ēkT
3 ēℓ

1 = 0, (4.65a)

C3 = ēkT
3 ēℓ

2 = 0, (4.65b)

that express the orthogonality of unit vectors ēℓ
1 and ēℓ

2 to unit vector ēk
3. The relative

rotation φ between the two bodies is defined by adding an additional constraint to

the revolute joint formulation

C4 = (ēkT
1 ēℓ

1) sinφ+ (ēkT
1 ēℓ

2) cosφ = 0. (4.66)

This condition expresses the equality of the relative rotation angle φ and of the angle

ψ = (ēk
1, ē

ℓ
1).
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In practice, constraint (4.64) is most easily enforced by Boolean identification of

the corresponding degrees of freedom. The revolute joint then involves three con-

straints, (4.65a), (4.65b), and (4.66). The forces of these constraints become

F c =




h31

−h31

0



λ1 +




h32

−h32

0



λ2 +




(h11 sinφ+ h12 cosφ)

−(h11 sinφ+ h12 cosφ)

(g11 cosφ− g12 sinφ)



λ3 (4.67)

where gij = ēkT
i ēℓ

j and hij = ẽk
i ē

ℓ
j. When the constraints are exactly satisfied, it is

readily seen that h31 = ēℓ
2 and h32 = −ēℓ

1. Hence, the constraint forces associated with

the first constraint correspond to a pair of moments of magnitudes λ1 and −λ1 acting

about unit vector ēℓ
2, applied to bodies k and ℓ, respectively. The constraint forces

associated with the second constraint can be interpreted in a similar manner. The

moments associated with these first two constraints enforce the parallelism between

unit vectors ēk
3 and ēℓ

3. When the constraints are exactly satisfied, it is clear that

h11 = sinφ ēk
3 and h12 = cosφ ēk

3, implying that h11 sinφ+h12 cosφ = ēk
3; furthermore,

g11 cosφ − g12 sinφ = cosφ cosφ − (− sinφ) sinφ = 1. To interpret the forces of

constraint associated with the third constraint, it is assumed that a motor applies a

torque Q at the revolute joint; the virtual work done by this torque is then δW =

Qδφ. Since the Lagrange multiplier technique was used to enforce the constraint, the

relative rotation φ is now an unconstrained variable, and the corresponding equation

of motion is λ3+Q = 0: the remaining components of the constraint forces correspond

to a pair of moments of magnitude −Q andQ acting about unit vector ēk
3, transmitting

the applied torque to bodies k and ℓ, respectively. If no torque is applied at the joint,

the Lagrange multiplier vanishes, λ3 = 0, and no forces are associated with this

constraint.
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4.4 Chapter Summary

In this chapter, formulations for selected structural and constraint elements were

presented. The geometrically exact curved beam element was discussed first. Next,

a geometrically exact shell element was described. Displacements and rotations of

these elements are arbitrarily large, although strains are assumed to remain small

at all points of the structure. These assumptions make the presented elements well

suited for simulations of flexible components undergoing large relative motions in most

engineering applications. In practical implementations, tangent stiffness matrices

and residual vectors, which result from the linearization of the governing equations

of geometrically exact structural elements, are commonly computed using Gaussian

quadrature. Hence, nodal quantities such as displacements and rotations have to

be interpolated to Gauss points. This important procedure was excluded from the

discussion in this chapter. It will be addressed in chapter 5.

Kinematic constraints are a characteristic feature of flexible multibody systems.

They were discussed in this chapter by focusing on the so-called six lower pairs. It was

shown that these fundamental joints can be fully described by only two equations.

The revolute joint, which is one of the most prominent joints in mechanism design,

was discussed in more detail. The enforcement of the constraints associated with the

revolute joint is based on both Boolean identification and the Lagrange multiplier

technique. All results can be easily generalized to other lower pair joints and more

complicated constraints.
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CHAPTER V

INTERPOLATION OF FINITE ROTATIONS IN

GEOMETRICALLY EXACT STRUCTURAL ELEMENTS

In this chapter, the problem of interpolation of finite rotations within the framework of

geometrically exact structural elements is revisited. It is desirable to use a minimal set

representation of finite rotations, i.e. three parameters only, since the computational

costs of dealing with four or more parameters and the enforcement of the associated

normality conditions have limited the use of redundant formulations. A rescaling

operation [13] is systematically used to eliminate singularities associated with such

minimal set representations. An interpolation algorithm is developed, which preserves

the stability of numerical simulation methods in the presence of rescaling operations.

This algorithm also guarantees the objectivity of the interpolated strain field.

5.1 Parameterization of Finite Rotations

The kinematic description of beam and shell models based on a Cosserat curve and

surface approach, respectively, are formulated in terms of two fields, a displacement

field and a rotation field. Whereas the displacement field forms a linear space, the

finite rotation field does not, creating challenges in its parameterization and its finite

element interpolation. Fundamental facts about finite rotations are reviewed in this

section. Finite rotations in three-dimensional space form the set of second-order

orthogonal tensors with positive determinant, which constitute the special orthogonal

group SO(3), i.e.

SO(3) =
{
R|R−1 = RT ∧ det(R) = +1

}
. (5.1)

A more geometric interpretation of finite rotation is provided by Euler’s theorem
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on finite rotations, which implies that every rotation can described by a single rotation

of magnitude φ about a unit vector n̄. Simple geometric arguments [41] then yield

the following expression for the rotation tensor, known as Euler’s formula,

R = I + sinφ ñ+ (1 − cosφ) ññ, (5.2)

where ñ denotes the skew-symmetric tensor with an axial vector n̄. More recently,

the vectorial parameterization for finite rotations has been introduced [13] whereby

rotations are described using three parameters, p, which are defined as

p = p(φ) n̄, (5.3)

where the generating function, p(φ), is an odd function of φ such that limφ→0 p(φ) = φ.

The main advantage of this representation is that several of the commonly used pa-

rameterizations of finite rotations correspond to various choices of the generating

function. For instance, the rotation vector, also known as the exponential map, cor-

responds to p(φ) = φ, Rodrigues parameters [77] correspond to p(φ) = 2 tan(φ/2),

and the Wiener-Milenković parameters [68, 93], also known as the conformal rota-

tion vector (CRV), correspond to p(φ) = 4 tan(φ/4). As expected from the work

of Stuelpnagel [90] all these parameterizations present singularities, as discussed by

Bauchau and Trainelli [13]. The explicit expression of the rotation tensor in terms of

the vectorial parameterization is

R(p) = I +R1(φ) p̃+R2(φ) p̃p̃, (5.4)

where R1 = ν cosφ/2 and R2 = ν2/2 are even functions of φ, and ν = (2 sinφ/2)/p,

ε = (2 tanφ/2)/p. Another important operation in the manipulation of finite rotation

is the computation of the angular velocity vector, ω, as ω = H(p)ṗ, where ṗ indicates

the time derivative of the vectorial parameters. Operator H(p) is given by

H(p) = 1/(dp/dφ) +H1(φ) p̃+H2(φ) p̃ p̃, (5.5)
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where H1 = R2 and H2 = (1/(dp/dφ) −R1(φ)) /p2 are even functions of φ. Of course,

similar relationships can be used to compute the curvature vector, κ, as κ = H(p)p′,

where p′ indicates the spatial derivative of the vectorial parameters.

For specific choices of the generating function, the vectorial parameterization ex-

hibits desirable features: 1) for the Rodrigues and Wiener-Milenković parameters, all

expressions involved in the manipulations of finite rotations become purely algebraic,

improving computational efficiency, and 2) the rotation vector and Wiener-Milenković

parameters are singularity free representations for |φ| < 2π, enabling the representa-

tion of all orientations. Such parameterizations, however, are not necessarily “worry

free.” Indeed, finite rotation are often used in incremental procedures where an in-

cremental rotation is added to a finite rotation at each time step, for instance. In

this case, angles of arbitrary magnitude, i.e. |φ| > 2π, are routinely encountered;

consider, for instance, a rotating shaft, or a satellite tumbling in space. In these

cases, singularities will always appear as |φ| increases to large values.

The range of validity of the Wiener-Milenković parameterization can be extended

by using a rescaling operation. This operation is based on the observation that rota-

tions of magnitudes φ and φ† = φ±2π about the same axis n̄ correspond to the same

final orientation. The norm of the Wiener-Milenković parameters is ‖p‖ = p ≤ 4

when |φ| ≤ π. Let p and p† be associated with the rotations φ and φ†, respectively.

The relationship between these two sets of parameters is

p† = 4n̄ tan
φ†

4
= 4n̄ tan

(
φ

4
± π

2

)
= −

νp

1 − ν
. (5.6)

It is then readily shown that pp† = 16. If π < |φ| < 2π, p > 4, and hence p† < 4; in

other words, the rescaling operation decreases the norm of the vector parameteriza-

tion.

Another fundamental operation is the composition of finite rotations, which was

first addressed by Rodrigues [77] in terms of Rodrigues parameters, but is readily

generalized in terms of the vectorial parameterization. Let p, q, and r with rotation
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angles φp, φq, and φr, respectively, and axes of rotation n̄p, n̄q, and n̄r, respectively,

be the vectorial parameterization of three finite rotations such that R(r) = R(p)R(q):

it is said that rotation r is the composition of rotations p and q. The formulæ for

composition of the vectorial parameterization [13] are

cosφr/2 = νpνq

(
1/εpεq − pT q/4

)
, (5.7a)

νrr = νpνq

(
p/εq + q/εp + p̃q/2

)
. (5.7b)

The first equation is used to compute φr and hence, νr. The second equation then

yields r. When dealing with the Wiener-Milenković parameters, the composition

formulæ simply reduce to

r = 4
(
q0p+ p0q + p̃q

)
/(∆1 + ∆2), (5.8)

where p0 = 2 − pTp/8, q0 = 2 − qT q/8, ∆1 = (4 − p0)(4 − q0), and ∆2 = p0q0 − pT q.

Consider now the practical case of a dynamic simulation that proceeds in small

time step increments. At each time step, let the rotations at a point of the system be

denoted p
i

and p
f

at the beginning and end of the time step, respectively, whereas

the incremental rotation is denoted p. If all rotations are measured in the inertial

system, R(p
f
) = R(p)R(p

i
), and hence, the composition formulæ, eqs. (5.7), must be

applied to find the final rotation knowing the initial configuration and the rotation

increment. As the simulation proceeds, the norm, pf , of the rotation parameters is

likely to increase, and at some point pf > 4 and a rescaling operation, see eq. (5.6),

becomes necessary to avoid singularities. The two operations, composition and rescal-

ing, are conveniently combined into a single operation, which, for Wiener-Milenković

parameters, takes on a particularly simple form

r =





4
(
q0p+ p0q + p̃q

)
/(∆1 + ∆2) if ∆2 ≥ 0,

−4
(
q0p+ p0q + p̃q

)
/(∆1 − ∆2) if ∆2 < 0.

(5.9)

It is interesting to note that the rescaling condition automatically selects the larger
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denominator, also guaranteeing the more accurate numerical evaluation of the com-

posed rotation. Although the combination of the composition and rescaling operations

is theoretically possible for all vectorial parameterizations, it takes a simple, purely

algebraic form for the Wiener-Milenković parameters.

In the remainder of this chapter, the composition of finite rotations with optional

rescaling will be indicated by the following notation

R(r) = R(p)R(q) ⇐⇒ r = p⊕ q, (5.10)

which implies that r is computed with the help of eq. (5.9) for the Wiener-Milenković

parameterization. Note that composition operations such as R(r) = RT (p)R(q) are

also commonly encountered. In view of eq. (5.4), it is readily observed that RT (p) =

R(−p) and hence, the following notion is used

R(r) = RT (p)R(q) ⇐⇒ r = p− ⊕ q, (5.11)

where the notation p− indicates that the signs of the rotation parameters should be

changed before using eq. (5.9). Note the simplicity of eq. (5.9) as compared to the

direct application of the composition equation, R(r) = R(p)R(q), that implies a four

step procedure for the evaluation of r knowing p and q: 1) evaluate R(p), 2) evaluate

R(q), 3) evaluate the matrix product R(r) = R(p)R(q), 4) extract the parameters r

from R(r) using specialized algorithms, such as those described by Klumpp [65] and

Shepperd [83].

5.2 Finite Element Discretization

The interpolation of the displacement field within an element is at the heart of the

finite element discretization procedure. Consider a simple, one dimensional beam ele-

ment featuring N nodes, the displacement field and its spatial derivative are typically

interpolated as

û(s) = hkuk, and û′(s) = hk′uk, (5.12)
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respectively, where hk(s), k = 1, . . . N are the shape functions for the element that

can be found in any finite element textbook, such as Bathe [5], for instance, uk the

components of the displacement vectors at the N nodes of the element, (·)k denotes

interpolated quantities, and the repeated superscript (·)k implies a summation over

the N nodes of the element. The local variable s ∈ [−1,+1] measures nondimensional

length along the element. The notation (·)′ indicates a derivative with respect to

α1, and hk′ is computed with the help of the chain rule for derivatives as hk′ =

J−1dhk/ds, where J = dα1/ds is the determinant of the Jacobian of the variable

transformation from α1 to s. It is important to realize that interpolation is a linear

operation, acting here on the displacement field, which forms a linear space. Let uk
i ,

uk and uk
f be the nodal displacements at the beginning of a time step, the incremental

nodal displacements, and the displacements at the end of a time step, respectively.

Furthermore, let the displacement update at the nodes be written as uk
f = uk

i + uk,

k = 1, . . . N . It then follows that

ûi(s) + û(s) = hk(uk
i + uk) = hkuk

f = ûf (s). (5.13)

This important relationship implies that initial, final, and incremental fields can all

three be interpolated with the same shape functions, and a simple update of the

nodal values then guarantees compatibility of the interpolated displacement fields for

all values of s.

When formulating beam and shell elements, the kinematics description of the

problem also requires an interpolation of the rotation field and its derivative, written

as

ĉ(s) = hkck, and ĉ′(s) = hk′ck, (5.14)

respectively, where ck are the rotation parameters at the N nodes of the element.

This interpolation simply provides an approximation to the rotation field within the

element. Figure 5.1 shows the interpolated rotation field for a four-noded beam
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element using cubic interpolation polynomials. The rotations at the four nodes are

defined by four rotation angles, φ1 = 145◦, φ2 = 160◦, φ3 = 170◦, φ4 = 181◦, and

associated unit vectors

n1 =




0.305

0.610

0.732




; n2 =




0.326

0.646

0.690




; (5.15)

n3 =




0.319

0.610

0.726




; n4 =




0.311

0.549

0.776



.

The interpolated rotation field was computed using eq. (5.14), and the first Wiener-

Milenković parameter, ĉ1, of the finite rotation is shown in fig. 5.1; similar results are

obtained for the other parameters, c2 and c3. The curvature can be computed in a

similar manner as κ̂(s) = H ĉ′(s), where operator H(ĉ) is defined in eq. (5.5) and ĉ(s)

and ĉ′(s) by eq. (5.14). Figure 5.2 shows the first component, κ̂1, of the curvature

vector.

Although the interpolation procedure of eq. (5.14) looks reasonable considering

the results shown in figs. 5.2 and 5.1, it suffers several serious drawbacks. First, let cki ,

ck and ckf be the nodal rotations at the beginning of a time step, the incremental nodal

rotations, and the rotations at the end of a time step, respectively. Proceeding as was

done above for the displacement field implies that ĉf (s) = ĉi(s) + ĉ(s) if the nodal

updates are selected as ckf = cki + ck, k = 1, . . . N . Unfortunately, these relationships

are not correct for finite rotations, which require ĉf (s) = ĉ(s)⊕ ĉi(s) and ckf = ck ⊕ cki ,

k = 1, . . . N . The nonlinear character of the composition operation implies that

ĉf (s) 6= ĉ(s)⊕ ĉi(s) if ckf = ck ⊕ cki . In other words, if the nodal rotations are updated

using composition of finite rotations, the compatibility of the interpolated rotation

fields cannot be guaranteed for all values of s.

The second drawback becomes obvious once rescaling of finite rotations is taken
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Figure 5.1: Wiener-Milenković parameter, ĉ1, for the given rotation field; no rescal-
ing is used at node 4. Nodal rotations: (◦). Interpolation using eq. (5.14): solid
line, corresponding Gauss point values: (△). Relative nodal rotations: (♦). Inter-
polation of relative rotations: dashed line. Interpolation computed by algorithm 1:
dashed-dotted line, corresponding Gauss point values: (▽).

into account. The finite rotation at the fourth node of the element is of magnitude

φ4 = 181◦ > 180◦, and hence, should be rescaled to avoid singularities. The Wiener-

Milenković parameters of this node are c4 = [1.253, 2.214, 3.132], ‖c4‖ = 4.035 > 4,

whereas its rescaled parameters are c4† = [−1.231,−2.175,−3.078], ‖c4†‖ = 3.965 < 4,

as expected. Figure 5.3 shows the rotation field interpolated using eq. (5.14) in

the presence of rescaling. Note that the results presented in this figure should be

identical to those shown in fig. 5.1 because they correspond to the interpolation of

identical configurations: indeed, the rotation tensor at node 4 is uniquely defined,
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Figure 5.2: First component of the curvature vector, κ̂1, based on interpolation using
eq. (5.14): solid line, corresponding Gauss point values: (⊳). Curvatures computed
by algorithm 1: dashed-dotted line, corresponding Gauss point values: (⊲).

but represented by different rotation parameters, c4 and c4† due to the rescaling

operation. Clearly, the linear interpolation operation of eq. 5.14 is not invariant

under the rescaling operation. The curvature field is shown in fig. 5.4 and clearly,

in the presence of rescaling, the results are erroneous: without rescaling, the three

Gauss point values of the first curvature component are κ1 = -0.048, 0.230, and

0.322, respectively, as compared to κ1 = -0.208, 0.308, and -5.0521, respectively, in

the presence of rescaling.

Clearly, a more robust interpolation approach is necessary to deal with finite ro-

tations in the presence of rescaling; the following algorithm was proposed by Crisfield
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Figure 5.3: Wiener-Milenković parameter, ĉ1, for the given rotation field; node 4 has
been rescaled; for reference, the unscaled note 4 is indicated by (�). Nodal rotations:
(◦). Interpolation using eq. (5.14): solid line, corresponding Gauss point values:
(△). Relative nodal rotations: (♦). Interpolation of relative rotations: dashed line.
Interpolation computed by algorithm 1: dashed-dotted line, corresponding Gauss
point values: (▽).

and Jelenić [37].

Algorithm 1 (Finite rotation interpolation) Interpolation of a finite rotation

field defined by its rotation parameters, ck, at the N nodes of a finite element.

Step 1. Compute the nodal relative rotations, rk: remove the rigid body rotation, c1,

from the finite rotation at each node, rk = c1− ⊕ ck.

Step 2. Interpolate the relative rotation field: r̂(s) = hkrk and r̂′(s) = hk′rk. Find

the curvature field κ̂ = R(c1)H(r̂) r̂′.
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Step 3. Restore the rigid body rotation removed in step 1: ĉ(s) = c1 ⊕ r̂(s).

Algorithm 1 removes the possible effects of rescaling from the interpolation pro-

cedure. In step 1, the relative rotations of the nodes with respect to node 1 are

computed using the composition formula; note that the relative rotation field could

be computed with respect to any of the nodes of the element, node 1 is simply a

convenient choice. It is assumed here that the relative rotations within one single

element are small enough that no rescaling is needed within the element, i.e. within

the element, |φk
r | < π. If this condition were not to be satisfied, a finer mesh would
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be required to limit the relative rotation within each element. Next, these rela-

tive rotations are interpolated using standard procedures. Finally, the interpolated

relative rotation is composed with the rotation of node 1 to find the interpolated

rotation field. Interpolations of nodal rotations computed by algorithm 1 were added

to figs. 5.1 and 5.3. Since the nodal rotations presented in these figures only differ

by the rescaling of node 4, the relative rotation fields are identical, the corresponding

curvature fields are identical, as are the interpolated rotation fields. It should be note

here that this interpolated rotation field seems to present a discontinuity at s = 0.973

in both figures: this is due to the rescaling operation in step 3 of algorithm 1, but

does not affect the quality of the interpolation. In fact, the interpolation procedure

of algorithm 1 is able to deal with the discontinuities inherent to the required rescal-

ing operations. However, the presence of these discontinuities has implications for

the linearization of the equations of motion as discussed in the next section of this

chapter.

The third drawback of interpolation based on eq. (5.14) is its lack of objectivity

when computing strain components. The strain measures of geometrically exact beam

theory are invariant with respect to the addition of a rigid body motion. The term

“objectivity” was coined by Crisfield and Jelenić [37] and refers to the invariance

of strain measures computed through interpolation to the addition of a rigid body

motion. Since algorithm 1 is based on the interpolation of relative rotation, the

addition of a rigid body motion is automatically filtered out from the interpolation

step, ensuring the objectivity of the process. Jelenić and Crisfield [62] studied the

lack of objectivity of interpolation schemes based on eq. (5.14) and concluded that

“The non-invariance and path-dependence in these formulations decrease with both

p-refinement and h-refinement and in practical applications cannot always be easily

spotted.” These conclusions are supported by the data presented here: in fig. 5.2, the

curvatures computed based on eq. (5.14) (non-objective) are nearly identical to those
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computed with algorithm 1 (objective). In fact, at the Gauss points, the curvature

components, κ1, computed by the two approaches only differ by 0.16, -0.085 and

0.16%, respectively. These discrepancies are minute compared to the gross disparities

observed in fig. 5.4 in the presence of rescaling. Clearly, the use of algorithm 1 provides

objectivity of the strain measures, often only a small improvement in the quality of

the interpolation, but it is indispensable when dealing with rotation fields involving

potential rescaling.

5.3 Total and Incremental Unknowns

Multibody simulations typically proceed in discrete time steps. Figure 5.5 shows

the inertial frame of reference, the reference, i.e. unstressed, configuration of the

system at time t = 0, and its configurations at the beginning and end times of a

typical time step, denoted ti and tf , respectively. Each frame is related to its parent

frame by a finite motion characterized by a displacement and a finite rotation tensor,

all measured in the inertial frame. It is assumed that the dynamic simulation has

successfully proceeded up to time ti, i.e. the corresponding displacement and rotation

fields, denoted ui and Ri, respectively, are known. Let ci be a parameterization of

the finite rotation tensor Ri.

To advance the solution from the initial to the final time of the time step, two sets

of unknowns can be selected: the incremental displacements and rotations, denoted

u and R, respectively, or the total displacements and rotations, denoted uf and Rf ,

respectively. Let c, and cf be parameterizations of the finite rotation tensors R

and Rf , respectively. From a kinematic viewpoint, both sets of unknowns are entirely

equivalent. In typical dynamic simulations, however, small time steps must be selected

to achieve convergence and guarantee the accuracy of the solution. Consequently, it

can be assumed that incremental rotations will be of magnitude |φ| < π; in fact, for

most practical cases, |φ| ≪ π. Note that |φ| = π implies that within one single time
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Figure 5.5: Configuration of the system at various instants in time.

step, a component of the system rotates by 180◦. It cannot be assumed, however,

that |φf |, the rotation associated with rotation tensor Rf , is small, in fact, |φf | > π

is likely to occur. The implication of these observations is clear: if total rotations

are used as unknowns, some of the finite rotation parameters, cf , will be rescaled, as

required, whereas if incremental rotations are used as unknowns, none of the unknown

parameters, c, will be rescaled. The interpolation algorithm developed in section 5.2

was shown to seamlessly handle rescaling. However, when dealing with dynamic

simulations, additional considerations must be taken into account.

Spatial and time discretization algorithms typically transform the governing par-

tial differential equations of complex multibody systems into a set of nonlinear alge-

braic equations, which are solved in an iterative manner using the Newton-Raphson

method. Inherent to this approach is a linearization process that transforms the non-

linear algebraic equations into their linearized counterparts. Consider, for instance,

the linearization of the curvature vector, κ = H(c)c′, that will appear in the ex-

pression for the elastic forces of a beam element. Application of the linearization

procedure leads to ∆κ = H(c)∆c′ + D(c, c′)∆c, where D(c, c′) = ∂(H(c)c′)/∂c, and
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hence, operators H(c) and D(c, c′) will appear in the expression of the tangent stiff-

ness matrix of the element. Let c and c† denote the parameters of a finite rotation

and their rescaled counterparts, respectively, as discussed in section 5.1. Clearly,

R(c) = R(c†) by construction of the rescaling operation, whereas it is easily verified

that H(c) 6= H(c†) and D(c, c′) 6= D(c†, c†′). In conclusion, whereas intrinsic quanti-

ties such as the rotation tensor, the curvature vector, or elemental elastic forces are

invariant to rescaling, and whereas the interpolation operation can be made invariant

to the same rescaling through the use of algorithm 1, the tangent stiffness matrix is

not invariant to rescaling. For the implications of this missing invariance consider the

situation depicted in fig. 5.3. At the Gauss points, which are used to evaluate the tan-

gent stiffness matrix, no knowledge is available that node 4 was rescaled. The tangent

stiffness matrix will be evaluated as if the rescaling of node 4 never took place, i.e.

the equations are linearized about the wrong point. Hence, the search direction in

the Newton-Raphson iteration process will be erroneous, which can ultimately cause

failure of simulations.

In view of the above discussion, it is desirable to work with incremental rotations

that remain small and do not require rescaling. The tangent stiffness matrix then

always corresponds to the correct linearization of the problem. This contrasts with

the choice of total rotations as unknowns for which these desirable features cannot be

guaranteed. The choice of incremental nodal rotations as unknowns requires inter-

polation of the incremental rotation field to compute the elemental elastic forces and

tangent stiffness matrix. This task cannot be performed with the help of eq. (5.14): as

already pointed out in section 5.1, the nonlinear nature of the composition operation

is incompatible with the linear interpolation operation. An alternative approach was

presented by Crisfield and Jelenić, which is summarized in appendix B. Here, a new

and simpler algorithm is proposed for this operation.
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Algorithm 2 (Incremental rotation interpolation) Interpolation of the incre-

mental rotation field between two configurations defined by nodal rotation parameters,

cki and ckf , at the N nodes of a finite element.

Step 1. Use algorithm 1 to compute the interpolated rotation field, ci(s), based on

nodal values cki .

Step 2. Use algorithm 1 to compute the interpolated rotation field, cf (s), based on

nodal values ckf = ck ⊕ cki .

Step 3. Compute the incremental rotation field by composition: c(s) = cf (s)⊕c−i (s).

Note that this approach is different from that proposed by Cardona and Géradin,

who directly interpolated incremental rotations using eq. 5.14.

5.4 Numerical Examples

A number of numerical examples are presented in this section to illustrate the various

concepts discussed in the previous sections.

5.4.1 Total and Incremental Unknowns

At first, the use of total versus incremental unknown quantities will be contrasted, to

underline the difficulties associated with the use of total rotations in the formulation

of dynamic problems. Consider a free-free beam featuring the following physical

properties: axial stiffness S = 9.28 kN, shearing stiffness K22 = K33 = 3.57 kN,

torsional stiffness J = 65.2 N·m2, bending stiffness I22 = I33 = 32.6 N·m2, and mass

per unit length m = 0.35 kg/m. The beam is modeled using a single cubic element

and is subjected to two mutually orthogonal end bending moments Q2 and Q3, both

acting in directions normal to the axis of the beam. Both bending moments have a

triangular time history: starting from zero value at time t = 0, growing linearly to a
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maximum value of 0.3 N·m at t = 0.5 sec, linearly decreasing to a zero value at time

t = 1 sec, and remaining zero at all subsequent times.
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Figure 5.6: Time histories of the third component of the Wiener-Milenković param-
eters at the end node: incremental formulation: solid line; total formulation: dashed
line.

The dynamic response of the beam was computed using time step sizes h = 1

and 0.1 msec, with formulations using both total and incremental unknown quanti-

ties. Algorithms 1 and 2 were used to interpolate the total and incremental rotations,

respectively. Figure 5.6 shows the third component of the Wiener-Milenković param-

eters at the beam’s end opposite to the applied bending moments, for h = 1 msec; the

formulations using total and incremental unknown quantities lead to identical predic-

tions. Figure 5.6 clearly shows the rescaling operation that occurs at time t = 0.929

119



sec. However, all four nodes of the element are rescaled simultaneously and the finite

rotation interpolation procedure performs well with both total and incremental un-

knowns. Next, the time step size was reduced to h = 0.1 msec. In this case, due to

the smaller time step size, the node at the free end of the beam is rescaled at time

t = 0.9284 sec, while the other three nodes are not. Consequently, the formulation

using total unknown quantities fails to converge at that time step, whereas the one

using incremental unknowns converges.

5.4.2 Convergence Behavior of the Incremental Formulation

Next, consider a cantilevered beam rotating about an axis normal to its axis and

passing at its root, as depicted in fig. 5.7. The beam’s physical properties are identical

to those used in the previous example. It is subjected to a transverse tip load, linearly

increasing from 0 to 50 N in one second; and it rotates at an angular speed, linearly

increasing from 0 to 4 rad/sec in the same time. The system was simulated for 1.5 sec

with a time step size h = 0.01 sec. In view of the results of the previous example, the

investigation solely focuses on the formulation using incremental unknowns. However,

the direct interpolation of rotation increments, i.e. eq. 5.14, will now be contrasted

with the proposed interpolation approach, i.e. algorithm 2. Figure 5.8 shows the

error in the beam’s root forces as a function of the number of linear elements used to

mesh the beam. Figure 5.9 shows the corresponding results for quadratic elements.

The reference solution for the error analysis was obtained using a 250 cubic element

mesh for which convergence was established.

In both linear and quadratic elements, direct rotation interpolation using eq. 5.14

leads to large errors when coarse meshes are used, but these errors decrease rapidly

for both h- and p-refinement. Indeed, the errors observed for the quadratic element

mesh are far smaller than those for the linear element mesh. When algorithm 2 is

used to interpolate rotation increments, errors are reduced, although this reduction
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Figure 5.7: Rotating cantilevered beam subjected to transverse tip force.

is less pronounced for finer meshes. Since the computational cost associated with the

use of algorithm 2 is nearly identical to that of using eq. 5.14, the use of the former

is advisable. Indeed, achieving a 0.01% error in root forces with quadratic elements

requires 5 elements with algorithm 2, but 16 elements for eq. 5.14; this will result in a

nearly threefold reduction in computational cost when using the proposed algorithm.

5.4.3 Rotorcraft Tail Rotor Transmission

This last problem deals with the modeling of the supercritical tail rotor transmission

of a helicopter. Figure 5.10 shows the configuration of the problem. The aft part

of the helicopter is modeled and consists of a 6 m fuselage section that connects at

a 45 degree angle to a 1.2 m projected length tail section. This structure supports

the transmission to which it is connected at points M and T by means of 0.25 m

support brackets. The transmission is broken into two shafts, each connected to

flexible couplings at either end. The flexible couplings are represented by flexible

joints, consisting of concentrated springs. Shaft 1 is connected to a revolute joint at

point S, and gear box 1 at point G. Shaft 2 is connected to gear box 1 and gear box

2, which in turns, transmits power to the tail rotor. The plane of the tail rotor is at a

0.3 m offset with respect to the plane defined by the fuselage and tail, and its hub is

connected to gear box 2 by means of a short shaft. Each tail rotor blade has a length

of 0.8 m and is connected to the rotor hub at point H through rigid root-attachments
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Figure 5.8: Beam root force error versus number of elements for linear element
meshes. Interpolation using algorithm 2: solid line; direct interpolation using eq. 5.14:
dashed line.

of length 0.2 m. The gear ratios for gear boxes 1 and 2 are 1:1 and 2:1, respectively.

The fuselage has the following physical characteristics: axial stiffness S = 687 MN,

bending stiffnesses I22 = 19.2 and I33 = 26.9 MN·m2, torsional stiffness J = 8.77

MN·m2, and mass per unit span m = 15.65 kg/m. The properties of the tail are one

third of those of the fuselage. Shafts 1 and 2 have the following physical characteris-

tics: axial stiffness S = 22.9 MN, bending stiffnesses I22 = 26.7 and I33 = 27.7 kN·m2,

torsional stiffness J = 22.1 kN·m2, and mass per unit span m = 0.848 kg/m. The

center of mass of the shaft has a 1 mm offset with respect to the shaft reference line.

The small difference in bending stiffnesses together with the center of mass offset
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Figure 5.9: Beam root force error versus number of elements for quadratic element
meshes. Interpolation using algorithm 2: solid line; direct interpolation using eq. 5.14:
dashed line.

are meant to represent an initial manufacturing imperfection or an unbalance in the

shaft. The stiffness properties of the flexible couplings are as follows: axial stiffness

5.0 kN/m and damping 0.5 N·sec/m, transverse stiffnesses 1.0 MN/m, torsional stiff-

ness 0.1 MN·m/rad, and bending stiffnesses 0.1 kN·m/rad. Finally, gear boxes 1 and

2 have a concentrated mass of 5.0 kg each, and the tail rotor a 15.0 kg mass with a

polar moment of inertia of 3.0 kg·m2.

At first, a static analysis of the system was performed for various constant angular

velocities of the drive train. The natural frequencies of the system were computed

about each equilibrium configuration. The two lowest natural frequencies of shaft 1
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Figure 5.11: Time histories of a Wiener-Milenković parameter, a unit vector of the
rotation tensor (e2,1: dash-dotted line; e2,2: solid line; e2,3: dashed line), and the
angular speed of shaft 1 mid-span.

were found to be ω1 = 46.9 and ω2 = 49.1 rad/sec. According to linear theory, the

system is stable when the shaft angular velocity is below ω1 or above ω2, but unstable

between theses two speeds.

The system was loaded by a torque acting at the root of shaft 1, featuring the
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following time history

Q(t) =





50 (1 − cos 2πt) 0 < t < 1 sec,

0 1 < t < 2 sec,

6 (1 − cos 2πt) 2 < t < 3 sec,

0 3 < t < 6 sec.

After 1 sec, the angular velocity of shaft 1 stabilizes at about 45 rad/sec, below the

critical speed. The torque applied for 2 < t < 3 sec then accelerates the transmission

through the critical zone to reach an angular velocity of 50.5 rad/sec. A constant

time step size h = 0.5 msec was used for the entire simulation.

Figure 5.11 shows the dynamic response at shaft 1’s mid-span position for 2 <

t < 3 sec. The top portion of the figure shows the first component of the Wiener-

Milenković or CRV parameters: a rescaling operation occurs for each complete rev-

olution of the shaft. The middle portion of the figure shows the components of the

unit vector ē2, i.e. the second column of the rotation tensor. As expected, these

quantities are continuous, as they do not “see” the rescaling operations. Finally, the

bottom portion of the figure shows the angular velocity of the shaft. The horizontal

dashed lines indicate the unstable zone for the shaft. Clearly, the shaft goes through

this critical zone fast enough to avoid the build up of lateral vibrations. Here again,

the angular velocity is continuous, unaffected by the rotation rescaling operations.

Figure 5.12 shows the torque, M1, and the two bending moments, M2 and M3, at

shaft 1’s mid-span, for 4 < t < 5 sec. Since the shaft has just passed through the

critical zone, fairly large bending moments are observed. Here again all quantities are

continuous, despite the multiple rescaling operations. The example clearly demon-

strates the ability of the proposed approach to handle finite rotations of arbitrary

magnitudes in complex, flexible multibody systems. The rescaling operations are ap-

plied at those nodes where they are required to avoid singularities in finite rotation
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Figure 5.12: Time histories of the moments of shaft 1 mid-span.

representations. All other quantities, such as the rotation tensor, angular velocities,

or bending moments are continuous and unaffected by the rescaling operations.

5.5 Chapter Summary

In summary, the following observations can be made. If the finite rotation field

is interpolated with eq. (5.14) without ever rescaling the rotation parameters, the

computation will proceed smoothly at first; although the interpolated strain field is

not objective, errors remain small, especially if higher order elements are used with

a fine mesh. During the simulation, rotation magnitudes will grow; no matter what

minimal set parameterization is used to represent finite rotations, a singularity will

eventually be reached and the simulation will fail at that point. On the other hand,
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if the finite rotation field is interpolated with eq. (5.14) with rescaling of the rotation

parameters, the computation will proceed smoothly at first, although the interpolated

strain field is not objective. When the first node of the model is rescaled, the strain

field computed in the elements connected to this node will be grossly erroneous, see

fig. 5.4, and typically, convergence will not be reached for that time step at which

rescaling occurs. Finally, if algorithm 1 is used for the interpolation of the strain

field, the simulation is not affected by rescaling of the rotation parameters that takes

place whenever required, and the computed strain field is objective. The rescaling

operation becomes transparent to the computation process. However, evaluations

of the tangent stiffness matrix based on interpolations of total unknowns computed

with algorithm 1 can yield erroneous search directions in the Newton-Raphson process

used to solve the nonlinear equations, which are inherent to time-stepping procedures.

This can destabilize simulations. Therefore, the use of incremental unknowns in

conjunction with algorithm 2 is recommended. This method preserves the objectivity

of geometrically exact formulations, yields tangent stiffness matrices and residual

vectors that are invariant to the rescaling of finite rotations, and, therefore, enables

the use of geometrically exact structural models in multibody simulations.
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CHAPTER VI

NUMERICAL EXPERIMENTS

Results of numerical experiments will be presented in this chapter. These results

were obtained with the formulations of structural and constraint elements presented

in chapter 4. The resulting governing equations were scaled and augmented with

Lagrangian terms as proposed in chapter 2. Finally, the rotation fields associated

with geometrically exact structural components were interpolated using algorithm 2

as described in chapter 5.

The resulting equations of motion were integrated in time using the time step-

ping techniques presented in chapter 3, i.e. the two-stage Radau IIA scheme, the

generalized-α scheme with ρ∞ = 0, and the energy decaying scheme. Hence, the ef-

ficiency of the three integration methods could be evaluated using realistic examples

of nonlinear, flexible multibody systems.

Due to the nonlinearity and complexity of the test problems, analytical solutions

were not available as reference for error analysis. Hence, reference solutions had to

be obtained numerically. This was typically done by simulating systems using the

two-stage Radau IIA scheme. Time step sizes were chosen so small that an additional

reduction of time step size did not yield changes of at least 8 significant digits in the

numerical results.

6.1 Three Bar Mechanism

The first example is a three bar mechanism. The system, which is depicted in fig. 6.1,

consists of three beams connected by three revolute joints. The system is subjected to

a tip load at point D. All three components of this load are initially zero and increase

linearly to F = 100 N at time t = 0.25 sec. Then, the load components decrease
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linearly to F = 0 at time t = 0.5 sec and remain zero thereafter. Each beam is

discretized using three cubic beam elements. The structural properties of the beams

are summarized in table 6.1. The system was simulated for a total of 1 second using

the two-stage Radau IIA scheme, the energy decaying scheme, and the generalized-α

scheme.

A

B

C

D

F

F

F

l=1m

l=1m

l=1m

i1

i2

i3

Figure 6.1: Three bar mechanism.

Table 6.1: Three bar mechanism: Structural properties

Property Units Values

Axial stiffness S N 3.36 × 108

Bending stiffness I22, I33, I23 N.m2 4.48 × 104, 4.48 × 104, 0.0
Torsional stiffness J N.m2 2.91 × 103

Shearing stiffness K22, K33, K23 N 1.08 × 108, 1.08 × 108, 0.0
Mass/span m kg/m 1.26 × 101

Moment of inertia/span m11, m22, m33 kg.m 3.40 × 10−3, 1.70 × 10−3, 1.70 × 10−3

Figures 6.2 and 6.4 show relative errors in the norm of the displacements and the
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norm of the rotations corresponding to point D and time t = 1 sec as a function of

1/h. The Radau scheme is third order accurate in the displacements and between

second and third order accurate in the rotations. The generalized-α scheme is second

order accurate in both quantities and the energy decaying scheme is second order

accurate in the displacements and between first and second order accurate in the

rotations. Clearly, the Radau scheme yields significantly lower errors for all time step

sizes.

The generalized-α scheme appears to be more competitive with respect to the

Radau scheme if errors are compared to CPU time as done in figs. 6.3 and 6.5.

The computational effort needed to complete a single Newton-Raphson iteration is

always lower in case of the generalized-α scheme since it involves only half as many

algorithmic unknowns as the Radau scheme. Hence, even though the generalized-

α scheme requires smaller time step sizes and more Newton-Raphson iterations to

achieve the same accuracy as the Radau scheme, computational effort still might be

the same for both schemes. As time step size decreases, however, the difference in

Newton-iterations required for convergence at each time step by the second order

accurate generalized-α scheme and the third order accurate Radau scheme increases.

Therefore, the Radau scheme becomes more efficient than the generalized-α scheme

at small time step sizes and high levels of accuracy. Figures 6.4 and 6.5 also show

that the energy decaying scheme requires by far more computational resources than

the other two schemes at any accuracy level.
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Figure 6.2: Three bar mechanism: Computational error in the displacements at
point D versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
generalized-α scheme: dashed line.
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Figure 6.3: Three bar mechanism: Computational error in the displacements at
point D versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-
dot line; generalized-α scheme: dashed line.
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Figure 6.4: Three bar mechanism: Computational error in the rotation parameters
at point D versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; generalized-α scheme: dashed line.
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Figure 6.5: Three bar mechanism: Computational error in the rotation parameters
at point D versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-
dot line; generalized-α scheme: dashed line.
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6.2 Mechanism with Tilted Revolute Joint

The second example is the mechanism shown in fig. 6.6. It consists of three beams

and four revolute joints. The rotation of the joint at point A is prescribed to be

φ1 = 3 cos(2πt) − 3 and the revolute joint at point C is tilted by 5 degrees about

axis ı̄2. All beams are discretized using three cubic beam elements. The structural

properties of all beams are listed in tables 6.2 and 6.3. The system was simulated

for 0.82 seconds using the two-stage Radau IIA scheme, the energy decaying scheme,

and the generalized-α scheme.
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Figure 6.6: Mechanism with tilted revolute joint.

Figure 6.7 shows errors in the relative rotation measured at the revolute joint at

point C at t = 0.82 sec as a function of 1/h. Clearly, the Radau scheme exhibits third

order accuracy whereas the generalized-α scheme is second order accurate. For larger

step sizes, the energy decaying scheme is third order accurate. However, it looses

more than one order of accuracy as time steps become smaller than h = 10−3 sec.
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Table 6.2: Mechanism with tilted joint: Structural properties of beam 1.

Property Units Values

Axial stiffness S N 4.0 × 107

Bending stiffness I22, I33, I23 N.m2 2.4 × 105, 2.4 × 106, 0.0
Torsional stiffness J N.m2 2.8 × 105

Shearing stiffness K22, K33, K23 N 1.4 × 107, 2.8 × 106, 0.0
Mass/span m kg/m 3.2

Moment of inertia/span m11, m22, m33 kg.m 1.2 × 10−2, 8.6 × 10−4, 1.1 × 10−2

Table 6.3: Mechanism with tilted joint: Structural properties of beams 2 and 3.

Property Units Values

Axial stiffness S N 4.0 × 107

Bending stiffness I22, I33, I23 N.m2 2.4 × 104, 2.4 × 104, 0.0
Torsional stiffness J N.m2 2.8 × 104

Shearing stiffness K22, K33, K23 N 1.4 × 107, 2.8 × 106, 0.0
Mass/span m kg/m 1.6

Moment of inertia/span m11, m22, m33 kg.m 1.2 × 10−2, 8.6 × 10−4, 1.1 × 10−2

The errors in the relative rotation at point C are also compared to CPU time as done

in fig. 6.8. For reasons described in the previous section, the generalized-α scheme

is the most efficient method for lower levels of accuracy whereas the Radau scheme

dominates for higher levels of accuracy. It should be noted that the generalized-α

scheme failed for some of the larger time step sizes.

It is also interesting to analyze the error in the norm of the sectional forces and

moments at the midpoint of beam 2, see figs. 6.9, 6.10, 6.11 and 6.12. The Radau

scheme is third order accurate in the forces and moments, the generalized-α scheme

achieves second order behavior in both quantities. The energy decaying scheme is

second order accurate in the moments. Its convergence behavior in the forces is

inconsistent: It is quadratic for larger time steps, becomes cubic for moderate step

sizes and finally stagnates for small time steps. The convergence behavior of the

sectional loads with respect to CPU time is similar to the behavior of the rotation at
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Figure 6.7: Mechanism with tilted joint: Computational error in the relative ro-
tation of the revolute joint at point C versus 1/h. Radau IIA: solid line; energy
decaying scheme: dashed-dot line; generalized-α scheme: dashed line.
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Figure 6.8: Mechanism with tilted joint: Computational error in the relative rota-
tion of the revolute joint at point C versus CPU time. Radau IIA: solid line; energy
decaying scheme: dashed-dot line; generalized-α scheme: dashed line.
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Figure 6.9: Mechanism with tilted joint: Computational error in the sectional forces
at the midpoint of beam 2 versus 1/h. Radau IIA: solid line; energy decaying scheme:
dashed-dot line; generalized-α scheme: dashed line.
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Figure 6.10: Mechanism with tilted joint: Computational error in the sectional
forces at the midpoint of beam 2 versus CPU time. Radau IIA: solid line; energy
decaying scheme: dashed-dot line; generalized-α scheme: dashed line.
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Figure 6.11: Mechanism with tilted joint: Computational error in the sectional
moments at the midpoint of beam 2 versus 1/h. Radau IIA: solid line; energy decaying
scheme: dashed-dot line; generalized-α scheme: dashed line.
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Figure 6.12: Mechanism with tilted joint: Computational error in the sectional
moments at the midpoint of beam 2 versus CPU time. Radau IIA: solid line; energy
decaying scheme: dashed-dot line; generalized-α scheme: dashed line.
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6.3 Solar Panel Deployment

In the third example, the deployment of a solar panel array of a satellite is simulated.

The system, which is depicted in fig. 6.13, consists of four panels, three connectors,

and four revolute joints. Each panel is discretized using three cubic beam elements

and each connector is discretized by a single cubic beam element. The structural

properties of the panels and connectors are summarized in tables 6.4 and 6.5, re-

spectively. Each revolute joint is associated with a nonlinear torsional spring and

a viscous damper. The elastic characteristics of the springs are shown in fig. 6.14,

whereas damping coefficients can be found in table 6.6. The system was simulated

for 200 seconds using the two-stage Radau IIA scheme, the energy decaying scheme,

and the HHT-α scheme with α = −0.3. It should be noted that finite rotations were

interpolated as proposed by Cardona and Géradin [29] in this example.

Table 6.4: Panel deployment: Structural properties of the panels.

Property Units Values

Axial stiffness S N 2.9 × 107

Bending stiffness I22, I33, I23 N.m2 6.0 × 108, 5.8 × 101, 0.0
Torsional stiffness J N.m2 8.5 × 101

Shearing stiffness K22, K33, K23 N 3.1 × 107, 3.1 × 107, 0.0
Mass/span m kg/m 1.9 × 101

Moment of inertia/span m11, m22, m33 kg.m 3.9 × 101, 3.9 × 101, 2.4 × 10−6

Table 6.5: Panel deployment: Structural properties of the connectors.

Property Units Values

Axial stiffness S N 1.1 × 107

Bending stiffness I22, I33, I23 N.m2 3.7 × 103, 3.7 × 103, 0.0
Torsional stiffness J N.m2 2.4 × 103

Shearing stiffness K22, K33, K23 N 3.6 × 107, 3.6 × 107, 0.0
Mass/span m kg/m 5.6

Moment of inertia/span m11, m22, m33 kg.m 3.8 × 10−4, 1.9 × 10−4, 1.9 × 10−4
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Figure 6.13: Solar panel deployment.

Figures 6.15 and 6.16 show relative errors in the norm of the displacements mea-

sured at point D4 at time t = 200 sec as a function of 1/h and the CPU time,

respectively. Figures 6.17 and 6.18 show relative errors in the norm of the rotation

parameters corresponding to the same location and time. The Radau scheme ex-

hibits by far the most favorable convergence behavior. It is third order accurate in

the displacements and between second and third order accurate in the rotations. The

energy decaying scheme is second to third order accurate in the displacements. It

exhibits inconsistent convergence behavior in the rotations for larger step sizes and

becomes roughly second order accurate as time step size decreases. It clearly requires

significantly more CPU time than the Radau scheme to achieve comparable accuracy.

The weakest performance can be observed for the HHT-α scheme with only first order
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Table 6.6: Panel deployment: Damping coefficients of the viscous dampers.

Location Units Damping coefficient

B1 N.m.sec/rad 40
D1 N.m.sec/rad 18
D2 N.m.sec/rad 14
D3 N.m.sec/rad 10

accuracy in displacements and rotations. It should be noted that the HHT-α scheme

failed for larger time step sizes. In summary, the example shows that the use of the

two-stage Radau IIA integration method allows significant savings in CPU time of

up to one order of magnitude.
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Figure 6.14: Panel deployment: Elastic characteristics of the nonlinear springs.
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Figure 6.15: Panel deployment: Computational error in the displacements at point
D4 versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
HHT-α scheme: dashed line.
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Figure 6.16: Panel deployment: Computational error in the displacements at point
D4 versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; HHT-α scheme: dashed line.
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Figure 6.17: Panel deployment: Computational error in the rotation parameters at
point D4 versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
HHT-α scheme: dashed line.
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Figure 6.18: Panel deployment: Computational error in the rotation parameters at
point D4 versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-
dot line; HHT-α scheme: dashed line.
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6.4 Cantilever Plate

The forth example is a rectangular cantilever plate of length l = 1m and height

h = 0.1 m, see fig. 6.19. The plate is subjected to a concentrated force FD =

50N(1 − cos(2πt))(−10ı̄1 − ı̄2 − 10ı̄3) at point D and another concentrated force

FC = 50N(1 − cos(2πt))(10ı̄1 + ı̄2 + 10ı̄3) at point C. The plate has a constant

thickness of 2.5 mm, Young’s modulus E = 210 GPa, Poisson ratio ν = 0.25, and

mass density ρ = 7870 kg/m3. The plate is meshed using four nine-noded shell

elements along its length and two along its height. The system was simulated for 0.4

seconds using the two-stage Radau IIA scheme, the energy decaying scheme, and the

generalized-α scheme.

A

B

C

D
i2

i1

i3

l=1m

h=0.1m

Figure 6.19: Cantilever plate.

Figures 6.20 and 6.21 show relative errors in the norm of the displacements mea-

sured at the center of the plate at time t = 0.4 sec as a function of 1/h and the

CPU time, respectively. Figures 6.22 and 6.23 show relative errors in the norm of the

rotation parameters corresponding to the same location and time. The Radau scheme

achieves third order accuracy in the displacements and almost third order accuracy

in the rotations. Comparison of results for energy decaying scheme and generalized-α

scheme indicate that both schemes are approximately second order accurate in dis-

placements and rotations. Both the energy decaying scheme and the generalized-α
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scheme did not converge for large time steps. Figures 6.21 and 6.23 clearly show that

the Radau scheme is the fastest integrator in this example. Particularly, the energy

decaying scheme requires significantly more CPU time to achieve the same accuracy

as the Radau scheme.
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Figure 6.20: Cantilever plate: Computational error in the displacements at the
plate center versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; generalized-α scheme: dashed line.
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Figure 6.21: Cantilever plate: Computational error in the displacements at the plate
center versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; generalized-α scheme: dashed line.
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Figure 6.22: Cantilever plate: Computational error in the rotation parameters at
the plate center versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-
dot line; generalized-α scheme: dashed line.
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Figure 6.23: Cantilever plate: Computational error in the rotation parameters at
the plate center versus CPU time. Radau IIA: solid line; energy decaying scheme:
dashed-dot line; generalized-α scheme: dashed line.
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6.5 Crank-Panel Mechanism

The final two examples in this chapter are concerned with the crank-panel mechanism

shown in fig. 6.24. The mechanism consists of a 1 m × 1 m panel connected to two

reinforcing beams along the opposite edges AB and CD. The reinforcing beam along

edge CD is connected to the ground by means of two revolute joints at points C and

D, respectively. A spherical joint connects the other reinforcing beam to a push rod

at point B. In turn, the push rod is connected to a crank by means of a universal

joint at point F. Finally, a revolute joint connects the crank to the ground at point

E, and the relative rotation at this joint is denoted φ. The mechanism is initially at

rest and the root rotation of the crank is prescribed as

φ(t) =





π/4 (1 − cos πt/T ), t ≤ T,

π/2, t > T,

where T = 2 sec.

The physical properties of the system are as follows: crank length ℓC = 0.25 m,

push rod length ℓP = 1 m, and panel thickness h = 15 mm. The entire mechanism

is made of aluminum: Young’s modulus E = 73 GPa, Poisson’s ratio ν = 0.3, and

density ρ = 2700 kg/m3. All beams present square cross-sections: 40 mm × 40 mm

for both the crank and push rod; 60 mm × 60 mm and 30 mm × 30 mm for the

reinforcing beams along the CD and AB edges, respectively. The panel was modeled

with 4 nine-noded shell elements forming the 2 × 2 mesh shown in fig. 6.24. All

beams were modeled with two quadratic beam elements. The system was simulated

for 0.3 seconds using the two-stage Radau IIA scheme, the energy decaying scheme,

and the generalized-α scheme.

Figure 6.25 shows relative errors in the norm of the displacements at point A at

time t = 0.3 sec as a function of 1/h. The Radau scheme initially exhibits third

order behavior, which ultimately slows down to second order accuracy. The energy

decaying scheme is initially third order accurate and yields errors almost identical to
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Figure 6.24: Crank-panel mechanism.

those obtained using the Radau scheme. However, it becomes first order accurate

for very small time step sizes. Finally, the generalized-α scheme converges extremely

slowly for time step sizes greater than h = 10−4 sec and ultimately becomes second

order accurate. Figure 6.27 shows relative errors in the norm of the rotations at the

same location and time. The Radau scheme and the energy decaying scheme behave

almost identical and are roughly third order accurate. The generalized-α scheme

converges very slowly for large time step sizes and becomes second order accurate for

h < 10−4 sec.

Figures 6.27 and 6.28 show the errors in the displacements and rotations as a

function of CPU time. In both cases, the Radau scheme is slightly faster than the
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energy decaying scheme and requires significantly less CPU time than the generalized-

α scheme in order to achieve specific levels of accuracy.
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Figure 6.25: Crank-panel: Computational error in the displacements at point A ver-
sus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot line; generalized-
α scheme: dashed line.
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Figure 6.26: Crank-panel: Computational error in the displacements at point A
versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
generalized-α scheme: dashed line.
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Figure 6.27: Crank-panel: Computational error in the rotation parameters at point
A versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
generalized-α scheme: dashed line.
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Figure 6.28: Crank-panel: Computational error in the rotation parameters at point
A versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
generalized-α scheme: dashed line.
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6.6 Modal Formulation of the Crank-Panel Mechanism

This example is a variation of the crank-panel mechanism presented in the previous

section. The only difference is that the elastic component consisting of the panel and

the reinforcing beams was modeled using a modal super element based on Herting’s

method, see Herting [54] and Bauchau et al. [12]. The element features four boundary

nodes at the four corners of the panel. Eight bending modes, which were computed

using a four-by-four shell element mesh, were used in the Herting transformation,

with boundary conditions corresponding to clamped conditions at points C and D.

This system was simulated for 0.3 seconds using the two-stage Radau IIA scheme, the

energy decaying scheme, and the generalized-α scheme as in the previous example.

Figures 6.29 and 6.30 show relative errors in the norm of the displacements mea-

sured at point A at time t = 0.3 sec as a function of 1/h and the CPU time, re-

spectively. The Radau scheme is between second and third order accurate in the

displacements. The energy decaying scheme and the generalized-α scheme are less

than second order accurate and require more CPU time than the Radau scheme to

achieve comparable accuracy. Relative errors in the norm of the rotation parameters

corresponding to the same location and time are shown in figs. 6.31 and 6.32. Both

the Radau scheme and the energy decaying scheme are between second and third

order accurate in the rotations. Here, the energy decaying scheme is slightly faster

than the Radau scheme. Both schemes perform significantly better than the less than

second order accurate generalized-α scheme.

It is also interesting to compare results computed using the full finite element

representation of the panel and the reinforcing beams with those obtained using the

modal reduction. In the full finite element representation, the panel is discretized

using a four-by-four mesh of MITC9 shell element. Each of the reinforcing beams is

meshed using four quadratic beam elements. Figure 6.33 shows, as an example, the

time histories of the third component of the displacement vector at point A computed
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Figure 6.29: Modal crank-panel: Computational error in the displacements at
point A versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; generalized-α scheme: dashed line.

using the full finite element modal and the modal formulation. The system was sim-

ulated for 0.3 seconds using the two-stage Radau IIA scheme with a constant time

step size of h = 10−3 sec. A CPU time of 49.937 seconds was required to complete

the simulation if the full finite element representation was used. The modal represen-

tation, however, required merely 1.672 seconds of CPU time and yielded essentially

the same solution as the full finite element model. This shows that, if used appro-

priately, the use of modal representations of flexible components can significantly

increase computational efficiency of flexible multibody simulations.
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Figure 6.30: Modal crank-panel: Computational error in the displacements at point
A versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-dot line;
generalized-α scheme: dashed line.
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Figure 6.31: Modal crank-panel: Computational error in the rotation parameters
at point A versus 1/h. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; generalized-α scheme: dashed line.
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Figure 6.32: Modal crank-panel: Computational error in the rotation parameters at
point A versus CPU time. Radau IIA: solid line; energy decaying scheme: dashed-dot
line; generalized-α scheme: dashed line.
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Figure 6.33: Comparison of results for full finite element model of crank-panel
mechanism and results for its modal representation. FEM representation: solid line;
modal representation: dashed-dot line.
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6.7 Chapter Summary

Results of six numerical experiments were presented in this chapter. These examples

showed that the scaling and augmentation techniques, formulations of structural and

constraint elements, and interpolation methods presented in this thesis are applicable

to the computational analysis of nonlinear, flexible multibody systems. Scaling and

augmented Lagrangian formulations enable stable simulations of mechanical systems

with kinematic constraints at small time step sizes. The formulations of structural

elements discussed in chapter 4 allow the accurate analysis of flexible systems. Finally,

the techniques proposed for the interpolation of finite rotations in geometrically exact

structural elements ensure the ability to analyze systems with flexible components

undergoing arbitrarily large finite rotations.

A comprehensive comparison of three time stepping schemes applied to the solu-

tion of different flexible multibody dynamics problems was provided in this chapter.

The most important result of this comparison is the demonstration of the computa-

tional superiority of the two-stage Radau IIA scheme. Whereas the energy decaying

scheme and the generalized-α scheme showed weaknesses in some of the test cases,

the two-stage Radau IIA scheme performed always well. With only a few exceptions

it clearly outperformed the other schemes: First, the two-stage Radau IIA scheme

generally yielded the best results for a given time step size. Second, CPU time re-

quirements to achieve a desired level of accuracy were often up to one magnitude

smaller than for the other schemes. Finally, the two-stage Radau IIA scheme some-

times allowed the use of relatively large time step sizes at which the other schemes

failed. The superior behavior of the two-stage Radau IIA scheme is particularly strik-

ing since it is a general integration method, which, opposed to the other schemes, is

not specifically designed for the analysis of mechanical systems.

The time step size is, however, not always determined by the desired accuracy of

the multibody dynamics analysis. In the case of fluid-structure coupling, for example,
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CFD codes require a very small time step size. The generalized-α scheme might be

more suitable than the two-stage Radau IIA scheme to solve such and similar problems

due to the lower number of algorithmic unknowns. Hence, it appears to be desirable to

develop multibody systems analysis software, which contains two solver options: the

two-stage Radau IIA scheme and the generalized-α scheme. It has been demonstrated

in section 3.2.4 that this requires only little additional software implementation and

maintenance effort.

170



CHAPTER VII

SPATIAL DISCRETIZATION OF BEAMS IN THE

PRESENCE OF HIGH GRADIENTS IN SECTIONAL

PROPERTIES

In many practical applications, flexible multibody simulations are used to analyze

beam-like structures, which involve abrupt changes in sectional properties along the

beam axis. The analysis of such structures using finite element based multibody dy-

namics typically requires a high number of degrees of freedom resulting in significant

computational costs. In this chapter, attempts are made to limit the number of de-

grees of freedom required to analyze these systems. First, elements are concentrated

at locations of high property variation in order to use available elements as efficiently

as possible. Second, the original discontinuous properties are replaced by smoothed

properties. Thereby, accurate solutions can be obtained with coarse meshes.

7.1 Mesh Optimization Procedure

Let Nel be the total number of finite elements used to model a beam. The purpose of

the mesh optimization procedure is to create a finite element mesh that reflects sharp

changes in beam sectional properties. Intuitively, finer meshes, i.e. smaller elements,

should be used in an area of sharp property gradients. Additionally, it is desirable

to refine finite element meshes in areas where the curvature of the undeformed beam

changes significantly. The mesh optimization proceeds in two steps. First, a “property

gradient index” is defined, and second, an optimum mesh is derived based on this

index. Two methods will be presented for deriving optimum meshes; the first is based

on the spring analogy, the second on a cost function minimization approach.

171



7.1.1 The Property Gradient Index

Let s be the curvilinear coordinate that measures length along the axis of the beam.

Next, let pi, i = 1, 2, . . . , n, be the values of a sectional property, say the beam mass

per unit length, or the initial curvature of the beam at equally spaced points along the

beam span, si, i = 1, 2, . . . , n, respectively. The derivation of the property gradient

index is based on the evaluation of a smoothed derivative of beam sectional properties.

The central difference formula is used to approximate the spatial derivative of the

sectional property, di, as di = (pi+µ − pi−µ)/(si+µ − si−µ), where µ is the stencil

of the central difference formula. To further smooth the derivative, the average of

derivatives computed with different stencils is used, leading to

di =
1

m

m∑

j=1

pi+µj
− pi−µj

si+µj
− si−µj

. (7.1)

Typically, the total number of sampling points was selected as n = 32Nel, and the

following five stencils (m = 5) were used: µj = 4, 8, 16, 32, and 64. The property

gradient index, g(s), is then obtained by averaging the smoothed derivatives computed

with the above formula for various sectional properties. The smoothed derivative for

each sectional property should be normalized to a unit value to derive the property

gradient index.

7.1.2 The Spring Analogy Approach

Let ℓ be the total length of the beam discretized by Nel finite elements. In the spring

analogy, each finite element is associated with a spring of stiffness ki, as depicted in

fig. 7.1. The displacement of the last spring is prescribed to be the length of the

beam, i.e. sNel
= ℓ. The equilibrium of the system is then obtained from elementary
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mechanics as



k1 + k2 −k2 0

−k2 k2 + k3 −k3 0

0
. . . . . . . . .

0 −kNel−1 kNel−1 + kNel







s1

s2

...

sNel−1




=




0

0

...

ℓkNel




, (7.2)

were si, i = 1, 2, . . . , Nel are the displacements of the points connecting the springs

and, by analogy, the locations of nodes connecting two finite elements; the length of

each element is ℓi = si − si−1. Of course, if all spring constants are equal, each spring

stretches an equal amount, and by analogy, the sizes of all elements are identical.

To optimize the mesh, the stiffness constant is chosen to reflect the local property

gradient index

k̂i =

∫ si

si−1

g(s) ds. (7.3)

k1 k2 k3
kN

s1 s2 s3
s =N l

...

el

el

Figure 7.1: Sketch of the interconnected springs involved in the spring analogy.

It should be noted that the property gradient index, as defined by eq. (7.1), could

be zero or near zero resulting in a singular system matrix in eq. (7.2). Furthermore,

since the same force is acting in each spring, the product k̂iℓi must be identical

for all elements and hence ℓmax/ℓmin = k̂max/k̂min. In other words, the ratio of the

element of maximum size to that of minimum size is equal to the corresponding

stiffness constant ratio. In practice, the element size ratio, Er = ℓmax/ℓmin, is a user

defined value. Hence, the spring constants are scaled as ki = k̂a + α(k̂i − k̂a), where

α = [(k̂max + k̂min)(Er − 1)]/[(Er + 1)(k̂max − k̂min)] and k̂a is the average value of the
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spring constants k̂i. The scaling operation prevents the appearance of zero stiffness

constants and results in meshes presenting the desired element size ratio.
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Figure 7.2: A typical property gradient index function and the associated mesh;
several steps of the optimization procedure are shown.

The mesh optimization proceeds as follows. Initially, the Nel elements are assumed

to be of equal length. The spring constants associated with each element are then

evaluated and the equilibrium configuration of the system is found by solving the

tridiagonal system defined by eq. (7.2) to determine new element nodal locations.

The procedure is iterative in nature since the spring constants depend on the element

nodal locations. Figure 7.2 shows a typical property gradient index and the optimum

mesh obtained after a few iterations of the spring analogy; the desired element size

ratio is Er = 4. A few iterations are required to obtained a converged solution.
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7.1.3 The Cost Function Approach

In a second approach to mesh optimization, a cost function is formulated, which

penalizes the use of large elements in regions with high property gradient index. A

possible formulation of such a cost function is

C =

Nel−1∑

i=1

{
ℓi

∫

ℓi

g(s) ds

}2

+

{(
ℓ−

Nel−1∑

i=1

ℓi

)∫

ℓNel

g(s) ds

}2

. (7.4)

The independent variables in this approach are the lengths ℓi of finite elements i =

1, 2, . . . , Nel − 1. The length of the last element, ℓNel
, is not an independent variable

because the total length of the beam is fixed; the second term of the cost function

imposes this length constraint.

The cost function in eq. (7.4) can be minimized by requiring the vanishing of its

partial derivatives with respect to ℓi, i = 1, 2, . . . , Nel − 1. It is assumed here that

the integrals over the property gradient index are constant when taking the partial

derivatives, and hence, the procedure will be of an iterative nature. The condition of

minimization of the cost function leads to a strictly positive definite system of linear

equations




1 +

(
R

ℓ
k−1

1

g(s) ds
R

ℓ
k−1

Nel

g(s) ds

)2

1 · · · 1

1 1 +

(
R

ℓ
k−1

2

g(s) ds
R

ℓ
k−1

Nel

g(s) ds

)2

· · · 1

...
...

. . .
...

1 1 · · · 1 +

(
R

ℓ
k−1

Nel−1

g(s) ds

R

ℓ
k−1

Nel

g(s) ds

)2







ℓ̂k1

ℓ̂k2
...

ℓ̂kNel−1




=




ℓ

ℓ

...

ℓ




, (7.5)
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where ℓ(k−1)T =
[
ℓk−1
1 , ℓk−1

2 , . . . , ℓk−1
Nel−1

]
are the element lengths at a previous iteration.

In view of the approximate linearization used to derive eq. (7.5), the solution of this

system does not minimize the cost function; rather, it provides a search direction,

∆ℓk = ℓ̂
k−ℓk−1. This search direction can be normalized and scaled with a relaxation

factor, α, to find new element lengths, ℓk = ℓk−1 + α∆ℓk/
∥∥∆ℓk

∥∥. Here again, the

iterative procedure starts with a set of elements of equal lengths.

7.1.4 Mesh Adaptivity

The procedures outlined in the previous sections can be used as a preprocessing step

to a comprehensive analysis. It is also possible to use the same techniques to achieve

mesh adaptivity. If the current beam curvature is added to the formulation of the

property gradient index, finer meshes will be automatically generated in high defor-

mation areas; the procedure is repeated after a pre-defined number of time integration

steps.

7.2 Smoothing Procedure

Consider a curved beam with a curvilinear coordinate s extending from s0 to sNel
, as

depicted in fig. 7.3. For the ith finite element of the beam, a local, nondimensional

span variable r is defined such that r = 2s/ℓi − (si + si−1)/ℓi. The location of the

Gauss points within this element are given as rj, j = 1, 2, . . . , NGP, see [5]. When

evaluating the mass and stiffness matrices of a typical element, the values of the

beam’s sectional properties are required at the sole Gauss point locations. Hence,

it is natural to cast the smoothing procedure in the following terms: given a finite

element mesh, find smoothed sectional properties at the Gauss point locations of all

elements.
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Figure 7.3: Configuration of the finite element mesh and Gauss points used for the
smoothing operation.

7.2.1 Mass Properties

Consider a beam with an arbitrary “staircase” function describing its mass per unit

span distribution, m(s), such as that shown in fig. 7.4. The smoothing procedure

aims at determining the smoothed mass properties, mj, j = 1, 2, . . . , NGP, at the

element’s Gauss points. To evaluate the NGP properties, the following equations are

proposed ∫ +1

−1

m(r)rk−1 dr =

NGP∑

j=1

wjmjr
k−1
j , k = 1, 2, . . . NGP. (7.6)

At first glance, these relationships look like Gaussian quadrature equations that

would be written as
∫ +1

−1
m(r)rk−1 dr ≈

∑NGP

j=1 wjm(rj)r
k−1
j : the integral on the left

hand side of the equation is approximated using Gaussian integration and m(rj) are

the actual values of the mass property at the Gauss points. On the other hand,

conditions (7.6) imply that the left hand side integrals are exactly evaluated by the

right hand side sums when using the smoothed quantities at the Gauss points, mj.

The smoothed properties are now readily found by solving the linear system expressed
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Figure 7.4: Evaluation of mass integrals over a typical finite element using Gaussian
integration.

by eq. (7.6) to find

∣∣∣∣∣∣∣∣∣∣

w1m1

w2m2

w3m3

∣∣∣∣∣∣∣∣∣∣

=




1 1 1

r1 r2 r3

r2
1 r2

2 r2
3




−1 ∣∣∣∣∣∣∣∣∣∣

∫ +1

−1
m(r) dr

∫ +1

−1
m(r)r dr

∫ +1

−1
m(r)r2 dr

∣∣∣∣∣∣∣∣∣∣

, (7.7)

where it was assumed that NGP = 3, as an example. The interpretation of these con-

ditions is clear: the smoothed mass properties are such that mass, center of mass

location and moment of inertia of the element, as calculated based on Gaussian

quadrature, are identical to the corresponding quantities evaluated based on the de-

tailed property distributions through exact integration. In practice, the integrals on

the right hand side of eq. (7.7) are evaluated using Simpson’s rule with a very small
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step-size.

7.2.2 Stiffness Properties

Next, the procedure is extended to the smoothing of sectional stiffnesses; the bend-

ing stiffness I22 will be taken as an example. Here again, the goal is to determine

smoothed bending stiffnesses, I
j

22, j = 1, 2, . . . , NGP, at the element’s Gauss points.

The following NGP conditions are proposed

1

2

∫ si

si−1

I22(s)

(
dhk

ds

)2

ds =
1

ℓi

∫ +1

−1

I22(r)h
′2
k (r) dr =

1

ℓi

NGP∑

j=1

wjI
j

22h
′2
k (rj), (7.8)

k = 1, 2, . . . NGP.

In this expression, the shape functions hk are selected to be polynomial functions

identical to those used in finite element interpolation procedures for elements with

NGP nodes. The smoothed properties are now readily found by solving the linear

system expressed by eq. (7.8) to find

∣∣∣∣∣∣∣∣∣∣

w1I
1

22

w2I
2

22

w3I
3

22

∣∣∣∣∣∣∣∣∣∣

=




h′21 (r1) h′21 (r2) h′21 (r3)

h′22 (r1) h′22 (r2) h′22 (r3)

h′23 (r1) h′23 (r2) h′23 (r3)




−1 ∣∣∣∣∣∣∣∣∣∣

∫ +1

−1
I22(r)h

′2
1 (r) dr

∫ +1

−1
I22(r)h

′2
2 (r) dr

∫ +1

−1
I22(r)h

′2
3 (r) dr

∣∣∣∣∣∣∣∣∣∣

. (7.9)

The interpretation of these conditions is clear: the smoothed bending stiffnesses

are such that strain energy stored in the element, as calculated based on Gaussian

quadrature, is identical to that evaluated based on the detailed property distributions

through exact integration for specific deformation states of the element characterized

by the selected shape functions.

Again, the integrals on the right-hand side of eq. (7.9) can be evaluated using

Simpson’s rule with a small step-size. The approach proposed here to smooth the

bending stiffness I22 can be applied to other stiffness properties such as axial, tor-

sional, shearing, and bending stiffnesses. Of course, in each case, the procedure must
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be adapted to evaluate the relevant strain energy, to use appropriate shape functions

and to involve the required number of conditions.

7.3 Numerical Examples

Rotary-wing aircraft comprise a major field of industrial application of flexible multi-

body dynamics. A distinct characteristic of modern rotor blade designs is the presence

of abrupt changes in blade geometry, the use of composite materials, and the pres-

ence of tracking weights used for mass balancing. Hence, distributions of rotor blade

structural properties along the blade span involve very sharp gradients.
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Figure 7.5: Property distributions for the rotor blade in the example.
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The various procedures described in the previous sections were tested for a sim-

ple rotorcraft problem involving a straight, cantilevered rotor blade. The spanwise

distribution of the mass per unit span, flap and lag bending stiffnesses, and torsional

stiffness are shown in fig. 7.5. These properties are representative of typical rotor

blade designs. The axial stiffness, flap and lag shearing stiffnesses, and torsional, flap

and lag moments of inertia were computed from the mass per unit span distribu-

tion using factors 2.910× 108 lb·ft/slug, 1.455× 107 lb·ft/slug, 1.455× 107 lb·ft/slug,

1.529 × 10−1 ft2, 3.820 × 10−2 ft2, and 1.147 × 10−1 ft2, respectively. These sectional

properties will be referred to in the following as the “raw sectional properties.”

All numerical simulations presented in this section used a finite element beam

model presented by Bauchau et al. [8]. The shear deformable beam element is based

on a geometrically exact formulation and features six degrees of freedom per node,

three displacement and three rotations. In all cases, four noded, cubic elements were

used, i.e. cubic polynomials were used to interpolate the displacements and rotation

fields. A reference solution of the problem was obtained by using the raw sectional

properties and a fine mesh of unequally spaced elements. The raw properties were

defined at 54 stations along the span of the blade; 53 cubic elements were used,

each spanning a region featuring constant section properties. The convergence of this

reference solution was ascertained by running cases where two, three, and four cubic

elements were used for each of the regions of constant sectional properties, i.e. for a

total of 106, 159, and 212 cubic elements. Identical frequency spectra were obtained

for the lowest 12 natural frequencies, demonstrating the convergence of the results.

A series of runs was performed to illustrate the problems encountered by an analyst

who wishes to determine an appropriate mesh to study the dynamic response of this

blade. The natural frequencies of the blade were computed for meshes featuring an

increasing number of equally spaced cubic elements using the raw sectional properties.

In each case, absolute values of relative errors in frequencies were computed with
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respect to the reference solution.
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Figure 7.6: Comparison of predictions for raw data with equidistant mesh, (◦), raw
data with optimized mesh, (2), and smoothed data with optimized mesh, (△): first
(top figure) and second flap frequencies.

The dashed line in fig. 7.6 represents the relative error in the first and second

flap frequency as a function of the number of equally spaced elements. Similarly,

the dashed line in fig. 7.7 represents the relative error in the first and second lag

frequency as a function of the number of equally spaced elements. Similar results

were obtained for other frequencies. The very slow convergence of the process is

clear: an 8 element mesh produces more than 2% error in the first lag frequency, as

do 9, 10, 15, 24, and 25 element meshes. While some meshes produce good results

for one or the other frequency, a 24 element mesh is not better than an 8 element
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Figure 7.7: Comparison of predictions for raw data with equidistant mesh, (◦), raw
data with optimized mesh, (2), and smoothed data with optimized mesh, (△): first
(top figure) and second lead-lag frequencies.

mesh despite a threefold increase in the number of degrees of freedom. Since the

cost of the analysis is roughly proportional to the number of degrees of freedom,

a threefold increase in computational cost has led to no improvement in accuracy.

The erratic nature of the convergence illustrated in fig. 7.6 and fig. 7.7 is entirely

due to the sharp changes in the raw sectional properties. Indeed, it can be proved

that for uniform properties, a displacement based finite element procedure using a

consistent mass matrix formulation will produce a monotonic convergence for the

natural frequencies of the system, see [5]. Before performing extensive comprehensive

simulations of rotorcraft systems, it is good engineering practice to determine, through
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a convergence study, the mesh size that will yield a desired level of accuracy for blade

frequencies. A consequence of the non-monotonic convergence of the predictions is

that it becomes very difficult to effectively conduct such a convergence study.

It could be argued that in practice, meshes with unequally spaced elements are

used to model rotor blades: the analyst will concentrate small elements in regions

of rapid property or curvature variations and use larger elements for the remaining

portions of the blade. This corresponds - at best - to the use of raw data with an

optimized mesh: the dash-dotted line in fig. 7.6 and fig. 7.7 shows the accuracy of

the flap and lag frequency predictions to be expected with this approach. While the

use of an optimized mesh with raw sectional properties reduces relative errors, the

convergence pattern is still unsatisfactory.

Figures 7.6 and 7.7 also show the first and second flap and lag frequency predic-

tions obtained by combing the proposed mesh optimization and property smoothing

procedures. Similar results were obtained for other frequencies. Clearly, optimizing

the mesh and smoothing the properties considerably reduces the absolute value of the

relative error; furthermore, the convergence pattern becomes significantly more mono-

tonic. When using the raw sectional data, simply increasing the number of equally

or unequally spaced elements does not necessarily yield more accurate results; errors

keep increasing and decreasing even when 10, 20 or 25 elements are used.

Finally, the effects of smoothing and mesh optimization on the evaluation of inter-

nal forces in the blade were also assessed. Uniformly distributed transverse unit loads

were applied to the blade in both flap and lead-lag directions. The exact distribution

of flap and lag bending moments were obtained from statics considerations. Next, the

same bending moments were computed from the finite element analysis. When using

a displacement based formulation, it is well known, see [4,35], that the Gauss points

are super convergent points for internal stress computations. Hence, the computa-

tion of bending moments is a three-step process: first, curvatures are computed at
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the Gauss points from the nodal rotations and first derivatives of the shape functions.

Next, Gauss point bending moments are evaluated based on the corresponding cur-

vatures and sectional data. Finally, bending moments are extrapolated at any other

point within the element based on their Gauss point values.

In many comprehensive rotorcraft codes, internal stresses are computed using the

“force summation method,” i.e. based on statics considerations, see [20]. In this

approach, internal forces are not computed from deformations, and hence, sectional

properties are not used in the process. Clearly, the force summation method delivers

excellent accuracy, even in the presence of sharp variations in sectional properties;

however, its application is limited to structures presenting a single load path: for

hyperstatic configurations, the equations of statics are not sufficient to evaluate in-

ternal forces. It should be mentioned here that one of the reasons for using finite

element procedures in multibody dynamics analysis is to be able to deal with arbi-

trary configurations, in particular the hyperstatic systems associated with multiple

load paths.

The bending moment distributions along the blade were computed using the three-

step procedure described above and predictions were compared to the statics solution

for this problem. Figures 7.8 and 7.9 show the absolute value of the relative error for

the flap bending moment and lag bending moment, respectively. Results are shown for

a 15 element mesh, using raw data and equally spaced elements in one case, raw data

and an optimized mesh in another case, and smoothed properties and an optimized

mesh in the third case. Because sectional properties are used in the computation

of the bending moment, it is not unexpected that large errors are observed when

sharp property gradients occur. The results indicate that the use of raw data and an

optimized mesh mitigates these effects to some degree. However, significantly better

results can be obtained if smoothed properties and an optimized mesh are used.
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Figure 7.8: Comparison of predictions for raw data with equidistant mesh, (◦), raw
data with optimized mesh, (2), and smoothed data with optimized mesh, (△): flap
bending moment.

7.4 Chapter Summary

Methodologies were presented for optimizing the meshes and smoothing the sectional

properties used for the finite element analysis of beam-like structures. The mesh op-

timization procedure is based on a measure of local sectional property gradients. The

property smoothing technique is based on conservation arguments for mass properties

and energy considerations for stiffness properties.

The use of both mesh optimization and sectional property smoothing was shown to

considerably reduce computational errors in finite element predictions in the presence

of sharp gradients in sectional property distributions. Furthermore, the proposed
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Figure 7.9: Comparison of predictions for raw data with equidistant mesh, (◦),
raw data with optimized mesh, (2), and smoothed data with optimized mesh, (△):
lead-lag bending moment.

techniques lead to convergence characteristics that are considerably more monotonic

than those observed when using raw sectional data and either equally spaced elements

or solely optimized meshes. This allows more meaningful convergence studies to be

performed and the determination of mesh configurations that will meet specific error

requirements.

Computational requirements are considerably decreased when the proposed tools

are used because for a specified level of accuracy, significantly fewer degrees of freedom

are necessary. Better accuracy is also obtained for evaluating internal forces and

moments in the beam when the proposed techniques are used.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The scaling of constraints in multibody systems and augmentation of the governing

equations with Lagrangian terms were presented in this thesis as well as algorithms for

the interpolation of arbitrarily large finite rotations in geometrically exact structural

elements, and mesh optimization and smoothing techniques for beams in the presence

of high gradients in sectional properties. Moreover, formulations for structural and

constraint elements were reviewed. Three time discretization schemes were discussed

and their performance was assessed in numerical experiments.

Flexible multibody systems are governed by index-3 differential algebraic equa-

tions, which are known to exhibit undesirable behavior for small time step sizes.

Scaling operations have already been used in the past in conjunction with specific

time stepping schemes to mitigate these problems. This work sheds new light on this

issue. The following facts were established in this thesis: (1) The scaling operation

can be systematically applied to the equations of motion before they are discretized

in time. Hence, the benefits of scaling can be reaped for all time integration meth-

ods. (2) A scaling factor, which depends both on time step size and system physical

properties should be used. This further improves the numerical conditioning of the

problem. This is particularly important in the case of stiff systems. (3) The impor-

tance of augmented Lagrangian terms was emphasized. It was shown that the use of

augmented Lagrangian terms is essential for solving the problem of ill conditioning

for multibody systems with static equilibrium equations. (4) The safe use of sparse

linear equation solvers for scaled and augmented differential algebraic equations has
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been justified in this thesis. The use of these solvers improves the efficiency of the

solution process considerably. Numerical examples demonstrated the applicability of

the proposed methods to realistic physical problems. Consequently, index-3 DAEs

arising in flexible multibody dynamics can be solved efficiently if properly scaled and

augmented with Lagrangian terms. Numerous researchers advocate the use of index

reduction techniques to avoid the ill conditioning of differential algebraic equations.

The results presented in this thesis indicate that the use of index reduction techniques

is unnecessary. The index-3 approach is conceptually simpler and often more efficient.

The interpolation of finite rotations in geometrically exact beams and shells is at

the heart of finite element based flexible multibody dynamics. However, the nonlin-

earity of the rotation field and the presence of singularities in the case of vectorial

parameterizations make this task challenging: if the finite rotation field is interpo-

lated using standard isoparametric interpolation formulæ the resulting strain field

is not objective and the simulation will fail if rescaling of the rotation parameters

becomes necessary. More sophisticated interpolation techniques, which preserve the

objectivity of strains, have been proposed in the literature. However, their applica-

bility to flexible multibody dynamics with arbitrarily large rotations is limited since

they cannot always deal with the rescaling of rotation parameters. A new interpola-

tion algorithm was proposed in this thesis. It preserves the objectivity of the strain

field and yields tangent stiffness matrices and residual vectors, which are invariant

to the rescaling of finite rotations. This enables the unrestricted use of geometrically

exact structural models in multibody simulations. Numerical examples demonstrate

the applicability of the proposed algorithm to realistic multibody systems.

Three time integration schemes, the two-stage Radau IIA scheme, the energy de-

caying scheme, and the generalized-α scheme were used to solve a series of test prob-

lems. Thereby, their performance could be evaluated on realistic flexible multibody

systems containing many different element types. A striking fact was established in
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these experiments: The two-stage Radau IIA scheme, which was designed for general

differential algebraic equations and not specifically for mechanical systems such as the

other two schemes, outperformed the energy decaying scheme and the generalized-α

scheme in almost all cases. It yielded the best results for displacements, rotations,

forces, and moments. It was demonstrated in this thesis that the combined implemen-

tation of the two-stage Radau IIA scheme and the generalized-α method as solvers

for a comprehensive multibody simulation software results in significantly lower im-

plementation and maintenance costs than the implementation of the energy decaying

scheme. At the same time, computational speed of the code is increased and the

software user is provided with more choice and flexibility.

A large number of flexible components can be efficiently modeled using beam

elements. In many cases, the property distributions of these beam-like structures

present rapid variations along the beam axis. Two methodologies were developed in

this thesis to increase the computational efficiency of multibody simulations in the

presence of such components: (1) A mesh optimization procedure based on a mea-

sure of local sectional property gradients was developed. (2) A property smoothing

technique based on conservation arguments for mass properties and energy consider-

ations for stiffness properties was proposed. The combined use of mesh optimization

and property smoothing was shown to considerably reduce computational errors in

finite element predictions in the presence of sharp variations in sectional property

distributions. The proposed techniques lead to convergence characteristics that are

considerably more monotonic than those observed when using unaltered sectional

data and either equally spaced elements or solely optimized meshes. Therefore, more

meaningful convergence studies can be performed and mesh configurations that will

meet specific error requirements can be determined. Computational requirements are

considerably decreased when the proposed tools are used because for a specified level

of accuracy, significantly fewer degrees of freedom are necessary.
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8.2 Future Work

Scaling and augmented Lagrangian formulations have been proposed for the equations

of motion of flexible multibody systems. These equations distinguish themselves

from general high index equations by three properties: (1) The equations are linear

in the accelerations, (2) the equations are linear in the Lagrange multipliers, (3)

nonholonomic constraints, if present, are linear in the velocities. Further work could

be done to generalize the proposed scaling and augmentation techniques to the case

of general high index DAEs. Thereby, the problem of ill conditioning at small time

steps would not only be solved for flexible multibody systems, but for high index

DAEs in general. Furthermore, strategies for the automatic selection of characteristic

mass, damping, and stiffness coefficients for scaling factors could be developed.

In this thesis, numerical results were limited to purely mechanical systems. Many

practical applications of multibody dynamics, however, require the solution of prob-

lems in a multiphysics environment such as fluid-structure interaction. Hence, a

logical next step in the evaluation of time discretization schemes is their applica-

tion to multiphysics problems. Numerical experimentation could also be extended

to problems requiring time step adaptivity such as the analysis of systems involving

contact and friction.

Some authors, see for example Blajer [21, 22] and Bayo and Ledesma [16], com-

bined augmented Lagrangian formulations with mass orthogonal projections. Here,

holonomic constraints are not only enforced exactly at the level of displacements, but

also at the velocity and acceleration levels to increase the accuracy of simulations.

Certainly, an evaluation of the two-stage Radau IIA scheme, the energy decaying

scheme, and the generalized-α scheme in the presence of this approach could yield

interesting results.

High gradients in sectional properties are common for shell structures too. Con-

sider, for example, a modern aircraft wing. Stiffness properties vary heavily due to
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composite ply drop-offs, structural reinforcements, and cutouts for flaps and ailerons.

The presence of various hardware components causes discontinuities in mass den-

sity distributions. Therefore, the generalization of mesh optimization and property

smoothing techniques proposed in this thesis to shell structures could be beneficial

for many practical applications.
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APPENDIX A

INVERSE OF THE JACOBIAN

The inverse of the Jacobian matrix defined by eq. (2.19) can be written as

J−1 =



h2X11 X12

X21 h−2X22


 , (A.1)

where matrices X11 = J−1
11 (I − J12AJ21J

−1
11 ), X12 = J−1

11 J12A, X21 = AJ21J
−1
11 ,

X22 = −A, and A = (J21J
−1
11 J12)

−1 are independent of the time step size. In these

expressions, the following notation was used for the partitions of the Jacobian matrix:

J11 = 2M + h2(BT
mµm

),q − h2Fm,q, J12 = BT
m, and J21 = Cf,q. The above result can

be easily verified by matrix multiplication. It then follows that

J−1 =




O(h2) O(h0)

O(h0) O(h−2)


 . (A.2)

In view of eq. (2.21), it is clear that ‖J‖∞ = O(h−2), whereas eq. (A.2) implies

‖J−1‖∞ = O(h−2); it then follows that κ(J) = ‖J‖∞‖J−1‖∞ = O(h−4).
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APPENDIX B

INTERPOLATION PROCEDURE FOR ROTATION

INCREMENTS BY CRISFIELD AND JELENIĆ

Crisfield and Jelenić [37] proposed an alternative interpolation procedure for rota-

tion increments, which preserves objectivity. The formulation, which was originally

developed in terms of the rotation vector, will here be restated in more general terms.

Rotational decomposition into rigid reference rotation and relative rotation is per-

formed for the nodal rotations cki and ckf corresponding to times ti and tf , respectively,

i.e.

cki = c1i ⊕ rk
i (B.1a)

ckf = c1f ⊕ rk
f (B.1b)

where c1i and c1f are the rigid body rotations and rk
i and rk

f the nodal relative rotations

at ti and tf , respectively.

Composition of rotations cki and ckf yields the nodal rotation increment ck =

ckf ⊕ ck−i = c1f ⊕ rk
f ⊕ rk−

i ⊕ c1−i . The quantity θk = rk
f ⊕ rk−

i , which is free from rigid

body motion, can be interpolated as θ̂(s) = hkθk.

Finally, this isoparametric interpolation can be used to obtain the current rotation

configuration for any point, e.g. a Gauss point, of

ĉf (s) = c1f ⊕ θ̂(s) ⊕ c1−i ⊕ ĉi(s). (B.2)

The drawback of this method is that θ is not the rotation increment that is needed to

evaluate the tangent stiffness matrix in the incremental formulation of the equations
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of motion. Of course, the recovery of the interpolated increment ĉ(s) is possible.

However, this results in additional computations, which makes this approach more

expensive than algorithm 2.
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