View metadata, citation and similar papers at core.ac.uk

Tool for Planetary Probe Payload Sensor System Integration

K. Schreck^{*,**}, P. Papadopoulos^{*}, N. Diordievic^{*,**}

(*) San Jose State University, Department of Mechanical and Aerospace Engineering, One Washington Square, San Jose, California, USA, 95152-0087, keithsspace@yahoo.com, periklis.papadopoulos@sisu.edu (**) Lockheed Martin Space Systems Company, 1111 Lockheed Martin Way, Sunnyvale, California, USA, 94089, nik.djordjevic@Imco.com

OBJECTIVES

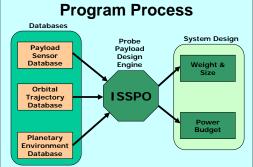
Determination of instrumentation for interplanetary science mission is an involved, complex procedure. A final design solution is achieved at the end of this often lengthy process. Starting with mission requirements a computer program generates a mission sensor package using design engineering relations. Given broad science goals for an interplanetary science mission, the specific scientific measurement objectives required can be determined from which the required measurements flow down, leading to an overall mission design. The mission design drives the instrumentation requirements and influences the selection of components for the mission. Components are chosen to meet mission requirements, creating an initial sensor package design. Trade studies are performed at component levels. A tool for in-situ measurements is developed using design relations to deliver a sensor payload configuration starting from the initial mission concept and the specific measurement objectives.

Introduction

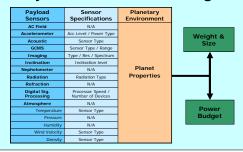
Interest in developing this program came from the short course on In-Situ Instruments for Planetary Probes and Aerial Platforms at the 4th International Planetary Probe Workshop.

- Given mass and power budget for a planetary probe mission.
- Develop a sensor package meeting the science requirements and fit within the mission constraints. Sensors are chosen to survive the operating environment and mission requirements.
- Design of the sensor payload package for any mission addresses arises from several issues:
 - Functionality .

determined.


- Heritage Technology Readiness Level (TRL) •
- etc.
- Combination of selection techniques for mission hardware, allows the development of a tool that can generate a preliminary sensor package configuration.

Descent Imager Spectral Radiometer Flight Unit is a modified version of Commercially available unit

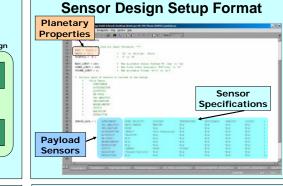


Doppler Wind Experiment Combination of commercial hardware and university research. Commercial Unit with similar operational properties selected by tool.

	Doppi	er Wind Experiment I	roperties			
Scientific Objectives						
Determine the bright profile of Titan zonal wind velocity over the abrode range from 0 - 160 km with an accuracy of -1.0						
		the level and spectral adex of atmosphere				
Measure Doppler and ogna	l level modulation to	monator Probe Descent Dyna rating and post-impact stat		on rate and phase, parach		
Phynical Properties:	Fight	t Unit Properties	Symo	witrices \$130.4		
Mari (g)	1394	radiation shielding 150 g	100			
Dimensions (mm)	$170\times117\times119$	L·W·H	102.6 = 74.1 × 72.8	L + W × H		
DC power:						
Warts-up power (W)	1184	< 30 min	<35 g	<10 min		
DC cosranghos (mA)	< 675	System lanat 0.7 A	1094	At 12 V DC aqua		
Energy (Wh)		worst care (minimum temp)		worst case (minimum ter		
Frequency Parameters:						
Output Bregaracy (MHz)	10	+ 0 1 Hz	10			
Propency long term defit	1.4×10^{47}	SL/L, over 3 hours	×5.0 × 10 ⁻⁰¹	After 1 month		
Allen Variation	3×10 ¹⁰	<=1 s	3×10^{10}	5 = 1 +		
Auto + enecio	6×10 ¹⁰	5 = 10 4	3×11 ¹⁶	4 = 20 a		

System Architecture Design

Huygens Probe


Sensor Design Tool Tested against Huygens Probe Sensor Packages including:

- Descent Imager Spectral Radiometer (DISR) Doppler Wind Experiment (DWE)
- •Gas Chromatograph Mass Spectrometer (GCMS) Huygens Atmospheric Structure Instrument (HAŠĬ)
- Surface Science Package (SSP)

Gas Chromatograph Mass Spectrometer

Multiple commercial hardware components assembled into Flight Unit Model. Selection based on sensing range of components within sensor tool database

ISSPO	GCMS Sensor Pa	ackage Results			
Model : GCMS - Huyg	ens				
Physical Properties:					
Mats (log)	17.30				
Damenciona (mm)	$470 \times 195 \times 198$	L=W=H			
DC power:					
Typical Power (W)	28	After 36 mm warm-up period			
Average Power (W)	41	At 28 V DC mput			
Peak Power (W)	71				
Senning Parameters:	34.67 11	2.22			
Mate - Charge Range	2-141	MUV-			
Number of Ion Sources	5	unit			
Im Source Charge	1.00	W degas			
Field Range	16.00	W degas			

ſ							
	Atm		cience Packa				
	the	shelf hardware ar	nd custom designe	ed sensor eler			
	Surface Science Package (SSP) Scientific Objectives						
		Determine the physical nature and condition of Titan's surface at the lands					
		Determine the abundances of the major constituents, placing bounds o atmospheric and ocean evolution					
		Measure the thermal, optical, acoustic and electrical properties and densi any ocean, providing data to validate physical and chemical models					
		Determine wave properties and ocean/atmosphere interaction					
		Provide ground truth for interpreting the large-scale Orbiter Radar Mappe other experimental data					
		SSP Sensor Components					
		Sensor	Flight Unit	ISSPO Results			
		Accelerometer - Impact penetrometer ACC-8	Piezoelectric Cenamic PZT-5A	N/A Curtom Design			
		Accelerometer - Impact accelerometer ACC-1	Endevco 2271AM20 0 - 100 g'o	Endreco 2271AM2			
		Tilt Sensor TiL	Spectron L-211U +/- 60*	Spectron L-211U			
		Temperature Sensor THP	Hot Wire 65 - 100 K	M-0146MD			
		Velocity of Sound API-V	Piezoelectric Transducers - 2 150 - 2000 m/s	Physical Acoustics 3:80			
A 11		Acoustic Sounder API-S	Piezoelectric Trimoducers Array	NA			
			Consolution Consol	347.4			

Sensor Tool Operation

Based on a Planetary Body and the type of sens

(sensor types) a package of commercially availal

Summary Data file written with sensor Mass, Pov

and Volume requirements. Detailed sensor files

generated containing sensor specific properties a

data to be returned from the planetary mission

sensor components is determined.

characteristics.

Custom configurations for permittivity sensor, densite acoustic sounder array components

IMPACT

Development of this tool allows the exploration of different sensor technological capabilities, and the ability to integrate the individual sensors into a cohesive package. Data on the resulting sensor package, drives the design of the probe' support systems (power, size, & shape) for a given planetary mission.

Venus Atmosphere Mission

Mission Concept

 Cloud Level Atmosphere (~70 km) appears to rotate as a solid body with a period of 4 data approx 60x faster than the surface. The mechanism driving the super-rotation is currently

Sensor Package Components

Temperature ATMOSPHERE Pressure ATMOSPHERE physical models Provides spacecraft or other EM FIELD RADIATION OPTICS

ISSPO Venus Atmosphere Sensor System Architecture Desults NAME RANGE MASS VOLUME POWER σ 0 0 250 deg C - 13789 MPa UT 10 2000 σ 29.41 cm³ 0.030W Based on Fla t on Range FT 202 0 - 70 m/s 0.500 kg 0.0004 m³ 0 5 - 45 deg Based on 50 g's 0.1417 kg 47.72 cm³ MA15 0.64 W TAM-1 1.000 kg 0.0016 m³ Dared on Pl 0 - 250 0 - 250 M47 UV VESUAL NER 0 LPD 7.00 0.0067 m³ 15 W Rediction T CCD 3041 α 3.324 cm³ 0 Imaging Type, Spectrum, Full

brought to you by ø CORE

N/A N/A

tons Dengr N/A

ton Deag

electric field 12 - West TROAT

s	ensor Package Compo		
	Flight Unit	ISSPO Sys Architecture	ATMOSTIER
	Sunditrand OA-2000-030	Sunditrand OA2000-030	
	Endevce 7264A-2000T	Enferce 7264,A-2000T	DICLINA.
T	Varala - Barocap	Series 48-0025	
			ACCELERA
	dual element platieum	Goodrich Model 0146MD	EM FIEL
	resistance thermometers		
	Rosemount Aerospace Inc.		TAILAT
	Eulte CT-190M	Kulte CT-190M	
	Analog Dences	Analog Devices	OPTE
	ADSP-2100A	ADSP-2100A	14.140

Huygens Atmospheric Structures

Instrument (HASI)

Atmospheric Structure Sensor Package

elements.

Taure

Sensor Packag

(PPD)

HAST

Permittivity, Wave 8

components mixture of commercial of the

shelf hardware and custom designed sensor

Sensor Components