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February 19, 2004AbstratA graph G on n verties is alled a Dira graph if it has minimum degreeat least n=2. The distane distG(u; v) is de�ned as the number of edges in ashortest subpath of G joining u and v. In this paper we show that in a Diragraph G, for every small enough subset A of the verties, we an distributethe verties of A along a Hamiltonian yle C of G in suh a way that all buttwo pairs of subsequent verties of A have presribed distanes (apart from adi�erene of at most 1) along C. More preisely we show the following. Thereare "; n0 > 0 suh that if G is a Dira graph on n � n0 verties, d is anarbitrary integer with 3 � d � "n=2 and A is an arbitrary subset of the vertiesof G with 2 � jAj = k � "n=d, then for every sequene di of integers with3 � di � d; 1 � i � k � 1, there is a Hamiltonian yle C of G and an orderingof the verties of A, a1; a2; : : : ; ak, suh that the verties of A are visited in thisorder on C and we havejdistC(ai; ai+1)� dij � 1; for all but one 1 � i � k � 1:
1



1 Introdution1.1 Notation and de�nitionsFor basi graph onepts see the monograph of Bollob�as [2℄.+ will sometimes be used for disjoint union of sets. V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A;B;E) denotes a bipartite graph G = (V;E),where V = A+B, and E � A�B. For a graph G and a subset U of its verties, GjUis the restrition to U of G. N(v) is the set of neighbours of v 2 V . Hene the size ofN(v) is jN(v)j = deg(v) = degG(v), the degree of v. Æ(G) stands for the minimum,and �(G) for the maximum degree in G. �(G) is the size of a maximum mathing inG. The distane distG(u; v) is de�ned as the number of edges in a shortest subpathof G joining u and v. For A � V (G) we write N(A) = \v2AN(v), the set of ommonneighbours. N(x; y; z; :::) is shorthand for N(fx; y; z; :::g). For a vertex v 2 V andset U � V � fvg, we write deg(v; U) for the number of edges from v to U . WhenA;B are disjoint subsets of V (G), we denote by e(A;B) the number of edges of Gwith one endpoint in A and the other in B. For non-empty A and B,d(A;B) = e(A;B)jAjjBjis the density of the graph between A and B. In partiular, we write d(A) =d(A;A) = 2jE(GjA)j=jAj2.De�nition 1. The bipartite graph G = (A;B;E) is "-regular ifX � A; Y � B; jXj > "jAj; jY j > "jBj imply jd(X; Y )� d(A;B)j < ";otherwise it is "-irregular.We will often say simply that \the pair (A;B) is "-regular" with the graph G impliit.We will also need a stronger version.De�nition 2. (A;B) is ("; Æ) super-regular if it is "-regular anddeg(a) > ÆjBj 8a 2 A; deg(b) > ÆjAj 8b 2 B:1.2 Distributing verties along a Hamiltonian yle in DiragraphsLet G be a graph on n � 3 verties. A Hamiltonian yle (path) of G is a yle(path) ontaining every vertex of G. A Hamiltonian graph is a graph ontaining2



a Hamiltonian yle. A Hamiltonian-onneted graph is a graph in whih everypair of verties an be onneted with a Hamiltonian path. A lassial result ofDira [3℄ asserts that if Æ(G) � n=2, then G is Hamiltonian. This result of Dira hasgenerated an inredible amount of researh, it has been generalized and strengthenedin numerous ways (see the exellent survey of Gould [4℄).In a reent, interesting strengthening of Dira's Theorem, Kaneko and Yoshimoto[5℄ showed that in a Dira graph small subsets of verties an be somewhat uniformlydistributed along a Hamiltonian yle.Theorem 1. Let G be a graph of order n with Æ(G) � n=2 and let d be a positiveinteger with d � n=4. Then for any vertex set A with at most n=2d verties, thereexists a Hamiltonian yle C with distC(u; v) � d for every u and v in A.Note that this result is sharp; the bound on the ardinality of A annot be in-reased.In [4℄ Gould alled for further studies on density onditions that allow the dis-tribution of \small" subsets of verties along a Hamiltonian yle. In this paper weshow that with similar onditions we an not only ahieve that the distane betweentwo subsequent verties of A along C is at least d, but atually we an presribe theexat distanes (apart from a di�erene of at most 1) between all but two pairs ofsubsequent verties of A along C. More preisely we show the following.Theorem 2. There are �; n0 > 0 suh that if G is a graph on n � n0 verties withÆ(G) � n=2, d is an arbitrary integer with 3 � d � �n=2 and A is an arbitrary subsetof the verties of G with 2 � jAj = k � �n=d, then for every sequene di of integerswith 3 � di � d; 1 � i � k � 1, there is a Hamiltonian yle C of G and an orderingof the verties of A, a1; a2; : : : ; ak, suh that the verties of A are visited in this orderon C and we havejdistC(ai; ai+1)� dij � 1; for all but one 1 � i � k � 1:We need the disrepanies by 1 between distC(ai; ai+1) and di beause of parityreasons. Indeed, onsider the omplete bipartite graph between U and V , wherejU j = jV j = n=2. Take A � U , then the distane between subsequent verties ofA along a Hamiltonian yle is even, and if we have an odd di we annot obtain adistane with that di.To see that we might need an exeptional i for whih jdistC(ai; ai+1) � dij > 1,onsider the following onstrution. Take two omplete graphs on U and V withjU j = jV j = n=2. Let A = A0 [ A00 with A0 � U , A00 � V and jA0j = jA00j = jAj=2,and add the omplete bipartite graphs between A0 and V , and between A00 and U .Clearly on any Hamiltonian yle we will have two distanes muh greater than d.We believe that our theorem remains true for greater jAj's as well, but we wereunable to prove a stronger statement. 3



2 The main toolsIn the proof the following lemma of Szemer�edi plays a entral role.Lemma 1 (Regularity Lemma [15℄). For every positive " and positive integer mthere are positive integers M and n1 with the following property: for every graph Gwith n � n1 verties there is a partition of the vertex set into l + 1 lasses (lusters)V = V0 + V1 + V2 + ::: + Vlsuh that� m � l �M� jV1j = jV2j = ::: = jVlj� jV0j < "n� at most "l2 of the pairs fVi; Vjg are "-irregular.We will use the following simple onsequene of Lemma 1.Lemma 2 (Degree form). For every " > 0 there is an M = M(") suh that ifG = (V;E) is any graph and Æ 2 [0; 1℄ is any real number, then there is a partition ofthe vertex-set V into l + 1 lusters V0; V1; :::; Vl, and there is a subgraph G0 = (V;E 0)with the following properties:� l �M ,� jV0j � "jV j,� all lusters Vi; i � 1; are of the same size L � d"jV je.� degG0(v) > degG(v)� (Æ + ")jV j for all v 2 V ,� G0jVi = ; (Vi are independent in G0),� all pairs G0jVi�Vj ; 1 � i < j � l, are "-regular, eah with a density either 0 orexeeding Æ.The other main tool asserts that if (A;B) is a super-regular pair with jAj = jBj andx 2 A; y 2 B, then there is a Hamiltonian path starting with x and ending with y.This is a very speial ase of the Blow-up Lemma ([8℄, [9℄). More preisely.4



Lemma 3. For every Æ > 0 there are "0; n2 > 0 suh that if " � "0 and n � n2,G = (A;B) is an ("; Æ) super-regular pair with jAj = jBj = n and x 2 A, y 2 B, thenthere is a Hamiltonian path in G starting with x and ending with y.We will also use two simple P�osa-type lemmas on Hamiltonian-onnetedness.The seond one is the bipartite version of the �rst one.Lemma 4 (see [1℄). Let G be a graph on n � 3 verties with degrees d1 � d2 �: : : � dn suh that for every 2 � k � n2 we have dk�1 > k. Then G is Hamiltonian-onneted.Lemma 5 (see [1℄). Let G = (A;B) be a bipartite graph with jAj = jBj = n � 2with degrees d1 � d2 � : : : � dn from A and with degrees d01 � d02 � : : : � d0n from B.Suppose that for every 2 � j � n+12 we have dj�1 > j and that for every 2 � k � n+12we have d0k�1 > k. Then G is Hamiltonian-onneted.Finally we will use the following simple fat.Lemma 6 (Erd}os, P�osa, see [2℄). Let G be a graph on n verties. Then�(G) � minfÆ(G); n� 12 g:In ase we have a good upper bound on the maximum degree of G, we anstrengthen this lemma in the following way.Lemma 7. In a graph G of order n�(G) � Æ(G) n2(Æ(G) + �(G)) � Æ(G) n4�(G) :In fat, let us take a maximal mathing M with m edges. Then for the numberof edges E between M and V (G) nM we get Æ(G)(n � 2m) � E � 2m�(G), whihproves the lemma.3 Outline of the proofIn this paper we use the Regularity Lemma-Blow-up Lemma method again (see [6℄-[12℄, [14℄). The method is usually applied to �nd ertain spanning subgraphs indense graphs. Typial examples are spanning trees (Bollob�as-onjeture, see [6℄),Hamiltonian yles or powers of Hamiltonian yles (P�osa-Seymour onjeture, see[10, 11℄) or H-fators for a �xed graph H (Alon-Yuster onjeture, see [12℄).5



Let us onsider a graph G of order n withÆ(G) � n2 : (1)We will assume throughout the paper that n is suÆiently large. We will use thefollowing main parameters 0 < �� "� Æ � �� 1; (2)where a � b means that a is suÆiently small ompared to b. For simpliity we donot ompute the atual dependenies, although it ould be done.Let d be an arbitrary integer with 4 � d � �n=2 and let A be an arbitrary subsetof the verties of G with 2 � jAj = k � �n=d; (3)Consider an arbitrary sequene d = fdij3 � di � d; 1 � i � k � 1g. A yle C in G(or a path P ) is alled an (A; d)-yle (or an (A; d)-path) if there is an ordering ofthe verties of A, a1; a2; : : : ; ak, suh that the verties of A are visited in this orderon C (on P ) and we havejdistC(ai; ai+1)� dij � 1; 1 � i � k � 1:We must show that there is a Hamiltonian yle that is almost an (A; d)-yle, namelywe an have jdistC(ai; ai+1)� dij > 1for only one 1 � i � k � 1.First in the next setion, in the non-extremal part of the proof, we show thisassuming that the following extremal ondition does not hold for our graph G. Weshow later in Setion 5 that Theorem 2 is true in the extremal ase as well.Extremal Condition (EC): There exist (not neessarily disjoint) A;B � V (G)suh that� jAj = jBj = bn2 , and� d(A;B) < �.In the non-extremal ase we apply Lemma 2 for G, with " and Æ as in (2). Weget a partition of V (G0) = [0�i�lVi. We de�ne the following redued graph Gr:The verties of Gr are the lusters Vi; 1 � i � l; and we have an edge between twolusters if they form an "-regular pair in G0 with density exeeding Æ. Sine in G0,Æ(G0) > (12 � (Æ + "))n, an easy alulation shows that in Gr we haveÆ(Gr) � �12 � 3Æ� l: (4)6



Indeed, beause the neighbors of u 2 Vi in G0 an only be in V0 and in the lusterswhih are neighbors of Vi in Gr, then for a Vi; 1 � i � l we have:�12 � (Æ + ")�nL � Xu2Vi degG0(u) � "nL+ degGr(Vi)L2:From this we get inequality (4):degGr(Vi) � �12 � Æ � 2"� nL � �12 � 3Æ� l:Applying Lemma 6 we an �nd a mathing M in Gr of size at least �12 � 3Æ� l.Put jM j = m. Let us put the verties of the lusters not overed by M into theexeptional set V0. For simpliity V0 still denotes the resulting set. ThenjV0j � 6ÆlL+ "n � 7Æn: (5)Denote the i-th pair in M by (V i1 ; V i2 ) for 1 � i � m.The rest of the non-extremal ase is organized as follows. In Setion 4.1 �rst we�nd an (A; d)-path P . Then in Setion 4.2 we �nd short onneting paths Pi betweenthe onseutive edges in the mathing M (for i = m the next edge is i = 1). The �rstonneting path P1 between (V 11 ; V 12 ) and (V 21 ; V 22 ) will also ontain P , the othershave length exatly 3. In Setion 4.3 we will take are of the exeptional vertiesand make some adjustments by extending some of the onneting paths so that thedistribution of the remaining verties inside eah edge in M is perfet, i.e. thereare the same number of verties left in both lusters of the edge. Finally applyingLemma 3 we lose the Hamiltonian yle in eah edge and thus giving a Hamiltonian(A; d)-yle.4 The non-extremal aseThroughout this setion we assume that the extremal ase EC does not hold.4.1 Finding an (A; d)-pathWe are going to use the following fat several times.Fat 1. If x; y 2 V (G) then there are at least Æn internally disjoint paths of length 3onneting x and y. 7



Indeed, if we hoose A � NG(x) with jAj = bn2  and B � NG(y) with jBj = bn2 , thenthe fat that EC does not hold implies d(A;B) � � and Fat 1 follows.We onstrut an (A; d)-path P = Q1[ : : :[Qk in the following way. Let a1; : : : ; akbe the verties of A in an arbitrary order (so note that here atually we an presribethe order of the verties of A as well). First we onstrut a path Q1 of length d1onneting a1 and a2. For this purpose �rst we onstrut greedily a path Q01 startingfrom a1 that has length d1 � 3 ((1) makes this possible). Denote the other endpointof Q01 by a01. Applying Fat 1, we onnet a01 and a2 by a path Q001 of length 3 that isinternally disjoint from Q01. Then Q1 = Q01 [Q001 is a path onneting a1 and a2 withlength d1.We iterate this proedure. For the onstrution of Q2, �rst we greedily onstruta path Q02 starting from a2 that is internally disjoint from Q1 and has length d2 � 3.Denote the other endpoint of Q02 by a02. Applying Fat 1, we onnet a02 and a3 by apath Q002 of length 3 that is internally disjoint from Q1 [ Q02. Then Q2 = Q02 [ Q002 isa path onneting a2 and a3 with length d2.By iterating this proedure we get an (A; d)-path P . (1), (2), (3) and Fat 1 implythat we never get stuk sinejV (P )j = k�1Xi=1 di � (k � 1)d � �n� Æn:Observe that here in the non-extremal ase there is no disrepany betweendist(ai; ai+1) and di for all 1 � i � k � 1, and furthermore we an speify the orderof the verties of A as well.4.2 Conneting pathsFor the �rst onneting path P1 between (V 11 ; V 12 ) and (V 21 ; V 22 ), �rst we onnet atypial vertex u of V 12 (more preisely a vertex u with deg(u; V 11 ) � (Æ� ")jV 11 j, mostverties in V 12 satisfy this) and a1 with a path of length 3, and then we onnet akand a typial vertex w of V 21 (so deg(w; V 22 ) � (Æ � ")jV 22 j) with a path of length3. To onstrut the seond onneting path P2 between (V 21 ; V 22 ) and (V 31 ; V 32 ) wejust onnet a typial vertex of V 22 and a typial vertex V 31 with a path of length 3.Continuing in this fashion, �nally we onnet a typial vertex of V m2 with a typialvertex of V 11 with a path of length 3. Thus P1 has length at most �n + 6, all otherPi-s have length 3.We remove the verties on these onneting paths from the lusters, but for sim-pliity we keep the notation for the resulting lusters. These onneting paths willbe parts of the �nal Hamiltonian yle. If the number of remaining verties (in thelusters and in V0) is odd, then we take another typial vertex w of V 21 and we extend8



P1 by a path of length 3 that ends with w. So we may always assume that the numberof remaining verties is even.4.3 Adjustments and the handling of the exeptional vertiesWe already have an exeptional set V0 of verties in G. We add some more vertiesto V0 to ahieve super-regularity. From V i1 (and similarly from V i2 ) we remove allverties u for whih deg(u; V i2 ) < (Æ � ")jV i2 j. "-regularity guarantees that at most"jV i1 j � "L suh verties exist in eah luster V i1 .Thus using (5), we still havejV0j � 7Æn+ 2"n � 9Æn:Sine we are looking for a Hamiltonian yle, we have to inlude the verties of V0 onthe Hamiltonian yle as well. We are going to extend some of the onneting pathsPi, so now they are going to ontain the verties of V0. Let us onsider the �rst vertex(in an arbitrary ordering of the verties in V0) w in V0. We �nd a pair (V i1 ; V i2 ) suhthat either deg(w; V i1 ) � ÆjV i1 j; (6)or deg(w; V i2 ) � ÆjV i2 j: (7)We assign w to the pair (V i1 ; V i2 ). We extend Pi�1 (for i = 1, Pm) in (V i1 ; V i2 ) by apath of length 3 in ase (6) holds, and by a path of length 4 in ase (7) holds, sothat now the path ends with w. To �nish the proedure for w, in ase (6) holds weadd one more vertex w0 to Pi�1 after w suh that (w;w0) 2 E(G) and w0 is a typialvertex of V i1 , so deg(w0; V i2 ) � (Æ� ")jV i2 j. In ase (7) holds we add two more vertiesw0; w00 to Pi�1 after w suh that (w;w0); (w0; w00) 2 E(G), w0 is a typial vertex of V i2and w00 is a typial vertex of V i1 .After handling w, we repeat the same proedure for the other verties in V0.However, we have to pay attention to several tehnial details. First, of ourse inrepeating this proedure we always onsider the remaining free verties in eah luster;the verties on the onneting paths are always removed. Seond, we make sure thatwe never assign too many verties of V0 to one pair (V i1 ; V i2 ). It is not hard to see(using (1) and Æ � 1) that we an guarantee that we always assign at most pÆjV i1 jverties of V0 to a pair (V i1 ; V i2 ). Finally, sine we are removing verties from a pair(V i1 ; V i2 ), we might violate the super-regularity. Note that we never violate the "-regularity. Therefore, we do the following. After handling (say) bÆ2n verties fromV0, we update V0 as follows. In a pair (V i1 ; V i2 ) we remove all verties u from V i1 (andsimilarly from V i2 ) for whih deg(u; V i2 ) < (Æ � ")jV i2 j (again, we onsider only the9



remaining verties). Again, we added at most 2"n verties to V0. In V0 we handlethese verties �rst and then we move on to the other verties in V0.After we are done with all the verties in V0, we might have a small disrepany(� 2pÆjV i1 j) among the remaining verties in V i1 and in V i2 in a pair. Therefore, wehave to make some adjustments. Let us take a pair (V i1 ; V i2 ) with a disrepany � 2(if one suh pair exists), say jV i1 j � jV i2 j+ 2 (only remaining verties are onsidered).Using the fat that EC does not hold we �nd an alternating path (with respet toM) in Gr of length 6 starting with V i1 and ending with V i2 . Let us denote this pathby V i1 ; V i12 ; V i11 ; V i21 ; V i22 ; V i1 ; V i2(the onstrution is similar if the lusters in (V i11 ; V i12 ) or in (V i21 ; V i22 ) are visited indi�erent order). We remove a typial vertex from V i1 and we add it to V i11 , then weremove a typial vertex from V i11 and we add it to V i22 , �nally we remove a typialvertex from V i22 and we add it to V i2 . When we add a new vertex to a pair (V j1 ; V j2 ),we extend the onneting path Pj�1 by a path of length 4 in the pair so that it nowinludes the new vertex.Now we are one step loser to the perfet distribution, and by iterating this pro-edure we an assure that the disrepany in every pair is � 1. We onsider onlythose pairs for whih the disrepany is exatly 1, so in partiular the number ofremaining verties in one suh a pair is odd. From the onstrution it follows that wehave an even number of suh pairs. We pair up these pairs arbitrarily. If (V i1 ; V i2 ) and(V j1 ; V j2 ) is one suh pair with jV i1 j = jV i2 j+1 and jV j1 j = jV j2 j+1 (otherwise similar),then similar to the onstrution above, we �nd an alternating path in Gr of length6 between V i1 and V j2 , and we move a typial vertex of V i1 through the intermediatelusters to V j2 .Thus we may assume that the distribution is perfet, in every pair (V i1 ; V i2 ) wehave the same number of verties left. In this ase Lemma 3 loses the Hamiltonianyle in every pair.5 The extremal aseFirst we assume that we have the following speial ase.Case 1: There is a partition V (G) = A1 [A2 with jA1j = bn2  and d(A1) < �1=3.Note that in this ase from (1) we also have d(A1; A2) > 1� �1=3. Thus, roughlyspeaking in this ase we have very few edges in GjA1, and we have an almost ompletebipartite graph between A1 and A2.A vertex v 2 Ai; i 2 f1; 2g, is alled exeptional if it is not onneted to most of10



the verties in the other set, more preisely if we havedeg(v; Ai0) � �1� �1=6� jAi0 j; fi; i0g = f1; 2g:Note that (1) implies that if v 2 Ai is exeptional, thendeg(v; Ai) � �1=6jAij:But then sine d(A1; A2) > 1� �1=3, we get that the number of exeptional vertiesin Ai is at most � 16 jAij. We remove the exeptional verties from eah set and addthem to A2 if they have more neighbors in A1, and add them to A1 if they havemore neighbors in A2. We still denote the resulting sets by A1 and A2. Assume thatjA1j � jA2j, so jA2j � jA1j = r, where 0 � r � 2�1=6jA2j. In GjA1�A2 apart from atmost 2�1=6jA2j exeptional verties all the degrees are at least (1 � 3�1=6)jA2j, andthe degrees of the exeptional verties are at least jA2j=3.Our goal is to ahieve r = 0. If there is a vertex x 2 A2 for whihdeg(x;A2) � �1=7jA2j; (8)then we remove x from A2 and add it to A1. We iterate this proedure until eitherthere are no more verties in A2 satisfying (8) or jA1j = jA2j. Assume that we havethe �rst ase. Sine we have �(GjA2) < �1=7jA2j, (1) and Lemma 7 imply that GjA2has an r-mathing M denoted by fu1; v1g; : : : ; fur; vrg. Furthermore, for every edgein M we an guarantee that at least one of the endpoints (say ui) is not in A. Thismathing M will be used to balane the disrepany between jA1j and jA2j.Note that in GjA1�A2 the degrees of the exeptional verties are still muh morethan the number of these exeptional verties. These degree onditions and (2) implythe following fat (similar to Fat 1).Fat 2. If x; y 2 A1 then in GjAi�A2 there are at least Æn internally disjoint pathsof length 4 onneting x and y. If x; y 2 A2 then in GjAi�A2 there are at least Æninternally disjoint paths of length 2 onneting x and y. If x 2 Ai, y 2 Ai0 then inGjAi�A2 there are at least Æn internally disjoint paths of length 3 onneting x and y.Let A be an arbitrary subset of the verties of G satisfying (3). In this ase weonstrut the desired Hamiltonian yle in the following way. First by using Fat 2and a similar proedure as in Setion 4.1 we �nd in GjA1�A2 an (A; d)-pathP = P (a1; ak) = Q1 [ : : : [Qkonneting the verties a1 and ak. The only di�erene from Setion 4.1 is that herebeause of parity reasons we might have distC(ai; ai+1) = di + 1. Indeed, �rst we11



onstrut a path Q1 of length d1 or d1 + 1 onneting a1 and a2. If a1 is overed byan edge of M , say a1 = vi, then we start Q1 with the edge fvi; uig (note that ui 62 A).If d1 = 3, then to get Q1 we onnet ui and a2 in GjA1�A2 by a path of length 2 inase a2 2 A2, and by a path of length 3 in ase a2 2 A1. If d1 > 3, then we greedilyonstrut a path Q01 that has length d1�3, starts with the edge fvi; uig and ontinuesin GjA1�A2. Denote the other endpoint of Q01 by a01. Applying Fat 2, we onnet a01and a2 by a path Q001 of length 3 in ase they are in di�erent sets, and by a path oflength 4 in ase they are in the same set. Then Q1 = Q01 [ Q001 is a path onnetinga1 and a2 with length d1 or d1 + 1.We iterate this proedure; we onstrut Q2; : : : ; Qk similarly and thus we getP = Q1 [ : : : [Qk. Say the remaining edges of M whih are not traversed by P arefui1; vi1g; : : : ; fuir0 ; vir0g for 0 � r0 � r:Then we onnet the endpoint ak of P and ui1 by a path Q1 of length 2 or 3,onnet vi1 and ui2 by a path Q2 of length 2, et. Finally onnet vir0�1 and uir0 by apath Qr0 of length 2. Consider the following path.P 0 = (P;Q1; fui1; vi1g; Q2; fui2; vi2g; : : : ; Qr0; fuir0 ; vir0g):In ase a1 2 A2, add one more vertex from A1 to the end of the path. Remove P 0from GjA1�A2 apart from the endverties a1 and vir0 . From (2), (3) and the degreeonditions we get that the resulting graph satis�es the onditions of Lemma 5 andthus it is Hamiltonian-onneted. This loses the desired Hamiltonian yle. For thispurpose we ould also use Lemma 3, the remaining bipartite graph is super-regularwith the appropriate hoie of parameters, but here the muh simpler Lemma 5 alsosuÆes. Note also that here we have no exeptional i, so we havejdistC(ai; ai+1)� dij � 1 for all 1 � i � k � 1:Case 2: Assume next that we have a partition V (G) = A1 [ A2 with jA1j = bn2 and d(A1; A2) < �1=3. Thus roughly speaking, GjA1 and GjA2 are almost ompleteand the bipartite graph between A1 and A2 is sparse.Again we de�ne exeptional verties v 2 Ai; i 2 f1; 2g, asdeg(v; Ai0) � �1=6jAi0 j; fi; i0g = f1; 2g:Note that again the number of exeptional verties in Ai is at most �1=6jAij. Weremove the exeptional verties from eah set and add them to the set where they havemore neighbors. We still denote the sets by A1 and A2. Thus in GjAi; i 2 f1; 2g, apartfrom at most 2�1=6jAij exeptional verties all the degrees are at least (1�2�1=6)jAij,and the degrees of the exeptional verties are at least jAij=3. These degree onditionsand (2) imply the following fat (similar to Fats 1 and 2).12



Fat 3. If x; y 2 Ai then in GjAi there are at least Æn internally disjoint paths of length3 onneting x and y. Furthermore, if at least one of the verties x and y is non-exeptional then there are at least Æn internally disjoint paths of length 2 onnetingx and y.Assume that jA1j � jA2j. Let A be an arbitrary subset of the verties of Gsatisfying (3). PutA0 = A \ A1; A00 = A \ A2; k0 = jA0j; k00 = jA00j;d0 = fdi j 1 � i � k0 � 1g and d00 = fdi j k0 + 1 � i � k � 1g:We show that we an �nd two vertex disjoint edges (alled bridges) fu1; v1g,fu2; v2g in GjA1�A2 suh that for both of these bridges at least one of the endpoints(say ui) is non-exeptional and it is not in A. This is trivial if jA1j < jA2j, sine thenfor every u 2 A1 we have deg(u;A2) � 2. Thus we may assume that jA1j = jA2j.But then for every u 2 A1 we have deg(u;A2) � 1 and for every v 2 A2 we havedeg(v; A1) � 1, and thus again we an pik the two bridges.We distinguish two subases.Subase 2.1: u1 and u2 are in di�erent sets, say u1 2 A1 n A0 and u2 2 A2 n A00.Here we onstrut the desired Hamiltonian yle in the following way. First by usingFat 3 and a similar proedure as in Setion 4.1 we �nd in GjA1 an (A0; d0)-pathP 0 = P 0(a1; v2) with endpoints a1 2 A and v2 (if v2 2 A0 then this is just the lastvertex v2 = ak0 from A on the path, otherwise we onnet the last vertex ak0 and v2by a path of length 3). Similarly we �nd in GjA2 an (A00; d00)-path P 00 = P 00(ak0+1; v1)with endpoints ak0+1 2 A and v1. Then in GjA1 we remove the path P 0 apart fromthe endvertex a1. From (2), (3) and the degree onditions we get that the resultinggraph satis�es the onditions of Lemma 4 and thus it is Hamiltonian-onneted.Take a Hamiltonian path P1 = P1(u1; a1) with endpoints u1 and a1. Similarly in GjA2we remove the path P 00 apart from the endvertex ak0+1 and we �nd a Hamiltonianpath P2 = P2(u2; ak0+1) with endpoints u2 and ak0+1. Then in this ase the desiredHamiltonian yle C is the following.C = (P 0; fv2; u2g; P2; P 00; fv1; u1g; P1):Note that here atually in C we havedistC(ai; ai+1) = di for all 1 � i � k0 � 1 and k0 + 1 � i � k � 1:However, distC(ak0; ak0+1) ould be very di�erent from dk0.Subase 2.2: u1 and u2 are in the same set (say A1). Here we do the following.We may assume that v1; v2 2 A00, sine otherwise we are bak to Subase 2.1. We13



denote v2 by ak0+1 and v1 by ak. First we �nd in GjA1 again an (A0; d0)-path P 0 =P 0(a1; ak0) with endpoints a1 and ak0 . We onnet ak0 and u2 with a path Q =Q(ak0; u2) of length dk0 � 1 that is internally disjoint from P 0 and u1. The degreeonditions guarantee that this is possible (even if dk0 = 3, sine u2 is non-exeptional).Then we remove P 0 and Q from GjA1 apart from the endvertex a1 and we �nd aHamiltonian path P1 = P1(u1; a1) with endpoints u1 and a1. De�neA000 = A00 n fakg and d000 = fdi j k0 + 1 � i � k � 2g = d00 n fdk�1g:We �nd in GjA2 an (A000; d000)-path P 00 = P 00(ak0+1; ak�1) with endpoints ak0+1 and ak�1.We remove P 00 from GjA2 apart from the endvertex ak�1 and we �nd a Hamiltonianpath P2 = P2(ak�1; v1) with endpoints ak�1 and v1 = ak. Then in this ase theHamiltonian yle C is the following.C = (P 0; Q; fu2; v2g; P 00; P2; fv1; u1g; P1):Note that here atually in C we havedistC(ai; ai+1) = di for all 1 � i � k � 2;but distC(ak�1; ak) ould be very di�erent from dk�1.Case 3: Assume �nally that the extremal ase EC holds, so we have A;B � V (G),jAj = jBj = bn2  and d(A;B) < �. We have three possibilities.� jA \ Bj < p�n. The statement follows from Case 2. Indeed, let A1 = A,A2 = V (G) n A1, then learly d(A1; A2) < �1=3 if �� 1 holds.� p�n � jA \ Bj < (1 � p�)n2 . This ase is not possible under the givenonditions. In fat, otherwise we would getjA \ Bjn2 � Xu2A\B degG(u) = Xu2A\B degG(u;A [ B)+ Xu2A\B degG(u; V (G) n (A [ B)) �� 2�n2 + jA \ Bj (jA \ Bj+ 1) ;or jA \ Bj�n2 � jA \ Bj � 1� � 2�n2;a ontradition under the given onditions.� jA \Bj � (1�p�)n2 . The statement follows from Case 1 by hoosing A1 = A,A2 = V (G) n A1, and then d(A1) < �1=3.This �nishes the extremal ase and the proof of Theorem 2.14
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