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An Efficient Approximate Algorithm for the
k-th Selection Problem

D. Cantone, G. Cincotti
Dipartimento di Matematica e Informatica, Universita dit@nia
Viale A. Doria 6, 1-95125 Catania, Italy
email: {cantone,cincotfi@cs.unict.it

and M. Hofri
Department of Computer Science, WPI
100 Institute Road, Worcester MA 01609-2280, USA
email: hofri@wpi.edu

Abstract

We present an efficient randomized algorithm for the appnaxék-th selection problem. It
worksin-placeand it is fast and easy to implement. The running time is limeshe length of the
input.

For a large input set the algorithm returns, with high pralitgban element which is very close to
the exack-th element. The quality of the approximation is analyzesbtietically and experimentally.

Keywords: Selection problem, Median finding, Approximation algonmith, In-place algorithms,
Randomized algorithms, Analysis of algorithms.

1. Introduction

Given a multi-seS of n elements from some totally ordered universe and an integef1,...,n}, the
k-th selection problem consists in finding tk¢h smallest element i& The median selection is a special
case of this problem when= [1].

The standard cost metric used to compare selection ahgwsiis thecomparison costnodel, in
which the computational complexity of an algorithm is detered by the number of element compar-
isons. This resulted in the invention of some algorithmg tis2 a small number of comparisons, and
“pay” for it by a relatively large overhead of elemnt movesi @xchanges. We shall cosider the effect of
the total number of operations.

Early in the sixties, Hoare [8] devised an efficient algaritfor thek-th selection problem, namely
“Quickselect”, of great theoretical and practical impade. The algorithm takes the same approach as
in “Quicksort,” making a sequence of random choices of pafetents, executing about domparisons
on the average. It has a the problem of having a co8t(irf) time in the worst-case.

Floyd and Rivest [7] improved the previous algorithm by céing the pivot elements through an
opportune sampling. They obtained a very practical algoritequiringn+ min(k,n—k) +o(n), i.e. at
most 15n+ o(n), comparisons on the average (cf. [5]).



The first discovered algorithm with linear worst-case coaswiven by Blum et al. [2] in 1973,
requiring only 543n+o0(n) comparisons in the worst-case. It was an important conmylessult because
till then the selection problem was assumed to be as diffasikorting. Incidentally, a lower bound of
2n comparisons (in the worst-case) for the median selectiohlem is due to Bent and John [3].

Three years later, Schonhage et al. [11] concentrated dktention on the median selection prob-
lem, devising an algorithm requiring at most-8 o(n) comparisons. Such result was slightly improved
in 1995 by Dor and Zwick [6] that obtained a9n + o(n) upper bound modifing the algorithm by
Schonhage et al.. These algorithms attempts to minimentimber of key comparisons but not the
total number of operations, and hence do not lead to fagieritims in practice.

All the worst-case linear time algorithms cited above regjuapart from the space for the elements
themselves, at lea®(logn) additional space during the computation. From this pointied, the re-
search community showed interest in finding optimaplacesolutions, i.e. algorithms that require only
a constant amount of extra space. The first in-place algorittue to Lai and Wood [9] in 1988, needs
at most 683n-+ o(n) comparisons and it was obtained by an implicit emulatiornefiasic algorithm by
Blum et al..

Based on similar ideas as the median selection algorithmch@préhage et al., Carlsson and Sund-
strom [4] in 1995 achieved th@.95+ £)n+ o(n) in-place upper bound, for argy> 0. This is arbitrarily
close to the Dor and Zwick’s upper bound for the same probileithout space restrictions. It is to be no-
ticed that these algorithms have mainly theoretical istelbecause their implementations are extremely
complicated and not practical.

Selection arises in several applications others than atagistics. In most cases, the selected ele-
ments are used as threshold for filtering operations, bedaissreasonable to concentrate attention only
to the subset of the most important elements with respecstitable criterion.

For instance, a computer chess program could quickly etealala possible next moves, and then
decide to further elaborate only the begbercentage moves more carefully. Identifying such bestaso
can be done by a selection and a filtering operation.

Another explicit use of selection arises in filtering outlyielements. More specifically, in dealing
with noisy statistical data samples, sometimes it is comverto eliminate noise throwing out the largest
and smallesp-percentage of them. Selection can be used to identify #msitdefining thep-th and
(100— p)-th percentiles and the outliers are then filtered out by @img each item to the two selected
elements.

A crucial observation for the current treatment is that mapplications do not require thexact
solution to an instance of theth selection problem, and approximatesolution would suffice. In
such contexts it becomes important to deal with efficienraxmate algorithms for th&-th selection
problem.

An extremely efficient algorithm for the approximate medsahection problem is described in [1].
The idea behind this algorithm is simple. To simplify the esition, let the size of the input set be a
power of 3, e.g.n= 3" with r € N. The algorithm then proceeds iirstages. At each stage it divides
the surviving input into subsets of three elements, andutaties the median of each such triplet. The
“local medians” survive to the next stage. The algorithmtitares recursively, using the local results to
compute the approximate median of the initial set. In [1]s®aescribed how to handle efficiently input
sizes that are not powers of 3.



In this paper, we present an efficient algorithm for the apipnatek-th selection problem. It can be
viewed as a clever generalization of the algorithm desdribg1]. In particular, it works in-place and
its precision is strongly based on the good behavior of tipeagimate median selection algorithm.

The paper is organized as follows. In Section 2, we first shmt/thek-th and the median selection
problems are equivalent. An algorithm for the approximath selection problem is described in Sec-
tion 3, and one of its possible implementation is discusseteiction 4. Moreover, in Section 5 we prove
the linear computational cost of the algorithm, whereasactiSn 6 we develop a probabilistic analysis
aimed to establish the quality of the algorithm output. Bect collects some experimental results. The
last section concludes the paper with some final remarks.

2. Reducing thek-th selection to the median selection problem

In this section, we show that though tkith selection is more general than the median selectiorigmmob
they are equivalent. In particular, we describe how an ntsaf thek-th selection problem can be easily
reduced to an instance of the median selection problem.

Let S™ be a multi-sét of n elements from a totally ordered universe. In the followiwg,denote by
—oo (resp.+o) an element of the universe smaller than the minimum (resgatgr than the maximum)
of S,

Solving an instancéS™) of the median selection problem means to find the mediarthied.5 | -th,

element out of the s&™. In the more generat-th selection problem, solving an instar{&”), k), with
ke {1,...,n}, requires finding th&-th element out o§™.

Reduction 1. Given an instancéS™ k) of the k-th selection problem, it can be reduced to an instanc
(Sﬁ?’m)> of the median selection problem, where the multi-set

m
gghm)zsm)uu{oo}, with  m=|n—2k+1],
i=1

is obtained from & by adding m copies of the value defined as follows:

{ —e ifk<[q].
00 —= .
400 otherwise

Obviously, we have 8 m < n with ]Sﬁ?’m)] =n+m, and the following:
Theorem 1. The Reduction 1 from the k-th selection to the median seteptioblem is correct.

Proof. Whenk < [3], we construct the multi-s&™ obtained fron§" by addingm=n—2k+1> 0
copies of the elementc. It is immediate to recognize that tketh element o8™ is exactly them+k =
(n—k+1)-st element oB8"™, namely the median element 8™, becauséS"™ | = 2n— 2k+ 1 and

n,m)
the median is given by th%%} = [n—k+ 3] = (n—k+1)-st element.

1A set that can contain multiple copies of the same element.



On the other hand, & > [g} then we construct the multi-s&t™™ by addingm=2k—n—-1>0

copies of the elementw. In this case, thé-th element ofS™ is exactly thek-th element ofSy™
yet, namely the median element 8™, becausdS™ | = 2k — 1 and the median is given by the

n,m)
{%} = [k— 1] = k-th element. Thus, in both cases the problem of selecting-theslement oS"

has been reduced to the one of selecting the medistt. |

By virtue of the above reduction, any algorithm for the madszlection can be used for solving
thek-th selection problem. In particular, the reduction is usé&fr both theexactand theapproximate
variants of thek-th selection problem, and the latter case may be solved) tsmefficient and accurate
algorithm for the approximate median selection presemigdl]i

3. An probabilistic, approximate algorithm

The Reduction 1 described in Section 2 and the idea behingpjme@ximate median selection algorithm
are joined together, to get a randomized algorithm for the@pmatek-th selection problem, that works
in-place without introducing any explicit infinite value.

In the following, we denote bi¥ the set of cardinals, withlp = NU {0}, and byZ the set of relative
integers. Moreover, we defirfg]x = n modk for anyn,k € N, thus[n)x € {0,1,... k—1}.

Let (S™™) be the reduction of an instan¢8™ k) of thek-th selection problem with, m € No and
m < n. For each = 0..3, we calculate the probabilities:

o™ _py) A randomunorderedtriplett = {x y,z} € S
: contains infinite values ’

and find

where("5") is the number of possible unordered triplets that can betseldroms,™. At this point,

let the se&™™ be partitioned intc%(nJr m) uniformly distributed triplets;the expected numbgs (n, m)
of unordered triplets g™ containingi infinite values is given by:

(nm)

(n+m)p ", foreach i=0..3.

Wl

Hi(n,m) =

2At this level of abstraction, it does not matteif-+m) is not a multiple of 3.
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In particular, we obtain:

Ho(n, m) 3(n:(r2:1;E::rr2r2—2)’ @
wnm = o rm?@fm_ %)’ @
Hanm) = G mnl(T)znllnm_ 2 )
wa(nm) = m(m—1)(m—2) )

3(n+m—-1)(n+m-2)

Because 2 o p™™ = 1, we get the equality 2 , 1 (n,m) = 1(n+m) and, in particular, the fundamental
system of identities:
{ Bto(n,m) + 2y (N, M) + p(n,m) = n, (5)
pi(n,m) +2uz(n,m) +3ps(n,m) = m.

Equations (1) through 4 suggest a randomized algorithmhapproximatd-th selection problem
where infinite values are only used for book-keeping, andHa reason we refer to them astual
infinities. A detailed description of the algorithm follows.

1. Let(Sk) be the problem instance in input, with= |§ andm= |n— 2k+ 1|. Furthermore, let the
boolean variabléositivelnfinitiesbe Truewhetherk > [ 5] or Falseotherwise.

2. Repeat the following steps until the cardinalithecomes smaller than a fixdthreshold

(a) Find integers,r. € Ng, by means of a predefined criterion, such that:
r+reo=[N+ms.
These values represent the number of elemenS and the number of virtual infinities,

respectively, that do not exactly fit in any triplet.

(b) Compute value§l; € N, with i = 0..3, such thaf; is a “good” integer approximation for
ti(n,m) and the following integer system:

{3Ho+2H1+H2 = n-r,

_ - i 6
Hi+20,+ 303 = M-I, ©)

is satisfied with such values.

(c) Accordingly to the first equation of system (6), choos&lanly inS: Ti, triplets of elements,
[, couples of elements, ang, +r single elements.

(d) Perform the following operations on the selected elémefS

e remove fromSthe minimal and maximal elements of each of figtriplets;

o if Positivelnfinitiesis Truethen remove frongthe minimal element of each of tizg
couples, otherwise remove the maximal element of each af;the
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e remove fromSeach of theu, singleton.

(e) Retain or remove theelements oS with a predefined policy, and seto the cardinality of
the remaining set. Treat analogously thevirtual infinities, saving or removing them, i.e.,
respectively, lettingn =i, + i3 + ', OFr M= I, + [i3 (See below).

3. Return the exact median of the multi-set obtained fronréheaining elements iB joined withm
copies of the valueg-o whetherPositivelnfinitiesis Truge or m copies of—~ otherwise.

Observe that, any reasonable criterion introduced in S2ap ghould ensure,, < r because we
always haven < n. In particular, a satisfying criterion is obtained setting [n+ m|3 —r., and

1 if n+mz=2andm> 3n,
e = .
0 otherwise,

where the vaIu%n is arbitrarily chosen and it means a large fractiom.of

Obviously, the system (6) has always integer solutions.eéddfi,, fi; can be considered as free
variables, andi; can be obtained from the second equation; now, adding thetwations in (6), we
obtain 3y3 (TI; = n+m— [n+m)3, and gefi, because+ m— [n+m]3 is multiple of 3. Notice that the
valuezfzoﬁi is the number ofirtual triplets, i.e. triplets in which virtual infinities can occur, prosesl
in a single iteration.

Each operation listed in Step (2d) corresponds to the hamdif virtual triplets containing, respec-
tively, 0, 1 or 2 infinite values.

A good policy to treat the elements in Step (2e) is addressed in [1]; these elemen{g@ressed
joining them with one of th@i,, triplets and their local median (i.e., of 3, 4, or 5 elemestsyives to
the next iteration. Such technique could also includer theértual infinities.

Finally, the valuem computed in Step (2e) is the number of virtual infinities thatvive to the
next iteration; specifically, such infinities come out froirtwal triplets containing 2 or 3 infinite values.
Analogously, in Step (2e) we have= [i,+ [i; +r or n= iy + [; elements coming out from virtual
triplets containing O or 1 infinite values.

Interval extremes adjustment. The extreme cases of selection, such as the smallesk(el) or the
largest (i.e.k =~ n) elements are better treatad ho¢ modifying the quantities given in equations (1)
through (4).

4. An implementation of the algorithm

In this section we give a possible implementation of the iilgm described above. It is assumed that
the selection is from values stored in an array in main meniarthis case, the computations disturb the
order of the elements, but the contents of the array is unyethn

Let n be the size of the input arra§, andk be the index of the element that we want to select,
and letThresholdbe an integer value. The algorithm pseudo-code is showngnIFiit provided the
experimental results reported in Section 7.

For the sake ef brevity of this presentation, the valy@troduced in Step (2a) is always set to zero,
and ther elements treated in Step (2e) are simply thrown away. Asgtigally, these choices do not
decrease the output quality in terms of precision, but itesaknoticeable difference in small arrays.
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Pseudo-code of the approximate selection function

FUNCTION ApproximateSelection (A, n, k, Thresholg: integer
This function returns the index of the approximkith element of the input arrad(1,...,n|.

m=|n—2k+1|;

if (k>[n/2]) then Positivelnfinitiess True
else Positivelnfinitiess False

while (n> Threshold do

r=[n+ms;

(Ho, Ay, Hy, H3) = SystemSolver(, m);

while (r > 0) do /* Eliminater random */
Swap @A[n],AlRandomIntegét . . n)] ); /* elements from consideration */
n=n-1, r=r—-1;

end while;

i=1; =1 m=T,+ Hg;

while (j < n) do
Choice= Randominteger (1. (Hy+ 1+ Hy) );

if (Choice<Ti,) then /*Delete the singleton*/
j=i+1  Hy=H,-1
elsif (Choice< T, +T,) then /* Treat the couple */

if (A[j] > Alj +1]) then SwapA([j],Alj +1]);
if (Positivelnfinitiess Trug) then SwapA[i],Alj + 1]);
else SwapAli],Alj]);

i=i+2, i=i+l, @m=p—-1,
else /* Treat the triplet */
h = TripletMediand, j);
Swap @], Alh));
i=i+3, i=i+1l;, Hy=Hy—1,
end while;
n=i-1;
end while;
SelectionSort4, n);
if (Positivelnfinitiess Trug then /* We consider then residues virtual infinities */

if (m>n) then returm;
else returf(m+n)/2];
else
if (m>n) then return 1;
else returrf(n—m)/2];

Figure 1: Pseudo-code for the approximith selection algorithm.

The valuedi;, with i = 0..3, required in Step (2b) to solve the integer system (6), aneptited by

the functionSystemSolyéts pseudo-code is given in Fig. 2. In this function, thel reaiablesx,y are
initialized by means of functions (3) and (4), using the edlu—r) because the elements are removed

at all. Furthermore, the best first choice for the couplE ia represented bjRoundx), Roundy)).
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For convenience, the valure computed in Step (2e) is calculated before Step (2c¢).

Steps (2¢) and (2d) are executed by scanning the array frivrto leéght through the indey. For
every single step of each scan, we flip a coin with three faices,the integer variabl€hoice and
depending on the result, we process one, two, or three camse@lements of the array starting at
position j. Notice that, so many calls to the random number generatobeavoided introducing further
efficient pseudo-randomization methods as in the style JofAll the elements that survive to the next
step are gathered on the leftmost portion of the input atreyugh the index. We show in Fig. 2 the
function TripletMedianthat finds the index of the median of the triplet formed by emusive elements
starting at position of the arrayA.

The algorithm continues iteratively using the results afhestage as input for a new one. This is
done until the number of the surviving elements falls belbeThresholdvalue. Then, the procedure
SelectionSortshown in Fig. 2, sorts the remaining elements and the inflexact median of the set
described in Step (3) is returned. In particular, if an inérghould be returned, i.en > n, it is replaced
with the remaining element closest to it.

5. Run-time analysis

To evaluate the computational cost of our algorithm, we mby consider the usual metric of key com-
parisons, but also look briefly at the number of element swathgs particular implementation, given in
Section 4.

Letd = g be the average number of key comparisons needed to detettmimeedian element of a
triplet (cf. [1]) and letd; = 1 be the average number of key comparisons needed to degstimeismallest
or the largest element of a couple.

The following recurrence, whene and m stand for the number of real keys and virtual infinities
respectively, describes the evolution of the expected rmurabkey comparisons from stage to stage:

0 if n=1,

c(n,m) -+ C{o(n,m) + s (M), o (n,m) + is(n, M) if 0> 1. ")

C(n,m) = {
Herec(n,m) = & o(n,m) 4+ &p1(n,m) is the average number of comparisons needed to process the
Ho(n,m) triplets and theu; (n,m) couples in a single stage of the algorithm; the recursiva &dds the
average number of comparisons needed to handle the reahfamiteikeys surviving to the next stage.
The average number of key comparisons performed by theitiigowhen the input size is and we are
searching for thé-th element is given bZ(n, [n— 2k +1|).

It is easy to see that our algorithm has running-time whidimésar in the input size. Indeed, let us
consider the following two bounding casés:= [J] andk = 1 (or symmetricallyk = n).
In the first case, whenis odd, we haven= 0 and equation (7) can be rewritten as follows:
8 n

C(n,O) = _n+C(3>

5 0).

This recurrence depends of a single variable and its exagi@mg whenn is a power of 3, i$C(n,0) =
4
3(n—1).
In the second case, we hawe= n— 1 but, for the purpose of the analysis, we make the following
approximationsn~ n, Lio(n,m) ~ pz(n,m) ~ £, y1(n,m) ~ pz(n,m) ~ § and equation (7) can then be
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Pseudo-code for SystemSolve, TripletMedian, and Selecti§ort

FUNCTION SystemSolve(n, m) : integers quadruple
This function returns four integer values satisfing coodiii given in Step (2b).

r=[n+ms;

X= ta(n—r,m);

y=ps(n—r,m);

F={xs Lyl (XL TyD, (XD, (XL TYD E o

Choose an ordered coupl@,, fi3) € ' such that the following integer values:
Hy = m— 2l — 33,
Ho=(n—r—20,—T)/3,

are non-negatives, i.g1; € No with i =0..3;

return (fo, fy, Ho, H3);

FUNCTION TripletMedian (A, i) : integer
This function returns the index of the median of the trighdi], Ali + 1], Ali + 2]).

if (Alij<A[i+1]) then
if (Al +2] < Ali]) then return;
elsif (Ali+2] < Ali+1]) then return(i +2);
else returr(i + 1);

else
if (Ali] <AJi+2)) then returni;
elsif (Ali+2] > Ali+1]) then return(i +2);
else return(i + 1);

PROCEDURE SelectionSort(A, Siz¢
This procedure rearranges the elements of the &y . ., Sizé in ascending sorted order

i=1,
while (i < Sizd do
min=1i;
j=i+1;
while (j < Sizg do
if (A[j] < Almin]) thenmin= j;
j=i+1
end while;
Swap @i}, Almin]);
i=i+1;
end while;

Figure 2: Pseudo-code for the procedures used by the apmaieé-th selection algorithm.

rewritten as follows:
nn
— =

17
C(n>n) = _n+C(3 3)7

36
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with the exact solution, whemis a power of 3, given bg(n,n) = 3£ (n—1).

Asymptotically, the leading coefficients of the above dohg does not change whaiis not a power
of 3. On the other hand, itis easy to verify that, among allibssiblek values, the first case above is the
most expensive in terms of key comparisons—since compariace used optimally when triplets have
infinities. Hence can state the following:

Theorem 2. The average number of key comparisons performed by theitigpwhen the input size is
n, and the k-th element is searched for, is no more tgmn

The above reason underpins the wapfluences the number of comparisons required by the algo-
rithm. Unforunately, there is little hope of securing a gaheanalytic solution of the recurrence 7, but
one can numerically verify that the functi@{n, m) is monotonically decreasing m, with 0 <m< n
andn fixed; in particular, the minimum bound is reached in the a®scond case.

The worst-case analysis can be analogously handled coimgjdbe maximum number of key com-
parisonsd = 3 required to find the median of three elements. We get:

Theorem 3. The number of key comparisons performed by the algorithmwheinput size is n, and
the k-th element is searched for, is no more tlgan

Let us consider the number of element moves. Unlike the piireedeveloped in [1], it is not easy
here to avoid doing as we do in Section 4, and move each sogvisiement (or swap it with another
element in the array, if we need to preserve its content)réffbee the number of elements swaps, both in
the average- and in the worst-case, is given by equatiore{ifigd = d. = 1. Again, not much hope for
an exact solution, but it is a immediate to verify tRgh,m) < n. Moreover, one can numerically verify
thatC(n,m) < %n for all 0 < m< n, so we can conclude that the number of element swaps perddogne
the algorithm given in Fig. 1, when the input sizenisnd we are searching for ttketh element, is no
more thanin.

6. Probabilistic analysis

In this section we give an exact probabilistic analysis @f kith selection algorithm implemented in
Section 4, which returns the val@utput Specifically, for anyn,k € N, with 1 < k < n, we calculate the
following probability distribution:

Pnk(z) = Pr{ [rank(Output) — k| < |zn| }, (8)

of the relative selection error, measuredzuy [0, 1].

W.l.0.g., we can assume that the input array of sigea permutation of the integers.1.,n. The set
of then! permutations is denoted I8, sometimes called the free group (it is a group, under coitipos
but we shall not use this fact here).

We make two reasonable uniformity assumptions. One coadbmdistribution of the input set: all
permutations are assumed equally likely. The second rédetise random choice of triplets, couples
and singletons during the execution of the algorithm, whiehassume are all independent of the array
content and of each other.

10



Triplets Couples Singletons

Figure 3: Looking at the array elements as a sequence ofexyesces.

While the algorithm creates the successive triplets pritibtically, for the following exposition it is
convenient to view the input array as a sequence of consedutplets followed by consecutive couples
and by consecutive singletons as shown in Fig. 3, which doeshow of course the virtual infinities.

W.l.o.g. in the analysis, we consider the case & < [3], with the symmetric one[3] < k < n,
being completely analogous. This means that the infinitiesiagative, and the surviving element of any
couple is its smaller element.

We use of the following notation and identity for the multmial coefficient:

({kl\}lm> dzef(k,k,N..,k) B E(Nikv :m 9)

mtimes

for all N,k,m e Ng, with N > km

We construct our solution for the probability distributi(8), from the answer to the question “what
is the probability that when the array has thealues 1...,nin random order, the valweis selected, and
becomes thé™ smallest among the surviving elements.” We decompose #hisilation to a sequence
of combinatorial problems.

A sequence of two-position boxes is given. We place in them a random peatimut of distinct
integers,m€ $. The smallest element in each box is selected, givinigsusviving elements.

Definition 1. Given l€ N and ab € Ny, we denote by fﬂ(a, b) the number of permutatiors, out of
the (21)! possible ones, in which exactly b elements survive among $heallest elements in.

For convenience, we extend Def. 1 foe 0 too, setting:

2] [ 1 ifa=b=0,
0 (&b) _{ 0 otherwise

The following notation will simplify our discussion. Forwampermutationrr and an integen, we
denote by ¢” each element among tteesmallest ones imr, and denote by<” the others.

Lemma4. Letab,| € Ng. The number of permutationqptéa, b) is given by

2qp 227N =b) () (35 () ifb<I,
Q (a,b)_{ 0 o otherwise

Proof. It is immediate to verify that any contribution th[z] (a,b) can be given only if the condition
b<a<2b<?2 is satisfied.

In a permutatiorvt, among the Relements, there a@“e” and 24 —a “o”. We count permutations
that result in selections dif “e” and | — b “o”. All the surviving “o” must come from thé — b couples
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of type {o,0} in 1, and thus(2l —a) — 2(I — b) = 2b— a unordered couples of typf, e} occur inTL.
Consequentlyla— (2b—a)] /2 = a— b couples of type[e, e} are present int.

We need to count the permutatioridhat satisfy the above constraints. First we count the namibe
ways to select occupants for the unmixed boxes: We I?ﬁ%eﬁ ( {zfa,b) ways to seleca— b pairs of “e”

“w_n 1 TR 1]

from thea“e” in T, andm({zz'gf‘b) ways to selectl — b) pairs of “o” from the (2| — a) available %”
in 7. Then, we haveEZbE—a)! M%,3 1(2b—a—i)? = (2b—a)! ways to match the remainin@b — a) “o”
and(2b—a) “e” with the (2b— a) boxes containing mixed couples.

Finally, to complete the specification of a factor 2 accounts for the order inside each box, and an
[! accounts for the order of the boxes. Multiplying thesedestand using the identity (9), we get:

(2b—a) al(2l—a)! .
Ql[z] (ab) = 2 ”—(a—b)!(l—b)!(Zb—a)! if b< a.g 2b< 2, (10)
0 otherwise,
and rewriting it using the binomial coefficients we get theids result. |

Notice that, for any € Np, we havte[z] (0,0) = (21)! and Q,[z] (a,0) =0foralla##0.
Now we consider the following consequence of the above tesul

Definition 2. Given ab,l € N, we denote b@l[z] (a,b) the number of permutatiorns, out of the(2l)!
possible ones, in which thé'amallest element i is selected and becomes tHe gmallest among the
surviving elements.

Lemmab. Letab,| € N. The number of permutatior@lz] (a,b) is given by
Q% (ab) =2(2 —a)Q?,(a—1,b—1).

Proof. Recycling the notation of the previous proof, we observe tthaal" element inris the largest
“e" and given that it is selected, it came from a mixed coupley parmutation that contributes here was
counted inQ,[z] (a,b), if awas among those selected.

Since the candidate permutations hawe—2a mixed couples, then among the permutations we

counted above only if2b — a) /a of them we find the largests” in a mixed couple, that is,
_2b—a
a

Q% (ab) Q(ab)=2(2 -a)Q@-1b-1)

where the second equality follows from the explicit formabm Eq. (10). [ |

By convention, we extend Def. 2 to the cdse 0 and we Ie@éz] (a,b) =0 for anya,b € N.

We deal now with the the same combinatorial problem withees triplets of actual values, instead
of couples. A random permutationfrom Sy is placed in a sequence lathree-position boxes, as before.
We select the median element in each box, and getviving elements.

Definition 3. Given l€ N and ab € Ny, we denote by a(a, b) the number of permutatiors, out of
the (31)! possible ones, in which exactly b elements survive among $heallest elements in.

As above, it will be convenient to extend Def. 3lte: 0, setting:

1 ifa=b=0,
0 otherwise.

QE)?)] (av b) = {
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Lemma6. Letab,l € Ng. The number of permutation§3&2a, b) is given by

QI[3](a’ b) = { 3 bal(?’ a)! ( )ZI =09 () (a—lgt?—i) if a<3l, (11)

0 otherwise

Proof. Clearly this configuration requiresQb < a < 3I. As above, we denote tteesmallest elements
in the array by ¢” and the othe3l — a) entries by ©”. With the notation introduced before, four types
of triplets can occur int, namelyty : {e,e.0},t;: {0, 0 0}, 1,: {8 0,0} andtz: {o,0,0}, where the order
of the elements inside each triplet is not relevant at the emim

Let denote by(m); the number of triplets int of typet;, with 0 <i < 3. All the permutationst
contributing toQ|[3](a, b) need to satisfy the following constraints:

(M1+2(m2+3(ms =3 —a, (12)

{ 3(mo+2(m1+(m2=a,
(mo+(m1=b.

The four numbers are not independent, of course, since they all sum td; however, since adding
the first two rows yields this sung?:()(mi =1, the system (12) is undetermined. Specifically, we can
describe the space of solutions as spanned by fiking)) at any value in the interva0, b).

Let us define the following equivalence relatiamn the seSg, of the (3)! permutations:
T~ T <= (M) = (1);, for eachi € [0, 3],

foranym, ' € S3. We denote byt € S/ ~ the~-equivalence class of a permutatio S3. Moreover,
by solving the system (12) in terms 6ft)o we see that all the permutatiomse S contributing to

Q,B] (a,b) can be gathered together in the following set of equivaletesses

b— (o ) }
a—2b— (mo . (13)
| —a+b+(mo

The note about the solutions above implies 4%&%‘ = b+ 1. We start by computing the siza] for
each equivalence clagse Sy / ~:

(m)
ﬁg)b{ﬁE%l/N 0<(mo<hb and( (n)l

2
(M3

3
I

Lemma?7.

|ﬁ:Hx@xﬁQﬁ%

SWe do not use any of the standard properties of such a re)atkmept that its classes partiti&y .
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where

1 a \ 1 Ml 3(mg 4 2(my+ (my— 3
ol = it (gaym) =t 1) 3 )
1 [(2(m1+ (m) 1 Mt oimyy (Mo — 2
0l = o (M) <imst = g T (7 Y,
~ 1 ((m1+2(m)s 1 MLy 4 2(m), — 2i
Co(m) W( {12}<7T>2 >X<7T>2! wa | < ! 5 >(<7T>2—|)>

- d—a\ 1 Tt rimy 4 2(mo + 3(ms - 3
041 = i (o) =z 1) (7 ),

Proof. TheC;i(m) have the following interpretation:
Co(T) counts the ways to distribute B)o “e” elements out of the available into(r)o boxes containing

triplets of typetg; the factorwlo! is inserted because we are not considering now the ordergbuxes.
Similarly, C3(7) enumerates the ways to distributgs; “o” elements out of 3l —a) into (11)3 unordered
boxes containing triplets of tyde.

In C1(71) we count the ways to populafer); unordered boxes, each with 2 of tfee— 3(rm)o) remaining
“e” per box and one of thérm), remaining ©” elements.

Cy(m) is defined in a completely analogous manner.

A factor 8 takes into account the order of the elements inside eachamaka factot! is finally intro-

duced to complete the specification of the permutation bg@ating for the order of the boxes. N

To return to proving lemma 6 we apply identity (9) and getradt®/eral cancellations:

3 = al(3l —a)!
iI:LQ(T[) — 2(MaH(m23(mo+ (s |_|i3:0(<7T>i!)

Now we can calculate the quantity of our interest; by the dtefim of ﬁg)b we get:

b = y{nessllﬁeﬁg,)b}‘: > I
)

frerll)

e 3t
= llal(3 —a)! —,
ﬁe%wb Mio((m)i!)

We use the relation in Eq. (13) to rewrite the terms the last emd since eaclht € ﬁgi) can be seen as
corresponding to a value dft)g in [0, b], the sum there can be changed to one on this index, and we get
the desired result. |
Notice that, for any € Np, we haveQ|[3] (0,0) = (3l)!and QF’] (a,0) is not necessarily null whea# 0.

Again we derive a useful consequence of the last result:

Definition 4. Given ab,l € N, we denote bﬁm (a,b) the number of permutatiorns, out of the(3l)!
possible ones, in which thé'amallest element i is selected and becomes tHe gmallest among the
surviving elements.

14



Lemma 8. Letab,l € N. The number of permutatio@m (a,b) is given by
=3
Q@b =6l(a-1)@3 -a)Q% (@a-2,b-1).

Proof. All the permutations contributing t@m (a,b) are among those we countedcg{ﬂe’] (a,b), but we
only need those in which ends up being selected. as before, simetement is the larges®" in it
gets selected ift puts it in a triplet of type;. Such a triplet has 2¢” elements, for a total of @1); out
of asuch elements. In the formula (11) we ass{g = i, hence(m); = b—i, and therefore

Fan-srus w()IELOLT) o

Rearranging the terms above we obtain the needed result. |

By convention, we extend Def. 4 Iettirt_gg’] (a,b) =0 for anya,b € N.

We are ready to define the next step in our analysis, combadirige results obtained so far.

An ordered sequence of consecutiydy, |, boxes is given, where each box contains exactly either
three, two or one ordered elements, respectively (see Figni8ally, n = 3lg+ 2l1 + |, totally ordered
elements are uniformly distributed in the boxes, creatirgna@om permutatiom. Following the process
of our algorithm, we select the median element in each trijgle Def. 3) and the smallest element in
each box containing a couple (cf. Def. 1). This,+11) elements survive at this stage, including none
of the singletons contained in the ldsboxes, as shown in Fig. 4.

ag lo—ag—1 a 21 —a; ap o —ay
—— S
oo--'oo*oou-oo‘oo-~ooo-~-o e ... @0 -0
o triplets [, couples I, singletons
bo by
—
‘oo'--ooo*ou-oo‘
~—_— — ———
b-1 lo+11—Db

Figure 4: Looking at the elements array as a sequence daftgjmouples and singletons.

Definition 5. Given b,l1,l> € Ng and ab € N, we denote b®,, |, ;,(a,b) the number of permutations
7, out of the h possible ones, in which thé"amallest element imr is selected and becomes th& b
smallest among the surviving elements.

Lemma9. Letly,l1,l> € Ngand ab € N. The number of permutatio@m,b,z(a, b) is given by

— a—1 a—a—1
— |5l
Qi1 (8 0) = 12! < ) < (S+%),
o aelo. (3Z)|] -0.2 ao a
ag+ag+ay=a—1
bj € [0..min(a;, I)] =01
by +by =

15



where,

5 _ ( n—a ><n—a—3|o+a0+1>.c}f](ao+1,bo+1)-Ql[f](abbl),

o—ap—1 2 —a
n—a n—a—3lg+ag =2
= bo) - as+1,b;+1).
S <3|0_a0>< o a1 > Q| J(20,b0) - Q1 (81 + 1, b1 + 1)
Proof. In a generic permutatiom, among then elements, there ara “e” distributed into the boxes
containlng triplets, couples and singletons, éné- a) “o”. In particular, excluding the element %”,

ao occurs in thdg triplets (with 0< ag < 3lg), a1 “e” occurs in thd couples (with 0< a; < 211) and

“e" forms thel, singletons (with G< ap < I,), such thaty +a; +a, = a— 1. This situation is depicted
|n Fig. 4, where each rectangle does not preserve the ordbeadlements inside. In order to get the
element %” to be selected and to be th¥ among the surviving elements, we ndid o” survived from
triplets (with 0< by < min(ag,lp) ) andb; “e” survived from couples (with & b; < min(ag,l1) ), such
thatbg+b; =b—1.

To evaIuaterJlJz(a, b) we just need to count the permutations that satisfy the abomstraints.
First we count the ways to fill up thay positions in the triplets witffa— 1) “e” and thea; positions
in the couples with the remainin@ —ap — 1) “e”. Secondly, we evaluate the quantiti€s and S,
corresponding to the case ofbelonging to a triplet or to a couple, respectively. 3nwe count how
to fill up the (3lp — ap — 1) positions in the triplets witlin — a) “o” and the(2l; — a;) positions in the
couples with the remainingh—a— 3lg +ap+1) “o”; “ +” is the (ag + 1) smallest element in the triplets
and we need it becomes thiay + 1)”‘ after the trlplets are processed; at the same time, we Ineoed
selected among they smallest elements in the couples. The quar8jtys derived analogously.

Finally, the factoil,! takes into account the remaining elements forminglitengletons. |

The performance of the algorithm is characterized by théatvdity Pé”’m), that thea™ smallest
element of the input array of sizeis returned in output as final winner, when tk¢h element is
searched for, and then= |n— 2k + 1].

Let nj, m;, for eachi € [0, f] be the sequence of values computed during( fhe 1) iterations of the
“while” loop of the algorithm, on an input array of sine= ng with myp = |np — 2k + 1J; the valuef € Ng
is the smallest index such thagt, 1 < Threshold

The previous values are computed by

ni+1:ﬁ8>+n(1”, m+1:Hg)+Hg), for eachi =0..f,
Where<Hg)7H(1i)7H(zi)aHg>> are the integer values returned by SystemSGiyam).

By Lemma 9, we are able to analyze a single iteration of therdlgn. Indeed, for any values of
the integer variables;, m, we can derive the probabilitpg'gm that thea smallest element dtth
step becomes thg" smallest element in the neit+ 1)-st step obtained applying rules in Step (2d) of
Section 3:

(nm) __ +
pa’b - Q“O “1 “2 [n.+m]3(a’b) .

A recurrence equation can be establlshed to evaluate thalpiliby of our interest:

PP =y ™ ™Y oralli = 0.,
bie[l.a
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and expanding, we get:

R T A S L A (15)
bo,b1,+ ,0f_1,b¢
where,
Nfr1 <mM¢ganda=1
1 if or
(Nf11,Me41) B )
Py T = Nfy1 > Msy1 anda= {nf“fsz“w (16)
0 otherwise.

It is straightforward that probabilities given by (15) arié) can be symmetrically defined fﬁg] <k<
n, so that we can define the probability distribution given®) {or each 1< k < n:

Pk = Y prin ) with ze 0,1] (17)
1<a<n
ja—K< 20

While these expressions for the distribution of the retdraalue are far too complex to allow for an
analytic characterization, generating numbers from themoissible, as we show in the next section,
which also demonstrates how closely they track the actuébimeance of the algorithm.

7. Experimental results

In this section we present empirical results, demonsuydtie effectiveness of the algorithm described
in Section 4. Our implementation is in standard C (GNU C cdenpi2.7). All the experiments were
carried out on a PC Pentium Il 350Mhz with the Linux (Red Hatritbution) operating system. The
arrays were permuted using the pseudo-random number gensuggested by Park and Miller in 1988
and updated in 1993 [10]. The algorithm was run on randonysroé sizesn = 10, with i = 2..5,
whose entry keys were always the integers 1 n.

Our first experiment aims to evaluate how the theoreticabalodity distribution (15) fits with the
empirical one. In order to do this, we chose a sample of Q00 random input arrays of size= 100
and run the algorithm on it for sonkevalues chosen between 1 af@ﬂ , with a fixedThresholdequal to
|v/n]. We compute the histograms of the relative frequencieseotforithm outputs so that theoretical
and empirical distributions are compared in Fig. 5, wheseehch chosek, we reported the averagg
and the standard deviatian of both the distributions.

A more interesting experiment was done with variable injzesn = 10, i = 2..5, with Threshold
equal to|\/n]. Also in this case we fixed sontevalues among 3|, [ 3|, [5] and |3 |, with the only
exception fom = 100, and we built the histograms of the relative frequencfdte algorithm outputs.
Each single histogram, shown in Fig. 6, has been obtaineddiffesent sample of size 10000.

The Thresholdvalue [ /n| until now used was completely arbitrary. In Fig. 7 we repaorng his-
tograms referred to the relative frequencies of algorithutputs for three differenthresholdvalues, i.e.
3, |v/n], 2|+/n|. Data are obtained from a fixed sample of @D arrays of sizen = 1,000 and for
some fixedk values. By examining the standard deviatayvalues, it is clear that larger is tAdreshold
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Theoretical vs. empirical

0.07

k=1 +
0.06 -

k=27 s

| n=100 |
k | Data [ (ok)

i 5 | Theor.| 11.00 (6.93)
Exper.| 11.02 (6.91)
: 27 | Theor.| 26.63 (6.76)
Exper.| 26.60 (6.78)
1 50 | Theor.| 49.99 (6.19)
Exper.| 50.03 (6.21)

k=50 ... P b

0.04 H

0.03 H

80 90 100

Figure 5: Comparing the theoretical probability distribns with the experimental results histograms.

value, larger is the computational cost of the selectionlzeitkr is the quality of the selection. For this
reason, depending on the specific application,Ttheesholdvalue has to be appropriately tuned.

In the previous experiments, we worked on some represeatatalues arbitrarily chosen. Now, we
concentrate our attention on the percentage error madechgiglrithm, independently by For each
i =2..5, we fixed a sample of,D00 arrays of size = 10 and we used Zhresholdvalue | /n|. We
run the algorithm on the input sample for edctalue, such that X k < n, with the only exception for
i = 4,5 for which only 1000 uniformly distributeck values were examined, i.e. values- 1+ j-10-3
with j = 0..999. For each single algorithm output, corresponding tolaevaand to an array of the
sample, we calculate the percentage error distance

_ |k—rank(Outpub|

N n—1

from the correck-th element. The extreme values assumedibgan be 0%, when thieth element is

returned by the algorithm, and 100% when the algorithm nsttine largest element in the array whereas

the smallest one is searched for, or viceversa. In Fig. 8&doh singlé, we plotted the maximum error

My = max(dy), the average errag = E[di] and the standard deviatiay = o[di] of the 1000dy values.
Finally, in Fig. 9 we give a plot that summarizes some of tlaistical indexes obtained from the

previous data-sets. It well illustrates the good qualitythed algorithm output when the input sire

is sufficiently large. More specifically, the trend of therstard deviatiorE[ox] may be viewed as a

measure of the improvement of the selection effectivenasméreasingn.

dk 100, with1<k<n,

8. Conclusion

We have presented an approximate algorithm forkttie selection problem, based on a statistical ap-
proach. Itis a generalization of the algorithm for the apprate median selection problem described in
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Relative frequencies histograms

oon — [ n=100 |
004 | 1 k| e (o)
oos ] ] 51110 (6.9)
50 | 50.0 (6.2)
oo ] 75| 76.7 (7.0)
ol L L [T L 6‘0 Ll L Ll .
ool ] [ n=1000 |
0.01 | - k IJk (Gk)
ooon | ] 125] 1195 (27.8)
ooon | ] 500 | 492.1 (23.2)
ooon | ] 750 | 743.8 (28.2)
| n=10,000 |
K ™ (oK)
1,050] 1,230.8 (110.0)
3,750| 3,750.0 (100.2)
5,000| 5,000.7  (89.1)
7,500| 7,501.4 (109.1)
oons | T n— 100,000 |
o001 1 k i (ok)
0.0008 |- ] 12,500| 12,460.5 (429.7
0.0006 |- | 37,500| 37,499.7 (379.1
ot 1 | 50,000| 50,001.5 (322.8
ooon | ] 75,000| 75,003.0 (418.1

Figure 6: Relative frequencies far= 10,i = 2..5 and some fixe# values.
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Threshold analysis

0.025

| n= 1,000 |
002" Thr=62 —1 ] k [ Thr| p (ok)
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200| 31| 197.0 (29.0)
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900| 318953 (27.5)
62 | 899.4 (20.5)

0.015 |-
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0.005

L
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Figure 7: Quality of selection as a function of theresholdvalue.

[1]. Its precision is strongly based on the good behaviohefdapproximate median selection algorithm.
As the experimental section shows, the quality of the allgorioutput becomes better and better for
larger input sizes.

In order to get an improving in the quality of results, oung research is oriented to find efficient
ways to manipulate larger blocks rather than triplets whedacting for thek-th element. In particular,
an alternative method to treat the extremes of the rangeleftg®n to get higher precision is under
investigation. We are also studying how to apply the tealmmigresented here for the linear case to other
higher dimension domains.
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