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Abstract
A novel solution to the problem of localizing RF transmitters is presented in this thesis. Target
application is the ability to find an object, which has been tagged with a transmitter, in a desired
area, where the GPS may be unavailable or when better precision is required. It may find use for
example in finding soldiers in the field, cars in urban areas, tools in construction sites, animals,
etc. Contemporary methods for localizing RF transmitters are usually based on creating a map of
RSSI values in an area beforehand and then comparing it to the measurements when localizing
to find the best matching position, or less frequently on trilateration from some form of distance
measurements. They mostly rely on stationary receivers placed in the area and generally require
time consuming setup and preparation. The presented solution utilizes a formation of MAVs (Micro
Aerial Vehicles), carrying RF receivers, to scout the area for transmitters and report their positions.
It is based on the Kalman Filter and relies on measuring RSSI with the MAVs at different positions
in the area. The precision and robustness of the algorithm is on the same level with state-of-the-art
localization algorithms, however, the new proposed algorithm does not require any preinstalled
infrastructure, which makes it much easier and cheaper to implement in a variety of locations.

Keywords: micro aerial vehicle, radio frequency identification, Kalman Filter, Bluetooth
Low Energy, localization

Abstrakt
V této práci je představeno nové řešeńı problému lokalizace RF vyśılač̊u. Ćılovou aplikaćı je
hledáńı objektu, který byl označen vyśılačem, v dané oblasti, kde je GPS nedostupná nebo když
je vyžadována vyšš́ı přesnost lokalizace. Využit́ı může nalézt např́ıklad pro vyhledáváńı voják̊u
na bojǐsti, aut v zastavěných oblastech, nástroj̊u na stavenǐst́ıch, zv́ı̌rat apod. Současné metody
vyhledáváńı RF vyśılaču jsou obvykle založeny na vytvořeńı mapy hodnot RSSI v této oblasti
předem, a následném porovnáváńı RSSI měřeńı při lokalizaci s touto mapou pro nalezeńı polohy
s nejlépe odpov́ıdaj́ıćı hodnotou. Daľśı metody jsou založeny např́ıklad na trilateraci polohy ze
vzdálenost́ı mezi vyśılači a přij́ımači, které mohou být měřeny r̊uznými zp̊usoby. Všechny tyto
metody ale většinou využ́ıvaj́ı stacionárńı přij́ımače rozmı́stěné v oblasti a obecně vyžaduj́ı časově
náročné př́ıpravy. Řešeńı, prezentované v této práci, využ́ıvá k vyhledáváńı vyśılač̊u v oblasti
formaci bezpilotńıch helikoptér, nesoućıch RF přij́ımače. Je založeno na měřeńı RSSI v r̊uzných
mı́stech v oblasti pomoćı těchto helikoptér a na Kalmanově Filtru. Simulace a experimenty, které
jsou popsané v této práci, ukazuj́ı, že navrhovaný algoritmus je použitelný pro ćılovou aplikaci a že
co do přesnosti a robustnosti může konkurovat ostatńım současným lokalizačńım algoritmům bez
toho, aby vyžadoval předpřipravenou infrastrukturu.

Kĺıčová slova: bezpilotńı helikoptéra, radio frequency identification, Kalman̊uv Filtr, Blue-
tooth Low Energy, lokalizace
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1 INTRODUCTION

1 Introduction

With the mobile robotics being on the rise in many different fields, new possibilities
and new uses arise. Mobile robots and especially micro aerial vehicles (MAVs) are used
more frequently in industry, military, arts or simply as a hobby. Applications range from
inspecting the power grid cables, remotely fighting an enemy, taking dynamic photos and
filming movies, to flying just for the joy of it. As the tablets and cell phones industry
grows bigger, demand for cheap and power-economic yet still capable processors, graphical
processing units, transmitters and other devices grows as well. This brings new technologies
to satisfy these demands to the market. These devices are not suitable only for consumer
electronics, but can be utilised in mobile robotics as well.

Applying these new technologies, new applications can easily be derived, such as using
a formation of mobile robots to scout an area for transmitters and report their positions,
which is tackled in this thesis. Thanks to their versatility, high mobility, ability to navigate
easily even in difficult terrain and their ability to change altitude, MAVs seem ideal for this
task. This approach could not be realised without new advances in technology since the
required computer vision, control and filtering algorithms are too computationally intensive
for classic microcontrollers and older processors are too heavy and power inefficient to run
on an MAV. The specific target of this application is the ability to find an item, which has
been tagged with an unobtrusive and long lasting beacon (transmitter), in a relatively large
area. The localization is done with a formation of MAVs carrying receivers, and without
the need for any infrastructure to be present. This work builds on latest achievements in
the field of path following in a formation [1], [2], which are used for finding a stable and
reliable way to wirelessly locate a beacon in direct line of sight utilizing radio transmission.

There are multiple possible approaches to the problem of finding a beacon position
relatively to known positions of one or more receivers. Standard approaches use information
about distance or angle from the receivers to the beacon and analytically compute the
relative position through some of the several possible combinations of this geometrical
problem [3], [4]. These are mostly simplified to a two dimensional problem. There are
different technologies to measure the angle or distance with variable levels of complexity,
reliability, power requirements and price, for example ultrasonic based methods [5] or radio
frequency methods based on signal strength or time of flight [3], [6]. For this work, the
new Bluetooth 4.0 (BLE) specification has been chosen as the radio transmitter/receiver
technology. It is designed to be low-power, cheap, simple to interface and widely available.
The downside is that there is no direct way to measure distance and no simple way to
measure angle between two devices. Even though the distance can be calculated from
RSSI (Received Signal Strength Indicator) values, the Bluetooth specification was not
designed for this kind of operation and the results are not very accurate without additional
processing (see sections 5.1 and 5.2 for plots of RSSI measurements over distance). The
standard geometrical approaches are therefore unstable and often have no solution. That
is why a more complex approach had to be embraced.
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1 INTRODUCTION

To make up for the low stability and accuracy of the input, a variant of the Kalman Fil-
ter has been used, specifically a generalization of the Kalman Filter for non-linear systems
called Extended Kalman Filter (EKF). Similarly as the Kalman Filter, it offers iterative
state estimation and input filtering, it works with two stages of prediction and update
and its output is a state estimation and a state covariance matrix. It uses a first order
linearisation of the non-linear system model. A more in-depth description is provided for
example in [7] or [8].

This thesis is built upon previous research conducted at the Czech Technical University
in Prague, Department of Cybernetics, dealing with the path following and formation
control problems [9]. The path following problem has been solved in previous work [10]
(an article about this work: [11]). It implements an MPC control algorithm on a custom
MAV platform. The MAV carries a px4flow 1 sensor for measuring height and velocity of
the MAV and a KK2 2 board to provide basic stabilization in combination with a custom
designed control board, running the MPC. The formation control problem has been solved
in previous work [12]. It has been implemented on MAV onboard computers. The MAVs
carry identification patterns and cameras. The targets are localized using the cameras
and computer vision with an algorithm, described in [13]. This information is then used
to correct the setpoints for the MPC control algorithm and hold the formation [2]. The
onboard variant of the system for relative localization of members of multi-MAV teams
is described in [14] with examples of its deployment in [15] and [16]. This work has been
a source of information for this thesis and although the formation control has not been
utilized here, it will be useful in further development. A photo of one of the MAVs with this
hardware and software setup, which has been used in this thesis, can be seen on Figure 1.
A photo of two MAVs with the identification patterns can be seen of Figure 2.

1.1 Related work

Localization using wireless technology is a widely used concept. Systems like the GPS,
radars, or WiFi triangulation based methods are commonly used. Positioning systems using
Bluetooth exist as well (for example the ZONITH 3 or Spreo4 indoor positioning systems).
Most of the Bluetooth based systems focus on indoor localization using a prepared infras-
tructure of static devices meant to track moving devices. These systems sometimes use
RSSI values for distance calculation and then trilateration to calculate position, or ecolo-
cation to determine in which area the device is. Probably the mostly used method in actual
research and in applications is fingerprinting of certain locations with their corresponding
RSSI values and then choosing the best fitting location based on current measurements
[3], [17], [18]. This method requires time consuming setup and calibration as the RSSI

1See https://pixhawk.org/modules/px4flow
2From http://www.hobbyking.com
3See http://zonith.com/products/rtls/
4See http://spreo.co/products/indoor-positioning-systems/
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1 INTRODUCTION

values need to be measured at the desired locations beforehand. According to [17], the fin-
gerprinting approach with Bluetooth technology had a precision with 50% probability of
being within 1.5 m of the actual position when the localized device does not move. The best
result from [18], which used fingerprinting and WiFi, had a mean error of 1.21feet = 0.37 m
for a moving target, but with the tendency to ”get lost” and integrate a large error over
time, or 1.10 m without ”getting lost”. These systems might require recalibration when
some environmental conditions like humidity, temperature or obstacles in the area change
[6]. This problem has been addressed in [6], where a self-calibrating approach based on
measurements of WiFi RSSI has been proposed, which achieved a mean error of 1.84 m
with six WiFi APs on an area of 600 m2. The work, presented in this paper, focuses on a
situation where no preinstalled infrastructure is present and therefore these methods can
only be used either with modifications or not at all. Best experimental results, achieved
with the proposed algorithm, were localizing a static beacon with resulting error of 0.28 m
and tracking a moving beacon for one minute with a mean error of 1.37 m. The simulation
suggests that in conditions closer to optimal (described in section 4) an average localization
error of static beacons could be as small as 0.24 m. The precision of this approach and no
need for preinstalled infrastructure are the main contributions of this work.

The method deployed in this work makes use of calculating distance from Bluetooth
RSSI measurements. There is existing research regarding this problem. A comprehensive
overview of distance measurements using Bluetooth (including RSSI) and also experiments
measuring the influence of relative antennae orientation on the RSSI are presented in [3].
In section 3 of [4] the author compares different means of distance measurement using
Bluetooth and generally comes to a conclusion that RSSI is the most appropriate. In [19]
the authors explore the possibility to use an array of antennae to amplify the measurement
precision. A similar approach could be used to increase the RSSI measurement precision
in future developments of this work as well. These works have been useful in pointing out
the difficulties of implementing distance measurement using Bluetooth and RSSI.

The Kalman Filter is used in the presented algorithm for data fusion from multiple
sensors, filtering and state estimation. The two main variants of the KF for nonlinear
systems are Unscented Kalman Filter and Extended Kalman Filter. The EKF is older and
generally well understood. It uses a linearization of the system model. The UKF uses a novel
approach of propagating sigma-points, generated with an unscented transform, through the
non-linearities to achieve better precision [20]. There are several studies comparing the two
approaches. [21] provides a comprehensive study, comparing different filtering and sensor
fusion techniques including the first order EKF and the UKF and concluding that the
UKF is better suited for strongly nonlinear systems. Similarly, [22] comes to a conclusion
that the UKF performs slightly better than the EKF, based on experimental results from
both indoor and outdoor wireless localization. For quasi-linear systems the UKF may give
comparable results at the cost of higher computational intensity when compared to the
simpler EKF [7], [8]. In this thesis, simulation has been done to determine which variant
of the KF fits better for the tackled problem and system setup (section 4).

3/38



1 INTRODUCTION

1.2 Problem statement

The system setup consists of three MAVs and a given number of self-sufficient stationary
beacons. The target scenario is to locate the beacons. Each MAV carries one receiver
capable of measuring the RSS (received signal strength). Each beacon is equipped with an
identifiable transmitter (with a unique ID), compatible with the receivers. The number of
beacons together with their IDs is assumed to be known a priori. The beacons are scattered
across a flat area free of obstacles. The area is specified as a rectangle, relatively to the
MAVs starting position. The MAVs are localized relatively to each other (moving in a
known formation) and also to the starting point in a global coordinate system.

Figure 1: Photo of an MAV, used for experiments in this thesis

Figure 2: Photo of MAVs with paper targets, used for experiments in this thesis
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2 SYSTEM MODEL

2 System model

This section describes a model of the system of M MAVs and one beacon. In case
localization of multiple beacons is required, the same system model is applied to each of
them. The model is constructed in a three dimensional cartesian coordinate system. It can
be simplified to two dimensions by trimming the states corresponding to the z coordinate
(as was done in the simulations).

Parameters determining the system properties, described in detail in this section, are
listed in Table 1. Variables used when describing the system are listed in Table 2. A notation
r × c is used in this work to describe matrix sizes, where r is the number of rows and c is
the number of columns.

The system can be generally described using a non-linear discrete state-space model

~x[k + 1] = ~f(~x[k], ~u[k], ~v[k], k), (1)

~z[k] = ~h(~x[k], ~u[k], ~w[k], k). (2)

Specifically, the system considered here can be described using a simplified variant of this
model

~x[k + 1] = A~x[k] + B~u[k] + ~v[k], (3)

~z[k] = ~h(~x[k]) + ~w[k]. (4)

The states, measured values and inputs of the system have been defined using the variables
from Table 2 as

~x[k] =
[
x1[k], y1[k], z1[k], . . . , xM [k], yM [k], zM [k], xb[k], yb[k], zb[k]

]T
,

~z[k] =
[
x̃1[k], ỹ1[k], z̃1[k], . . . , x̃M [k], ỹM [k], z̃M [k], s1[k], . . . , sM [k]

]T
,

~u[k] =
[

∆x1[k], ∆y1[k], ∆z1[k], . . . , ∆xM [k], ∆yM [k], ∆zM [k]
]T
,

and the matrices A and B as

A = I3(M+1)×3(M+1), B =

(
I3M×3M

03×3M

)
.

In the function ~h(~x[k]), the first 3M components are measurements of the first 3M states,
corresponding to the MAV coordinates. The remaining 3 measurements are formulated
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2 SYSTEM MODEL

using the Log-Normal model (which is described in Section 2.1):

~h(~x[k]) =



x1[k]
y1[k]
z1[k]

...
xM [k]
yM [k]
zM [k]

P0,1 − 10n1 log10

(√
(x1[k]− xb[k])2 + (y1[k]− yb[k])2 + (z1[k]− zb[k])2

)
...

P0,M − 10nM log10

(√
(xM [k]− xb[k])2 + (yM [k]− yb[k])2 + (zM [k]− zb[k])2

)



,

where parameters P0,i and ni correspond to the receiver on the i-th MAV. Their meaning
is explained in section 2.1. They have to be determined experimentally, which is described
in section 2.2.

The random variables ~v[k] and ~w[k] are column vectors of length 3(M + 1) and 4M .
They are presumed to have a gaussian distribution with zero mean and covariance matrices
Q and R with sizes 3(M + 1)×3(M + 1) and 4M ×4M , respectively. The state covariance
matrix P[k], which is generated by the KF, has a size 3(M + 1)× 3(M + 1).

Parameter Meaning
M number of MAVs

A,B,~h(~x[k]) parameters used for state space model description
Q process noise covariance matrix
R measurement noise covariance matrix
P0,i received power of the i-th receiver at distance of 1 m
ni loss factor of the received power

Table 1: System parameters

6/38



2 SYSTEM MODEL

Variable Meaning
k ∈ {0, 1, . . . , kend} time index
i ∈ {1, 2, . . . ,M} marks variables related to the i-th MAV
~z[k] vector of measured variables at time step k
~x[k] vector of system states estimated by the KF
~u[k] vector of system inputs
P[k] state covariance matrix
~v[k] ∼ N (0,Q) random vector representing process noise
~w[k] ∼ N (0,R) random vector representing measurement noise
~pi[k] ≡

[
xi[k], yi[k], zi[k]

]
i-th MAV position in the global coordinate system

~pb[k] ≡
[
xb[k], yb[k], zb[k]

]
beacon position in the global coordinate system

si[k] RSSI measurement of the i-th MAV

~̃pi[k] ≡
[
x̃i[k], ỹi[k], z̃i[k]

]
measurement of the i-th MAV position

∆~pi[k] ≡
[

∆xi[k], ∆yi[k], ∆zi[k]
]

~̃pi[k]− ~pi[k − 1]

Table 2: System variables

2.1 Received signal strength model

The Log-Normal model has been used to model the signal transmission characteristics.
It is a generalized form of the Friis transmission equation, which describes transmission of
a radio frequency signal under certain idealized conditions. The Friis transmission equation
can be formulated for decibels as

Pr = Pt +Gt +Gr + 20 log10

(
λ

4πR

)
, (5)

where Pr, Gr, Pt and Gt are the received power, receiver antenna gain, transmitted power
and transmitter antenna gain, respectively. Gt and Gr are in decibels, Pt and Pr are in
decibel milliwatts. λ is the wavelength (in meters), corresponding to the radio frequency,
and R is distance between the transmitter and receiver antennae (also in meters).

One of the assumed idealized conditions is certainly not met under the working con-
ditions - that the transmitter and receiver are in free space with no signal reflections. It
is difficult to determine some of the parameters of the formula. For example, the antenna
gains are dependant not only on the hardware, but also on software implementation of
the bluetooth driver, which can vary. This model also doesn’t account for random noise
due to electrical and radio interferences or noise from other sources. To consider these
imperfections, the model can be used in the so-called Log-Normal form as

Pr = P0 − 10n log10 (R) + χ, (6)

χ ∼ N
(
µχ, σ

2
χ

)
,
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2 SYSTEM MODEL

where Pr is again the received power, P0 and n are parameters, which can easily be cali-
brated (more on this in Section 2.2), and R is the distance between transmitter and receiver.
χ is a gaussian random variable with mean µχ and variance σ2

χ. It represents the model
uncertainty and noise. In case of the localization algorithm, the mean is presumed equal to
zero. Note that using this model the random variable representing noise is additive, which
is also why the simplification from Equation (2) to (4) could be made.

2.2 Calibration of system model parameters

Two free parameters P0 and n from the Log-Normal model of signal transmission,
described in Eq. (6), need to be determined for the algorithm. These parameters depend
on the transmitter hardware, receiver hardware and software, and the environment. This
problem can easily be resolved by calibrating each of the receivers, if the influence of
hardware and software is assumed constant and influence of the environment is neglected
or assumed constant as well.

For the calibration method used in this work, a sufficient number of samples at distance
d0 have to be collected. The n parameter is chosen to be the theoretical value from the
Friis transmission equation, which is 2, and the P0 parameter is then obtained from Eq. (6)
as

P0 = Pr + 10n log10 (d0) ,

where Pr is the mean of sampled data and d0 the corresponding distance. The random
variable χ is presumed to have a zero mean, so for a sufficient amount of samples it will
have no effect on the calibration. If the mean is not zero, it is added to P0.

An alternative approach would be obtaining samples from different distances and then
fitting a logarithmic curve in the form described above through the data with P0 and n as
free parameters. This approach was examined in the experiments described in sections 5.1
and 5.2. It has the advantage that the curve has a much smaller mean error and standard
deviation from the samples and thus it may offer more precise calculation of distance from
RSSI. The downside is that the n parameter is heavily dependant on the environment
and even on the relative position of the receiver and transmitter from obstacles in the
environment (compare the n parameters of the fitted functions in the two experiments).
Because of this the first approach, which is presumed to be more robust in relation to these
conditions, has been used.
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3 Localization algorithm

The algorithm to locate the beacons relies on the Kalman Filter for state estimation,
sensor fusion and filtration. Since the system is non-linear, the basic form of the KF would
not be sufficient and a generalized variant of the KF for non-linear systems had to be chosen.
Two main generalized variants are the Extended Kalman Filter and the Unscented Kalman
Filter. Previous works comparing the two approaches generally come to a conclusion that
the UKF offers better stability and precision for systems with strong non-linearities at the
cost of higher computational intensity [20], [21], [7], [8]. The UKF can also work without
determining the Jacobian of the system model and can cope for non-additive noise in the
system without additional changes to the algorithm unlike the EKF. Non-additive noise is
not present in the considered system model so this criterion can be ignored for the purpose
of this work. Jacobian of the system can easily be calculated analytically so this criterion
is irrelevant as well. To decide which algorithm to use, the simulations have been run for
both of them. Since the results were almost equal for both mentioned variants of the KF,
the EKF was chosen to be used further as it is less computationally demanding. For details
about the simulations, see section 4.

The BLE beacons periodically transmit advertisement packets with a set period and
power output. In our case, the beacons used in the experiments can be set to transmit in
three states – low power with a period of TTX = 100 ms, medium power with TTX = 500 ms
and high power with TTX = 1000 ms. If the strength of the signal is sufficient, the packets
are received by the BLE receivers, RSSI of the packets is measured and a new RSSI
reading is generated. If new readings from all receivers are available, the state estimation
filter is updated. Because range of the BLE beacons is limited and the area being searched
can be larger than the beacon signal range, there may not always be a set of new valid
measurements from all receivers. Because the estimation is updated only when a complete
set of new valid measurements is ready, the time between two updates is not constant. This
could potentially be a source of inaccuracies, because the non-constant time step has been
neglected in the model. It might be an interesting problem for future development of this
work to implement an estimation update without all new readings available.

The MAVs follow a set of points, positioned so that the whole search area is sufficiently
covered. The way the trajectory points are chosen is arbitrary, the trajectory must assure
that each beacon in the search area is passed at a certain maximal distance. The maximal
distance should be significantly shorter than the maximal detection range of the trans-
mitters, so that enough RSSI samples can be collected by the receivers. An example of
such trajectory is the “lawn mower” approach (shown on Fig. 3), which was chosen in the
simulations presented in section 4.

An estimation of the initial state must be known for the EKF. Quality of further
state estimation is dependant on the initial state of the filter. Bad initial state estimation
can cause the algorithm to converge to a wrong location. The initial state estimation is
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3 LOCALIZATION ALGORITHM

required only for the beacon position, because the last measured positions of the MAVs
can be used as initial estimates of the MAV position states. The beacon position initial
state is estimated in ninitial steps by a separate algorithm described in section 3.1.

3.1 Initial state estimation

The initial state estimation for the EKF is basically an average of estimates of the state
E =

[
xb, yb

]
, representing the beacon position in two dimensions, which are calculated

from intersections of M circles at each step, where M is the number of MAVs/receivers.
Center of the i-th circle is defined by a position of the i-th MAV

[
xi, yi

]
. Its radius is

equal to an estimated beacon distance from the i-th MAV di, calculated from the filtered
RSSI signal sf,i. The zb state (beacon height) is not estimated. It is set to zb = 0, because
the beacon is presumed to be lying on the ground or in a small height above ground.

Let E be the current estimate of the beacon position, w be the current estimate weight,
sf,i be the current filtered RSSI of the i-th MAV, and di be the current estimated distance
of the beacon to the i-th MAV. Variables E and w are initialized to E :=

[
0, 0

]
and

w := 0 before the start of the algorithm. The initial state is estimated by repeating the
following algorithm ninitial times:

1. In the first iteration, sf,i is set equal to the first RSSI sample sf,i := si. In the
subsequent iterations sf,i is calculated as sf,i :=

cf sf,i+si
cf+1

.

2. Distance di is calculated from the RSSI value sf,i using the Eq. (6).

3. The circles with centres Ci =
[
xi, yi

]
and radii Ri = di are defined. All intersections

of each pair of the circles are calculated. If no intersection is found the algorithm ends
here and no estimation update is made until the next valid set of measurements.

4. For each circle pair, there can be either one, two or no intersections. If there is zero
intersections, none is chosen. If there is one intersection, it is chosen. If there are two
intersection points, a sum of distances between the point and all circles is calculated
for both points. The point with the smaller sum is chosen.

5. Average from the chosen points is declared to be the current point A =
[
xA, yA

]
and the estimation is updated as

xb :=
wxb + xA
w + 1

,

yb :=
wyb + yA
w + 1

,

w := w + 1.
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3 LOCALIZATION ALGORITHM

State covariance for the EKF is calculated as cov(xb, xb) = cw
ninitial

, cov(yb, yb) = cw
ninitial

,

cov(xb, yb) = cov(yb, xb) = 0. The constants ninitial, cf and cw are free parameters, which
have to be tuned. The tuning is done based on experiments, simulations, and known pa-
rameters of the system model.

3.2 Extended Kalman Filter

The EKF generates state estimates ~x[k] and state covariance matrices P[k] at each
estimation update. A model of the system (defined in section 2), an initial state ~x[0] and
initial covariance matrix P[0] of the state vector are required. Determining ~x[0] and P[0]
has been described in the previous section. At each step, the EKF also requires the previous
estimated states ~x[k−1], previous covariance matrix P[k−1], current system input ~u[k] and
current measurements ~z[k]. An estimation step consists of state prediction and update,
similarly to the classical Kalman Filter. The difference is that the EKF works with a
linearization of the otherwise non-linear system model. The working point at each step is
the previous state estimation. Kalman gain is calculated similarly to the standard Kalman
filter and the state estimation together with its covariance matrix are updated. The EKF
has two tunable parameters - the process noise and measurement noise covariance matrices
Q,R. It is described in detail for example in [7] or [8].
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4 Simulations

The aim of the simulation was to test the developed algorithm, its performance and its
limits. Simulation of the localization algorithm was done in MATLAB. Parameters for the
simulation were chosen to reflect the target practical experiments as well as possible, based
on preliminary experiments (including the experiment, described in section 5.1) and the
physical model. In the simulation, separate instance of the filter was used for each beacon.

An additional target was determining which variant of the KF is better suited for this
application - the UKF or the EKF. This was done by running one instance of the UKF and
one instance of the EKF for each beacon being localized, and then comparing the results.
The simulation was done with Nbeacons = 10000 randomly generated beacon positions and
M = 3 MAVs. Results of the simulation are described in Section 4.2.

4.1 Simulation parameters

The system has been modelled according to the model described in section 2, adopted
to two dimensions (all states, corresponding to the z coordinate have been trimmed).

The RSSI readings for the algorithm have been generated based on the Equation 6.
The mean of the random variable χ (representing signal noise) has been assumed to be
non–zero when generating the readings, but assumed equal to zero in the model used
by the algorithm. Unknown non–zero mean noise can be caused by non–ideal conditions
of signal propagation, imprecisely determined parameters P0,i and possibly other causes.
Additionally, a maximal beacon signal range rmax has been introduced. This was based on
the assumption, that when the SNR value drops under a certain threshold, the transmitted
packet is lost and RSSI cannot be measured by the receiver. This assumption was supported
by the preliminary experiments. When the beacon is further than rmax from the receiving
MAV in the simulation, no reading is generated and thus the KF estimation step is not
performed.

The following parameters have been used for the model:

Q =

(
0.01 · I6×6 06×2

02×6 02×2

)
,

R =

(
0.01 · I6×6 06×3

03×6 5 · I3×3

)
,
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P0,i = −40.23 dBm,

ni = 2,

rmax = 4 m,

µχ = ±2 dBm,

σ2
χ = 5 dBm.

The algorithm can be more sensitive to a positive change of the parameter P0 than a
negative change or vice versa, because the system is non–linear. This means that if the
parameter µχ was set equal to 2 dB, the simulation could give different results than for
µχ = −2 dB. To eliminate this influence the µχ parameter has been drawn from a
binary random distribution for each transmitter/receiver combination, with the following
probability distribution:

µχ Probability

−2 dBm 0.5
2 dBm 0.5

Table 3: Probability distribution of the RSSI noise mean

Some of the other system parameters are not precisely determined in a practical ap-
plication. This has been included in the simulation and the model parameters (specifically
the random noise covariance matrices QKF and RKF ), presented to the Kalman Filter, are
different from the parameters, used to generate the measurements. The covariances were
assumed to be overestimated:

QKF =

(
0.05 · I6×6 06×2

02×6 02×2

)
,

RKF =

(
0.05 · I6×6 06×3

03×6 9 · I3×3

)
.

The UKF also depends on three parameters determining the weighing and generation of
sigma points. These are α, β and κ. They were chosen to be the default values for Gaussian
distribution of the process and measurement noise:

α = 10−3,

β = 2,

κ = 0.

A rectangle with dimensions arec × brec defines the search area, where 10 beacons are
randomly placed. The rectangle size was chosen to reflect the target practical application.
The MAVs follow a set of trajectory points in a formation. The points are generated in
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a simple “lawn mower” pattern to cover the area evenly (see Figure 3). This way the
formation center does not fly further than 2 m around any beacon, placed in the area.
The 2 m detection radius was chosen based on preliminary experiments. It should ensure
that all beacons are in detection range for a sufficient amount of time to localize them
accurately. MAV dynamics are not simulated. It is assumed that they move between the
trajectory points with a constant speed v for simplicity. Duration of simulation tend is the
time it takes the MAV formation to reach the end of its trajectory. Parameter fRSSI is the
frequency of receiving new signal readings. The values of these parameters are

arec = 4 m,

brec = 8 m,

v = 0.2 m s−1,

tend = 320 s,

fRSSI = 10 Hz.

Following values were experimentally chosen for the initial state estimation parameters:

ninitial = 30,

cf = 3,

cw = 500.
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Figure 3: Trajectory of the MAV formation over the defined search area
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4.2 Results

An error e is defined as a euclidean distance between the true position
[
x̂b, ŷb

]T
and

the resulting position estimate
[
xb, yb

]T
for each beacon:

e =
√

(xb − x̂b)2 + (yb − ŷb)2.

The average error distances from all 10000 beacons for the UKF and EKF variants of the
algorithm were

eUKF = 0.243 m,

eEKF = 0.234 m.

Also the distributions of the distance errors were very similar for both the UKF and the
EKF (see Figure 4). The total calculation time for the 10000 beacons were

tUKF = 1658 s,

tEKF = 868 s.

For this type of system the difference in precision between the UKF and the EKF is
relatively small (less than 1 cm on average). Big difference is in the computational time,
the EKF is almost 91% faster. The EKF will be used in the rest of this work because of
the speed advantage. The average CPU time of one algorithm step when using the EKF is

tstep =
tEKF

Nbeacons · tend · fRSSI
=

868 s

10000 · 320 s · 10 Hz
.
= 27 µs.

This suggests that the algorithm might be sufficiently fast for realtime operation as well,
because the maximal desired time between updates is 1

fRSSI
= 100 ms. But it must be

taken into account that the simulation was run on a desktop computer with usually more
computational power than the onboard computer.

The simulation results were proven to be reasonable when compared to results of the
practical experiments (described in Sections 5.3, 5.4 and 5.5), although a bit optimistic.
This was expected as the simulation was simplified and did not cover all possible real world
conditions and imperfections (for example signal reflections from obstacles, non–uniformity
of transmitting or receiving antennae, time drift of onboard computers on the MAVs, etc.).

The conclusion is that this approach is viable, sufficiently precise and stable, although
the maximal error is quite large. This might be caused by a bad initial state of the KF.
Making the initial state estimating algorithm more robust is a topic for future work on
this project.
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Figure 4: Histogram of simulation result - distances between true and found positions
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5 Practical experiments

Two experiments (described in sections 5.1 and 5.2) were conducted to determine via-
bility of the BLE technology for this application. The experiments consisted of measuring
the RSSI over receiver/transmitter distance characteristic of a BLE beacon. In each of these
experiments, 100 samples of RSSI were measured at several distances from the beacon.

Another two experiments (described in sections 5.3 and 5.4) were aimed at determining
stability of the localization algorithm under real world conditions. In these experiments,
one BLE beacon has been placed in an area and one MAV carrying a BLE receiver flew
through a preprogrammed trajectory in the area, and logged its position in time together
with RSSI measurements. The logged data were processed offline after the experiments.

The final experiment (described in section 5.5) has been conducted with three MAVs
hovering in a static position, two static beacons and one dynamic beacon, placed on a
ground robot. This was the closest to the desired system setup, except that the MAVs
were not moving. The dynamic beacon together with the dynamic obstacle, introduced
into the system by the ground robot moving through the area, presented a new challenge.

5.1 Outdoor RSSI measurement experiment

The first experiment was aimed at determining the general usability of the bluetooth
technology and the possibility to improve the precision of range calculation through cali-
bration of the model parameters. It has been conducted outdoors in a paved backyard. A
laptop (Samsung NF310) with a USB BLE adapter (Trust 18187-03) and a BLE beacon
(EM Electronics EMBC01) were positioned approximately 3 cm above ground at distance
d. RSSI values were measured at nine different distances and logged to data files. The
data were then compared to the theoretical function (according to Equation (6)). The
unknown parameter n was chosen to be 2, according to the Friis function (Eq. 5), and
P0 = −82.64 dB was obtained as explained in Section 2.2.

Let ei be an error of the i-th measured sample and the corresponding theoretical value.
This random variable has a mean µ = 2.08 dBm and a standard deviation σ = 3.87 dBm,
which were obtained as

ei = si − stheoretical,i,

µ =
1

N

N∑
i=1

(ei) ,

σ =

√√√√ 1

N − 1

N∑
i=1

(µ− ei)2,
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where N = 100 is the number of samples, si is the i-th sample and stheoretical,i is the value
of the Log-Normal function (5) for the same distance as sample si.

The above mentioned result can be improved by adjusting the Log-Normal function.
The measured samples were fitted with a logarithmic function using the least squares
method. The resulting error had a standard deviation 3.77 dBm and a mean of 0.002 dBm.
This fits the system model (as described in Section 2), where zero–mean random noise has
been assumed, better than if using the n parameter from the Friis formula and calculating
only P0. Parameters of the fitted function were n = 2.303 and P0 = −80.97 dBm.

A plot of the measured samples with the theoretical and fitted curves can be seen in
Figure 5. Note that there are no data points further than 1.8 m. No RSSI readings have
been captured further because the signal was too weak.
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Figure 5: Plot of results from the outdoor RSSI measurements

5.1.1 Conclusion

The non-zero mean of the noise might introduce error when localizing the beacons, but
according to the simulation, presented in section 4, the precision should still be sufficient.
Another problem might be the short signal range. This was caused most probably by the
beacon lying almost on the ground, because a significant amount of the transmitted power
was absorbed. In the following experiments, the beacon has been placed on a plastic stand
approximately 8 cm above ground, to prevent this problem. Significant increase in signal
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range has been observed in the subsequent experiments, which is probably thanks to this.
Although there is a clear relation between the transmitter/receiver distance and RSSI, the
signal noise is not negligible. This supports the decision to use the KF in the localization
algorithm, which also filters the noise out of the signal alongside the state estimation,
as opposed to other localization methods, which mostly require a separate filter (these
methods are referenced in section 1.1). Generally, this experiment has shown that the
bluetooth technology should be usable for purposes of this thesis.

5.2 Indoor RSSI measurement experiment

The second experiment was aimed at determining the usability of the hardware in indoor
areas and confirming or disproving the assumption that the signal range will be much longer
when the receiver and transmitter are in a higher position. It has been conducted indoors
in a mostly empty hallway. The MAV onboard PC (Nvidia TK1) with a USB BLE adapter
(Trust 18187-03) was positioned at a height of 0.65 m and the BLE beacon (EMBC01) at
a height of 8 cm above ground. RSSI values were measured and processed similarly to the
first experiment (Section 5.1).

The parameters of the Log-Normal function have been determined in the same way as
in the previous experiment. First, by choosing n to equal the theoretical value from the
Friis function and calculating only P0. These parameters were n = 2 and P0 = 185.35 dBm
and the corresponding error has a mean of −1.09 dBm and a standard deviation 5.40 dBm.
Then a logarithmic function has been fitted through the data. The error of sampled data
and the fitted function has a mean of −0.05 dBm and a standard deviation 4.88 dBm.
Parameters of the fitted function were n = 1.091 and P0 = 182.00 dBm. A plot of the
measured samples with the theoretical and fitted curves can be seen in Figure 6.

5.2.1 Conclusion

The RSSI over distance characteristic is significantly further from the idealized theo-
retical values of the Friis function in the experiment in indoor environment than in the
outdoor experiment. The RSSI measurements do not even show a monotone behaviour,
relatively to the distance, as would be expected according to the theoretical function. This
anomaly and the larger error are assumed to be due to reflections of the signal from walls,
furniture and other obstacles. As a consequence, the algorithm might be unusable in such
environment. The RSSI offset (P0 parameter) is much more different from the outdoor ex-
periment (described section 5.1) than what could be caused by the different environment
(the difference is 267.98 dBm and maximal span of the RSSI values is less than 35 dBm in
both experiments). Since the hardware and software was the same except the computer
platform and corresponding OS, a significant part of the large P0 difference is presumed
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to be caused by a different implementation of the BLE driver on the two platforms. This
shows the importance of calibrating the P0 parameter for each hardware setup separately.
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Figure 6: Plot of results from the indoor RSSI measurements

5.3 Experiment with one MAV following a square trajectory

The third experiment was aimed at determining stability and performance of the lo-
calization algorithm under real world conditions. It has been conducted in indoor environ-
ment with one MAV flying through a square trajectory setpoint around the BLE beacon
(EMBC01). The MAV carried a USB BLE adapter (Trust 18187-03), connected to on-
board PC (Nvidia Tegra TK1 development kit). MAV speed was set to 0.2 m s−1. Setpoint
following and data logging was provided by the onboard controller. Signal strength has
been measured with a frequency of 10 Hz and logged together with the current position,
obtained from the onboard sensors. This data has then been processed after the experiment
in MATLAB.

The MAV repeatedly followed a square trajectory 1 m above ground with a size of
4 m× 4 m and the beacon was put in the middle of this square, as shown in Figure 8. The
system model described in section 2, adapted for one MAV, has been used for processing
the data. Following parameter values were used in the model:

Q =

(
10−4 · I3×3 03×3

03×3 5 · 10−7 · I3×3

)
,
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R =

(
0.05 · I3×3 03×1

01×3 8 · I1×1

)
,

P0,1 = 187 dBm,

n1 = 2.

The parameters were tuned based on data from the other experiments and simulations.
The initial state and covariance matrix have been chosen as

~x[0] =
[
x1[0], y1[0], z1[0], 3.5, 3.5, 0.08

]T
,

=
[
0, 2, 1, 3.5, 3.5, 0.08

]T
,

P[0] =

(
0.05 · I3×3 03×3

03×3 50 · I3×3

)
,

where the initial MAV position was the actual MAV position at the timestep k = 0, as
measured by the onboard sensors. The initial beacon position cannot be determined by the
algorithm as described in Section 3.1, because one signal reading is not enough for it. It had
to be chosen randomly and it was chosen to be different from the true beacon position. If
the initial state estimation algorithm could be used, the resulting estimation would be most
likely closer to the true position than the randomly chosen position. This speculation is
supported by the simulation and further experiments. The initial covariance of the beacon
position suffers a similar problem as it cannot be determined by the algorithm. It was
chosen relatively large so that the initial position has a low weight since it was chosen
randomly.

Data were evaluated from a 334 s long flight. The resulting MAV trajectory can be seen
in Figure 8. For evaluation of the algorithm performance, the beacon has been positioned
at the origin of the coordinate system. The true beacon position is then[

x̂b, ŷb, ẑb
]T

=
[
0, 0, 0

]T
Since the true beacon position is known, it can be used to determine a localization error.
The localization error can be defined as a euclidean distance between the true and found
position as

e =
√

(xb − x̂b)2 + (yb − ŷb)2 + (zb − ẑb)2.

Figure 7 is a plot of the resulting position error. The final beacon position found from the
measured RSSI and position data is

~pb [kend] =
[
−0.68, −0.05, 1.00

]T
,

i.e. the final error is 1.14 m.

21/38



5 PRACTICAL EXPERIMENTS

5.3.1 Conclusion

The error of the estimated beacon position does not converge to zero, but rather os-
cillates between two values. This can clearly be seen in the position error graph. This
phenomenon can be correlated to a significant raise in RSSI in an area around the bottom
left corner of the trajectory setpoint square. In Figures 7 and 9, the marks denote time
when the error has started increasing and the corresponding MAV positions. The cause
of this anomalous signal strength raise has been speculated to be a thick concrete column
near to that area, which may have been a strong source of signal reflections and thus signal
interference. This conveniently highlights the downsides and limits of the BLE technology
for this approach in indoor areas as the RSSI is very sensitive to obstacles and reflections.
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5.4 Experiment with one MAV following a line trajectory

In this experiment, the same hardware configuration as in the experiment 5.3 has been
used, but the trajectory of the MAV was a 6 m long line segment. The beacon remained
in the origin of the coordinate system. The MAV speed, data logging frequency and all
other parameters remained the same as in the previous experiment. The algorithm and the
position error were also defined in the same way. The experiment took place in the same
room. Data were evaluated from 458 s long flight. Initial state for the EKF was

~x[0] =
[
x1[0], y1[0], z1[0], 0, 2, 0.08

]T
=
[
−2.7, −0.1, 1, 0, 2, 0.08

]T
.

The specific location for the initial beacon position has been randomly chosen for the same
reasons as in the previous experiment. The initial covariance matrix for the EKF was the
same as in the previous experiment.

The resulting found beacon position is

~pb [kend] =
[
−0.23, −0.37, 0.29

]T
,

and the corresponding error is 0.48 m. Plots of the desired trajectory, real trajectory and
the beacon true and found positions can be seen in Figure 10. Plot of the distance error
over time can be seen in Figure 11.

5.4.1 Conclusion

As can be seen from the position error plot in Figure 11, the found position is nearly
stable after three minutes. The resulting position does not oscillate as much and is generally
more precise in comparison to the previous experiment, which can be explained by a lack
of a signal disturbance as in the previous experiment (the MAV did not fly near the column
in this experiment).

It may be speculated that with absence of the signal disturbance the previous ex-
periment would be more precise, because the square trajectory is more suitable for the
algorithm, as data are provided from more diverse locations than if following the line
trajectory, which may positively affect the efficiency of the algorithm.
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Figure 10: Trajectory of the MAV in this experiment
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Figure 11: Distance between the true and found beacon position in this experiment
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5.5 Experiment with a formation of 3 MAVs, localizing static
and dynamic beacons

This experiment has been set up indoors and according to the target system setup
as described in the section 1.2. The MAVs were holding their defined positions, 1 m in
above ground. Three beacons have been localized. Two static beacons were placed on small
ground pedestals 8 cm above ground. One beacon was dynamic, carried by an unmanned
ground vehicle (UGV) 0.65 m above ground. The UGV carried the beacon through the
area at speed v = 0.2 m s−1 along a 6 m long straight line, parallel with the x-axis of
the coordinate system. Each MAV carried one BLE receiver and logged the RSSI values
together with their current positions relative to the starting points, which were acquired
from the onboard odometry. The beacons were set to transmit the advertisement packets
with a stronger power and a frequency of fRSSI = 5 Hz, because the signal was too weak
with the previously used setting of 10 Hz advertising with lower power. Photos of the
experiment at three different times can be seen in Figure 12, setup of the experiment can
be seen on the photo in Figure 13 and a photo of the UGV and one of the MAVs can be
seen in Figure 14. The positions and the dynamic beacon trajectory are depicted together
with the corresponding values in Figure 15.

(a) Experiment, time t = 20 s (b) Experiment, time t = 35 s (c) Experiment, time t = 50 s

Figure 12: Three photos, demonstrating movement of the UGV through the experiment.
The UGV has started moving at time t = 20 s and stopped at time t = 50 s.
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Figure 13: A photo, showing the experiment setup

Figure 14: A photo of one of the MAVs (left) and the UGV (right)
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Figure 15: Positions of beacons and initial positions of MAVs in this experiment

The system has been modelled as described in section 2. Parameters and variables
described in Tables 1 and 2 are used in this section with the modification that the last
lower index of each parameter/variable determines to which beacon (labeled 1, 2 and 3)
it corresponds. For example a set of calibrated parameters P0,i,j, ni,j correspond to each
beacon and MAV combination, where i is the number of the MAV and j is the number
of the beacon. Beacon n. 3 is the dynamic beacon and a slightly modified process noise
covariance matrix Q3 has been used for this one to account for its changing position.
The x and y odometry data had to be summed with the starting points

[
xi,j[0], yi,j[0]

]
of the MAVs because the optical odometry sensors on the MAVs are only relative (to
the starting position). The xi,j[0] and yi,j[0] values are listed below. The logged z data is
already measured absolutely from ground using an ultrasonic rangefinder, so it didn’t need
to be adjusted. Parameter values are:

Q1 = Q2 =

(
10−4 · I9×9 09×3

03×9 5 · 10−7 · I3×3

)
,
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Q3 =

(
10−4 · I9×9 09×3

03×9 0.01 · I3×3

)
,

R1 = R2 = R3 =

(
0.05 · I9×9 09×3

03×9 8 · I3×3

)
,

P0,1,1 = 196 dB, P0,1,2 = 195 dB, P0,1,3 = 188 dB,

P0,2,1 = 196 dB, P0,2,2 = 195 dB, P0,2,3 = 188 dB,

P0,3,1 = 194 dB, P0,3,2 = 193 dB, P0,3,3 = 184 dB,

ni,j = 2,

ninitial = 10, cf = 3, cw = 15,

~xi[0] =
[
x1,j[0], y1,j[0], z1,j[0], . . . , x3,j[0], y3,j[0], z3,j[0], xb,j[0], yb,j[0], zb,j[0]

]
,

x1,j[0] = 2.3 m, x2,j[0] = −1 m, x3,j[0] = 0.5 m,

y1,j[0] = 2.1 m, y2,j[0] = 2.1 m, y3,j[0] = 4 m.

The covariance matrices Qj and Rj were chosen to be the same as in previous experi-
ments, where these values proved to be reasonable. The parameters P0,i,j were calibrated
as explained in section 2.2 and parameters ni,j were chosen equal to the theoretical value
ni,j = 2, according to the Friis formula in Eq. (5). Starting points

[
xi,j, yi,j

]
were mea-

sured before the experiment. The algorithm, described in section 3.1 has been used in this
experiment to estimate the initial states and initial covariance for the KF. Three constants
ninitial, cf and cw had to be tuned for this algorithm. The beacon positions have been
measured in order to evaluate the accuracy as

~̂pb,1 =
[
0.8, 1

]
, ~̂pb,2 =

[
0.8, 1

]
, ~̂pb,3[0] =

[
−3, 3.1

]
, ~̂pb,3[kend] =

[
3, 3.1

]
.

Note that the position of the third beacon is a function of the time step k, because the
beacon was moving.

Data were evaluated from a 59 s long flight. The found beacon positions and the corre-
sponding position errors were

~pb,1[kend] =
[
1.35, 0.70, −0.38

]
, e1 = 0.78 m,

~pb,2[kend] =
[
2.02, 3.77, −0.07

]
, e2 = 0.28 m,

~pb,3[kend] =
[
1.84, 2.93, 0.33

]
, e3 = 1.22 m.

A graph of the distance error over time for the three beacons can be seen in Figure 16.
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Figure 16: Distance between the true and found beacon position over time in this experi-
ment

5.5.1 Analysis of results

The achieved precision of the algorithm in this experiment is worse than in the simula-
tions, since the conditions were worse than what was simulated. The experiment localized
the beacons in three dimensions instead of just two, the frequency of measurements was
lower, the time of localization was shorter and there were obstacles and sources of signal
reflection. In comparison with the localization experiments, presented in sections 5.3 and
5.4, the precision was comparable for beacon n. 1, slightly better for beacon n. 2 and worse
for the dynamic beacon.

Obtained position of the beacon n. 2 showed approached the true position much faster
than in previous experiments despite the slower sampling frequency (compare the error
plots on Fig. 7, 11 and 16). This, together with better precision, is most probably caused
by a higher number of MAVs and consequently a higher number of receivers. Localization of
beacons number 1 and number 3 achieved worse results. The localization error of beacon
1 might have decreased further if the experiment lasted longer as the plot on Fig. 16
suggests. Slower localization is probably caused by a slower sampling rate and possibly
also higher noise values. Beacon n. 1 has also been used from the beginning of this work
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for testing and all the experiments (both documented and undocumented), which means
that its remaining battery capacity has been lower than in case of the other beacons. This
might have worsened its characteristics. Another influence which might have negatively
impacted the localization is the dynamic obstacle, introduced in the system by the UGV.
The aluminum construction on the UGV (as seen on Fig. 14) may have influenced the
signal propagation in unpredictable ways. Localization error of beacon n. 3 (the dynamic
beacon) includes some oscillations and it has the worst result from all three beacons at
the end of the experiment. Since the aluminum frame on which the beacon was placed
is conductive and it was not grounded, it could have acted as an antenna with unknown
characteristics – namely directionality and gain. The oscillations in the localization error
suggest that the characteristics of the beacon n. 3 changed with its position. This implies
some directionality of the transmitter, which might be caused by the aluminum frame.
Directionality of the beacons themselves is an unknown characteristic as well and will be
examined in future work. The mean error of the dynamic beacon over the duration of the
experiment was 1.37 m.

The signal range has been significantly shorter than in the other experiments with
similar setups. The beacons had to be set to a state with higher transmitted power (and
longer period between advertisement packets) in order to be detected by all the MAVs.
The reason for this can be speculated and experimentally validating these speculations will
be a part of future work on this project. Absorption of a significant part of transmitted
power by the floor as proposed in conclusion of the first experiment, where signal range
has been a problem as well, can be ruled out in case of this experiment. Other experiments
proved that this effect is insignificant when the beacon and the receiver are placed higher
above ground, which has been applied here (compare results in sections 5.1 and 5.2). An
explanation of the shorter range might be a significantly higher level of signal noise than
in the other experiments, causing the BLE advertisement packets to have too low SNR to
be recognized by the receivers. This may be a result of a higher number of transmitters
in the area, which increased the noise levels. There were three BLE beacons, three RC
transmitters controlling the MAVs, and three notebooks connected to WiFi, all of which
operated at the same frequency as the BLE technology (2.45 GHz), as opposed to just one
BLE beacon, one (or none) RC transmitter and one (or none) WiFi connected notebook
in the other experiments. The increased level of signal noise may also explain the worse
precision and slower convergence of localized position to the true beacon position of beacons
1 and 3.

Finally, as was demonstrated in the previous experiments (specifically in sections 5.2
and 5.3), RSSI measurements of the BLE technology are very noisy in indoor environments
and sensitive to obstacles causing signal reflections. Because the experiment took place
indoors in a relatively small room (see Figure 13), this can not be neglected and it has
surely negatively affected the results.
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5.5.2 Conclusion

In general, the results showed that even under non-ideal conditions the algorithm can
give relatively good results and also highlighted the weaknesses of the algorithm and the
BLE technology. The algorithm can cope with dynamic beacons and dynamic obstacles
to a certain degree, but the precision and speed of localization is negatively affected. Too
many devices transmitting at the same frequency in the same area can cause the RSSI
measurements to be more noisy. The main flaw of this experiment is that its duration
was too short and it failed to show if the localization errors would continue converging to
smaller values. Unfortunately this flaw has been identified too late to be corrected, but it
will be avoided in future experiments.

5.6 Experiments summary

Experiments, described in this section, have shown that the algorithm, proposed in
this thesis (see section 3), together with the used BLE technology can localize beacons
robustly. Using a formation of three static MAVs, two beacons have been localized in three
dimensions with a precision of 0.28 m and 0.78 m in one minute. Using a single moving
MAV, two beacons have been localized in three minutes with a precision of 0.48 m and
approximately 1.4 m. A moving beacon with speed 2 m s−1 has been localized by a formation
of three static MAVs for one minute with a mean error of 1.37 m and progress of the error
indicated further convergence to a smaller value in a longer experiment. The conditions
affecting precision and speed of the localization are namely obstacles such as walls, columns,
people or furniture, the number of MAVs/receivers, height of the beacon and receivers
above ground, strength of the transmitted signal and frequency of transmitting the BLE
advertisement packets. Other possible influences include the MAV trajectory, number of
devices transmitting at the same frequency as the BLE beacons in the area, directionality
and battery status of the beacons/transmitters and other sources of noise, which remain
unknown.

Future experiments will include measuring signal strength in several defined positions
around a beacon to determine its directionality, measuring beacon signal properties with
a number of other 2.45 GHz transmitters in the area and measuring signal properties of a
beacon with different states of the battery and finally a longer lasting large scale experiment
in outdoor environment with less obstacles and walls, with a larger search area and moving
MAVs.
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6 Conclusion and future work

6.1 Conclusion

An algorithm for locating RF transmitters from position and range measurements using
a formation of mobile robots with compatible receivers has been proposed and examined in
this work. It is based on the Extended Kalman Filter and Log-Normal signal propagation
model. The algorithm is described in section 3. The system model, together with the
Log-Normal model, are described in section 2. The primary target application is finding
RFID beacons in 3D environment with a formation of MAVs.

Simulation, presented in Section 4, has shown that the algorithm should be able to
locate the beacons with a satisfactory precision. The average localization error was less than
0.25 m using a simulation set up that reflects the physical model and preliminary hardware
experiments. The simulation showed that a precision difference when using the UKF and
the EKF is minimal (less than 1 cm), but the speed advantage of the EKF is over 91%,
which is why the EKF has been chosen for the rest of this work. The proposed algorithm
should be sufficiently fast to be used on the MAV onboard computers in realtime This
opens new interesting options to improve the algorithm by adjusting the search trajectory
or other parameters of the algorithm during the mission. The maximal localization error in
the simulation was relatively large (more than 2 m) and although 95% of resulting errors
are smaller than 0.65 m, the occasional large error is a problem, which should be addressed
in future work on this project.

Five experiments presented in Section 5 have been conducted. The first two showed
that the BLE technology is usable for this application, but also defined the limitations of
the technology. Namely the RSSI readings in indoor areas are very noisy and the relation
between RSSI and transmitter/receiver distance is very inconsistent due to obstacles and
reflections. Also the signal range is very limited if the transmitter and receiver are not
at least a few centimetres above ground. The following two experiments proved that the
approach described in section 3 works for localizing a beacon even with only one MAV.
They again showed the limitations of the technology, as the resulting localization error was
much larger when there was a disturbance in the form of a strong signal reflection from a
concrete column. Finally, the last experiment showed how the algorithm works with more
MAVs and how it performs with a moving beacon and a dynamic obstacle. The best result
was an error of 0.28 m in the experiment with three MAVs, where the beacon has been
localized with this precision in less than a minute. This is close to the expected precision
under good conditions 0.25 m, as suggested by the simulation. The worst result was a
1.22 m final error with the dynamic beacon. This corresponds well with the simulation,
considering that the experiments have been done in worse conditions (disturbances like
reflections and obstacles have not been simulated) and the simulation has been done only
in two dimensions.
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6.2 Future work

Future work will focus on determining effects of RSSI measurement disturbances, like
transmitter battery state, transmitter directionality, or height of transmitter and receiver,
and ideally exploring a way to eliminate them or incorporate them into the system model
and the algorithm. A longer lasting experiment to examine how the algorithm behaves
in better conditions (in outdoor environment with less obstacles and walls) with a larger
search area and moving MAVs would be the next step when continuing in this work. In
outdoor locations, a variation of self-localization techniques of the MAVs could be used. For
example, GPS combined with the onboard odometry and with the formation control ([2])
using optical detection of paper targets ([14]) carried on the MAVs (as was mentioned in the
introduction, section 1). This could enable searching even large areas without integrating
a position error from the odometry. Sensor fusion would become an even more important
problem with this approach.

Improvement of the localization algorithm might be desirable, Especially finding a more
robust algorithm for estimating the initial state for the KF, or incorporating knowledge
about trajectory, search area and the area already covered by the MAVs into the algorithm.
Including the non-constant time step, caused by the fact that the beacons may not always
be in range of all receivers, should improve the localization, especially on larger areas.
Further development could also include implementing the algorithm on onboard computers
of the MAVs and running it in realtime, using the acquired information to dynamically
adapt the MAV trajectory to improve the localization. Using a technology better than
BLE, which would be less susceptible to RSSI disturbances, could significantly improve
the localization and this option will be reviewed in future work.
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APPENDIX A CD CONTENT

Appendix A CD Content

Names of all root directories on the CD and their descriptions are listed in Table 4.
In each of these directories you will find a README file with a description of files in the
directory.

Directory name Description
thesis Bachelor’s thesis in pdf format
thesis/source latex sources for the thesis
Cpp C++ source codes
MATLAB/experiments MATLAB source codes and data from experiments
MATLAB/simulation MATLAB source codes and data from simulation
videos videos from experiments

Table 4: CD Content
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Appendix B List of abbreviations

Abbreviations used in this project are listed in the Table 5.

Abbreviation Meaning
AP access point
BLE bluetooth low energy
CPU central processing unit
EKF extended kalman filter
GPS global positioning system
ID identifier
KF kalman filter
MAV micro aerial vehicle
MPC model predictive control
OS operation system
PC personal computer
RC radio controlled
RF radio frequency
RFID radio frequency identification
RSS received signal strength
RSSI received signal strength indication
SNR signal to noise ratio
UGV unmanned ground vehicle
UKF unscented kalman filter
USB universal serial bus
WiFi wireless standard IEEE 802.11

Table 5: Lists of abbreviations
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