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NUMERICALAND ASYMPTOTIC SOLUTIONS FOR PERISTALTIC MOTION OF
NONLINEARVISCOUS FLOWS WITH ELASTIC FREE BOUNDARIES*

DALIN TANGt Aq) SAMUEL RANKINt
Abstract. A mathematical model for peristaltic motion of nonlinear viscous flows with elastic free bound-

aries is introduced. An iterative numerical method is used to solve the free boundary problem. Long wave
asymptotic expansion is developed and the zeroth order approximation is used as the numerical initial condi-
tion. The existence and uniqueness of the solution for the free boundary equation derived from the long wave
expansion are proved. Computations were conducted to study the long wave approximation, the numerical
solutions for the exact equations, and the influences of the parameters on the solutions.

Key words, peristaltic, Navier-Stokes, long wave, free boundary, elasticity

AMS subject classifications. 76, 39, 41, 34

1. Introduction. Peristaltic pumping, the physiological phenomenon of a circum-
ferential progressive wave propagating along a flexible tube, plays an essential role in
transporting fluid inside living organisms. Many modern mechanical devices have been
designed on the principle ofperistaltic pumping to transport fluids without internal mov-
ing parts, for example, the blood pump in the heart-lung machine and peristaltic trans-
port of noxious fluid in the nuclear industry. Earlier mathematical work on the problem
of peristaltic transport was based upon a viscous fluid model governed by the Navier-
Stokes equations subject to a prescribed velocity on the boundary of the tube [11], [3]. A
review of the research results can be found in the articles by Jaffrin and Shapiro [8] and
Winet [21]. Numerical study of two-dimensional and axisymmetric peristaltic flows can
be found in the articles by Takabatake, Ayukawa, and Mori 17], 18]. Recently, more re-
fined models have been developed to deal with the peristaltic transport of a fluid-particle
mixture or a heat-conducting fluid. The former was studied by Hung and Brown [7] and
Kaimal [9], and the latter by Bestman [1] and Tang and Shen [19], [20].

In reality, the shape of the tube walls (e.g., blood vessels) is often unknown. They
should be treated as free boundaries and solved as part ofthe solution. Experiments also
suggest that the elastic properties of the tube walls should be taken into consideration
[6], [10], [12]. In this paper, we introduce a three-dimensional (axisymmetric) model
for viscous peristaltic motion with elastic free boundaries that combines three impor-
tant factors: viscosity, elasticity, and free boundary. With the free boundary, this model
should give a better representation of the actual physical situation than the fixed bound-
ary models. Investigation of the free boundary model will provide useful information
for designing equipment applying peristalticmotions and will lead to better understand-
ing of some physiological processes involving peristalsis. However, the introduction of
the free boundary makes this model difficult to solve. The fact that the domain is un-
known makes it difficult to change the partial differential equation (PDE) system to a
discretized difference system, which is the first step necessary to solve the PDE system
using the finite difference method. To overcome this difficulty, we introduce a global
iterative method for this model. The idea was originated from Fung [4]. To explain, we
outline the method below.

Step 1. Obtain the long wave solution, which will be used as the numerical initial
condition. The free boundary solution obtained from the long wave approximation will

*Received by the editors April 1, 1992; accepted for publication (in revised form) December 11, 1992.
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1301

be used as the initial guess for the exact free boundary.
Step 2. With the boundary F r H(z) obtained from Step I (H(z) is the radius of

the tube), use a local successive overrelaxation (SOR) method [20] to solve the system
as a fixed boundary problem without the elasticity. The mapping

(1.1) { z,

(1.2) r/ r/H(m)

is used to map the (z, r) domain to a rectangular (, ) domain. The number ofiterations
of the SOR method needed here should be determined by numerical experiment.

Step 3. Update the free boundary function H(z) by using the elastic condition.
Step 4. With the newly updated H(z), repeat Steps 2 and 3 until the desired accu-

racy is achieved. Adjust the number of local iterations if necessary to achieve the best
convergence.

There are three key points in this method worth mentioning. (1) By using this pro-
cedure, the unknown domain becomes "known" at each global iteration and discretizing
the PDE system becomes possible. (2) Using the long wave solution as the numerical
initial condition is important to gain fast convergence. (3) The introduction of the map-
ping (1.1)-(1.2) makes the transformation of the (z, r) domain to a rectangular domain
a fairly easy job.

In 2, we formulate the problem. The long wave asymptotic expansion is developed
and solved in 3. The global iterative method is explained in 4. Results and discussions
are given in 5.

2. Formulation. We consider viscous flow in an elastic tube while the shape of the
tube is to be determined. A tension function is prescribed on the boundary to reflect
the elastic property of the tube wall. The tube and the motion are assumed to be ax-
isymmetric and the wave traveling along the tube (z-direction) is periodic. By choosing
a coordinate system moving with the wave, the boundary becomes stationary. The prob-
lem is formulated in Fig. 1.

X

FIG. 1. Peristaltic motion in an elastic tube.

Equations ofmotion and continuity. Assuming the flow is Newtonian, viscous, and
incompressible, we use the Navier-Stokes equations as the governing equations:

pu+p(u.V)u=-Vp+#V2u, V.u=O, t_>O,zf,

where/9 is the density, u the velocity with respect to the moving coordinate system, p the
pressure, # the dynamic viscosity, and f is the domain consisting of one period of the
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1302 DALIN TANGAND SAMUEL RANKIN

tube. In terms of cylindrical coordinates, the nondimensionalized equations of motion
and continuity with axisymmetry are

(2.2) Ov Ov Ova_ Op 1 (02v 02v lOv v)O--F + v-z + v Or -0 + - Oz + Or rot r

(2.3) Ov vr Ovr
Ox + -r =0,

where v and v are longitudinal and radial components of the velocity relative to the
moving frame and R is the Reynolds number.

Free boundary. The free boundary r r H(x) is to be determined as part of the
solutions where H(x) is the radius of the tube. We assume that H(z) is periodic. Our
result shows that for each prescribed initial opening

(2.4) H(0) Ho,

there is a solution to the free boundary equation obtained from the long wave approx-
imation if certain conditions are met (see 3). This leads to the existence of the exact
free boundary when the numerical method converges. However, the theoretical proof
of the existence and uniqueness of the exact free boundary is a much harder problem
and remains to be solved in the future.

Boundary conditionsfor the velocity andpressure. Considering boundary conditions,
we assume no slipping between the fluid and wall, no penetration through the wall, and
no horizontal motion of the wall. These lead to the following boundary conditions:

where F is the free boundary, C is the wave velocity, and f is determined by the radial
motion of the free boundary. Recalling that the free boundary is H H(x) H(x*
Ct), where H(x) is the radius of the free boundry and x* is the old x-coordinate, we
obtain

dH OH dx* OH
vlr dt Ox* dt Ot CH’(x),

where the no-horizontal-motion condition dx*/dt 0 has been used. Now we have

ulr (v, v)lr (-C, -CH’(x) ).

It is easy to check that

u. nit O,

i.e., the normal component of the velocity at the boundary is zero. Wave velocity C is
prescribed with the tension function that is discussed below.

At r 0, because of the symmetry, we assume

r =0, vr =0.
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1303

At the two ends of the tube, we impose periodic conditions on the velocity and the
pressure

(2.6) v I=0 v

(2.7) vl=0 vl=e,

(2.8) Pl=0 Pl=e’,

where e is the wave length. These periodic conditions are actually implied by the period-
icity of the tension function and the Laplace law to be described below. Some numerical
boundary conditions for the pressure at r 0 and F r H(z) will also be imposed.
The details will be discussed later.

Additional boundary condition from elasticitythe Laplace law. Because the bound-
ary is free, an additional boundary condition is needed to make the model complete.
That condition comes from the consideration of the elastic property of the tube. Be-
cause of the complexity of structure of the tube walls in real application, there are many
ways to introduce elasticity into a model. For simplicity, we will adopt the Laplace law
to represent the elastic property of the wall [13]:

(2.9) Plr
T(z, r),

r

where T(x, r) is the prescribed tension function. Several cases are discussed in this pa-
per. In practice, various functions can be introduced to find the best agreement with
experimental data. When necessary, we may introduce more complicated elasticity laws
involving stresses and strains of the walls, which would make the model more practical.
The change of the elastic condition will affect only the part of updating the free bound-
ary. Therefore, the numerical method will still be applicable with minor adjustments.

Remark. The prescribed tension is fundamental to the whole mechanism. We as-
sume that it takes the form of a traveling wave

T T(x*, t, r) T(x* Ct, r) T(x, r),

with given wave speed C, period, and wave length. We are then looking for solutions in
which the fluid velocity, pressure, and the free boundary also adopt the form of travel-
ing waves with the same wave speed, period, and wave length as the imposed wave of
elasticity.

From the Laplace law, it is clear that prescribing T is equivalent to prescribing the
pressure at the free boundary.

Flux condition. Using u. nlr 0, V u 0, and the divergence theorem, we can
prove [19]

fA ndA const Q,u.
()

where A(x) is the cross section at x and Q is the flux. This is the so-called flux condition.
In terms of cylindrical coordinates, the flux condition can be written as

u ndA v r dr dO Q
()
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1304 DALIN TANG AND SAMUEL RANKIN

or

H() Q
(2.10) vzrdr const.

27r

For the fixed boundary model, it has been proved that for each prescribed flux, there
exists a unique solution to the system [19]. A similar conclusion is also true for the fixed
boundary model if we replace the flux condition by the pressure drop condition, i.e.,

pl=e p[=0 const Pd,

where Pd is the prescribed pressure drop. The relation between the flux and the pressure
drop is almost linear for the fixed boundary model [20].

For the free boundary model, the situation is different. Due to the periodicity of the
free boundary and the Laplace law just introduced, the pressure drop over one period
of the tube must be zero. That means the pressure drop cannot be prescribed for the
free boundary model. It is found in this paper that prescribing the flux is equivalent
to prescribing the intial tube opening H(0) H0 for the free boundary model. For
theoretical convenience, we choose to prescribe H0.

Although we cannot prescribe the flux condition once H0 is given, we still have that
identity which will be used to derive the free boundary equation from the long wave
approximation. The constant Q will be determined as part of the solution.

Remark. To prescribe pressure drop, tapering of the tube must be taken into con-
sideration. This will be treated in a separate paper.

Remark. Recall that we are using a moving coordinate system. The laboratory lon-
gitudinal velocity u* can be expresssed in terms ofv by

(2.11) u* v + C.

So the laboratory flux

(2.12) Q*(x*)= fA u*dA=/A vdA+ fa CdA=const+CJa dA
(.) (.) (.) (.)

will be a function of x*, not a constant.
From the above, we have the mathematical model for the viscous flow with an elastic

free boundary (in nondimensionalized version):
1

ut + (u. V)u -Vp + V2u, (equation of motion),

7.U= O,

ulr= -C,-

Ovz
Or I=o O, vI=o O,

ul =o
pl =o

(equation of continuity),

(boundary conditions for u at F),

(boundary conditions for u at r 0),

(periodic condition for u),

(periodic condition for p),
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1305

r H(x),
T(x,r)plF

r

H(0) H(e) H0, (conditions for the free boundary),

(Laplace law).

Assuming axisymmetry, the stationary system can be expressed in terms of cylindri-
cal coordinates as

1 {Ov lOv Ov)Ov Ov Op + +_ +(2.13) v + vr Or Ox - \ Ox2 r -r Or2

COvr Ovr cop 1 (02vr 02vr l Ovr(2.14) v-x + vr Or -0--- + - + or2’ - r Or r2

(2.15) Ov v Ov
Ox +--+r =0,

(2.16) (v,, v)lr (-C, -CH’(x)),

(2.17) Ov
Or I,-=o O, v,.I,.=o O,

(2.18)

(2.19)

(2.20) F r H(x), H(O) H(e) Ho,

T(x,r)(2.21) plr , 0 < x < , 0 < r < H(x).
r

Compared with the fixed boundary model, this model treats the boundary as a free
boundary. An additional boundary condition is introduced by using the Laplace law
of elasticity. Instead of prescribing the flux condition, the initial opening of the tube
H0 H(0) is prescribed to ensure a unique solution of the system.

3. Long wave asymptotic approximation. Assume that 0 < dig e << 1, where
d is the average radius of the tube and is the wave length. Our previous experience
indicates that p O(e-2). The Laplace law implies T O(p) O(e-z). Then by
assuming R O(e), the zeroth order long wave approximation will be essentially a one-
dimensional linear system with free boundary; therefore, it is much easier to handle.
Please note that although we made the assumption R O(), it does not imply that our
numerical method will be valid only for small Reynolds numbers since we are basically
using this approximation as the numerical initial condition. The numerical method cov-
ered in 4 does apply to finite Reynolds number cases. For simplicity, when we simply
replace, respectively, x, O/Ox, p, g, R, T, by x/e, e(O/Ox), pe-2, g/e, eR, Te-2 in (2.13)-
(2.21), the system becomes
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1306 DALIN TANG AND SAMUEL RANKIN

Ov Ovr Op 1 ( 02v l Ov2v-x- + ev + e2 + +Or Oz - Oz2 r

(3.1)

OVr OVr_or -lOPer -1 ( 02Vrox2e2v-x + ev - + e

Ov v Ov+--+r =0’
(vz, v)lr (-C, -Cell’(x)),

CVx
Or 1,-=o O, v,.I,.=o O,

C2Vr 10Vr Vr )+ -O--Z - r Or r

pl=o pl=,

F: r H(z), H(0) H(e)= Ho,

Pit
T(x, r)

r

Because of the asymptotic assumptions, the odd terms of the asymptotic expansions of
u, p, and H will turn out to be zero. Therefore, we assume

U-- U0+2u2 +4U4 +...,

P Po + 2p2 + 4p4 + "’’,

H Ho + e2H2 + e4H4 +’",
where ui (v, v). Substituting these into (3.1) for the zeroth order approximation,
we obtain (in the following, we use H for Ho(x) and Ho for the initial opening),

l(OvOz 020vOw)Opo(3.2) - + Or Oz

(3.3)
Opo
Or O,

(3.4) Ov Ov

(3.5) (,)1 (-c, 0),

(3.6) 0 o
Or =o 0, v I=o 0,

o o1= o1=o o1=(3.7) vl=o v v v

(3.8) Po I=o Po I=e,

(3.9) F:r- H(x), H(O) H(e) Ho,

(3.10) polr T(x,r)D
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1307

while

Q
(3.11) vrdr

is an identity we will need in deriving the free boundary equation.
From (3.3), we see that p0 po(z). Using (3.2) and the corresponding boundary

conditions, we obtained

(3.12) 0 1 R(r2 H2 Opo c.

Plug into (3.11) and integrate

(3.13)
R Opo

Ha CH2 Q
80x

From (3.10), P0 can be expressed in terms of H(x) as

T(x,H(x))
H(x)

Thus (3.13) contains one unknown function H(x) only. If H(x) can be solved from (3.13)
and (3.9), then p0 and v are also determined. It is easy to see from (3.4)-(3.6) that

We consider the three cases below that are chosen because they are the three easiest
simplifications of the general function T(x, r). Comparison between the numerical and
experimental results must be done to see how realistic these conditions are.

Case 1. T(x, r) T(r). From (3.10), P0 (T(H))/(H) po(H). Using this
information and also letting g 1 for simplicity, (3.13) and (3.9) become

R Opo dHHa CH2 -Q, H(0) H(1) Ho.(3.14)
8 OH dx 7r

Equation (3.14) has a constant solution

(3.15) H- ( Q(71.C)) 1/2

It follows from here that

(3.16) p0 const,

0 -C(3.17) v

0---0.(3.18) v,.

We also solved (3.14) numerically and (3.15) was the only solution we found. It turns out
that (3.15)-(3.18) is also the exact solution to (2.13)-(2.21). Therefore, we suspect that
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1308 DALIN TANGAND SAMUEL RANKIN

the constant solution is the only solution to the system. However, we cannot yet provide
a theoretical proof.

Case 2. T(z, r) Tob(z), where b(z) is continuously differentiable and periodic
with period 1, 0 < rl < b(x) < r2 < . Nowwe have

Tob(x) Tob’(x)H Tob(x)H’
po

H
pox

H2

The free boundary equation is

(3.19) H’(x) -H + + 7rb(x)H2(x) H(0) H(1) Ho.

For (3.19), we have the following theorem.
THEOREM. Let b(x) E CI[0, 1] bepeodic with period 1, b(0) b(1) 1, 0 < bl <

b(x) < b2 < oo, C. Q < o, e (8/RTo). Then for each Ho > O, there is o > O, such
that for < co, there exists a Q such that the free boundry equation (3.19) has a unique
solution.

Proof. We need the following lemma.
LEMMA ([2, Thm. 15.1, p. 148 ]). Let X, Y, Z be Banach spaces, and let U c X, and

V c Ybe neighborhoods ofxo and yo, respectively. Let Y(x, y) U x V - Z be contin-
uous and continuously differentiable with respect to y. Suppose also that Y(xo, yo 0 and
Jz-(xo, Yo) L(Z,Y). Then there exist balls (xo) c U, (yo) c V and exactly
one map T B, (xo) - B(Yo) such that Txo yo and (x, Tx) 0 on B, (xo).
This map 7/" is continuous. D

Proof of the theorem. Let f(x) 1/H(x), (3.16) is changed to

Integrate from 0 to x,

b(x)f(x) f(O)- e Cf2 + Q__ f4 dx,

where f(0) l/H(0), f(0) f(1)implies

(3.20)
f f4dx

The equation now becomes a nonlinear integral equation

Introducing

b(x)f(x) f(O) + eC f2 f3 f2dx )f3 f4dx
f4 dx O.

(3.22) g(x) f(x) f(O)

(3.23) ca y(0)
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PERISTALTIC MOTION WITH’ELASTIC FREE BOUNDARIES 1309

(3.24)

then/2" Y - Y is one-to-one and onto, -1 exists. Equation (3.20) becomes

(3.25) g + eAfg O.

Define

’(e, g) Z:g + eAZg.

Then " is an operator from R Y to Y. It is easy to check that

y(0, 0) 0, y(0, 0) c, y-(0, 0) c-.
Then, by the lemma, there exist balls B,o (0) c R, B(0) c Y, and a unique mapping
7" :B,o (0) B (0) such that

(e, Te) 0 for e < co.

Furthermore, the mapping 7" is continuous, i.e., for 6 small, we can choose e such that

We choose 6 small so that

y(x) a() + b(x)Ho
_>dl>0.

Then

(3.26) H(x)
1 H0b(z)

1g(x) + b(x)Ho
Hob(x)g(x) + 1

is the solution to the free boundary equation (3.19) and Q is given by (3.20). The proof
is complete.

Case 3. T(x, r) T(r)b(x), where b(x) is the same as in Case 2. For simplicity, let
T(r) To + Tlr. Similar calculation leads to

(3.27)
dH b’ 1 (_ 8C 8Q )dx -H + T1H2 + -- + TrRbH2

Equation (3.27) is similar to (3.19). By using the same procedure, similar results can be
proved. We omitted the details here.

Remark. Although we have the existence and uniqueness of the free boundary for
a long wave free boundary such as (3.19), we do not yet have the corresponding result
for the exact system.
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1310 DALIN TANG AND SAMUEL RANKIN

4. Numerical method for the exact system. The method is outlined in 2. As a nu-
merical example, let T T0(1 + asin2raz), O <_ z <_ l/a, where a 1/ is the long
wave parameter and is the wave length. Here we have assumed that the average radius
of the tube d O(1) (Note: d is unknown.). The system to be solved is

(4.1)

Ova. Ova._ Op 1 (02v, 02v,. l Ov,.
v-5- + v o -o--; + - + o ,. o
OVx Vr OVr
Ox + -r =0.

(v, vr)lr (-C, -CH’(x)),
OV
Or I=o 0, vl=o 0,

F r H(x), H(O) H(e) Ho,

P[r= To(1 + asin27raX)H 0 < x < , 0 < r < H(x).

Step 1. Obtain the long wave approximation. In terms of the new parameters intro-
duced during the long wave equation derivation, the free boundary equation is

8Q
(4.2) dHdx (2ra cos 2krx)H + zrRToH2 + /[1 + a sin 2rx],

(4.3) H(0) H(1)= H0,

where H0 is the prescribed initial radius, C the wave velocity, and Q is to be determined
with the solution. Equations (4.2)-(4.3) are solved numerically to get Hx. Back to the
original parameters and variables (indicated by *), the pressure and velocity obtained
from the long wave approximation are given by

(4.4) P0
T(1 + asin2rax*)

(4.5) vx* aR*4 (r2 H2) T2racos2rax*H T(1H2 + asin2rax*)dH/dx C,

(4.6) %o" 0,

where dH/dX is given by

8aQ 8Ca ](4.7) dHdx (2racos2zrax*)H + zrR,TH2 + R*T
/[1 + asin2rax*].
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1311

Step 2. With the H(z) obtained from Step 1, solve the fixed boundary problem on
the domain 0 < z < 1/a, 0 < r < H(z). Using (1.1)-(1.2), z, r/= r/H(z), we can
transform the domain 0 < z < l/a, 0 < r < H(z)to 0 < < l/a, 0 <.r/ < 1. In
computing derivatives, the following formulas are useful:

(4.8)
fr=fnTr,

f f + f,. + f,.. +
f f,,..
f +f f + f.. + f,,(. + .) +

where

rH (x) 1 rHH" 2rH’2

Hz rl H x rl Ha

Using the notation (u, v) for (v, v), the system in terms of (, r/) assumes the form

(4.9)

(4.10)

u(v + v,rl) + vvnrlr -P,7"

+ +2, + v,,( +) +,+ -,
v

(4.11) u: + un + + vn O,
r

((4.12) (u,v)lr -C,-C--
(4.13) u,l,.=o O, vl,.=o O,

(4.14) 1=0 ul=e, 1=0 l==e,

(4.15) Pl=0 pl=e,

1
(4.16) F’r/= 1, 0 < < -,

(4.17) Pit
To(1 / a sin 27ra)
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1312 DALIN TANGAND SAMUEL RANKIN

where u, v, p, and the free boundary H(z) are all periodic in with period i/oz.
We use the regularized central difference scheme and the extended successive over-

relaxation (ESOR) iterative method suggested by Strikwerda [14], [15] to solve this fixed
boundary problem. The method has been used by the author successfully in [20] as it is
relatively easy to program, is of second-order accuracy, and provides good convergence.
The finite difference scheme used here is briefly explained below. Let dl and d2 be the
spans of finite differences for , , respectively. We use the following formulas for the
derivatives to convert the differential equations into finite difference equations.

f(i, j) f(, rlj) f(i. dl, j. d2).
f(i, j) [f(i + 1, j) + f(i 1, j) 2f(i, j)]/d2,
frm(i, j) [f(i, j + 1) + f(i, j 1) 2f(i, j)]/d,
fn(i,j) [f(i + 1,j + 1)-f(i- 1,j + 1)-f(i + 1,j- 1)+f(i- 1,j- 1)]/(4dd2),
f(i,j) 5oY- (1/6)d5_5+f,
fn(i,j) 5.of (1/6)d2Sr-5+f,

where

(5of)(i, j) [f(i + 1, j) f(i 1, j)l/(2dl),
(5+f)(i,j) [f(i + 1,j)- f(i,j)]/d,
(_f)(i,j) [f(i,j)- f(i- 1,j)]/d.,

and the corresponding differences for y can be defined similarly. The third-order terms
in the first difference formulas are necessary to have a regular scheme. The iterative
scheme is given below:

(4.18)

u* (i, j) u(i, j)

-w {u(i, j) [u(i + 1, J)
d
+ u(i 1, j) u(i,j + 1) + u(i,j 1) 2

d (r/Z +

R(p + p,,o.) + I
(4.19)

v* (i, j) v(i, j)

v(i, j + 1) + v(i, j 1) )+

11 + -(r/ + r/,.)+1
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1313

(4.20) p*(i,j) p(i,j) "{r(u + unfix + v + rvvrk},

where u*, v*, and p* are the updated values of the corresponding functions, and w and "r
are iteration constants. We used both finite differences and derivatives in (4.18)-(4.20)
to shorten the formulas. When computing, those derivatives were calculated first and
then (4.18)-(4.20) were performed.

We impose periodic boundary conditions on u, v, and p in -direction. At r/ 0,
cubic interpolation was used for pressure, e.g.,

(4.21) p(i, 0) 3(p(i, 1) p(i, 2)) + p(i, 3).

Cubic interpolation was also used for pressure at 1. Boundary condition (4.12) was
used for (u, v) at 1. At 0, using second-order difference, (4.13) implies

(4.22) u(i, 0) (4u(i, 1) u(i, 2))/3,

(4.23) v(i, O) O.

For computation, our experience indicates that w 0.001--1.5 and - 0.1w give
good convergence. When the Reynolds number R is small, we chose w 1.5, 3’
0.1. For larger R(100 _< R _< 2000), we chose smaller w and "), to make the algorithm
converge.

Remark. The PDE needs two boundary conditions at r/ 0, 1, and those condi-
tions are given by (4.12)-(4.14). The cubic interpolations for the pressure at r/ 0, 1
are numerical boundary conditions and do not make the system overdetermined. For
reference on this regard, see [16, p. 298].

Step 3. We use the long wave approximation as the first guess. After a few local
iterations for the fixed boundary problem, the boundary is updated according to (4.17):

H*() To(1 + asin27rc)

Then the transformation (1.1)-(1.2) is modified using the new H* and r/x, r/, xx are
updated. This is one global iteration.

Step 4. Repeat Steps 2 and 3 as many times as needed. Our experience indicates
that for most cases the number of local iterations is around 20. For some cases, we can
achieve convergence by adjusting the number several times between 10 and 100 at the
beginning stage of the computation.

Remark. "Convergence" is used here in the sense that the corrections to the numer-
ical solutions made at each iteration, or, equivalently, the imbalances of the equations
when the numerical solutions are plugged in will become and remain small after some
iterations. (The imbalances are the Lz norms of the parts inside {...} in (4.18)-(4.20).
The relative imbalances are the above imbalances divided by the L: norms of u, v, and p,
respectively.) The theoretical justification of the numerical method will be done in the
future.

Computations were carried out for various situations and the results are given in 5.. Results of the computations and discussions. Since there are five parameters
(c,R, To, a, Ho) and the solution contains the free boundary H(x), velocity (u, v)
vx, v), pressure p, and flux Q, computations were carried out by changing each of the
parameters, and solutions were observed to study the properties of the flow. We have
made the following observations.
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1314 DALIN TANGAND SAMUEL RANKIN

1. Accuracy ofthe long wave approximation and numerical method. From Table 1 we
can see that the numerical method is roughly of second-order accuracy. The long wave
and numerical solutions agree with each other very well (Tables 2 and 3).

2. Influence ofTo on theflow. (i) Phase shift of the max-min of the free boundary.
From Fig. 2 we see the phase shift of the max-min of the free boundary when To is not
large. However, when To becomes large, the phase shift becomes small, and eventually
becomes zero.

T0=200

ion

T0=300

T0=I000

T0=5000

FIG. 2. Free boundaries with To changing, c 0.1, R 0.1, Ho 0.5, a 0.5, To 200---5000.

(ii) Flow pattern. Our computation also indicates when To becomes larger, the
positive flow portion becomes larger and the tube becomes narrower.

(iii) To -Q curve. Figure 3 shows that the relation between To and flux is not linear,
and especially that the flux increases with To very slowly when To is greater than 2000.

(iv) Table 4 shows the max-min of the solutions with To changing.
3. Backflow andpositive motion. The v-minimum (negative) always appears at the

narrower part of the tube, indicating that the fluid is leaking there. On the other hand,
there are parts of "positive motion" at the wider part of the tube indicating the fluid is
pushed forward by the wave. Usually the positive motion part is of a torus shape (note
that the tube is axisymmetric).

4. Pressurefield. Figure 4 gives the contour lines of the pressure fields. The picture
shows the maximum of pressure appears at the right side of the "neck" and minimum
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1315

TABLE 1
Order ofaccuracy of the numerical method. R 0.2, To 250, a 0.5, Ho 0.5, e 5, d 1,

c 0.2. Numerical parameters: dl elm, d2 d/n, w 1.5, 3’ 0.1, local iteration 20, main
iteration 200.

Imbalance of equations by the numerical solutions
m n Eq. (2.1) Eq. (2.2) Eq. (2.3) Ilull Ilvll
10 6 0.000099 0.000114 0.114018 2.288 0.390 147
20 12 0.000021 0.000023 0.037850 2.023 0.356 131
40 24 0.000009 0.000012 0.023615 1.962 0.341 126
Notes: (1) Imbalance ofan equation by the numerical solution is

defined in the text. (2) Equations (2.1) and (2.2) are equations of
motion; (2.3) is the equation ofcontinuity.

TABLE 2
Comparison between the long wave and numerical solutions. Re 1.0 x o To lO/a, a 0.5,

Ho .5, (7 1.00.

Imbalance of equations
Eq. (2.1) Eq. (2.2) Eq. (2.3)

a=0.2
long .00366 .00000 .62605
exact .00051 .00027 .03053
a =0.1
long .00248 .00000 .44182
exact .00013 .00038 .03014
a 0.05
long .00223 .00000 .31195
exact .00002 .00007 .00888
a 0.025
long .00218 .00000 .22039
exact .00000 .00001 .00362
a 0.0125
long .00217 .00000 .15576
exact .00000 .00000 .00147
a 0.00625
long .00217 .00000 .11011
exact .00000 .00000 .00298
a 0.003125
long .00217 . .07785
exact .00000 .00000 .00543

L2-norms
u v p H

2.110 .000 127.8 1.402
1.978 .342 122.9 1.416

2.976 .000 714.2 1.975
2.925 .254 713.6 1.978

4.203 .000 4014.8 2.787
4.182 .177 4014.9 2.789

5.940 .000 22638.1 3.938
5.932 .124 22638.5 3.938

8.398 .000 127852.7 5.566
8.395 .088 127853.4 5.566

11.874 .000 722654.9 7.870
11.873 .061 722655.9 7.870

16.791 .000 4086283.8 11.128
16.791 .043 4086285.0 11.128

TABLE 3
Relative errors between longwave andnumericalsolutions. Re 1.0 x To lO/a2, a 0.5, no 0.5,

C 100.

L2-norms of relative errors
(u uO)/u (V VO)/P (H HO)/H

.2 .08034 .108214 .011228

.10 .02422 .010197 .002264

.05 .00730 .002346 .000662

.025 .00211 .000595 .000177

.0125 .00051 .000143 .000043
00625 .00013 .000033 .000010
003125 .00003 .000007 .000002

L2-norms of exact solutions
v p H

1.98 .342 122.9 1.4020
2.93 .254 713.6 1.9749
4.18 .177 4014.9 2.7873
5.94 .126 22854.7 3.9498
8.39 .088 127853.4 5.5662

11.87 .061 722655.9 7.8698
16.79 .043 4086285.0 11.1281
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1316 DALIN TANGAND SAMUEL RANKIN

alp=O, lOOOR=O, lO00 T= I000,0 0.900

a-Q curve.

Lngwave/rical

-0.83
ux----0.8o ux=-o.[o3 a=0.L-O.9

a

alp=O.l R=O.I HO=O.2 O,SO0

Ho-Q curve.

/ longwave

1 . H0

flux-=-1.828 flux+ =-O.141 HO:O.2--I.O

alp=O.[ R=O.t HO=Oo5 0.500

T0-Q curve.

I000:2000 3000 4000 5000

tlux-=-l.040 flux+=-0.349 T0:200--5.100

alp=O, lOOOR=0.1000 HO=0,5 0.500

T0-Q curve

0
20,00(

flux- -0.27 flux+ =-0.327 TO: 1000--20.000

FIG. 3. Relations between flux Q and otherparameters.

appears at the left side of the neck. So the pressure increases when passing the neck and
decreases when going through the wider part of the tube. This agrees with the velocity
pictures.

5. Influence ofReynolds number on the flow. Table 5 shows that the solution is not
sensitive to the changes of Reynolds number when 0.001 <_ Re _< 1000 whileRe.T0
100 is maintained. Numerically, smaller iterative parameters should be chosen to com-
pute for large R values.

6. Influence of a-change on the flow. Figure 5 gives the velocity fields with respect
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PERISTALTIC MOTION WITH ELASTIC FREE BOUNDARIES 1317

TABLE 4
Max-rain ofsolutions with To changing. 200 _< To _< 1000, 1000 _< To _< 20,000, a 0.1, R 0.1,

a 0.5, Ho 0.5, c 1.0.

To xmax-min Hmin-max Umin-Umax Vmin-Vmax Pmin-Pmax flux
Numerical solutions

200 .400 .925 .493 .788 -1.69 0.65 -.113 0.89 179 469 -1.021
300 .350 .900 .468 .903 -1.87 .220 -.168 .128 278 628 -0.983
400 .325 .875 .437 .935 -1.97 .359 -.191 .145 395 806 -0.875
500 .325 .875 .407 .932 -2.03 .434 -.197 .152 529 1000 -0.774
600 .300 .850 .382 .920 -2.06 .481 -.198 .156 677 1201 -0.694
700 .300 .850 .363 .906 -2.09 .512 -.197 .158 833 1408 -0.633
800 .300 .850 .348 .892 -2.10 .534 -.195 .159 997 1614 -0.587
900 .300 .825 .337 .880 -2.12 .550 -.193 .159 1166 1825 -0.551
1000 .275 .825 .327 .870 -2.14 .564 -.191 .159 1340 2034 -0.522

2000 .275 .800 .283 .815 -2.19 .614 -.177 .159 3212 4094 -0.403
4000 .250 .775 .264 .783 -2.22 .625 -.167 .158 7143 8146 -0.356
6000 .250 .775 .259 .772 -2.21 .629 -.164 .157 11124 12163 -0.343
8000 .250 .775 .257 .767 -2.21 .630 -.162 .157, 15116 16174 -0.337
10000 .250 .750 .256 .763 -2.22 .630 -.161 .157 19110 20180 -0.333
12000 .250 .750 .254 .761 -2.22 .631 -.160 .157 23106 24184 -0.331
14000 .250 .750 .254 .759 -2.22 .631 -.160 .157 27103 28187 -0.330
16000 .250 .750 .253 .758 -2.23 .631 -.159 .157 31101 32189 -0.328
18000 .250 .750 .253 .757 -2.23 .631 -.159 .157 35100 36190 -0.328
20000 .250 .750 .252 .757 -2.23 .631 -.159 .157 39098 40191 -0.327

Long wave solutions
200 .400 .950 .493 .798 -1.72 .041 .000 .000 177 462 -1.040
300 .350 .900 .466 .910 -1.92 .233 .000 .000 276 622 -0.997
400 .325 .875 .431 .934 -2.02 .357 .000 .000 396 803 -0.881
500 .325 .875 .401 .928 -2.08 .425 .000 .000 533 1000 -0.777
600 .300 .850 .377 .915 -2.12 .470 .000 .000 683 1202 -0.698
700 .300 .850 .359 .902 -2.15 .501 .000 .000 840 1409 -0.638
800 .300 .850 .345 .889 -2.16 .523 .000 .000 1004 1616 -0.592
900 .300 .825 .334 .877 -2.18 .540 .000 .000 1174 1826 -0.556
1000 .275 .825 .324 .867 -2.20 .553 .000 .000 1348 2034 -0.527

2000 .275 .800 .283 .814 -2.24 .609 .000 .000 3219 4092 -0.407
4000 .250 .775 .264 .782 -2.26 .628 .000 .000 7150 8141 -0.358
6000 .250 .775 .259 .772 -2.26 .633 .000 .000 11131 12157 -0.344
8000 .250 .750 .257 .766 -2.25 .634 .000 .000 15123 16168 -0.338
10000 .250 .750 .255 .763 -2.26 .635 .000 .000 19116 20174 -0.334
12000 .250 .750 .254 .761 -2.26 .635 .000 .000 23112 24178 -0.332
14000 .25 .750 .254 .759 -2.26 .636 .000 .000 27109 28180 -0.330
16000 .250 .750 .253 .758 -2.27 .636 .000 .000 31107 32183 -0.329
18000 .250 .750 .253 .757 -2.27 .636 .000 .000 35106 36184 -0.328
20000 .250 .750 .252 .757 -2.27 .646 .000 .000 39104 40185 -0.327

to the moving frame for a 0.2 and 0.9. When a is small, there is no positive flow and
no trapping. When a gradually increases, a small positive flow region appears near the
center of the tube. When a becomes larger, the positive flow region becomes larger, a
is the main parameter that has a major influence on flux, i.e., the efficiency of the fluid
transport. The a Q curve is given in Fig. 3 for the a values between 0.1--0.9. The curves
show that (i) when a is too small (a < 0.2), the flux is not sensitive to a change for the
simple reason that the wave is not deep enough to push the fluid forward. (ii) When a is
greater than 0.3, the flux increases almost linearly with a.
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1318 DALIN TANG AND SAMUEL RANKIN

TABLE 5
Max-min ofsolutions with R changin 0.001 _< Re _< 1000. a 0.1, R. To 100, a 0.3, Ho

0.5, C 1.0.

Numerical solutions
R xmax-min Hmin-max Umin-Umax Vmin-Vmax Pmin Pmax Flux
0.001
0.010
0.100
1.000

10.000
100.000

1000.000

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.411 .719

.411 .720

.411 .719

.411 .719

.412 .722

.411 .720

.411 .720

-1.878 .040
-1.872 .052
-1.878 .040
-1.877 .039
-1.890 .050
-1.902 .054
-1.902 .054

-0.105 .090
-0.105 .090
-0.105 .090
-0.105 .090
-0.110 .094
-0.104 .091
-0.104 .091

155694 200000
15557 20000
1556 2000
155 200
15.4 20.0
1.6 2.0
0.2 0.2

-0.765
-0.765
-0.765
-0.765
-0.765
-0.765
-0.765

Long wave solutions
R xmax-min Hmin-max Umin-Umax Vmin-Vmax Pmin Pmax Flux
0.001
0.010
0.100
1.000

10.000
100.000

1000.000

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.410 .718

.410 .718

.410 .718

.410 .718

.410 .718

.410 .718

.410 .718

-1.901 .054
-1.901 .054
-1.901 .054
-1.901 .054
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Notes: Re and To are both changing while Re.To remains constant. Smaller iterative parameters were usedfor
greater R values.

a=0.9

FIG. 4. Pressurefield with a changing, a 0.1, R 0.1, Ho 0.5, To 1000, a 0.2--0.9.

a=0.2

a=0.9

FIG. 5. Velocity field ofnumerical solutions with a changing, a 0.1, R 0.1, Ho 0.5, To 1000,
a 0.2--0.9.
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When drawing the velocity fields, the darker lines indicate forward motion while the
lighter lines indicate backward motion. In the pressure field, circles indicate where the
pressure is maximum and X indicates a minimum.
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