

The Evolution of the MSL Heatshield

by

Robin A. S. Beck, NASA Ames Research Center David M. Driver, NASA Ames Research Center Eric M. Slimko, Jet Propulsion Laboratory

June 26, 2008

International Planetary Probe Workshop Session VIII, Current Planetary Probe Science and Technology Atlanta, GA

Mars Science Laboratory

• MSL stood for: Mars Smart Lander (circa 2001)

- Conditions were laminar and ~1.5x higher than previous Mars missions
 - Previous maximum heat flux for Mars mission achieved on Pathfinder ~105 W/cm²
- Requirements creep abounded
 - Increase in rover size resulted in geometry and mass increases

MSL Concept Today

- Mass "grew", geometry changed, velocities increased
- Flow on the leeward side became turbulent
- Conditions were no longer moderate (~2.5x previous Mars missions)

at Max. Heat Flux Location	
Requirement	Value
Max. q _w (W/cm ²)	272
Max. τ _w (Pa)	639
Max. p _w (atm)	0.280
Max, Q, (J/cm^2)	7588

- Assume that what has always flown to Mars, SLA-561V, can fly this mission
- Perform stagnation arc jet tests
 - Tested from 30 W/cm² to 300 W/cm² (hot wall)
 - Instrumented with in-depth thermocouples
 - Specimens were well behaved
 - Some melted glass on the surface
 - Higher heat flux specimens were placed in collars to avoid removal of material from "open" honeycomb
 - Low shear over specimens, so no indication of melt flow
- Develop high fidelity response model (HFRM)
 - Good match of in-depth thermocouples and recession achieved assuming glass vaporizes (no melt flow)

Post-test photos: SLA-561V

longest exposure time at each heat flux

Mars Science Laboratory

Hot wall heat fluxes are shown

HFRM results

Prediction vs data at 150 W/cm²

Prediction vs data at 210 W/cm²

- Ames Turbulent Flow Duct (TFD) was used to get a first look at SLA-561V response in shear
- Relatively high shear environment ~300 Pa
- Augmented heating with radiation plate opposite sample
 - Attempted to achieve maximum heat flux (~150 W/cm²)
 - View factor effects may have resulted in non-uniform recession
 - In-depth deposition of the incident radiation may have resulted in thicker melt layer
- Grooves in samples (may be due to Goertler Vortices)
- Evidence of glass melt and shear-induced flow

TFD Samples

Test 2

Test 1

- Test in wedge and swept cylinder configurations in IHF and AEDC arc jet facilities
- Attempt to match flight heat flux, shear, enthalpy, pressure.....can't be done simultaneously
- Material was somewhat well behaved (~2-4X HFRM recession) in high heating, high enthalpy conditions (albeit surface melted and flowed)
 - Could be modeled with HFRM with a "failing" surface at a melt temperature
- As enthalpy was reduced and heating became more moderate
 - Catastrophic failure occurred (~20X HFRM)
 - Filler material seemed to "turn to sand" and evacuate the cells
 - Honeycomb cells remained standing, but with little filler remaining
 - Not a melt-fail condition
 - Could not understand the phenomenon, so it could not be predicted
- The question became: How can we predict what will happen in flight if we can't predict what will happen in testing? Answer: We can't

IHF Configurations

Wedges (20° and 30°)

Swept Cylinder at 30° and 40°

High Heating, High Enthalpy IHF Wedge

Low Enthalpy, Moderate Heating IHF Wedge

High Enthalpy, Moderate Heating IHF Swept Cylinder

Low Enthalpy, Moderate-Low Heating IHF Swept Cylinder

Additional Investigations

- Considered the possibility of the creation of a melt layer (in the high enthalpy flow) might protect the material as the enthalpy comes down during the flight.....
 - Ramped enthalpy during the exposure
- The cells still emptied, pushing away the protective melt layer, cascading down the specimen

```
Initial Condition
Cold wall heat flux = 175 W/cm2
Pressure = 0.30 atm
Bulk Enthalpy = 14 MJ/kg
3 second dwell
9 second ramp to final condition
Cold wall heat flux 165 W/cm2
Pressure = 0.39 atm
Bulk Enthalpy = 8 MJ/kg
12 second dwell
```


- At this point, the decision was made to recommend that the project determine if they could achieve the mission with a substantially reduced trajectory (peak heating < 100 W/cm2)
 - Heating low enough to preclude SLA-561V melt

The project determined that trajectory could not be reduced enough

A new thermal protection system needed to be designed (~23 months before launch)

New Direction – Define a New TPS for MSL

Mars Science Laboratory

- Leverage off work that the CEV Advanced Development Program (ADP) has performed on Phenolic Impregnated Carbon Ablator (PICA) tiled heatshield design
 - PICA had flight heritage flew as a single piece as Stardust TPS
 - The ADP had already built a full sized Manufacturing Demonstration Unit (MDU) with large PICA tiles and filled gaps
 - The ADP had performed arc jet studies on gap sizes, fillers
 - CEV environments were higher than MSL (heat flux, shear, and pressure)
- Understand the differences between the CEV and MSL heatshields
 - MSL aeroshell has composite face sheets over aluminum honeycomb
 - Coefficient of Thermal Expansion (CTE) of face sheets comparable to PICA
 - Very little deflection
 - CEV aeroshell has metallic (Titanium) face sheets over titanium honeycomb
 - CTE of face sheets >> PICA
 - Much larger deflection than MSL design
- Develop MSL PICA TPS design, analyze and test
 - PICA tiles direct-bonded to structure
 - Filled gaps

This will be the first time NASA has flown a tiled ablator on a reentry heatshield

- MSL has just completed the Heatshield CDR
 - MSL PICA specification has been defined
 - Tile layout has been designed
 - MDU's built to develop bonding and gap-filling processes
 - Engineering Demonstration Units (EDU's) in process
 - Mass allocation analysis has determined the maximum allowable PICA thickness
 - Aerothermal analyses for +3 σ TPS thickness sizing are showing that the heatshield will have ~25% additional margin
 - Thermal structural tests show that the design has positive structural margin
- Performed over 80 developmental arc jet tests on MSL PICA concept at MSL conditions
 - Stagnation test (instrumented to validate PICA HFRM)
 - Swept cylinder and wedge tests to observe response in shear
 - Turbulent Flow Duct and AEDC wedge test to observe response in turbulent flow and shear
- We are currently planning qualification tests

NASA Ames Research Center

Bernard Laub Michael J. Wright Helen H. Hwang Edward Martinez Chun Tang Kristina Skokova, Eloret Steven Sepka, Eloret Dinesh Prabhu, Eloret CEV ADP Team Imelda Terrazas-Salinas Enrique Carballo Frank Hui Edward Schairer J.T. Heineck Cesar Acosta, Planners Collaborative Jose Santos, Sierra Lobo Todd White, Eloret

NASA Langley Research Center

Karl T. Edquist John Dec Artem Dykonov

Jet Propulsion Laboratory

Adam Steltzner Christine Szalai

Pamela Hoffman Mars Exploration Program

Lockheed Martin

William Willcockson Scott Stolpa

Jarvis Songer Richard Hund