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Chapter 1

Introduction

The turbulent flow is one of the most complicated phenomena observed in the Nature. It
ranges from the disordered and unpredictable flow of the rivers through Kármán vortices
in the Earth’s atmosphere to gargantuous clouds of gas near heavy stars in the Universe.
From one point of view, turbulent motion is just a direct consequence of the Newton’s
laws of motion applied to a very complicated system – the fluid consisting of dozens
of particles – and our inability to predict the turbulent flow rests merely in the huge
complexity. While certainly true, there is something deeper in the unpredictability of
turbulence. As the physics and mathematics of the 20th century first shown, the chaotic
properties of the system may lead to the emergence of qualitatively new behavior and give
rise to the new structures. Thus, considerable effort has been put into the understanding
of turbulence and other chaotic systems.

Since the dawn of the physics, it was clear that although the basic principles can be
understood perfectly on simple and idealized examples, equation describing real physical
systems are usually too difficult to be solved. For this, numerical mathematics has de-
veloped many powerful methods for solving differential equations in an approximate, but
in principle arbitrarily accurate way. With the appearance of modern computers, many
tasks which seemed impenetrable in the past became feasible.

Unfortunately, the Navier-Stokes equation which is believed to govern the turbulence
is complicated not only from the physical point of view, but also its mathematical prop-
erties are not well understood (compared to other equations of physics) and this equation
resists precise numerical calculations quite successfully. This fact is less and less true to-
day, because the machines and numerical techniques are getting more and more advanced,
but still it is useful and fruitful to look for alternative approaches.

In this thesis we focus on one particular alternative approach to hydrodynamics and
the Navier-Stokes equation. This approach is known as the “lattice-gas cellular automata”
and is based on the more general concept of cellular automaton. Again, cellular automata
are the efficient tool how to tackle several problems in various areas of mathematics,
physics, biology or economy. On the more fundamental level, some people believe that
the Nature herself is kind of cellular automaton and that ultimate physical laws will have
similar structure.

Our goals in this these are much more modest than to solve this question. Our goals
were to understand the basic concepts behind the cellular automata, get an idea (ap-
propriate to bachelor thesis) about mathematical tools for their analysis and implement
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appropriate cellular automaton ab initio, i.e. without using existing libraries.
As an application, we have chosen to study the turbulent flow past the realistic airfoils

of arbitrary shape immersed in the fluid. In order to accomplish this goal, we initially
applied our program to the simplest situations involving just a few particles, then we
immersed simple obstacles in the fluid (wall, sphere) and checked that our program gives
physically reasonable results. After gaining the confidence in our model, we applied it to
the airfoils and studied, qualitatively, the emergence of turbulence in the vicinity of the
airfoil.

The major advantage of the cellular automaton approach to hydrodynamics compared
to standard numerical methods is high computational efficiency and easy parallelizability
(spreading the calculation on high number of processors). This advantage is achieved
through extremely simple microdynamics, i.e. very simple individual interactions between
the particles of the fluid. This microdynamics is highly unphysical and in the chapter
5 (devoted to FHP model) we will introduce its simple rules. In addition, the velocity
is not a continuous variable nor it is discretized in a usual way. Instead, the velocity
is permitted to have only six different directions and its magnitude is fixed to constant
(unit) value. Despite this oversimplification of the model, FHP model reproduces the
solutions of Navier-Stoke equations on the macroscopic level and, later on, we discuss
how this is possible, c.f. chapter 6.

As the program we developed stands, it is incapable of producing real, relevant tech-
nical or engineering data, as this would be task very much beyond the possible scope
of the bachelor thesis. On the other hand, our program exhibits all defining features
of the aforementioned FHP model and basic tools for the collection of data have been
implemented. Thus, we believe that in the near future we will be able to extend and
expand the program for the purpose of practical applications.

A secondary goal of the thesis was the educational one. In order to achieve the
main goal, it was necessary to get acquainted with the C++ language itself and with
supplementary tools and procedures, e.g. GNUplot, Mathematica, Maxima, operating
system Linux. Last but least, the thesis was written in the typesetting system LATEXwhich
was unknown to the author of the thesis before. Along with these essential software tools,
the author had to study new topic from mathematics, physics and statistical physics and
non-conventional bit manipulation techniques used in the cellular automata programs.
We believe that also this secondary goal has been achieved to appropriate extent.

The organization of the thesis is as follows. In the chapter 2 we introduce the notion
of cellular automaton, supplemented with brief history, compare cellular automata to
standard discretization of partial differential equations and show how the solution of
simple heat equation can be found using standard numerical techniques (in C++). Then
we classify all one-dimensional cellular automata according to Wolfram and briefly sketch
some differences in two-dimensional case.

Chapter 3 deals with the Navier-Stokes equation, we present a simple derivation of
this equation using the tensorial apparatus. In chapter 4 we present the simplest and
historically the first lattice-gas cellular automaton, referred to as the HPP model. After
discussing its drawback, we turn immediately to a more advanced FHP model in chapter
5.

In chapter 6 we explain the relation of cellular automata and, in particular, the FHP
automaton to the solutions of the Navier-Stokes equation. Following closely publication



[29], we show only the main steps in the derivation of macroscopic limit of FHP model,
trying to preserve the main idea.

All results are then collected in the chapter 7, where we present images generated
by our program. Also we explain the basic properties of airfoils which we used as the
obstacles for investigation of the turbulent flow past them. The final images represented
in variety of ways for better understanding of the problem can be found in the appendices.
In the appendix, also a brief introduction to the theory of rotation groups can be found.
The rotational symmetry is a crucial issue behind the theoretical justification of validity
of FHP model. For this reason, we have, together with the supervisor, written this text
on rotational groups. However, for the lack of space in the thesis, the connection between
rotation groups and cellular automata is not spelled in full details; hence, this text has
been relegated to the appendix.





Chapter 2

Cellular Automata

2.1 Definition

Cellular automaton (henceforth CA) is mathematical model used in different branches
of science and engineering. Generally, CA is a collection of elements which take on k
possible values in discrete time and space according to the existing rules. Space can
be represented by a regular lattice of sites and update rules in this case are defined by
values of neighboring sites. This thesis is not purely mathematical but we believe that
mathematical precision in certain cases is necessary and, thus, we introduce also the
mathematical ideas behind the cellular automata and geometry. In our treatment of CA,
we follow publications [29] with reference to [14].

In general case, the space can represented by D-dimensional Euclidean lattice of sites
L = ZD. Finite set of possible states of each cell will be denoted by Q, Q = {q1, q2, ..., qk},
where qk the one of the state. As noted above, update rules for the considered site are
defined by values of neighboring sites. The coordinates of neighboring sites n form the
neighborhood set N ⊂ ZD, n ∈ N . N includes also the coordinates of considered site.

A mapping f : N 7→ Q is called a local configuration. Put it in other way, we
assign one possible state to the site from N , f(n) = qk. The evolution of a cell is
completely determined by its local rule r : QN 7→ Q, where QN is the set of all mappings
f : N 7→ Q, i.e. the values set of neighboring sites and value of considered site at
time t determine the value of considered site at time t + 1. In more detail, QN can be
written as QN = {f : N 7→ Q} = {{n1, qk}; {n2, qk}; ...; {nr, qk}}, where r is, for example,
neighborhood range (see below), qk is value we assign by mapping f .

The global configuration of a CA at a certain time is called a global configuration g.
The global configuration g at time t leads to a new global configuration g′ at time t + 1
whereby all cells enter a new state according to the local rule synchronously. Recall that
time in CA is discrete.

2.2 A short history

First people who proposed the concept of cellular automata were John von Neumann and
Stanislaw Ulam in the 1940’s. John von Neumann proposed a self-reproducing cellular
automaton [26] which at the same time realized a universal Turing machine [24]. In order
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to accomplish these ends, Stanislaw Ulam advised von Neumann to use more abstract
matematical lattice vortex model, similar he used in his studies the growth of crystals.
Thus, through the Neumann-Ulam team work was to create the first cellular automaton.
This CA had a two-dimensional orthogonal lattice. They used Moore neighborhood (see
below) with 29 states per cell.

The most popular version of two-dimensional CA is the Game of life introduced by
John H. Conway in 1970s and popularized by Martin Gardner [9]. Each cell has two
possible states: alive or dead. The update rules set includes:

1. cell stays alive if the cell has two or three living neighbours;

2. dead cell becomes alive if the cell has exactly 3 living neighbours;

3. alive cell becomes dead if the cell has fewer than 2 living neighbours;

4. alive cell becomes dead if the cell has more than 3 living neighbours.

In 1973, the so-called HPP model was proposed by Hardy, de Pazzis and Pomeau [11].
It was the first lattice gas cellular automata (LGCA) with the purpose to simulate the
fluid flow and other physical problems. Unfortunately, this model does not lead to the
Navier-Stokes equation in the macroscopic limit.

In 1986, it was discovered that a CA over a lattice with hexagonal symmetry leads
to the Navier-Stokes equation in the macroscopic limit. This model was introduced by
Frisch, Hasslacher, and Pomeau in the scientific paper [7] and was named FHP model,
according to the initials of these three authors. The theoretical foundations of lattice gas
automata were given soon after in [22] and [8].

2.3 One-dimensional cellular automata
The one-dimensional cellular automata consist of uniform sites or cells arranged in a row
where each cell i has the finite number of states(values) k, at any time t. We designate
the state of i-th cell at time t by symbol ati. Each cell changes its state in time, in general,
by the rule

ati = F [at−1
i−r , ...a

t−1
i , ...at−1

i+r ],

which is to say that the new cell state depends only on the state of the i-th cell and the
r (range) neighbors to the left and right at the previous time level t − 1 . [29, page 18].
F in this case, is called update rule. An alternative formulation of the update rule reads

ati = f

[
j=r∑
j=−r

αja
t−1
i+j

]
, (2.1)

where the αj are integer constants. [29, page 18]
The simplest of one-dimensional CA would be with two possible states per cell like

the figure 2.1 shows. For example, very simple update rule for this CA can be given like

ati = (at−1
i−1 + at−1

i+1) mod 2 .



Mod 2 indicates that the remainder 0 or 1 after the division by 2 is taken. [21]

1 1 1 1 1 1 1 10 0 0 0

Figure 2.1: One-dimensional lattice

Lattice gas cellular automata is one of CA models which can be used for partial
differential equations solving. Now we will show that LGCA can be used as discrete
model of partial differential equations. As an example, consider the diffusion equation.
We begin with the definition of the Laplace operator.

2.3.1 The Laplace operator

In many areas of physics and mathematics (and in particular in the fluid dynamics) we
often encounter the so-called Laplace operator. The Laplace operator is a generalization
of the second derivative for functions of many variables. In two dimensions, it is defined
by

∆ =
∂2

∂x2
+

∂2

∂y2
.

This notation means that, applied to any function f(x, y) the Laplacian of f is

∆f =
∂2f

∂x2
+
∂2f

∂y2
.

Clearly, the Laplace operator in one dimension is simply

∆f =
∂2f

∂x2
.

Thus, in one dimension with coordinate x, the Laplace operator is simply second partial
derivative with respect to x. For this reason we occasionally write ∆ instead of ∂2f

∂x2
even

in one dimension.

2.3.2 Diffusion equation

Suppose we have a rod which is able to conduct the heat. Let the length of the rod be L
and we introduce coordinate x along the rod. Since we assume that the rod can conduct
the heat, we can associate the temperature with each point of the rod. This temperature
will be described by function

u = u(x, t),

where t is time and x is the position on the rod.
In other words, each point of the rod with coordinate x has temperature u(t, x) at

time t. We will suppose that the rod has some initial temperature at time t = 0. The
initial temperature is represented by a given function u0(x), so that



u0(x) = u(x, 0)

We emphasize that function u0 must be given and comprises the so-called initial
conditions for the problem of heat conduction. The question is: suppose we have an
initial distribution of the temperature at time t = 0 given by function u0. How will this
distribution evolve in time? Can we find the temperature of the rod in arbitrary point at
arbitrary later time t > 0? Well, we need an equation which describes this process. The
equation is called the heat equation and it can be derived quite rigorously using basic
physical assumptions. Here we state the results. The heat equation is

∂u

∂t
= α∆u,

where ∆ is the Laplace operator in one dimension.
We know that the derivative of f(x) is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

but computer is not be able to work with the limits, hence we will work with equation

f ′(x) =
f(x+ h)− f(x)

h
,

where h will acquire a very small value.
If we relax the limit, we will work with discrete values, so we can write

u(t, x)→ ui,j = u(ti, xj),

where i and j are indices acquiring discrete values.
For simplicity, constant α in our heat equation will be set to 1, so we have

∂u

∂t
= ∆u, (2.2)

or, equivalently

∂u

∂t
=
∂2u

∂x2
.

Now, let us find the discretized version of the diffusion equation (2.2). Derivative with
respect to time reads

∂u

∂t
=
ui+1,j − ui,j

h
= (ut)i,j.

Similarly, the derivative with respect to coordinate x is approximated by the difference
equation

∂u

∂x
=
ui,j+1 − ui,j

k
= (ux)i,j,



where k is the constant analogous to h. However, we need the second derivative with
respect to coordinate x,

∂u2

∂x2
=

(ux)i,j+1 − (ux)i,j
k

,

Expanding this relation, we find

(uxx)i,j =
ui,j+2 − 2ui,j+1 + ui,j

k2
. (2.3)

Please note that, for evaluating the second derivative, we need values of our function
at the points with the distance 2. In order to make expression (2.3) more symmetric
with respect to the point at which the derivative is evaluated, we approximate the second
derivative by

(uxx)i,j =
ui,j+1 − 2ui,j + ui,j−1

k2
.

Next we rewrite the equation of heat using approximate expressions for the derivatives,

ui+1,j − ui,j
h

=
ui,j+2 − 2ui,j+1 + ui,j

k2
,

or, after obvious arrangements,

ui+1,j = ui,j +
h

k2
(ui,j+2 − 2ui,j+1 + ui,j).

It can be shown that the ratio of h/k2 must be smaller than 0.5, otherwise the behavior
of the solution is very difficult to predict, as we show in the next section.

Let us write the equation symmetrically with respect to the cell i,

ui,j = ui−1,j +
h

k2
(ui−1,j+1 − 2ui−1,j + ui−1,j−1), (2.4)

which can be brought into the form

ui,j = f [
k=1∑
k=−1

αju
i−1
j+k].

This equation is of the same form as the equation (2.1) which defines the update rule. [29,
page 21]

As noted above, only special types of cellular automata, for example LGCA provide
discrete models for partial differential equations. The connection between the differential
equations and lattice gas automata is not formal but deeply rooted in the ground of
conservation laws. [29, page 21]



2.4 Numerical solution of the diffusion equation
In this section we briefly present numerical solution of the diffusion equation (2.2). The
purpose is to illustrate the behavior of discretized differential equations so that we can
appreciate differences between cellular automata and differential equations later on.

Equation (2.2) does not have a unique solution and in order to obtain one, we have
to specify the boundary and the initial conditions. As we explained in section 2.3.2, the
rod is assumed to have some initial distribution of the temperature at the beginning, this
distribution being provided by function

u(0, x) = u0(x). (2.5)

Without the loss of generality we suppose that the length of the rod is L = 2 and its
center is located at x = 0, so that the rod coincides with the interval

x ∈ [−1, 1]

on the real axis. Equation (2.5) then represents the initial conditions for the diffusion
equation.

Mathematically, the need for specifying the initial conditions can be see from the
discretized version of the diffusion equation (2.4). The value of temperature at (discrete)
time i at the position j is determined by the values at earlier time i− 1. Since we cannot
continue infinitely to times i−2, i−3, . . . , there must be a time in which the temperature
is given. For convenience, we choose i = 0 as the initial time.

Equation (2.4), however, shows yet another feature. If the left end of the rod corre-
sponds to the position j = 0, then, according to (2.4), the temperature of this point at
time i is determined by temperatures (at time i− 1) at points j = 1, j = 0 and j = −1.
The point j = −1 does not lie in the rod and so the diffusion equation, in fact, does not
tell us how the temperature of the end points will evolve in time. We have to supply also
the boundary conditions, i.e. we have to prescribe the temperature of the end points at
every time.

There are two types of boundary conditions we usually impose. Fixing the temper-
ature on the end points corresponds to the choice of the so-called Dirichlet boundary
conditions. Another possibility is to fix the flux of the heat. In this case the temperature
can vary at the endpoints, but the amount of outgoing heat is prescribed. These condi-
tions are called von Neumann boundary conditions. In our illustration we deal with the
Dirichlet boundary conditions only.

Our simple program written in C-language works as follows. We consider grid (matrix)
uij of dimension M ×N , the indices i and j acquire values

i = 0, 1, . . .M − 1, j = 0, 1, . . . N − 1. (2.6)

The matrix element uij is the temperature of the rod at time i at the position j. The
actual position represented by index j is

xj = −1 + j
2

N − 1
, (2.7)

so that x0 = −1 and xN−1 = 1 are the endpoints of the rod.



Let us turn to the initial and boundary conditions. First we define function

u0 : [−1, 1] 7→ R+, (2.8)

which defines the initial distribution of the temperature. Then the values u0(−1) and
u0(1) serve as fixed temperatures at the endpoints of the rod, i.e. we prescribe Dirichlet
boundary conditions

ui,0 = u0(−1), ui,N−1 = u0(1). (2.9)

After specifying the initial and boundary conditions, we solve the equation on entire grid
ui,j and corresponding C-code is listed in the appendix C.1.

To see how the diffusion equation works, let us start with the very sharp initial profile
of the temperature distribution as shown in figure 2.2. This profile is given by function

u0(x) = e−x
2/100, (2.10)

so that it represents (not normalized) Gaussian curve. In the middle of the rod (x = 0),
the curve acquires its maximum value 1 and in the neighborhood it decreases rapidly, so
that it effectively reaches zero at the endpoint. Using the Dirichlet boundary conditions,
the endpoints are held at zero temperature during the calculation. Here, zero temperature
does not mean literally that the endpoints have temperature of absolute zero, 0 kelvins.
Notice that the diffusion equation (2.2) contains only the derivatives of u and so if some
u is a solution, then any u+ constant is also a solution. Thus, from any solution u with
boundary temperature t0 we can form solution u − t0 with zero boundary temperature
and vice versa.

Physically we expect that since the rod is hot in the middle and cold on the boundaries,
the heat will flow from the middle towards the ends of the rod. In other words, the
temperature in the middle of the rod will be decreasing and the temperature of the
nearby points will increase. But, since the endpoints have constant zero temperature,
there will always be a flux of the heat through the endpoints, the heat will dissipate,
and in the final state the temperature will be zero everywhere. Evolution in figure 2.2
shows that this is indeed the case. The initially sharp profile gets wider and wider and
the maximum decreases until the temperature vanishes everywhere on the rod.

Another example is shown in figure 2.3 and we leave the physical interpretation of
this process to the reader.
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Figure 2.2: Solution of the diffusion equation for very sharp initial profile.
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Figure 2.3: Solution of the diffusion equation for different initial profile.



2.5 Rules for one dimensional CA
Since the cellular automaton is a discrete and finite system, it has only finite number of
possible states. In the case of one-dimensional cellular automaton with two states and
such that each cell interacts only with its two neighbors, it is easy to calculate the total
number of possible automata. By definition, the updated state of the cell depends on
three binary numbers: 1 state of the cell itself and two states of neighboring cells. Three
cells can be in 23 = 8 possible different states. To each triple of cells we can assign two
possible values of the updated state which gives us 28 = 256 possible cellular automata.
The rules for cellular automata can be encoded into single integer r, 0 ≤ r ≤ 255, in a
following way.

Let r be such an integer. Its binary representation has 8 digits, i.e.

r = r7 r6 r5 r4 r3 r2 r1 r0|2, e.g. 123 = 111101|2. (2.11)

Now, we have eight possible states of the triple of the cells, where the middle cell is the
one we want to update and remaining two cells are its neighbors. Let’s denote them as

0 = 000, 1 = 001, 2 = 010, 3 = 011, 4 = 100, 5 = 101, 6 = 110, 7 = 111.
(2.12)

If we understand the number r as the rule for cellular automaton, we interpret its binary
digit ri as a new updated state of the middle cell represented by number i. or example,
if r = 123, we have

000
r07−→ 1, 001

r17−→ 0, 010
r27−→ 1, 011

r37−→ 1,

100
r47−→ 1, 101

r57−→ 1, 110
r67−→ 1, 111

r77−→ 1.

In the scheme above, on the left hand side of each assignment we have the triple of cells
and we want to update the state of the middle cell. The state of the triple is replaced by
a number i from 0 to 7 according to (2.12). The digit ri is then a new state of the cell in
the middle. In this way, number r determines the cellular automaton completely.

All 256 automata are shown in figures C.1–C.8. We plotted these figures using the
program in C++ and script in GNU-plot. The code and illustration are listed in the
appendix C.2.

2.6 Two-dimensional cellular automata
The two-dimensional cellular automaton is more complicated model because we can use
various kinds of cell’s form and choose between other configurations of neighborhoods.
Among many different choices of the cell neighborhoods, the two are the most common.
In general we can define Von Neumann neighborhood of range r

Ni,j = {(k, l) ∈ L | |k − i|+ |l − j| ≤ r}

and the Moore neighborhood of range r

Ni,j = {(k, l) ∈ L | |k − i| ≤ r ∧ |l − j| ≤ r} ,



where i, j are coordinates of a cell for which we find a neighborhood, k, l are coordinate
of neighboring cells. In the figure 2.4, we show the neighborhoods type for r = 1.

Moore neighborhoodvon Neumann neighborhood

Figure 2.4: Kinds of neighborhoods

As has been noted above, the one example of 2D CA is a “Game of Life” introduced by
Conway in 70s. This model of CA(Moore neighborhood) represents an elegant example
of self-reproducing system with simple rules. This game was a first published by Martin
Gardner in the issue of Scientific American [9]. Currently, many of patterns which can be
find in this model are used in other, non-matematical disciplines, like sociology, biology,
chemistry etc.

2.7 Lattice gas cellular automata
Knowing all of the above, we can ask what properties should have a cellular automaton
in order to simulate real physical processes, in particular for the flow simulation. We
define the basic patterns which cellular automaton must comply to [29]

1. The Navier-Stokes equation, for example, expresses the conservation of mass and mo-
mentum. [29, page 36] The cellular automata used for simulation should hold corre-
sponding conserved quantities. [29, page 36]

2. Required model of CA must enable transport of information similar to a non-equilibri-
um physical phenomena.

3. The desired physical behavior of a lattice-gas cellular automata will show up in the
macroscopic limit which can be derived from a theory of statistical mechanics on a
lattice. The application of certain concepts of statistical mechanics requires that the
microdynamics, i.e. the update rules, are reversible. [?, page 37]

Programmed cellular automaton that meets all of these criteria is a very complicated
problem. In order to meet these requirements, LGCA upgrade process is divided into
two stages, collision and propagation. Collision, by analogy with update rules of CA,
sets a new cell value based on the values of neighboring cells, and propagation ensures
distribution of system properties. Consider some CA model which, more or less, meets
all of these criteria.



Chapter 3

Navier-Stokes equations

3.1 Tensor transformation

In virtue of symmetries and rotation group theory which we considered we can proceed
to describe of the processes occurring in liquids and gases. In hydrodynamics to describe
the motion of fluid used the system of differential equations called the Navier-Stokes
equations named after Claude-Louis Navier and George Gabriel Stokes. Given system of
equations for an incompressible fluid consists of the equations of motion and continuity
equations. Existence of smooth solution of the Navier-Stokes equations is on the list of
the so-called millennium prize problems. The key problem in solving the equation is its
nonlinear nature.

First let’s consider the isotropic situation where we represent the fluid by velocity
field V = V(t, r). For fluid of rest V = 0. Isotropy property means uniformity in all
direction, in simple terms we can not define the distinguished orientation in the liquid.
Assume the plate with area dS in a isotropic liquid, where dS = ndS. In the picture 3.1
the plate is shown schematically, where the wells of the vessel has no influences isotropy.
Consider the forces operating on the plate.

dS

n

Figure 3.1: Distinguished direction

We can define the one distinquished direction n in the isotropic liquid which is irrel-
evant with envirmoment properties. Accordingly we can write

dF ∼ dS ∼ n, (3.1)
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where the proportionality constant is pressure P with the opposite sign, because the
pressure acting in opposite direction. We have

P =
dF

dS
, (3.2)

dF = −P dS, (3.3)

or using the isotropic tensor we can write by the components

dFi = −P δijdSj. (3.4)

Let us consider anisotropic situation. In the picture 3.2 is schematically shown the plate
in the anisotropic liquid. Anisotropy is represent by streamline in relation to which the
velocities are tangential.

V(t, r)

n

Figure 3.2: Anisotropic situation

In this case the pressure is depend on the plate orientation, so we can not express the
pressure how in was in isotropy situation. Strive express the pressure otherwise. Let us
consider the element of liquid in the form of tetrahedron. 3.3

z

y

x

dS

Figure 3.3: Element of liquid

For convenience in operation we select the element of liquid first and than select the
coordinate system. In anisotropic situation we can resolve the force F which act on the
forward side into component in our coordinate system, see figure 3.4.
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Figure 3.4: Decomposition of the force dF

In this case the force F reads

dF = dFx + dFy + dFz, (3.5)

or using matrix form

F =

Fx 0 0
0 Fy 0
0 0 Fz

 (3.6)

Note, in our selected coordinate system the matrix is diagonal. Also we have the relation
S = n dS, where n has form

n = (nx, ny, nz). (3.7)

Using it we can represent the pressure by components

σx =
dFx
dSx

, σy =
dFy
dSy

, σz =
dFz
dSz

. (3.8)

Consequently the force components reads

dFx = σx dSx, dFy = σy dSy, dFz = σz dSz, (3.9)

or acquiring the matrix of stress tensor σ

σ =

σx 0 0
0 σy 0
0 0 σz

 , (3.10)

we can write

dFi = σijdSj. (3.11)



So far, we have employed the coordinate system adapted to the selected element, i.e.
we have chosen the axes so that the coordinate planes coincided with the faces of the
volume element. However, the orientation of the volume element will vary from point
to point so we have either to introduce curvilinear coordinates adapted to the volume
element at each point, or, if we want to keep single Cartesian coordinate system, we have
to find description of the element which is not aligned with the coordinate axes. Here we
choose the latter possibility.

It is clear that, at each point (x, y, z), we can introduce a local Cartesian coordinates
(x′, y′, z′) aligned to volume element at that point. Any two Cartesian systems at given
point are related by a rotation. For a comprehensive review on rotations and their group
properties, see appendix B. Hence, there exists a rotation which sends one Cartesian
system into the other one,

R : (x′, y′, z′) 7→ (x, y, z) (3.12)

Since we already know description of the stresses in aligned coordinates in terms of
diagonal matrix σik, and we know that the force is a vector and transforms in a definite
way under rotations, we can write

dF ′i = RijdFj = RijσijdSk = RijσjkRlkdS
′
l, (3.13)

where dF ′i is force component in our coordinate system and dFj is force component in
element’s coordinate system. Then we have

Rij σjk Rlk dS ′l = σ′il dS
′
l. (3.14)

Thus, we see that, under the rotation, the components of the matrix σik transform as

σ′il = Rij σjk Rlk.

This relation actually says that σik behaves as a tensor under rotations. Using the
orthogonality of the rotation matrix Rik, c.f. (B.36), we can invert the last relation to
find

σik = Rji σ
′
jlRlk. (3.15)

To conclude, we have shown that the matrix σik is in fact the matrix of the components
of the tensor. This tensor is called stress tensor and described the pressure exerted on
the infinitesimal surface of arbitrary orientation.
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Figure 3.5: Two coordinate systems

3.2 Derivation of the Navier-Stokes equation

For the derivation of the Navier-Stokes equation we use the following theorem. If law
of conservation of angular momentum applies then σij = σji. Let’s consider Newton’s
second law

F = m a. (3.16)

Divided both sides of the equation by V we have the equations of motion for the contin-
uum,

f = ρ
dV

dt
, (3.17)

where f is the force density defined by

f ≡ dF

dt
.

We are concerned with the surface forces acting on the liquid. For the surface force we
can fing the relation

fi =
∂σik
∂Xk

, (3.18)

Note, that the force (force density) does not depend just on the value at one point, but
depends on point-to-point change of the stress tensor. Substituting the surface forces
into the equations of motion (3.17) we find

fi = ρ
dVi
dt

=
∂σik
∂Xk

. (3.19)



Let us consider the isotropic liquid. In this case, the stress tensor should be isotropic,

σik = A× δik, (3.20)

where A can be constant or function to be determined. We know that

dFi = −PdSi = −PδijdSj ⇒ σik = −Pδik, (3.21)

substitute the stress tensor in the motion equation

ρ
dV

dt
=
∂σik
∂Xk

= − ∂

∂Xk

(Pδik) = − ∂P
∂Xi

, (3.22)

or in a vector form

ρ
dV

dt
= − gradP. (3.23)

This equation is known as Euler equation of ideal liquid. It is one of the fundamental
equations of hydrodynamics. However, because of the isotropy assumed in this equation,
we have neglected the viscosity of the fluid. The viscosity is an essential feature of real
fluid and, therefore, the Euler equation (6.34) describes unreasonably idealized situation.
It can be shown, for example, that if the initial conditions for the Euler equation do not
contain vortices, they will never appear during the time evolution of the fluid driven by
the Euler equation. Thus, although the Euler equation can describe whirling fluid (if the
initial conditions are chosen appropriately), it cannot describe the transition from the
laminar flow to the turbulent one.

Another property of the fluid we have imposed above is the incompressibility. This is
also a restriction because real fluid are compressible and this compressibility is apparent
when the speed of the fluid compares to the speed of the sound. On the other hand, in
the regime of the small speed, the compressibility of the fluids is negligible and since, in
practice, we deal with fluids moving with small velocities, the assumption of the incom-
pressibility is very accurate. In other other words, it is not the issue of compressibility
which makes the Euler equation useless; it is the assumption of zero viscosity.

Much more realistic description of the flow is provided by the Navier-Stokes equation
to be derived now. In the presence of viscosity, the fluid at motion cannot be regarded
as isotropic environment anymore. (While both viscid and inviscid fluids at rest are
isotropic) In order to take the viscosity into account, we have to modify the stress tensor
(3.20). This can be done either on the phenomenological or microscopic level. In the
latter approach, we would have to look at individual molecules constituting the fluid,
calculate the interactions between them and impose some reasonable approximation in
order to find effective friction between the layers. Here we sketch briefly the construction
of the Navier-Stokes equation in a phenomenological way.

First, the stress tensor for the fluid at rest must reduce to the isotropic stress tensor
(3.20) and, hence, it will be of the form

σik = −P δik + viscous terms. (3.24)

The origin of the viscosity lies in the effect of friction between the neighboring layers of the
fluid moving with different velocities. If the two layers are moving with the same speed,



the friction is supposed to vanish. That means that the stress tensor cannot depend on
the velocities themselves but rather on the rate of change of the velocity as passing from
one layer to another one. In other words, it must depend on the derivatives of the velocity
field, i.e. it must be composed of the tensor ∂iVk. However, the aforementioned general
theorem states that the stress tensor must be symmetric, while the tensor ∂iVk is not1.
In order to get symmetric tensor, we have to form the symmetric combination

∂iVk + ∂kVi. (3.25)

It is obvious that such object is indeed symmetric, for the interchange of the indices i↔ k
yields

∂kVi + ∂iVk = ∂iVk + ∂kVi. (3.26)

Based on these considerations, we postulate the stress tensor in the form

σik = −P δik + ξ (∂iVk + ∂kVi) , (3.27)

where ξ is a constant. The value of constant ξ can be, in principle, computed from the
microscopic model or, more easily, it can be measured in the experiment.

For the derivation of the Navier-Stokes equation in which viscosity of liquid is taken
into consideration, we should consider the anisotropic case. In this case stress tensor have
the form

σik = Pδik + ξ(∂iVk + ∂kVi). (3.28)

Inserting this tensor into the equations of motion (3.19) for the incompressible liquid, i.e.
ρ = constant, which implies divV ≡ ∂iVi = 0, we write the Navier-Stokes equation in the
form

ρ
dVi
dt

=
∂σik
∂Xk

= − ∂

∂Xk

(Pδik + ξ(∂iVk + ∂kVi)) = − ∂P
∂Xi

+ ξ∂k∂kVi. (3.29)

The operator ∂k∂k which appeared on the right hand side is, in fact, the Laplace operator

∂k∂k =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
≡ ∆, (3.30)

so that the Navier-Stokes equation can be rewritten in the index-free notation as

ρ
dV

dt
= −gradP + ξ∆V. (3.31)

1Symmetric tensor must satisfy σik = σki. This property is not exhibited by ∂iVk, i.e. ∂iVk 6= ∂kVi.
For example,

∂Vx
∂y
6= ∂Vy

∂x
.



Since, by assumption, the fluid is incompressible, density ρ is a constant function and
hence not affected by differential operators and we can multiply the Navier-Stokes equa-
tion with ρ−1, so that we obtain

dV

dt
= − grad p+ ν ∆V, (3.32)

where we have defined the kinematic pressure p and the kinematic viscosity ν by

p =
P

ρ
, ν =

ξ

ρ
. (3.33)



Chapter 4

HPP model

4.1 General propetries
HPP model was proposed in 1973 by Hardy, de Pazzis and Pomeau [29]. It is the first
model of the lattice-gas group models of CA(LGCA) over a square lattice. Each site of
the lattice can contain maximaly four particles, where only the one particle is associated
with the only one of four possible direction. This property is called exclusion principle
and it is characteristic for all lattice-gas cellular automata. Consequently each site of
lattice can be in one of sixteen different states. We will represent it by four bit word,
where "1" means presence of the particle and "0" is absence. All particles in LGCA have
the same mass m (m = 1) and are indistinguishable. [29]

1
90◦

Figure 4.1: Lattice of nodes in HPP model.

It is convenient to split the update of LGCA into two steps: collision and propagation.
The direction of particles propagation is represented by lattice vectors ci (i from 1 to 4).
These vectors can be called the lattice velocities because velocities are given by the lattice
vectors divided by the time step δt which is always set equal to 1 [29].

The collision should conserve mass and momentum while changing the occupation of
the cells. For HPP, there is only one collision configuration when exactly two particles
with opposite directions meat at the node. After collision, the directions of particles

29



momenta are rotated by 90◦. The fact that only two particles participate in the col-
lision leads to the conservation of difference in the number of particles with opposite
momenta. In comparison with the mass and momentum conservation this invariant has
no counterpart in the real world and is named the spurious invariant.

Figure 4.2: Allowed collisions in HPP model.

In the figure 4.3, the update process is shown. Part a) describes the initial state of
the collision where we have two particles with the opposite momenta; b) is the collision
step when the particles change their momenta; c) propagation process after the collision.

a)

b)

c)

Figure 4.3: Update and propagation process of HPP model

Placing particles in 40x40 matrices in random order, in another words, to assign a
number from 0 to 16 to each cell (that means absence of particles for 0 and four particles
simultaneously for 16), we can observe the so-called “speckle”, as it is called, see figure
4.4. On the right-hand side of each matrix is shown the bar in which, according to color
graduation, we can determine the number of particles in each cell. Unfortunately, reader



t = 1 t = 2

Figure 4.4: HPP noise and speckles

can not follow dynamic evolution of “speckle” in the book but if we create the computer
animation, it clearly demonstrates a chaotic behavior of the system.

The evolution E in time is deterministic and proceeds as an alternation of local colli-
sions C (only particles at the same node are involved) and propagation S. [29]

E = S ◦ C,

An important property of this particular LGCA is reversible updating. Indeed, for this
model we can write

I = C2,

where I is identity operator. It means that twofold application of the collision operator
leads back to the initial configuration. The FHP model introduced in chapter 5 does
not have this property because of indeterministic character of the operator C. Thus,
mathematical description of both models is slightly different, as we discuss in the chapter
6.

This model does not lead to the Navier-Stokes equation in the macroscopic limit.
The reason for this is insufficient degree of rotational symmetry of the lattice. Certain
tensors composed of products of the lattice velocities so-called lattice tensors – are not
isotropic over the grid [29]. In chapter 6 we discuss how the Navier-Stokes equation
is recovered from the aforementioned FHP model which overcomes the problem with
rotational symmetry.





Chapter 5

FHP model

5.1 General propetries
As we remarked at the end of the previous chapter, the HPP lattice-gas model does not
lead to the Navier-Stokes equation in the macroscopic limit, therefore this model is not
useful for the flow simulation. The next step in the development of the lattice-gas cellular
automata is the so-called FHP model, over a hexagonal lattice (see figure 5.1) with higher
symmetry. [29, page 53] This model was introduced by Frisch, Hasslacher, and Pomeau in
the scientific paper ”Lattice gas cellular automata for the Navier-Stokes equation, 1986”
and was named according to the initials of these three authors [7].

1. All particles have the same mass m (m=1) and are indistinguishable.

2. The direction of particles propagation is represented by lattice vectors (lattice veloc-
ities) ci (i from 1 to 6).

3. Exclusion principle applies, i.e. a given cell cannot be occupied by two or more
particles with the same velocity.

At given cell, the velocity of a particle can have 6 different directions given by vectors

ci = (cos
π i

3
, sin

π i

3
), i = 1, 2 . . . 6.

One of the major departures from the HPP model is the presence of non-deterministic
rules for head-on collisions. For initial state (i, i + 3) we have two different possible
final states (i + 1, i + 4) or (i − 1, i + 2) and the choice of the final state must be a
random process with equal probabilities for both states. If one chooses always one and
the same final state the model becomes chiral and is no longer invariant with respect
to spatial reflections (parity transformation). This is an undesired property because
the hydrodynamic equations do not break parity symmetry [29, page 54]. In fact, it is a
pseudo random choice. The two-particle collisions conserve not only mass and momentum
but additionally conserve the difference of particles number in opposite directions. This
invariant is not desired because the model will differ from ordinary hydrodynamics in the
large-scale dynamics. The one way to avoid it is to add three-particle collisions where
the initial state (i, i + 3, i + 5) changes to final state (i + 1, i + 4, i + 6). Important
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Figure 5.1: lattice

property of LGCA is that collisions are strictly local, i.e., only particles of the node are
involved [29, page 55].

By adding new collision rules, we get different FHP models, named FHP-I, FHP-II,
FHP-III in relation to the collision rules we use. The 2 or 3 particle collisions rules form
the set of FHP-I model. (These models have the same form and differ only in their
viscosity coefficient, which decreases with increasing number of collisions). [29]

0,5

0,5

2-particle head–on collisions

symmetric 3-particle collision

Figure 5.2: 2-particle and symmetric 3-particle collisions
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Figure 5.3: FHP collisions

The main goal of this thesis was to implement FHP model in appropriate programming
language (we have chosen C++). This goal has been accomplished and we discuss our
program in detail in chapter 7. There in, reader can find the description of the structure
of the program and numerous figures and results that have been obtained by our program.
The full C++ code can be found in the appendix C.3





Chapter 6

Statistical physics of cellular automata

In this chapter we show how the Navier-Stokes equation (3.31) can be obtained as a large
scale limit of the FHP model introduced in chapter 5. In our exposition we follow [29]
closely.

6.1 Statistical ensembles in classical mechanics
In classical mechanics we often encounter systems with huge numbers of degrees of free-
dom like gases or fluids. Although the evolution of such complicated system is driven
by the Hamilton equations [10], it is impossible to solve these equations nor it is possi-
ble to specify the initial conditions with desired accuracy. In order to circumvent this
fundamental obstacle in analyzing the dynamics of complicated systems, the methods
of statistical physics have to be invoked. For an excellent review on statistical physics,
see [17]. Although we do not present classical statistical physics here, we briefly sketch
the main idea behind the concept of statistical ensemble as it plays an important rôle in
the present context of cellular automata.

In the Hamiltonian formulation of classical mechanics, the state of each particle is
described by six numbers: three coordinates of its position and three components of its
momentum. System consisting of N particles is, therefore, described by 6N numbers. It
is important that these numbers are treated as tantamount coordinates on an abstract
space (manifold) called the phase space. In this formalism, the state of entire system is
represented by a single point in the phase space and this point has 6N coordinates. As the
configuration of the system changes in time (positions and momenta are evolving), points
representing evolving state in the phase space form a curve called the phase trajectory.

Now, if the number N is big, e.g. 1023 for typical gas, it is impossible to calculate
the phase trajectory. First, we cannot solve the equations of such enormous complexity,
second, we cannot know the initial conditions for the system exactly. However, there are
points in the phase space which are indistinguishable from the macroscopic point of view.
For example, typical properties of the gas are the volume, pressure and temperature.
Knowing these three quantities, it is irrelevant how exactly the particles are moving and
what their momenta are. Thus, there are infinitely many points in the phase space which
differ in the detailed motion of particles but share the same macroscopic characteristics
like volume, pressure or temperature. We say that the microstates are different but the
macrostates are the same.
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Thus, with each macrostate there is associated the volume in the phase space. This
phase volume contains points representing the same macrostate but many different mi-
crostates.

As the system evolves in time, it changes its macrostate, but we do not know in
what microstate it is and hence we do not know the phase trajectory. Instead, we study
how the initial phase volume evolves, so that, again, at each time we get different phase
volume. The bigger the volume is, the bigger is our uncertainty in the knowledge of the
state of the system. However, there is an important theorem by Liouville stating that,
for conservative systems, the phase volume is constant in time. In fact, this theorem
shows that the phase volume behaves like incompressible fluid which just means that it
is governed by the same equation of continuity like the real fluids do.

Remark. In practice, the Liouville theorem is of little use because, typically, the phase
volume is preserved, but it changes the shape into very complicated fractal structure.
We have to approximate the fractal by the so-called coarse-graining of the phase space
but the volume of this coarse-grained structure will be bigger than the original one.
Hence, although in principle the information we have about the system remains constant
(it is not decreasing), from the practical point of view the information is lost because
the coarse-grained phase volume is growing. This is the root of famous second law
of thermodynamics stating that the entropy of the system never decreases. Beautiful
discussion on the information loss on a fundamental level and on the origin of entropy
can be found in [18] and [23].

The phase volume, i.e. the region of the phase space which contains points representing
given macrostate, is also called the statistical ensemble [17]. We can imagine it like having
infinitely many copies of our system and each copy corresponds to different microstate.
If we need to calculate some macroscopic quantity, e.g. pressure, we have to calculate the
average, mean value. By mean value f̄ of quantity f we usually mean the time average,

f̄ = lim
T→∞

1

T

T∫
0

f(t) dt. (6.1)

In other words, one can measure the quantity f during sufficiently long time interval T
and then calculate the average. In statistical physics, however, the average is calculated
through the ensemble. That means, we have infinitely many copies of our system in
the ensemble and each has slightly different pressure. We calculate the average of the
pressure in the ensemble and the result will be actual mean value of the pressure in
our real physical system. Each microstate in the ensemble has associated probability
density ρ which is a function of phase space variables q (3N−tuple of coordinates) and p
(3N−tuple of momenta). The ensemble average is then obtained by

〈f〉 =
1

Z

∫
f(q, p) ρ(q, p) dq dp, (6.2)

where Z is the normalization constant, usually called the partition function. It is the
content of ergodic hypothesis that the time average is the same as the ensemble average,

〈f〉 = f̄ . (6.3)



This hypothesis is a deep mathematical problem. It was proven in many situations
which apply to physical needs, in other cases it is known that ergodicity is violated.
For introduction to ergodic theory, see [27], for a review on the ergodicity in classical
mechanics we recommend [4].

6.2 Phase space of cellular automata
After the explanation of what that statistical ensemble and phase space is in the phys-
ical context (where these notions first arose), we can now turn our attention to cellular
automata.

Let L be the lattice of lattice-gas cellular automaton. In order to simulate infinite
lattice, we impose periodic boundary conditions. Each node of the lattice consists of six
cells to be labeled by index i = 0, 1, . . . 5. By symbol ni(t, r) we denote the state of i−th
cell in the node with the position vector r at time t. Function ni is boolean valued, i.e.
it acquires value 1 if the cell is occupied and 0 otherwise. In other words, if the node
with the position vector r (at time t) contains particle moving with the velocity ci, then
ni(t, r) = 1 (refer to chapter 5 for the definition of ci).In order to describe the transition
from state at time t to state at time t+ 1 we introduce the collision function ∆i defined
by

ni(t+ 1, r + ci) = ni(t, r) + ∆i. (6.4)

By the state of the lattice we mean the collection of values ni(t, r) for all nodes at
given time. The set of all possible states will be denoted by Γ and referred to as the phase
space of the automaton considered. The elements of Γ will be denoted by s, s′, s′′, . . . . If
the lattice is in state s ∈ Γ, the state of individual node with the position vector r will be
denoted by s(r). In other words, state s is determined by the states s(r) for all possible
values of r.

Since the lattice will be typically very big, we have to employ the statistical approach.
Hence, let the symbol

P (t, s), s ∈ Γ, (6.5)

denote the probability that lattice L is in the state s at the time t. The probability
distribution at the initial time t = 0 is normalized by the condition∑

s∈Γ

P (0, s) = 1. (6.6)

This is usual condition expressing the fact that the lattice is in some state for sure.
We introduce the operators S : Γ 7→ Γ and C : Γ 7→ Γ on the phase space of

the automaton like in the section 4.1. That is, C represents the collisions and S the
propagation, so that

E = S ◦ C (6.7)

is the evolution operator. Suppose s ∈ Γ is an arbitrary state. Each particle in this state
is moving with some velocity and after one time step each particle moves to neighboring



cell; this new state is denoted by Ss. Operator C acts in such a way that if there is
no collision configuration, the state Cs = s. Otherwise, in each cell where the collision
happens is updated according to the rules of particular model. Notice that operator
C does not change the position of particles, merely the direction of velocities. Both
operators C and S are invertible.

Now, if s′ is the state at time t with the probability P (t, s′), this state evolves into
new state Es′ which, consequently, has the same probability:

P (t, s′) = P (t+ 1, Es′) or P (t+ 1,SCs′) = P (t, s′). (6.8)

Let us write the state s′ in the form s′ = C−1s, where the invertibility of C has been used.
The last equation then reads

P (t+ 1,Ss) = P (t, C−1s). (6.9)

Equation

P (t+ 1, Es) = P (t, s) (6.10)

is the expression of the fact that the probabilities are conserved during the evolution. It
is a discrete version of the conservation of the phase volume explained in the section 6.1,
whence we refer to (6.10) as the Liouville theorem.

In the FHP model, however, the collision process is not deterministic and operator C
is not invertible. In such a case, we have to consider all possible outcomes of the collision.
If the lattice is in state s and s(r) is the state of r−th node, there is transition probability

A (s(r)→ s′(r)) (6.11)

that after the collision, the new state of the node will be s′(r), where again s′ ∈ Γ. Hence,
the Liouville equation is replaced by the Chapman-Kolmogorov equation [16]

P (t+ 1,Ss) =
∑
s′∈Γ

∏
r∈L

A (sr → s′r) P (t, s). (6.12)

6.3 Occupation numbers
By observable we mean any quantity which can be calculated when the state of the lattice
is known, i.e. it is arbitrary function f of the state of the lattice:

f = f(s), s ∈ Γ. (6.13)

Similarly to (6.2), we define the ensemble average of quantity f at time t by

〈f(t)〉 =
∑
s∈Γ

P (t, s) f(s). (6.14)

Since we have discrete system now, the probability density ρ in (6.2) is replaced by
the probability distribution P and the integral is replace by the sum; otherwise both
expressions are the same.



An example of observable is the occupation number [29] at node r, i.e. the number
of particles present at the node with the position vector r. We have already introduced
the notation ni(t, r) for the number of particles at the node r with the velocity ci; this
quantity can only take values 0 and 1. The mean occupation number is then

Ni(t, r) = 〈ni(t, r)〉 . (6.15)

The total number at node r is then

ρ(t, r) =
5∑
i=0

〈ni(t, r)〉 . (6.16)

Recall that in the fluid dynamics we introduce the mass density [20] defined as the mass
dm contained in the infinitesimal volume dV . Here, we have discrete system and we are
assuming the unit mass for all particles. Thus, the mass density is simply equal to the
number of particles; that is the reason why we will refer to the mean occupation number
as the mass density and denote it by ρ.

Following this analogy further, we introduce the current density by

j(t, r) =
∑
i

Ni ci, (6.17)

which should be compared to definition j = ρv in hydrodynamics. The physical meaning
of the current is that it represents the momentum density.

The collision function introduced in the equation (6.4) describes the change in the
occupation number because of collisions happening in given node. Since collisions preserve
the number of particles in the node, the mass density is constant during the collision and
so is the total momentum:∑

i

∆i = 0,
∑
i

∆i ci = 0. (6.18)

Applying the sum to equation (6.4), we find∑
i

ni(t+ 1, r + ci) =
∑
i

ni(t, r). (6.19)

Taking the average of the last equation, we get∑
i

Ni(t+ 1, r + ci) =
∑
i

Ni(t, r). (6.20)

In the same way we can derive the relation∑
i

Ni(t+ 1, r + ci) ci =
∑
i

Ni(t, r) ci. (6.21)

So far, we have introduced the notion of (mean) occupation numbers and derived
several constraints imposed by the conservation of the mass and momentum. Now we
are in position to formulate one of the most important result in the theory of lattice-
gas cellular automata. The proof of the theorem can be found in [29] and [8]. In the



statement of the theorem, the equilibrium means that the average occupation numbers
are time independent.

Theorem. Let the automaton be in the equilibrium state and let the mean occupation
numbers Ni be the solutions to the Chapman-Kolmogorov equation (6.12). Then Ni

satisfies the Fermi-Dirac distribution

Ni =
1

1 + eh+q·ci
, (6.22)

where h ∈ R and q is a two-dimensional vector. Conversely, whenever Ni is given by the
Fermi-Dirac distribution, it is a solution to Chapman-Kolmogorov equation.

The term “Fermi-Dirac distribution” comes from quantum physics [15]. The elemen-
tary particles can be divided into the bosons and fermions. The former have integer spin
(0 or 1) and they are mediating non-gravitational interactions. The best known exam-
ple of bosons is the photon, mediator of electromagnetic interaction, another examples
are bosons W and Z (weak interaction) and gluons (strong interaction between quarks).
These particles have the property that all of them can be in the same quantum state.
This can happen at low temperatures when all bosons are trying to occupy the ground
energy state – we talk about the Einstein-Bose condensate [19].

Fermions, on the other hand, are particles with half-integer spin (1/2,3/2) and they
constitute the ordinary matter: electrons, neutrons, protons and others. They cannot
occupy all the same state as is dictated by the Pauli exclusion principle. Thanks to this
principle, the electrons in the atoms are forced to occupy different energy levels which
makes it possible to have different chemical elements. Surprisingly enough, the Pauli
principle is deeply rooted in the geometry of the spacetime [28]. It is also interesting that
although the electrons are fermions, under appropriate circumstances they can combine
into the so-called Cooper pairs. The bound state of two electrons is a boson, however,
and so the Cooper pairs can all occupy the ground state. This is in the hearth of the
Bardeen-Schrieffer-Cooper theory of superconductivity [5].

The system of many fermions (satisfying the Pauli exclusion principle) in thermody-
namical equilibrium is described by the Fermi-Dirac distribution [13]

〈ni〉 =
1

1 + e(εi−µ)/k T
, (6.23)

where ni is the number of fermions occupying the state with energy εi, µ is the so-called
Fermi energy, k is the Boltzmann constant and T is the thermodynamical temperature
of the fermion “gas”. We can see that the Fermi-Dirac distribution for fermions has the
same for as the distribution for mean occupation number in the cellular automaton. This
is not surprising, however, for the “exclusions principle” is built in the microdynamics of
the cellular automaton: at given node, at most one particle can have velocity in given
direction.

6.4 Emergence of the Navier-Stokes equation
In the rest of this chapter we sketch how the Navier-Stokes equation emerges from the
cellular automaton driven by microdynamics described in chapter 5. We will omit many
important details and calculations which can be found in [29], [7] [8].



Suppose that the initial distribution of ρ (mass density) and j (momentum density)
varies significantly on some large spatial scale. This scale will be denoted by ε−1, so that
the small parameter ε has the dimension of inverse length. The length is measured in
the lattice units so that ε−1 is simultaneously the time scale. According to [29], there are
three distinguished time scales on which three different phenomena take place:

1. scale ε0, relaxation towards the equilibrium state – this is very fast process;

2. scale ε−1, creation of the sound waves and advection – slower, but still relatively
fast process;

3. scale ε−2, diffusion – significantly slower process.

Following [29], we introduce three time variables and two spatial variables by

t?, t1 = ε t?, t2 = ε2 t?, r?, r1 = ε r?. (6.24)

Quantities decorated with the star are discrete, while remaining variables are treated as
continuous, since ε is assumed to be small.

Now, the mean occupation numbers Ni can be expanded into the series of the form

Ni = N0
i + εN1

i +O
(
ε2
)
, (6.25)

where N0
i is the equilibrium value of Ni. In order to describe the evolution of Ni, we

expand Ni(t+ 1, r+ci) into the Taylor series (in both arguments) up to the second order
derivatives:

Ni(t+ 1, r + ci) = Ni(t, r) (O (0) -term)

+
∂Ni

∂t
+
∂Ni

∂xiα
ciα (O (1) -terms)

+
1

2

∂2Ni

∂t2
+

1

2

∂2Ni

∂xiα ∂xiβ
ciα ciβ +

∂2Ni

∂t ∂xiα
ciα (O (2) -terms)

+O (3) . (6.26)

The fact that the relaxation to local equilibrium is very fast process happening on the
time scale ε0 = 1, i.e. in few iterations, means that in order to study the hydrodynamics
in cellular automata, we can neglect processes of order 1. Then the partial derivatives
can be expanded as

∂t = ε ∂
(1)
t + ε2 ∂

(2)
t , ∂α = ε ∂

(1)
t , (6.27)

where we use usual abbreviations for partial derivatives. Substituting all these expansions
into conservation laws (6.20) and (6.21) and neglecting appropriate powers of ε, we find
in the first order [29]

∂
(1)
t

∑
i

N0
i + ∂

(1)
β

∑
i

ciβ N
0
i = 0, (6.28)

∂
(1)
t

∑
i

ciαN
0
i + ∂

(1)
β

∑
i

ciα ciβ N
0
i = 0. (6.29)



Recalling the definition of mass and momentum density, equations (6.16) and (6.17), we
see that the first equation is in fact the continuity equation known from hydrodynamics

∂(1)ρ

∂t
+∇(1) · (ρu) , (6.30)

where the velocity is

uα =
∑
i

ciα. (6.31)

Equation (6.29) resembles the equation of motion for the continuum. It can be written
in the form

∂
(1)
t (ρ uα) + ∂

(1)
β (ρ uβ)P

(0)
αβ = 0, (6.32)

where the equilibrium “stress-energy tensor” is

P
(0)
αβ =

∑
i

ciα ciβ N
0
i . (6.33)

Calculating the components of the stress-energy tensor and comparing it to usual stress-
energy tensor for inviscid fluid [20], it can be shown [29] that equation (6.29) can be
brought into the form

∂u

∂t
+ u · ∇u = −∇P, (6.34)

where the pressure P is given by

P =
ρ

2 ρ0 g(ρ0)
− u2, g(ρ) =

3− ρ
6− ρ. (6.35)

Clearly, equation 6.34 is the Euler equation describing inviscid fluid. Even more cumber-
some calculation of the O (ε2) terms [8, 12] then reveals the Navier-Stokes equation, c.f.
(3.31),

∂u

∂t
+ u · ∇u = −∇P + ν ∆u, (6.36)

where the kinematic viscosity ν is

ν =
νu

g(ρ0)
, (6.37)

and the coefficient νu must be calculated separately for each model.
This completes our brief discussion of how the Navier-Stokes emerges from the micro-

dynamics of the cellular automaton on the large scale.



Chapter 7

Results

In the previous chapters we have introduced several theoretical ideas behind the simula-
tion of the turbulent flow using the cellular automata. In particular, we have focused on
the FHP model which is realistic enough to reproduce the Navier-Stokes equation, as we
have indicated in chapter 6.

The main goal of this thesis was to implement FHP model in appropriate programming
language and perform several simulations of the turbulent flow past the airfoils of arbitrary
shape. This goal has been achieved and, in fact, we have presented some abilities of our
program already in chapter 5 where we have used the results of our program in order to
illustrate basic properties of FHP model.

In this chapter we describe our program in more detail, explain what kind of problems
it is able to solve and we give a brief description of the airfoils we used for the simulations;
the latter is subject of the next section.

7.1 Two-dimensional flow

In previous chapters, we did not discuss three-dimensional lattice-gas cellular automata
since this subject is beyond the scope of the thesis. The review of problems and so-
lutions associated with three-dimensional automata, see [6]. For this reason, we have
implemented only two-dimensional FHP model.

On the other hand, real aeroplanes are, of course, three dimensional objects and so
are the wings. Moreover, the cross sections of the wings are not all same: the shape of
the cross section varies along the wing. Numerical solution of the Navier-Stokes equation
for such realistic and complicated system is overwhelmingly complex, not solvable in the
framework of bachelor thesis.

Nevertheless, for many reasons, it is quite common to study two-dimensional flow.
First, some physical systems indeed behave like two-dimensional. This happens when
the real three-dimensional flow is thick enough, so that the boundary effects can be
neglected, and, in addition, the velocity field looks in the same way in all cuts of the
flow. For example, the flow of the river in the river-basin can have this property: the
flow changes along the basin but is almost independent of the height (or depth). If a
foliation of the flow exists such that the two-dimensional layers of the flow are isometric,
the flow is said to be two-dimensional and is governed by two-dimensional versions of the
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hydrodynamic equations. In other words, although the restriction to two-dimensional
flow may look as unphysical simplification, many real systems fall into this category.

Second obvious reason why the study of two-dimensional flow is of interest is that it is
much easier to analyze it using the analytical methods. For stationary two-dimensional
flow there exists well understood theory in which it is possible to obtain exact solutions
of many (in principle, all) problems by virtue of the so-called complex potential and the
vortex panel method. These methods have been reviewed in the thesis [25]. However,
these methods apply only to stationary and inviscid flow which are assumptions much
more restrictive than the dimension of the space. Hence, FHP model overcomes these
drawbacks of usual theory of two-dimensional flow and hence is much more realistic.

We have mentioned that real aeroplanes and wings are three-dimensional. Restricting
ourselves to two-dimensional models, we must choose a particular cross section of the real
wing and use it as a two-dimensional profile of the wing. This two dimensional profile of
the wing is called airfoil.

In the thesis [25], the problem of stationary flow past arbitrary airfoil has been ad-
dressed and the algorithm for the vortex panel method has been implemented. In this
thesis we make a step towards the analysis of realistic turbulent flow past the arbitrary
airfoil.

7.2 Description of the airfoils
Basic information on the history and construction of the airfoils can be found in numerous
online resources, see, e.g. [1,2]. For the description of the terms used in relation to airfoils,
see [25]. Airfoils gained traction in times of world wars. At the dawn of aviation, these
airfoils were very primitive. Systematization and airfoil theory development permitted
to create a new types of airfoil with novel aerodynamic characteristic. In this chapter,
five different airfoils will be described. They were engineered in various historical periods
and used for a different types of aircraft, from recreation high-wing monoplane to the
trainer fighter. The figures used in this section are taken from [3] and complemented by
the author of the thesis.

The first airfoil to be considered here is NACA-2418, shown in figure 7.1, which belongs
to four-digit series airfoils. Nationally Advisory Commitee For Aeronautics (NACA) was
the first institution which began to systematize different types of airfoils, having developed
a symbol system for them. This system permits to obtain basic information about airfoil
from its name. The majority of parameters are represented as the percentage of the
chord. Let us introduce this system on the example of NACA-2418 profile.

1. The first digit represents a maximum camber which is the maximum distance between
chord and midline of an airfoil. In our case, maximum camber is equal to 2%,

2. The second digit represents a point on the chord of maximum camber from the leading
edge in tens of percents of the chord. In our case, the maximum camber is placed over
the distance 0.4 (40%) from the leading edge,

3. The third and the forth digits represent the maximal thickness which is the maximum
distance between upper and lower surfaces. In our case, maximal thickness is equal to
18%
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Figure 7.1: NACA-2418

The given airfoil has been chosen for review in this thesis because it is used as a root airfoil
in the wing of aircrafts very important for Czech aviation, such as Zlin-526F, Zlin-726
and also for propeller of Sikorski S-61F helicopter.

Another four-digit airfoil which will be considered is NACA-2412, figure 7.2. Based
on the explanation above, we can identify that the difference between airfoils rests in
maximal thickness which is 12 % for this airfoil. This airfoil is of interest because it is
used in Cessna-172 which is nowadays the most produced aircraft in the world. Also, this
airfoil was used in very interesting aircraft – Beriev Be-103, the amphibious aircraft.

Chord line Max. Thickness (12%)
Max. Camber(2%)

Lower surface

Leading edge
Upper surface

Camber line

Trailing edge

40%

Figure 7.2: NACA-2412

Permanent increase of aircraft velocities claims significant decrease of the drag force.
For that purpose, the so called laminar-flow airfoils were engineered. Laminar-flow is
provided by the move aside of maximal thickness point from a leading edge. The first
aircraft which employed the laminar airfoil was American second world war fighter P-51
Mustang. Laminar airfoils form 6 digit series in NACA classification. Let us consider
the 6 digit series on the example of NACA 66,2-(1.8)15.5 which is used in P-51 F aircraft
modification and shown in figure 7.3.

1. The first digit 6 represents the series of airfoil.

2. The second and third digits 6,2 (62%) represent the length of laminar flow as percent-
age of the chord.

3. The fourth and fifth digits 1.8 represent the middle of area with laminar flow and low
drag force on the Cl/Cd diagram.

4. The sixth, seventh and eighth digits 15,5 represent the maximal thickness. (15.5%)
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Figure 7.3: NACA 66,2-(1.8)15.5

Another representative of laminar flow airfoil which we will consider in this thesis is
NACA 64-012, figure 7.4. This airfoil is used as a root airfoil in the Aero L-39 Albatros
wing. This airfoil is symmetrical with maximal thickness equal to 12%.
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Max. Thickness (12%)

Lower surface
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Upper surface

Trailing edge

40%

Laminar flow area

Figure 7.4: NASA 64-012

The last type of airfoil to be considered is Clark YH, figure 7.5. The Clark Y airfoil was
designed in the beginning of twenties by American engineer Virginius E. Clark. The H
letter in the name of airfoil means the turned up trailing edge. Because of its aerodynamic
properties, this airfoil was used in large number of very successful Soviet aircrafts, e.g.
Jakovlev Jak-18T, Jakovlev Jak-52, Ilyushin Il-2 and also was used in Let-11 C which
was a Czechoslovak version of Jakovlev Jak-11. This airfoil is very popular in model
aeroplane flying also because of the flatness of lower surface.

Leading edge

Trailing edge
Lower surface

Upper surface
Camber line

Chord line Max. thickness
Max. camber

Figure 7.5: CLARK YH



7.3 Implementation of FHP model

In this section we describe in some detail the structure of the C++ program we have
created in order to implement FHP model. For the definition of the model (type of the
lattice, collision rules, etc.), refer to the chapter 5.

For the visualization of results we have used programs GNUplot and Mathematica.
Thus, our program creates the data files which can be processed by them and, especially
for GNUplot, it generates appropriate script converting the data files to graphics.

The program consists of two files. The first one is main.cpp in which all func-
tions, definitions of variables and the main body of program are present, the second file,
init_conds.cpp contains definitions of several different initial and boundary conditions.

Let us discuss the parameter which the program can be run with. It is possible to set
the size of the grid and choose whether the grid points should be displayed in the resulting
images. We found it useful to switch the grid points on in the cases where the grid is
small enough, i.e. for demonstrational purposes. Such demonstrational figures are shown
in section 7.4 below. For large grids (number of nodes of order 106), the density of the
grid points is very big and the nodes become indistinguishable and hence not necessary.

Another parameter related to the grid is the density of the coarse-graining. The
coarse-graining is necessary to calculate relevant macroscopic quantities, in particular
the velocities. This procedure is analogous to introducing the “physically infinitesimally
small volume element” in standard hydrodynamics. Thus, we divide the grid into a
number of boxes of size fixed by the parameters of the program; we call them dx and dy.

For convenience in operation, there are some auxiliary parameters affecting the ap-
pearance of resulting images. In the process of coarse-graining, we associate a single
vector of the velocity with each box and this vector is an average computed from indi-
vidual velocities in each cell contained in the box. Thus, if the velocity of single particle
is of order one, the averaged velocity is of the same order but it is associated with bigger
area. The bigger the area is, the smaller is the magnitude of the averaged velocity. While
this has no effect on the physical content of the computation, it is convenient to rescale
the velocities in resulting image in order to get apparently smooth flow. The parameter
scale_factor fulfills this task.

The user of the program can choose whether resulting images will be merged into single
animation (.gif file), how many iterations of the calculation will be skipped between
successive images, the total number of iterations and the type of the plot. We distinguish
three types of plots:

1. vector plot, when the velocity is displayed as vector attached to the center of the
coarse-grained boxes; by appropriate choice of the scale_factor and the dimension
of the grid, the vectors apparently form the flow lines;

2. scalar density plot, in which the magnitude of the velocity is calculated and the
box is displayed with color measuring the magnitude; a bar with the scale is shown
next to such figure;

3. vector density plot, is similar to the previous one, but the color of the point now
reflects also the direction of the velocity, not its magnitude only.
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Figure 7.6: Collision-free motion of particles on the grid of dimension 10× 15.

Examples of all three types of the plots are given below.
Among the physical parameters, the most important one is boundary_conditions

which determines, surprisingly, boundary conditions. Different types of boundary condi-
tions and their physical meaning are described below, in the section 7.4.

We will not describe the algorithms and programming techniques employed but we
will illustrate the capabilities of our program on numerous examples.

7.4 Illustrative examples

Let us start with the free motion when no collisions occur and particles are moving with
constant velocities. We have chosen the initial state of containing six particles moving in
all possible directions, as shown in figure 7.6.

The question, of course, is what happens on the boundary of the grid. In principle,
there are three possibilities which make sense. The most trivial one is that particles
reaching the boundary will leave the grid, they disappear from the system. In such
a case, one needs permanent injection of the particles, otherwise the grid will become
empty after short time. This type of boundary conditions is, in fact, quite physical if
we wish to study the flow past obstacles in the wind tunnel or, if the grid is sufficiently
large, the flow past the obstacles in unbounded space.



The second possible boundary conditions correspond to the fluid in a closed vessel
with impenetrable walls, so that the particle is reflected on the boundary. Disadvantage
of this approach rests in the fact that such closed system does not correspond to usual
physical circumstances. Moreover, the artificial boundaries can have unphysical impact
on the fluid dynamics, as they create the reversed flow of the particles. This flow can
affect the particles inside the box which were not supposed to interact with the flow which
has already passed the obstacle.

This drawback is suppressed by imposing periodic boundary conditions. In this case,
the particle leaving the grid through, say, right boundary reappears on the left bound-
ary with the same velocity. The purpose of such boundary conditions is to imitate the
infinitely large grid by a finite one. For example, the flow past the cylinder with peri-
odic boundary conditions corresponds to infinitely long tunnel with infinite number of
cylinders.

Our program can simulate the “free” boundary conditions when particles leave the
grid for ever and periodic boundary conditions. The “reflecting” boundary conditions are
not implemented as we considered them unphysical but the structure of the program can
be easily modified in order to accommodate such conditions. In what follows we always
specify which boundary conditions have been employed. Examples of free and periodic
boundary conditions are shown in figures 7.7 and 7.8.

Having clarified the free motion of particles and appropriate boundary conditions, we
can turn our attention to the collisions. In figure 7.9 we show two pairs of particles moving
in opposite directions. Recall that the main feature of FHP model is that it preserves
the isotropy of the Navier-Stokes equation. Hence, although both pairs are moving in
horizontal directions, after the collision each pair moves along different direction. For
each collision, the resulting direction is chosen randomly with the probability 1/2. (grid
10× 10)

Let us now consider symmetric 3-particle collisions. In this case, the choice of the
resulting state is given uniquely and hence no random choice is necessary. Thus, in figure
7.10 we can see two collision with the same initial velocities of the particles and both
result in the same post-collision configuration.

The next type is 4-particles collision. In the figure 7.11 are shown two 4-particles
collisions with the same initial velocities of the particles. Let us consider one of them.
After the collision one of two pairs moves along its initial direction, the second pair
acquires the horizontal direction. Similar to 2-particles collision, the resulting direction
for one of two pairs is chosen randomly with the probability 1/2.



Figure 7.7: Motion of free particles (without collisions) with the ingoing flow and free
boundary conditions. Three particles initially located close to the right wall are reaching
the boundary and leaving the grid, while there is an incoming stream of the particle
emerging from the left wall. (grid 20× 15)



Figure 7.8: Motion of free particles (without collisions) with periodic boundary condi-
tions. As can be seen, after reaching the boundary, particles reappear on the opposite
wall. (grid 8× 8)

Figure 7.9: Two particle collisions. In order to preserve the isotropy, directions of particles
after the collision are chosen randomly with the probability 1/2.



Figure 7.10: Symmetric three particle collision.

Figure 7.11: Four particle collision.

In the figure 7.12 is shown the next type of collision, called collision with spectator.
This collision is notable because of the addition to 2-particle collision the one particle
called “spectator”. In contrast to the pair of particles which leave their horizontal direc-
tions, “spectator” moves along its initial direction.

Figure 7.12: Collision with spectator.

The last type of collisions we explain is the rest particle collision. The red point in the



figure 7.13 is particle which does not change its position in time, lattice velocity vanishes;
that is why it is called the “rest-particle”. After the collision with particle having ci they
transform into two particles with ci−1 and ci+1.

Figure 7.13: Rest-particle collision.

According to the number of collisions we use, we get a different kinds of FHP models,
where 2 and 3-particles collisions form the minimal set of collisions for FHP model called
FHP-I. [29, page 54] Adding other collision types to FHP model (called FHP-II, FHP-III)
decreases the viscosity coefficient.

Now, having explained the boundary conditions and types of collisions that we use,
let us consider the obstacles which we immerse into the flow in order to investigate of the
turbulent flow that they produce. The most trivial obstacle is the wall shown in the figures
7.14, 7.4. Let us consider the behavior of the flow at several significant stages. Before the
collision with obstacle, the flow is laminar and has the identical physical properties in each
point. After the collision of the fluid with the wall the process of flowing past the wall
starts. Proximately in front of the obstacle, the flow velocity approaches zero. In time,
the periodic vortex structure behind the obstacle arises. Under the flow development, it
gradually stabilizes.

Under certain condition of flow (certain Reynolds numbers for different obstacles) it
can take on form of the repeating vortices called Kármán vortex street, named in honor
of the engineer and fluid dynamicist Theodore von Kármán.

Next, more advanced example of the obstacle is a sphere (recall that we work in two-
dimensional space), see figure 7.16. In the case of the sphere, the exhibits more smooth
behavior, vortices arise behind the vertical axis of symmetry and, compared to the case
of the wall, outstand with less intensity and chaotic nature. Under the flow development,
it gradually stabilizes, in the same way as for a wall flow.

Type of obstacles of our primary interest is the airfoil. Flow past the airfoil is of special
interest for investigating by dint of computer simulations, in particular by FHP model.
Knowing flow phenomena we may hypothesize some properties of airfoil, speculate about
its aerodynamic quality. Our program makes possible to enter the angle of incidence for
airfoil which, clearly, has an influence on the airfoil flow. In particular, we can determine
the angle of flap vortex, an approximate lifting strength in terms of velocities near upper
and lower surfaces.



Figure 7.14: Flow past the wall, part I.



Figure 7.15: Flow past the wall, part II.







Figure 7.16: Sphere flow

α = −2.5◦ α = 10◦

α = 20◦

Figure 7.17: Flow past the airfoil for different angles of attack (vector plot).



α = −2.5◦ α = 10◦

α = 20◦

Figure 7.18: Flow past the airfoil for different angles of attack (scalar density plot).

In the figure 7.17 is shown the airfoil NACA-2418 flow for different angles of attack.
It is evident that, under low angles of attack, the flow stays weakly turbulent. It must be
stressed: flow velocity above upper surface of airfoil is higher than the flow velocity under
lower surface. Vortex formation is observed on the certain profile depth, under the big
angles of attack. Our program permits to visualize the flow not only in the vector mode,
but also in the “color map plot” mode. We have employed two types of such plots. In the
first one, the color of each point of the plot represents the magnitude of the velocity. In
the second type, also the directions of the velocity are distinguished by different colors.
For an illustration, see figures 7.18 and 7.19.



α = −2.5◦ α = 10◦

α = 20◦

Figure 7.19: Flow past the airfoil for different angles of attack (vector density plot).



Appendix A

Demonstration notebook

In this demonstration notebook the final images for five different airfoils are presented.
The calculations were made for three different angles of attack and the results are repre-
sented in three types of plot in order: vector plot, scalar density plot, vector density plot,
which were described in previous chapter. The calculations for vector plot mode were
made under the next conditions: dx = 60 , dy = 30, scale_factor = 60, for scalar and
vector density modes dx = 15 , dy = 15. The order of matrix 1200x600. The boundary
condition is chosen as bc_free for each calculation.
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NACA66,2-(1.8)15.5

Figure A.1: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 0 (vector plot).



Figure A.2: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 7.5 (vector plot).



Figure A.3: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 15 (vector plot).



Figure A.4: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 0 (scalar density plot).



Figure A.5: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 7.5 (scalar density plot).



Figure A.6: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 15 (scalar density plot).



Figure A.7: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 0 (vector density plot).



Figure A.8: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 7.5 (vector density plot).



Figure A.9: Flow past the airfoil NACA66,2-(1.8)15.5 for α = 15 (vector density plot).



Clark YH

Figure A.10: Flow past the airfoil Clark YH for α = 0 (vector plot).



Figure A.11: Flow past the airfoil Clark YH for α = 7.5 (vector plot).



Figure A.12: Flow past the airfoil Clark YH for α = 15 (vector plot).



Figure A.13: Flow past the airfoil Clark YH for α = 0 (scalar density plot).



Figure A.14: Flow past the airfoil Clark YH for α = 7.5 (scalar density plot).



Figure A.15: Flow past the airfoil Clark YH for α = 15 (scalar density plot).



Figure A.16: Flow past the airfoil Clark YH for α = 0 (vector density plot).



Figure A.17: Flow past the airfoil Clark YH for α = 7.5 (vector density plot).



Figure A.18: Flow past the airfoil Clark YH for α = 15 (vector density plot).



NACA2418

Figure A.19: Flow past the airfoil NACA2418for α = 0 (vector plot).



Figure A.20: Flow past the airfoil NACA2418 for α = 7.5 (vector plot).



Figure A.21: Flow past the airfoil NACA2418 for α = 15 (vector plot).



Figure A.22: Flow past the airfoil NACA2418 for α = 0 (scalar density plot).



Figure A.23: Flow past the airfoil NACA2418 for α = 7.5 (scalar density plot).



Figure A.24: Flow past the airfoil NACA2418 for α = 15 (scalar density plot).



Figure A.25: Flow past the airfoil NACA2418 for α = 0 (vector density plot).



Figure A.26: Flow past the airfoil NACA2418 for α = 7.5 (vector density plot).



Figure A.27: Flow past the airfoil NACA2418 for α = 15 (vector density plot).



NASA64-012A

Figure A.28: Flow past the airfoil NACA64-012A for α = 0 (vector plot).



Figure A.29: Flow past the airfoil NACA64-012A for α = 7.5 (vector plot).



Figure A.30: Flow past the airfoil NACA64-012A for α = 15 (vector plot).



Figure A.31: Flow past the airfoil NACA64-012A for α = 0 (scalar density plot).



Figure A.32: Flow past the airfoil NACA64-012A for α = 7.5 (scalar density plot).



Figure A.33: Flow past the airfoil NACA64-012A for α = 15 (scalar density plot).



Figure A.34: Flow past the airfoil NACA64-012A for α = 0 (vector density plot).



Figure A.35: Flow past the airfoil NACA64-012A for α = 7.5 (vector density plot).



Figure A.36: Flow past the airfoil NACA64-012A for α = 15 (vector density plot).



NACA2412

Figure A.37: Flow past the airfoil NACA2412 for α = 0 (vector plot).



Figure A.38: Flow past the airfoil NACA2412 for α = 7.5 (vector plot).



Figure A.39: Flow past the airfoil NACA2412 for α = 15 (vector plot).



Figure A.40: Flow past the airfoil NACA2412 for α = 0 (scalar density plot).



Figure A.41: Flow past the airfoil NACA2412 for α = 7.5 (scalar density plot).



Figure A.42: Flow past the airfoil NACA2412 for α = 15 (scalar density plot).



Figure A.43: Flow past the airfoil NACA2412 for α = 0 (vector density plot).



Figure A.44: Flow past the airfoil NACA2412 for α = 7.5 (vector density plot).



Figure A.45: Flow past the airfoil NACA2412 for α = 15 (vector density plot).



Appendix B

Symmetries and rotation group

This chapter is written by Martin Scholtz and Iliyas Boztayev

B.1 Symmetries in physics
In physics, the notion of symmetry plays an important rôle. It turns out that whenever a
physical system possesses some continuous symmetries, there exist associated conserved
quantities ; this is the content of the celebrated Nöther theorems. In particular, invariance
of physical laws under translations in time implies the conservation of energy, invariance
under translations in space gives us the momentum conservation and rotational invariance
yields the conservation of angular momentum. The importance of symmetries becomes
even more emphasized in relativistic field theories and in the modern gauge theories of
elementary particles. For example, the gauge invariance of electromagnetic field implies
the charge conservation. In this thesis we are, however, interested merely in classical
Newtonian physics and we do not enter the discussion on relativistic theories.

In classical physics, we assume that the space is ordinary, flat Euclidean space which is
homogeneous and isotropic. Homogeneity means that all points of the space are equivalent
and the properties of the space do not vary from point to point. In other words, there
is no preferred point in the Euclidean space. This must be respected by any reasonable
physical law. Mathematically, any equation describing real physical process must be
invariant under translation in space. According to the Nöther theorem, then, the total
momentum of isolated physical system must be constant in time. Notice that the Nöther
theorem is highly non-trivial result and in this thesis we make no attempt to explain its
origin, as it is based on advanced variational calculus.

Another important property of Euclidean space, which is regarded as the “stage”
for classical physics, is the isotropy. Isotropy means that all directions in the space
are equivalent and there is no preferred direction. Again, this property must must be
respected by all physical equations and, hence, the equations of physics must be invariant
under rotations. As a consequence, the angular momentum of isolated systems must be
conserved.

Finally, time of classical physics is separated from the space, which is a contrast to
special relativity theory, where time and space form a single object called space-time.
Time flows uniformly from past infinity to future infinity; this can be expressed as the
homogeneity of time, i.e. no time instant is preferred against any other instant. Thus,
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physical laws must be invariant under translation in time, or, in other words, the physical
laws do not change in time. This requirement then yields the energy conservation.

Before we start the discussion of mathematical details, let us make few comments
on the relation of the symmetries to the cellular automata and the fluid dynamics. The
Navier-Stokes equation, which is the central equation of the fluid dynamics, is invariant
under translations and rotations as it should be. There are profound difficulties with
solving this equation for any realistic situation and a huge amount of mathematical and
physical literature is devoted to this problem. In addition, even the numerical solution
of the Navier-Stokes equation is a difficult problem (which, however, is more-less solved
in a number of situations).

The idea behind simulating the flow using the cellular automata is based on the
notion of the symmetry as described above. Cellular automaton simulates the set of
particles of the fluid. The point is that the interactions between these particles are chosen
much simpler than real interactions between fluid particles. Thus, the microdynamics
of cellular automata differs significantly from real microdynamics behind the Navier-
Stokes equation. However, if the model is chosen wisely so that basic symmetries of the
physics are preserved (at least to some accuracy), resulting macrodynamics is the same
as for the Navier-Stokes equation. That means that if the interactions of the cellular
automaton preserve the homogeneity and, more importantly, the isotropy, macrodynamics
of the cellular automaton will be indistinguishable from the Navier-Stokes equation in a
statistical sense.

The purpose of the theoretical part of this thesis is to make this statement more
precise. Since the rotations play the prominent rôle in the following considerations, we
discuss the notion of rotation in more detail.

B.2 Definition of the group
Mathematical structure known as group is an abstraction of what we intuitively under-
stand as the “set of transformations”. More precisely, group (G, ·) is a set of elements G
together with an operation of multiplication • satisfying the following axioms:

(I) closure of the group under the multiplication,

• : G×G 7→ G;

(II) existence of the identity element,

∃ e ∈ G : ∀ g ∈ G : e • g = g;

(III) existence of the inverse element,

∀ g ∈ G : ∃h ∈ G : h • g = e;

element h satisfying this property is usually denoted h = g−1;

(IV ) multiplication is associative,

∀ f, g, h ∈ G : f • (g • h) = (f • g) • h.



In the definition we employed the symbol • for the multiplication in order to emphasize
that it is a more abstract notion than usual multiplication of numbers. For us, the group
multiplication will be usually the matrix multiplication, see below. But sometimes it can
be even addition, for example the integers form a group (Z,+), where the rôle of the
multiplication of the mapping is played by ordinary addition of integers, i.e.

m • n = m+ n, where m,n ∈ Z.

We can easily verify that Z indeed forms a group:

1. the sum of any two integers is an integer, so that Z is closed under addition;

2. number e = 0 plays the rôle of the identity, for we have

m • e = m+ 0 = m for any m ∈ Z;

3. to any m ∈ Z, its inverse is m−1 = −m, for then

m •m−1 = m+ (−m) = m−m = 0.

Hence, (Z,+) is a simple example of the group.
In ordinary number algebra, we usually omit the symbol of multiplication and write

a b instead of a · b. The same convention is customary in the case of group theory. Once
we specify what we mean by multiplication, we omit the symbol • and write

g • h ≡ g h.

We must not forget, however, that general group multiplication is not commutative, which
means that, in general,

g h 6= h g.

The matrix multiplication is an example of non-commutative product. If the multiplica-
tion happens to be commutative, the group is said to be Abelian or commutative.

B.3 Linear groups
First of all, recall that multiplication of a vector by a matrix can be understood as the
linear transformation of the vector. In general, neither the direction nor the length of the
vector is preserved by a linear transformation. Let us have general 2× 2 matrix A,

A =

(
a b
c d

)
(B.1)

and arbitrary vector v with the components

v =

(
x
y

)
(B.2)



By matrix multiplication we can form another vector v ′,

v ′ = Av =

(
a b
c d

)(
x
y

)
=

(
a x+ b y
c x+ d y

)
. (B.3)

Written in components, we have

v′1 = a x+ b y,

v′2 = c x+ d y,
(B.4)

or, more compactly,

v′i = Aij vj. (B.5)

Here we employ the Einstein summation convention: whenever an index appears exactly
twice in the expression, we automatically sum through this index. In particular, the last
equation is equivalent to

v′i =
2∑
i=1

Aij vj. (B.6)

y

x

A−→v
−→v ’=A−→v

xx

y

Figure B.1: Linear transformation of the vector v by matrix A.

We can see that the multiplication of the vector by a matrix (B.3) or (B.6) can be
regarded as a mapping which takes the original vector v and produces another vector v′,
cf. figure B.1. In other words, matrix A transforms vectors of the plane into another
vectors. This transformation is linear which translates into conditions

A (v + w) = Av + Aw,

A (λv) = λA(v), where λ ∈ R.
(B.7)

We reiterate that such a general linear transformation changes both directions and lengths
of vectors.

We might expect that since the square matrix represents a linear transformation, the
set of all matrices forms a group. This is almost the case, but not entirely. To see the
point, let us try to check the group axioms. First, the matrices are obviously closed under
multiplication, because a product of two matrices. For 2× 2 matrices

A =

(
a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
, (B.8)



their product is

AB =

(
a1 b1 + a2 b3 a1 b2 + a2 b4

a3 b1 + a4 b3 a3 b3 + a4 b4

)
, (B.9)

which is another matrix. The first axiom of group is therefore satisfied. Notice that the
matrix multiplication in the index form reads

(AB)ij =
2∑

k=1

Aik Bkj ≡ Aik Bkj, (B.10)

where we have invoked the Einstein summation convention in the last step.
Next, we define the identity matrix by

I =

(
1 0
0 1

)
. (B.11)

It is an easy exercise to show that

AI = I A = A (B.12)

for any matrix A. Hence, the identity matrix plays the rôle of the identity element and
the second group axiom is satisfied. The elements of the identity matrix are often denoted
by the Kronecker symbol δij which is defined by

δij =

{
1, if i = j,
0 otherwise. (B.13)

The properties of the identity matrix can be written in the index form as follows:

Aij δjk = δij Ajk = Aik. (B.14)

Thus, the first two axioms of the group are satisfied by the matrix multiplication. The
problematic axiom is the third one about the existence of the inverse element (inverse
matrix). We know from the linear algebra that the determinant of matrix

A =

(
a b
c d

)
(B.15)

is defined as

detA = a d− b c. (B.16)

Then we can define the inverse matrix A−1 by

A−1 =
1

a d− b c

(
d −b
−c a

)
. (B.17)

One can easily check that the product of A and A−1 is the identity matrix,

AA−1 = I. (B.18)



Apparently, also the third axiom of the group is satisfied, for we have found matrix
A−1 for any matrix A such that their product is the identity element (identity matrix).
However, prescription (B.17) works only if the denominator does not vanish, i.e. if

detA 6= 0. (B.19)

If the determinant of A is equal to zero, the inverse matrix does not exist. Consequently,
the third group axiom is satisfied only for those matrices which have non-vanishing deter-
minant. The set of all matrices does not constitute a group, only matrices with detA 6= 0
do.

Recall that we interpret matrices as linear transformations of vectors. What is so
special about matrices with vanishing determinant? They map linearly independent set
of vectors into linearly dependent set. As a simple example, consider the matrix

A =

(
1 1
1 1

)
, (B.20)

with the determinant detA = 1− 1 = 0. Now, vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
, (B.21)

are obviously linearly independent (one is not the multiple of the other one) and, in fact,
arbitrary vector

v =

(
x
y

)
(B.22)

can be written as a linear combination of these vectors,

v = x e1 + y e2 = x

(
1
0

)
+ y

(
0
1

)
=

(
x
y

)
. (B.23)

We say that vectors e1 and e2 form a basis for all vectors. What happens to these vectors
under transformation with matrix A given by (B.20)? We have

e ′1 = A e1 =

(
1
1

)
, e ′2 = A e2 =

(
1
1

)
. (B.24)

We can see that both vectors transform into the same vector (1, 1). So, the vectors
which were orthogonal originally are parallel after the transformation. Obviously, this
transformation cannot be undone by any matrix A−1 because having e ′1, we cannot say
what the original vector was: was it e1 or e2? Clearly, transformation by matrix (B.20)
is not invertible.

Matrices with vanishing determinant are called singular, while those with non-va-
nishing determinant are called regular. To summarize, we have seen that the set of all
matrices does not constitute a group because it contains also singular matrices for which
the inverse does not exist. However, the set of all regular matrices already does form a
group, because all regular matrices do have an inverse.



The group of all regular matrices is called general linear group and denoted by GL(n),
where the number n specifies the rank of the matrices. For example, GL(3) is the set of all
matrices of type 3×3 which have non-vanishing determinant. For several applications it is
useful to study a subgroup of GL(n) which is made of matrices with the unit determinant.
This subgroup is called special linear group and it is denoted by SL(n). Suppose that
A,B ∈ SL(n), so that

detA = detB = 1. (B.25)

The question is whether the product AB is again a special matrix. Te answer is affirma-
tive, however, for the general rule for determinants tells us

det(AB) = detA detB = 1, (B.26)

so the subgroup SL(n) is closed under multiplication and hence forms a group by itself.
Matrices with detA = 1 are called unimodular.

B.4 Orthogonal groups
In the previous section we have introduced linear matrix groups GL(n) and SL(n) com-
prised of matrices with non-vanishing determinant for GL(n) or unit determinant for
SL(n). Now we focus on even more special matrices which do not represent general lin-
ear transformation, but particular type of transformations – rotations. Let us fund out
what additional properties must matrices representing rotations satisfy.

The crucial property of rotation is that it preserves the lengths of the vectors, while it
changes the direction of the vector. The situation is illustrated in figure B.2. The length
of the vector

v =

(
x
y

)
(B.27)

is defined by the Pythagorean theorem,

‖v‖2 = x2 + y2. (B.28)

We can write this relation in the matrix form, if we introduce transposed matrix

vT =
(
x y

)
. (B.29)

The length of the vector is then given by matrix multiplication

vT v =
(
x y

)(x
y

)
= x2 + y2. (B.30)

Now, let R ∈ GL(2) be a regular matrix of dimension 2. We want to express math-
ematically, that linear transformation with matrix R preserves the lengths of vectors.
General linear transformation is, as we know, by

v′ = Rv. (B.31)



The length of the new vector is v′Tv and we require it is the same as the original length:

v′T v = vT RT Rv, (B.32)

where we have used usual rule for the transposition of product,

(AB)T = BT AT . (B.33)

Since the relation (B.32) must hold for arbitrarily chosen vector v, matrix R must satisfy

RT R = I, (B.34)

for then we have

vTRT Rv = vT I v = vT v. (B.35)

In the index notation, matrix R must satisfy

Rij Rkj = δik. (B.36)

Matrices R satisfying (B.34) or (B.36) are called orthogonal matrices and relations
(B.34) and (B.36) are referred to as the relations of orthogonality. The set of orthogonal
matrices of dimension n is denoted by O(n) and we claim that they form a group. As
usually, we have to check that the axioms of the group are satisfied.

X

Y

−→v

−→v ′

Θ

Figure B.2: Rotation by angle θ.

1. First, we have to verify that the product of orthogonal matrices is again an orthog-
onal matrix. Let P and Q be orthogonal matrices, i.e.

P T P = I, QT Q = I. (B.37)

Let R = P Q be the product of the matrices. Then we have

RT R = (P Q)T (PQ) = QT P T P︸ ︷︷ ︸
I

Q = QT Q = I, (B.38)

and hence R is orthogonal, so that O(n) is closed under matrix multiplication.



2. Next we have to check the existence of the identity element of O(n). We now that,
in the group GL(n), the identity element is the identity matrix I and, clearly, there
is no other reasonable candidate for the identity element in O(n)1. So, effectively,
we have to check that the identity matrix I is orthogonal. This is trivial, for we
have IT = I and therefore

IT I = I I = I, (B.39)

so that I ∈ O(n).

3. Finally, we have to check the existence of the inverse element; the question is,
whether for any R ∈ O(n) there exists R−1 ∈ O(n). Let us have a look at the
definition (B.34) of the orthogonal matrix. Since we have detAB = detA detB
and detAT = detA, applying the determinant to both side of relation (B.34) we
find

det(RTR) = detRT detR = | detR|2 = det I = 1. (B.40)

Thus,

| detR|2 = 1 and hence detR = ±1. (B.41)

In both cases, the determinant of any orthogonal matrix R must be non-zero (either
1 or −1), so that the inverse matrix R−1 exists. Multiplying (B.34) with the inverse
R−1 we find

RT = R−1 (B.42)

and so the inverse matrix R−1 is just the transpose of R. The last question is,
whether if R satisfies the orthogonality relation, so does RT . This is very trivial,
but for the sake of completeness we present the formal proof. Let us denote Q =
R−1 = RT . Is Q orthogonal? Yes:

QT Q = (RT )T RT = RRT = (RT R)T = IT = I. (B.43)

This completes the proof that O(n) is a group. �

In the proof we have encountered an interesting auxiliary result that the determinant
of any orthogonal matrix is either 1 or −1,

detR = ±1. (B.44)

As in the case of the special linear group SL(n), we call the matrices with determinant
detR = 1 unimodular. And, again, these matrices form a subgroup of O(n) which is called
special orthogonal group and denoted SO(n). In order to proof that SO(n) is indeed a
subgroup of O(n), it is sufficient to show that SO(n) is closed under matrix multiplication.

1It can be easily checked that if G is a group and H ⊂ G its subgroup, then their identity elements
coincide. Thus, if O(n) is to be the subgroup of GL(n), then its identity element must be the identity
matrix.



This is rather straightforward, for if R and Q are any special orthogonal matrices, then
the determinant of their product is

det(RQ) = detR detQ = 1 · 1 = 1 (B.45)

and thus RQ ∈ SO(n). Simultaneously, we can see that the matrices with detR = −1
do not constitute a subgroup of O(n). By the same argument, let R and Q be matrices
with determinant −1. Their product has determinant

det(RQ) = detR detQ = (−1) · (−1) = +1, (B.46)

and so the set of matrices with the determinant −1 is not closed under multiplication.
There is a geometric difference between orthogonal transformations with represented

by matrix R with detR = 1 and transformations having detR = −1. Recall that, in
order to define the rotation matrices, we have required that the transformation preserves
lengths of vectors; this is a typical property of rotations. However, rotations are not the
only transformations that preserve lengths! Consider, in the two dimensional case, the
vector

v =

(
x
y

)
, (B.47)

and the matrix

R =

(
1 0
0 −1

)
. (B.48)

This is clearly the orthogonal matrix, for we have RTR = I. Determinant of the matrix
is

detR = −1. (B.49)

Action of this matrix on the vector v results in vector

v′ = Rv =

(
x
−y,

)
(B.50)

as the reader can easily check. From this we can infer that what matrix R actually does
is the reflection about the x axis, as the figure B.3 illustrates. However, this is not a
rotation, because different vectors vectors are rotated by different angles, see again the
figure B.3. Here, we have chosen one particular matrix to illustrate the point, but, in
general, orthogonal group O(n) consists of matrices preserving lengths. Some of them
are unimodular, detR = 1, and they constitute the subgroup SO(n). These matrices
represent proper rotations. Then, there are matrices with detR = −1 and they represent
rotations composed with the reflection about some axis. These matrices do not form a
subgroup.



(x, y)

(x,−y)

x

y

R

R

Figure B.3: Orthogonal matrices with detR = −1 actually represent rotations connected
with reflections. Here we show the effect of transformation with the matrix R given by
(B.48). Notice that this matrix R does not represent the rotation of the plane as a whole,
for different vectors are rotated by different angles.

B.5 Explicit form of SO(2) matrices
After the general discussion of rotation groupsO(n) and SO(n), we construct explicit form
of the SO(2) matrices, i.e. matrices representing rotations in two dimensional plane. We
start with the general definition of orthogonal matrix, relation (B.34),

RT R = I.

General matrix R ∈ GL(2) can be written in the form

R =

(
a b
c d

)
, RT =

(
a c
b d

)
. (B.51)

The orthogonality condition RT R = I then implies(
a c
b d

)(
a b
c d

)
=

(
1 0
0 1

)
. (B.52)

Written explicitly, the latter equation in components reads

a2 + c2 = 1, a b+ c d = 0, b2 + d2 = 1. (B.53)

Notice that the matrix has 4 components, while we have written the three equations
down only. The reason is that matrix RT R is always symmetric and, thus, has only three
independent components. Nevertheless, the first of equations (B.53) is

a2 + c2 = 1. (B.54)



Since we are working in the real domain, both numbers a and c must be, in the absolute
value, smaller than (or equal to) 1. We will satisfy this condition identically, if we put

a = cosφ, c = sinφ, (B.55)

where φ is a real number. Similarly, the third equation, b2 + d2 = 1 will be satisfied
identically if we set

b = cos θ, d = sin θ, (B.56)

for some real number θ. However, the second equation, a b+ c d = 0 tells us

tan θ = − tanφ (B.57)

and therefore θ = −φ (careful reader can easily check that ignoring the solutions θ =
−π + n pi is without the loss of generality). To conclude, we have found

R =

(
cosφ − sinφ
sinφ cos θ

)
. (B.58)

This is the general form of matrix R ∈ SO(2). Obviously, parameter φ is to be identified
with the angle of rotation and the choice of the signs has been made so that positive φ
corresponds to counter-clockwise rotation.

Recall the trigonometric identities

sin(α + β) = sinα cos β + sin β cosα,

cos(α + β) = cosα cos β − sinα sin β.
(B.59)

With the help of these identities, we can derive the relation

R(φ1)R(φ2) = R(φ1 + φ2). (B.60)

This is equivalent to the statement that SO(2) matrices are closed under multiplication.
Indeed, this result says that the composition of rotation by angle φ1 with the rotation by
angle φ2 is equivalent to rotation by angle φ1 + φ2. Moreover, we have

R(φ1)R(φ2) = R(φ1 + φ2) = R(φ2 + φ1) = R(φ2)R(φ1), (B.61)

so that the group SO(2) is Abelian (commutative). Since the function cosφ is event,
while sinφ is odd, we have

R(−φ) = R(φ)T . (B.62)

By the orthogonality of R, we have

I = RT R = R(−φ)R(φ), (B.63)

which translates into the statement, that the rotation through angle φ is inverse to rota-
tion through angle −φ.

Thus, the group of rotations in the plane is Abelian: the result of two rotations
does not depend on the order in which we perform the rotations. The things get more
complicated in three dimensions.



Appendix C

C++ codes

C.1 Diffusion

1 /∗
2 under Linux , compi le with
3
4 g++ −o d i f f u s i o n d i f f u s i o n . cpp −lboost_iost reams −lboost_system −l b oo s t_ f i l e s y s t em
5
6 run with
7
8 . / d i f f u s i o n
9

10 ∗/
11
12
13 #inc lude <iostream>
14 #inc lude "gnuplot−i o s t ream /gnuplot−i o s t ream . h"
15 #inc lude <boost /numeric / ublas /matrix . hpp>
16 #de f i n e p i 3.14159265358
17
18 us ing namespace std ;
19
20
21 // i n i t i a l temperature de f ined on x = −1..1
22 double u0 ( double x ) {
23 // re turn 1 − x∗x ; // pa rabo l i c shape
24 re turn abs ( sin ( ( x+1)∗pi ) ) ;
25 // re turn exp(−100∗x∗x ) ; // gauss ian p r o f i l e
26 }
27
28
29 i n t main ( i n t argc , char ∗∗ argv ) {
30
31
32 // dimensions o f the u
33 i n t M = 10000;
34 i n t N = 100 ;
35
36
37 double u [ M ] [ N ] ; // temperature o f rod [ time , p o s i t i o n ]
38
39 // c l ean the u
40 f o r ( i n t i=0; i<M ; i++)
41 f o r ( i n t j=0; j<N ; j++)
42 u [ i ] [ j ] = 0 ;
43
44 // i n i t i a l c ond i t i on s at time 0
45 f o r ( i n t j=0; j<N ; j++)
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46 u [ 0 ] [ j ] = u0 (−1. + 2 .∗ j /(N−1) ) ;
47
48 // boundary cond i t i on s
49 f o r ( i n t i=0; i<M ; i++) {
50 u [ i ] [ 0 ] = u0 (−1) ;
51 u [ i ] [ N−1] = u0 (1 ) ;
52 }
53
54 double dt = 1E−4; // time step
55 double dx = 2.0 / (N−1) ;
56
57 cout << dt /( dx∗dx ) << endl ;
58
59 cout << " Ca l cu la t ing " << endl ;
60
61 // s o l u t i o n
62 f o r ( i n t i=1; i < M ; i++) {
63 f o r ( i n t j=1; j<N−1; j++) {
64 u [ i ] [ j ] = u [ i−1] [ j ] + dt ∗( u [ i−1] [ j+1] −2∗u [ i−1] [ j ] + u [ i−1] [j−1]) /( dx∗dx ) ;
65 }
66 }
67
68 // output
69
70 Gnuplot gp ;
71
72 cout << "Creat ing images " << endl ;
73
74 gp << " se t term pdf " << endl ;
75 gp << " se t xrange [ −1 :1 ] " << endl ;
76 gp << " se t yrange [ 0 : 1 ] " << endl ;
77
78
79 f o r ( i n t i=0; i < M ; i+=20) {
80 gp << " se t output ' data/ frame" << i << " . pdf ' " << endl ;
81 gp << " p lo t '− ' with l i n e s lw 4 t i t l e ' i=" << i << " ' " << endl ;
82 f o r ( i n t j=0; j < N ; j++)
83 gp<< (−1.0 +2.0∗j /(N−1) ) << " " << u [ i ] [ j ] << " " << endl ;
84 gp << "e" << endl ;
85 gp << " se t output " << endl ;
86 }
87
88 gp << " se t term wxt" << endl ;
89
90 cout << "done" << endl ;
91 }

C.2 One dimensional CA

1
2 #inc lude <iostream>
3 #inc lude "gnuplot−i o s t ream /gnuplot−i o s t ream . h"
4 #inc lude <boost /numeric / ublas /matrix . hpp>
5
6
7 us ing namespace std ;
8
9

10
11 i n t update_cell ( bool ∗rule , bool c1 , bool c2 , bool c3 ) {
12
13
14 // cout << 7−(c3 + 2∗ c2 + 4∗ c1 ) ;
15 re turn rule [7−(c3 + 2∗c2 + 4∗c1 ) ] ;



16
17 }
18
19 bool ∗rule_to_array ( i n t rule ) {
20
21 bool ∗arr = new bool [ 8 ] ;
22
23 f o r ( i n t i=7; i>= 0 ; i−−) {
24 arr [ i ] = rule%2;
25 rule = rule / 2 ;
26 }
27
28 re turn arr ;
29
30 }
31
32 void display_array ( bool ∗rule ) {
33 f o r ( i n t i=0; i < 8 ; i++)
34 cout << rule [ i ] ;
35 cout << endl ;
36 }
37
38
39 i n t main ( i n t argc , char ∗∗ argv ) {
40
41 cout << " I n i t i a l i z i n g " << endl ;
42 // i n t rule_number = 150 ;
43 f o r ( i n t rule_number = 0 ; rule_number < 256 ; rule_number++) {
44 bool ∗rule ;
45 rule = rule_to_array ( rule_number ) ;
46
47 Gnuplot gp ;
48
49 i n t M = 100 ;
50 i n t N = 100 ;
51 bool ∗∗grid = new bool ∗ [ M ] ;
52 f o r ( i n t i=0; i<N ; i++)
53 grid [ i ] = new bool [ N ] ;
54
55 f o r ( i n t i=0; i<M ; i++)
56 f o r ( i n t j=0; j<N ; j++)
57 grid [ i ] [ j ] = 0 ;
58
59 grid [ 0 ] [ N /3 ] = true ;
60 grid [ 0 ] [ 2 ∗ N /3 ] = true ;
61 // g r id [ 0 ] [N/2 ] = true ;
62
63 cout << " Ca l cu la t ing " << rule_number << "/255" << endl ;
64
65 f o r ( i n t i=1; i<M ; i++) {
66
67 f o r ( i n t j=1; j < N−1; j++) {
68 grid [ i ] [ j ] = update_cell ( rule , grid [ i−1] [j−1] , grid [ i−1] [ j ] , grid [ i−1] [ j←↩

+1]) ;
69 }
70 gp << endl ;
71 }
72
73 cout << "Generating p i c tu r e " << endl ;
74
75 gp << " se t term pngca i ro " << endl ;
76 gp << " se t output ' data/ ru l e " << rule_number << " . png" << endl ;
77 gp << " se t xrange [ 0 : " << N << " ] " << endl ;
78 gp << " se t yrange [ 0 : " << M << " ] " << endl ;
79 gp << "unset co lorbox " << endl ;
80 gp << "unset x t i c s " << endl ;
81 gp << " se t p a l e t t e de f ined (0 ' white ' , 1 ' red ' ) " << endl ;
82 gp << "unset y t i c s " << endl ;
83 gp << " se t s i z e r a t i o 1" << endl ;
84 gp << " p lo t '− ' matrix with image \n" ;



85 f o r ( i n t i=M−1; i>=0; i−−) {
86 f o r ( i n t j=0; j<N ; j++) {
87 gp << grid [ i ] [ j ] << " " ;
88 }
89 gp << endl ;
90 }
91 gp << ' e ' << endl ;
92 //gp << " s e t output " << endl ;
93
94 cout << "Cleaning memory" << endl ;
95
96 f o r ( i n t j=0; j<N ; j++)
97 d e l e t e [ ] grid [ j ] ;
98
99 d e l e t e [ ] grid ;

100 }
101 cout << "done" << endl ;
102 }

C.3 FHP model

1 /∗
2
3 compi le with
4
5 g++ −o main main . cpp −lboost_iost reams −lboost_system −l b oo s t_ f i l e s y s t em
6
7 s e t t i n g a f i n i t y
8 t a s k s e t −cp 0 30072
9

10 ∗/
11
12 #inc lude <iostream>
13 #inc lude <fstream>
14 #inc lude <sstream>
15 #inc lude <s t r i ng >
16 #inc lude <u t i l i t y >
17 #inc lude <s t d l i b . h>
18 #inc lude <math . h>
19 #inc lude <time . h>
20 #inc lude <boost /numeric / ublas /matrix . hpp>
21 #inc lude <uni s td . h>
22
23
24 us ing namespace std ;
25
26
27 enum BoundaryConditions { bc_free , bc_periodic , bc_reflexive } ;
28
29 typede f pair<int , int> ∗ PairList ;
30
31 #de f i n e nmax 5000// pocet kroku
32 #de f i n e dx 120 // s i r k a bunky , ve k t e r e se urcu j e prumerna r y ch l o s t
33 #de f i n e dy 60 // vyska
34 #de f i n e s c a l e_ fa c t o r 130 // de lka s ipky v obrazku
35 #de f i n e animation f a l s e // pokud true , vygeneruje se soubor s animaci , pokud f a l s e , ←↩

vygeneruje se kazdy obrazek z v l a s t
36 #de f i n e skip_step 15
37 #de f i n e g r i dpo i n t s f a l s e // zda se v y k r e s l i body mrizky
38 #de f i n e dens i ty_plot t rue // mapa v e l i k o s t i r y c h l o s t i
39 #de f i n e PI 3.14159265358
40
41 #de f i n e ang le ( i ) ( i ∗PI /3)
42 #de f i n e posX( i , j ) ( ( ( j % 2)==0)? i : i +0.5 ) //



0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Figure C.1: One dimensional cellular automata 0–34



35 36 37 38 39

40 41 42 43 44

45 46 47 48 49

50 51 52 53 54

55 56 57 58 59

60 61 62 63 64

65 66 67 68 69

Figure C.2: One dimensional cellular automata 35–69



70 71 72 73 74

75 76 77 78 79

80 81 82 83 84

85 86 87 88 89

90 91 92 93 94

95 96 97 98 99

100 101 102 103 104

Figure C.3: One dimensional cellular automata 70–104



105 106 107 108 109

110 111 112 113 114

115 116 117 118 119

120 121 122 123 124

125 126 127 128 129

130 131 132 133 134

135 136 137 138 139

Figure C.4: One dimensional cellular automata 105–139



140 141 142 143 144

145 146 147 148 149

150 151 152 153 154

155 156 157 158 159

160 161 162 163 164

165 166 167 168 169

170 171 172 173 174

Figure C.5: One dimensional cellular automata 140–174



175 176 177 178 179

180 181 182 183 184

185 186 187 188 189

190 191 192 193 194

195 196 197 198 199

200 201 202 203 204

205 206 207 208 209

Figure C.6: One dimensional cellular automata 175–209



210 211 212 213 214

215 216 217 218 219

220 221 222 223 224

225 226 227 228 229

230 231 232 233 234

235 236 237 238 239

240 241 242 243 244

Figure C.7: One dimensional cellular automata 210-244



245 246 247 248 249

250 251 252 253 254

255

Figure C.8: One dimensional cellular automata 245-255

43 #de f i n e posY( i , j ) ( j ∗ s q r t (3 ) /2) //
44 #de f i n e cho i c e (n) ( rand ( ) % n)
45
46
47
48 bool ∗∗∗ M ; // c e l l s a , b , c , d , e , f and ob s t a c l e and r e s t p a r t i c l e
49 i n t N1 ;
50 i n t N2 ;
51 i n t flow = f a l s e ;
52 bool scalar_plot = f a l s e ; // pokud f a l s e , v obrazku typu den s i t yp l o t j e v ide t smer ←↩

r y c h l o s t i
53 BoundaryConditions boundary_conditions ;
54
55
56 i n t cntr1=0;
57 i n t cntr2=0;
58
59 ofstream gp ;
60
61
62 PairList up = NULL ;
63 PairList down = NULL ;
64 i n t profile_length = 0 ;
65 i n t leading_edge = −1;
66 i n t trailing_edge = −1;
67
68
69
70 bool ∗∗∗ init_grid ( ) {
71 bool ∗∗∗ m = new bool ∗∗ [ N1 ] ;
72 f o r ( i n t i=0; i < N1 ; i++) {
73 m [ i ] = new bool ∗ [ N2 ] ;
74 f o r ( i n t j=0; j < N2 ; j++) {
75 m [ i ] [ j ] = new bool [ 8 ] ;
76 f o r ( i n t k=0; k<8; k++)
77 m [ i ] [ j ] [ k ] = f a l s e ;
78 }
79 }



80 re turn m ;
81 }
82
83 #inc lude " i n i t−conds . cpp"
84
85
86 void gnu_plot ( ) {
87 ofstream out ;
88
89 out . open ( " fhp/ ob s t a c l e s . dat" ) ;
90 f o r ( i n t i=0; i<N1 ; i++)
91 f o r ( i n t j=0; j<N2 ; j++) {
92 i f ( M [ i ] [ j ] [ 6 ] )
93 out << posX (i , j ) << " " << posY (i , j ) << endl ;
94 }
95 out . close ( ) ;
96
97 i f ( ! gridpoints )
98 re turn ;
99

100 out . open ( " fhp/ g r i dpo i n t s . dat" ) ;
101 f o r ( i n t i=0; i<N1 ; i++)
102 f o r ( i n t j=0; j<N2 ; j++)
103 out << posX (i , j ) << " " << posY (i , j ) << endl ;
104 out . close ( ) ;
105 }
106
107
108
109 void write_velocity ( ) {
110
111 cntr2++;
112
113 // double s c a l e_ fa c t o r = ( double )N1/( double ) dx ;
114
115 f o r ( i n t i=0; i<=N1−dy ; i += dy ) {
116 f o r ( i n t j=0; j<=N2−dx ; j += dx ) {
117
118
119 double vx = 0 ;
120 double vy = 0 ;
121 double x0 = posX (i , j ) ; //posX( i , j ) + posX( i , j+dx ) ) /2 ;
122 double y0 = posY (i , j ) ; //posY( i , j ) + posY( i+dy , j ) ) /2 ;
123 i n t particles = 0 ;
124 f o r ( i n t k=i ; k<i+dy ; k++) {
125 f o r ( i n t l=j ; l<j+dx ; l++) {
126 f o r ( i n t m=0; m<6; m++) {
127 i f ( M [ k ] [ l ] [ m ] ) {
128 vx += 0.5∗ cos ( angle ( m ) ) ;
129 vy += 0.5∗ sin ( angle ( m ) ) ;
130 particles++;
131 }
132 i f ( M [ k ] [ l ] [ 7 ] )
133 particles++;
134 }
135 }
136 }
137
138 i f ( particles !=0){
139 vx = vx/particles ;
140 vy = vy/particles ;
141 double v = sqrt ( vx∗vx + vy∗vy ) ;
142 double angle= atan ( vy/vx ) ;
143 i f ( ! scalar_plot )
144 v = v ∗ angle ∗10 ; e l s e
145 v = 10∗v ;
146 i f ( ! density_plot )
147 gp << x0 << " " << y0 << " " << scale_factor∗vx<< " " << ←↩

scale_factor∗vy<< endl ;
148 e l s e {



149 gp << x0 << " " << y0 << " " << v << " " ;
150 // out<< x0 << " " << y0 << " " << v << " " ;
151 }
152 gp << endl ;
153 // out << endl ;
154 }
155
156
157 }
158
159 gp << endl ;
160 // out << endl ;
161
162
163 }
164
165 ofstream out ;
166 stringstream fileName ;
167 fileName << "data/ v e l o c i t y " ;
168 fileName << cntr2 << " . dat" ;
169 string s = fileName . str ( ) ;
170 out . open ( s . c_str ( ) ) ;
171
172 f o r ( i n t k=0; k<profile_length − dx ; k+=dx ) {
173
174 double vx1 = 0 ;
175 double vy1 = 0 ;
176 double vx2 = 0 ;
177 double vy2 = 0 ;
178 i n t n1 = 0 ;
179 i n t n2 = 0 ;
180
181 f o r ( i n t i=k ; i<k+dx ; i++) {
182 f o r ( i n t j=up [ i ] . second + dy ; j < up [ i ] . second + 2∗dy ; j++) {
183 f o r ( i n t m=0; m<6; m++) {
184 i f ( M [ i ] [ j ] [ m ] ) {
185 vx1 += 0.5∗ cos ( angle ( m ) ) ;
186 vy1 += 0.5∗ sin ( angle ( m ) ) ;
187 n1++;
188 }
189 i f ( M [ i ] [ j ] [ 7 ] )
190 n1++;
191 }
192
193 }
194
195 f o r ( i n t j=down [ i ] . second − dy ; j > down [ i ] . second − 2 ∗dy ; j−−) {
196 f o r ( i n t m=0; m<6; m++) {
197 i f ( M [ i ] [ j ] [ m ] ) {
198 vx2 += 0.5∗ cos ( angle ( m ) ) ;
199 vy2 += 0.5∗ sin ( angle ( m ) ) ;
200 n2++;
201 }
202 i f ( M [ i ] [ j ] [ 7 ] )
203 n2++;
204 }
205
206 }
207 }
208
209 i f ( n1 !=0) {
210 vx1 = vx1 / n1 ;
211 vy1 = vy1 / n1 ;
212 i n t i0 = up [ k + dx / 2 ] . first ;
213 i n t j0 = up [ k+dx / 2 ] . second + dy ;
214 out << posX ( i0 , j0 ) << " " << posY ( i0 , j0 ) << " " << vx1∗←↩

scale_factor << " " << scale_factor∗vy1 << endl ;
215
216 }
217



218 i f ( n2 !=0) {
219 vx2 = vx2 / n2 ;
220 vy2 = vy2 / n2 ;
221 i n t i0 = down [ k + dx / 2 ] . first ;
222 i n t j0 = down [ k+dx / 2 ] . second − dy ;
223 out << posX ( i0 , j0 ) << " " << posY ( i0 , j0 ) << " " << scale_factor∗←↩

vx2 << " " << scale_factor∗vy2 << endl ;
224
225 }
226
227
228 }
229
230 out . close ( ) ;
231
232 }
233
234
235
236 i n t nops ( i n t i , i n t j ) {
237 i n t n = 0 ;
238 f o r ( i n t k=0; k<6; k++)
239 n += M [ i ] [ j ] [ k ] ;
240 re turn n ;
241 }
242
243
244
245 i n t Mod ( i n t a , i n t b ) {
246
247 re turn ( (a>0)?( a%b ) : ( b−((−a )%b ) ) ) ;
248
249 }
250
251
252
253
254 void destroy_grid ( bool ∗∗∗ m ) {
255 f o r ( i n t i=0; i<N1 ; i++) {
256 f o r ( i n t j=0; j<N2 ; j++) {
257 d e l e t e [ ] m [ i ] [ j ] ;
258 }
259 d e l e t e [ ] m [ i ] ;
260 }
261 d e l e t e [ ] m ;
262 }
263
264
265 void update_status ( ) {
266 // c o l l i s i o n s
267
268 bool ∗∗∗ N ;
269 N = init_grid ( ) ;
270 i n t n ;
271
272
273 f o r ( i n t k=0; k < N1 ; k++)
274 f o r ( i n t l=0; l < N2 ; l++)
275 N [ k ] [ l ] [ 6 ] = M [ k ] [ l ] [ 6 ] ;
276
277
278 f o r ( i n t i=0; i < N1 ; i++)
279 f o r ( i n t j=0; j < N2 ; j++) {
280
281
282 bool A = M [ i ] [ j ] [ 0 ] ;
283 bool B = M [ i ] [ j ] [ 1 ] ;
284 bool C = M [ i ] [ j ] [ 2 ] ;
285 bool D = M [ i ] [ j ] [ 3 ] ;
286 bool E = M [ i ] [ j ] [ 4 ] ;



287 bool F = M [ i ] [ j ] [ 5 ] ;
288 bool O = M [ i ] [ j ] [ 6 ] ; // ob s t a c l e
289 bool R = M [ i ] [ j ] [ 7 ] ; // r e s t p a r t i c l e
290
291 n = nops (i , j ) ;
292
293 i f ( R && ( n==1)) {
294 f o r ( i n t k=0; k <6; k++)
295 i f ( M [ i ] [ j ] [ k ] ) {
296 N [ i ] [ j ] [ k ] = f a l s e ;
297 N [ i ] [ j ] [ 7 ] = f a l s e ;
298 N [ i ] [ j ] [ Mod ( k+1 ,6) ] = true ;
299 N [ i ] [ j ] [ Mod (k−1 ,6) ] = true ;
300 break ;
301 }
302
303 cont inue ;
304 }
305
306 i f ( n==2) {
307 f o r ( i n t k=0; k < 6 ; k++) {
308 i f ( M [ i ] [ j ] [ k ] && M [ i ] [ j ] [ Mod ( k+2 ,6) ] ) {
309 N [ i ] [ j ] [ k ] = f a l s e ;
310 N [ i ] [ j ] [ Mod ( k+2 ,6) ] = f a l s e ;
311 N [ i ] [ j ] [ 7 ] = true ;
312 N [ i ] [ j ] [ Mod ( k+1 ,6) ] = true ;
313 break ;
314 }
315 }
316
317 }
318
319 i f ( n==2 && M [ i ] [ j ] [6 ]== true ) {
320 f o r ( i n t k=0; k < 6 ; k++) {
321 i f ( M [ i ] [ j ] [ k ] && M [ i ] [ j ] [ Mod ( k+2 ,6) ] ) {
322 N [ i ] [ j ] [ k ] = f a l s e ;
323 N [ i ] [ j ] [ Mod ( k+2 ,6) ] = f a l s e ;
324 N [ i ] [ j ] [ 7 ] = true ;
325 N [ i ] [ j ] [ Mod ( k+4 ,6) ] = true ;
326 break ;
327 }
328 }
329
330 }
331
332
333 i f ( O ) {
334 N [ i ] [ j ] [ 0 ] = M [ i ] [ j ] [ 3 ] ;
335 N [ i ] [ j ] [ 1 ] = M [ i ] [ j ] [ 4 ] ;
336 N [ i ] [ j ] [ 2 ] = M [ i ] [ j ] [ 5 ] ;
337 N [ i ] [ j ] [ 3 ] = M [ i ] [ j ] [ 0 ] ;
338 N [ i ] [ j ] [ 4 ] = M [ i ] [ j ] [ 1 ] ;
339 N [ i ] [ j ] [ 5 ] = M [ i ] [ j ] [ 2 ] ;
340 N [ i ] [ j ] [ 6 ] = O ;
341 N [ i ] [ j ] [ 7 ] = M [ i ] [ j ] [ 7 ] ;
342 cont inue ;
343 }
344
345
346 bool xi=(bool ) choice (2 ) ;
347 bool noxi = ! xi ;
348
349 bool triple = ( A^B )&(B^C )&(C^D )&(D^E )&(E^F ) ;
350
351 bool spectatorAD = ( A&D )&(n==3) ;
352 bool spectatorBE = ( B&E )&(n==3) ;
353 bool spectatorCF = ( C&F )&(n==3) ;
354
355 bool db1 = A&D&(!( B | C | E | F ) ) ;
356 bool db2 = B&E&(!( A | C | D | F ) ) ;



357 bool db3 = C&F&(!( A | B | D | E ) ) ;
358
359 bool cha = ( spectatorCF&(E | B ) ) | ( spectatorBE&(F | C ) ) | spectatorAD | ←↩

triple | db1 | ( db2&xi ) | ( db3&noxi ) ;
360 bool chd = cha ;
361 bool chb = ( spectatorCF&(A | D ) ) | spectatorBE | ( spectatorAD&(F | C ) ) | ←↩

spectatorBE | triple | db2 | ( db1&noxi ) | ( db3&xi ) ;
362 bool che = chb ;
363 bool chc = spectatorCF | ( spectatorBE&(A | D ) ) | ( spectatorAD&(E | B ) ) | ←↩

spectatorCF | triple | db3 | ( db1&xi ) | ( db2&noxi ) ;
364 bool chf = chc ;
365
366
367 N [ i ] [ j ] [ 0 ] = A^cha ;
368 N [ i ] [ j ] [ 1 ] = B^chb ;
369 N [ i ] [ j ] [ 2 ] = C^chc ;
370 N [ i ] [ j ] [ 3 ] = D^chd ;
371 N [ i ] [ j ] [ 4 ] = E^che ;
372 N [ i ] [ j ] [ 5 ] = F^chf ;
373 N [ i ] [ j ] [ 6 ] = O ;
374 N [ i ] [ j ] [ 7 ] = M [ i ] [ j ] [ 7 ] ;
375
376 }
377
378 destroy_grid ( M ) ;
379 M = init_grid ( ) ;
380
381 f o r ( i n t i=0; i<N1 ; i++) {
382 f o r ( i n t j=0; j<N2 ; j++) {
383 M [ i ] [ j ] [ 6 ] = N [ i ] [ j ] [ 6 ] ;
384 M [ i ] [ j ] [ 7 ] = N [ i ] [ j ] [ 7 ] ;
385 }
386 }
387
388 // moving p a r t i c l e s in i n t e r i o r g r id
389 f o r ( i n t i=1; i < N1−1; i++) {
390 f o r ( i n t j=1; j < N2−1; j++) {
391 // f o r ( i n t k=1; k<7; k++)
392 M [ i ] [ j ] [ 0 ] = N [ i−1] [ j ] [ 0 ] ;
393 M [ i ] [ j ] [ 1 ] = N [ i−((j+1)%2) ] [ j− 1 ] [ 1 ] ;
394 M [ i ] [ j ] [ 2 ] = N [ i+(j%2) ] [ j− 1 ] [ 2 ] ;
395 M [ i ] [ j ] [ 3 ] = N [ i+1] [ j ] [ 3 ] ;
396 M [ i ] [ j ] [ 4 ] = N [ i+(j%2) ] [ j +1 ] [ 4 ] ;
397 M [ i ] [ j ] [ 5 ] = N [ i−((j+1)%2) ] [ j +1 ] [ 5 ] ;
398 M [ i ] [ j ] [ 6 ] = N [ i ] [ j ] [ 6 ] ;
399 M [ i ] [ j ] [ 7 ] = N [ i ] [ j ] [ 7 ] ;
400 }
401 // bottom boundary
402 M [ i ] [ 0 ] [ 0 ] = N [ i − 1 ] [ 0 ] [ 0 ] ;
403 M [ i ] [ 0 ] [ 3 ] = N [ i + 1 ] [ 0 ] [ 3 ] ;
404 M [ i ] [ 0 ] [ 4 ] = N [ i ] [ 1 ] [ 4 ] ;
405 M [ i ] [ 0 ] [ 5 ] = N [ i − 1 ] [ 1 ] [ 5 ] ;
406 // top boundary
407 i n t shift = ( N2 )%2;
408 M [ i ] [ N2 −1 ] [ 0 ] = N [ i−1] [ N2 − 1 ] [ 0 ] ;
409 M [ i ] [ N2 −1 ] [ 1 ] = N [ i−shift ] [ N2 − 2 ] [ 1 ] ;
410 M [ i ] [ N2 −1 ] [ 2 ] = N [ i+1−shift ] [ N2 − 2 ] [ 2 ] ;
411 M [ i ] [ N2 −1 ] [ 3 ] = N [ i+1] [ N2 − 1 ] [ 3 ] ;
412 }
413
414
415
416 // l e f t −r i g h t boundar ies
417 f o r ( i n t j=1; j < N2−1; j++) {
418
419 i f ( j%2==1) {
420 M [ 0 ] [ j ] [ 1 ] = N [ 0 ] [ j− 1 ] [ 1 ] ;
421 M [ 0 ] [ j ] [ 5 ] = N [ 0 ] [ j +1 ] [ 5 ] ;
422 } e l s e {
423 M [ N1−1] [ j ] [ 4 ] = N [ N1−1] [ j +1 ] [ 4 ] ;



424 M [ N1−1] [ j ] [ 2 ] = N [ N1−1] [j− 1 ] [ 2 ] ;
425 }
426
427 M [ 0 ] [ j ] [ 2 ] = N [ j%2][j− 1 ] [ 2 ] ;
428 M [ 0 ] [ j ] [ 3 ] = N [ 1 ] [ j ] [ 3 ] ;
429 M [ 0 ] [ j ] [ 4 ] = N [ j%2][ j +1 ] [ 4 ] ;
430
431 M [ N1−1] [ j ] [ 0 ] = N [ N1−2] [ j ] [ 0 ] ;
432 M [ N1−1] [ j ] [ 1 ] = N [ N1−1−(1−j%2) ] [ j− 1 ] [ 1 ] ;
433 M [ N1−1] [ j ] [ 5 ] = N [ N1−1−(1−j%2) ] [ j +1 ] [ 5 ] ;
434 }
435
436
437 // co rne r s
438 M [ 0 ] [ 0 ] [ 3 ] = N [ 1 ] [ 0 ] [ 3 ] ;
439 M [ 0 ] [ 0 ] [ 4 ] = N [ 0 ] [ 1 ] [ 4 ] ;
440 M [ N1 − 1 ] [ 0 ] [ 0 ] = N [ N1 − 2 ] [ 0 ] [ 0 ] ;
441 M [ N1 − 1 ] [ 0 ] [ 4 ] = N [ N1 − 1 ] [ 1 ] [ 4 ] ;
442 M [ N1 − 1 ] [ 0 ] [ 5 ] = N [ N1 − 2 ] [ 1 ] [ 5 ] ;
443 i f ( N2%2==0) {
444 M [ 0 ] [ N2 −1 ] [ 2 ] = N [ 1 ] [ N2 − 2 ] [ 2 ] ;
445 M [ 0 ] [ N2 −1 ] [ 3 ] = N [ 1 ] [ N2 − 1 ] [ 3 ] ;
446
447 M [ N1−1] [ N2 −1 ] [ 1 ] = N [ N1−1] [ N2 − 2 ] [ 1 ] ;
448 M [ 0 ] [ N2 −1 ] [ 1 ] = N [ 0 ] [ N2 − 2 ] [ 1 ] ;
449 } e l s e {
450
451 M [ 0 ] [ N2 −1 ] [ 2 ] = N [ 0 ] [ N2 − 2 ] [ 2 ] ;
452 M [ N1−1] [ N2 −1 ] [ 2 ] = N [ N1−1] [ N2 − 2 ] [ 2 ] ;
453
454 M [ N1−1] [ N2 −1 ] [ 1 ] = N [ N1−2] [ N2 − 2 ] [ 1 ] ;
455 M [ N1−1] [ N2 −1 ] [ 0 ] = N [ N1−2] [ N2 − 1 ] [ 0 ] ;
456 }
457 M [ N1−1] [ N2 −1 ] [ 0 ] = N [ N1−2] [ N2 − 1 ] [ 0 ] ;
458 M [ 0 ] [ N2 −1 ] [ 3 ] = N [ 1 ] [ N2 − 1 ] [ 3 ] ;
459
460
461 // d i f f e r e n t boundary cond i t i on s
462
463 switch ( boundary_conditions ) {
464
465 case bc_free : break ;
466
467 case bc_reflexive : break ;
468
469 case bc_periodic :
470 // top−bottom boundary
471 f o r ( i n t i=1; i<N1−1; i++) {
472 M [ i ] [ 0 ] [ 1 ] = N [ i−1] [ N2 − 1 ] [ 1 ] ;
473 M [ i ] [ 0 ] [ 2 ] = N [ i ] [ N2 − 1 ] [ 2 ] ;
474 M [ i ] [ N2 −1 ] [ 4 ] = N [ i + 1 ] [ 0 ] [ 4 ] ;
475 M [ i ] [ N2 −1 ] [ 5 ] = N [ i ] [ 0 ] [ 5 ] ;
476 }
477 // l e f t −r i g h t boundary
478 f o r ( i n t j=1; j<N2−1; j++) {
479
480 i f ( j%2==0) {
481 M [ 0 ] [ j ] [ 1 ] = N [ N1−1] [j− 1 ] [ 1 ] ;
482 M [ 0 ] [ j ] [ 5 ] = N [ N1−1] [ j +1 ] [ 5 ] ;
483 } e l s e {
484 M [ N1−1] [ j ] [ 4 ] = N [ 0 ] [ j +1 ] [ 4 ] ;
485 M [ N1−1] [ j ] [ 2 ] = N [ 0 ] [ j− 1 ] [ 2 ] ;
486 }
487 M [ N1−1] [ j ] [ 3 ] = N [ 0 ] [ j ] [ 3 ] ;
488 M [ 0 ] [ j ] [ 0 ] = N [ N1−1] [ j ] [ 0 ] ;
489 }
490 // co rne r s
491 M [ 0 ] [ 0 ] [ 1 ] = N [ N1−1] [ N2 − 1 ] [ 1 ] ;
492 M [ 0 ] [ 0 ] [ 2 ] = N [ 0 ] [ N2 − 1 ] [ 2 ] ;
493 M [ 0 ] [ 0 ] [ 5 ] = N [ N1 − 1 ] [ 1 ] [ 5 ] ;



494
495 M [ N1 − 1 ] [ 0 ] [ 1 ] = N [ N1−2] [ N2 − 1 ] [ 1 ] ;
496 M [ N1 − 1 ] [ 0 ] [ 2 ] = N [ N1−1] [ N2 − 1 ] [ 2 ] ;
497 M [ N1 − 1 ] [ 0 ] [ 3 ] = N [ 0 ] [ 0 ] [ 3 ] ;
498
499 M [ 0 ] [ N2 −1 ] [ 0 ] = N [ N1−1] [ N2 − 1 ] [ 0 ] ;
500 M [ 0 ] [ N2 −1 ] [ 4 ] = N [ 1 ] [ 0 ] [ 4 ] ;
501 M [ 0 ] [ N2 −1 ] [ 5 ] = N [ 0 ] [ 0 ] [ 5 ] ;
502
503 M [ N1−1] [ N2 −1 ] [ 2 ] = N [ 0 ] [ N2 − 2 ] [ 2 ] ;
504 M [ N1−1] [ N2 −1 ] [ 3 ] = N [ 0 ] [ N2 − 1 ] [ 3 ] ;
505 M [ N1−1] [ N2 −1 ] [ 4 ] = N [ 0 ] [ 0 ] [ 4 ] ;
506 M [ N1−1] [ N2 −1 ] [ 5 ] = N [ N1 − 1 ] [ 0 ] [ 5 ] ;
507
508 break ;
509
510 }
511
512
513 i f ( flow ) {
514 f o r ( i n t j=2; j < N2−2; j++)
515 M [ 0 ] [ j ] [ 0 ] = true ;
516 }
517
518 destroy_grid ( N ) ;
519
520 }
521
522
523
524
525 i n t main ( )
526 {
527 srand ( time ( NULL ) ) ;
528
529
530 cout << " I n i t i a l i z a t i o n " << endl ;
531 cout << " Process ID " << getpid ( ) << endl ;
532 cout << " Bui ld ing g r id and ob s t a c l e s " << endl ;
533
534 // test_periodic_boundary ( ) ;
535 // s t a r ( ) ;
536
537 boundary_conditions = bc_free ;
538
539
540
541 airfoil (4800 , 2400 , −20) ;
542
543 // f i l l _ f l u i d ( ) ;
544 make_tunnel ( ) ;
545 // f i l l _ f l u i d ( ) ;
546 flow = true ;
547 boundary_conditions = bc_free ;
548
549
550 cout << "Dimension o f g r id = " << N1 << "x" << N2 << endl ;
551
552 gnu_plot ( ) ;
553
554 gp . open ( " fhp/ gnuplot . dat" ) ;
555
556 gp << " se t xrange [−2: " << posX ( N1 , N2 )+2 << " ] " <<endl ;
557 gp << " se t yrange [−2: " << posY ( N1 , N2 ) +2<< " ] " << endl ;
558 gp << " se t p o i n t s i z e 1" << endl ;
559 gp << " se t s i z e r a t i o 1" << endl ;
560
561
562
563



564 i n t counter = −1;
565 cout << ( scalar_plot ?" s c a l a r p l o t " : " vec to r p l o t " ) << endl ;
566
567
568 cout << " Ca l cu la t i on in p rog r e s s : " << endl ;
569
570 f o r ( i n t i = 0 ; i<nmax ; i++) {
571
572
573
574
575 // update s t a tu s o f g r i d
576 counter ++;
577 i f ( counter%skip_step==0) {
578 counter = 1 ;
579
580 cout << " \033 [ J \033 [F" ;
581 cout << " Ca l cu la t i on in p rog r e s s : " ;
582 cout << i << "/" << nmax << " ( " << 100∗i/nmax << "%)" << endl ;
583
584
585 // wr i t e data to gnuplot
586 gp << "unset x t i c s " << endl << "unset y t i c s " << endl ;
587 gp << " se t term pngca i ro " << endl ;
588 gp << " se t output ' fhp/ex5−v e l o c i t y " << cntr2 << " . png ' " << endl ;
589
590 i f ( ! density_plot ) {
591 gp << " p lo t " ;
592 i f ( gridpoints )
593 gp << " ' fhp/ g r i dpo i n t s . dat ' with po in t s l c rgb ' gray ' t i t l e 'FHP gr id←↩

' , " ;
594 gp << " '− ' with ve c t o r s lw 1 l c rgb ' red ' t i t l e ' p a r t i c l e s ' , ' fhp/←↩

ob s t a c l e s . dat ' with po in t s po inttype 5 l c rgb ' black ' ps 0 .3 " ;
595 gp << endl ;
596 } e l s e {
597 gp << " se t cbrange [ −1 :1 ] " << endl ;
598 gp << " se t pm3d map" << endl ;
599 gp << " se t pm3d i n t e r p o l a t e 2 ,2 " << endl ;
600 gp << " sp l o t '− ' with pm3d , ' fhp/ ob s t a c l e s . dat ' us ing 1 : 2 : ( 0 . 0 ) with ←↩

po in t s po inttype 5 l c rgb ' black ' ps 0 .3 " << endl ;
601
602 }
603 write_velocity ( ) ;
604 gp << "e" << endl ;
605 gp << " se t output " << endl ;
606 }
607 update_status ( ) ;
608
609 }
610
611 cout << " \033 [ J \033 [ FCalcu lat ion f i n i s h e d " << endl ;
612
613 cout << " Re leas ing r e s ou r c e s " << endl ;
614 destroy_grid ( M ) ;
615
616 i f ( up !=NULL )
617 d e l e t e [ ] up ;
618 i f ( down !=NULL )
619 d e l e t e [ ] down ;
620
621 cout << "Done ! " << endl ;
622
623 gp . close ( ) ;
624
625 re turn 0 ;
626 }

1 /// d i f f e r e n t i n i t i a l c ond i t i on s



2
3 // c r e a t e s p a r t i c l e s in a l l d i r e c t i o n s
4
5 void star ( ) {
6
7 N1 = 20 ;
8 N2 = 15 ;
9 M = init_grid ( ) ;

10 i n t i = N1 /2 ;
11 i n t j = N2 /2 ;
12 M [ i ] [ j ] [ 0 ] = true ;
13 M [ i ] [ j+1 ] [ 1 ] = true ;
14 M [ i−1] [ j+1 ] [ 2 ] = true ;
15 M [ i−2] [ j ] [ 3 ] = true ;
16 M [ i−1] [j−1 ] [ 4 ] = true ;
17 M [ i ] [ j−1 ] [ 5 ] = true ;
18 }
19
20 void test_boundary ( ) {
21
22 N1 = 20 ;
23 N2 = 15 ;
24 M = init_grid ( ) ;
25
26 M [ 1 8 ] [ N2 / 2 ] [ 0 ] = true ;
27 M [ 1 8 ] [ 1 3 ] [ 2 ] = true ;
28 M [ 1 8 ] [ 2 ] [ 5 ] = true ;
29 flow = true ;
30 }
31
32 void test_periodic_boundary ( ) {
33
34 N1 = 8 ;
35 N2 = 8 ;
36 M = init_grid ( ) ;
37 //M[N1/ 2 ] [N2 / 2 ] [ 1 ] = true ;
38 //M[N1/ 2 ] [N2−3 ] [ 2 ] = true ;
39 M [ 3 ] [ 6 ] [ 1 ] = true ;
40 M [ 1 ] [ 2 ] [ 5 ] = true ;
41 M [ 4 ] [ 5 ] [ 0 ] = true ;
42
43 }
44
45 void test_2_collisions ( ) {
46
47 N1 = 10 ;
48 N2 = 10 ;
49 M = init_grid ( ) ;
50
51 M [ 2 ] [ 2 ] [ 0 ] = true ;
52 M [ 4 ] [ 2 ] [ 3 ] = true ;
53
54 M [ 5 ] [ 5 ] [ 0 ] = true ;
55 M [ 7 ] [ 5 ] [ 3 ] = true ;
56 }
57
58
59 void test_3_collisions ( ) {
60
61 N1 = 10 ;
62 N2 = 10 ;
63 M = init_grid ( ) ;
64
65 M [ 2 ] [ 2 ] [ 1 ] = true ;
66 M [ 2 ] [ 4 ] [ 5 ] = true ;
67 M [ 3 ] [ 3 ] [ 3 ] = true ;
68
69 M [ 7 ] [ 5 ] [ 1 ] = true ;
70 M [ 7 ] [ 7 ] [ 5 ] = true ;
71 M [ 9 ] [ 6 ] [ 3 ] = true ;



72
73 }
74
75 void wall2 ( ) {
76
77 f o r ( i n t j=(150) ; j<=(250) ; j++){
78
79
80 M [ j ] [ j ] [ 6 ]= true ;
81
82 }
83
84
85 }
86
87
88 // g r id must be i n i t i a l i z e d to c a l l t h i s func t i on
89 void make_tunnel ( ) {
90
91 f o r ( i n t i=0; i<N1 ; i++) {
92 M [ i ] [ 0 ] [ 6 ] = true ;
93 M [ i ] [ 1 ] [ 6 ] = true ;
94 M [ i ] [ N2 −1 ] [ 6 ] = true ;
95 M [ i ] [ N2 −2 ] [ 6 ] = true ;
96 }
97
98 }
99

100
101 void wall ( i n t n1 , i n t n2 ) {
102
103 N1 = n1 ;
104 N2 = n2 ;
105 M = init_grid ( ) ;
106 flow = true ;
107
108 f o r ( i n t j=N2 /3 ; j <2∗N2 /3 ; j++)
109 M [ N1 / 2 ] [ j ] [ 6 ] = true ;
110 }
111
112
113 void fill_fluid ( i n t imin ) {
114
115 f o r ( i n t i=0; i<imin ; i++)
116 f o r ( i n t j=0; j<N2 ; j++)
117 i f ( ! M [ i ] [ j ] [ 6 ] )
118 M [ i ] [ j ] [ 0 ]= true ;
119
120 }
121
122
123 void fill_grid ( i n t c ) {
124
125 f o r ( i n t i=0; i<N1 ; i++)
126 f o r ( i n t j=0; j<N2 ; j++)
127 i f ( ! M [ i ] [ j ] [ 6 ] )
128 M [ i ] [ j ] [ c ]= true ;
129
130 }
131
132 void show_spectator ( ) {
133 // N1 = 10 N2 = 10
134 M [ 8 0 ] [ 3 0 ] [ 0 ] = true ;
135 M [ 5 ] [ 5 ] [ 5 ] = true ;
136 M [ 5 ] [ 5 ] [ 4 ] = true ;
137 }
138
139
140 void boundary ( ) {
141



142 f o r ( i n t i=0; i<N1 ; i++) {
143
144 M [ i ] [ 1 ] [ 6 ] = true ;
145 M [ i ] [ N2 −2 ] [ 6 ] = true ;
146 M [ i ] [ N2 −1 ] [ 6 ] = true ;
147 M [ i ] [ 0 ] [ 6 ] = true ;
148
149 }
150 }
151
152
153 // vsude , kde neni prekazka , nasadi nepohybl ivou c a s t i c i
154 void rest_fluid ( ) {
155 f o r ( i n t i=1; i<N1 ; i++)
156 f o r ( i n t j=1; j<N2 ; j++)
157 i f ( ! M [ i ] [ j ] [ 6 ] )
158 M [ i ] [ j ] [ 7 ] = true ;
159 }
160
161
162
163 bool obstacle_on_right ( i n t i , i n t j ) {
164
165 f o r ( i n t k=i+1; k< N1 ; k++)
166 i f ( M [ k ] [ j ] [ 6 ] )
167 re turn true ;
168
169 re turn f a l s e ;
170 }
171
172 i n t find_next_obstacle ( i n t i , i n t j ) {
173
174 f o r ( i n t k=i+1; k<N1 ; k++)
175 i f ( M [ k ] [ j ] [ 6 ] )
176 re turn k ;
177 re turn −1;
178 }
179
180 i n t find_next_empty_cell ( i n t i , i n t j ) {
181
182 f o r ( i n t k=i+1; k<N1 ; k++)
183 i f ( ! M [ k ] [ j ] [ 6 ] )
184 re turn k ;
185 re turn −1;
186 }
187
188
189 /// maps [ 0 , 1 ] x [ 0 , 1 ] onto [N1/3 ,2∗N1/3 ] x [N2/3 ,2∗N2/3 ]
190 void profile ( i n t n1 , i n t n2 , double t0 , double t1 , double (∗ fx ) ( double t ) , double (∗ fy ) (←↩

double t ) ) {
191
192 N1 = n1 ;
193 N2 = n2 ;
194 M = init_grid ( ) ;
195
196 i n t obstacles [ N2 ] ;
197 f o r ( i n t j = 0 ; j<N2 ; j++)
198 obstacles [ j ] = 0 ;
199
200
201 f o r ( double t=t0 ; t<=t1 ; t+= 1E−3) {
202 i n t i = ( in t ) ( N1 /3 . ∗ (1 + fx ( t ) ) ) ;
203 i n t j = ( in t ) ( N2 /3 . ∗ (1 + fy ( t ) ) ) ;
204 // cout << i << " " << j << endl ;
205 i f ( ! M [ i ] [ j ] [ 6 ] ) {
206 M [ i ] [ j ] [ 6 ] = true ;
207 obstacles [ j ] ++;
208 }
209 }
210 re turn ;



211
212
213 }
214
215
216
217 /∗ cy l inde r , t = 0 . . 2 ∗ PI ∗/
218 double cyl_x ( double t ) {
219
220 re turn 0.5+0.5∗ cos ( t ) ;
221
222 }
223
224 double cyl_y ( double t ) {
225 re turn 0.5+0.5∗ sin ( t ) ;
226 }
227
228
229 void cylinder ( i n t n1 , i n t n2 ) {
230
231 profile ( n1 , n2 , 0 , 2∗PI , &cyl_x , &cyl_y ) ;
232
233 }
234
235
236
237 // parabola , t = −1..2
238 double par_x ( double t ) {
239
240 re turn (t<=1)?0.5∗(1+t∗t ) : 1 ;
241
242 }
243
244 double par_y ( double t ) {
245 re turn (t<=1)?0.5∗(1+t ) : ( t−1) ;
246 }
247
248 void parabola ( i n t n1 , i n t n2 ) {
249 profile ( n1 , n2 , −1, 2 , &par_x , &par_y ) ;
250 }
251
252
253
254
255 // double loop , t = −1..2
256 double loop_x ( double t ) {
257
258 re turn 0 .5 + 0 .5∗ cos ( t ) ;
259
260 }
261
262 double loop_y ( double t ) {
263 re turn 0 .5 + 0 .5∗ cos (2∗ t+0.5) ;
264 }
265
266 void double_loop ( i n t n1 , i n t n2 ) {
267 profile ( n1 , n2 , 0 , 8∗PI , &loop_x , &loop_y ) ;
268 }
269
270
271 void airfoil ( i n t n1 , i n t n2 , double angle ) {
272
273 ifstream in ;
274 in . open ( " p r o f i l e s /66 ,2−(1.8) 1 5 . 5 . dat" ) ;
275
276 N1 = n1 ; N2 = n2 ;
277 M = init_grid ( ) ;
278
279 i n t obstacles [ N2 ] ;
280 f o r ( i n t j = 0 ; j<N2 ; j++)



281 obstacles [ j ] = 0 ;
282
283 i n t imin = N1 ;
284 i n t imax = 0 ;
285 i n t jmin = N2 ;
286 i n t jmax = 0 ;
287
288 whi l e ( ! in . eof ( ) ) {
289 double x , y ;
290 in >> x ;
291 in >> y ;
292
293
294 double alpha = angle∗ PI / 180 . 0 ;
295
296 double X = x ∗ cos ( alpha ) − y∗sin ( alpha ) ;
297 double Y = x ∗ sin ( alpha ) + y∗cos ( alpha ) ;
298
299 i n t i = ( in t ) ( N1 /4 . ∗ ( 1 . + X ) ) ;
300 i n t j = ( in t ) ( N2 /4 . ∗ ( 1 . + Y ) ) + N2 / 3 . ;
301 i f (i<imin )
302 imin = i ;
303 i f (i>imax )
304 imax = i ;
305 i f (j<jmin )
306 jmin = j ;
307 i f (j>jmax )
308 jmax = j ;
309 i f ( ! M [ i ] [ j ] [ 6 ] )
310 obstacles [ j ]+=1;
311 M [ i ] [ j ] [ 6 ] = true ;
312 }
313
314 in . close ( ) ;
315
316 f o r ( i n t j = 2 ; j<N2−2; j++) {
317 i f ( obstacles [ j ]>1) {
318 i n t i = 1 ;
319 bool inside = f a l s e ;
320 whi l e (i<N1 ) {
321 i = find_next_obstacle (i , j ) ;
322 i f (i<0)
323 break ;
324
325 i = find_next_empty_cell (i , j ) ;
326 i f ( obstacle_on_right (i , j ) )
327 inside = ! inside ;
328
329 i f ( inside ) {
330 whi l e ( ( i<N1−1)&&(!M [ i ] [ j ] [ 6 ] ) ) {
331 M [ i ] [ j ] [ 6 ] = true ;
332 i++;
333 } ;
334 inside = f a l s e ;
335 }
336 }
337 }
338
339 }
340
341 /// s t o r i n g the p r o f i l e
342
343 up = new pair<int , int >[imax−imin+1] ;
344 down = new pair<int , int >[imax−imin+1] ;
345
346 cout << " imin = " << imin << " imax = " << imax << endl ;
347
348 f o r ( i n t i=imin ; i<imax ; i++) {
349 i n t j = jmin ;
350 whi l e ( ! M [ i ] [ j ] [ 6 ] )



351 j++;
352 down [ i−imin ] = make_pair (i , j ) ;
353 whi l e ( M [ i ] [ j ] [ 6 ] )
354 j++;
355 up [ i−imin ] = make_pair (i , j ) ;
356 }
357
358 profile_length = imax−imin ;
359 leading_edge = imin ;
360 trailing_edge = imax ;
361
362 /∗
363 f o r ( i n t i =0; i<p ro f i l e_ l eng th ; i++)
364 cout << "down (" << down [ i ] . f i r s t << " , " << down [ i ] . second << ") , up (" << ←↩

up [ i ] . f i r s t << " , " << up [ i ] . second << ") " << endl ;
365 ∗/
366 fill_fluid ( imin ) ;
367 }
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