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AgendaAgenda

• Why Ablative TPS?
• What is ablative TPS?
• Entry environments for planetary probes

– Key Physical Challenges
– Sample Entry Environments

• TPS Selection
– Failure modes
– Heat flux, pressure, atmospheric composition
– Heat load

• TPS Testing
• Summary



Preliminary - For Discussion Purposes Only Page 3

6
th International P

lanetary P
robe W

orkshop, A
tlanta, G

eorgia
S

hort C
ourse on E

xtrem
e E

nvironm
ents Technologies

06/21-22
2008

Why Ablative TPS?Why Ablative TPS?



Preliminary - For Discussion Purposes Only Page 4

6
th International P

lanetary P
robe W

orkshop, A
tlanta, G

eorgia
S

hort C
ourse on E

xtrem
e E

nvironm
ents Technologies

06/21-22
2008

What is ablative TPS?What is ablative TPS?
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How hot is How hot is hothot??

• All materials are (potentially)
ablative materials
– If exposed to typical entry

heating, any material will
get to temperatures where it
will either melt, vaporize,
oxidize, sublime, etc.

• For comparison, the
temperature of the sun is
≈ 6000 K

• The gas near the heated
TPS surface (behind the
shock) is at much higher
temperature

Radiation equilibrium
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Aerothermodynamics of Planetary EntryAerothermodynamics of Planetary Entry

qcondqc

qrad

qrerad

qmdot

Design Problem: Minimize conduction
into vehicle to minimize TPS mass/risk

qcond = qc + qrad – qrerad – qmdot

Incident Aeroheating

Material Response

Surface Energy
Balance

Hot Shock Layer
(up to 20000 K)
Thermochemical
nonequilibrium,

Ionization, Radiation

“Cool” Surface
(2–3000 K)

Surface kinetics,
Ablation

Planetary Atmospheres
Mars&Venus: CO2/N2

Titan: N2/CH4
Giants: H2/He
Earth: N2/O2

Boundary Layer
(2–6000 K)
Turbulence,

Ablation product
mixing, Radiation

blockage

V

Afterbody Flow
Unsteady non-

continuum vortical
flowfield
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• Reentry generates a lot of energy:

• Fortunately, most of this energy does not
reach the surface
– >90% of total energy is dissipated via the

bow shock heating the atmospheric gases

Energy Loss over TimeEnergy Loss over Time

Energy (MJ)

End

Parachute
Deploy

Atmospheric
Interface

18
(99.998%)

0.9
(99.94%)

0.2
(99.98%)

1.28 x 105

(88%)
84

(94%)
105

(92%)

1.07 x 10614141260
Galileo ProbeGenesisMER

Stardust Capsule
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Broad Range of Entry EnvironmentsBroad Range of Entry Environments

NASA entry probes have successfully survived entry environments
ranging from the very mild (Mars Viking ~25 W/cm2 and 0.05 atm.)
to the extreme (Galileo ~30,000W/cm2 and 7 atm.)
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Stagnation pressure (atm)

Mars Viking (2.8%)

MER (12%)

MPF (8.2%)

Stardust (22%)

Apollo (13.7%)

Genesis (18%)

Pioneer Venus (13%)

Galileo (50%)
Values in parentheses are TPS mass fraction
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Representative EnvironmentsRepresentative Environments

Venus Earth Mars Jupiter Saturn Titan Neptune

q (kW/cm
2
) 2-7 0.6-2 0.05-0.5 30-60 2-5 0.05-0.25 2-10

Q (kJ/cm
2
) 10-20 10-40 5-10 200-500 50-150 2-6 100-400

p (atm) 10 0.25-0.5 0.25-0.5 5-10 0.5-5 0.25 0.5-5

Direct Entry

Venus Earth Mars Jupiter Saturn Titan Neptune

q (kW/cm
2
) 1-2 0.5-1 0.05-0.3 N/A 3-10 0.05-0.15 3-10

Q (kJ/cm
2
) 40-80 20-50 10-30 N/A 200-500 5-12 500-2000

p (atm) 0.3 0.25 0.25 N/A 0.5-1 0.1 0.5-1.5

Aerocapture

Planned missions will require TPS able to survive a broad range
of entry conditions
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How do ablative materials manage energy?How do ablative materials manage energy?

• Surface reradiation is the
most effective energy
rejection mechanism (60-
80%)
– Carbon or materials that

form carbonaceous chars
are desirable as they attain
very high surface
temperatures and have
high emissivity

– Ablation, even in the
presence of exothermic
oxidation, consumes
energy (20-40%)

– Only a small fraction of the
incident heating is
conducted into the TPS
material (10-20%)
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Material Performance LimitsMaterial Performance Limits

Optimal performance regime is balanced between ablative and
insulation efficiency. When material is used outside of optimal
zone, inefficient performance leads to non-minimal mass fraction.
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Limitations of ablative TPS classes
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Example failure modesExample failure modes

Spallation Loss of  liquid layer
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TPS SelectionTPS Selection

• Objective is minimum TPS mass with reliable performance
– Reliable performance implies that material failure modes are well

understood and environmental conditions leading to failure will not be
encountered (or approached) for the selected mission

– Low density materials are (typically) better insulators than high density
materials

– High density materials are (typically) better ablators than
low density materials

• Ablation is good - it absorbs energy
– Too much ablation may not be good if it leads to shape change

that influences aerodynamics
• TPS selection involves a balance between ablation and insulation

performance and manufacturability
– Select the lowest density material that can handle* the range of

environmental conditions (heat flux, pressure, shear, atmosphere)
– Material should provide effective insulation for imposed heat load
– Procedures for material fabrication, installation, inspection, etc., should be

established and, preferably, demonstrated

*Material should have demonstrated reliability at extreme conditions of interest
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TPS TestingTPS Testing

Arc Plasma FacilitiesArc Plasma Facilities
• Have been used for over 40 years to study TPS material

performance
– Two classes:

• Low enthalpy, high pressure, high heat flux (high β vehicles)
• High enthalpy, low pressure, low-moderate heat flux (low β vehicles;

lifting entry, aeroassist, aerocapture, planetary entry, etc.)
• Significant flexibility

– Pressure: nozzle geometry, test article design, gas mass flow rate
– Enthalpy: gas mass flow rate, electrical power
– Gas composition: most facilities operate with air, but tests have

been conducted with N2, CO2, H2/He, etc. gas streams
• Amenable to sophisticated (non-intrusive) diagnostics

– Surface visibility (film or video), surface pyrometry, PLIF,
emission spectroscopy, etc.

• Capability to simultaneously simulate conditions representative
of flight (e.g.,            )  is rare.
– Requires strategic test planning
– Typically, cannot simulate time-varying conditions (trajectories)

! 

H , ˙ q , p



Preliminary - For Discussion Purposes Only Page 15

6
th International P

lanetary P
robe W

orkshop, A
tlanta, G

eorgia
S

hort C
ourse on E

xtrem
e E

nvironm
ents Technologies

06/21-22
2008

TPSTPS  Testing (concluded)Testing (concluded)

• Inability to simulate the actual flight environment in arc jets
results in significant uncertainties in ground test to flight
traceability

• Well-designed ground-test program should cover the range of
conditions anticipated in flight
– Typically, ground tests cannot simulate some aspects of the flight

environment
• Turbulent flow
• High shear
• High pressure gradient
• Combined convective/radiative heating

• Mechanism-based modeling allows extrapolation with some
confidence
– Identification of surface response mechanisms and development of

high fidelity model significantly reduces performance uncertainties
in flight

– Remaining uncertainties can only be addressed through flight test
with instrumented TPS
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Summary & ConclusionsSummary & Conclusions

• Atmospheric entry qualifies as an extreme environment
• Selection of an ablative TPS for a given mission is governed by the

severity of the entry environment
– High density materials minimize ablation but result in a heavy TPS
– Low density materials minimize insulation thickness and result in a light TPS
– Optimum material (among those available) is the lowest density material

that does not produce excessive ablation while performance is far from
failure thresholds

• Arc plasma facilities produce the best simulation of the entry
environment
– Actual flight conditions (typically) cannot be simulated
– Requires testing over broad range of conditions to understand performance

mechanisms
– Mechanism (physics- and chemistry-) based models enable extrapolation

from ground test to flight
• Ablative materials have been successfully used for thermal protection

for 50 years and will continue to be used in the foreseeable future


