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ANDERSON ACCELERATION FOR FIXED-POINT ITERATIONS∗

HOMER F. WALKER† AND PENG NI†

Abstract. This paper concerns an acceleration method for fixed-point iterations that originated
in work of D. G. Anderson [J. Assoc. Comput. Mach., 12 (1965), pp. 547–560], which we accordingly
call Anderson acceleration here. This method has enjoyed considerable success and wide usage in
electronic structure computations, where it is known as Anderson mixing ; however, it seems to have
been untried or underexploited in many other important applications. Moreover, while other accelera-
tion methods have been extensively studied by the mathematics and numerical analysis communities,
this method has received relatively little attention from these communities over the years. A recent
paper by H. Fang and Y. Saad [Numer. Linear Algebra Appl., 16 (2009), pp. 197–221] has clarified
a remarkable relationship of Anderson acceleration to quasi-Newton (secant updating) methods and
extended it to define a broader Anderson family of acceleration methods. In this paper, our goals are
to shed additional light on Anderson acceleration and to draw further attention to its usefulness as
a general tool. We first show that, on linear problems, Anderson acceleration without truncation is
“essentially equivalent” in a certain sense to the generalized minimal residual (GMRES) method. We
also show that the Type 1 variant in the Fang–Saad Anderson family is similarly essentially equiv-
alent to the Arnoldi (full orthogonalization) method. We then discuss practical considerations for
implementing Anderson acceleration and illustrate its performance through numerical experiments
involving a variety of applications.

Key words. acceleration methods, fixed-point iterations, generalized minimal residual method,
Arnoldi (full orthogonalization) method, iterative methods, expectation-maximization algorithm,
mixture densities, alternating least-squares, nonnegative matrix factorization, domain decomposition

AMS subject classifications. 65H10, 65F10
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1. Introduction. We consider a general fixed-point problem and the associated
fixed-point iteration as follows.

Problem FP. Given g : Rn → R
n, solve x = g(x).

Algorithm FPI. Fixed-Point Iteration.

Given x0.
For k = 0, 1, . . .

Set xk+1 = g(xk).
Fixed-point problems abound in computational science and engineering, although

they may not always be regarded or treated as such. There is a natural duality between
Problem FP and a nonlinear-equations problem: solve f(x) ≡ g(x) − x = 0. Many
problems that could be viewed as fixed-point problems are instead posed as nonlinear-
equations problems in order to take advantage of the many well-refined algorithms for
the latter problems. Most of these algorithms are modeled on Newton’s method, and
their major strength is rapid (typically superlinear or quadratic) local convergence.
Additionally, robustness is often enhanced by globalization procedures that improve
the likelihood of convergence from arbitrary initial approximations. (See, e.g., Dennis
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1716 HOMER F. WALKER AND PENG NI

and Schnabel [14] or Kelley [26] for extensive treatments of these methods.) Notwith-
standing the advantages of these sophisticated algorithms, there are often overriding
reasons for casting problems in fixed-point form and employing fixed-point iteration
to solve them numerically.

The major concern usually associated with fixed-point iteration is that the iter-
ates may not converge or, if they do, exhibit only linear convergence, which may be
unacceptably slow. Acceleration methods can potentially alleviate slow convergence
and, in some cases, divergence as well (see the numerical experiments in section 5).
Our interest here is in a particular acceleration method originating in work of Ander-
son [1],1 which we refer to as Anderson acceleration and formulate as follows.

Algorithm AA. Anderson Acceleration.

Given x0 and m ≥ 1.
Set x1 = g(x0).
For k = 1, 2, . . .

Set mk = min {m, k}.
Set Fk = (fk−mk

, . . . , fk), where fi = g(xi)− xi.

Determine α(k) = (α
(k)
0 , . . . , α

(k)
mk)

T that solves

(1.1) minα=(α0,...,αmk
)T ‖Fkα‖2 s.t.

mk∑
i=0

αi = 1.

Set xk+1 =
∑mk

i=0 α
(k)
i g(xk−mk+i).

In practice, each mk may be further modified, e.g., to maintain acceptable con-
ditioning of Fk (see section 4). The original formulation in [1] allows a more general
step,

xk+1 = (1− βk)

mk∑
i=0

α
(k)
i xk−mk+i + βk

mk∑
i=0

α
(k)
i g(xk−mk+i),(1.2)

where βk > 0 is a relaxation parameter. It is appropriate here to consider only βk = 1,
which gives the step in Algorithm AA.2 Also in [1], the least-squares problem (1.1)
is formulated as an equivalent unconstrained least-squares problem:

min
(θ1,...,θmk

)

∥∥∥∥∥fk +
mk∑
i=1

θi(fk−i − fk)

∥∥∥∥∥ 2.
The form (1.1) seems better aligned with current views of the algorithm; however,
neither form may be preferred in an actual implementation (see section 4).

A number of acceleration methods have been proposed and studied over the years.
Within the mathematics and numerical analysis communities, most attention has
been given to the vector-extrapolation methods, principally the polynomial methods,
which include the reduced-rank extrapolation (RRE), minimal-polynomial extrapola-
tion (MPE), and modified minimal-polynomial extrapolation (MMPE) methods, and
to the vector and topological ε-algorithms. The literature on these methods is vast,

1Methods that appear to be mathematically equivalent have been derived independently by
others in the context of specific applications, namely, by Carlson and Miller [11] and Miller [30] for
accelerating modified-Newton (chord) iterations in method-of-lines applications, and by Washio and
Oosterlee [43] and Oosterlee and Washio [33] for accelerating nonlinear multigrid methods.

2Choosing βk = 1 is necessary for the theoretical results in sections 2–3 and sufficient for the
experiments in section 5. For examples of other choices that may be useful in practice, see the
experiments in Fang and Saad [19].
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ANDERSON ACCELERATION FOR FIXED-POINT ITERATIONS 1717

and a complete list of references would be inappropriate here. For overviews and ref-
erences to original sources, see the book by Brezinski and Redivo-Zaglia [4] and also
a relatively recent survey by Brezinski [3]; the survey by Jbilou and Sadok [25] and
earlier work by those authors [23], [24]; and the survey by Smith, Ford, and Sidi [42].

Anderson acceleration differs mathematically from the vector-extrapolation meth-
ods and ε-algorithms and, in fact, belongs to a distinct category of methods developed
by a different community of researchers. This category includes structurally similar
methods developed for electronic structure computations, notably those by Pulay [35],
[36] (known as Pulay mixing within the materials community and direct inversion on
the iterative subspace, or DIIS, among computational chemists), and a number of other
“mixing” methods; see Kresse and Furthmüller [28], [29], Le Bris [5], and Yang et al.
[45] for overviews. (In these applications, “mixing” derives from “charge mixing,”
and Anderson acceleration is known as “Anderson mixing.”) Also in this category
are the mathematically related methods of Eirola and Nevanlinna [16] and Yang [46]
and certain other methods based on quasi-Newton updating. A recent paper by Fang
and Saad [19] summarizes these and a great deal of related work in addition to pro-
viding a number of new developments. Of particular relevance here, Fang and Saad
[19] clarify a remarkable relationship of Anderson acceleration to quasi-Newton up-
dating (specifically multisecant updating) originally noted by Eyert [18] and proceed
from this relationship to define a broad family of acceleration methods that includes
Anderson acceleration. We return to this subject in section 3.

Our goal in this paper is to shed additional light on Anderson acceleration and its
behavior. We also hope to draw further attention to the method as a useful general
tool for accelerating fixed-point iterations. In section 2, we show that, on linear
problems, it is “essentially equivalent” to the generalized minimal residual (GMRES)
method (Saad and Schultz [40]) in a sense given in Theorem 2.2.3 In section 3, we
review the relationship of Anderson acceleration to multisecant updating methods
outlined in [19], [18] and, for further perspectives, show that a particular member
of the Anderson family of methods defined in [19] (the Type I method) is, on linear
problems, essentially equivalent in the same sense to the Arnoldi method (also known
as the full orthogonalization method, or FOM) (Saad [38]). In section 4, we discuss
practical considerations for implementing Anderson acceleration. In section 5, we
report on numerical experiments that show the performance of the method in a variety
of applications. In section 6, we provide a concluding summary.

In the following, the Euclidean norm ‖ · ‖2 on R
n is used throughout. One can

easily extend the results to allow any inner-product norm on R
n. The Frobenius norm

on matrices is denoted by ‖ · ‖F .
2. Anderson acceleration on linear problems. In this section, we consider

the case in which g in Problem FP is linear; specifically, we assume that g(x) = Ax+b
for some A ∈ R

n×n and b ∈ R
n. The rationale for Anderson acceleration is readily

apparent in this case: At the kth step, with
∑mk

i=0 α
(k)
i = 1, one has

xk+1 =

mk∑
i=0

α
(k)
i g(xk−mk+i) = g

(
mk∑
i=0

α
(k)
i xk−mk+i

)
= g(xmin),

where xmin ≡ ∑mk

i=0 α
(k)
i xk−mk+i has minimal fixed-point residual within the affine

subspace containing {xk−mk
, . . . , xk}.

3The authors of [11], [30], [43], [33] also recognized very close relationships of their methods to
GMRES but did not provide precise details.
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1718 HOMER F. WALKER AND PENG NI

Our main goal is to establish a certain equivalence between Anderson acceleration
without truncation, i.e., withmk = k for each k, and GMRES applied to the equivalent
linear system (I −A)x = b starting with the same x0. Our notation is as follows: For
each j, xGMRES

j and rGMRES
j ≡ b−(I−A)xGMRES

j denote the jth GMRES iterate and

residual, respectively, andKj ≡ span {rGMRES
0 , (I−A)rGMRES

0 , . . . , (I−A)j−1rGMRES
0 }

denotes the jth Krylov subspace generated by (I−A) and rGMRES
0 . When helpful, we

also denote the jth iterate of Anderson acceleration by xAA
j . Our major assumptions

are as follows.
Assumption 2.1.

• g(x) = Ax+ b for A ∈ R
n×n and b ∈ R

n.
• Anderson acceleration is not truncated, i.e., mk = k for each k.
• (I −A) is nonsingular.
• GMRES is applied to (I −A)x = b with initial point x0 = xAA

0 .
Our main result is the following theorem, which shows that, with the above as-

sumption and an additional “nonstagnation” assumption, Anderson acceleration and
GMRES are “essentially equivalent” in the sense that the iterates produced by either
method can be readily obtained from those of the other method.4 It follows that An-
derson acceleration with truncation, i.e., with mk = min{m, k}, can be regarded as
essentially equivalent in the same sense to truncated GMRES (Saad [39]). Addition-
ally, one can formulate a “restarted” variant of Algorithm AA, in which the method

proceeds without truncation for m steps and then is restarted using
∑m

i=0 α
(m)
i xAA

i

as the new x0. Under the assumptions of the theorem, this new x0 is xGMRES
m , and

so this restarted variant of Algorithm AA is essentially equivalent in the same sense
to GMRES(m) (Saad and Schultz [40]).

Theorem 2.2. Suppose that Assumption 2.1 holds and that, for some k > 0,
rGMRES
k−1 �= 0 and also ‖rGMRES

j−1 ‖2 > ‖rGMRES
j ‖2 for each j such that 0 < j < k. Then∑k

i=0 α
(k)
i xAA

i = xGMRES
k and xAA

k+1 = g(xGMRES
k ).5

Remark 2.3. The theorem is phrased to allow the case k = 1, in which {j :
0 < j < k} = ∅, and also the possibility that GMRES stagnates at the kth step, i.e.,
that ‖rGMRES

k−1 ‖2 = ‖rGMRES
k ‖2. (See Remark 2.7 and Proposition 2.8 below.)

Proof. For i = 1, . . . , k, we define zi ≡ xAA
i −x0. To prove the theorem, it suffices

to prove the following claims.

Claim 1. For 1 ≤ j ≤ k, if {z1, . . . , zj} is a basis of Kj , then
∑j

i=0 α
(j)
i xAA

i =
xGMRES
j and xAA

j+1 = g(xGMRES
j ).

Claim 2. For 1 ≤ j ≤ k, {z1, . . . , zj} is a basis of Kj .
We first prove Claim 1. We have that

f0 = g(x0)− x0 = Ax0 + b − x0 = b− (I −A)x0 = rGMRES
0 .(2.1)

Additionally, for i = 1, . . . , k,

fi = g(xAA
i )− xAA

i = g(x0 + zi)− (x0 + zi)

= g(x0)− x0 + (A− I)zi = rGMRES
0 − (I −A)zi.

(2.2)

4Essentially the same result, with a different proof, is given in Ni [31].
5We thank an anonymous referee for noting that the conclusion xAA

k+1 = g(xGMRES
k ) can easily

be recast as xAA
k+1 = xGMRES

k + rGMRES
k , which provides another view of the relationship of An-

derson acceleration to GMRES. The corresponding conclusions of Corollary 2.10, Theorem 3.2, and
Corollary 3.5 can be recast similarly.
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It follows from (2.1) and (2.2) that, for 1 ≤ j ≤ k and any α = (α0, . . . , αj)
T ,

Fjα =

j∑
i=0

αifi =

(
j∑

i=0

αi

)
rGMRES
0 − (I −A)

(
j∑

i=1

αizi

)
.(2.3)

With (2.3), one easily verifies that if {z1, . . . , zj} is a basis of Kj , then α(j) =

(α
(j)
0 , α

(j)
1 , . . . , α

(j)
j )T , with α

(j)
0 = 1−∑j

i=1 α
(j)
i , solves the minimization problem

min
α=(α0,...,αj)T

‖Fjα‖2 s.t.

j∑
i=0

αi = 1(2.4)

if and only if (α
(j)
1 , . . . , α

(j)
j )T solves the GMRES minimization problem

min
(α1,...,αj)T

‖rGMRES
0 − (I −A)

(
j∑

i=1

αizi

)
‖2.(2.5)

Consequently, the solution α(j) = (α
(j)
0 , . . . , α

(j)
j )T of (2.4) satisfies

j∑
i=0

α
(j)
i xAA

i = α
(j)
0 x0 +

j∑
i=1

α
(j)
i (x0 + zi) =

(
j∑

i=0

α
(j)
i

)
x0 +

j∑
i=1

α
(j)
i zi

= x0 +

j∑
i=1

α
(j)
i zi = xGMRES

j ,(2.6)

which yields

xAA
j+1 =

j∑
i=0

α
(j)
i g(xAA

i ) = g

(
j∑

i=0

α
(j)
i xAA

i

)
= g

(
xGMRES
j

)
,

and Claim 1 is proved.
We now prove Claim 2. We have that z1 = xAA

1 − x0 = g(x0) − x0 = rGMRES
0 ,

which is nonzero since ‖rGMRES
0 ‖2 ≥ ‖rGMRES

k−1 ‖2 > 0. Thus {z1} is a basis of K1. If
k = 1, then the proof is complete.

Suppose that k > 1 and, as an inductive hypothesis, that {z1, . . . , zj} is a basis
of Kj for some j such that 1 ≤ j < k. With Claim 1 and (2.6), we have that

zj+1 = xAA
j+1 − x0 = g(xGMRES

j )− x0 = AxGMRES
j + b− x0

= b− (I −A)xGMRES
j + xGMRES

j − x0 = rGMRES
j +

j∑
i=1

α
(j)
i zi.

Since rGMRES
j ∈ Kj+1 and

∑j
i=1 α

(j)
i zi ∈ Kj , we have that zj+1 ∈ Kj+1. More-

over, since ‖rGMRES
j−1 ‖2 > ‖rGMRES

j ‖2 ≥ ‖rGMRES
k−1 ‖2 > 0 by assumption, it follows

from Lemma 2.4 that rGMRES
j �∈ Kj . Consequently, zj+1 cannot depend linearly on

{z1, . . . , zj}, and we conclude that {z1, . . . , zj+1} is a basis of Kj+1. This completes
the induction and the proof of Claim 2.
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Lemma 2.4. Suppose that GMRES is applied to Mx = b with nonsingular M . If
‖rGMRES

j−1 ‖2 > ‖rGMRES
j ‖2 > 0 for some j > 0, then rGMRES

j �∈ Kj.

Proof. For convenience, we define K0 ≡ {0}. For � ≥ 0, we denote rGMRES
� simply

by r� and denote the orthogonal projection onto M(K�)
⊥ by π�. Since M(K�)

⊥ ⊆
M(K�−1)

⊥ for � = 1, . . . , j, an easy induction verifies that rj = πjrj−1.
Suppose that rj �= 0 for some j > 0. If rj ∈ Kj , then rj ∈ Kj ∩ M(Kj)

⊥ ⊆
Kj ∩ M(Kj−1)

⊥. Since Kj ∩ M(Kj−1)
⊥ is a one-dimensional subspace containing

rj−1, we have that rj = λrj−1 for some scalar λ. Then rj = πjrj = λπjrj−1 = λrj .
Since rj �= 0, it follows that λ = 1 and rj = rj−1 and, consequently, that ‖rGMRES

j−1 ‖2 =
‖rGMRES

j ‖2.
Remark 2.5. If the assumptions of the theorem hold and rGMRES

k = 0, then
xGMRES
k = g(xGMRES

k ), i.e., xGMRES
k is a fixed point of g. Then the theorem implies

that xAA
k+1 = g(xGMRES

k ) = xGMRES
k is also a fixed point of g, and a practical im-

plementation of Algorithm AA would declare success and terminate at step k + 1.
We note that the equivalence of the least-squares problems (2.4) and (2.5) implies
that (2.4) has a unique solution and, thus, xAA

k+1 is uniquely defined in this case, even
though Fk is rank-deficient according to the following proposition.

Proposition 2.6. Suppose that the assumptions of Theorem 2.2 hold. Then
rankFk ≥ k, and rankFk = k if and only if rGMRES

k = 0.
Proof. We use the developments in the proof of Theorem 2.2. From (2.3) with

j = k, we have that Fkα = 0 for α = (α0, . . . , αk)
T if and only if

(I −A)

(
k∑

i=1

αizi

)
=

(
k∑

i=0

αi

)
rGMRES
0 .(2.7)

Since {z1, . . . , zk} is linearly independent and (I − A) is nonsingular, it follows from

(2.7) that
∑k

i=0 αi = 0 if and only if α = 0. Consequently, in considering nontrivial

solutions of Fkα = 0, we can assume without loss of generality that
∑k

i=0 αi = 1.
Suppose that α = (α0, . . . , αk)

T and ᾱ = (ᾱ0, . . . , ᾱk)
T satisfy Fkα = Fkᾱ = 0

and
∑k

i=0 αi =
∑k

i=0 ᾱi = 1. Then, from (2.7), their difference α− ᾱ satisfies

(I −A)

(
k∑

i=1

(αi − ᾱi)zi

)
= 0.

As above, it follows that α = ᾱ. One concludes that the dimension of the null-space
of Fk is at most one; hence, rankFk ≥ k.

We have that rankFk = k if and only if there is an α(k) = (α
(k)
0 , . . . , α

(k)
k ) such

that Fkα
(k) = 0 and

∑k
i=0 α

(k)
i = 1. With (2.7), one verifies that this holds if and

only if

(I −A)

(
k∑

i=1

α
(k)
i zi

)
= rGMRES

0 ,

which (cf. (2.5)) holds if and only if rGMRES
k = 0.

Remark 2.7. If the assumptions of the theorem hold and GMRES stagnates at
the kth step with rGMRES

k−1 = rGMRES
k �= 0, then the proposition below shows that

Algorithm AA without truncation determines xAA
k+1 = xAA

k . It follows that fk = fk+1,
i.e., the final two columns of Fk+1 are the same, and the least-squares problem (1.1)
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at step (k + 1) is rank-deficient.6 Consequently, one would expect near-stagnation of
GMRES at some step to result in ill-conditioning of the least-squares problem at the
next step. This points up a potential numerical weakness of Anderson acceleration
relative to GMRES, which does not break down upon stagnation before the solution
has been found. As a result, conditioning of the least-squares problem is a central
consideration in implementing Algorithm AA, as noted further in section 4.

Proposition 2.8. Suppose that the assumptions of Theorem 2.2 hold and that
rGMRES
k−1 = rGMRES

k �= 0. Then xAA
k+1 = xAA

k .

Proof. It follows from Proposition 2.6 that rankFk = k + 1; consequently, (1.1)
(with mk = k) has a unique solution. Then, since rGMRES

k−1 = rGMRES
k , the solution

must be α(k) = (α
(k−1)
0 , . . . , α

(k−1)
k−1 , 0)T , which yields

xAA
k+1 =

k−1∑
i=0

α
(k−1)
i g(xAA

i ) = xAA
k .

For the remainder of this section, we shift notation slightly. We consider solving
a linear system Ax = b numerically using a classical stationary iteration based on an
operator splitting A = M −N , where M and N are in R

n×n and M is nonsingular.
With this splitting, the system Ax = b is recast as the fixed-point equation x = g(x) ≡
M−1Nx+M−1b, and the stationary iteration is fixed-point iteration with this g.

The following corollary of Theorem 2.2 asserts that, with this g, Anderson ac-
celeration without truncation is essentially equivalent in the sense of Theorem 2.2 to
GMRES applied to the left-preconditioned system M−1Ax = M−1b, starting with
the same x0. Our notation is as before, except that the jth GMRES residual is now
rGMRES
j ≡ M−1b−M−1AxGMRES

j for each j. Our assumptions are as follows.

Assumption 2.9.

• A = M −N , where A ∈ R
n×n and M ∈ R

n×n are nonsingular.
• g(x) = M−1Nx+M−1b for b ∈ R

n.
• Anderson acceleration is not truncated, i.e., mk = k for each k.
• GMRES is applied to the left-preconditioned system M−1Ax = M−1b with
initial point x0 = xAA

0 .

Corollary 2.10. Suppose that Assumption 2.9 holds and that, for some k > 0,
rGMRES
k−1 �= 0 and also ‖rGMRES

j−1 ‖2 > ‖rGMRES
j ‖2 for each j such that 0 < j < k. Then∑k

i=0 α
(k)
i xAA

i = xGMRES
k and xAA

k+1 = g(xGMRES
k ).

Proof. Apply Theorem 2.2 with A and b replaced by M−1N and M−1b, respec-
tively.

We hasten to note that we do not recommend applying Anderson acceleration
to stationary iterations as a general alternative to preconditioned GMRES because
of the potential numerical weakness brought out in Remark 2.7 and Proposition 2.8.
However, there may be special circumstances in which this alternative may be advan-
tageous, as noted in section 5.3.1.

6In this case, the least-squares problem with Fk+1 fails to have a unique solution. In principle,
one can continue the algorithm by specifying a particular solution in some way; however, it is not
hard to verify that every solution leads to xAA

k+2 = xAA
k+1 = xAA

k . Extending this reasoning, one

sees that xAA
k = xAA

k+1 = xAA
k+2 = . . ., i.e., the algorithm can make no further progress. Thus a

practical implementation should terminate if successive iterates are the same (or nearly the same in
floating-point arithmetic).
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3. Anderson acceleration and multisecant updating. We begin by recall-
ing the relationship of Anderson acceleration to quasi-Newton updating. This was first
shown by Eyert [18]; we follow the clarified derivation given by Fang and Saad [19],
with a few very minor differences.7 Proceeding as in [19], we write the least-squares
problem (1.1) in the equivalent form

min
γ=(γ0,...,γmk−1)T

‖fk −Fkγ‖2,(3.1)

where Fk = (Δfk−mk
, . . . ,Δfk−1) with Δf i = fi+1 − fi for each i, and α and γ

are related by α0 = γ0, αi = γi − γi−1 for 1 ≤ i ≤ mk − 1, and αmk
= 1 − γmk−1.

With the solution of (3.1) denoted by γ(k) = (γ
(k)
0 , . . . , γ

(k)
mk−1)

T , the next iterate of
Algorithm AA is given by

xk+1 = g(xk)−
mk−1∑
i=0

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)]

= xk + fk − (Xk + Fk)γ
(k),

where Xk = (Δxk−mk
, . . . ,Δxk−1) with Δxi = xi+1 − xi for each i. Assuming

that Fk is full-rank and substituting the normal-equation characterization γ(k) =
(FT

k Fk)
−1FT

k fk in this expression, one obtains the quasi-Newton form (cf. Dennis
and Schnabel [14])

xk+1 = xk −Gkfk,(3.2)

in which

Gk ≡ −I + (Xk + Fk)(FT
k Fk)

−1FT
k(3.3)

is regarded as an approximate inverse of the Jacobian of f(x) ≡ g(x)− x.
It is observed in [19] that Gk satisfies the inverse multisecant condition GkFk =

Xk and, moreover, that ‖Gk + I‖F is minimal among all matrices satisfying this
condition.8 Thus (3.3) can be viewed as the second Broyden update [7] of −I satisfying
GkFk = Xk.

Fang and Saad [19] define an Anderson family of methods of the form (3.2) that
includes the method with Gk given by (3.3) as a particular case, designated the Type II
method in [19]. Another case of particular interest is the Type I method, in which

Gk ≡ −I + (Xk + Fk)(X T
k Fk)

−1X T
k ,(3.4)

where we assume for now that X T
k Fk is nonsingular. With the Sherman–Morrison–

Woodbury formula [41], [44], this is seen to correspond to the approximate Jacobian

Jk ≡ G−1
k = −I + (Fk + Xk)(X T

k Xk)
−1X T

k ,

7The main differences are that we take βk = 1 in (1.2), whereas a more general value βk = β is
allowed in [19], and for each i, we define fi = g(xi)− xi, whereas fi = xi − g(xi) in [19].

8This minimal-norm property is easily seen by modestly extending the projection calculus
developed in Dennis and Schnabel [13] and Dennis and Walker [15]. Indeed, one has that
Qk ≡ {M ∈ R

n×n : MFk = Xk} is an affine subspace of R
n×n with parallel subspace

Nk ≡ {M ∈ R
n×n : MFk = 0} and normal (in ‖ · ‖F ) element Xk(FT

k Fk)
−1FT

k . Writing

Gk = −I
[
I − Fk(FT

k Fk)
−1FT

k

]
+ Xk(FT

k Fk)
−1FT

k , one easily verifies that the first term on the
right is the ‖·‖F -orthogonal projection of −I onto Nk, and it follows that Gk is the ‖·‖F -orthogonal
projection of −I onto Qk.
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which satisfies the direct multisecant condition JkXk = Fk and is such that ‖Jk+I‖F
is minimal among all matrices satisfying this condition. Thus Jk can be regarded as
the first Broyden update [7] of −I satisfying JkXk = Fk.

For additional perspectives on Anderson acceleration and the Anderson family,
we consider the Type I method further in the remainder of this section. It is useful
to note that, with Gk given by (3.4), (3.2) becomes

xk+1 = xk + fk − (Xk + Fk)(X T
k Fk)

−1X T
k fk.(3.5)

With γ(k) = (γ
(k)
0 , . . . , γ

(k)
mk−1)

T and α(k) = (α
(k)
0 , . . . , α

(k)
mk) now defined by

γ(k) = (X T
k Fk)

−1X T
k fk,(3.6)

α
(k)
0 = γ

(k)
0 , α

(k)
i = γ

(k)
i − γ

(k)
i−1 for 1 ≤ i ≤ mk − 1, α(k)

mk
= 1− γ

(k)
mk−1,(3.7)

equation (3.5) yields

xk+1 = g(xk)−
mk−1∑
i=0

γ
(k)
i [g(xk−mk+i+1)− g(xk−mk+i)]

=

mk∑
i=0

α
(k)
i g(xk−mk+i).

(3.8)

Note that
∑mk

i=0 α
(k)
i = 1. It is a straightforward exercise, which we leave to interested

readers, to cast the Type I method in a form analogous to that of Algorithm AA.
In the remainder of this section, we assume that g is linear as in section 2. In

Theorem 3.2, we show that the Anderson family Type I method without truncation
is essentially equivalent in the sense of section 2 to the Arnoldi method applied to
the equivalent linear system (I − A)x = b starting with the same x0. It follows that
remarks analogous to those preceding Theorem 2.2 hold to the effect that truncated
and restarted versions of the Type I method are similarly essentially equivalent to
truncated and restarted versions of the Arnoldi method. Our notational conventions
follow those in section 2: For each j, xArnoldi

j and rArnoldi
j denote the jth Arnoldi

method iterate and residual, respectively; Kj denotes the jth Krylov subspace gener-

ated by (I−A) and rArnoldi
0 ; and xType I

j denotes the jth iterate of the Type I method.
Our major assumptions are as follows.

Assumption 3.1.

• g(x) = Ax+ b for A ∈ R
n×n and b ∈ R

n.
• The Type I method is not truncated, i.e., mk = k for each k.
• (I −A) is nonsingular.

• The Arnoldi method is applied to (I−A)x = b with initial point x0 = xType I
0 .

Theorem 3.2. Suppose that Assumption 3.1 holds and that, for some k > 0,
xArnoldi
j is defined for 0 < j ≤ k and rArnoldi

k−1 �= 0. Then X T
j Fj is nonsingular for

0 < j ≤ k, and, with α(k) = (α
(k)
0 , . . . , α

(k)
mk) given by (3.6)–(3.7),

∑k
i=0 α

(k)
i xType I

i =

xArnoldi
k and xType I

k+1 = g(xArnoldi
k ).

Remark 3.3. An iterate xArnoldi
k of the Arnoldi method is uniquely characterized

by the orthogonal-residual condition rArnoldi
k ⊥ Kk, if it is possible to satisfy this

condition. However, satisfying this condition may not be possible for some k, in which
case xArnoldi

k is not defined. It has been shown by Brown [6] that xArnoldi
k is defined if

and only if ‖rGMRES
k−1 ‖2 > ‖rGMRES

k ‖2, i.e., GMRES does not stagnate at the kth step.
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It follows that the assumption in Theorem 3.2 that xArnoldi
j is defined for 0 < j ≤ k is

equivalent to the assumption that ‖rGMRES
j−1 ‖2 > ‖rGMRES

j ‖2 for 0 < j ≤ k. This latter
assumption is slightly stronger than the nonstagnation assumption in Theorem 2.2,
which does not preclude stagnation at the kth step.

Proof. The proof parallels the proof of Theorem 2.2 but differs significantly in
some details. For i = 1, . . . , k, we define zi ≡ xType I

i −x0 and make the claims below,
from which the theorem follows.

Claim 1. For 1 ≤ j ≤ k, if {z1, . . . , zj} is a basis of Kj , then
∑j

i=0 α
(j)
i xType I

i =

xArnoldi
j and xType I

j+1 = g(xArnoldi
j ).

Claim 2. For 1 ≤ j ≤ k, {z1, . . . , zj} is a basis of Kj .

To prove Claim 1, we note that, for 1 ≤ j ≤ k and any γ = (γ0, . . . , γj−1),

fj −Fjγ = fj −
j−1∑
i=0

γi(fi+1 − fi)

= α0f0 + α1f1 + · · ·+ αj−1fj−1 + αjfj,

(3.9)

where α0 = γ0, αi = γi − γi−1 for 1 ≤ i < j, and αj = 1 − γj−1. One easily verifies

that f0 = rArnoldi
0 ,

∑j
i=0 αi = 1, and fi = f0 − (I − A)zi = rArnoldi

0 − (I − A)zi for
1 ≤ i ≤ j. Then (3.9) yields

fj −Fjγ = rArnoldi
0 − (I −A)

j∑
i=1

αizi,

which is to say that fj −Fjγ is the residual associated with x0 +
∑j

i=1 αizi resulting

from the step
∑j

i=1 αizi ∈ Kj . Since

Kj = span {z1, z2, . . . , zj} = span {z1, z2 − z1, . . . , zj − zj−1}
= span {Δx0,Δx1, . . . ,Δxj−1},

the orthogonal-residual condition that uniquely characterizes the Arnoldi step xArnoldi
j ,

if it is defined, is

X T
j fj −X T

j Fjγ = X T
j

[
rArnoldi
0 − (I −A)

j∑
i=1

αizi

]
= 0.(3.10)

Thus our assumption that xArnoldi
j is defined implies that there exist a unique γ and

corresponding α satisfying (3.10). It follows that X T
j Fj is nonsingular. Moreover, the

solution is γ(j) ≡ (XjFj)
−1 X T

j fj, and the corresponding α(j) is such that

xArnoldi
j = x0 +

j∑
i=1

α
(j)
i zi =

j∑
i=0

α
(j)
i xType I

i ,(3.11)

whence xType I
j+1 = g(xArnoldi

j ).

To prove Claim 2, we note that z1 = g(x0)−x0 = rArnoldi
0 , which is nonzero since

rArnoldi
k−1 �= 0. Thus {z1} is a basis of K1, and the proof is complete if k = 1.
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We suppose that k > 1 and make the inductive hypothesis that {z1, . . . , zj} is a
basis of Kj for some j with 1 ≤ j < k. With Claim 1 and (3.11), we have that

zj+1 = xType I
j+1 − x0 = g(xArnoldi

j )− x0 = AxArnoldi
j + b − x0

= b− (I −A)xArnoldi
j + xArnoldi

j − x0 = rArnoldi
j +

j∑
i=1

α
(j)
i zi.

We also have that rArnoldi
j ∈ Kj+1 ∩ K⊥

j and rArnoldi
j �= 0 since rArnoldi

k−1 �= 0. Since∑j
i=1 α

(j)
i zi ∈ Kj , it follows that zj+1 cannot depend linearly on {z1, . . . , zj}, and so

{z1, . . . , zj+1} is a basis of Kj+1.

We conclude this section with a counterpart of Corollary 2.10 in the case in which
a stationary iteration based on an operator splitting A = M −N is applied to solve
a system Ax = b.

Assumption 3.4.

• A = M −N , where A ∈ R
n×n and M ∈ R

n×n are nonsingular.
• g(x) = M−1Nx+M−1b for b ∈ R

n.
• The Type I method is not truncated, i.e., mk = k for each k.
• The Arnoldi method is applied to the left-preconditioned system M−1Ax =
M−1b with initial point x0 = xType I

0 .

Corollary 3.5. Suppose that Assumption 3.4 holds and that, for some k > 0,

xArnoldi
j is defined for 0 < j ≤ k and rArnoldi

k−1 �= 0. Then, with α(k) = (α
(k)
0 , . . . , α

(k)
mk)

given by (3.6)–(3.7),
∑k

i=0 α
(k)
i xType I

i = xArnoldi
k and xType I

k+1 = g(xArnoldi
k ).

Proof. Apply Theorem 3.2 with A and b replaced by M−1N and M−1b, respec-
tively.

4. Practical considerations. We focus on the following general issues that
arise in implementing Algorithm AA:

• choosing a particular form of the least-squares problem (1.1) among various
equivalent forms;

• choosing a solution method for the least-squares problem;
• choosing m and possibly modifying mk beyond the simple choice mk =
min {m, k}.

Other issues, such as choosing stopping criteria, are straightforward to treat us-
ing standard approaches or, in some circumstances, better addressed with problem-
specific techniques.

We discuss these three general issues in turn, noting the particular choices that
we made in the implementation of Anderson acceleration used in the numerical ex-
periments discussed in section 5. A central consideration is the conditioning of the
least-squares problem: a particular form of the least-squares problem may affect con-
ditioning; an ill-chosen solution technique (e.g., solving the normal equation) may
exacerbate the effects of ill-conditioning; and choosing larger values of m and mk

may worsen conditioning. This consideration is especially important in view of the
potential numerical weakness of Anderson acceleration noted in Remark 2.7.

The form of the least-squares problem. Our implementation uses the uncon-
strained form (3.1) of the least-squares problem, which offers several advantages and,
in our experience, no evident disadvantages. This form has been suggested by Kresse
and Furthmüller [28] as well by Fang and Saad [19]. It is convenient for storing and
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updating information from previous iterations and efficiently using it to solve succes-
sive least-squares problems over a number of iterations. In experiments reported by
Ni and Walker [32], it resulted in slightly better condition numbers than a comparably
efficient alternative form proposed in [32] and in much better condition numbers than
the form (1.1) when solved directly using a Lagrange-multiplier approach.

The least-squares solution method. Our implementation solves the least-squares
problem using QR decomposition, which provides a good balance of accuracy and
efficiency for many applications.9 Since each Fk in (3.1) is obtained from its prede-
cessor Fk−1 by adding a new column on the right and possibly dropping one or more
columns on the left (see the discussion of modifying mk below), the QR decomposition
of Fk can be efficiently obtained from that of Fk−1 in O(mkn) arithmetic operations
using standard QR factor-updating techniques (see, e.g., Golub and Van Loan [22]).

We note that Fang and Saad [19] propose solving the least-squares problem us-
ing singular-value decomposition and rank-revealing QR decomposition techniques.
These are perhaps the most accurate solution methods and are especially useful for
treating rank deficiency. However, they are more costly than updated QR decom-
position methods and perhaps less necessary in our implementation in view of the
strategy outlined below for modifying mk to maintain acceptable conditioning.

Choosing m and possibly modifying mk. If m is small, then the secant informa-
tion used by the method may be too limited to provide desirably fast convergence.
However, if m is large, then the least-squares problem may be undesirably badly
conditioned, at least without further restrictions on mk; additionally, outdated secant
information from previous iterations may be retained to the point of degrading conver-
gence. Thus the most appropriate choice of m is likely to be application-dependent.
In the experiments reported in section 5, effective choices of m ranged from three
(with n = 3) to 50 (with n = 16, 384).

For possibly modifying mk, our implementation follows a strategy used by Yang
et al. [45] that is intended to maintain acceptable conditioning of the least-squares
problem. In this, the condition number of the least-squares coefficient matrix (which is
just the condition number of R in the QR decomposition) is monitored, and left-most
columns of the matrix are dropped (and the QR decomposition updated) as necessary
to keep the condition number below a prescribed threshold. Dropping columns in this
way may also have the benefit of discarding outdated secant information from earlier
iterations, albeit at the risk of losing information that may still be of value.

5. Numerical experiments. In this section, we report on several numerical
experiments. These are by no means intended to be exhaustive or definitive for the
applications considered. Rather, they are intended only to indicate how Anderson
acceleration can be applied and to illustrate its performance in a variety of settings.
The first two applications involve only small numbers of unknowns but deal with
methods that are often used to extract information from very large data sets. The
remaining applications, although of relatively modest scale in the experiments con-
sidered here, involve techniques that are used in simulations at the largest scales. All
experiments were performed in MATLAB. Since timings in MATLAB may not re-
flect timings obtained in other computational environments, no timings are reported
in these experiments.

9Efficiency in solving the least-squares problem may, per se, be a minor issue in some applications,
in which the cost of solving the least-squares problem, however inefficiently, is small relative to the
cost of evaluating g. This is the case, e.g., in the self-consistent field iteration in electronic-structure
computations; see [19]. Nevertheless, it may be significant in other cases, and we consider it here.
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5.1. The expectation-maximization algorithm for mixture densities.
The expectation-maximization (EM) algorithm, formalized by Dempster, Laird, and
Rubin [12], is widely used in computational statistics for obtaining maximum-likelihood
estimates from incomplete data. It is often applied in classification and clustering
problems to estimate the unknown parameters in a mixture density, i.e., a probability
density function used to model a statistical population that consists of a mixture of
subpopulations. In this context, the algorithm typically reduces to a simple fixed-
point iteration with very appealing properties. From a computational viewpoint, it
enjoys very strong global convergence properties, is very easy to implement, involves
no derivative information, requires minimal storage, and is highly parallelizable. How-
ever, the convergence of the iterates is linear and can be frustratingly slow, especially
when the subpopulations are “poorly separated” in a certain sense. See, e.g., Red-
ner and Walker [37] for an extensive treatment of maximum-likelihood estimation of
mixture parameters using the EM algorithm.

In this experiment, we considered a mixture density composed of three univariate
normal densities. The mixture density is p(x) =

∑3
i=1 αipi(x|μi, σi), where

pi(x|μi, σi) =
1√
2π σi

e−(x−μi)
2/(2σ2

i ), 1 ≤ i ≤ 3,

and the mixture proportions {αi}3i=1 are nonnegative and sum to one. We assumed
that the mixture proportions and variances are known and considered estimating
the means {μi}3i=1 from a sample {xk}Nk=1 of observations on the mixture that are
“unlabeled,” i.e., their subpopulations of origin are unknown. In this case, an EM
iteration on the means is given by

μ+
i =

{
N∑

k=1

xk
αipi(xk|μi, σi)

p(xk)

}/{
N∑

k=1

αipi(xk|μi, σi)

p(xk)

}
, 1 ≤ i ≤ 3,

where the current values of {μi}3i=1 are used with the known proportions and variances
to evaluate the expressions on the right-hand side.

We report on a particular trial, in which we observed the performance of the
EM algorithm with and without Anderson acceleration as the subpopulations in the
mixture became increasingly poorly separated. Specifically, we took (α1, α2, α3) =
(.3, .3, .4), (σ1, σ2, σ3) = (1, 1, 1) and generated samples of 100, 000 observations on
the mixture corresponding to the sets of mean values (μ1, μ2, μ3) = (0, 2, 4), (0, 1, 2),
and (0, .5, 1). For these sets of mean values, the component densities are fairly well
separated, rather poorly separated, and very poorly separated, respectively. The sam-
ples were generated with the MATLAB command randn using the same seed in each
case. The large sample size was used both to ensure that the samples accurately
reflected the underlying mixture densities and to justify obtaining considerable accu-
racy in the estimates by imposing tight stopping tolerances on the iterations. In this
trial, Anderson acceleration was applied with m = 3.

The results of this trial are shown in Figure 1. In this figure, the convergence
of the EM iterates without Anderson acceleration is shown by the three dashed blue
curves, with the bottom curve showing convergence in the best-separated case and the
top curve showing convergence in the worst-separated case. Note that the convergence
is rather slow in the best-separated case and degrades dramatically as the separation
of the component densities worsens. In contrast, the convergence of the accelerated
iterates is much faster and is not significantly affected by the worsening separation.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1728 HOMER F. WALKER AND PENG NI

0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2

0

Lo
g 

R
es

id
ua

l N
or

m

Iteration Number

Fig. 1. Convergence of the EM iterates with (solid red curves) and without (dashed blue curves)
Anderson acceleration.

5.2. Alternating nonnegative least-squares for nonnegative matrix fac-
torization. Nonnegative matrix factorization is an important tool in data min-
ing; see, e.g., Eldén [17] and the references therein. As posed in [17], the prob-
lem is as follows: Given A ∈ R

m×n, find nonnegative matrices W ∈ R
m×� and

H ∈ R
�×n that solve minW≥0,H≥0 ‖A − WH‖F . A widely used solution tech-

nique for this nonlinear least-squares problem is alternating nonnegative least-squares
(ANNLS), in which one generates sequences of approximate solutions {Hk} and
{Wk}, beginning with some W0 ≥ 0, by alternately solving the standard nonnega-
tively constrained linear least-squares problems Hk = arg minH≥0 ‖A−WkH‖F and
Wk+1 = arg minW≥0 ‖A−WHk‖F . Additionally, a normalization is imposed at each
iteration to avoid growth of one factor and decay of another; see [17, sect. 9.2] for
details.

Here, we consider ANNLS to be a fixed-point iteration through the assignment
(Wk, Hk) → (Wk+1, Hk+1). In the obvious way, we regard the set of all pairs (W,H)
as a vector space with inner-product and norm defined using the Frobenius inner-
product and norm on R

m×� and R
�×n. In this setting, it is straightforward to apply

Anderson acceleration to ANNLS.

In this experiment, we applied ANNLS with and without Anderson acceleration
to obtain the nonnegative matrix factorization of the “term-document” matrix A from
Example 1.1 of [17], shown on the left in Figure 2. We took � = 3, so that the W and
H factors are 10 × 3 and 3 × 5, respectively. We followed the MATLAB procedures
given in [17, sect. 9.2] for implementing ANNLS and SVD-based initialization of the
iterations (see also Boutsidis and Gallopoulos [2]). We used m = 3 in Anderson
acceleration. The convergence of the ANNLS iterates with and without Anderson
acceleration is shown on the right in Figure 2. In both cases, the iterates converged
to factors consistent with those given in [17, p. 110]. We note that, in general, there is
a possibility that Anderson acceleration may produce matrices with negative entries;
however, that did not occur in this experiment.

5.3. Domain decomposition. Domain decomposition is widely used as a pre-
conditioning technique for solving linear and even nonlinear PDE problems (see, e.g.,
Knoll and Keyes [27] and Cai and Keyes [8]). It can also be regarded as a fixed-point
iteration for obtaining a solution; however, the iterates typically converge too slowly
for it to be used in this way (see, e.g., Garbey [20]). In these experiments, we re-
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Fig. 2. Left: the term-document matrix. Right: convergence of the ANNLS iterates with (solid
red curve) and without (dashed blue curve) Anderson acceleration.

port on the effectiveness of Anderson acceleration applied to domain-decomposition
iterations for a linear problem and two nonlinear problems. We note that accelera-
tion of domain-decomposition iterations (specifically, additive-Schwarz iterations) has
been previously considered by Garbey and collaborators (see [20] and the references
therein), who investigated several Aitken-like acceleration procedures and reported
encouraging results. To our knowledge, Anderson acceleration has not previously
been tried in this setting.

The domain-decomposition technique used in all of our experiments was restricted
additive Schwarz (RAS) (Cai and Sarkis [10]) with varying levels of overlap, as noted
below. A coarse grid was not used, since scalability studies were not of interest.

5.3.1. A convection-diffusion problem. In this experiment, we observed the
performance of RAS with and without Anderson acceleration and also RAS-precon-
ditioned GMRES on a linear convection-diffusion problem, as follows:

Δu+ cu+ dux + euy = f in D = [0, 1]× [0, 1],

u = 0 on ∂D.

In the trials reported here, we took f(x) ≡ −10 and varied c, d, and e. The problem
was discretized using centered differences on a 128 × 128 grid. RAS was applied on
a 4 × 4 array of subdomains with three grid lines of overlap. All linear subdomain
problems were solved using the direct sparse solver in MATLAB. We took m = 50
in Anderson acceleration and used 50 as a restart value for GMRES. Since both
algorithms terminated in fewer than 50 iterations, this effectively meant that Anderson
acceleration was not truncated and GMRES was not restarted.

Representative results are shown in Figure 3. Note that even though Corol-
lary 2.10 does not apply in this case, there is still very close agreement between the
iterates produced by RAS with Anderson acceleration and those produced by RAS-
preconditioned GMRES. Note also that GMRES requires a product of the “whole-
domain” coefficient matrix with a vector at each iteration, but RAS with Anderson
acceleration does not. This may be a significant efficiency advantage in circumstances
in which these products entail considerable cost. However, as in the remarks at the
end of section 2, we caution against applying Anderson acceleration to RAS as a gen-
eral alternative to RAS-preconditioned GMRES because of the potential numerical
weakness of Anderson acceleration brought out in Remark 2.7 and Proposition 2.8.
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Fig. 3. The convection-diffusion problem. Convergence of the RAS iterates with (solid
red curves) and without (dashed blue curves) Anderson acceleration; convergence of the RAS-
preconditioned GMRES iterates (dash-dotted green curve).

5.3.2. The Bratu problem. The Bratu problem is a nonlinear PDE boundary-
value problem, as follows:

Δu+ λeu = 0 in D = [0, 1]× [0, 1],

u = 0 on ∂D.

This problem is treated in more general form by Fang and Saad [19] and has a long
history; see also Glowinski, Keller, and Reinhart [21], Pernice and Walker [34], and
the references in those papers. Notwithstanding the exponential nonlinearity, it is not
a difficult problem for Newton-like solvers.

In this experiment, we observed the performance of nonlinear RAS with and
without Anderson acceleration and also the performance of Newton’s method with
backtracking applied to the whole-domain problem. As in the previous problem, we
used a centered-difference discretization on a 128 × 128 grid and applied RAS on a
4 × 4 array of subdomains with three grid lines of overlap. We again took m = 50
in Anderson acceleration. We took λ = 6 in the Bratu problem and used the zero
initial approximate solution in all cases. As in the previous experiment, all linear
subdomain problems were solved using the direct sparse solver in MATLAB. All non-
linear subdomain problems were solved using Newton’s method with a backtracking
globalization.

The results are shown in Figure 4. One sees that Anderson acceleration signifi-
cantly increased the speed of convergence of the RAS iterates. The Newton iterates
converged much faster still. However, we note that RAS with Anderson acceleration
does note require any action involving the whole-domain Jacobian; additionally, on a
parallel machine, the nonlinear subdomain problems could have been solved concur-
rently at each RAS iteration, which would likely have resulted in significantly shorter
time to solution.

5.3.3. A transonic-flow problem. The problem is a one-dimensional com-
pressible-flow problem describing transonic flow in a duct that first narrows and then
expands to form a nozzle; see Cai, Keyes, and Young [9] and Young et al. [47] for
more details. The PDE problem is

[A(x)ρ(u)ux]x = 0, 0 < x < 2,

u(0) = 0, u(2) = uR,
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Fig. 4. The Bratu problem (λ = 6). Convergence of the nonlinear RAS iterates with (solid
red curve) and without (dashed blue curve) Anderson acceleration; convergence of the Newton-
backtracking iterates (dash-dotted green curve).

where ρ(u) =
[
1 + γ−1

2 (1 − u2)
]1/(γ−1)

is the density and A(x) = 0.4 + 0.6(x − 1)2

prescribes the cross-section of the duct. The solution u is the potential and ux is
the velocity of the flow. Following [9], [47], we take uR = 1.15 and γ = 1.4 and
apply the finite-difference discretization described in those papers, using the first-
order density biasing stabilization outlined in [47]. The resulting discretized problem
is very challenging for globalized Newton-like solvers, which tend to require many
iterations to resolve the shock.

In this experiment, we observed the performance of nonlinear RAS with and
without Anderson acceleration and also the performance of a Newton-GMRES method
with a backtracking globalization applied to the whole-domain problem. In this, the
Jacobian-vector products needed by GMRES were approximated in “matrix-free”
fashion by finite differences of residual values. The nonlinear subdomain problems
were also solved with this matrix-free Newton-GMRES-backtracking method. The
forcing term η = 10−3 was used to terminate the GMRES iterations in all cases. In
the trial reported here, we used a grid of 512 equally spaced interior grid points. We
partitioned the domain into eight subdomains of equal length, with 64 grid points per
subdomain, and applied RAS with eight grid lines of overlap. We took m = 20 in
Anderson acceleration.

The results are shown in Figure 5. We note in particular that RAS with Anderson
acceleration required far fewer iterations for convergence than the matrix-free Newton-
GMRES-backtracking method. RAS with Anderson acceleration had the additional
advantage of not requiring the solution of linear subproblems involving the whole-
domain Jacobian.

6. Concluding summary. Our purpose in the foregoing has been to provide
new theoretical insights into Anderson acceleration, to outline useful views on its im-
plementation, and, through experiments involving a range of applications, to illustrate
its usefulness as a broadly applicable procedure for accelerating the convergence of
fixed-point iterations.

Our theoretical results are given in sections 2 and 3 under the assumption that
the fixed-point map is linear. In this case, it is shown in Theorem 2.2 that Ander-
son acceleration is “essentially equivalent” to GMRES applied to the linear system
equivalent to Problem FP in the sense that the iterates produced by one method can
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Fig. 5. The transonic-flow problem. Left: the mach distribution and shock location of the
solution on a 512-point regular grid. Right: convergence of the RAS iterates with (solid red curve)
and without (dashed blue curve) Anderson acceleration; convergence of the “matrix-free” Newton-
GMRES-backtracking iterates (dash-dotted green curve).

be readily obtained from those produced by the other. It follows in Corollary 2.10
that Anderson acceleration applied to a classical stationary iteration defined by an
operator splitting is similarly essentially equivalent to GMRES applied to the equiv-
alent left-preconditioned linear system, with left-preconditioning determined by the
operator splitting. As noted in Remark 2.7, Anderson acceleration encounters rank
deficiency when GMRES stagnates and thus is likely to suffer from ill-conditioning
when GMRES convergence is slow. This suggests an inherent potential numerical
weakness of the method. Because of this, we caution against applying Anderson ac-
celeration to stationary iterations as a general alternative to preconditioned GMRES;
however, as observed in section 5.3.1, this may have advantages in some circumstances.
In Theorem 3.2 and Corollary 3.5, we establish results paralleling Theorem 2.2 and
Corollary 2.10 that relate the Type I method introduced by Fang and Saad [19] to the
Arnoldi (full orthogonalization) method.

In section 4, we discuss practical considerations in implementing Anderson accel-
eration, focusing on choices that we made in the implementation used in the numerical
experiments discussed in section 5. Our preferred form of the least-squares problem
is (3.1), which is convenient for storing and efficiently updating information from pre-
vious iterations. For solving this least-squares problem, our implementation uses QR
decomposition, which offers a good balance of accuracy and efficiency for many appli-
cations. Efficiency is achieved by updating the QR factors from one iteration to the
next at the cost of O(mkn) arithmetic operations. Acceptable accuracy is maintained
by dropping left-most columns of the coefficient matrix (and subsequently updating
the QR factors) as necessary to keep the condition number below a desired level.

In section 5, we report on experiments in which Anderson acceleration was applied
to fixed-point iterations arising in various applications. The first two experiments
involve only small numbers of unknowns, but the methods of interest are often used
to analyze very large data sets. The remaining experiments, although of relatively
modest scales in the trials reported here, involve domain-decomposition methods that
are used in simulations at the largest scales. In all cases, Anderson acceleration
significantly accelerated the convergence of the underlying fixed-point iterations. In
some cases, its performance was noteworthy in other respects as well. We mention



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANDERSON ACCELERATION FOR FIXED-POINT ITERATIONS 1733

in particular that, in the experiment involving the EM algorithm (section 5.1), the
convergence of the accelerated iterates was not significantly affected by worsening
separation of the mixture subpopulations, while that of the EM iterates without
acceleration was severely degraded, and also that, in the transonic-flow experiment
(section 5.3.3), nonlinear RAS with Anderson acceleration required far fewer iterations
for convergence than the Newton-GMRES-backtracking method. Additionally, in all
of the domain-decomposition experiments, RAS with Anderson acceleration required
no operations involving a “whole-domain” coefficient matrix or Jacobian; this may be
a significant advantage in cases in which such operations entail considerable expense.

The encouraging experimental results in section 5 and also the established record
of success of Anderson acceleration in electronic-structure applications suggest that
the method is worthy of consideration in many other applications in which it may be
similarly successful. However, in addition to the caution noted above, it should be
kept in mind that there are no general guarantees of global or even local convergence
of which we are aware. In view of these unresolved issues as well as its evident promise,
we feel that the method merits much further study.

Acknowledgments. The authors express appreciation to Juan Meza, Chao
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mous referees, whose suggestions resulted in a number of improvements to the paper.
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