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Abstract

Streaming video applications on the Internet generally have very high bandwidth
requirements and yet are often unresponsive to network congestion. In order to avoid
congestion collapse and improve video quality, these applications need to respond to
congestion in the network by deploying mechanisms to reduce their bandwidth re-
quirements under conditions of heavy load. In reducing bandwidth, video with high
motion will look better if all the frames are kept but the frames have low quality,
while video with low motion will look better if some frames are dropped but the re-
maining frames have high quality. Unfortunately, current video applications scale to
fit the available bandwidth without regard to the video content. In this paper, we
present a content-aware scaling mechanism that reduces the bandwidth occupied by
an application by either dropping frames (temporal scaling) or by reducing the qual-
ity of the frames transmitted (quality scaling). We have designed a streaming video
client and server with the server capable of quantifying the amount of motion in an
MPEG stream and scaling each scene either temporally or by quality as appropriate,
maximizing the quality of each video stream. We have evaluated our setup by con-
ducting a user study wherein the subjects rated the quality of video clips that were
first scaled temporally and then scaled by quality in order to establish the optimal
mechanism for scaling a particular stream. We find that our content-aware scaling
can improve perceived video quality by as much as 50%. We have also evaluated the
practical impact of adaptively scaling the video stream by conducting a user study
for longer video clips with varying amounts of motion and available bandwidth. We
find that for such clips the improvement in perceptual quality on account of adaptive
content-aware scaling is as high as 30%

1 Introduction

The Internet disseminates enormous amounts of information for a wide variety of appli-
cations all over the world. As the number of active users on the Internet has increased
so has the tremendous volume of data that is being exchanged between them, resulting
in periods of transient congestion on the network. To overcome short-term congestion



and avoid long-term congestion collapse, various congestion control strategies have been
built into the Transmission Control Protocol (TCP), the de facto transport protocol on
the Internet. For multimedia traffic however, TCP is not the protocol of choice. Unlike
traditional data flows, multimedia flows do not necessarily require a completely reliable
transport protocol because they can absorb a limited amount of loss without significant
reduction in perceptual quality [6]. Also, multimedia flows have fairly strict delay and
delay jitter requirements. For these reasons, streaming video applications often use the
User Datagram Protocol (UDP) rather than TCP. This is significant since UDP does not
have a congestion control mechanism built in, meaning most multimedia flows are unable
to respond to network congestion and adversely affect the performance of the network as
a whole.

While proposed multimedia protocols [9, 19, 4] respond to congestion by scaling back
the data rate, these protocols still require a mechanism at the application layer to map the
scaling technique to the data rate. In times of network congestion, the random dropping of
frames by congested routers may seriously degrade multimedia quality since the encoding
mechanisms for multimedia generally bring in numerous dependencies between frames [16].
For instance, in MPEG encoding, dropping an independently encoded frame (I-frame) will
result in the following dependent frames (P-frames or B-frames) not being fully decoded,
so it may be more effective to just discard the frames before sending them rather that
occupying unnecessary bandwidth. In fact, a 3% packet loss in an MPEG coded bit stream
can translate into a 30% frame error rate [3]. A multimedia application that is aware of
these data dependencies can discard the frames that are the least important much more
efficiently than can the router [11]. Such application specific data rate reduction is called
media scaling.

Media scaling techniques for video can be broadly categorized as follows [2]:

o Spatial scaling: In spatial scaling, the size of the frames is reduced by encoding fewer
pixels and increasing the pixel size, thereby reducing the level of detail in the frame.

o Temporal scaling: In temporal scaling, the sending discards frames. The order
in which the frames are discarded depends upon the relative importance of the
different frame types. In the case of MPEG, the encoding of the I-frames is done
independently and they are therefore the most important and are discarded last.
The encoding of the P-frames is dependent on the I-frames, the encoding of the
B-frames is dependent on both the I-frames and the P-frames, and the B-frames are
least important since no frames are encoded based upon the B-frames. Therefore,
B-frames are most likely to be the first ones to be discarded.

o Quality scaling: In quality scaling, the quantization levels are reduced, chrominance
is dropped or compression coefficients are dropped. The resulting frames are lower
in quality and may have fewer colors and details.

It has been shown that the content of the stream can be an important factor in influ-
encing the choice of the preferred scaling technique (i.e. temporal, spatial or quality) [2].
For instance, if a movie scene has high motion and had to be scaled then it would look
better if all the frames were played out albeit with lower quality. That would imply the
use of either quality or spatial scaling mechanisms. On the other hand, if a movie scene



has little motion and had to be scaled it would look better if a few frames were dropped
but the frames that were shown were of high quality. Such a system has been suggested
in [13] but the quantitative benefits to multimedia quality for the users has yet to be
determined. Other techniques for multimedia scaling have been proposed (see Section 2),
which operate at the network layer or the application layer or at both the layers. Unfor-
tunately, none of the techniques take into account the content of the video when scaling
bandwidth.

In this work, we utilized filtering mechanisms [23] to change the characteristics of audio
or video streams by discarding frames and changing the quantization levels in conjunction
with a real-time content analyzer we developed that measures the motion in an MPEG
stream in order to implement a content-aware scaling system. We conducted a user study
where the subjects rate the quality of video clips that are first scaled temporally and then
by quality in order to establish the optimal mechanism for scaling a particular stream.
We find that content-aware scaling can improve perceptual quality of video by as much as
50%. We evaluated the performance of the adaptive scaling system by conducting a user
study where the users watched video clips that had varying amounts of motion as opposed
to the relatively consistent amounts of motion for the earlier user study. We find that
adaptive content-aware scaling can improve the perceptual quality of video by as much as
30%.

The remainder of this paper is organized as follows: Section 2 describes related work in
this field; Section 3 discusses our methodology and approach, including our motion mea-
surement technique; Sections 4 and 5 detail our experiments and their results, respectively;
and Sections 6 and 7 describe our conclusions and possible future work.

2 Related Work

Various techniques have been proposed to address the problem of network congestion
from unresponsive multimedia streams on the Internet. These techniques can be broadly
classified as being network level, application level or a hybrid of both. In this section, we
describe some of the proposed techniques from all three classes.

2.1 Network Level Techniques

TCP-Friendly Rate Control (TFRC) [9] is a mechanism for equation-based congestion con-
trol for unicast traffic over the Internet. Unlike TCP, where the sending rate is controlled
by a congestion window that is halved for every lost packet, TFRC refrains from reducing
the sending rate in half in response to a single packet-loss. Instead, the sender explicitly
adjusts its sending rate as a function of measured rate of loss events, where a loss event
consists of one or more packets lost in a single round trip time. TFRC has been shown
to provide smoother data rates than does TCP while still providing TCP-Friendly data
rates in the presence of congestion.

The Rate Adaptation Protocol (RAP) [19] is a TCP-friendly protocol that employs an
additive increase, multiplicative decrease (AIMD) algorithm for congestion control. RAP
also includes an architecture for the delivery of real-time layered encoded stored real-time
streams over the Internet [18]. RAP’s primary goal is to be TCP-friendly while separating
network congestion control from application level reliability and error control because the



former depends on the state of the network while the latter is application specific. Thus,
unlike TCP, RAP does not offer a 100% reliable transport layer which, within bounds, is
acceptable to multimedia applications.

Above are a few of the network-centric approaches to addressing the network band-
width problems of unresponsiveness in multimedia flows, but they do not consider the
application level constraints of multimedia flows like frame interdependence and stream
content. Our approach can use the above protocols and allow better use of the available
network bandwidth.

2.2 Application Level Techniques

Shin et al [20] proposes a content-based packet video forwarding mechanism for a differen-
tiated services (DiffServ) [1] network. The QoS interaction between the video applications
and the DiffServ network is taken into account. The interaction is performed through a
dynamic mapping between the relative priority score (RPS) of each video packet and the
differentiated packet forwarding mechanism. The RPS is computed taking into account
the characteristics of its component macroblocks like the encoding type, associated motion
vectors, total size in bytes, etc. The RPS of each packet is then mapped to one of the
network DiffServ levels. Each packet is then assigned to a queue class which gets a specific
reliability level depending, possibly, on the price paid for the service. The differentiation
in queuing can potentially be realized by adopting multiple queues with different drop
curves known as multiple RED [7] or RED with in and out bit (RIO) [5]. However, multi-
ple queue management with packet priorities is not achievable in todays Internet and even
a progression towards such priority classes will entail a single best-effort class of traffic for
the foreseeable future.

Yeadon et al [24] develop a filtering mechanism for multimedia applications that is
capable of scaling media streams, predominantly MPEG-1 and Motion-JPEG encoded
streams. Most of these filters work on compressed or semi-compressed bit-streams and
can change the characteristics of the multimedia streams by dropping frames, dropping
colors, changing quantization levels, etc. We integrate these filters with our server module
and use them in conjunction with a real-time content analyzer we developed to build our
adaptive content-aware scaling system.

Walpole et al [22] develop a player for adaptive MPEG video streaming over the
Internet. The player is capable of adapting to the available bandwidth by scaling the
stream temporally (i.e. discarding frames at the sender in a predefined precedence), taking
advantage of the inherent characteristics of the MPEG encoding scheme as shown in
Table 1. The first frames to be discarded in case of congestion are the bi-directional
encoded (B-frames) since the other (I- and P-frames) do not depend on the B-frames for
their decoding. The predictive encoded (P-frames) are discarded next. [4] uses a similar
temporal scaling scheme to develop a flow controlled multimedia application over UDP.

2.3 Hybrid Techniques

Jacobs and Eleftheriadis [12] propose a semi-reliable protocol that uses a TCP congestion
window to pace the delivery of data into the network to manage multimedia congestion.
However other TCP algorithms, like retransmissions of dropped packets, etc. that are



Table 1: Temporal Rate Adaptation for MPEG

‘ Frame Rate ‘ Send Pattern ‘
2.5 r - - - - - - - - - - -1
5.0 I - - P - - - - - - - -1
10.0 I - - P - - P - - P - -1
15.0 I - - P B - P - - P B - 1
20.0 I - B P - B P - B P - B I
30.0 I B B P B B P B B P B B I

detrimental to real time multimedia applications have not been incorporated.

Receiver-driven Layered Multicast (RLM) [14] uses a layered source coding algorithm
[15] with a layered transmission system. In RLM, the source signal is encoded into a
number of layers that can be incrementally combined to provide progressive refinement of
the received signal. The layers of the signal are multicast on distinct channels. The RLM
receivers subscribe to different layers by subscribing to different multicast channels. How-
ever, this approach may have problems with excessive use of bandwidth for the signaling
that is needed for hosts to subscribe or unsubscribe from multicast groups and fairness
issues in that a host might not receive the best quality possible on account of being in a
multicast group with low-end users.

MPEG-TFRCP [17] is another TCP-friendly protocol that has been developed to sup-
port video traffic over the Internet. This protocol achieves fairness among TCP and UDP
connections by adjusting the sending rate to the estimated TCP throughput at regular
intervals of duration 32 times the round trip time between the sender and the receiver.

The network condition (expressed by the round-trip time (RTT) and the packet loss
probability) is estimated from the feedback information obtained by means of ACK pack-
ets. The video sending rate is then adjusted against the target rate by choosing an
appropriate quantizer scale (i.e. using quality scaling).

The network level approaches do not consider the application level constraints of mul-
timedia flows like frame interdependence and stream content. The application level tech-
niques for media scaling do take into consideration the specific characteristics of the multi-
media streams but none are content-aware. It has been shown that video content plays an
important part in determining the optimal scaling mechanism for a video stream [2]. For
instance, in the case of high-motion scenes, spatial scaling or quality scaling techniques
are more suitable than temporal-domain scaling techniques (i.e. dropping of frames) be-
cause the details within a frame may not be as important in high-motion conditions. In
contrast, low-motion scenes favor the opposite approach. Since there is little change be-
tween successive frames in a low-motion scene, dropping frames does does not degrade
perceptual quality if the remaining frames are shown at full resolution. Such a system has
been suggested in [13] but the quantitative benefits to multimedia quality for the users
has yet to be determined.

Since the recipient of an improved video stream via the Internet is a human observer,
we evaluate the benefits of our adaptive content-aware scaling system by conducting user
studies.
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Figure 1: Motion Measurement

3 Approach

In order to successfully develop an adaptive content-aware scaling system, we developed
an automated means of measuring the amount of motion in the stream in real-time and
then integrated this with the filtering system. The whole system was then capable of
making content-aware decisions in choosing the scaling mechanism to use for a particular
sequence of frames. In the next three Subsections we describe the motion measurement
module, the filtering module and describe the functionality of the full system, respectively.

3.1 Motion Measurement

Although our techniques are applicable to most video compression schemes, in our sys-
tem, we have used an MPEG video stream to explore our approach. The MPEG video
compression algorithm relies on two basic techniques: block-based motion compensation
for reduction of temporal redundancy and transform domain-(DCT) based compression
for reduction of spatial redundancy [10]. Prediction and interpolation are used for motion
compensation. Motion-compensated prediction assumes that the current picture frame
can be modeled as a translation of a picture frame at some previous time. In the temporal
dimension, motion-compensated interpolation is a multi-resolution technique: a sub-signal
with a low temporal resolution (typically 1/2 or 1/3 of the frame rate) is coded and the
full-resolution signal is obtained by interpolation of the low-resolution signal and the ad-
dition of a correction term.

A typical MPEG stream contains three types of frames: Intra-encoded frames (I), Pre-
dicted frames (P) and Interpolated frames (B-for Bidirectional prediction). Each frame is
further decomposed into 16x16 blocks called macroblocks, the basic motion-compensation
unit. All macroblocks in the I-frames are encoded without prediction and the I-frame is
thus independent of any other frames. The macroblocks in the P-frame are encoded with
forward prediction from references made from previous I- and P-frames or may be intra-
coded. Macroblocks in B-frames may be coded with forward prediction from past I-frames
or P-frames, with backward prediction from future I-frames or P-frames, with interpolated
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Figure 2: Motion Computation Interval

prediction from past and future I-frames or P-frames or they may be intra-coded.

Our system uses the percentage of interpolated macroblocks in the B-frames as a
measure of motion. A high number of interpolated macroblocks implies that a greater
portion of the frame is similar to frames that are already existing in the stream (i.e. less
motion) and a low number of interpolated macroblocks implies that there are a greater
number of changes between frames (i.e. more motion).

To test the effectiveness of this measure of motion we conducted a pilot study. We
encoded 18 video clips of a variety of content, each 10 seconds long and containing no scene
changes. For each clip we divided the frames into 16 equal blocks and counted the number
of blocks whose content visually changed during the clip. The percentage of interpolated
macroblocks in the MPEG clip was then computed using mpeg_stat [21], an MPEG analysis
tool. Figure 1 depicts the percentage of interpolated macroblocks versus the number of
blocks in which changes were observed when viewing the video clips. The x-axis shows
the number of blocks that were observed to change during the movie clip and the y-axis
shows the percentage of interpolated macroblocks for the corresponding clip. We notice
that movies that had a higher number of blocks that changed (implying more motion)
have a lower percentage of interpolated macroblocks and those with a lower number of
changed blocks (implying less motion) have a high percentage of interpolated macroblocks.
Although coarse, this measure of motion provides quantitative information on the amount
of visual motion in the current frame sequence for making decisions regarding scaling
policies.

For our system, we need to categorize the sequence of frames into two categories, low
motion or high motion. Sequences having greater than 45% interpolated macroblocks are
classified as low motion and those having less than 45% are classified as high motion. This
classification may be made more fine grained as the need arises.

Figure 2 shows the variation of the motion values in a clip for computations made
every 1, 4 and 8 frames over an interval of 80 frames. This clip has an average interpolated
macroblock value of 60% over its entire duration. While the variation is too high when the
value is computed with every frame, there is not a significant increase in the smoothness



Table 2: Scale Levels for User Study 1
| Scaling Level | Level | Scaling Method | Frame Rate (fps) | Bandwidth(%) |

None N/A N/A 30 100
Temporal 1 No B frames 13 70
Temporal 2 No P or B frames 5 11

Quality 1 Requant Q = 7 30 65
Quality 2 Requant Q = 31 30 10

of the curve for computations done every 8 frames compared to computations made every
4 frames. Therefore, in order to respond to changes in the amount of motion we compute
the motion value for every 4 frames served. This parameter can also be varied to change
the granularity of the system and with alternate frame sequences. Further evaluation of
our measure of motion we leave as future work.

3.2 Filtering Mechanisms

[24] have developed a filtering system that operates on compressed video and can perform
temporal and quality scaling. We extend their filtering system and integrate it with our
content-aware scaling system. For temporal scaling we use the media discarding filter
that has knowledge of the frame type (i.e. I-, P- or B-frame) and can discard frames
to reduce the frame rate, thereby reducing the bandwidth. For quality scaling, we use
the re-quantization filter that operates on semi-compressed data (i.e. it first de-quantizes
the DCT-coefficients and then re-quantizes them with a larger quantization step). As
quantization is a lossy process the bit-rate reduction results in a lower quality image.

For our first set of experiments (user study 1) we have defined three distinct scale
levels. For the second set of experiments (user study 2) we increase the number of scale
levels to four. Table 2 shows the different scales and their corresponding frame-rates and
bandwidth for the experiments for the first user study. Since we compare temporal scaling
and quality scaling in our first user study it is important that the scale levels have similar
post-filter bandwidths. The first row in Table 2 shows the clips at encoded quality and
frame rate (30 frames per second). We then have two levels (and corresponding rows) each
of temporal and quality scaling. Each temporal scaling method corresponds to a quality
scaling method with a similar bit-rate reduction.

3.3 Adaptive Content-Aware Media Scaling System

In addition to evaluating the benefits of content-aware scaling on the perceptual quality of

video streams that have consistent motion characteristics, we designed and implemented

the adaptive content-aware scaling system. Figure 3 shows the architecture of our system.
The system consists of 4 distinct modules: server, filter, network and the client.

e Server: The server in the system takes as input an MPEG file, parses and packetizes
it and streams it over the network to the client. The server is also capable of quan-
tifying the amount of motion in the video stream by using the motion measurement
sub-module.
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Figure 3: Adaptive Content-Aware Media Scaling System Architecture

e Filter Module: Upon obtaining a measure of motion, the filter module scales the
video, as appropriate. The filter module has two kinds of filters: Temporal Filter
and Quality Filter. The temporal filter is a frame discarding filter and scales the
video in the temporal domain. The quality filter is a re-quantization filter and scales
the video stream in the quality domain.

e Network Module: The network module resides on the client side and monitors the
congestion in the network by recording packet loss rate and round trip time. Dropped
packets (i.e. from packet loss) are detected by a gap in the packet sequence num-
bers. Round-trip time is recorded by reflecting a time-stamp back to the server. In
the event of congestion (some packet loss), the feedback module will send control
messages (with the current packet loss rate and latest time stamp) to the server.
The server computes a TCP-Friendly bandwidth rate based on [8].

e (lient: The client module is a regular MPEG decoder that is capable of playing out
frames that are received over network sockets.

3.3.1 System Functionality

Figure 4 shows the sequence of steps that take place in the system. When the server is
activated it blocks, waiting for control messages at a predefined port number. The filter
module also blocks for control messages at a different port number upon activation (Step
1). When the user at the client side wishes to play a video, the client sends a request to
the server with the name of the MPEG file (Step 2). Upon receiving the request the server
begins reading the file off the disk, packetizes it and passes it on to the filter module (Step
3). In the absence of congestion the filter module simply forwards these packets over the
network on a UDP connection to the client (Step 13).

In case of network loss the network module at the client sends a control message to
the server indicating a reduction in available bandwidth. The server then invokes the
motion measurement module to obtain the amount of motion in the video in the scene
being served at that particular instant of time (Step 5). Depending upon the amount of
motion, the server invokes the appropriate filter to reduce the bandwidth occupied by the
stream (i.e. quality filter for a high motion scenes and the temporal filter for a low motion
scene) (Steps 6 through 11).

The system uses 4 distinct scaling levels (used in user study 2) as shown in Table 3.



(1) ACTIVATE SERVER AND FILTER
(2) RECEIVE MOVIE REQUEST
FROM CLIENT

(3) while not
(end_of _file(movie_file)) {

(4)  PARSE AND SEND TO FILTER
MODULE

(5) if (congestion) MEASURE
MoTION

(6) if (highmotion)

(7) INVOKE QUALITY FIL-
TER

(8) SEND QuALITY
SCALED

(9) else

(10) INVOKE TEMPORAL
FILTER

(11) SEND TEMPORALLY
SCALED

(12)  else

(13) SEND FULL QUALITY
FRAMES

(14) }end of while

Figure 4: Server Algorithm

4 Experiments

We conducted two user studies in order to evaluate the effectiveness of our adaptive media
scaling system. In the first user study we evaluate the potential benefits of content-aware
scaling and in the second user study we evaluate the potential benefits from our adaptive
content-aware scaling system for streams with variation in their motion characteristics
and for different network bandwidth fluctuation rates.

Both user studies were conducted on identical systems with Pentium IIT 600 MHz
processors and 128 MB of memory running Linux 2.2.14. The video clips were present
on the local hard drives of each of the systems so that actual network conditions did not
influence the video quality and instead, induced network load could be controlled by our
system. Users rated the clips on a scale of 1 to 100 with 100 being the highest quality.

For the first user study, we encoded 18 MPEG video clips from a cross-section of
television programming. All the clips were approximately 10 seconds in duration and
consisted of a single scene in order to have consistent motion characteristics. Using our
measure of motion, we categorized these clips as having either high motion or low motion.
We selected two clips from each category, and each of the four video clips was shown
with the following five scaling types and levels (as shown in Table 2): full quality; no
B-frames (temporal scaling, level 1); no B-frames or P-frames (temporal scaling, level 2);

10



Table 3: Scale Levels for User Study 2

| Scaling Type | Level | Scaling Method | Frame Rate (fps) | Bandwidth(%) |
None N/A N/A 30 100
Temporal 1 Alternate B frames dropped 21 85
Temporal 2 All B frames dropped 13 70
Temporal 3 No P or B frames 5 11
Quality 1 Requant Q =4 30 85
Quality 2 Requant Q =7 30 65
Quality 3 Requant Q = 31 30 10
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Figure 5: Low Motion Clip (70% Interpolated Macroblocks)

re-quantization factor set to 7 (quality scaling, level 1); and re-quantization factor set to
31 (quality scaling, level 2).

For the second user study, we encoded 2 clips with varied motion characteristics. Each
of the clips was approximately 25 seconds in duration and had one scene change where a
transition from low motion to high motion or vice versa took place. Depending upon the
amount of motion in the currently being displayed scene and the available bandwidth, the
system automatically selected the most appropriate scaling technique.

For each clip, we calculated the mean rating with a 90% confidence interval.

5 Analysis

In this section we present the results of our evaluations of the benefits of content-aware
scaling and our adaptive content-aware scaling system.

5.1 Content-Aware Scaling

For the first set of experiments (user study 1) we used four 10 second clips: two having
high motion and two having low motion.

11



80 T T T

T
Terlnporal Scaling —+—
75 F T Quality Scaling ---*---

70 | S E
65 | SR i
60 | :
55 |
50 |
45 b

User Perceived Quality

40

35 F 4
30 E

25 1 1 1 1 1
0.5 1 15 2 25 3 3.5

Scaling Levels

Figure 6: Low Motion Clip (57% Interpolated Macroblocks)

Figure 5 shows the graph we obtain when we plot the user perceived quality against the
different scaling levels for a low motion clip!. This clip has an average of 70% interpolated
macroblocks over the entire 10 second duration. From Figure 5, temporal scaling provides
consistently better than quality scaling for the low motion clip. With quality scaling
the user perceived quality drops linearly but with temporal scaling the perceived quality
drops more rapidly as the frame rate reduces. We suspect there is a threshold below which
users find the perceived quality unacceptable, and when the frame rate drops below this
threshold smooth movement is lost. We expect this number to be between 4 to 8 frames
per second, and we are currently working on more fine grained scaling levels to accurately
determine this frame rate.

Figure 6 shows a similar graph for the clip having 57% interpolated macroblocks on an
average over the whole clip?. From Figure 6, again temporal scaling is consistently better
than quality scaling and the user perceived quality drops sharply for the low frame rate
of 5 frames per second.

Figure 7 shows the graph that we obtain for a high motion clip?® with 27% interpolated
macroblocks on an average over the whole clip. For this clip, quality scaling performs
consistently better than temporal scaling. The drop in user perceived quality for temporal
scaling level 2 is not as pronounced as in previous graphs, probably because the users found
temporal scaling as a whole (and not just for low frame rates at level 2) to be inappropriate
for high motion videos.

Figure 8 shows the graph that we obtain for another high motion clip*. with an average
of 20% interpolated macroblocks. As in the previous high motion clip, quality scaling is
consistently better to users than temporal scaling for this high motion clip.

!The clip is of four men talking at a bar while having a drink.

2The clip is of a character from the popular television sitcom “Friends” as she talks on the phone while
walking across a room.

3The clip is of a man riding a horse as he tries to catch a bull.

“The clip is a car commercial with a driving scene.
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Figure 9: Clip 5- Bandwidth changes every 2s

5.2 Adaptive Content-Aware Scaling

In this section, we present the results of our second set of experiments (user study 2).
For this study we used two video clips. The clips were approximately 25 seconds in
duration and had one scene change each where the transition between high motion to low
motion or vice versa takes place. Clip 5 shows a scene from a talk show (low motion)
followed by a car commercial (high motion). Clip 6 shows a scene from the television
sitcom, Friends (predominantly low motion), followed by a commercial for an adventure
show (predominantly high motion). Clip 6 has considerably more variation in the motion
values than clip 5.

Figures 9 through 12 show the graphs we obtain when we plot the perceived quality
of clips 5 and 6 against different scaling mechanisms for varying bandwidths. In all the
graphs, perceived quality is plotted on the y-axis and scaling mechanisms are plotted on
the x-axis. On the x-axis, the column labeled None shows the average perceptual quality
value for the clip at full quality without any scaling. The column labeled Quality shows the
average perceptual quality when the clip is quality scaled. The column labeled Temporal
shows the average perceptual quality when the clip is temporally scaled, and the column
labeled A C'A shows the perceptual quality when the clip is adaptively content-aware scaled.

Figure 9 shows the graph obtained when the available bandwidth changes every 2
seconds for clip 5. The 90% confidence interval for None is [78.4%-81.6%], for Quality is
[65.8%-62.5%)], for Temporal is [49.5%-56.4%] and for ACA is [66.1%-72.6%)]. Figure 10
shows the graph when the bandwidth changes every 500ms for the same clip. For this
graph, the 90% confidence interval for None is [78.4%-81.6%)], for Quality is [51.6%-57.6%],
for Temporal is [49.4%-55.6%] and for ACA is [69.1%-73.5%)]. There is an appreciable
improvement in the perceptual quality of the clip when using adaptive content-aware
scaling compared to the case where the stream is scaled without regard to the content of
the stream. The improvement is nearly 30% both when bandwidth changes every 2s and
when the bandwidth changes every 500ms.

As shown in Figure 11, for clip 6, we find that there is an appreciable improvement in
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Figure 12: Clip 6- Bandwidth changes every 500ms

the perceptual quality when the available bandwidth changes every 2s. The 90% confidence
interval for None is [71.6%-75.4%), for Quality is [48.8%-55.8%)], for Temporal is [46.7%-
53.8%] and for ACA is [61.9%-66.8%)]. From Figure 12, the improvement is not as high
when the bandwidth changes every 500ms. In this case the 90% confidence interval for
None is [71.6%-75.4%), for Quality is [41.5%-45.7%), for Temporal is [38.3%-43.4%) and
for ACA is [47.6%-51.3%]. This reduction in the improvement is probably because the
frequent changes in motion characteristics of this clip cause the scaling type to also change
very frequently (as often as 500ms). The frequent changes in the scaling type may be what
causes the users to rate this clip lower for the 500ms case.

6 Conclusions

In this paper we have presented an application level solution to the problem of congestion
due to unresponsive multimedia streams on the Internet. By introducing responsiveness at
the application layer we reduce the need for random dropping of packets due to congestion
at the routers. This is significant in the case of multimedia streams because there are
numerous dependencies between frames and losing packets from the key frames results in
degradation in quality for other frames.

We have built an adaptive system that takes into account the content of the video
stream when choosing the scaling technique in order to have the minimum possible drop
in perceptual quality for the end user. The system performs the scaling operations in
real-time as the video stream is served to the client.

We have shown that in order to maximize perceptual quality under constrained (TCP-
Friendly) bandwidth, the amount of motion in a video stream must be considered when
choosing a scaling mechanism for a video stream. For instance, a movie scene had a lot
of motion and required scaling then it would look better if all the frames were played out,
albeit with lower quality. That would imply the use of either quality or spatial scaling
mechanisms. On the other hand, if a movie scene had little motion and required scaling
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it would look better if a few frames were discarded, but the frames that were shown were
of high quality.

We have implemented a method to quantify the amount of motion in a video stream and
used it to design the adaptive content-aware scaling system for video streams. Using the
motion measurement system, our scaling system determines the optimal scaling technique
to apply when the available bandwidth does not permit serving the stream at full quality.
We verify our methodology by conducting two user studies to determine perceptual quality
of the video stream after the stream has been scaled. Our experiments shown that the
improvement in user perceived quality can be as much 50% when we scale using the
content-aware technique for clips that have consistent motion characteristics over the
entire duration of the clip.

We also conducted experiments to stream video clips with variations in motion char-
acteristics and bandwidth. We find that when bandwidth changes occur on the order of a
few seconds, the improvement in perceptual quality with adaptive content-aware scaling
is as high as 30%. We also find that if the motion characteristics of the clip change rapidly
and the bandwidth also changes on the order of hundreds of milliseconds, the improvement
in perceptual quality is somewhat reduced by the high frequency of the changes in scaling
type. The increase in perceptual quality in such cases is only about 5-10%.

7 Future Work

In our work we simulate the variations in available network bandwidth by using the band-
width distribution function. By developing a more accurate function to model network
bandwidth we may get a better insight into the performance on this system on the In-
ternet. Eventually we would like to use this system to stream video over the Internet,
suggesting possible user studies under various Internet conditions.

In the course of our experiments we noticed that below a certain frame rate (4-8 frames
per second) temporal scaling leads to unacceptable perceptual quality. By accurately
determining this threshold we can put a lower bound below which temporal scaling is
ineffective. In such cases, quality scaling should be used instead of temporal scaling.

For our experiments, at any one point of time, we only use one scaling method (either
quality or temporal). There may be a larger benefit to perceptual quality with hybrid
scaling (i.e. combining temporal scaling with quality scaling). This could be specially
useful when the amount of motion does not strictly fall into either the high or low cat-
egories. In addition, spatial scaling as well may have the most benefits for some movies
under certain network conditions.

Finally, we could try some of the scaling methods used in our work for video streams
on audio streams and evaluate their effectiveness for audio streams.
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