
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Scheduling of the TTEthernet
communication

Bc. Martin Heller

May 2016
Supervisor: Ing. Jan Dvořák

Acknowledgement / Declaration
I would like to thank to my thesis

supervisor Ing. Jan Dvořák for his
helpful advice, patience and respon-
siveness. I would also like to thank to
Dr. Alexander Schnell for providing me
with his source codes which have been
very helpful to me. And last but not
least, I would like to thank to my family
for their support and encouragement.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

v

Abstrakt / Abstract
TTEthernet je rozšířením Ethernetu

o prostředky pro deterministickou ko-
munikaci. V této práci TTEthernet
stručně představíme a uvedeme stáva-
jící metody rozvrhování provozu v něm.
Následně formulujeme tento rozvrho-
vací problém jako MRCPSP-GPR (také
znám jako multimodální RCPSP/max)
a zhodnotíme možnosti použití exis-
tujících řešičů MRCPSP-GPR pro
rozvrhování provozu v síti TTEther-
net. S využitím heuristiky, kterou jsme
navrhli, se tento postup jeví jako rea-
listický. Mimo to ještě uvádíme opravu
nedávno publikované metody pro odhad
maximálního zpoždění rate-constrained
(RC) provozu v síti TTEthernet.

TTEthernet is an extension of Eth-
ernet for deterministic communication.
We present an overview of TTEthernet
and existing methods for scheduling
TTEthernet traffic. Then we present a
formulation of the scheduling problem
as a MRCPSP-GPR (also known as
multi-mode RCPSP/max) and eval-
uate the possibility of using existing
MRCPSP-GPR solvers for scheduling
TTEthernet traffic. With a heuristic
we introduce, this approach appears
practical. Apart from this, we present a
correction of a state-of-the-art method
for estimating worst-case delays of rate-
constrained (RC) TTEthernet traffic.

vi

Contents /
1 Introduction .1
1.1 Motivation .1
1.2 Background .1
1.3 Ethernet in industrial appli-

cations .2
2 TTEthernet .4
2.1 Overview .4
2.2 Traffic classes .4

2.2.1 Time-Triggered traffic5
2.2.2 Rate-Constrained traffic . . .5
2.2.3 Best-Effort traffic5

2.3 Integration of traffic with
mixed time-criticality5
2.3.1 Pre-emption6
2.3.2 Timely block6
2.3.3 Shuffling .6

2.4 Network topology6
2.5 Clock synchronization8

2.5.1 Basic concepts8
2.5.2 Synchronization process . . .8
2.5.3 Comparison to IEEE1588 . .9

3 Scheduling TTEthernet traffic . . 10
3.1 Goals of scheduling 10

3.1.1 Basic constraints 10
3.1.2 Application-level con-

straints 10
3.1.3 Accomodating RC

traffic . 11
3.2 Existing approach. 11

3.2.1 Using an SMT solver 11
3.2.2 Schedule porosity 12
3.2.3 Tabu search heuristic 12
3.2.4 Combining network-

level and task-level
scheduling 12

3.3 Our approach 13
3.3.1 Conversion to RCPSP-

GPR . 13
3.3.2 Alternative: Multi-

mode RCPSP-GPR 14
3.3.3 Mode assignment

heuristic 16
4 MRCPSP-GPR Solvers 17
4.1 Constraint programming 17

4.1.1 Constraint propagation . . 17
4.1.2 Conflict analysis 18

4.2 SCIP-based MRCPSP-GPR
solver . 18
4.2.1 Constraint Integer

Programming 19
4.2.2 SCIP constraint han-

dlers . 19
4.2.3 CumulativeMM 20
4.2.4 GenPrecMM 22

4.3 IBM CPLEX CP Optimizer . . . 22
4.3.1 Scheduling tools. 22

5 Problem summary 25
6 Worst-case delay of RC traffic . . 27
6.1 Calculating the worst-case

delay . 27
6.1.1 Sources of delay 27
6.1.2 Busy period 28
6.1.3 End-to-end delay. 29
6.1.4 Worst-case end-to-end

delay . 30
6.1.5 Problem with the busy

period . 31
6.2 Repairing the worst-case de-

lay calculation. 31
6.2.1 Dataflow link capacity

requirements 31
6.2.2 Maximum backlog size

on a link 32
6.2.3 Estimating the maxi-

mum backlog size 34
6.2.4 Worst-case delay on a

link . 35
6.2.5 Worst-case end-to-end

delay . 36
7 Experimental results 37
7.1 Test instance generator 37

7.1.1 Parameters 37
7.1.2 Implementation 38
7.1.3 Test instance format 38

7.2 Other implemented tools 38
7.3 Solver performance 39
7.4 Worst-case RC delays 41

8 Conclusion . 43
References . 44

A Example XML-based instance
description . 47

B Content of the attached CD 49

vii

Tables /
7.1. Comparison of the solvers 40
7.2. Maximizing the length of

multiple gaps 41
7.3. Influence of the heuristic. 41
7.4. Worst-case delays of RC traf-

fic . 42

viii

Chapter 1
Introduction

Time-Triggered Ethernet (or TTEthernet) is an extension of Ethernet for deterministic
real-time communication. In this work, we will first introduce TTEthernet in more
detail and show what the goals of optimizing TTEthernet traffic can be. Then we
present existing approaches to scheduling TTEthernet frames and our own approach.
Finally, we present the results of computational experiments performed on our gener-
ated benchmark instances and discuss the practicality of our approach for real-world
use.

1.1 Motivation
Ethernet (IEEE 802.3) has been the prevalent technology for home and office networks
in the last decades. Thanks to its widespread adoption it has developed into a mature
technology offering high bandwidth with cheap and readily available hardware.

While unsuitable for critical industrial use in its basic form, the advantages mentioned
above drive the efforts to adapt Ethernet for industrial use to supplement and replace
some of the currently used technologies. This has become even more pronounced with
the ever increasing amounts of data transfers necessary to facilitate features like real-
time image processing and recognition or communication among individual units in
a smart system. Therefore, extensions of Ethernet are being developed to meet the
demands of industrial applications.

TTEthernet is a promising extension of Ethernet, which provides determinism and
fault-tolerance while being compatible with standard Ethernet. There has been an
ongoing work on the standardization of extensions to Ethernet for scheduled traffic by
the IEEE 802.1 Time-Sensitive Networking Task Group and TTEthernet might become
a part of the newly developed standard. If substantial changes are made to TTEthernet
in the process, the results regarding scheduling traffic in complex multi-hop networks
should still be easily applicable.

Determinism with the strictest guarantees is achieved through a fixed schedule for the
traffic. Therefore, synthesizing a good (what exactly this means will be discussed later)
schedule which meets all the requirements and deadlines is essential for the performance
of the network. Because TTEthernet allows for complex topologies, the scheduling
involves additional complexity compared to the bus or passive star topologies of older
networks like FlexRay.

1.2 Background
Industrial applications like manufacturing process control, automotive, avionics and
other critical applications have traditionally carried a very different set of requirements
than conventional computer networks.

Conventional computer networks are mainly used for on-demand data transfer with-
out immediate physical impact on the real world. In case of a failure, the transmission

1

1. Introduction .
can usually be repeated without causing major difficulties. Therefore, the focus is on
bandwidth and efficiency with only moderate demands on reliability.

In contrast, in industrial applications various control loops of physical devices are
realized by the network, e.g. data from sensors are transferred to a processing unit
which then sends commands to actuators. Any disturbance can thus have immediate
effects on the real world with possibly severe consequences. As jitter (variance in
transmission times) is detrimental to the function of the control loops, determinism
is often required. In addition, individual devices in the network are often limited in
hardware and need to operate in demanding environments.

Due to these differences, different technologies and protocols were traditionally used
for conventional computer networks and for industrial networks. Ethernet has been
used for home and office networks while various Fieldbus networks have been used for
industrial applications. However with the increasing integration of the industrial sys-
tems, increasing demands on the volume of data transferred and also the maturing
and development of the Ethernet, there has been a trend of using Ethernet-based net-
works for industrial applications as well. An overview of the development of industrial
networks is given by [1].

1.3 Ethernet in industrial applications
Ethernet has advanced greatly since its initial standardization in 19831. Data trans-
mission rates have increased from 10 Mbit/s to 100 Mbit/s or 1 Gbit/s with common
hardware and to even higher rates with specialized hardware. The introduction of fully
duplex links and the transition to switched networks have eliminated collisions on the
physical layer and the resulting unpredictable delays due to the exponential back-off
algorithm for collision resolution. These developments made Ethernet more suitable
for industrial use and several Ethernet-based industrial protocols have been developed.
They are based on the Ethernet physical layer and differ in whether they modify the
link and network layers, or if they just operate on top of them.

For example, EtherNet/IP (IP stands for Industrial Protocol here, do not confuse
with TCP/IP) is an implementation of the Common Industrial Protocol application
layer built on top of standard Ethernet and TCP/IP. Thus, it is not (cannot be) strictly
deterministic, although real-time performance is achieved through the IEEE 1588 clock
synchronization and message prioritization. In contrast, PROFINET IO, which is an
adaptation of PROFIBUS onto Ethernet, offers hard real-time capabilities. It uses
modified EtherTypes and requires specialized network devices, both as switches and as
end systems.

Another application of Ethernet is the AFDX (Avionics Full-Duplex Switched Eth-
ernet) which was designed as a successor to the ARINC 429 single-source multi-drop
bus. It allows reducing the amount of wiring reducing the weight of the network in-
frastructure which is especially important in avionics. Its development was initiated by
Airbus for its A380 plane, and it has been used in several other planes including the
Airbus A350 or Boeing 787 Dreamliner. From the implementation point of view, AFDX
adds traffic shaping and policing to Ethernet to guarantee maximum latencies of the
traffic while allowing commercial off-the-shelf Ethernet devices to be used. It does not,
however, provide means for scheduled traffic with hard real-time requirements.

1 http://standards.ieee.org/news/2013/802.3_30anniv.html

2

. 1.3 Ethernet in industrial applications

The protocols mentioned above have one significant drawback. They are either not
strictly deterministic (EtherNet/IP, AFDX) or they are incompatible with standard
Ethernet devices (PROFINET IO). Therefore, a new protocol, TTEthernet, which is
the subject of this work, has been developed.

3

Chapter 2
TTEthernet

TTEthernet (TT stands for Time-Triggered) is an extension of Ethernet for determin-
istic communication. Its development started at the Vienna University of Technology,
and the first results were published as TT Ethernet in 2005. In 2008, TTEthernet was
introduced by the TTTech company. In 2011 it was standardized as SAE AS 6802 [2].

2.1 Overview
TTEthernet operates at the Level 2 of the ISO/OSI model, above the Ethernet physical
layer. It requires a switched network with fully duplex physical links so that unpre-
dictable conflicts when accessing a shared medium are avoided. This also means that a
wireless network is not a suitable physical medium for TTEthernet. From a scheduling
point of view, however, a fully duplex physical link is equivalent to two separate unidi-
rectional links going in opposite directions. Because it is more convenient to work with
unidirectional links, we make this transformation, and from now on, when referring to
a dataflow link or simply a link we mean one of the directions of the physical link.

Network devices are offered by TTTech. Switches are implemented in hardware,
and end systems are implemented in hardware or software (for testing purposes, with
limited precision). Unfortunately, we had none of these available for testing and hands-
on experience.

TTEthernet specifies a protocol for clock synchronization and the rules for managing
the traffic on the network. After an initial startup phase when the clocks of the devices
in the network are synchronized for the first time, the operation of TTEthernet is
periodic. When in steady operation, the clocks are being periodically synchronized to
counter any possible clock drift. This period is called the integration cycle.

The messages which follow a deterministic schedule are also periodic. The lowest
common multiple of their periods is called the application cycle or the cluster cycle.
The term cluster cycle is used by the AS 6802 standard because the standard allows
for the network to consist of multiple clusters, see section 2.5 for more details on the
relationship between a cluster and a network. In this work, we assume that the network
consists of a single cluster, and we will use the term application cycle consistent with
[3] throughout the rest of the work.

2.2 Traffic classes
TTEthernet integrates traffic of different time-criticality levels into one physical net-
work. There are 3 traffic classes in TTEthernet corresponding to the time-criticality
levels. These classes, ordered by decreasing priority, are the Time-Triggered (TT),
Rate-Constrained (RC) and Best-Effort (BE) traffic. A so-called temporal firewall is
employed for separation of the traffic.

4

. 2.3 Integration of traffic with mixed time-criticality

2.2.1 Time-Triggered traffic
The Time-Triggered (TT) traffic class has the highest priority, and sub-µs jitter can be
achieved (depending on the network devices). TT messages are periodic, in agreement
with [4] we assume that they are strictly periodic. Their schedule is calculated offline
and then loaded into the individual devices.

The schedule also provides temporal isolation and enables fault tolerance. This is due
to the fact that not only the sending of a frame is scheduled, its reception is scheduled
as well. If a TT frame arrives outside the time it is supposed to arrive, the acceptance
window, it is discarded by the receiver. This way even a babbling idiot failure, when a
faulty device sends spurious frames, can be contained and possible network congestion
prevented. This mechanism is called the temporal firewall.

2.2.2 Rate-Constrained traffic
For traffic with less strict precision requirements, the Rate-Constrained (RC) traffic
class can be used. This traffic class conforms to the ARINC 664p7 specification [5] (also
called AFDX). It offers greater flexibility because only the frame routing needs to be
determined offline. The messages themselves are event-driven within some limitations.

RC traffic is organized in so-called virtual links. As stated in [6], a virtual link is an
analogy to the ARINC 429 single-source multi-drop bus. The virtual link determines
the routing of the messages associated with it. Furthermore, there are two parameters,
Lmax and BAG, associated with each virtual link. Lmax is the maximum allowed frame
size and BAG is the minimum allowed length of an interval between consecutive frames
on the virtual link, called the bandwidth allocation gap (BAG). This effectively limits
the bandwidth of the virtual link. In exchange for this limitation, the maximum possible
delay of any RC message can be calculated offline.

The sending network device needs to ensure that the BAG is kept even if the actual
source, e.g. a sensor, sends the messages at irregular intervals. This is called traffic
shaping. For failure tolerance, the BAG is also enforced on the receiving end, frames
not conforming to the BAG are discarded. This is called traffic policing.

2.2.3 Best-Effort traffic
Standard Ethernet traffic can also be transmitted through the network. Even standard
Ethernet devices, unaware of TTEthernet, can communicate through the network. Such
traffic is called Best-Effort (BE) traffic and has the lowest priority. There are no
guarantees on the maximum delay of the BE frames and even their delivery is not
guaranteed.

2.3 Integration of traffic with mixed time-criticality
When traffic is prioritized using just a simple rule that if there are multiple frames
ready to be transmitted, the frame with the highest priority is transmitted first, frames
with lower priority can cause delays of frames with higher priority. This happens
when a higher-priority frame arrives while a lower-priority frame is in transmission.
Then, unless the transmission of the lower-priority frame can be interrupted, the higher-
priority frame has to wait until the transmission is finished.

This could cause problems in TTEthernet because random delays of TT frames could
be caused by RC frames. Therefore, a method of handling such situations, called the
traffic integration policy, is needed. The AS6802 standard specifies that a TTEthernet

5

2. TTEthernet .
device shall implement a non-preemptive traffic integration algorithm and may imple-
ment other preemptive and non-preemptive traffic integration algorithms.

There are three policies for the integration of TT and RC mentioned by [3] which we
characterize below. Of these, only the pre-emption and shuffling are mentioned in the
AS6802 standard. However, in our work we will assume the timely block policy is used
like in [4] which we base our delay analysis on.

2.3.1 Pre-emption
With the pre-emption integration policy, any transmission of an RC frame which would
delay a scheduled TT frame is interrupted, and the TT frame is transmitted exactly as
scheduled. The transmission of the RC frame must then be repeated because no RC
frames may be lost. The drawback of this policy is that the receiving devices must be
able to deal with truncated frames resulting from the possible interruptions. Beware
that the truncation cannot be reliably detected at the Ethernet level because, as the
AS6802 standard [2] explicitly reminds the reader, “It is possible that the truncation
of a frame results in a valid Ethernet frame whose CRC matches its contents.”

2.3.2 Timely block
A different approach which causes no extra delay of the TT traffic is the timely block
integration policy. In this case, an RC frame can only be transmitted if there is enough
time for the transmission of the entire frame before the next TT frame is scheduled. If
there is not enough time, the transmission of the RC frame is postponed until after the
TT frame is transmitted.

Compared to pre-emption, the timely block policy does not cause truncation of the
frames. This comes at the cost of being possibly less efficient because the link is kept
idle before the scheduled transmission of a TT frame even if the frame is not actually
transmitted (e.g. because it was not sent by the source device).

2.3.3 Shuffling
The above two policies caused no extra delay to the TT traffic, but they also caused
inefficient use of the resources. If we allow some delay of the TT traffic, we can wait for
the RC frame transmission to finish before we start the transmission of the TT frame.
This allows more efficient use of the link at the cost of introducing extra shuffle delay
to the TT traffic on each link.

This delay has to be taken into account when scheduling the transmission of a TT
frame over the individual links on its path, resulting in an increased end-to-end delay
of the frame.

2.4 Network topology
TTethernet allows for a wide range of topologies just like standard Ethernet. The
simplest topology would be a set of end systems connected to a single switch in a star
topology. Such configuration would be called a simple cluster.

To be able to tolerate a single arbitrary failure not only of any link but also of
the switch, another switch would be added to the network and connected to all the
end systems, essentially duplicating the interconnection part of the network. This is
depicted in fig. 2.1.

If only a failure of a link between the switches needs to be tolerated, the ring topology
(see fig. 2.2) can be used. In this configuration, the switch which the sending end system

6

. 2.4 Network topology

Figure 2.1. TTEthernet dual-channel topology (from [7], p. 10)

is connected to sends the frame in both directions through the ring to the target end
system. As the first frame arrives at the switch which the target end system is connected
to, the frame is sent to the end system. When the duplicate frame arrives, it is discarded
by the switch, so that only one copy of the frame arrives at the target end system.

Figure 2.2. TTEthernet ring topology (from [7], p. 10)

TTEthernet can also support various more complex multi-hop topologies, even with
varying degrees of redundancy across the network, see fig. 2.3.

Figure 2.3. Example of a more complex TTEthernet topology (from [7], p. 9)

7

2. TTEthernet .
2.5 Clock synchronization

Clock synchronization, i.e. establishing and maintaining a common global time across
the devices in the network is essential for deterministic time-triggered communication.
Synchronization is established during a startup phase which we will not discuss be-
cause it is not relevant for scheduling the traffic. Once initially synchronized, a clock
synchronization service prevents the clocks from drifting too far apart. This synchro-
nization service can be relevant for scheduling because some network capacity needs to
be reserved for it. It is also quite interesting so we will discuss it briefly.

2.5.1 Basic concepts
There are several concepts which are important for understanding the synchronization
mechanism:

Cluster. Not all devices in the network need to be synchronized to each other; the
network can be divided into logical groups called clusters. The devices in one cluster
are synchronized to each other, and multiple clusters with the same synchronization
domain may be synchronized to each other based on their synchronization priority.
Time-triggered communication is only possible among devices within the same syn-
chronization domain. Since we consider networks consisting of a single cluster only, we
refer the reader to the AS6802 standard [2] for more details and an explanation of the
above terms.

Protocol Control Frames. Ethernet frames of minimum size (64 B) with their Ether-
Type field set to 0x891d are used for establishing and maintaining synchronization.
These are called Protocol Control Frames (PCF), and they are sent out at the beginning
of each integration cycle. Among other fields, a PCF contains the pcf transparent clock
field where the delay accumulated along its path is stored.

Permanence point in time. To preserve ordering and relative timing of the frames,
a transparent clock mechanism, i.e. taking the delay of the PCFs into account, is used.
The maximum possible delay of a PCF can be calculated offline, and the fixed delays
(e.g. wire delay) are also known beforehand. The actual dynamic delay caused by
queuing of the frames as they pass through switches in the network is added to the
pcf transparent clock field of the PCF by each switch. The receiving device can then
calculate the actual frame delay and wait for (max delay − actual delay). At this time
instant, it is certain that no other PCF sent before the PCF in question will be received.
This instant is called the permanence point in time (permanence PIT) associated with
the frame.

2.5.2 Synchronization process
The synchronization itself is performed in two phases. In the first phase, a subset of
TTEthernet devices, called the synchronization masters, sends the PCFs to another set
of TTEthernet devices, called the compression masters. Each compression master then
uses the compression function (essentially a median of the received frames permanence
PITs) to determine the correct clock value and to correct its clock. PCFs are then sent
by the compression masters back to the synchronization masters and to other nodes in
the network, called the synchronization clients, to let them correct their clocks. This
means that the synchronization process will take approximately twice the maximum
transmission delay between a synchronization master/client and the compression master
plus the compression delay.

Please note that this description is extremely simplified. For a more accurate de-
scription explaining how the fault tolerance is achieved see the AS6802 standard.

8

. 2.5 Clock synchronization

2.5.3 Comparison to IEEE1588
One might wonder why a new synchronization protocol was introduced when there
already is the IEEE1588 standard, and what the advantages of the TTEthernet syn-
chronization mechanism are.

The most significant difference is that unlike in IEEE1588, there can be multiple
synchronization and compression masters instead of a single grandmaster clock which
all other clocks synchronize to. This eliminates a single point of failure in the network.
Even though in IEEE1588 there exists the Best Master Clock algorithm for automatic
selection of a new grandmaster clock e.g. in the case when the original grandmaster
clock is disconnected, this reconfiguration would take several seconds possibly resulting
in the clocks drifting too far apart.

In contrast, with multiple synchronization and compression masters and appropriate
configuration the TTEthernet network can tolerate the failure of any of the devices and
continue uninterrupted operation.

9

Chapter 3
Scheduling TTEthernet traffic

In this chapter, we are going to discuss what the goals of scheduling TTEthernet traffic
are, introduce existing approaches to the scheduling problem, and then we will present
our approach to the problem.

Since this is largely an exploratory work, this chapter attempts to capture the process
of exploration. Therefore, a precise problem statement is not presented in this chapter;
this is left for chapter 5.

We remind the reader that only the TT traffic is scheduled (traffic in the other classes
is event-triggered), and that the TT traffic is periodic with the application cycle being
the period. Therefore, we will consider scheduling the TT traffic within one application
cycle only.

3.1 Goals of scheduling
First of all, the schedule needs to meet all constraints imposed on the TT traffic.
These constraints range from basic constraints to more complex application-level con-
straints imposed by various dependencies among the messages. When considering the
constraints we follow [8].

3.1.1 Basic constraints
The basic constraints are needed to ensure the consistency of the schedule. They
depend on the network only, and they are independent of the actual application which
is running on the network. We will consider the following constraints:

Contention-Free. No two frames can be transmitted on the same link at the same
time.

Path-Dependent. A frame can be transmitted over a link in the network only after
it was transmitted over the previous link on its path. Actually, a sufficiently large gap is
needed between the transmissions to account for the maximum possible clock difference
between the devices. If we allowed the shuffling integration policy, the shuffling delay
would also need to be taken into account.

Bounded Switch Memory. Switch memory available for TT traffic is bounded, which
limits the amount of TT data stored (waiting for the outbound transmission) in the
switch. This constraint is simplified by [8] so that the waiting time of any frame in any
switch is limited by some constant membound.

Simultaneous Relay. According to [8], it can be required by the implementation
that when a TT frame is to be transmitted over multiple links from a switch, these
transmissions must be performed simultaneously.

3.1.2 Application-level constraints
Apart from the basic constraints listed above, there are constraints given by the actual
application. They can involve a single frame, or they can involve multiple frames and
introduce dependencies among them.

10

. 3.2 Existing approach

End-to-end Delay. When e.g. a control loop is realized by the network, it is essential
that the delays of the frames are limited for the control loop to function properly. This
is expressed by the end-to-end delay constraints, which limit the time between when
the frame is sent out by the first device on its path and received by the last device on
the path.

Task Interdependence. Because the frames (messages) are generated by tasks which
depend on each other, the transmissions of individual frames are also related. This
relation is expressed by the task interdependence constraints. For example, a command
message for an actuator can only be sent after a message from a sensor was received
by the control unit, and after some time needed for processing the message has passed.
At the same time, the command for the actuator must be sent no later than delaymax
after the message from the sensor.

3.1.3 Accomodating RC traffic
When the constraints imposed on TT traffic are met, we can start considering the other
types of traffic. What we aim for is minimizing the worst-case delays of RC traffic.

The worst-case delays depend on the amount and parameters of the RC traffic, but
also on the TT schedule, which can have a large effect. For example, if the time when the
data links are available for RC traffic is too fragmented, the timely block integration
policy can cause great inefficiency. To a lesser extent, this would hold for the pre-
emption integration policy too. If on the other hand, we had a very long uninterrupted
block of TT traffic, this would also increase the worst-case delays of the RC traffic.

3.2 Existing approach
Since the introduction of TTEthernet, several works on scheduling TTEthernet traffic
have appeared. In this section, we will give an overview of these works, which will then
lead and inspire us to develop our own approach.

3.2.1 Using an SMT solver
Probably the first publication on the topic of TTEthernet traffic scheduling is [8]. In
this work, only the TT traffic is considered, and the goal is to synthesize a schedule
which meets the constraints outlined in section 3.1.

Two versions of a scheduler for TT traffic are presented. In the first version, the
YICES SMT solver1 is used out-of-the-box for scheduling up to hundreds of frame
instances (a frame instance is the transmission of a frame on a link on its path) in a
time limit of 30 minutes.

To allow scheduling of larger problem instances, which the SMT solver could not
solve by itself, a second scheduler is presented. This scheduler uses the SMT solver as
a backend for scheduling smaller groups of frames, which the frames are divided into.
After a group of frames is scheduled, the positions of the corresponding frame instances
are fixed, and the next group is scheduled. If inconsistency (the current group cannot
be scheduled with respect to the already scheduled frames) is detected, backtracking is
used, and the size of the group, which is scheduled at once, is increased.

Using the incremental scheduler, the authors were able to schedule up to 1000 frames
(resulting in up to 20000 frame instances), which is close to a practical problem size. It
must, however, be noted that the scheduling problem was simplified for the benchmarks.
1 http://yices.csl.sri.com/

11

3. Scheduling TTEthernet traffic .
Time was divided into slots, each slot corresponding to the transmission of one frame
instance, and frames of uniform size and period were assumed.

3.2.2 Schedule porosity
In [9], which builds on and extends [8], traffic from other classes than just the TT
class is considered. To reserve capacity for rate-constrained traffic, the concept of
schedule porosity, i.e. inserting blank slots reserved for the RC traffic into the schedule,
is introduced. These blank slots can be introduced a priori, a posteriori, or by a
combination of these two methods.

In the a priori approach, the requirement of having blank slots is added to the con-
straints the schedule needs to meet. The synthesized schedule will then have these slots
reserved for RC traffic. This approach has the disadvantage of introducing additional
constraints whose number increases with the number of required blank slots, making
the scheduling problem more difficult.

The a posteriori approach attempts to avoid the increase in complexity by creating
the schedule first and then inserting the blank slots, essentially by cutting the schedule
into pieces and inserting the blank slots between the pieces. However, the end-to-end
delay constraints and the task interdependence constraints need to be strengthened
before creating the schedule, so that the resulting schedule still meets the original
constraints even after the blank slots are inserted.

Both approaches can also be combined in such a way that a small number of larger
slots is introduced by the a priori approach, and then a greater number of smaller slots
is inserted using the a posteriori approach.

The advantage of the schedule porosity approach is a relatively easy analysis of the
worst-case delays of RC traffic thanks to the reserved blocks.

3.2.3 Tabu search heuristic
As noted by [10], porosity scheduling has the disadvantage of the gaps being introduced
at the beginning of the scheduling process without considering the profile of RC traf-
fic. Therefore, there is potential for improvement if the RC traffic is considered when
creating the schedule.

Such approach is presented in [3] and expanded in [11]. Starting with some feasible
schedule, a tabu search algorithm is used to find a schedule such that the worst case
end-to-end delay of RC traffic is as low as possible. During the searching process, the
schedule is modified using several types of moves like shifting the transmission time of
some frame or adding a reserved space for RC traffic. The worst-case delays of RC
traffic are calculated using a method adapted from [9].

3.2.4 Combining network-level and task-level scheduling
We have already mentioned when discussing the task interdependence constraints that
message processing times play a role in scheduling TT traffic. Several works on this
topic have been published recently. In [12], an algorithm for scheduling CPU tasks (the
term task is used in a narrower sense here, as a synonym for a processing job), when
given a TTEthernet network schedule, is presented. In [13], a method for scheduling
both the frame transmissions and the related CPU tasks is introduced. The CPU tasks
are actually modeled in a very similar way to the network transmission tasks. A CPU
is modeled as another link in the network, a task which needs to run on this CPU is
modeled as a frame which needs to be transmitted over this link, and its transmission
time is equal to the required CPU processing time.

12

. 3.3 Our approach

Because this work focuses on scheduling the network part, we have not explored this
direction further. It is, however, a promising area for future work.

3.3 Our approach
Because we had no hands-on experience with TTEthernet, and the AS6802 standard
and the secondary sources ([8], [3] and others) gave us only a quite general idea about
TTEthernet, we wanted to have our method flexible. This would allow us to adapt the
method easily if new information led to a refinement or even a significant modification
of our model. Therefore, rather than devising an algorithm for scheduling TTEthernet
traffic from scratch, we wanted to make use of existing work on scheduling.

The TTEthernet traffic scheduling problem with all its constraints can be easily
formulated as a resource-constrained scheduling problem with generalized precedence
relations (RCPSP-GPR, also called RCPSP/max). It is, however, not so clear what
objective function should be minimized or maximized in the RCPSP-GPR formulation.
For example, minimizing the makespan of the application cycle does not make much
sense if there is a periodic frame with a period shorter than the application cycle.
It is also not obvious how the RC traffic and its worst-case delay calculation can be
integrated into the model.

We will attempt to address the issues mentioned above, transform our scheduling
problem to a formulation which can be solved by existing RCPSP solvers, and then we
will evaluate the out-of-the-box performance of these solvers. It can be expected that
only small instances will be solvable with the most general formulation of the problem.
Therefore, we will then attempt to simplify the problem and devise some heuristics
aiding the solvers and enabling them to find good schedules for problems of practical
size.

3.3.1 Conversion to RCPSP-GPR
Trivially, we can transform the scheduling of one application cycle into an RCPSP
instance with generalized precedence relations as follows. Dataflow links become re-
sources with unit capacity (i.e. disjunctive resources). Frame instances become tasks.
(Please note that from now on we will be using the term task to describe the elemen-
tary activities in the RCPSP.) Each task requires the resource corresponding to the
dataflow link the frame instance is transmitted over. The path-dependent constraints
are represented by precedences along the frames’ paths or by generalized precedences
if we want to ensure the gaps between the frame instances.

Using the generalized (i.e. with a minimum time lag specified) precedence relations,
we can model all other constraints like the end-to-end transmission deadlines (a negative
lag between the tasks corresponding to the last and the first instance of the frame on
its path). Similarly, we can model the task interdependence constraints among multiple
frames, and the switch memory bound constraints.

If the period of a frame is smaller than the application cycle, i.e. the same frame
appears multiple times in the application cycle, we need to add the frame instances for
each of the frame occurrences. Since each frame is strictly periodic, there would be
generalized precedence relations between the tasks corresponding to the frame forcing
them to be exactly frame period apart. The original constraints would need to be
duplicated for each set of tasks corresponding to the frame occurrence.

When we want to optimize the schedule for the RC traffic, we can add periodic gaps
to the schedule. Depending on the capabilities of the solver we are using, we might just

13

3. Scheduling TTEthernet traffic .
want to find a feasible schedule or we could attempt more complex optimization. We
could, for example, set the gaps to variable length and try to maximize the total length
of the gaps. This way, however, the gap sizes could be very irregular resulting in large
blocks of TT traffic without any space for RC traffic. Therefore, we might introduce
an extra constraint on the minimum length of each gap. Alternatively, if we want the
gaps to be as regular as possible, we could set all of them to have identical length and
maximize this length. The gaps can be modeled by tasks which occupy all the resources
and have time lags set among them which ensure their periodicity.

3.3.2 Alternative: Multi-mode RCPSP-GPR
Although straightforward to construct, the model described above has its drawbacks.
Tasks and the relations among them are duplicated for frames with their periods shorter
than the application cycle. In addition, there are the precedence relations ensuring
periodicity. This creates a complex model which can be difficult to grasp.

For an alternative approach, we draw inspiration from [14], which deals with schedul-
ing time-triggered traffic on the FlexRay bus. Like in TTEthernet there is an applica-
tion cycle which consists of multiple integration cycles, in FlexRay there is a hyperperiod
which consists of multiple communication cycles. FlexRay messages are strictly peri-
odic too, i.e. if a message appears multiple times in the hyperperiod, its offset in the
communication cycle must always be the same. It is specific to FlexRay that the com-
munication cycle is divided into a static segment, which contains only scheduled traffic,
and a dynamic segment, which contains event-triggered traffic. The goal of scheduling
as presented in [14] is to minimize the maximum length of the static segment across the
communication cycles. When visualizing the schedule, it is therefore convenient not to
display a single timeline for the whole hyperperiod. Instead, multiple aligned timelines
are displayed, one for each communication cycle, see fig. 3.1.

Figure 3.1. FlexRay timeline visualization (adapted from [14], p. 2)

We can interpret each timeline as a renewable resource with unit capacity, which
the tasks are using. Now, instead of one resource corresponding to the FlexRay bus
during the hyperperiod, we have multiple resources corresponding to the FlexRay bus
during communication cycles 0, 1, . . . , N − 1. Then, instead of having multiple tasks
corresponding to multiple occurrences of a message in the hyperperiod, we can have a
single task which occupies multiple resources. For example, if we had a hyperperiod

14

. 3.3 Our approach

of 6 communication cycles, the task corresponding to a message with a period of 2
communication cycles could occupy resources 0, 2 and 4. However, it could also occupy
resources 1, 3 and 5 if we decide to schedule it later in the hyperperiod. Therefore,
while reducing the number of tasks which need to be scheduled, additional complexity
is added because the tasks can be executed in alternative modes with varying resource
demands. This leads to the multi-mode RCPSP formulation. The optimization cri-
terion, minimizing the length of the static segment, then turns into minimizing the
makespan of the multi-mode RCPSP.

With TTEthernet, we can apply an analogous transformation for each dataflow link
and the frame instances belonging to it. Let Tappcycle be the length of the application
cycle and T the length of the integration cycle. For each dataflow link, we will have
Tappcycle

T resources. Like in the single-mode RCPSP formulation, the frame instances
become the tasks, but there won’t be any repetition of the frame instances. Instead, let
f be any TT frame in the network and Tf its period. Then every task τ (j)

f corresponding
to the transmission of frame f over some dataflow link dl(j) has Tappcycle

Tf
modes, and each

mode represents the offset (in integration cycles) of the task within the application cycle.
Let r(j)

0 , r
(j)
1 , . . . , r

(j)
Tappcycle

T
−1

be the resources corresponding to dl(j). Then the task τ (j)
f

occupies resources r(j)
m , r

(j)
m+

Tf
T

, . . . , r
(j)
m+k·

Tf
T

where k = Tappcycle
Tf

− 1, when executed in
mode m. Relating this to the previous example, in mode 0 the task occupies resources
0, 2 and 4, and in mode 1 it occupies resources 1, 3 and 5.

The path-dependent and other constraints are then expressed using the generalized
precedence relations between the tasks. However, now that we have introduced the
modes in which tasks can be executed, the path-dependent constraints have become
more complicated. Clearly, if we have two consecutive links on a data path, the frame
cannot be transmitted in cycles 1, 3 and 5 over the first link and in cycles 0, 2 and 4 on
the second link. Therefore, it must be ensured that link2 mode ≥ link1 mode (using an
informal notation to avoid verbosity or introducing an excessive number of symbols). To
avoid the need of transforming the generalized precedence relations, we have strength-
ened the constraint to link2 mode = link1 mode, i.e. we require that every frame is
transmitted end-to-end within one integration period. This can be expressed using the
generalized precedence relations by setting very large time lags between incompatible
modes. In retrospect, it seems that the transformation of the generalized precedence
relations might be actually quite straightforward, and that the restriction is therefore
unnecessary. We leave this for future work.

We can see that when using the lags to enforce the relations between the
tasks’ modes, the lags depend on the modes the tasks are executed in. When
link2 mode = link1 mode, we keep the original lags, otherwise, we replace them with
a very large lag between the transmission on link1 and link2 . These very large
lags will ensure that when combined with some upper bound on the makespan, the
unwanted changes of modes along a frame’s path will be infeasible. As a result, we
get a multi-mode resource-constrained project scheduling problem with generalized
precedence relations (MRCPSP-GPR).

Now we have to discuss the objective function we are going to minimize or maximize.
As mentioned earlier, we would like to make the TT schedule as favorable for the RC
traffic as possible in order to minimize its worst-case end-to-end delay. Unfortunately,
this criterion cannot be easily expressed using the available scheduling tools, and it is
quite costly to compute.

15

3. Scheduling TTEthernet traffic .
What MRCPSP-GPR solvers are well-suited to, is finding the minimum makespan

(Cmax) of the schedule. This is analogous to minimizing the length of the static segment
in a FlexRay schedule, and it leads to the creation of gaps reserved for RC traffic at the
end of each integration cycle. If the traffic is relatively balanced among the links, and
if no constraints force some tasks near the end of the integration cycle, this approach
works well. If this is not true, the minimum makespan will be determined by some
task near the end of the integration period, and we have no control over the rest of the
schedule.

Therefore, we can also attempt to insert multiple gaps into the integration cycle, and
maximize the sum of their lengths while requiring some minimum size of each gap. We
could let these gaps float in the integration cycle, or we can set them to fixed positions.
We could also set them to have equal length and maximize this common length. The
theoretical possibilities are vast, and they depend on the capabilities of the solvers
which we will use as a backend. We will introduce the solvers in chapter 4, and then
we will present a formal problem statement for the TTEthernet scheduling problem.

This returns us to the topic of solving the formulated problem. Solving MRCPSP-
GPR optimally is very hard in general (NP-hard), with state-of-the-art methods solving
some relatively small (∼ 100 tasks) instances only recently, see [15]. For practical use,
however, finding a “good enough” solution is usually sufficient without the need to
prove optimality. Furthermore, we hope that the solvers will be able to exploit some
structure which is present in the formulation so that larger problems can be solved.

Thus, we will evaluate the out-of-the-box performance of the solvers first, and if it
is not sufficient to solve problems of practical size, we will attempt to create heuristics
and make assumptions which would make the problem more tractable.

3.3.3 Mode assignment heuristic
We have observed that the difficulty of solving the scheduling problem increases greatly
when multiple modes of task execution are introduced. Therefore, we would like to
select and fix the modes in advance, to convert the problem back to a single-mode
RCPSP-GPR.

As the resource requirements of tasks vary by their modes, it is natural to think about
balancing the loads of the resources, i.e. minimizing the load of the busiest resource.
When transformed back to the TTEthernet scheduling problem, this means minimizing
the maximum amount of TT traffic which needs to be transmitted over any link in a
single integration cycle.

When performing the load balancing, we ignore all the precedence relations except the
large lags forbidding the combination of incompatible modes. For the balancing itself,
we use the CPLEX MIP solver from the IBM ILOG CPLEX Optimization Studio.

16

Chapter 4
MRCPSP-GPR Solvers

To solve the formulated scheduling problem, we need a good solver, and actually, there
are not many solvers designed for solving MRCPSP-GPR. Originally we found just one
MRCPSP-GPR solver by Schnell and Hartl [16] based on the SCIP constraint integer
programming framework [17]. Later we found out that the IBM CPLEX CP Opti-
mizer [18] offers powerful tools for scheduling, which make it easy to express scheduling
problems and offer a lot of flexibility.

In this chapter, we will introduce the solvers in more detail and outline the principles
they are based on.

4.1 Constraint programming
Both the solvers use constraint programming in their cores. Constraint programming is
a technique which expresses the relations between variables using various constraints.
Unlike in linear programming, the constraints need not be linear; they can be more
complex. On one hand, this makes the solution process much harder, on the other
hand, these general constraints can be much more expressive and better in capturing
the nature of the problem. It also enables a concise and elegant formulation of the
problem.

For example, if we have the cumulative constraint which, given the tasks’ start
times, processing times and renewable resource requirements, ensures that the resource
capacity is not exceeded at any moment, the single-mode RCPSP can be modeled as
follows (taken from [19]):

min max
j∈J

(Sj + pj)

s.t. Si + pi < Sj ∀i preceding j
cumulative(S, p, r•k, Rk) ∀k ∈ R
Sj ≥ 0 ∀j ∈ J

where J is the set of tasks, R is the set of resources, S is the vector of the tasks’ start
times, p the vector of their processing times, r the matrix of the resource requirements,
and R is the vector of resource capacities.

There are two essential concepts in constraint programming, constraint propagation
and conflict analysis, which we will explain in more detail.

4.1.1 Constraint propagation
To avoid exhaustively searching the space of solution candidates, as it would be nec-
essary if the constraints only provided a feasible/infeasible answer for a given point,
extra information is usually provided by the constraints. This information can then be
used to tighten variable bounds or strengthen the constraints. This is called constraint
propagation.

17

4. MRCPSP-GPR Solvers .
To illustrate this, let’s assume that when solving the RCPSP, we arrive at the follow-

ing situation. Originally, we knew that task1 had to be scheduled so that it started after
some smin and finished before some smax . Then, task0 was scheduled at s0 such that
there is not enough time between the finish time of task0 and smax for the execution
of task1. Therefore, the upper bound on the finish time of task1 is lowered to a new
s′max = s0. This is illustrated in fig. 4.1.

Figure 4.1. Example of constraint propagation

4.1.2 Conflict analysis
Constraint propagation by itself would be sufficient to solve the problem only in very
lucky cases. Normally, branching on variables and backtracking is needed to make
progress. However even for small problems, the space to be searched is very large and
impossible to be explored in whole.

The number of states which need to be searched can be greatly reduced if an infea-
sibility is detected early, and conflict analysis enables such early detection. Originally
used by SAT solvers to detect infeasible subproblems, this technique has been extended
to mixed integer programming by Achterberg [20].

When the bounds of a variable change, it is recorded what (which variables’ bounds)
led to the change. When an infeasibility is detected, an attempt is made to construct
a constraint which captures the reason for the infeasibility. This constraint then serves
to detect and discard similar situations later in the search.

4.2 SCIP-based MRCPSP-GPR solver
The MRCPSP-GPR solver presented in [16] is built on top of the SCIP constraint
integer programming framework [17]. SCIP is a framework which provides tools for
implementing branch-and-bound based algorithms, introduced by Achterberg [21]. It
also includes many algorithms controlling the searching process in the form of plugins.
These plugins enable SCIP to be used as a MIP solver out-of-the-box or to easily create
models using prepared constraints.

SCIP is open-source, and it is licensed under the ZIB Academic License [22] which
allows using the licensed work by members of non-commercial academic institutions. It
also allows modification and distribution under the same license.

18

. 4.2 SCIP-based MRCPSP-GPR solver

4.2.1 Constraint Integer Programming
The SCIP framework is built around the concept of constraint integer programming. It
integrates constraint programming (CP), SAT and mixed integer programming (MIP)
techniques in an attempt to make use of their strengths and to mitigate their weaknesses.
To allow this, a restriction of CP called the constraint integer programming (CIP) is
proposed in [23]. CIP restricts the objective function to a linear function and further it
requires that after fixing all integer variables, the remaining problem is a linear program.
A formal definition is given in [23].

This restriction is not overly restrictive as clearly every CP problem with a finite
domain can be expressed as CIP. The linearity restriction on the objective function
can be easily circumvented by introducing an auxiliary variable which is bound to the
actual objective function by a constraint which can be non-linear. Moreover, clearly,
every MIP problem is also a CIP problem.

A diagram showing the operation of SCIP integrating the CP and MIP techniques is
shown in fig. 4.2. The program flow is directed by so-called constraint handlers which
we will briefly introduce.

Figure 4.2. Diagram of SCIP operation (from [24], p.21)

4.2.2 SCIP constraint handlers
Actual classes of constraints are represented by SCIP plugins called constraint handlers.
Many constraint handlers, e.g. for the linear, knapsack or cumulative constraints, are
already included in the SCIP Optimization Suite, and these can be easily used for
modeling a problem. Custom constraint handlers which may be able to capture the
structure of the problem more efficiently can be implemented in C or C++.

A SCIP constraint handler is a set of callback methods (or an object implementing
these methods if the C++ API is used), which are called at various phases of the search
and guide the search process. There are four callback methods, the CONSCHECK,
CONSENFOLP, CONSENFOPS and CONSLOCK, which every constraint handler has
to implement.

CONSCHECK just checks the provided solution and returns a simple feasi-
ble/infeasible answer. CONSENFOLP or CONSENFOPS are called in the Enforce

19

4. MRCPSP-GPR Solvers .
constraints (see fig. 4.2) phase. A solution of some relaxation of the problem is
provided to the callback to be checked for feasibility. Unlike CONSCHECK, however,
not just a simple answer “infeasible” is returned in the case of infeasibility. Instead,
these callbacks can attempt to resolve the infeasibility e.g. by adding some constraint,
by reducing the domain of some variable or by branching. The last of these callbacks,
CONSLOCK, serves to indicate if and in which direction the values of the variables
can be changed without violating the constraint.

If a constraint handler provided these callbacks only, the constraint would be en-
forced but this would not be very efficient as no guidance for the search process would
be available. Therefore, other callback methods for domain propagation, conflict resolu-
tion, adding extra cutting planes and many other situations can be implemented. Some
information on how to create a custom constraint handler is given in the documentation
of SCIP [25] and in materials from the Combinatorial Optimization at Work workshop
[26] where a solved example is also available. A few examples are also included in the
SCIP Optimization Suite.

We must note that although many constraint handlers are available for study, learning
how to create a good SCIP constraint handler is far from being easy. There is quite a
gap between the fairly simple example constraint handlers with less than 1000 lines of
code and the constraint handlers for practical use which have up to more than 10000
lines of code (cons_linear having 17321 LoC, cons_cumulative 14417 LoC in SCIP
3.2.0).

What is important to be aware of is the use of macros. Constraint handler callbacks
are declared and defined using predefined macros, effectively hiding the methods’ sig-
natures including parameter names and this can be quite confusing. We found it more
readable when another function whose signature was not hidden was called from the
callback, and all the useful parameters were passed to it. Similarly, the SCIP_CALL
macro may look intimidating at the first sight, as if SCIP functions were called in some
special way. In fact, it is just a utility macro which checks the return value of the
function, and propagates the value by returning it early in case the value indicates an
error.

4.2.3 CumulativeMM
In section 4.1 we have already met the cumulative constraint which, for single-mode
tasks, ensures that at any given moment the demand for the specified resource does not
exceed the resource’s capacity. SCIP includes the cons_cumulative constraint handler
in its distribution, which corresponds to the cumulative constraint.

Like there was one cumulative constraint for each renewable resource in the RCPSP
formulation example, one cons_cumulative constraint handler instance is created for
every resource. The constraint handler operates on integer variables representing the
start times of individual tasks. The tasks’ durations, their resource demands and the
resource’s capacity are assumed constant, and they are passed to the constraint handler
on construction.

For multi-mode tasks, where the resource demands vary by mode, Schnell and Hartl
[27] introduced the cons_cumulativemm constraint handler. In addition to the integer
variables representing the tasks’ start times, this constraint handler operates on binary
variables representing the assignment of modes to the tasks. The tasks’ durations and
resource demands are then given for every task-mode pair.

Apart from the compulsory callbacks, this constraint handler implements a domain
propagation callback – CONSPROP, and a conflict analysis callback – CONSRE-
SPROP. These callbacks are based on the concept of task cores. A core of a task

20

. 4.2 SCIP-based MRCPSP-GPR solver

is a part of the task which is certain to run during a certain time period and occupy a
certain amount of the resource.

For example, let’s have a task whose duration in mode 1 is 10 and in this mode it
occupies 3 units of the resource. In mode 2 its duration is 8 and it occupies 5 units of
the resource. Then, even when we do not know which mode the task will be executed
in, we know that the task’s duration will be at least 8 and its resource requirement at
least 3 units. In addition, we know that the task can start at time 0 at the earliest, and
must be finished by time 14. Then we know that regardless of its mode, it needs to run
between time 6 and 8, and it will occupy at least 3 units of the resource, and we call
this the core of the task. This allows us to create some resource consumption profile for
each resource even when the tasks’ start times and modes are not yet known. Figure
4.3 illustrates how the task core is constructed in the above example. For simplicity,
we only show the varying start time of the task.

Figure 4.3. Example of constructing a core of a task

Then we can consider individual tasks whether they can, in their minimum duration
and resource consumption across their allowed modes, fit into the profile at their current
minimum and maximum start times. If not, we can move the bounds on the task’s
start time and thus reduce the variable’s domain, as we have shown in section 4.1.1. In
addition, it is recorded which other task was the reason for the change of the bounds.
If infeasibility is detected, this information can then be used by SCIP conflict analysis
mechanism to generate a constraint to avoid this configuration in the future.

The code of the constraint handler has been kindly provided to us by Dr. Alexander
Schnell. We studied the code with the aim of modifying it to improve its performance
either in general or at least in some special cases which would appear when solving
our scheduling problem. This turned out to be more difficult than originally expected
due to the nature of SCIP as described earlier. By fixing an omission in the code and
by treating the case of resources with unary capacity (disjunctive resources) separately
we have managed to improve the performance slightly. However, the improvement was
not proportionate to the effort. Therefore, we have abandoned this effort after finding
out that the IBM CP Optimizer was greatly superior for our problem and becoming
competitive was unlikely even if some further improvements could be made.

As a side remark, we would like to warn the reader against attempting any opti-
mizations without fully understanding what is happenning. This way, we attempted
to optimize the bounds propagation of the tasks’ start times. When propagating the
bounds as in fig. 4.1, the bound may be shifted by a large value if there are multiple
tasks like task0 already scheduled. However, in the code, this shift is always performed
by at most the task’s processing time, and done iteratively if needed. It seemed to
us as a good idea to perform the shift in one large step. At first, this led to a quite
significant speedup, but eventually, we found out that the results were incorrect. Only

21

4. MRCPSP-GPR Solvers .
then have we realized that the iterative propagation in the small steps was essential for
the conflict analysis. For each small step, we can say that it was caused by the original
value of the bound and by the position of the conflicting task. The aggregated shift of
the bound is, however, not caused by any single one of the conflicting tasks. When our
faulty optimization failed to take this into account, it led to the incorrect results.

4.2.4 GenPrecMM
The precedence relations and time lags are handled by the cons_genprecmm constraint
handler. Unlike the cons_cumulativemm constraint handler whose instance is created
for every renewable resource, only one instance of the cons_genprecmm constraint han-
dler is used for the whole model. The constraint handler operates on the task start
integer variables and the task-mode assignment binary variables, and takes the table of
lags between individual job-mode pairs as a parameter. Like the cons_cumulativemm
constraint handler, it implements the domain propagation and conflict analysis call-
backs.

After the experience with the cons_cumulativemm constraint handler, we have not
studied cons_genprecmm in much detail, and we have been using it essentially as a
black-box.

4.3 IBM CPLEX CP Optimizer
The IBM CPLEX CP Optimizer, a part of the IBM ILOG CPLEX Optimization Studio,
is a tool for modeling constraint programming problems, especially scheduling. We
actually first learned about its scheduling capability from a benchmark [15] where the
most recently closed (presumably the most difficult) instances have been closed using a
technique called failure-directed search [28], which is integrated into the CP Optimizer.

Because the CP Optimizer provides all the tools we need out-of-the-box, we have not
examined the principle of its operation, we have just used it as a black-box. Therefore,
we will describe its features from a user’s point of view.

Apart from an IDE and the OPL problem specification language, the CP Optimizer
offers APIs for .NET framework languages, C++ and Java. We have used the C++
API. For modeling with the C++ API, a so-called environment of type IloEnv is
needed. Inside this environment, the model of type IloModel and all the variables are
created.

4.3.1 Scheduling tools
The CP Optimizer provides convenient tools for scheduling, which also enable it to
perform scheduling-specific optimizations. Tasks are not represented just by their
start times and fixed durations. Instead, they are represented by interval variables,
IloIntervalVar in the C++ API, which the constraints operate on. The interval
variables allow expressing the constraints in a more straightforward way.

For example, the resource demand of a task is represented by an IloPulse expres-
sion which translates into a function that has a value of zero outside the interval and a
specified value inside the interval. Multiple IloPulse are then added up into an IloCu-
mulFunctionExpr expression. The resource capacity constraint is then represented by
a simple arithmetic expression involving the IloCumulFunctionExpr expression. For
example, let’s have n tasks represented by the interval variables stored in an array
(type IloIntervalVarArray) taskIntervals with their resource demands stored in
an array resourceDemands and durations in an array durations. Then the cumulative

22

. 4.3 IBM CPLEX CP Optimizer

constraint due to the capacity of the resource resourceCapacity can be expressed as
follows:

IloEnv env;
IloModel model(env);

IloIntArray resourceDemands(env, n);
IloIntArray durations(env, n);
IloInt resourceCapacity;

/* initialize the values */

IloIntervalVarArray taskIntervals(env, n);
IloCumulFunctionExpr resourceUsage(env);

for (int i = 0; i < n; i++) {
taskIntervals[i] = IloIntervalVar(env);
taskIntervals[i].setSizeMin(durations[i]);
taskIntervals[i].setSizeMax(durations[i]);

resourceUsage += IloPulse(taskIntervals[i], resourceDemands[i]);
}
model.add(resourceUsage <= resourceCapacity);

If we have a resource with unary capacity and tasks with unary demands, i.e. a
disjunctive resource, we can use the IloNoOverlap constraint instead. This constraint,
as its name suggests, prevents the intervals from overlapping.

IloIntervalVarArray resourceUsers(env);
/* fill the resourceUsers array with tasks from taskIntervals

with nonzero resource demand */
model.add(IloNoOverlap(env, resourceUsers));

Precedences between intervals can be expressed by various constraints like
IloStartBeforeStart or IloEndBeforeStart. These constraints also allow their
user to specify the minimum allowed time lag between the intervals. For example, if
we require a minimum lag of length 123 between the start of the first and second
intervals, we can ensure it as follows:

IloIntervalVar first(env);
IloIntervalVar second(env);
IloInt minLag = 123;

model.add(IloStartBeforeStart(env, first, second, minLag));

To allow easy modelling of different modes a task can be executed in, the interval
variables can be set to optional. This means that the task may or may not be present
in the schedule, and its presence depends on the constraints and the objective function.
An array of optional interval variables can then be bound to another interval variable
using the IloAlternative constraint. It ensures that this interval is present if and
only if exactly one of the optional intervals is present. Let’s assume that a task has to
be executed in exactly one of m modes. This can be modeled as follows:

23

4. MRCPSP-GPR Solvers .
IloIntervalVar taskInterval(env);
IloIntervalVarArray modeIntervals(env, m);

for (int i = 0; i < m; i++) {
modeIntervals[i] = IloIntervalVar(env);
modeIntervals[i].setOptional();

}
model.add(IloAlternative(env, taskInterval, modeIntervals);

When dealing with mode-dependent resource consumption and time lags between the
tasks, we can now work with the intervals corresponding to the modes without worrying
which one is present. For example, the IloPulse translates to zero when the interval it is
based on is not present. Similarly, a precedence constraint like IloStartBeforeStart
is automatically disabled if any of the intervals it operates on is not present.

Apart from the specialized constraints for scheduling introduced above, the CP Op-
timizer also offers ordinary arithmetic constraints which can be applied to various ex-
pressions. For example, the constraint on the minimum lag between the starts of the
intervals

model.add(IloStartBeforeStart(env, first, second, minLag));

could also be expressed as

model.add(IloStartOf(first) + minLag <= IloStartOf(second));

When possible, it is, however, very important to use the specialized scheduling con-
straints instead of these arithmetic constraints. We experienced this when implementing
the generalized precedence relations. Because we had overlooked the optional argument
to IloStartBeforeStart specifying the minimum time lag between the intervals, we
created arithmetic constraints between the start times of the intervals just like the one
above. When combining this with the optionality of intervals, it led the solver to run
for a long time (the actual length is unknown because we aborted the computation after
several minutes) without producing any output or progress status.

After asking about this issue on the CP Optimizer support forum1, we learned from
Philippe Laborie (IBM) that this is probably due to an extremely slow domain propa-
gation. When we followed his advice and switched to IloStartBeforeStart with the
lag specified as the extra argument, the problem has disappeared.

1 https://www.ibm.com/developerworks/community/forums/html/topic?id=973401be-d891-4215-
a260-a5706fb17ee3

24

Chapter 5
Problem summary

In the previous chapters, we have introduced TTEthernet, we have discussed possible
approaches to scheduling TTEthernet traffic, and we have presented some tools which
can be used for this purpose. We have, however, not yet specified what exact approach
we choose, and what our objective function will be. We are going to fill this gap now.

Because we find this formulation the most elegant and easy to work with, we for-
mulate the problem of scheduling TTEthernet traffic as a multi-mode RCPSP with
generalized precedence relations (MRCPSP-GPR) as described in section 3.3.2. That
is, we won’t use the direct RCPSP-GPR formulation where the tasks corresponding to
frame instances are scheduled within the application cycle of length Tappcycle, and the
resources correspond to the links in the network. Instead, we will schedule the tasks
within one integration cycle of length T only, and the resources will correspond to links
in the individual integration cycles, i.e. we will have Tappcycle

T resources for each link.
Each task then requires the resources corresponding to the integration cycles the

frame instance is transmitted in. When a frame’s period Tf is longer than the inte-
gration cycle, there are Tf

T possibilities for the set of the integration cycles the frame
instance is transmitted in. Therefore, each task corresponding to the frame f can be
executed in one of Tf

T modes, each mode requiring a different set of resources. To sim-
plify the formulation, we impose a restriction that all tasks corresponding to one frame
have to be executed in the same mode. In terms of the original problem, this means
that every TT frame has to be transmitted end-to-end within a single integration cycle.
The offset of the frame instance within the application cycle is then determined by the
offset of its corresponding task within the integration cycle, and by the mode the task
is executed in.

The path-dependent constraints are expressed by minimum time lags between the
transmissions on successive links in the data path. The restriction that all tasks corre-
sponding to one frame have to be executed in the same mode is expressed using a very
large lag between these tasks when executed in different modes. The other constraints
are expressed similarly using the time lags. Deadlines are expressed using negative time
lags.

To reserve space for RC traffic in the schedule, we are going to minimize the makespan
of the resulting MRCPSP-GPR. This will guarantee that at the end of each integration
cycle there will be a gap without any TT traffic, and we will be maximizing the length
of this gap.

Because, as we have discussed in section 3.3.2, this approach might not work very well
in some cases, we also consider an alternative objective function. Instead of minimizing
the makespan, we just limit the makespan by the length of the integration cycle, and we
introduce numGaps gaps of equal length placed at regular intervals in the integration
cycle. The gaps are modeled by tasks which require all the resources, i.e. no TT traffic
can flow in the network during the gaps. Then, we will be maximizing the length of
the gaps.

25

5. Problem summary .
The problem of minimizing the makespan can be formally expressed using the

cumulativemm and genprecmm constraints introduced in sections 4.2.3 and 4.2.4:

min max
j∈J

(Sj +
∑
m∈Mj

M jm · pj)

s.t. cumulativemm(S,M, p, r••k, Rk) ∀k ∈ R
genprecmm(S,M,L)∑
m∈Mj

M jm = 1 ∀j ∈ J

M jm ∈ {0, 1} ∀j ∈ J ,m ∈Mj

Sj ≥ 0 ∀j ∈ J

where J is the set of tasks,Mj is the set of modes of task j,R is the set of resources, S is
the vector of the tasks’ start times, M is a two-dimensional array of variables indicating
if task j is executed in mode m, p a two-dimensional array of their processing times
in individual modes, r a three-dimensional array of the resource requirements for each
task and mode, R the vector of resource capacities, and L is a four-dimensional array
of the lags between every two task-mode pairs.

To evaluate the resulting schedules of TT traffic, we are going to estimate the worst-
case delays of RC traffic in the network. Unfortunately, we were not able to obtain
benchmark data for the methods by [8], [9] and [3] outlined in section 3.2, and therefore
we cannot make a direct comparison of our solutions with these. At least, we can com-
pare the schedules obtained when using the two different objective functions mentioned
above.

To avoid having to deal with routing the frames, we will assume a tree topology of
the network so that there exists exactly one path between every two nodes. We believe
that multiple possibilities of routing a frame could be expressed using the modes of task
execution, but we leave this for future work.

It is also important to mention that we are using units of real time with arbitrary
granularity when scheduling. This is a different approach from e.g. [8] where the time is
divided into equal-sized slots, and it is assumed that each frame transmission occupies
one slot. Using real time allows us to formulate the problem with more precision.
However, as we will see later, it can also cause difficulties when solving the MRCPSP-
GPR.

26

Chapter 6
Worst-case delay of RC traffic

Although we are not using the worst-case delay of RC traffic directly as a criterion we
optimize for, we still want to be able to evaluate the quality of the obtained schedules
from this point of view.

Originally, this was supposed to be a relatively minor part of this work. In the
process, however, we found out that there are some issues with the state-of-the-art
method presented in the literature. Therefore, we have decided to dedicate a chapter
to this topic.

6.1 Calculating the worst-case delay
In [9], a method of estimating the worst-case delay based on the schedule porosity is
presented. Using this method, the calculation is fast but it can be overly pessimistic. In
[4], a new method is introduced which promises much tighter estimates of the worst-case
delay. However, the improved precision comes at the cost of a much more expensive
computation.

We are going to use the worst-case delay only to evaluate the quality of the solutions
found. This means that the calculation is to be performed only once for each problem
instance. Therefore, the performance is not such a concern as if the calculation was to
be performed repeatedly during the solution process. The precision, on the other hand,
is important for the evaluation of the solutions’ quality.

Therefore, we attempted to use the more precise method by [4] which we describe
below.

6.1.1 Sources of delay
Delays of RC frames can be caused by several factors. The following factors are con-
sidered:. technical latencies.queuing of RC frames. scheduled TT frames.TT and RC traffic integration

Technical latencies are introduced by the network nodes implementing various func-
tionality like traffic policing and routing. It is assumed that these latencies are known
in advance and that they are not frame-specific.

At the network switches the RC frames are received and routed for transmission on
their target outgoing links. If multiple RC frames targetting the same outgoing link
arrive within a short period of time, they need to be queued for transmission on this
link, and the queuing delay is introduced. It is assumed that all frames have the same
priority, and that the queue operates on the first in, first out (FIFO) basis.

Similarly, when the TT frames, which have higher priority, are being transmitted, the
RC frames need to wait until the transmission of TT frames has finished. Therefore,
the delay of the RC frames is increased by the time needed to transmit the TT frames.

27

6. Worst-case delay of RC traffic .
With integration policy other than shuffling, the delay due to the TT traffic is further

increased by the chosen integration policy. The timely-block policy is assumed to be
used. Let lRCmax be the maximum allowed size of a frame across all RC frames scheduled
for transmission over the link. This policy mandates that an RC frame cannot be
transmitted if there is not enough time to trasmit a frame of length lRCmax before the
next TT frame is scheduled. Therefore, there may be some idle intervals immediately
preceding the transmission of TT frames on the data link.

6.1.2 Busy period
To estimate the maximum delay a RC frame fx can be subjected to on a given dataflow
link dlj when arriving at a given time tjc, the concept of busy period is introduced. The
busy period bpjx is defined as the time period between the instant when this RC frame
fx is queued for transmission on dlj and the instant when all RC frames which had
arrived before this frame have been transmitted. The transmission of the frame itself
is also included in the busy period.

Before continuing further, we must note that we will deviate from the notation re-
garding the busy period used in [4] because we found it quite confusing. Instead, we will
use an informal programming-like notation where e.g. bpjx.length denotes the length of
the busy period. Similarly, fx.BAG denotes the bandwidth allocation gap associated
with the virtual link which the frame fx belongs to.

According to [4], the length of the busy period can be expressed as

bpjx.length = QTT
dlj

(
bpjx
)

+QRC
dlj

(
bpjx, fx

)
+QTL

dlj

(
bpjx
)

+QTB
dlj

(
bpjx
)

+ Cj
x (1)

where QTT
dlj

, QRC
dlj

, QTL
dlj

, and QTB
dlj

represent the times spent during the busy period
transmitting the TT frames, the RC frames which had arrived before fx, the sum of
the technical latencies, and the idle time due to the timely-block policy, respectively.
Cj
x denotes the transmission time of our frame fx whose busy period is being analyzed.
Detailed explanation of the individual terms can be found in [4], here we will discuss

the two most important terms only. QTT
dlj

(
bpjx
)

is equal to the sum of the transmission
times of TT frames on the link within the busy period

QTT
dlj

(
bpjx
)

=
∑

fi∈FT T

fi in bp
j
x

Cj
i

QRC
dlj

(
bpjx, fx

)
is the delay caused by the RC frames arriving before fx

QRC
dlj

(
bpjx, fx

)
=

∑
fi∈FRC

fi 6=fx

Cj
i ·
⌈
bpjx.length
fi.BAG

⌉

As the busy period appears in equation (1) on both sides, its calculation needs to be
performed iteratively. Two concepts, availability and demand of the link are introduced
for this purpose. The demand is the time needed to transmit all the RC frames including
fx

Hj
x

(
bpjx
)

= QRC
dlj

(
bpjx, fx

)
+ Cj

x

and the availability is the time in the busy period available for the transmission of RC
frames

Ajx
(
bpjx
)

= bpjx.length −
(
QTT

dlj

(
bpjx
)

+QTL
dlj

(
bpjx
)

+QTB
dlj

(
bpjx
))

28

. 6.1 Calculating the worst-case delay

When calculating the busy period starting at tjc, the algorithm starts with an initial
length of bpjx equal to the sum of the lengths of all the RC frames. In each iteration
the actual demand and availability are calculated and if the demand is not satisfied,
the busy period is prolonged by this difference. This is repeated until the availability
is greater than or equal to the demand. It is not discussed in [4] what the conditions
for finiteness of this algorithm or alternative stopping criteria are. We can speculate
that when deadlines for the RC frames are given, the busy period calculation is aborted
once the busy period exceeds the frame’s deadline.

It is a trivial observation that the length of the busy period depends on the time tjC
when the RC frame arrives. Informally, if the frame arrives at a moment when the TT
schedule is dense, the busy period will be longer than if it arrives when the TT schedule
is less packed. Furthermore, if the BAGs of all the RC frames are large enough so that
no RC frame is repeated during the busy period, it is easy to see that the end of the
busy period bpjx(tjc) is a non-decreasing function of the start tjc of the busy period. This
follows from the fact that in such case the demand Hj

x

(
bpjx
)

is independent of the busy
period and that postponing the start time of a busy period while keeping its end fixed
cannot increase the availability. In other words, a later start of the busy period cannot
cause an earlier end of the busy period.

Unfortunately, this property does not hold once we consider shorter BAGs and the
possibility of multiple instances of one RC frame within the busy period. For example,
let’s assume that we have two RC frames, f1 with BAG = 4 and Lmax = 1, and fx
with BAG = 16 and Lmax = 1 whose busy period we want to calculate. In addition,
the link is busy transmitting TT traffic in the interval [0, 10). Then, if we calculate the
busy period starting at 0 according to the above described algorithm, we obtain its end
at 15 due to the increase in demand while waiting for link availability. In contrast, if
we calculate the busy period starting at 10, it ends immediately at 12.

Furthermore, in such case the length of the busy period calculated according to this
algorithm is no longer an upper bound on the actual delay of an RC frame arriving
at tjC . Let’s continue with the example above and consider fx arriving at 10. There
can be up to 3 queued instances of f1 which arrived during the TT transmission block.
Therefore, fx will have to wait in the queue for 3 time units and its transmission will
be finished at 14, i.e. after the end of the calculated busy period.

We will see further that this leads to some serious complications which eventually
led us to discovering these less than desirable properties.

6.1.3 End-to-end delay
We could calculate the worst-case (across all frame arrival times) busy period for each
dataflow link on a frame’s path and sum these up to obtain an upper bound on the
worst-case delay of the RC traffic. This could however lead to an overly pessimistic
estimate as it is quite unlikely that after arriving at the most dense time and waiting
for a long time in a queue at one dataflow link, the same situation would repeat itself at
all other links. Therefore, the whole path of the frame is considered when calculating
the end-to-end delay.

Like the busy period, the end-to-end delay is calculated for a single RC frame and
a given point in time t0c when the frame is dispatched for sending on the first link in
its path. On each link, the frame’s busy period is calculated and its end tj is used as
a base for the start tj+1

c of the busy period on the next link. It would be possible to
set tj+1

c = tj , however in [4] the time needed for transmission of the frames common
to dlj and dlj+1 is subtracted from tj to obtain tj+1

c . This refinement should prevent

29

6. Worst-case delay of RC traffic .
duplicating the delays caused by traffic following the same path and thus improve the
accuracy of the estimate. It is probably assumed that the delays on the first common
link cause that on the following links the frames are spaced out enough not to interfere
again.

The busy period calculation is repeated in this way until the final node of the path
is reached. The resulting end-to-end delay estimate is the difference between the end
of the busy period on the last link in the path and the start of the busy period on the
first link in the path. If there are multiple paths within one virtual link, the maximum
end-to-and delay for this virtual link is obtained by calculating the maximum across all
the paths.

It can be proven that we can obtain an upper bound on the end-to-end delay this way
if we assume that the length of the busy period is an upper bound on the maximum
delay of the RC frame on the given link and that the end of the busy period is a non-
decreasing function of its start. However we have seen that this is not necessarily true
when the length of the busy period on some link is greater than the BAG of some RC
frame. The example above shows this as a single dataflow link can be a special case of
a virtual link.

6.1.4 Worst-case end-to-end delay
Given the algorithm for the calculation of the maximum delay of a frame sent out at tjC
the authors of [4] state that the frame’s worst-case end-to-end delay can be obtained by
calculating the end-to-end delay for each time instant tjC in the schedule and selecting
the greatest delay. Strictly speaking, this is impossible to do since there is a continuum
of time instants within the application cycle.

Of course, we are working with discrete time so “each time instant” can be interpreted
as each tick of the clock we are using, the elementary time unit. If we measure the
time with a precision of nanoseconds, we would then need to calculate the end-to-end
delay for every time instant from zero to application cycle length with a step of 1
nanosecond. As the application cycle is typically in the order of milliseconds to tens
of milliseconds, this would require calculating the end-to-end delay for millions to tens
of millions instances which is not feasible. If we used a more coarse unit we could
reduce the number of samples but the calculation would still need a vast amount of
computation. Actually, from the extremely long times needed to calculate the worst-
case delays given by [4] it seems that this is the method which is used.

It is natural to think that if a slightly more pessimistic estimate of the worst-case
delay was good enough, we could sample the time instants with a larger interval and
speed up the computation. To obtain the estimate of the worst-case delay we would then
add the length of the sampling interval to the calculated maximum. This is actually
what we did to enable the calculation of the worst-case delay for problems with hunreds
and thousands of frames in reasonable time.

What we observed was that selecting a shorter sampling interval sometimes led to
a significantly higher worst-case delay estimate. This was quite unexpected and it
made us realise that this approach was not feasible. The underlying problem lies in
the assumption that the frame’s calculated maximum arrival time to the last node is a
non-decreasing function of its starting time on the first link. If it was so, we could take
an interval [t1, t2) where δ = t2 − t1 is the length of the sampling interval. Then we
would have t′1, t′1 the corresponding maximum arrival times. For the maximum arrival
time t′ of a frame starting at any t ∈ [t1, t2) it would then hold

t′ − t ≤ t′2 − t1 = t′2 − t2 + t2 − t1 = (t′2 − t2) + δ

30

. 6.2 Repairing the worst-case delay calculation

The above assumption would hold if the end time of each busy period was a non-
decreasing function of its start time, as we have already stated in 6.1.3. However, as we
have shown above, this assumption only holds if the RC frames are not repeated within
any busy period. Therefore, if we allow this repetition, we cannot guarantee that using
this approach with sampling at longer intervals, we obtain a worst-case delay estimate
greater than or equal to the estimate obtained considering each time instant.

6.1.5 Problem with the busy period
Further examination led us to believe that not only our modification with the sampling
is at fault, rather there is a more fundamental problem with the method when allowing
BAGs shorter than some busy period. In fact, such network and schedule can be
constructed that even calculating the end-to-end delay for each time instant leads to
an underestimation of the actual worst-case delay.

It might be argued that such large delaying of multiple RC frames resulting in their
aggregation and sending in a burst not respecting the BAG is not allowed. However,
we have not found an assumption in [4] ruling out this possibility and neither have we
found information on how queing-related delays of RC frames are handled with respect
to the BAG.

6.2 Repairing the worst-case delay calculation
It appears that the principal issue with the method introduced in [4] is how the busy
period is calculated. At first sight it seems logical that if the busy period is longer than
the BAG of some RC frame, multiple frame instances may be present in the queue and
should therefore be included in the demand calculation. However, when looking more
closely we realize that the frames received during the busy period are queued after the
frame under analysis. Thus they should have no effect on the delay of this frame and,
by definition, on the busy period.

On the other hand, it is neglected that there might be not only the BURST which
arrived immediately before the analysed frame. There might also be other RC frames
waiting which had been delayed e.g. by a long block of TT traffic preceding the BURST.
Therefore, what we need to calculate is the maximum size which the backlog (the queue
of RC frames waiting to be sent out over the link) can grow to. The time it takes to
send out this amount of data starting at t0 then gives us an upper bound on the delay
of an RC frame arriving at t0.

6.2.1 Dataflow link capacity requirements
Before presenting the method for calculating the maximum backlog size, we need to
clarify the assumptions and requirements we need for the calculation to be meaningful.
Intuitively, for the RC traffic to be schedulable, sufficient bandwidth has to be allocated
for it. Otherwise the backlog could grow beyond all bounds.

To simplify the argument, let’s assume for a moment that the RC traffic is continuous
rather than discrete. The maximum bandwidth consumed by RC traffic on a given link
can be approximated by

B̃RC =
∑

fi∈FRC

fi.Lmax

fi.BAG

31

6. Worst-case delay of RC traffic .
and the amount of data which may need to pass through the link during one application
cycle is

Q̃RC = Tappcycle ·
∑

fi∈FRC

fi.Lmax

fi.BAG

When calculating the link capacity available for RC traffic we need to consider both
the time reserved for the TT traffic and the possibly idle time caused by the timely-block
integration policy. In the worst case, there might be an idle period of lRCmax during
each of the blank intervals. (By blank intervals we mean the intervals between blocks
of TT traffic on the link.) Therefore, the guaranteed capacity of the link available for
RC traffic is

capacityRC =
∑

blankl∈appcycle
max(0, blank l.length − lRCmax) (2)

Similarly, we define the guaranteed capacity within an interval [t0, t) by considering
only the blank intervals (or their parts) within [t0, t)

capacityRC[t0,t) =
∑

blank′
l
=blankl∩[t0,t)

blankl∩[t0,t) 6=∅

max(0, blank ′l.length − lRCmax)(3)

It would be natural to impose the constraint Q̃RC ≤ capacityRC to ensure the link
capacity is not exceeded. This could however lead to difficulty in proving the correctness
of the maximum backlog calculation. Therefore, we define the extra capacity of the link

capacityextra = capacityRC − Q̃RC

and impose a stronger constraint

capacityextra > 0

We will see that this constraint ensures that backlog of any size is eventually dissolved.

6.2.2 Maximum backlog size on a link
Let’s assume that the first RC frame arives at time t0. Then the backlog size BL at
time t ≥ t0 can be calculated as

BL(t0, t, Qin) = Qin(t0, t)−Qout(t0, t,BL) (4)

where Qin(t0, t) is the amount of incoming RC traffic in the [t0, t) interval and
Qout(t0, t,BL) is the amount of data sent out over the link. Qout depends on the size
of the backlog, BL, because data can be sent out only when the size of the backlog is
nonzero. Please note that we consider BL and Qout to be higher-order functions, and
their parameters Qin and BL are functions, not just values.

To determine the maximum backlog size on the link we need to calculate

BLmax = max
t0≥0

(
max
Qin

(
max
t≥t0

BL(t0, t, Qin)
))

(5)

where maxQin represents the maximum across all allowed incoming RC traffic patterns
with the first frame coming at t0 or later. Considering t0 and the incoming RC traffic
pattern separately may seem to be overly complicated but it will enable easier analysis.

32

. 6.2 Repairing the worst-case delay calculation

First, we can notice that since the time-triggered traffic is periodic with the period
of Tappcycle, the situation if the first RC frame arrives at t0 + Tappcycle is the same as if
it arrives at t0. Therefore, we can restrict ourselves to t0 ∈ [0, Tappcycle).

Now we will show that we can consider only such t that ∀t′ ∈ [t0, t) : BL(t0, t′, Qin) >
0 because it will not change the resulting BLmax . Let Qin be any incoming RC traffic
pattern with the first frame arriving at t0 and let’s assume that there is some time
instant t′ in the [t0, t) interval such that BL(t0, t′, Qin) = 0. Let

t̃ = min{t′ | t0 < t′ < t ∧ BL(t0, t′, Qin) = 0}

Then ∀t > t̃

BL(t0, t, Qin) = Qin(t0, t)−Qout(t0, t,BL)
= Qin(t0, t̃) +Qin(t̃, t)−Qout(t0, t̃,BL)−Qout(t̃, t,BL)
= BL(t0, t̃, Qin)︸ ︷︷ ︸

=0

+Qin(t̃, t)−Qout(t̃, t,BL)

= Qin(t̃, t)−Qout(t̃, t,BL)
= BL(t̃, t, Q′in)

≤ max
Qin

(
max
t≥t̃

BL(t̃, t, Qin)
)

whereQ′in is an incoming RC traffic pattern identical toQin after t̃ and with no incoming
RC traffic before this time instant. Therefore, when calculating BLmax we can limit the
range of t to [t0, t̃) where t̃ is the first time instant when the backlog size drops to zero.

Another question is whether the backlog size always drops to zero at some point in
time. Let’s assume that ∀t′ ∈ [t0, t) : BL(t0, t′, Qin) > 0. Then the link is utilized for at
least its guaranteed capacity so we can use the inequality

Qout(t0, t,BL) ≥ capacityRC[t0,t)

to remove the dependency of Qout on BL from (4)

BL(t0, t, Qin) ≤ Qin(t0, t)− capacityRC[t0,t)

We can further remove the dependency on Qin from the estimate

BL(t0, t, Qin) ≤ Qmax
in (t− t0)− capacityRC[t0,t) (6)

where Qmax
in (t− t0) = maxQin Qin(t0, t). Due to the BAG and Lmax limitations of each

virtual link, we know that

Qmax
in (t− t0) =

∑
fi∈FRC

(
1 +

⌊
t− t0
fi.BAG

⌋)
· fi.Lmax

We can estimate Qmax
in (t− t0) by removing the floor function to relate it to the link

capacity requirements discussed in 6.2.1

Qmax
in (t− t0) ≤

∑
fi∈FRC

(
1 + t− t0

fi.BAG

)
· fi.Lmax

33

6. Worst-case delay of RC traffic .
For t = t0 + kTappcycle where k ∈ N+ we then get

BL(t0, t0 + kTappcycle, Qin) ≤ Qmax
in (t− t0)− capacityRC[t0,t0+kTappcycle)

=
∑

fi∈FRC

(
1 + kTappcycle

fi.BAG

)
· fi.Lmax − capacityRC[t0,t0+kTappcycle)

=
∑

fi∈FRC

fi.Lmax + k · Tappcycle
∑

fi∈FRC

fi.Lmax

fi.BAG︸ ︷︷ ︸
=Q̃RC

−k · capacityRC

=
∑

fi∈FRC

fi.Lmax + k
(
Q̃RC − capacityRC

)
=

∑
fi∈FRC

fi.Lmax − k · capacityextra

and since we required that capacityextra > 0, it is guaranteed that the backlog size drops
to zero at most after k = d

∑
fi∈FRC fi.Lmax

capacityextra e application cycles.

6.2.3 Estimating the maximum backlog size
Combining (5) with (6) and with the restrictions on the ranges of t0 and t derived in
the previous section, we obtain an estimate BL′max of BLmax , which we will be able to
compute

BLmax ≤ BL′max = max
0≤t0<Tappcycle

max
t0≤t<t̃

(
Qmax

in (t− t0)− capacityRC[t0,t)

)
︸ ︷︷ ︸

Qmax(t0,t)

(7)

where t̃ is the first time instant after t0 when the backlog size drops to zero.
What remains to be determined is the sampling of t0 and t for the calculation of the

maximum backlog size. First we look at the sampling of t when t0 is fixed. Qmax
in (t− t0)

is a step-like increasing function when viewed as a function of t. It assumes the value∑
fi∈FRC fi.Lmax at t0 and then it may increase its value at time instants

t = t0 + k · gcd{fi.BAG | fi ∈ FRC} (8)

As the subtraction of another increasing function capacityRC[t0,t) can never lead to an
increase in the backlog size estimate, it is sufficient to sample t at these time instants
for k ∈ N0.

Now we consider the sampling of t0 with respect to the schedule of the TT traf-
fic on the link. Let there be m blocks of TT traffic within one application cycle
[0, Tappcycle). Let sj be the start times of the j-th TT block, endj its corresponding
end, and blankj the non-occupied interval immediately preceding the TT block for
j ∈ {1, 2, . . . ,m}. Furthermore, let’s assume that ∀j ∈ {1, 2, . . . ,m} the length of the
blank interval blankj .length ≥ lRCmax . Otherwise the interval would not be usable for
RC traffic due to the timely-block traffic integration policy and we could merge the
adjacent TT blocks into one larger TT block for the purpose of the calculation.

We will show that it is enough to sample t0 at time instants

t
(j)
0 = (sj − lRCmax) (9)

34

. 6.2 Repairing the worst-case delay calculation

If (s1 − lRCmax) < 0 we need to take the sample at (s1 − lRCmax + Tappcycle) instead.
First we show that for Qmax defined in (7) and ∀j,∀t0 < t

(j)
0 , t0 ∈ blankj

max
t0≤t<t̃

Qmax(t0, t) ≤ max
t
(j)
0 ≤t<t̃(j)

Qmax(t(j)0 , t) (10)

Let δ > 0 and t0 = t
(j)
0 − δ such that t0 ∈ blankj , and examine the difference

Qmax(t(j)0 , t)−Qmax(t0, t− δ) = Qmax(t(j)0 , t)−Qmax(t(j)0 − δ, t− δ)

= Qmax
in (t− t(j)0)− capacityRC

[t(j)
0 ,t)
−

−Qmax
in (t− δ − t(j)0 + δ) + capacityRC

[t(j)
0 −δ,t−δ)

= capacityRC
[t(j)

0 −δ,t−δ)
− capacityRC

[t(j)
0 ,t)

≥ 0

The last inequality is valid thanks to our choice of t(j)0 and δ. When the start of the
interval is shifted by δ to the left, the length of the first blank within this interval
increases from lRCmax to (lRCmax + δ), and therefore its contribution to the interval
capacity increases by δ. At the same time the capacity of any interval decreases at
most by δ when shifting its end by δ to the left. Together, the shift of the interval by
δ to the left cannot decrease its capacity, and the inequality holds ∀t and therefore for
the maxima as well.

Similarly we show that (10) holds ∀t0 > t
(j)
0 , t0 ≤ endj too. Using δ analogously, we

obtain

Qmax(t(j)0 , t)−Qmax(t0, t+ δ) = Qmax(t(j)0 , t)−Qmax(t(j)0 − δ, t− δ)
= capacityRC

[t(j)
0 +δ,t+δ)

− capacityRC
[t(j)

0 ,t)

≥ 0

and the argument for the validity of the inequality is only slightly different. When
shifting the start of the interval by δ to the right no capacity is lost because the first
blank was making no contribution to the capacity, and the same holds for the following
TT block. Of course, when shifting the end of any interval to the right, its capacity
cannot decrease. Together, the inequality holds ∀t and therefore for the maxima as
well.

To summarize, to find an upper bound BL′max on the maximum backlog size for a link
at any time, we need to sample Qmax(t0, t), defined in (7), at points (t(j)0 , t(k)) where
t
(j)
0 and t(k) are defined in (9) and (8).

6.2.4 Worst-case delay on a link
Once we know the upper bound BL′max on the maximum backlog size on the link, we
can easily estimate the maximum delay of any RC frame on this link when it arrives at
some t0. Any frame is added to the backlog at the moment of its arrival, so at t0 the
frame is already part of the backlog. As we are interested in the worst-case delay, we
assume that the frame is at the last position in the backlog, i.e. that the whole backlog
has to be sent out for the frame to be sent further. Therefore, the maximum delay of
any RC frame can be estimated by the time needed to send out BL′max when starting
at t0.

35

6. Worst-case delay of RC traffic .
The time needed to send out BL′max when starting at t0 can be calculated in a

very similar way to how the busy period in the original method is calculated. The
only difference is that the demand is fixed to BL′max instead of being updated in every
iteration. For faster calculation, some minimum step size for prolonging the busy period
can be set at the cost of worsening the estimate by at most the step size. Alternatively,
instead of simple incrementing the end time by the difference between the demand and
availability, we can look at the schedule and fast-forward to the next blank period where
the availability can increase.

Using a very similar argument to that presented in section 6.1.2 it can be shown that
the end time of sending out the maximum backlog is a non-decreasing function of t0
when the sending started.

6.2.5 Worst-case end-to-end delay
To calculate the worst-case end-to-end delay of a frame on a given link we can use a
very similar method to that described in sections 6.1.3 and 6.1.4. The only difference
we make is choosing the start times on the next link to be equal to the end times on
the previous link without any optimizations, i.e. tj+1

c = tj (using the notation of [4]
like in those sections).

Thanks to the nice property of tj being a non-decreasing function of tjc we can also
do the sampling of t0c proposed in 6.1.4. All the reasoning made in 6.1.3 and 6.1.4
can be applied to show that using this method we obtain a valid upper bound on the
worst-case end-to-end delay of an RC frame over a selected path in a virtual link. To
estimate the worst-case delay across all RC traffic in the network, we just need to find
the maximum of the upper bounds across all virtual links in the network and across all
paths in each virtual link.

36

Chapter 7
Experimental results

7.1 Test instance generator
Because we had no real-world data or standard benchmark data available for evaluating
the scheduling methods, we have created a test instance generator. The generator is
based on the description of test instances used by [8], and it can generate the application-
level constraints as described in section 3.1.2.

7.1.1 Parameters
Network topology. In [8] three network topologies are proposed for benchmarking, a
star, snowflake and a random tree. Generating a star and a snowflake is straightforward,
for the random tree we need to choose the method of generating it. We chose making use
of the Barabási-Albert model which is available through the barabasi_albert_graph
function of the NetworkX library. To avoid having long linear segments in the network,
which are uninteresting for the scheduling, we apply edge contraction to eliminate all
nodes of degree 2. For all the topologies, we generate networks with 20 leaf nodes, i.e.
20 end systems. The topologies which can be generated are depicted in fig. 7.1.

star snowflake random tree
Figure 7.1. Supported topologies.

Frames. To simulate different classes of end devices, partitioning the set of leaf
nodes into three groups, broadcast, multicast and unicast, which have different rules
on where they can send the frames, is proposed by [8] where more details can be found.
We have implemented this partitioning in the generator but we have not used it for
testing. Instead, we allow that any leaf node can send frames to an arbitrary subset of
other leaf nodes, which is also one of the configurations considered in [8].

To allow comparison with [8], we will use frames of uniform size (the minimum size of
an Ethernet frame) and uniform periods as one test case. For a more realistic evaluation
and for assessment of how additional complexity affects the difficulty of the problem,
we will use random frame sizes and periods as another test case. To keep the length of
the application cycle reasonable, we want the frame periods to be harmonic or as close
to harmonic as possible. We will therefore limit ourselves to periods of τ = 2n3mτbase
where m ∈ {0, 1}, n ∈ N and τbase is some base period.

37

7. Experimental results .
Application-level constraints. There is already a limit on the end-to-end delay of the

TT frames implied by the requirement that the transmission has to be done within one
integration cycle. We will not impose additional constraints on the end-to-end delays.

To simulate the task interdependence constraints, we partition the set of frames
into groups of size 5 (with the last group possibly having a smaller size), and among
the frames within each group we create a random precedence tree with minimum lags
specified. We let the lags to be in the order of 10 % of the integration cycle length.

7.1.2 Implementation
We have implemented the test instance generator in the Python 3 programming lan-
guage. We have selected Python because it allows rapid development, and mainly
because the NetworkX[29] library is available for Python. The NetworkX library allows
us to generate the graphs and to work with them easily, e.g. when constructing the
virtual links for the messages.

7.1.3 Test instance format
We use XML as the output format for the generator. We made this choice because
we wanted the format to be easily human-readable, which we later really appreciated
when debugging. Because our model has been under dynamic development, we have
not yet formalized the format using an XML schema. As the format is very verbose, it
is quite easy to understand it from the example instance, which is part of the attached
source codes. Therefore, we will only discuss it briefly. An illustrating example is given
in Appendix A.

The node and link elements define the network’s topology (one link element for each
direction of a duplex physical link), and the message elements define the parameters
of each frame and its sender and consumers. The task interdependence constraints
are represented by the app_group elements and the precedence elements inside them.
Because the routing of the frames can be considered a part of the schedule, it is defined
under the schedule element. As a virtual link is a tree, it is also represented by a tree
in the XML, and each link in the virtual node is stored as a child of the link preceding it.
Frames are assigned to virtual links using the msgsched elements. For easier processing
and better human-readability, each msgsched element contains schedentry elements,
one for each link in the virtual link, although these could be seen as redundant. Since
the routing of TT frames follows the same rules as the routing of RC frames, we use
the vlink elements for routing the TT frames as well.

Because we have limited ourselves to finding the schedule when routing of the frames
is given, we generate all the elements listed above using the instance generator. When
the schedule of the TT frames is known, an offset is added to each of the frames’
schedentry elements, specifying the offset of the transmission within the application
cycle. Such XML file with the schedule specified can then be used as an input for
calculating the worst-case delay.

7.2 Other implemented tools
Unlike when generating the test instances, performance can play an important role when
calculating the worst-case delays of RC traffic, as suggested by the computation times
reported by [4]. Therefore, we have chosen C++ for its implementation. It implements
the method proposed by [4] modified as described in section 6.2.

38

. 7.3 Solver performance

It addition to the XML-based network description including the offsets of the TT
frames, it takes the required precision as an input, and its result is a single number,
the estimate of the worst-case delay across all RC frames in the network.

Before running any of the solvers, we need to transform the XML-based network
description into a problem description which the solvers will understand.

As a part of the code of the SCIP-based solver provided to us by Dr. Schnell, we
received some utility code for handling input instances in the ProGen/max input format
(defined at [15]). This utility code reads the problem instance and stores it in a data
structure which makes it easy to formulate the model for the actual solver. We have
partially refactored this code and adapted it to allow formulating a model for the CP
Optimizer as well.

However, we still need to transform the network description into the MRCPSP-GPR
in the ProGen/max format. For this, we have created another utility program which
implements the transformation to MRCPSP-GPR as outlined in chapter 5, and prints
the resulting problem in the required format.

7.3 Solver performance
To explore the capabilities and limits of the solvers we are using, we have generated
several test instances with the number of TT frames ranging from 20 to 2000. We
have selected the snowflake topology, and for each sender node, a random subset of the
other nodes is selected as receivers. This leads to a total number of frame instances
(transmissions of a frame over individual links) ranging approximately from 120 to
12000.

With the exception of the instances with 20 frames, where this led to infeasibility,
we set the length of the integration cycle so that the minimum possible load of the
busiest link in the network in its busiest integration cycle is approximately 50 %. This
minimum load is also a lower bound on the total makespan of the schedule, and we
obtain it using CPLEX to solve a simple MIP model which we use for the load balancing
heuristic as described in section 3.3.3.

We performed the tests on a x86 64 GNU/Linux with the 3.13.0 kernel, Intel i5-3320M
CPU and 8 GB of DDR3 RAM, and we set a limit of 300 s on the computing time.
The SCIP-based solver runs in a single thread while the CP Optimizer uses one thread
for each CPU logical core, i.e. 4 threads on our machine, unless set otherwise. As we
wanted to evaluate the best readily achievable performance of the solvers, we have kept
this automatic setting.

We have generated a set of test instances in which all the frames have the same size,
and their period is equal to the length of the integration cycle. This simplifies the
problem because in such case, each task can be executed in a single mode only, and the
same sizes effectively allow dividing the timeline into slots of fixed length.

First, we compared the performance of the CP Optimizer and the SCIP-based solver
when minimizing the makespan of the schedule. The results are given in Table 7.1. To
clarify the symbols used, n denotes the number of frames, N the corresponding number
of frame instances, lcycle the length of the integration cycle, and LB is the lower bound
on the makespan. The asterisk indicates that the time limit was reached. The solution
time is given in seconds, the other values representing time are given in nanoseconds
(the time unit is unimportant for the comparison, though).

39

7. Experimental results .
CP Optimizer SCIP-based

n N lcycle LB makespan time makespan time
20 128 20000 5376 14728 0.03 14728 0.08
50 309 25000 14784 18677 78.99 19938 300*

100 619 50000 28224 30240 2.03 49951 300*
200 1217 100000 51072 53088 46.88 82239 300*
500 3064 250000 125664 132051 300* 250000 300*

1000 6119 500000 246624 255301 300* 387225 300*
2000 12325 1000000 487200 499474 300* N/A N/A

Table 7.1. Comparison of the solvers.

We can see that using the CP Optimizer, we are able to find either the optimal
solution for the minimum makespan or a solution which is close (< 10% gap) to the
lower bound within 300 seconds. The SCIP-based solver is able to find the optimal
solution for the smallest instance only, and the solutions it finds for the larger instances
within the time limit are significantly worse than those produced by the CP Optimizer.
Furthermore, the SCIP-based solver does not perform well when working with large
numbers. We have observed during the solution process, long runs of decreasing the
objective function by 1 at a time appear, and they can consume a large part of the
computation time. With the largest test instance, the SCIP-based solver failed to run
because of problems with integer overflow (this is, however a feature of the implemen-
tation of the genprecmm constraint handler rather than SCIP itself). For these reasons,
we have excluded the SCIP-based solver from further experiments.

To be fair, however, we have to mention that the performance of the SCIP-based
solver depends significantly on an initial upper bound given to the solver. It often
finds a solution just slightly better than the given upper bound and then it struggles
improving it, taking a much longer time to obtain some better solution than if a smaller
initial upper bound is provided to it. In this case, we gave the solver the length of the
integration cycle as the upper bound on the makespan, and we can see that for the
instance with 500 frames, it found a solution with exactly this makespan. Therefore,
it might be possible to improve its performance through some scheme attempting to
run the solver with varying value of the upper bound. Some degree of parallelism could
also be achieved this way without having to parallelize the solver itself. (This idea is
not original, it has been presented in [16] and to some extent implemented in the code
of the solver.)

Next, for the same test instances, we have tried to insert 5 equally spaced gaps into
the integration cycle and to maximize their length using the CP Optimizer. The results
are given in Table 7.2. Instead of the lower bound on the makespan, we now have an
upper bound on the length of one gap gapUB =

⌊
lcycle−LB

5

⌋
.

We can see that attempting to introduce the gaps into the schedule is much more
difficult for the CP Optimizer than just minimizing the schedule. Only the test instances
with up to 200 frames can be reasonably scheduled, then the performance deteriorates
rapidly. We will evaluate this method with respect to the worst-case RC delay, however,
we will exclude it from further performance evaluation.

To assess the performance of the solver more realistically, we have generated another
set of test instances with random frame sizes and periods. We let the frame payload

40

. 7.4 Worst-case RC delays

n N lcycle gapUB gap length time
20 128 20000 2924 856 1.17
50 309 25000 2043 968 139.15

100 619 50000 4355 3280 300*
200 1217 100000 9785 5968 300*
500 3064 250000 24867 1290 300*

1000 6119 500000 50675 440 300*
2000 12325 1000000 102560 8 300*

Table 7.2. Maximizing the length of multiple gaps.

be uniformly distributed in the [1, 256] interval and their periods be 1, 2, or 3 times
the length of the integration cycle, again, uniformly distributed. This introduces the
modes of task execution, which make the problem much more difficult to solve.

We evaluate the performance of the CP Optimizer on the multi-mode problem, and
compare it to applying the load-balancing heuristic for mode selection and then solving
a single-mode problem. The results are given in Table 7.3. For the heuristic, the time
needed for the load-balancing is also given.

multi-mode heuristic
n N lcycle LB makespan time makespan time

20 127 50000 11952 30710 0.42 30710 0.01+0.08
50 331 50000 32776 40907 300* 40413 0.03+300*

100 615 100000 52808 56921 300* 57774 0.03+300*
200 1288 200000 112944 131123 300* 127328 0.09+300*
500 3158 500000 278968 301300 300* 299902 0.21+300*

1000 6195 1000000 515424 549934 300* 548982 0.43+300*
2000 12460 2000000 1040270 N/A 300* 1077810 0.98+300*

Table 7.3. Influence of the heuristic.

We can see that the variable frame sizes and periods introduce extra complexity
compared to the uniform frame sizes and periods. Now, the CP Optimizer can find the
optimal solution and prove its optimality within the time limit for the smallest instance
only, even when the multi-mode complexity is eliminated by the heuristic. Still, the
solutions are reasonably close to the lower bounds on the makespan.

The load-balancing heuristic leads to a slight increase of the solution quality in most
cases. This does not, however, tell us the whole story. Naturally, it can happen that
using the heuristic can lead to finding a worse solution, as it happened in the case of
the test instance wih 100 frames. On the other hand, the heuristic enabled the solver
to find a very good solution for the instance with 2000 frames, which the solver was
unable to find by itself. We also observed that using the heuristic led the solver to find
decent solutions much earlier in the solution process.

7.4 Worst-case RC delays
In addition to evaluating the performance of the solvers, we wanted to assess the suit-
ability of the two objective functions – minimizing the makespan or introducing multiple
gaps into the schedule and maximizing their length – with respect to minimizing the
worst-case delays of RC traffic.

41

7. Experimental results .
For this assessment, we need a good solution with respect to each of the objective

functions, and therefore, we need to choose the instance size accordingly. We will use
test instances with 100 TT frames, all with their period equal to the integration cycle
length and their size equal to the minimum size of an Ethernet frame, and an integration
cycle of length 50000 ns. As we have seen, this produces approximately 50 % load of the
busiest resource. For modeling RC traffic, we use frames with payload (representing
Lmax) uniformly distributed in the [1, 256] interval and their BAG randomly selected
from {2, 4, 8} times the length of the integration cycle. We will use 40 such frames.
This should lead to an additional load of approximately 40 % for the link most loaded
with RC traffic. Together, we should get a network with a relatively high load, but
which is not overloaded (approximately 90 % load if the maximum loads concentrate
on the same link).

We generate 5 test instances on which we compare the worst-case delays of RC traffic
when optimizing the schedule for the minimum makespan or for maximum gap lengths
(with 5 gaps in the integration cycle). The results are given in Table 7.4.

worst-case delay of RC traffic (ns)
test instance makespan minimized gap length maximized

A 130633 141600
B 133880 141223
C 150230 165888
D 125128 145258
E 155720 155536

Table 7.4. Worst-case delays of RC traffic.

We can see that for our test instances with high load of the network and a relatively
large volume of RC traffic, maximizing the length of the gaps does not produce better
results than minimizing the makespan of the schedule. Combined with the fact that
maximizing the length of the gaps is computationally much more demanding, we suggest
abandoning this objective function and focusing on minimizing the makespan. An
exception to this might be a situation if we had only a small volume of RC traffic and
we required very small delays. In such case, a long block of TT traffic could itself cause
an excessive delay, and therefore the gaps would be needed.

42

Chapter 8
Conclusion

In this work, we have explored TTEthernet and the existing approaches to schedul-
ing TTEthernet traffic. Then, we have presented a transformation of the problem
of scheduling TTEthernet traffic into the multi-mode RCPSP with generalized prece-
dence relations (MRCPSP-GPR), and we have proposed two objective functions which
could lead to creating schedules favorable for rate-constrained (RC) traffic. Because
the MRCPSP-GPR is very difficult to solve, we have presented a simple load-balancing
heuristic for selecting and fixing the execution modes of individual tasks, and thereby
simplifying the problem to single-mode RCPSP-GPR.

To enable assessing the practicality of our approach, we have implemented a generator
of test instances because no real-world data were available to us. We have used the
generated test instances to evaluate the two objective functions, the heuristic, and the
performance of available MRCPSP-GPR solvers. We have measured the performance
of two solvers, a solver based on the SCIP framework and the IBM CP Optimizer, of
which the CP Optimizer appears to perform better by a large margin. When combined
with the load-balancing heuristic, the CP Optimizer is able to schedule up to thousands
of frames, which is close to the size of practical problems.

Apart from scheduling the TT traffic, which was the main focus of this work, we have
discovered a flaw in a published state-of-the-art method for estimating the worst-case
delay of RC traffic in a TTEthernet network. We have been able to repair the method
and to present a semi-formal proof of its correctness. We have then implemented the
repaired method and used it to evaluate the suitability of the two proposed objective
functions with respect to minimizing the worst-case delays of RC traffic.

Future work could focus on removing some additional constraints we have imposed
on our schedule, especially the requirement that every TT frame has to be transmitted
end-to-end within one integration cycle. Further, routing the frames in more complex
network topologies could be considered. If more information on TTEthernet becomes
available, it is also important to review all the constraints and the test instance gener-
ator in order to align them with the requirements of real-world applications.

43

References
[1] B. Galloway and G. P. Hancke. Introduction to Industrial Control Networks.

IEEE Communications Surveys Tutorials, 15(2):860–880, Second Quarter 2013.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of Communi-

cation Schedules for TTEthernet-based Mixed-criticality Systems. In Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS ’12, pages 473–482, New York, NY,
USA, 2012. ACM.

[4] D. Tamas-Selicean, P. Pop, and W. Steiner. Timing Analysis of Rate Constrained
Traffic for the TTEthernet Communication Protocol. In 2015 IEEE 18th Inter-
national Symposium on Real-Time Distributed Computing, pages 119–126, April
2015.

[5] ARINC 664P7: Aircraft Data Network, Part 7, Avionics Full-Duplex Switched
Ethernet Network. ARINC (Aeronautical Radio, Inc.), 2009.

[6] AFDX / ARINC 664 Tutorial (1500-049). Condor Engineering, Inc., 2005.
[7] Time-Triggered Ethernet – A Powerful Network Solution for Multiple Purpose.

TTTech Computertechnik AG.
[8] W. Steiner. An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered

Multi-hop Networks. In Real-Time Systems Symposium (RTSS), 2010 IEEE 31st,
pages 375–384, Nov 2010.

[9] W. Steiner. Synthesis of static communication schedules for mixed-criticality
systems. In Object/Component/Service-Oriented Real-Time Distributed Comput-
ing Workshops (ISORCW), 2011 14th IEEE International Symposium on, pages
11–18, March 2011.

[10] W. Steiner, M. Gutiérrez, Z. Matyas, F. Pozo, and G. Rodriguez-Navas. Current
techniques, trends and new horizons in avionics networks configuration. In 2015
IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pages 1–26, Sept
2015.

[11] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Design optimization of
TTEthernet-based distributed real-time systems. Real-Time Systems, 51(1):1–35,
2015.

[12] S. S. Craciunas, R. S. Oliver, and V. Ecker. Optimal static scheduling of real-
time tasks on distributed time-triggered networked systems. In Proceedings of
the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pages 1–8,
Sept 2014.

[13] Silviu S. Craciunas and Ramon Serna Oliver. Combined task- and network-level
scheduling for distributed time-triggered systems. Real-Time Systems, 52(2):161–
200, 2016.

44

. .
[14] D. Waraus Z. Hanzálek, D. Benes. Time constrained FlexRay static segment

scheduling. In Proceedings of the 10th International Workshop on Real-Time
Networks, pages 61–67, Porto, Portugal, 2011.

[15] Multi mode project duration problem MRCPSP/max.
http: / / www . wiwi . tu-clausthal . de / en / abteilungen / produktion / forschung /
schwerpunkte/project-generator/mrcpspmax/.

[16] Alexander Schnell and Richard F. Hartl. On the efficient modeling and solution of
the multi-mode resource-constrained project scheduling problem with generalized
precedence relations. OR Spectrum, 38(2):283–303, 2016.

[17] Tobias Achterberg. SCIP: Solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, 2009.
http://mpc.zib.de/index.php/MPC/article/view/4.

[18] IBM CPLEX CP Optimizer, 2015.
http://www-01.ibm.com/software/commerce/optimization/cplex-cp-optimizer/.

[19] Timo Berthold, Stefan Heinz, Marco E. Lübbecke, Rolf H. Möhring, and Jens
Schulz. Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems: 7th International Conference, CPAIOR
2010, Bologna, Italy, June 14-18, 2010. Proceedings, chapter A Constraint Integer
Programming Approach for Resource-Constrained Project Scheduling, pages 313–
317. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[20] Tobias Achterberg. Conflict Analysis in Mixed Integer Programming. Discret.
Optim., 4(1):4–20, March 2007.

[21] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universität Berlin, 2007.
http://opus.kobv.de/tuberlin/volltexte/2007/1611/.

[22] ZIB ACADEMIC LICENSE.
http://www.zib.de/berthold/ZIBopt/academic.txt.

[23] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems: 5th International Conference, CPAIOR 2008 Paris, France, May
20-23, 2008 Proceedings, chapter Constraint Integer Programming: A New Ap-
proach to Integrate CP and MIP, pages 6–20. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[24] G. Hendel, A. Gleixner, and F. Serrano. Implementing Constraint Handlers in
SCIP, 2015.
http://co-at-work.zib.de/files/20150930-Hendel-slides.pdf.

[25] SCIP User’s Manual.
http://scip.zib.de/doc/html/.

[26] CO@Work 2015 – Combinatorial Optimization at Work.
http://co-at-work.zib.de/.

[27] Alexander Schnell and Richard F. Hartl. On the generalization of constraint
programming and boolean satisfiability solving techniques to schedule a resource-
constrained project consisting of multi-mode jobs. Working paper (under review),
2015.

[28] Petr Vilím, Philippe Laborie, and Paul Shaw. Integration of AI and OR Tech-
niques in Constraint Programming: 12th International Conference, CPAIOR 2015,

45

http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/mrcpspmax/
http://www.wiwi.tu-clausthal.de/en/abteilungen/produktion/forschung/schwerpunkte/project-generator/mrcpspmax/
http://mpc.zib.de/index.php/MPC/article/view/4
http://www-01.ibm.com/software/commerce/optimization/cplex-cp-optimizer/
http://opus.kobv.de/tuberlin/volltexte/2007/1611/
http://www.zib.de/berthold/ZIBopt/academic.txt
http://co-at-work.zib.de/files/20150930-Hendel-slides.pdf
http://scip.zib.de/doc/html/
http://co-at-work.zib.de/

References .
Barcelona, Spain, May 18-22, 2015, Proceedings, chapter Failure-Directed Search
for Constraint-Based Scheduling, pages 437–453. Springer International Publish-
ing, Cham, 2015.

[29] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA USA,
August 2008.

46

Appendix A
Example XML-based instance description

To illustrate the structure of the XML-based instance description we have used, an
example is shown below. Please note that it is an extremely reduced example, and
therefore, it is not a valid network description. A more complete example can be found
in SourceCodes/RCdelay/test.xml on the attached CD.

<network>
<settings>

<baseperiod>1000000</baseperiod>
</settings>
<node>

<name>Node1</name>
<type>end</type>
<techdelay>0.0000025</techdelay>

</node>
<link>

<startNode>Node1</startNode>
<endNode>Switch1</endNode>
<bandwidth>1e9</bandwidth>
<techdelay>0.000005</techdelay>

</link>
<message>

<name>TTMsg1</name>
<type>TT</type>
<payload>12</payload>
<period>3</period>
<sender>Node1</sender>
<consumers>

<consumer>Node2</consumer>
<consumer>Node3</consumer>

</consumers>
</message>
<app_group>

<precedence>
<pred>TTMsg1</pred>
<succ>TTMsg2</succ>
<minLag>861</minLag>

</precedence>
</app_group>
<schedule>

<vlink>
<name>VLink1</name>
<link>

<name>Node1Switch1</name>
<link>

<name>Switch1Node2</name>

47

A Example XML-based instance description .
</link>
<link>

<name>Switch1Node3</name>
</link>

</link>
</vlink>
<msgsched>

<msgname>TTMsg1</msgname>
<msgvlink>VLink1</msgvlink>
<schedentry>

<linkname>Node1Switch1</linkname>
<offset>0.0</offset>

</schedentry>
</msgsched>

</schedule>
</network>

48

Appendix B
Content of the attached CD

.Heller_thesis.pdf – a digital version of this work.SourceCodes/.MRCPSPNew_src/ – source code of the MRCPSP-GPR solvers.RCdelay/ – source code for the transformation of the XML-based network descrip-
tion into MRCPSP-GPR and for RC traffic delay calculation.TTEInstanceGenerator/ – source code for generating the test instances and for
interpreting the MRCPSP-GPR solvers’ output

Each of the source code directories contains a README file providing basic information
about the code.

49

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/
	Introduction
	Motivation
	Background
	Ethernet in industrial applications

	TTEthernet
	Overview
	Traffic classes
	Time-Triggered traffic
	Rate-Constrained traffic
	Best-Effort traffic

	Integration of traffic with mixed time-criticality
	Pre-emption
	Timely block
	Shuffling

	Network topology
	Clock synchronization
	Basic concepts
	Synchronization process
	Comparison to IEEE1588

	Scheduling TTEthernet traffic
	Goals of scheduling
	Basic constraints
	Application-level constraints
	Accomodating RC traffic

	Existing approach
	Using an SMT solver
	Schedule porosity
	Tabu search heuristic
	Combining network-level and task-level scheduling

	Our approach
	Conversion to RCPSP-GPR
	Alternative: Multi-mode RCPSP-GPR
	Mode assignment heuristic

	MRCPSP-GPR Solvers
	Constraint programming
	Constraint propagation
	Conflict analysis

	SCIP-based MRCPSP-GPR solver
	Constraint Integer Programming
	SCIP constraint handlers
	CumulativeMM
	GenPrecMM

	IBM CPLEX CP Optimizer
	Scheduling tools

	Problem summary
	Worst-case delay of RC traffic
	Calculating the worst-case delay
	Sources of delay
	Busy period
	End-to-end delay
	Worst-case end-to-end delay
	Problem with the busy period

	Repairing the worst-case delay calculation
	Dataflow link capacity requirements
	Maximum backlog size on a link
	Estimating the maximum backlog size
	Worst-case delay on a link
	Worst-case end-to-end delay

	Experimental results
	Test instance generator
	Parameters
	Implementation
	Test instance format

	Other implemented tools
	Solver performance
	Worst-case RC delays

	Conclusion
	References
	Example XML-based instance description
	Content of the attached CD

