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Original MSL Concept (2001)

• MSL stood for: Mars Smart Lander (circa 2001)   

• Conditions were laminar and ~1.5x higher than previous Mars missions
• Previous maximum heat flux for Mars mission achieved on Pathfinder ~105 W/cm2

• Requirements creep abounded 
• Increase in rover size resulted in geometry and mass increases 
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MSL Concept Today

• Mars Science Laboratory (launch 
date Sept ’09)

• Mass “grew”, geometry changed, 
velocities increased

• Flow on the leeward side became 
turbulent 

• Conditions were no longer moderate 
(~2.5x previous Mars missions)

Heatshield Aerothermodynamics 
Requirements in 2007

at Max. Heat Flux Location
Requirement Value

Max. qw (W/cm2) 272
Max. τw (Pa) 639

Max. pw (atm) 0.280
Max. Qw (J/cm2) 7588

Stag 
pt
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Initial Approach

• Assume that what has always flown to Mars, SLA-561V, 
can fly this mission

• Perform stagnation arc jet tests 
• Tested from 30 W/cm2 to 300 W/cm2 (hot wall)
• Instrumented with in-depth thermocouples
• Specimens were well behaved
• Some melted glass on the surface
• Higher heat flux specimens were placed in collars to avoid 

removal of material from “open” honeycomb
• Low shear over specimens, so no indication of melt flow

• Develop high fidelity response model (HFRM)
• Good match of in-depth thermocouples and recession achieved 

assuming glass vaporizes (no melt flow)
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Post-test photos: SLA-561V 
longest exposure time at each heat flux

30 W/cm2 90 W/cm2

Hot wall heat fluxes are shown

150 W/cm2

210 W/cm2 270 W/cm2 300 W/cm2
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HFRM results

Prediction vs data at 210 W/cm2Prediction vs data at 150 W/cm2



RASB: 7

Mars Science Laboratory

IPPW, Session VIII, June 2008

Next: Determine What Happens in Shear

• Ames Turbulent Flow Duct (TFD) was used to get a first look 
at SLA-561V response in shear

• Relatively high shear environment ~300 Pa
• Augmented heating with radiation plate opposite sample

• Attempted to achieve maximum heat flux (~150 W/cm2)
• View factor effects may have resulted in non-uniform recession
• In-depth deposition of the incident radiation may have resulted in 

thicker melt layer

• Grooves in samples (may be due to Goertler Vortices)
• Evidence of glass melt and shear-induced flow
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TFD Samples

Flow

Test 1 Test 2

Flow
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Additional Tests in Shear to Verify Behavior

• Test in wedge and swept cylinder configurations in IHF and AEDC arc jet 
facilities

• Attempt to match flight heat flux, shear, enthalpy, pressure……can’t be 
done simultaneously

• Material was somewhat well behaved (~2-4X HFRM recession) in high 
heating, high enthalpy conditions (albeit surface melted and flowed)
• Could be modeled with HFRM with a “failing” surface at a melt temperature

• As enthalpy was reduced and heating became more moderate
• Catastrophic failure occurred (~20X HFRM)
• Filler material seemed to “turn to sand” and evacuate the cells
• Honeycomb cells remained standing, but with little filler remaining
• Not a melt-fail condition
• Could not understand the phenomenon, so it could not be predicted

• The question became: How can we predict what will happen in flight if we 
can’t predict what will happen in testing?  Answer: We can’t
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IHF Configurations
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High Heating, High Enthalpy IHF Wedge

IR Camera Image
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Low Enthalpy, Moderate Heating IHF Wedge

All cells 
emptied!

IR Camera Image
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High Enthalpy, Moderate Heating IHF Swept Cylinder

IR Camera Image
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Low Enthalpy, Moderate-Low Heating IHF Swept 
Cylinder

All cells 
emptied!

IR Camera Image
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Additional Investigations

• Considered the possibility of the creation of 
a melt layer (in the high enthalpy flow) might 
protect the material as the enthalpy comes 
down during the flight…..

• Ramped enthalpy during the exposure
• The cells still emptied, pushing away the 

protective melt layer, cascading down the 
specimen

Initial Condition
Cold wall heat flux = 175 W/cm2
Pressure = 0.30 atm
Bulk Enthalpy = 14 MJ/kg
3 second dwell

9 second ramp to final condition
Cold wall heat flux 165 W/cm2
Pressure = 0.39 atm
Bulk Enthalpy = 8 MJ/kg
12 second dwell
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Decision Required

• At this point, the decision was made to recommend that the project 
determine if they could achieve the mission with a substantially reduced 
trajectory (peak heating < 100 W/cm2)
• Heating low enough to preclude SLA-561V melt 

• A new thermal protection system needed to be designed (~23 months 
before launch)

The project determined that trajectory could not be reduced enough
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New Direction – Define a New TPS for MSL

• Leverage off work that the CEV Advanced Development Program (ADP) has 
performed on Phenolic Impregnated Carbon Ablator (PICA) tiled heatshield design

• PICA had flight heritage – flew as a single piece as Stardust TPS
• The ADP had already built a full sized Manufacturing Demonstration Unit (MDU) with 

large PICA tiles and filled gaps
• The ADP had performed arc jet studies on gap sizes, fillers
• CEV environments were higher than MSL (heat flux, shear, and pressure)

• Understand the differences between the CEV and MSL heatshields
• MSL aeroshell has composite face sheets over aluminum honeycomb

• Coefficient of Thermal Expansion (CTE) of face sheets comparable to PICA
• Very little deflection

• CEV aeroshell has metallic (Titanium) face sheets over titanium honeycomb
• CTE of face sheets >> PICA
• Much larger deflection than MSL design

• Develop MSL PICA TPS design, analyze and test
• PICA tiles direct-bonded to structure
• Filled gaps

This will be the first time NASA has flown a tiled ablator on a reentry heatshield
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Where Are We Now?

• MSL has just completed the Heatshield CDR
• MSL PICA specification has been defined
• Tile layout has been designed

• MDU’s built to develop bonding and gap-filling processes
• Engineering Demonstration Units (EDU’s) in process

• Mass allocation analysis has determined the maximum allowable PICA 
thickness

• Aerothermal analyses for +3σ

 

TPS thickness sizing are showing that the 
heatshield will have ~25% additional margin 

• Thermal structural tests show that the design has positive structural margin
• Performed over 80 developmental arc jet tests on MSL PICA concept at 

MSL conditions 
• Stagnation test (instrumented to validate PICA HFRM)
• Swept cylinder and wedge tests to observe response in shear
• Turbulent Flow Duct and AEDC wedge test to observe response in turbulent 

flow and shear
• We are currently planning qualification tests
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