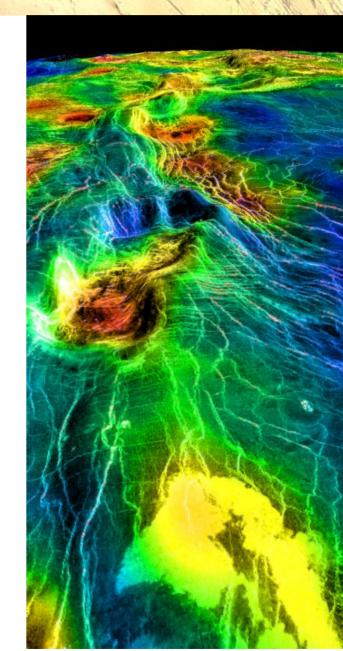


6th International Planetary Probe Workshop IPPW-6, Session III: Probe Missions to the Giant Planets, Titan and Venus

Overview of Flagship Class Venus Mission Architectures

by


Tibor S. Balint, James A. Cutts & Johnny H. Kwok

Jet Propulsion Laboratory, California Institute of Technology

Atlanta, Georgia June 24, 2008

Outline

- Introduction
 - Venus STDT & Study Overview
 - A world of contrasts
 - Extreme Environments of Venus
 - Role of Mission Architectures
- Typical mission architectures at Venus
- Venus STDT Process
 - VSTDT Process Description
 - Science & Technology Traceability & FOM
- Interim Study Results
- Conclusions

Introduction
Venus STDT & Study Overview

- NASA is interested in a high science-return inner solar system Flagship mission in addition to Mars Sample Return
 - Target Launch: 2020 2025
 - Life Cycle Mission Cost Range: \$3-4B (FY'08)
 - Technology Maturation: TRL 6 by 2015
- Venus STDT formed on 1/8/08 by NASA
 - to define a Flagship-class mission to Venus
- The combined team of **scientists**, **engineers** and **technologists** is tasked to
 - determine prioritized science objectives,
 - recommend suitable flagship class mission architectures,
 - assess cost, and other mission elements
 - recommend a <u>Venus technology development roadmap</u>
- Final report due to NASA by late November 2008

Acknowledgments – VSTDT & Study Team

Atmosphere Subgroup

- David Grinspoon (DMNS)
- Anthony Colaprete (NASA Ames)
- Sanjay Limaye (U. Wisconsin)
- George Hashimoto (Kobe U.)
- Dimitri Titov (ESA)
- Eric Chassefiere (U. of Nantes--France)
- Hakan Svedhem (ESA)

Geochemistry Subgroup

- Allan Treiman (LPI)
- Steve Mackwell (LPI)
- Natasha Johnson (NASA GSFC)

Geology and Geophysics

- Jim Head (Brown University)
- Dave Senske (JPL)
- Bruce Campbell (Smithsonian)
- Gerald Schubert (UCLA)
- Walter Kieffer (LPI)
- Lori Glaze (NASA GSFC)

Technology

- Elizabeth Kolawa (JPL)
- Viktor Kerzhanovich (JPL)
- Gary Hunter (NASA GRC)
- Steve Gorevan (Honeybee Robotics)

Ex Officio

- Ellen Stofan (VEXAG Chair)
- Tibor Kremic (NASA GRC)

JPL Venus Flagship Study Core Team

- Johnny Kwok (Study Lead)
- Tibor Balint (Mission Lead)
- Craig Peterson
- Tom Spilker

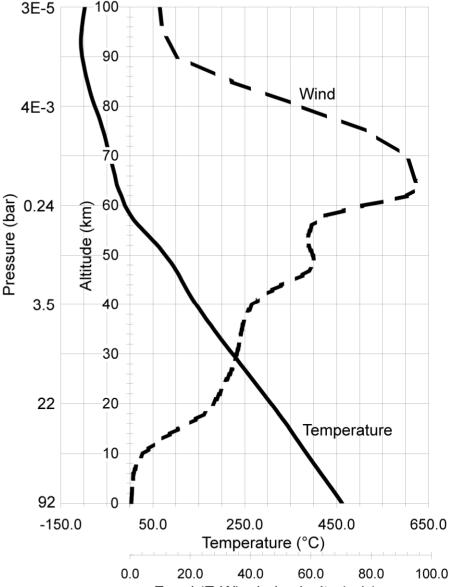
NASA and JPL

- Jim Cutts (JPL)
- Adriana Ocampo (NASA HQ)

Venus: World of Contrasts

- Why is Venus so different from Earth?
 - What does the Venus greenhouse tell us about climate change?
 - Could be addressed with probes & balloons at various altitudes
 - How active is Venus?
 - Could be addressed with orbiters & in-situ elements
 - When and where did the water go?
 - Could be addressed with landers

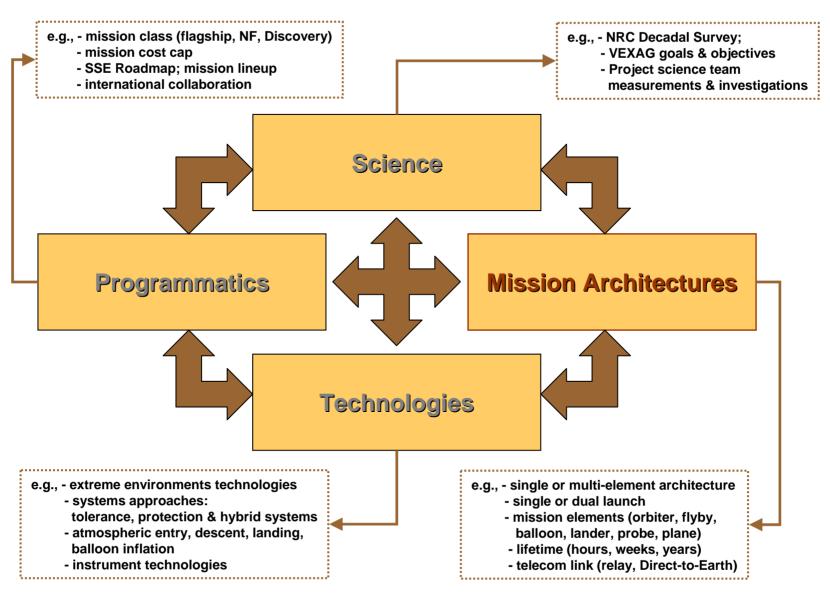

Ref: M. Bullock, D. Senske, J. Kwok, Venus Flagship Study: Exploring a World of Contrasts (Interim Briefing), NASA HQ, May 9, 2008 Solar wind Atmosphere Climate Crust Core


Ref: Image by E. Stofan & T. Balint

Ref: VEXAG White Paper, 2007-2008

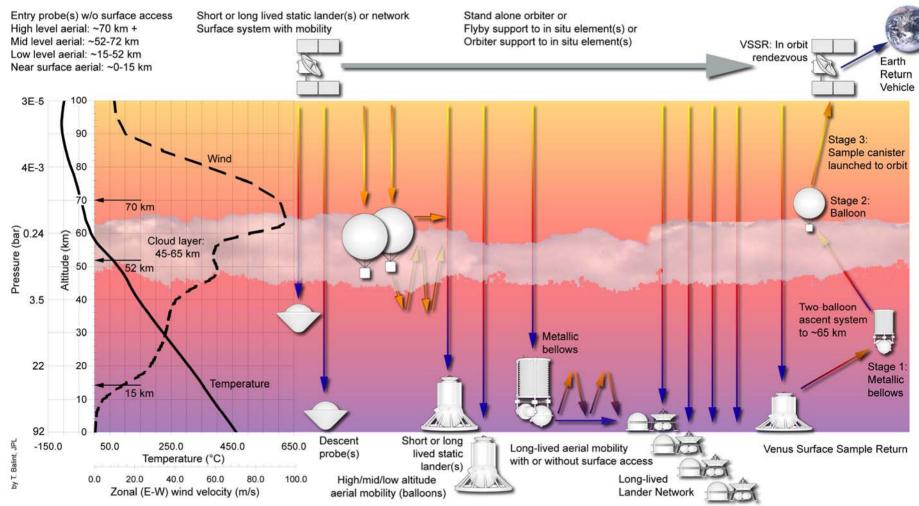
Introduction The Extreme Environment of Venus

- Greenhouse effect results in VERY HIGH SURFACE TEMPERATURES
- Average surface temperature: ~ 460°C to 480°C
- Average **pressure** on the surface: ~ 92 bars
- Cloud layer composed of aqueous sulfuric acid droplets
 - at ~45 to ~70 km attitude
- Venus atmosphere is mainly CO2 (96.5%) and N2 (3.5%) with:
 - small amounts of noble gases (He, Ne, Ar, Kr, Xe)
 - small amount of reactive trace cases (SO2, H2O, CO, OCS, H2S, HCI, SO, HF ...)
- Zonal winds: at 4 km altitude ~1 m/s: at 55 km ~60 m/s; at 65 km ~95 m/s
- Superrotating prograde jets in the upper atmosphere



Ref: C. Wilson, U of Oxford, Personal communications

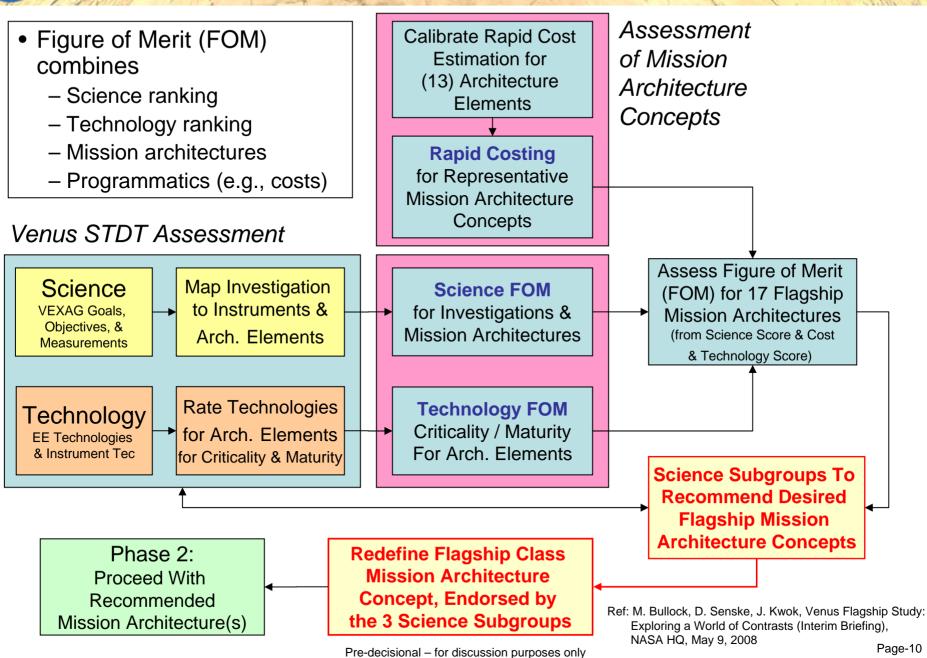
Ref: V. Kerzhanovich et al., "Circulation of the atmosphere from the surface to 100 km".


Pre-decisional - for discussion purposes only

Role of Mission Architectures

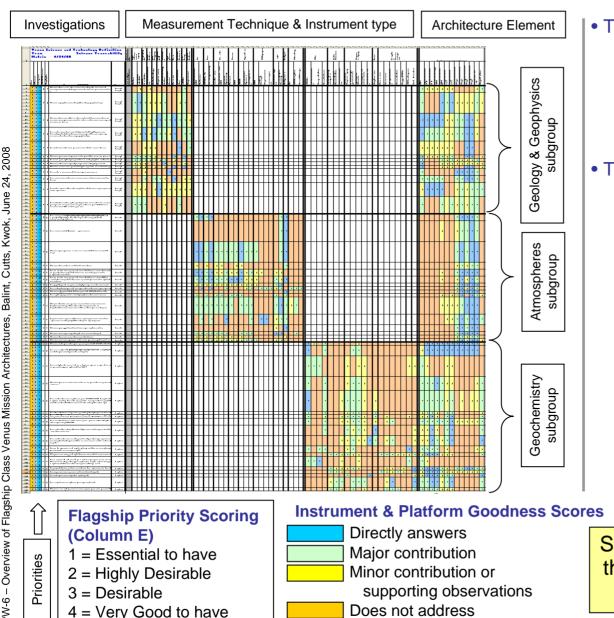
Note: NF – New Frontiers mission class (assumed cost cap: ~\$650M w/o launch vehicle) Flagship class (assumed cost cap: ~\$2-4B); Discovery class (assumed cost cap: ~\$450M)

Mission Architectures Potential Venus Mission Elements



Mission Architectures Grouping of Typical Venus Mission Architectures

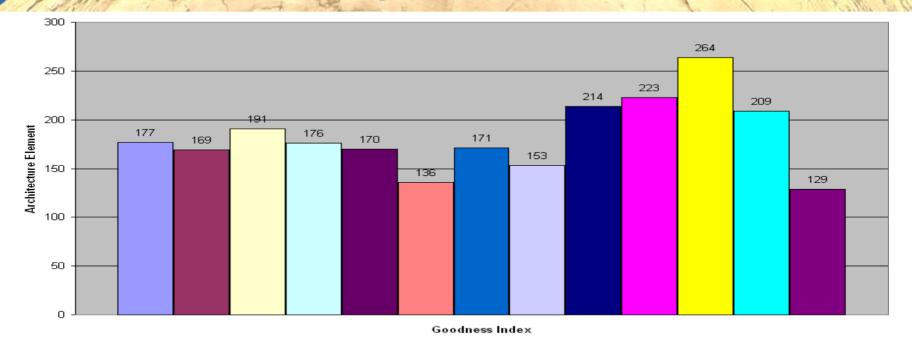
Ref: Cutts, Balint, "Overview of typical mission architectures", 3rd VEXAG meeting, Crystal City, VA, Jan.11-12, 2007


VSTDT Process Description Flowchart for the VSTDT FOM Process

June 24, 2008 Balint, Cutts, Kwok, PPW-6 – Overview of Flagship Class Venus Mission Architectures,

VSTDT Process Description Science Traceability Matrix & Technology Assessment

- Two technology categories:
 - -For operation and survivability of subsystems on architectural elements
 - -For science measurements.

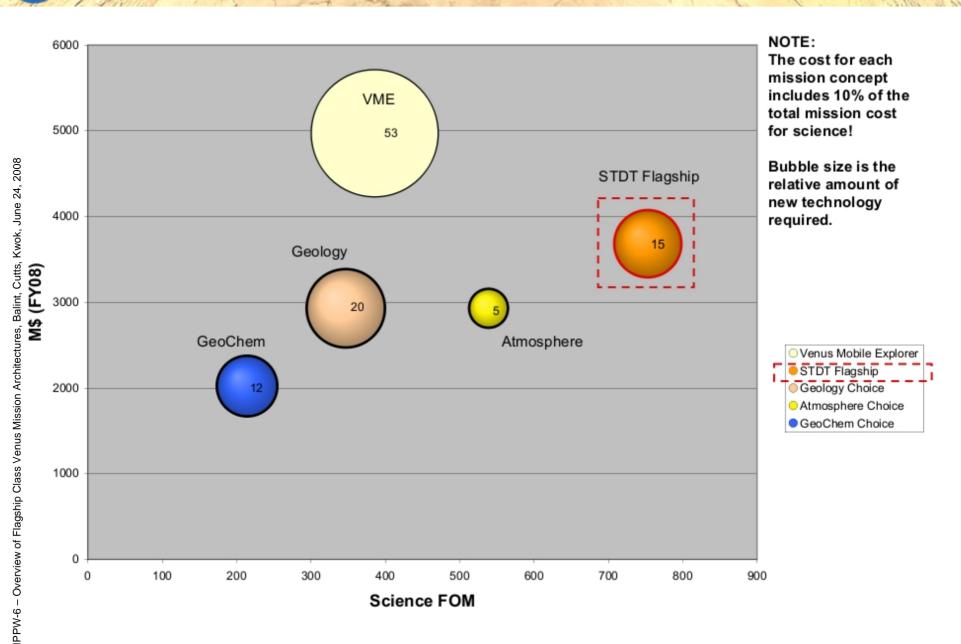

Technology Assessment Process:

- STDT technology sub-group identified major technology drivers for all potential missions
- Technology Figure of Merit (FOM) was determined using two factors:
 - Technology criticality for a specific architecture element - assessed by the mission architecture team
 - Technology maturity assessed by the technology sub-group

Science & Technology FOMs were then used in the overall proposed mission architecture selection

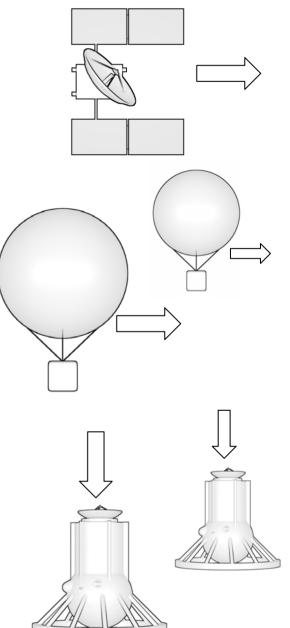
Architecture Element Figure of Merit (FOM)

Summary of FOM & Costing for Mission Architecture Elements


		Architecture Element														
	Orbiter	High-Level Aerial (> 70 km)	Mid-Level Aerial (52-70 km)	Low-Level Aerial (15-52 km)	Near-Surface Aerial (0-15 km)	Single Entry Probe (no surf.)	Multiple Entry Probe (no surf.)	Short-Lived Lander (Single)	Short-Lived Lander (Multiple)	Long-Lived Lander (Single)	Long-Lived Lander (Multiple)	Surface System with mobility	Coordinated Atmospheric Platforms			
Science FOM	177	169	191	176	170	136	171	153	214	223	264	209	129			
Technology FOM	0	3	3	14	20	2	2	12	12	21	21	53	21			
Cost Estimate (in \$B)	0.5	0.6	0.9	1.5	2.1	0.51	0.54	1.0	1.1	2.3	2.3	3.6	2.0			

Selected Mission Architecture Concepts		Architecture Elements														_
	Flyby	Orbiter	High-Level Aerial (> 70 km)	Mid-Level Aerial (52-70 km)	Low-Level Aerial (15-52 km)	Near-Surface Aerial (0-15 km)	Single Entry Probe (no surf.)	Multiple Entry Probe no surf.	Short-Lived Lander (Single)	Short-Lived Lander (Multiple)	Long-Lived Lander (Single)	Long-Lived Lander (Multiple)	Surface System with mobility	Cost (08M\$)	Science Score	Technology Score
Venus Mobile Explorer (VME)		1											1	\$5B	386	53
Geology Subgroup's Choice		1				1								\$3.2B	347	20
Atmospheric Subgroup's Choice		1		2				2						\$2.9B	539	5
GeoChem Subgroup's Choice	1									2				\$2B	214	12
STDT Flagship		1		2						2				\$3.7B	753	15

- A total of 17 mission architecture concepts were assessed
- Including 3 science subgroups recommended mission architectures
 - one desired mission architecture per subgroup
 - one single architecture that combined all science goals

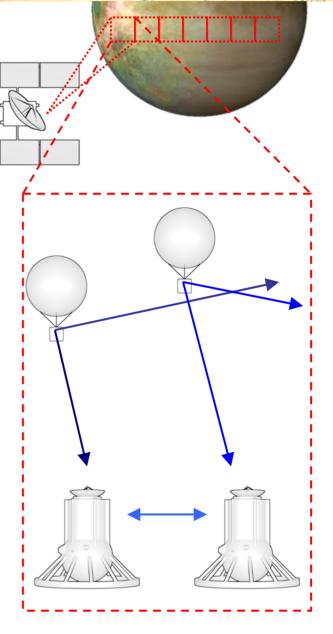

Mission Architecture FOM

Science FOM vs. Mission Cost & Technology Scores

Conclusions
Ongoing Mission Architecture Study

- Based on these, a **mission architecture** was identified, that
 - Meets all the highest science priorities, and
 - Has the highest Figure of Merit (FOM)
- A capable orbiter (years) with high resolution radar imaging and topography
- 2 instrumented balloons between 52 and 70 km (weeks)
- 2 landers with extended surface life (hours) that also would acquire detailed atmospheric data on descent
 - Potential add-on science with single long lived instrument is not excluded, and could enhance science return

Conclusions Science Synergies for the Proposed Flagship Architecture


- **Deployment** of in-situ elements:
 - 2 landers + 2 balloons deployed at the same time
 - Probe descents to be targeted to go near balloon paths
- Measurement synergies for atmospheric science
 - 2 landers would give vertical slices of the atmosphere during descent
 - 2 balloons would give zonal and meridional slices roughly intersecting balloon paths

Science synergies between geochemistry and atmosphere

- Simultaneous geochemical and mineralogical analysis
- Spatial and temporal atmospheric gas analysis
 - Two disparate locations at the same time

Science synergies between geology and geochemistry

- Landings on tessera and volcanic plains
 - for comparative geology and geochemistry

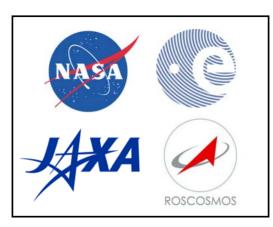
Conclusions Technology Considerations

- The proposed preliminary sciencedriven architecture combines technologically mature elements (TRL 6) with moderate technology development requirements
 - Requires system level technology development, for example:
 - environmental testing (high P,T, CO2, Corrosion)
 - pressure & temperature mitigation
 - sample acquisition & handling

Requires instrument technology development for example

- InSAR
- High temperature in situ instrumentation

For more high value science


- High P,T Seismometers
- High T power generation and storage
- High T electronics and telecom

 Multi-element architecture lends itself to international collaboration

Conclusions International Collaboration

- Proposed Timing for international collaboration:
 - NASA (Venus Flagship)
 - ESA's (VEX Current-2011 Cosmic Vision EVE > 2020)
 - JAXA (VCO 2010 follow on, mid-low-cloud balloon > 2016)
 - Russia (Venera D)

The End ... or just the beginning ...