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Dipartimento di Matematica e Informatica, Università di Catania

Viale A. Doria 6, I–95125 Catania, Italy
email:{cantone,cincotti}@cs.unict.it

and M. Hofri
Department of Computer Science, WPI

100 Institute Road, Worcester MA 01609-2280, USA
email: hofri@wpi.edu

Abstract

We present an efficient randomized algorithm for the approximatek-th selection problem. It
works in-placeand it is fast and easy to implement. The running time is linear in the length of the
input.

For a large input set the algorithm returns, with high probability, an element which is very close to
the exactk-th element. The quality of the approximation is analyzed theoretically and experimentally.

Keywords: Selection problem, Median finding, Approximation algorithms, In-place algorithms,
Randomized algorithms, Analysis of algorithms.

1. Introduction

Given a multi-setSof n elements from some totally ordered universe and an integerk ∈ {1, . . . ,n}, the
k-th selection problem consists in finding thek-th smallest element inS. The median selection is a special
case of this problem whenk =

⌈
n
2

⌉
.

The standard cost metric used to compare selection al;gorithms is thecomparison costmodel, in
which the computational complexity of an algorithm is determined by the number of element compar-
isons. This resulted in the invention of some algorithms that use a small number of comparisons, and
“pay” for it by a relatively large overhead of elemnt moves and exchanges. We shall cosider the effect of
the total number of operations.

Early in the sixties, Hoare [8] devised an efficient algorithm for thek-th selection problem, namely
“Quickselect”, of great theoretical and practical importance. The algorithm takes the same approach as
in “Quicksort,” making a sequence of random choices of pivotelements, executing about 4n comparisons
on the average. It has a the problem of having a cost inO(n2) time in the worst-case.

Floyd and Rivest [7] improved the previous algorithm by choosing the pivot elements through an
opportune sampling. They obtained a very practical algorithm requiringn+min(k,n−k)+o(n), i.e. at
most 1.5n+o(n), comparisons on the average (cf. [5]).
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The first discovered algorithm with linear worst-case cost was given by Blum et al. [2] in 1973,
requiring only 5.43n+o(n) comparisons in the worst-case. It was an important complexity result because
till then the selection problem was assumed to be as difficultas sorting. Incidentally, a lower bound of
2n comparisons (in the worst-case) for the median selection problem is due to Bent and John [3].

Three years later, Schönhage et al. [11] concentrated their attention on the median selection prob-
lem, devising an algorithm requiring at most 3n+o(n) comparisons. Such result was slightly improved
in 1995 by Dor and Zwick [6] that obtained a 2.95n+ o(n) upper bound modifing the algorithm by
Schönhage et al. . These algorithms attempts to minimize the number of key comparisons but not the
total number of operations, and hence do not lead to faster algorithms in practice.

All the worst-case linear time algorithms cited above require, apart from the space for the elements
themselves, at leastΘ(logn) additional space during the computation. From this point ofview, the re-
search community showed interest in finding optimalin-placesolutions, i.e. algorithms that require only
a constant amount of extra space. The first in-place algorithm, due to Lai and Wood [9] in 1988, needs
at most 6.83n+o(n) comparisons and it was obtained by an implicit emulation of the basic algorithm by
Blum et al. .

Based on similar ideas as the median selection algorithm by Schönhage et al., Carlsson and Sund-
strom [4] in 1995 achieved the(2.95+ε)n+o(n) in-place upper bound, for anyε > 0. This is arbitrarily
close to the Dor and Zwick’s upper bound for the same problem,without space restrictions. It is to be no-
ticed that these algorithms have mainly theoretical interest because their implementations are extremely
complicated and not practical.

Selection arises in several applications others than orderstatistics. In most cases, the selected ele-
ments are used as threshold for filtering operations, because it is reasonable to concentrate attention only
to the subset of the most important elements with respect to asuitable criterion.

For instance, a computer chess program could quickly evaluate all possible next moves, and then
decide to further elaborate only the bestp-percentage moves more carefully. Identifying such best moves
can be done by a selection and a filtering operation.

Another explicit use of selection arises in filtering outlying elements. More specifically, in dealing
with noisy statistical data samples, sometimes it is convenient to eliminate noise throwing out the largest
and smallestp-percentage of them. Selection can be used to identify the items defining thep-th and
(100− p)-th percentiles and the outliers are then filtered out by comparing each item to the two selected
elements.

A crucial observation for the current treatment is that manyapplications do not require theexact
solution to an instance of thek-th selection problem, and anapproximatesolution would suffice. In
such contexts it becomes important to deal with efficient approximate algorithms for thek-th selection
problem.

An extremely efficient algorithm for the approximate medianselection problem is described in [1].
The idea behind this algorithm is simple. To simplify the exposition, let the size of the input set be a
power of 3, e.g.n = 3r with r ∈ N. The algorithm then proceeds inr stages. At each stage it divides
the surviving input into subsets of three elements, and calculates the median of each such triplet. The
“local medians” survive to the next stage. The algorithm continues recursively, using the local results to
compute the approximate median of the initial set. In [1] is also described how to handle efficiently input
sizes that are not powers of 3.
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In this paper, we present an efficient algorithm for the approximatek-th selection problem. It can be
viewed as a clever generalization of the algorithm described in [1]. In particular, it works in-place and
its precision is strongly based on the good behavior of the approximate median selection algorithm.

The paper is organized as follows. In Section 2, we first show that thek-th and the median selection
problems are equivalent. An algorithm for the approximatek-th selection problem is described in Sec-
tion 3, and one of its possible implementation is discussed in Section 4. Moreover, in Section 5 we prove
the linear computational cost of the algorithm, whereas in Section 6 we develop a probabilistic analysis
aimed to establish the quality of the algorithm output. Section 7 collects some experimental results. The
last section concludes the paper with some final remarks.

2. Reducing thek-th selection to the median selection problem

In this section, we show that though thek-th selection is more general than the median selection problem
they are equivalent. In particular, we describe how an instance of thek-th selection problem can be easily
reduced to an instance of the median selection problem.

Let S(n) be a multi-set1 of n elements from a totally ordered universe. In the following,we denote by
−∞ (resp.+∞) an element of the universe smaller than the minimum (resp. greater than the maximum)
of S(n).

Solving an instance〈S(n)〉 of the median selection problem means to find the median, i.e.the
⌈

n
2

⌉
-th,

element out of the setS(n). In the more generalk-th selection problem, solving an instance〈S(n),k〉, with
k∈ {1, . . . ,n}, requires finding thek-th element out ofS(n).

Reduction 1. Given an instance〈S(n),k〉 of the k-th selection problem, it can be reduced to an instance

〈S(n,m)
∞ 〉 of the median selection problem, where the multi-set

S(n,m)
∞ = S(n) ∪

m⋃

i=1

{∞}, with m= |n−2k+1|,

is obtained from S(n) by adding m copies of the∞ value defined as follows:

∞ =

{
−∞ if k ≤

⌈
n
2

⌉
,

+∞ otherwise.

Obviously, we have 0≤ m< n with |S(n,m)
∞ | = n+m, and the following:

Theorem 1. The Reduction 1 from the k-th selection to the median selection problem is correct.

Proof. Whenk≤
⌈

n
2

⌉
, we construct the multi-setS(n,m)

∞ obtained fromS(n) by addingm= n−2k+1≥ 0

copies of the element−∞. It is immediate to recognize that thek-th element ofS(n) is exactly them+k=

(n−k+1)-st element ofS(n,m)
∞ , namely the median element ofS(n,m)

∞ , because|S(n,m)
∞ | = 2n−2k+1 and

the median is given by the

⌈
|S(n,m)

∞ |
2

⌉
=

⌈
n−k+ 1

2

⌉
= (n−k+1)-st element.

1A set that can contain multiple copies of the same element.
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On the other hand, ifk >
⌈

n
2

⌉
, then we construct the multi-setS(n,m)

∞ by addingm= 2k−n−1 > 0

copies of the element+∞. In this case, thek-th element ofS(n) is exactly thek-th element ofS(n,m)
∞

yet, namely the median element ofS(n,m)
∞ , because|S(n,m)

∞ | = 2k− 1 and the median is given by the⌈
|S(n,m)

∞ |
2

⌉
=

⌈
k− 1

2

⌉
= k-th element. Thus, in both cases the problem of selecting thek-th element ofS(n)

has been reduced to the one of selecting the median ofS(n,m)
∞ . �

By virtue of the above reduction, any algorithm for the median selection can be used for solving
thek-th selection problem. In particular, the reduction is useful for both theexactand theapproximate
variants of thek-th selection problem, and the latter case may be solved using the efficient and accurate
algorithm for the approximate median selection presented in [1].

3. An probabilistic, approximate algorithm

The Reduction 1 described in Section 2 and the idea behind theapproximate median selection algorithm
are joined together, to get a randomized algorithm for the approximatek-th selection problem, that works
in-place, without introducing any explicit infinite value.

In the following, we denote byN the set of cardinals, withN0 = N∪{0}, and byZ the set of relative
integers. Moreover, we define[n]k

def
= n modk for anyn,k∈ N, thus[n]k ∈ {0,1, . . . ,k−1}.

Let 〈S(n,m)
∞ 〉 be the reduction of an instance〈S(n),k〉 of thek-th selection problem withn,m∈ N0 and

m< n. For eachi = 0..3, we calculate the probabilities:

p(n,m)
i = Pr

{
A randomunorderedtriplet t = {x,y,z} ∈ S(n,m)

∞
containsi infinite values

}
,

and find

p(n,m)
0 =

(n
3

)
(n+m

3

) , p(n,m)
1 =

m
(n

2

)
(n+m

3

) , p(n,m)
2 =

n
(m

2

)
(n+m

3

) , p(n,m)
3 =

(m
3

)
(n+m

3

) ,

where
(n+m

3

)
is the number of possible unordered triplets that can be selected fromS(n,m)

∞ . At this point,

let the setS(n,m)
∞ be partitioned into13(n+m) uniformly distributed triplets;2 the expected numberµi(n,m)

of unordered triplets inS(n,m)
∞ containingi infinite values is given by:

µi(n,m) =
1
3
(n+m)p(n,m)

i , for each i = 0..3.

2At this level of abstraction, it does not matter if(n+m) is not a multiple of 3.
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In particular, we obtain:

µ0(n,m) =
n(n−1)(n−2)

3(n+m−1)(n+m−2)
, (1)

µ1(n,m) =
mn(n−1)

(n+m−1)(n+m−2)
, (2)

µ2(n,m) =
m(m−1)n

(n+m−1)(n+m−2)
, (3)

µ3(n,m) =
m(m−1)(m−2)

3(n+m−1)(n+m−2)
. (4)

Because∑3
i=0 p(n,m)

i = 1, we get the equality∑3
i=0 µi(n,m) = 1

3(n+m) and, in particular, the fundamental
system of identities: {

3µ0(n,m)+2µ1(n,m)+ µ2(n,m) = n,
µ1(n,m)+2µ2(n,m)+3µ3(n,m) = m.

(5)

Equations (1) through 4 suggest a randomized algorithm for the approximatek-th selection problem
where infinite values are only used for book-keeping, and forthis reason we refer to them asvirtual
infinities. A detailed description of the algorithm follows.

1. Let〈S,k〉 be the problem instance in input, withn = |S| andm= |n−2k+1|. Furthermore, let the
boolean variablePositiveInfinitiesbeTruewhetherk >

⌈
n
2

⌉
or Falseotherwise.

2. Repeat the following steps until the cardinalityn becomes smaller than a fixedThreshold:

(a) Find integersr, r∞ ∈ N0, by means of a predefined criterion, such that:

r + r∞ = [n+m]3 .

These values represent the number of elements inS and the number of virtual infinities,
respectively, that do not exactly fit in any triplet.

(b) Compute valuesµ i ∈ N0, with i = 0..3, such thatµ i is a “good” integer approximation for
µi(n,m) and the following integer system:

{
3µ0 +2µ1 + µ2 = n− r ,
µ1 +2µ2 +3µ3 = m− r∞ ,

(6)

is satisfied with such values.

(c) Accordingly to the first equation of system (6), choose randomly inS: µ0 triplets of elements,
µ1 couples of elements, andµ2 + r single elements.

(d) Perform the following operations on the selected elements ofS:

• remove fromS the minimal and maximal elements of each of theµ0 triplets;

• if PositiveInfinities is True then remove fromS the minimal element of each of theµ1
couples, otherwise remove the maximal element of each of them;
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• remove fromSeach of theµ2 singleton.

(e) Retain or remove ther elements ofSwith a predefined policy, and setn to the cardinality of
the remaining set. Treat analogously ther∞ virtual infinities, saving or removing them, i.e.,
respectively, lettingm= µ2 + µ3 + r∞ or m= µ2 + µ3 (see below).

3. Return the exact median of the multi-set obtained from theremaining elements inS joined withm
copies of the value+∞ whetherPositiveInfinities is True, or m copies of−∞ otherwise.

Observe that, any reasonable criterion introduced in Step (2a) should ensurer∞ ≤ r because we
always havem< n. In particular, a satisfying criterion is obtained settingr = [n+m]3− r∞ and

r∞ =

{
1 if [n+m]3 = 2 andm≥ 3

4n,
0 otherwise,

where the value34n is arbitrarily chosen and it means a large fraction ofn.
Obviously, the system (6) has always integer solutions. Indeed,µ2,µ3 can be considered as free

variables, andµ1 can be obtained from the second equation; now, adding the twoequations in (6), we
obtain 3∑3

i=0 µ i = n+m− [n+m]3, and getµ0 becausen+m− [n+m]3 is multiple of 3. Notice that the
value∑3

i=0 µ i is the number ofvirtual triplets, i.e. triplets in which virtual infinities can occur, processed
in a single iteration.

Each operation listed in Step (2d) corresponds to the handling of virtual triplets containing, respec-
tively, 0, 1 or 2 infinite values.

A good policy to treat ther elements in Step (2e) is addressed in [1]; these elements areprocessed
joining them with one of theµ0 triplets and their local median (i.e., of 3, 4, or 5 elements)survives to
the next iteration. Such technique could also include ther∞ virtual infinities.

Finally, the valuem computed in Step (2e) is the number of virtual infinities thatsurvive to the
next iteration; specifically, such infinities come out from virtual triplets containing 2 or 3 infinite values.
Analogously, in Step (2e) we haven = µ0 + µ1 + r or n = µ0 + µ1 elements coming out from virtual
triplets containing 0 or 1 infinite values.

Interval extremes adjustment. The extreme cases of selection, such as the smallest (i.e.,k≈ 1) or the
largest (i.e.,k ≈ n) elements are better treatedad hoc, modifying the quantities given in equations (1)
through (4).

4. An implementation of the algorithm

In this section we give a possible implementation of the algorithm described above. It is assumed that
the selection is from values stored in an array in main memory. In this case, the computations disturb the
order of the elements, but the contents of the array is unchanged.

Let n be the size of the input arrayA, andk be the index of the element that we want to select,
and letThresholdbe an integer value. The algorithm pseudo-code is shown in Fig. 1; it provided the
experimental results reported in Section 7.

For the sake ef brevity of this presentation, the valuer∞ introduced in Step (2a) is always set to zero,
and ther elements treated in Step (2e) are simply thrown away. Asymptotically, these choices do not
decrease the output quality in terms of precision, but it makes a noticeable difference in small arrays.
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Pseudo-code of the approximate selection function

FUNCTION ApproximateSelection (A, n, k, Threshold) : integer
This function returns the index of the approximatek-th element of the input arrayA[1, . . . ,n].

m= |n−2k+1|;
if (k > ⌈n/2⌉) then PositiveInfinities= True;

else PositiveInfinities= False;
while (n > Threshold) do

r = [n+m]3;
〈µ0,µ1,µ2,µ3〉 = SystemSolve (n,m);
while (r > 0) do /* Eliminate r random */

Swap (A[n],A[RandomInteger(1 . . n)] ); /* elements from consideration */
n = n−1; r = r −1;

end while;
i = 1; j = 1; m= µ2 + µ3;
while ( j < n) do

Choice= RandomInteger (1. . (µ0 + µ1 + µ2) );
if (Choice≤ µ2) then /*Delete the singleton*/

j = j +1; µ2 = µ2−1;
elsif (Choice≤ µ1 + µ2) then /* Treat the couple */

if (A[ j] > A[ j +1]) then Swap (A[ j],A[ j +1]);
if (PositiveInfinities= True) then Swap (A[i],A[ j +1]);

else Swap (A[i],A[ j]);
j = j +2; i = i +1; µ1 = µ1−1;

else /* Treat the triplet */
h = TripletMedian(A, j);
Swap (A[i],A[h]);
j = j +3; i = i +1; µ0 = µ0−1;

end while;
n = i −1;

end while;
SelectionSort (A,n);
if (PositiveInfinities= True) then /* We consider them residues virtual infinities */

if (m≥ n) then returnn;
else return⌈(m+n)/2⌉;

else
if (m≥ n) then return 1;

else return⌈(n−m)/2⌉;

Figure 1: Pseudo-code for the approximatek-th selection algorithm.

The valuesµ i , with i = 0..3, required in Step (2b) to solve the integer system (6), are computed by
the functionSystemSolve; its pseudo-code is given in Fig. 2. In this function, the real variablesx,y are
initialized by means of functions (3) and (4), using the value (n− r) because ther elements are removed
at all. Furthermore, the best first choice for the couple inΓ is represented by〈Round(x),Round(y)〉.
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For convenience, the valuemcomputed in Step (2e) is calculated before Step (2c).
Steps (2c) and (2d) are executed by scanning the array from left to right through the indexj. For

every single step of each scan, we flip a coin with three faces,i.e. the integer variableChoice, and
depending on the result, we process one, two, or three consecutive elements of the array starting at
position j. Notice that, so many calls to the random number generator can be avoided introducing further
efficient pseudo-randomization methods as in the style of [1]. All the elements that survive to the next
step are gathered on the leftmost portion of the input array through the indexi. We show in Fig. 2 the
functionTripletMedianthat finds the index of the median of the triplet formed by consecutive elements
starting at positioni of the arrayA.

The algorithm continues iteratively using the results of each stage as input for a new one. This is
done until the number of the surviving elements falls below the Thresholdvalue. Then, the procedure
SelectionSort, shown in Fig. 2, sorts the remaining elements and the index of exact median of the set
described in Step (3) is returned. In particular, if an infinite should be returned, i.e.m≥ n, it is replaced
with the remaining element closest to it.

5. Run-time analysis

To evaluate the computational cost of our algorithm, we not only consider the usual metric of key com-
parisons, but also look briefly at the number of element swapsin this particular implementation, given in
Section 4.

Let δt = 8
3 be the average number of key comparisons needed to determinethe median element of a

triplet (cf. [1]) and letδc = 1 be the average number of key comparisons needed to determine the smallest
or the largest element of a couple.

The following recurrence, wheren and m stand for the number of real keys and virtual infinities
respectively, describes the evolution of the expected number of key comparisons from stage to stage:

C(n,m) =

{
0 if n = 1,
c(n,m)+C(µ0(n,m)+ µ1(n,m), µ2(n,m)+ µ3(n,m)) if n > 1.

(7)

Here c(n,m) = δt µ0(n,m) + δcµ1(n,m) is the average number of comparisons needed to process the
µ0(n,m) triplets and theµ1(n,m) couples in a single stage of the algorithm; the recursive term adds the
average number of comparisons needed to handle the real and infinite keys surviving to the next stage.
The average number of key comparisons performed by the algorithm when the input size isn and we are
searching for thek-th element is given byC(n, |n−2k+1|).

It is easy to see that our algorithm has running-time which islinear in the input sizen. Indeed, let us
consider the following two bounding cases:k =

⌈
n
2

⌉
andk = 1 (or symmetricallyk = n).

In the first case, whenn is odd, we havem= 0 and equation (7) can be rewritten as follows:

C(n,0) =
8
9

n+C(
n
3
, 0).

This recurrence depends of a single variable and its exact solution, whenn is a power of 3, isC(n,0) =
4
3(n−1).

In the second case, we havem= n−1 but, for the purpose of the analysis, we make the following
approximationsm≈ n, µ0(n,m) ≈ µ3(n,m) ≈ n

12, µ1(n,m) ≈ µ2(n,m) ≈ n
4 and equation (7) can then be

8



Pseudo-code for SystemSolve, TripletMedian, and SelectionSort

FUNCTION SystemSolve(n, m) : integers quadruple
This function returns four integer values satisfing conditions given in Step (2b).

r = [n+m]3;
x = µ2(n− r,m);
y = µ3(n− r,m);
Γ = {〈⌊x⌋ ,⌊y⌋〉, 〈⌊x⌋ ,⌈y⌉〉, 〈⌈x⌉ ,⌊y⌋〉, 〈⌈x⌉ ,⌈y⌉〉};

–




Choose an ordered couple〈µ2,µ3〉 ∈ Γ such that the following integer values:
µ1 = m−2µ2−3µ3 ,
µ0 = (n− r −2µ1− µ2)/3,

are non-negatives, i.e.µ i ∈ N0 with i = 0..3;
return 〈µ0,µ1,µ2,µ3〉;

FUNCTION TripletMedian (A, i) : integer
This function returns the index of the median of the triplet(A[i],A[i +1],A[i +2]).

if (A[i]< A[i +1]) then
if (A[i +2] < A[i]) then returni;
elsif (A[i +2] < A[i +1]) then return(i +2);
else return(i +1);

else
if (A[i] < A[i +2]) then returni;
elsif (A[i +2] > A[i +1]) then return(i +2);
else return(i +1);

PROCEDURE SelectionSort(A, Size)
This procedure rearranges the elements of the arrayA[1, . . . ,Size] in ascending sorted order.

i = 1;
while (i < Size) do

min= i;
j = i +1;
while ( j ≤ Size) do

if (A[ j] < A[min]) thenmin= j;
j = j +1;

end while;
Swap (A[i],A[min]);
i = i +1;

end while;

Figure 2: Pseudo-code for the procedures used by the approximatek-th selection algorithm.

rewritten as follows:

C(n,n) =
17
36

n+C(
n
3
,

n
3
),
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with the exact solution, whenn is a power of 3, given byC(n,n) = 17
24(n−1).

Asymptotically, the leading coefficients of the above solutions does not change whenn is not a power
of 3. On the other hand, it is easy to verify that, among all thepossiblek values, the first case above is the
most expensive in terms of key comparisons—since comparisons are used optimally when triplets have
infinities. Hence can state the following:

Theorem 2. The average number of key comparisons performed by the algorithm when the input size is
n, and the k-th element is searched for, is no more than4

3n.

The above reason underpins the wayk influences the number of comparisons required by the algo-
rithm. Unforunately, there is little hope of securing a general, analytic solution of the recurrence 7, but
one can numerically verify that the functionC(n,m) is monotonically decreasing inm, with 0≤ m< n
andn fixed; in particular, the minimum bound is reached in the above second case.

The worst-case analysis can be analogously handled considering the maximum number of key com-
parisonsδt = 3 required to find the median of three elements. We get:

Theorem 3. The number of key comparisons performed by the algorithm when the input size is n, and
the k-th element is searched for, is no more than3

2n.

Let us consider the number of element moves. Unlike the procedure developed in [1], it is not easy
here to avoid doing as we do in Section 4, and move each surviving element (or swap it with another
element in the array, if we need to preserve its content). Therefore the number of elements swaps, both in
the average- and in the worst-case, is given by equation (7) settingδt = δc = 1. Again, not much hope for
an exact solution, but it is a immediate to verify thatC(n,m) < n. Moreover, one can numerically verify
thatC(n,m) < 3

4n for all 0≤ m< n, so we can conclude that the number of element swaps performed by
the algorithm given in Fig. 1, when the input size isn and we are searching for thek-th element, is no
more than3

4n.

6. Probabilistic analysis

In this section we give an exact probabilistic analysis of the k-th selection algorithm implemented in
Section 4, which returns the valueOutput. Specifically, for anyn,k∈ N, with 1≤ k≤ n, we calculate the
following probability distribution:

Pn,k(z) = Pr{ |rank(Output)−k| ≤ ⌊zn⌋ } , (8)

of the relative selection error, measured byz∈ [0,1].
W.l.o.g., we can assume that the input array of sizen is a permutation of the integers 1, . . . ,n. The set

of then! permutations is denoted bySn, sometimes called the free group (it is a group, under composition,
but we shall not use this fact here).

We make two reasonable uniformity assumptions. One concerns the distribution of the input set: all
permutations are assumed equally likely. The second refersto the random choice of triplets, couples
and singletons during the execution of the algorithm, whichwe assume are all independent of the array
content and of each other.
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. . . . . . . . .
︸ ︷︷ ︸

Triplets
︸ ︷︷ ︸

Couples
︸ ︷︷ ︸

Singletons

Figure 3: Looking at the array elements as a sequence of sub-sequences.

While the algorithm creates the successive triplets probabilistically, for the following exposition it is
convenient to view the input array as a sequence of consecutive triplets followed by consecutive couples
and by consecutive singletons as shown in Fig. 3, which does not show of course the virtual infinities.

W.l.o.g. in the analysis, we consider the case 1≤ k ≤
⌈

n
2

⌉
, with the symmetric one,

⌈
n
2

⌉
< k ≤ n,

being completely analogous. This means that the infinities are negative, and the surviving element of any
couple is its smaller element.

We use of the following notation and identity for the multinomial coefficient:

(
N

{k}m

)
def
=

(
N

k,k, . . . ,k︸ ︷︷ ︸
m times

)
=

m−1

∏
i=0

(
N−ki

k

)
=

N!
(k!)m(N−km)!

, (9)

for all N,k,m∈ N0, with N ≥ km.
We construct our solution for the probability distribution(8), from the answer to the question “what

is the probability that when the array has then values 1, . . . ,n in random order, the valuea is selected, and
becomes thebth smallest among the surviving elements.” We decompose this calculation to a sequence
of combinatorial problems.

A sequence ofl two-position boxes is given. We place in them a random permutation of distinct
integers,π ∈ S2l . The smallest element in each box is selected, giving usl surviving elements.

Definition 1. Given l∈ N and a,b ∈ N0, we denote by Q[2]
l (a,b) the number of permutationsπ, out of

the(2l)! possible ones, in which exactly b elements survive among thea smallest elements inπ.

For convenience, we extend Def. 1 forl = 0 too, setting:

Q[2]
0 (a,b) =

{
1 if a = b = 0,
0 otherwise.

The following notation will simplify our discussion. For any permutationπ and an integera, we
denote by “•” each element among thea smallest ones inπ, and denote by “◦” the others.

Lemma 4. Let a,b, l ∈ N0. The number of permutations Q[2]
l (a,b) is given by

Q[2]
l (a,b) =

{
2(2b−a)l !b!(l −b)!

(2l−a
l−b

)(l−a+b
2b−a

)( a
a−b

)
if b≤ l ,

0 otherwise.

Proof. It is immediate to verify that any contribution toQ[2]
l (a,b) can be given only if the condition

b≤ a≤ 2b≤ 2l is satisfied.
In a permutationπ, among the 2l elements, there area “•” and 2l −a “◦”. We count permutations

that result in selections ofb “•” and l −b “◦”. All the surviving “◦” must come from thel −b couples
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of type{◦,◦} in π, and thus(2l −a)−2(l −b) = 2b−a unordered couples of type{◦,•} occur inπ.
Consequently,[a− (2b−a)]/2 = a−b couples of type{•,•} are present inπ.

We need to count the permutationsπ that satisfy the above constraints. First we count the number of
ways to select occupants for the unmixed boxes: We have1

(a−b)!

( a
{2}a−b

)
ways to selecta−b pairs of “•”

from thea “•” in π, and 1
(l−b)!

( 2l−a
{2}l−b

)
ways to select(l −b) pairs of “◦” from the (2l −a) available “◦”

in π. Then, we have 1
(2b−a)! ∏2b−a−1

i=0 (2b−a− i)2 = (2b−a)! ways to match the remaining(2b−a) “◦”
and(2b−a) “•” with the (2b−a) boxes containing mixed couples.

Finally, to complete the specification ofπ, a factor 2l accounts for the order inside each box, and an
l ! accounts for the order of the boxes. Multiplying these factors and using the identity (9), we get:

Q[2]
l (a,b) =

{
2(2b−a)l ! a!(2l−a)!

(a−b)!(l−b)!(2b−a)! if b≤ a≤ 2b≤ 2l ,

0 otherwise,
(10)

and rewriting it using the binomial coefficients we get the desired result. �

Notice that, for anyl ∈ N0, we haveQ[2]
l (0,0) = (2l)! andQ[2]

l (a,0) = 0 for all a 6= 0.
Now we consider the following consequence of the above result:

Definition 2. Given a,b, l ∈ N, we denote byQ
[2]
l (a,b) the number of permutationsπ, out of the(2l)!

possible ones, in which the ath smallest element inπ is selected and becomes the bth smallest among the
surviving elements.

Lemma 5. Let a,b, l ∈ N. The number of permutationsQ
[2]
l (a,b) is given by

Q
[2]
l (a,b) = 2l(2l −a)Q[2]

l−1(a−1,b−1).

Proof. Recycling the notation of the previous proof, we observe that theath element inπ is the largest
“•” and given that it is selected, it came from a mixed couple. Any permutation that contributes here was
counted inQ[2]

l (a,b), if a was among those selected.
Since the candidate permutations have 2b− a mixed couples, then among the permutations we

counted above only in(2b−a)/a of them we find the largest “•” in a mixed couple, that is,

Q
[2]
l (a,b) =

2b−a
a

Q[2]
l (a,b) = 2l(2l −a)Q[2]

l−1(a−1,b−1),

where the second equality follows from the explicit form above in Eq. (10). �

By convention, we extend Def. 2 to the casel = 0 and we letQ
[2]
0 (a,b) = 0 for anya,b∈ N.

We deal now with the the same combinatorial problem with respect to triplets of actual values, instead
of couples. A random permutationπ from S3l is placed in a sequence ofl three-position boxes, as before.
We select the median element in each box, and getl surviving elements.

Definition 3. Given l∈ N and a,b ∈ N0, we denote by Q[3]
l (a,b) the number of permutationsπ, out of

the(3l)! possible ones, in which exactly b elements survive among thea smallest elements inπ.

As above, it will be convenient to extend Def. 3 tol = 0, setting:

Q[3]
0 (a,b) =

{
1 if a = b = 0,
0 otherwise.
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Lemma 6. Let a,b, l ∈ N0. The number of permutations Q[3]
l (a,b) is given by

Q[3]
l (a,b) =

{
3a−ba!(3l −a)!

( l
b

)
∑b

i=0
1
9i

(b
i

)( l−b
a−2b−i

)
if a≤ 3l ,

0 otherwise.
(11)

Proof. Clearly this configuration requires 0≤ b≤ a≤ 3l . As above, we denote thea smallest elements
in the array by “•” and the other(3l −a) entries by “◦”. With the notation introduced before, four types
of triplets can occur inπ, namelyt0 : {•,•,•}, t1 : {•,•,◦}, t2 : {•,◦,◦} andt3 : {◦,◦,◦}, where the order
of the elements inside each triplet is not relevant at the moment.

Let denote by〈π〉i the number of triplets inπ of type ti , with 0≤ i ≤ 3. All the permutationsπ
contributing toQ[3]

l (a,b) need to satisfy the following constraints:





3〈π〉0 +2〈π〉1 + 〈π〉2 = a,
〈π〉1 +2〈π〉2 +3〈π〉3 = 3l −a,
〈π〉0 + 〈π〉1 = b.

(12)

The four numbers are not independent, of course, since they must all sum tol ; however, since adding
the first two rows yields this sum,∑3

i=0〈π〉i = l , the system (12) is undetermined. Specifically, we can
describe the space of solutions as spanned by fixing〈π〉(0) at any value in the interval[0,b].

Let us define the following equivalence relation3 on the setS3l , of the(3l)! permutations:

π ∼ π ′ ⇐⇒ 〈π〉i = 〈π ′〉i , for eachi ∈ [0,3],

for anyπ,π ′ ∈S3l . We denote bỹπ ∈S3l /∼ the∼-equivalence class of a permutationπ ∈S3l . Moreover,
by solving the system (12) in terms of〈π〉0 we see that all the permutationsπ ∈ S3l contributing to

Q[3]
l (a,b) can be gathered together in the following set of equivalenceclasses

Π̃(l)
a,b =



π̃ ∈ S3l /∼

∣∣∣∣∣∣
0≤ 〈π〉0 ≤ b and




〈π〉1 = b−〈π〉0

〈π〉2 = a−2b−〈π〉0

〈π〉3 = l −a+b+ 〈π〉0






 . (13)

The note about the solutions above implies that
∣∣∣Π̃(l)

a,b

∣∣∣ = b+ 1. We start by computing the size|π̃ | for

each equivalence class̃π ∈ S3l /∼:

Lemma 7.

|π̃| = l ! ×6l ×
3

∏
i=0

Ci(π̃) ,

3We do not use any of the standard properties of such a relation, except that its classes partitionS3l .
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where

C0(π̃) =
1

〈π〉0!

(
a

{3}〈π〉0

)
=

1
〈π〉0!

〈π〉0−1

∏
i=0

(
3〈π〉0 +2〈π〉1 + 〈π〉2−3i

3

)
,

C1(π̃) =
1

〈π〉1!

(
2〈π〉1 + 〈π〉2

{2}〈π〉1

)
×〈π〉1! =

1
〈π〉1!

〈π〉1−1

∏
i=0

(
2〈π〉1 + 〈π〉2−2i

2

)
(〈π〉1− i),

C2(π̃) =
1

〈π〉2!

(〈π〉1 +2〈π〉2

{2}〈π〉2

)
×〈π〉2! =

1
〈π〉2!

〈π〉2−1

∏
i=0

(〈π〉1 +2〈π〉2−2i
2

)
(〈π〉2− i),

C3(π̃) =
1

〈π〉3!

(
3l −a
{3}〈π〉3

)
=

1
〈π〉3!

〈π〉3−1

∏
i=0

(〈π〉1 +2〈π〉2 +3〈π〉3−3i
3

)
.

Proof. TheCi(π̃) have the following interpretation:
C0(π̃) counts the ways to distribute 3〈π〉0 “•” elements out of thea available into〈π〉0 boxes containing
triplets of typet0; the factor 1

〈π〉0! is inserted because we are not considering now the order among boxes.

Similarly,C3(π̃) enumerates the ways to distribute 3〈π〉3 “◦” elements out of(3l −a) into 〈π〉3 unordered
boxes containing triplets of typet3.
In C1(π̃) we count the ways to populate〈π〉1 unordered boxes, each with 2 of the(a−3〈π〉0) remaining
“•” per box and one of the〈π〉1 remaining “◦” elements.
C2(π̃) is defined in a completely analogous manner.
A factor 6l takes into account the order of the elements inside each box,and a factorl ! is finally intro-
duced to complete the specification of the permutation by accounting for the order of the boxes. �

To return to proving lemma 6 we apply identity (9) and get after several cancellations:

3

∏
i=0

Ci(π̃) =
a!(3l −a)!

2〈π〉1+〈π〉23〈π〉0+〈π〉3 ∏3
i=0(〈π〉i !)

Now we can calculate the quantity of our interest; by the definition of Π̃(l)
a,b we get:

Q[3]
l (a,b) = |{π ∈ S3l | π̃ ∈ Π̃(l)

a,b}| = ∑
π̃∈Π̃(l )

a,b

|π̃|

= l !a!(3l −a)! ∑
π̃∈Π̃(l )

a,b

3〈π〉1+〈π〉2

∏3
i=0(〈π〉i !)

,

We use the relation in Eq. (13) to rewrite the terms the last row, and since each̃π ∈ Π̃(l)
a,b can be seen as

corresponding to a value of〈π〉0 in [0,b], the sum there can be changed to one on this index, and we get
the desired result. �

Notice that, for anyl ∈ N0, we haveQ[3]
l (0,0) = (3l)! andQ[3]

l (a,0) is not necessarily null whena 6= 0.
Again we derive a useful consequence of the last result:

Definition 4. Given a,b, l ∈ N, we denote byQ
[3]
l (a,b) the number of permutationsπ, out of the(3l)!

possible ones, in which the ath smallest element inπ is selected and becomes the bth smallest among the
surviving elements.
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Lemma 8. Let a,b, l ∈ N. The number of permutationsQ
[3]
l (a,b) is given by

Q
[3]
l (a,b) = 6l(a−1)(3l −a)Q[3]

l−1(a−2,b−1).

Proof. All the permutations contributing toQ
[3]
l (a,b) are among those we counted inQ[3]

l (a,b), but we
only need those in whicha ends up being selected. as before, sincea element is the largest “•” in π it
gets selected ifπ puts it in a triplet of typet1. Such a triplet has 2 “•” elements, for a total of 2〈π〉1 out
of a such elements. In the formula (11) we assign〈π〉0 = i, hence〈π〉1 = b− i, and therefore

Q
[3]
l (a,b) = 3a−ba!(3l −a)!

(
l
b

) b

∑
i=0

1
9i 2

b− i
a

(
b
i

)(
l −b

a−2b− i

)
(14)

Rearranging the terms above we obtain the needed result. �

By convention, we extend Def. 4 lettingQ
[3]
0 (a,b) = 0 for anya,b∈ N.

We are ready to define the next step in our analysis, combiningall the results obtained so far.
An ordered sequence of consecutivel0, l1, l2 boxes is given, where each box contains exactly either

three, two or one ordered elements, respectively (see Fig. 3). Initially, n = 3l0 +2l1 + l2 totally ordered
elements are uniformly distributed in the boxes, creating arandom permutationπ. Following the process
of our algorithm, we select the median element in each triplet (cf. Def. 3) and the smallest element in
each box containing a couple (cf. Def. 1). Thus,(l0 + l1) elements survive at this stage, including none
of the singletons contained in the lastl2 boxes, as shown in Fig. 4.

• • · · · • • ⋆ ◦ ◦ · · · ◦ ◦
︷ ︸︸ ︷a0 ︷ ︸︸ ︷3l0−a0−1

• • · · · • ◦ ◦ · · · ◦
︷ ︸︸ ︷a1 ︷ ︸︸ ︷2l1−a1

• · · · • ◦ · · · ◦
︷ ︸︸ ︷a2 ︷ ︸︸ ︷l2−a2

︸ ︷︷ ︸
l0 triplets

︸ ︷︷ ︸
l1 couples

︸ ︷︷ ︸
l2 singletons

• • · · · • • • ⋆ ◦ · · · ◦ ◦
︷ ︸︸ ︷b0 ︷ ︸︸ ︷b1

︸ ︷︷ ︸
b−1

︸ ︷︷ ︸
l0 + l1−b

@@R ��	

Figure 4: Looking at the elements array as a sequence of triplets, couples and singletons.

Definition 5. Given l0, l1, l2 ∈ N0 and a,b ∈ N, we denote byQl0,l1,l2(a,b) the number of permutations
π, out of the n! possible ones, in which the ath smallest element inπ is selected and becomes the bth

smallest among the surviving elements.

Lemma 9. Let l0, l1, l2 ∈ N0 and a,b∈ N. The number of permutationsQl0,l1,l2(a,b) is given by

Ql0,l1,l2(a,b) = l2! ∑
ai ∈ [0. . (3− i)l i], i = 0..2

a0 +a1 +a2 = a−1
bi ∈ [0. .min(ai , l i)], i = 0,1

b0 +b1 = b−1

(
a−1

a0

)(
a−a0−1

a1

)
(S1 +S2) ,
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where,

S1 =

(
n−a

3l0−a0−1

)(
n−a−3l0 +a0+1

2l1−a1

)
·Q[3]

l0 (a0 +1,b0 +1) ·Q[2]
l1

(a1,b1) ,

S2 =

(
n−a

3l0−a0

)(
n−a−3l0+a0

2l1−a1−1

)
·Q[3]

l0
(a0,b0) ·Q[2]

l1 (a1 +1,b1 +1) .

Proof. In a generic permutationπ, among then elements, there area “•” distributed into the boxes
containing triplets, couples and singletons, and(n−a) “◦”. In particular, excluding theath element “⋆”,
a0 “•” occurs in thel0 triplets (with 0≤ a0 ≤ 3l0), a1 “•” occurs in thel1 couples (with 0≤ a1 ≤ 2l1) and
a2 “•” forms thel2 singletons (with 0≤ a2 ≤ l2), such thata0+a1+a2 = a−1. This situation is depicted
in Fig. 4, where each rectangle does not preserve the order ofthe elements inside. In order to get the
element “⋆” to be selected and to be thebth among the surviving elements, we needb0 “•” survived from
triplets (with 0≤ b0 ≤ min(a0, l0) ) andb1 “•” survived from couples (with 0≤ b1 ≤ min(a1, l1) ), such
thatb0 +b1 = b−1.

To evaluateQl0,l1,l2(a,b) we just need to count the permutations that satisfy the aboveconstraints.
First we count the ways to fill up thea0 positions in the triplets with(a− 1) “•” and thea1 positions
in the couples with the remaining(a− a0 − 1) “•”. Secondly, we evaluate the quantitiesS1 and S2

corresponding to the case of “⋆” belonging to a triplet or to a couple, respectively. InS1 we count how
to fill up the (3l0 − a0− 1) positions in the triplets with(n− a) “◦” and the(2l1 − a1) positions in the
couples with the remaining(n−a−3l0 +a0+1) “◦”; “ ⋆” is the(a0+1)th smallest element in the triplets
and we need it becomes the(b0 +1)th after the triplets are processed; at the same time, we needb1 “•”
selected among thea1 smallest elements in the couples. The quantityS2 is derived analogously.

Finally, the factorl2! takes into account the remaining elements forming thel2 singletons. �

The performance of the algorithm is characterized by the probability P(n,m)
a , that theath smallest

element of the input array of sizen is returned in output as final winner, when thek-th element is
searched for, and thenm= |n−2k+1|.

Let ni ,mi , for eachi ∈ [0, f ] be the sequence of values computed during the( f +1) iterations of the
“while” loop of the algorithm, on an input array of sizen = n0 with m0 = |n0−2k+1|; the valuef ∈ N0

is the smallest index such thatnf+1 ≤ Threshold.
The previous values are computed by

ni+1 = µ(i)
0 + µ(i)

1 , mi+1 = µ (i)
2 + µ(i)

3 , for eachi = 0.. f ,

where〈µ(i)
0 ,µ (i)

1 ,µ(i)
2 ,µ (i)

3 〉 are the integer values returned by SystemSolve(ni ,mi).
By Lemma 9, we are able to analyze a single iteration of the algorithm. Indeed, for any values of

the integer variablesni ,mi, we can derive the probabilityp(ni ,mi )
a,b that theath smallest element ati-th

step becomes thebth smallest element in the next(i + 1)-st step obtained applying rules in Step (2d) of
Section 3:

p(ni ,mi)
a,b =

1
ni !

·Qµ(i)
0 ,µ(i)

1 ,µ(i)
2 +[ni+mi ]3

(a,b) .

A recurrence equation can be established to evaluate the probability of our interest:

P(ni ,mi)
a = ∑

bi∈[1..a]

p(ni ,mi)
a,bi

·P(ni+1,mi+1)
bi

, for all i = 0.. f ,
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and expanding, we get:

P(n,m)
a = ∑

b0,b1,··· ,bf−1,bf

p(n0,m0)
a,b0

· p(n1,m1)
b0,b1

· · · p
(nf ,mf )
bf−1,bf

·P(nf+1,mf+1)
bf

, (15)

where,

P
(nf+1,mf+1)
a =





1 if




nf+1 ≤ mf+1 anda = 1
or

nf+1 > mf+1 anda =
⌈

nf+1−mf+1

2

⌉


 ,

0 otherwise.

(16)

It is straightforward that probabilities given by (15) and (16) can be symmetrically defined for
⌈

n
2

⌉
< k≤

n, so that we can define the probability distribution given by (8), for each 1≤ k≤ n:

Pn,k(z) = ∑
1≤ a≤ n

|a−k| ≤ ⌊zn⌋

P(n,|n−2k+1|)
a , with z∈ [0,1] . (17)

While these expressions for the distribution of the returned value are far too complex to allow for an
analytic characterization, generating numbers from them is possible, as we show in the next section,
which also demonstrates how closely they track the actual performance of the algorithm.

7. Experimental results

In this section we present empirical results, demonstrating the effectiveness of the algorithm described
in Section 4. Our implementation is in standard C (GNU C compiler v2.7). All the experiments were
carried out on a PC Pentium II 350Mhz with the Linux (Red Hat distribution) operating system. The
arrays were permuted using the pseudo-random number generator suggested by Park and Miller in 1988
and updated in 1993 [10]. The algorithm was run on random arrays of sizesn = 10i , with i = 2. .5,
whose entry keys were always the integers 1, . . . ,n.

Our first experiment aims to evaluate how the theoretical probability distribution (15) fits with the
empirical one. In order to do this, we chose a sample of 100,000 random input arrays of sizen = 100
and run the algorithm on it for somek values chosen between 1 and

⌈
n
2

⌉
, with a fixedThresholdequal to

⌊√n⌋. We compute the histograms of the relative frequencies of the algorithm outputs so that theoretical
and empirical distributions are compared in Fig. 5, where, for each chosenk, we reported the averageµk

and the standard deviationσk of both the distributions.
A more interesting experiment was done with variable input sizesn = 10i , i = 2. .5, with Threshold

equal to⌊√n⌋. Also in this case we fixed somek values among
⌊

n
8

⌋
,
⌊

3n
8

⌋
,
⌊

n
2

⌋
and

⌊
3n
4

⌋
, with the only

exception forn = 100, and we built the histograms of the relative frequenciesof the algorithm outputs.
Each single histogram, shown in Fig. 6, has been obtained on adifferent sample of size 100,000.

TheThresholdvalue⌊√n⌋ until now used was completely arbitrary. In Fig. 7 we report some his-
tograms referred to the relative frequencies of algorithm outputs for three differentThresholdvalues, i.e.
3, ⌊√n⌋ , 2⌊√n⌋. Data are obtained from a fixed sample of 100,000 arrays of sizen = 1,000 and for
some fixedk values. By examining the standard deviationσk values, it is clear that larger is theThreshold
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n = 100

k Data µk (σk)
5 Theor. 11.00 (6.93)

Exper. 11.02 (6.91)
27 Theor. 26.63 (6.76)

Exper. 26.60 (6.78)
50 Theor. 49.99 (6.19)

Exper. 50.03 (6.21)

k = 1

k = 27

k = 50

Figure 5: Comparing the theoretical probability distributions with the experimental results histograms.

value, larger is the computational cost of the selection andbetter is the quality of the selection. For this
reason, depending on the specific application, theThresholdvalue has to be appropriately tuned.

In the previous experiments, we worked on some representative k values arbitrarily chosen. Now, we
concentrate our attention on the percentage error made by the algorithm, independently byk. For each
i = 2. .5, we fixed a sample of 1,000 arrays of sizen = 10i and we used aThresholdvalue⌊√n⌋. We
run the algorithm on the input sample for eachk value, such that 1≤ k≤ n, with the only exception for
i = 4,5 for which only 1,000 uniformly distributedk values were examined, i.e. valuesk = 1+ j ·10i−3

with j = 0. .999. For each single algorithm output, corresponding to a value k and to an array of the
sample, we calculate the percentage error distance

dk =
|k− rank(Output)|

n−1
·100, with 1≤ k≤ n,

from the correctk-th element. The extreme values assumed bydk can be 0%, when thek-th element is
returned by the algorithm, and 100% when the algorithm returns the largest element in the array whereas
the smallest one is searched for, or viceversa. In Fig. 8, foreach singlek, we plotted the maximum error
Mk = max(dk), the average errorεk = E[dk] and the standard deviationσk = σ [dk] of the 1,000dk values.

Finally, in Fig. 9 we give a plot that summarizes some of the statistical indexes obtained from the
previous data-sets. It well illustrates the good quality ofthe algorithm output when the input sizen
is sufficiently large. More specifically, the trend of the standard deviationE[σk] may be viewed as a
measure of the improvement of the selection effectiveness for increasingn.

8. Conclusion

We have presented an approximate algorithm for thek-th selection problem, based on a statistical ap-
proach. It is a generalization of the algorithm for the approximate median selection problem described in
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Relative frequencies histograms
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Threshold analysis
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Figure 7: Quality of selection as a function of theThresholdvalue.

[1]. Its precision is strongly based on the good behavior of the approximate median selection algorithm.
As the experimental section shows, the quality of the algorithm output becomes better and better for
larger input sizes.

In order to get an improving in the quality of results, our future research is oriented to find efficient
ways to manipulate larger blocks rather than triplets when selecting for thek-th element. In particular,
an alternative method to treat the extremes of the range of selection to get higher precision is under
investigation. We are also studying how to apply the technique presented here for the linear case to other
higher dimension domains.
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