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Abstract
The thesis develops a novel approach, the so-called travelling-wave ap-
proach, for the analysis and control of a linear multi-agent system. The
approach takes advantage of the wave-like behaviour of a multi-agent sys-
tem by decomposing the outputs of the agents into two waves travelling
through the system in opposite directions. The main advantage of the
approach is that it splits the bidirectional interactions between the agents
into two non-interacting waves. This allows us to study the interactions
between two neighbouring agents without the necessity to consider the
e�ect of other agents in the system. Such a local analysis then allows us
to infer system properties, such as the string stability of even a large scale
system, which is di�cult to carry out with the traditional approaches.
Another bene�t of the travelling-wave approach is that it allows us to
design a feedback controller, which signi�cantly shortens the transient of
the system.

The most challenging issue of the approach is that it employs irrational
transfer functions, which are less mathematically studied than rational
transfer functions. For instance, even the current state-of-the-art pro-
grams are not able to carry out the inverse Laplace transform of an ir-
rational transfer function. Therefore, a part of the thesis focuses on the
development of algorithms for the rational approximation of irrational
transfer functions. The programs carrying out the approximation are
published online on the webpage of Matlab Central and have already been
downloaded by dozens of users.

Key words: multi-agent system, string stability, travelling wave, wave
transfer function
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Abstrakt
Diserta£ní práce p°edstavuje nový, tzv. vlnový, p°ístup, který je pouºit
pro analýzu a °ízení lineárních multi-agentních systém·. Základní my²len-
ka tohoto p°ístupu spo£ívá ve vyuºití vlnového chování multi-agentního
systému a rozloºení výstupního signálu agenta do dvou postupných vln,
které se ²í°í v opa£ných sm¥rech. Hlavní výhodou potom je, ºe dokáºe-
me rozloºit obousm¥rnou interakci mezi agenty do dvou postupných vln,
které spolu neinteragují. To nám umoºní prostudovat vzájemnou interakci
mezi dv¥ma sousedícími agenty bez toho, ºe bychom museli vzít do úvahy
interakce mezi ostatními agenty v systému. Tato lokální analýza je výhod-
ná v tom, ºe nám umoºní odvodit vlastnosti, jako nap°íklad stringovou
stabilitu, i v¥t²ího systému, coº je velmi sloºité se sou£asnými metodami.
Vlnový p°ístup dále umoº¬uje navrhnout zp¥tnovazební regulátor, který
kvalitativn¥ zlep²í rychlost odezvy celého systému.

Nejv¥t²í komplikací tohoto p°ístupu je, ºe pracuje s iracionálními p°eno-
sovými funkcemi, které nejsou matematicky prostudovány tak dob°e jako
racionální p°enosové funkce. Nap°íklad, ani ty nejlep²í sou£asné programy
nedokáºí vypo£ítat inverzní Laplaceovu transformaci iracionální p°enosové
funkce. �ást práce se proto zabývá i algoritmy, které iracionální p°enoso-
vé funkce aproximují pomocí racionálních p°enosových funkcí. Programy,
které tuto aproximaci vypo£ítají, jsou zve°ejn¥ny na stránkách Matlab
Central a jiº byly staºeny desítkami uºivatel·.

Klí£ová slova: multi-agentní systém, stringová stabilita, postupná vlna,
vlnová p°enosová funkce
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Acronyms

ATF Agent transfer function
AWTF Asymmetric wave transfer function
BTF Boundary transfer function
CRHP Closed-right half plane
FIR Finite impulse response
MSE Mean square error
ORHP Open-right half plane
WTF Wave transfer function

viii



Contents

Acknowledgements i

Declaration iii

Abstract v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Laplacian approach for analysis of multi-agent sys-
tems . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Transfer-function approach to travelling waves . . . 5
1.2.3 Fractional order systems . . . . . . . . . . . . . . . 7

1.3 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . 11

2 Path-graph topology and the waves 13

2.1 Local control of the platoon vehicles . . . . . . . . . . . . 14
2.1.1 Analyzed properties . . . . . . . . . . . . . . . . . 15

2.2 Wave Transfer Function . . . . . . . . . . . . . . . . . . . 15
2.2.1 Mathematical model of the wave transfer function 16
2.2.2 Veri�cation of the wave transfer function . . . . . . 20
2.2.3 Approximation of the wave transfer function . . . . 21

2.3 Re�ection of the wave at platoon ends . . . . . . . . . . . 23
2.3.1 The forced-end boundary . . . . . . . . . . . . . . 23
2.3.2 The free-end boundary . . . . . . . . . . . . . . . . 25

2.4 Wave-absorbing controller . . . . . . . . . . . . . . . . . . 27
2.4.1 Front-sided wave-absorbing controller . . . . . . . . 28

ix



Contents

2.4.2 Rear-sided wave-absorbing controller . . . . . . . . 31
2.4.3 Two-sided wave-absorbing controller . . . . . . . . 33
2.4.4 Asymptotic and string stability . . . . . . . . . . . 34

2.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Asymmetric bidirectional controller . . . . . . . . . 41
2.5.2 Evaluation of the performance . . . . . . . . . . . . 42
2.5.3 E�ect of noise in the platoon . . . . . . . . . . . . 44
2.5.4 Oscillatory bidirectional controller . . . . . . . . . 45

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Appendix to the chapter . . . . . . . . . . . . . . . . . . . 47

2.7.1 Settling time of systems in series . . . . . . . . . . 47
2.7.2 Approximation of the Wave transfer function using

Newton's method . . . . . . . . . . . . . . . . . . . 49
2.7.3 Approximation of the Wave transfer function using

binomial theorem . . . . . . . . . . . . . . . . . . . 53
2.7.4 Wave transfer function - double integrator model . 57
2.7.5 Overview of some Wave transfer functions . . . . . 59

3 Heterogeneous agents and the waves 63

3.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . 64
3.1.1 Local control law . . . . . . . . . . . . . . . . . . . 64
3.1.2 The wave generated by an input to the agent . . . 66

3.2 Soft and hard boundaries . . . . . . . . . . . . . . . . . . 66
3.2.1 Mathematical de�nition of the boundaries . . . . . 66
3.2.2 Mathematical description of the boundaries . . . . 69
3.2.3 Properties of the boundaries . . . . . . . . . . . . . 72

3.3 Controllers for the boundaries . . . . . . . . . . . . . . . . 76
3.3.1 The soft boundary controller . . . . . . . . . . . . 76
3.3.2 The hard boundary controller . . . . . . . . . . . . 79
3.3.3 Stability of the controllers . . . . . . . . . . . . . . 81

3.4 Numerical simulations of the soft boundary . . . . . . . . 83
3.4.1 Soft boundary performance . . . . . . . . . . . . . 84
3.4.2 Local e�ect of the DC gains . . . . . . . . . . . . . 86

3.5 A combination of soft and hard boundaries . . . . . . . . 88
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



Contents

3.7 Appendix to the chapter . . . . . . . . . . . . . . . . . . . 91
3.7.1 Approximation of the Boundary Transfer Functions 91
3.7.2 Overview of the DC gains � Table 3.1 . . . . . . . 91

4 Asymmetric control law and the waves 93

4.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . 94
4.2 Wave transfer function for asymmetric bidirectional con-

nection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.1 Introduction of the asymmetric wave approach . . 96
4.2.2 Veri�cation of the asymmetric wave approach . . . 103
4.2.3 Properties of AWTFs . . . . . . . . . . . . . . . . . 104

4.3 Implications for the graphs with asymmetric coupling . . . 109
4.4 Mathematical simulations . . . . . . . . . . . . . . . . . . 111

4.4.1 Path-graph topology . . . . . . . . . . . . . . . . . 111
4.4.2 Complex graph topology . . . . . . . . . . . . . . . 113

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6 Appendix to the chapter . . . . . . . . . . . . . . . . . . . 114

4.6.1 DC gain of TN . . . . . . . . . . . . . . . . . . . . 114

5 General graph topology and the waves 119

5.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . 119
5.2 Notation of the waves . . . . . . . . . . . . . . . . . . . . 120
5.3 Mathematical description of the waves . . . . . . . . . . . 121
5.4 Properties of the waves . . . . . . . . . . . . . . . . . . . . 124
5.5 The e�ect of the boundary in numerical simulations . . . . 127

5.5.1 The travelling waves . . . . . . . . . . . . . . . . . 127
5.5.2 The e�ect of multiple neighbours . . . . . . . . . . 129

5.6 Design of an absorber for the agent . . . . . . . . . . . . . 130
5.7 Extension for the non-identical agents . . . . . . . . . . . 134
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.9 Appendix to the chapter . . . . . . . . . . . . . . . . . . . 140

6 Conclusions 143

6.1 Contributions of the Wave transfer function approach . . . 143
6.2 Contributions of the author . . . . . . . . . . . . . . . . . 146
6.3 Open problems . . . . . . . . . . . . . . . . . . . . . . . . 148

xi



Contents

7 Appendix 153

7.1 Wavebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Overview of the results from distributed control - Table 7.1 155

Bibliography 168

Publications of the author 169

xii



1 Introduction

1.1 Motivation

The distributed control is a broad and active �eld of research. The need
for it comes from the mobile robotics mainly due to the current advances
in miniaturization. The aim is to represent and control a large set of inter-
acting autonomous agents to reach a common goal. The motivation may
vary from purely practical (re-position large group of agents without colli-
sions) through economical (lower fuel consumption of vehicular platoons)
to feasibility issues, when a single agent is not able to ful�l the task (map-
ping of a large area). As the number of agents in the system increases,
the control becomes more challenging since the centralized information is
usually not available to all the agents. Although each agent usually has
its own local controller and performs well as individual, the interaction
with other agents may trigger unexpected phenomena such as: dramatic
increase of the required control e�ort (called string instability or harmonic
instability), or in some cases, even the asymptotic instability of the whole
distributed system. Sometimes, the control of the distributed system is
counter-intuitive since the system performance may be dramatically im-
proved or deteriorated by adding or removing just one communication
link between the agents.

The distributed system can be found in a many, seemingly unrelated, areas
such as: formation of agents (platoon of vehicles, sensor network, �eet
of unmanned boats), biological systems (neural and ecological networks),
social systems (Facebook), technological systems (energy networks, tra�c
in cities) etc. The internet itself represents a massive distributed system.
Many of online applications are beautiful applications of the distributed
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Chapter 1. Introduction

control theory in practice, such as (Google PageRank, Net�ix, BitTorrent,
Skype etc., see [Chiang (2012)]).

Nowadays, the distributed control is a very active �eld of research, par-
ticularly in the control community. At least one third of the papers,
but usually more, are related to the distributed control or networks of
agents on the top control-community conferences such as Conference on
Decision and Control (CDC), American Control Conference (ACC) or Eu-
ropean Control Conference (ECC). The same applies to the top control-
community journals such as Automatica or IEEE Transactions on Auto-
matic Control. Recently, a new journal has been founded (IEEE Transac-
tions on Control of Network Systems), which is dedicated entirely to the
distributed control.

1.2 State of the art

1.2.1 Laplacian approach for analysis of multi-agent sys-

tems

General graph topology

The traditional approach for the analysis of a linear multi-agent system
with a general graph topology is based on the algebraic graph theory. A
thorough introduction into this �eld is given for instance in (Ren et al.,
2007), [Olfati-Saber et al. (2007)] or [Mesbahi and Egerstedt (2010)].
The analysis of nonlinear systems is usually carried out either by the
Lyapunov function, see [Moreau (2005)] and [Zhang et al. (2012)], or by
the examination of the passivity of the multi-agent system, see for instance
[Chopra and Spong (2006)], [Arcak (2007)], [Zelazo and Mesbahi (2011)]
or [Yamamoto and Smith (2013)].

The simplest and most studied interaction topology of a multi-agent sys-
tem is a path graph. It represents interactions in a system where each
agent, except of the �rst and last ones, interacts with two neighbour-
ing agents. It is used, for instance, as a model of vehicular platoons

2



1.2. State of the art

[Eyre et al. (1998)], [Swaroop and Hedrick (1999)], discretized �exible
structures [Singhose et al. (1996)] or [Dwivedy and Eberhard (2006)], or
spatially-discretized models of long electrical transmission lines [Dhaene
and Zutter (1992)]. A path graph is also called a chain graph, see for
instance [Egerstedt et al. (2012)] or [Cao et al. (2012)].

Path graph topology - vehicular platooning

Regarding control strategies, among the �rst treatments of vehicular pla-
tooning were papers by [Levine and Athans (1966)] and [Melzer and Kuo
(1971)]. They examined a centralized control approach with a single global
controller governing all vehicles. However, [Jovanovic and Bamieh (2005)]
later showed that one has to be careful about the stability of the system,
since it might degrade with an increasing number of vehicles. Neverthe-
less, more attention is paid to fully or partially distributed control, wherein
each vehicle is controlled by its own on-board controller with only limited
knowledge about the platoon. Among the �rst papers dealing with such
distributed control was the work by [Chu (1974)]. Basic questions about
the feasibility and performance of such systems were introduced by [Cos-
gri� (1969)] and later formalized by [Swaroop and Hedrick (1996)] under
the term string stability.

The string stability, or more precisely string instability, is a phenomenon
that causes higher control demands on the members of a vehicular pla-
toon that are farther from the source of regulation error, see the de�-
nitions in [Eyre et al. (1998)], [Ploeg et al. (2014)] or [Swaroop and
Hedrick (1996)]. The string stability is a useful analytic tool that is used
for the performance assessment of various distributed control strategies,
see for instance [Seiler et al. (2004)], [Barooah and Hespanha (2005)] and
[Shaw and Hedrick (2007)]. However, it is important to stress out that it
does not guarantee that the vehicles do not crash into each other. Similar
analytical measures of system performance are harmonic stability [Tanger-
man et al. (2012)] and �ock stability [Cantos and Veerman (2014)]. A
fundamental limitation of many distributed algorithms with only local
information about the platoon is the inability to maintain coherence in

3



Chapter 1. Introduction

a large-scale platoon subjected to stochastic disturbances [Bamieh et al.
(2012)]. However, the coherence can be improved by introducing optimal
non-symmetric localized feedback [Lin et al. (2012)].

A common goal of each platooning algorithm is to drive the platoon with
a reference velocity and inter-vehicle distances. Many distributed algo-
rithms have been introduced in the platooning �eld. The most simple
algorithm, relying only on the measurement of the distance to the im-
mediately preceding vehicle, is the so-called predecessor following algo-

rithm. A straightforward extension is the so-called bidirectional control

algorithm, which additionally measures the distance to the immediate fol-
lower. Depending on the weight between the two distance measurements,
we distinguish either symmetric, see e.g. [Lestas and Vinnicombe (2007)],
[Middleton and Braslavsky (2010)], [Barooah and Hespanha (2005)] [Hao
and Barooah (2012b)], or asymmetric, see [Barooah et al. (2009)], bidi-
rectional control.

In order to assure that the vehicles in the platoon are able to track the
leader moving with a constant velocity, we need to satisfy the Internal
Model Principle [Wieland et al. (2011)], [Lunze (2012)], which, in this
case, means the presence of two integrators in the open-loop model of each
vehicle. It was shown in [Seiler et al. (2004)] that the string instability is
unavoidable for the agents with two integrators and the predecessor fol-
lowing algorithm. Later, it was shown in [Hao and Barooah (2012a)] that
the same asymmetry for all states used for coupling causes a nonzero lower
bound on the distributed-system eigenvalues, which guarantees the con-
trollability of a system with even a large number of agents, see [Barooah
et al. (2009)]. The disadvantage of such an asymmetric bidirectional con-
trol of agents with two integrators, as shown in [Tangerman et al. (2012)]
and [Herman et al. (2015a)], is that the system is harmonically unstable,
meaning that the H∞ norm of transfer functions between the agents scales
exponentially with the number of agents in the system. The asymmetric
bidirectional controllers were generalized in [Hao et al. (2012)] and [Can-
tos and Veerman (2014)] by assuming nonequal asymmetries between the
output states used in the bidirectional controller.
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1.2. State of the art

Another topic of interest is the transient of the system, see e.g. [Tanger-
man et al. (2012)], [Cantos and Veerman (2014)] and [Lunze (2013)],
the locations of poles and zeros a�ecting the input-output behaviour de-
scribed in [Briegel et al. (2011)] or [Zamani et al. (2015)], or the scaling
of stability margin, see e.g. [Barooah et al. (2009)] or [Hao and Barooah
(2010)].

These approaches are well suited for the analysis of overall system be-
haviour such as the asymptotic stability. However, they do not reveal
how the disturbance, in our case the reference command, is locally and
temporarily ampli�ed by an individual agent. In other words, how the
travelling wave, generated by the disturbance, changes the output of the
agent before it re�ects from the boundary in the system and reaches the
agent again. This local-temporal-performance analysis can be carried out
by the travelling-wave approach proposed in the thesis.

1.2.2 Transfer-function approach to travelling waves

The origins of control based on travelling waves lies in the 1960's in
the mathematical modeling and analysis of �exible structures. [Vaughan
(1968)] was one of the �rst treatments analysing simpler instances of �exi-
ble structures such as beams and plates. The analysis and control of more
complex �exible structures from the viewpoint of travelling wave-modes
was investigated in a series of papers by von Flotow and his colleagues in
[Flotow (1986a)] and [Flotow (1986b)].

Recently, the concept was revisited by O'Connor in [O'Connor (2006)] and
[O'Connor (2007)] for vibrationless positioning of lumped multi-link �ex-
ible mechanical systems. It was named wave-based control and it is based
on the so-called wave transfer function, which describes how the travel-
ing wave propagates in the lumped system. Parallelly with O'Connor,
the wave concept was also considered for the control of continuous �exi-
ble structures by Halevi and his colleagues in [Halevi (2005)], [Halevi and
Wagner-Nachshoni (2006)] and [Sirota and Halevi (2015)] under the name
absolute vibration suppression. It relies on the transfer function as well,
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Chapter 1. Introduction

though, in this case, the time delay plays a key role. Surprisingly, it was
shown by [Peled et al. (2012)] that both the wave-based control and the
absolute vibration suppression are a feedback version of the input shaping
control. It was also shown that the wave-based control can be generalized
even for continuous �exible systems, e.g., a steel rod, and then it coincides
with the absolute vibration suppression. A more thorough comparison by
[Martinec et al. (2015c)] revealed that the wave-based control and Multi-
Mode Zero-Vibration input shaping concept, developed by ([Vyhlídal et al.
(2013)]), can be combined, which has an advantage of both an appropri-
ate initial excitation of the system by the input shaper and the increased
robustness due to the wave-based feedback architecture.

The description of the travelling waves is based on the assumption of the
spatial causality, that is, the boundary condition does not a�ect the wave
travelling towards it. This assumption applied to the description of in�nite
number of agents in the multi-agent system results in the description
by irrational transfer functions. The analysis of irrational and rational
transfer functions di�er in several aspects, see [Curtain and Morris (2009)]
for a thorough overview. For instance, despite many examples of the
inverse Laplace transform of irrational transfer functions, see [Bateman
and Erdélyi (1954)], it is di�cult to �nd an exact impulse response for
many of them. We note that the travelling wave approach can be used to
describe even a system with a �nite number of agents by considering the
boundary conditions.

The key idea of the wave-based control is to generate a wave at the ac-
tuated front-end of the interconnected system and let it propagate to
the opposite end of the system, where it re�ects and returns back to the
front-end actuator. When it reaches the front again, it is absorbed by the
front-end actuator by means of the wave transfer function. An interesting
but troublesome property of the wave transfer function is the presence
of the square root function. This makes its implementation in the time
domain very challenging. To be able to run numerical simulations, the
author of the thesis therefore introduced a convergent recursive algorithm
that approximates the wave transfer function for an arbitrary dynamics

6
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of the local system.

There are other viewpoints on wave-based control. One was introduced
by [Ojima et al. (2001)] in terms of the characteristic impedance for a
mass-spring system. Alternative viewpoint was introduced by [Nagase
et al. (2005)] for the wave-based control of ladder electric networks. The
impedance matching in power networks is also closely related to the wave-
based control, e.g., [Thorp et al. (1998)] or [Lesieutre (2002)].

Although it seems to be complicated to use the wave concept in practice
due to the irrationality of the controllers, there are several implementation
of the wave absorbers in practice, see for instance [Saigo et al. (2004)],
[Kreuzer and Steidl (2011)] or [O'Connor et al. (2008)]. The wave-based
control is not limited only to the one-dimensional systems, that means
the systems with a path-graph topology, but it can also be applied to
two-dimensional systems as shown in [Mei (2011)] or [Sirota and Halevi
(2014)], and possibly to nonlinear systems [O'Connor et al. (2008)].

1.2.3 Fractional order systems

It might seem that the irrational transfer function is closely related to the
fractional order systems, see for instance [Ortigueira (2008)] and [Elwakil
(2010)] for tutorials, where the square root of the Laplace variable s ap-
pears. The fractional order systems is an interesting �eld of research with
a rich history, see the introduction of [Das (2011)]. The systems are well
analyzed [Petras (2008)] and even supported by Matlab Crone toolbox
[Oustaloup et al. (2000)].

The fractional order systems are based on fractional derivatives, hence,
they consider fractional orders of s, for instance 1/(s0.5 + 1). Unfortu-
nately, the methods developed for the analysis of these systems cannot be
used for irrational transfer functions such as 1/

√
s+ 1. Yet, we can still

use some of their methods [Vinagre et al. (2000)] for approximating the
wave transfer function, for instance the continued fraction method and
the Carlson's method.
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Chapter 1. Introduction

1.3 Aim of the Thesis

The thesis is motivated by the results of O'Connor and his colleagues
([O'Connor (2006)], [O'Connor (2007)] and [O'Connor et al. (2008)])
about the wave transfer function and its use for the suppression of vi-
bration in mass-spring model. The main goal of the thesis is to tailor
these results in the �eld of distributed control. In other words, we aim to
describe a wave-like behaviour of a multi-agent system. We demonstrate
the main idea on the following simple examples.

0 50 100 150
0

0.5

1

1.5

2

P
os

iti
on

 [−
]

Time [s]
0 200 400 600

0

0.5

1

1.5

2

Time [s]

 

 
n=1
n=10
n=20
n=30
n=40
n=50

Figure 1.1: Step response of a multi-agent system with 50 identical agents
driven by the symmetric bidirectional control law. The 1st agent (blue)
line is the reference input to the system.

A demonstration of the wave-like behaviour is shown in Fig. 1.1 and
Fig. 1.2. The �gures show the response of 50 identical agents with a
path-graph topology. Comparing top-left and top-right panels in Fig. 1.2,
we can see a wave-like response of the agents. The wave travels from the
left (1st agent) to the right. The agents with higher indexes successively
change their position from 0 to 1. The wave reaches the last agent at time
t = 60 s (middle-left panel), re�ects and travels back to the left (middle-
right panel), which for instance, makes the 30th agent to move to position
2. The wave continues travelling to the 1st, re�ects back, and travels to
the right again. In this manner, the wave keeps re�ecting back and forth,
which generates the standing wave pattern in Fig. 1.1. These re�ections
also causes that the settling time of the system is very long.

If it were possible to prevent the re�ection of the wave from one of the
ends, then the settling time would signi�cantly be shorter see Fig. 1.3.
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Figure 1.2: The response of individual agents at several time instances.
The A and B (blue and red lines) are the waves that propagate in the
system in the forward and backward directions, respectively, which will
be explained in details later.

This motivates the questions: How to describe the propagation of the
wave? How to absorb the wave on the ends of the system?
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Figure 1.3: The response of the system from Fig. 1.1 with the wave-
absorbing control law implemented on the last agent. The wave-absorbing
control law prevents re�ection of the wave at the last agent.

A natural extension of the above example is to consider a system where
the agents are not identical. For instance, let us consider a system of 25
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Chapter 1. Introduction

cars followed by 25 trucks. The response of such a system is shown in
Fig. 1.4. Similarly as in previous case, we can see that the wave travels
from the �rst to the last agent. But as the wave reaches the last car (25th

agent), it looks like that it reaches a virtual boundary and is partially
re�ected back. For instance, we can see in the left panel for the �rst
50 seconds that the 10th agent travels to position 1 at �rst, but at time
t = 30 s it moves to position 0.7, while the 30th agent does not travel
to 1 but only to 0.7. This introduces the following problems. How to
describe the re�ection at the boundary between cars and trucks? How
is the re�ection related to the dynamics of the agents? Is it possible to
suppress it?
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Figure 1.4: The response of the multi-agent system with 25 cars and 25
trucks.

The above examples illustrate that there is a wave phenomenon in a multi-
agent system with the path-graph topology. Does a similar phenomenon
also occur in a system with general-graph topology, that is in a system
where the agents have more than two neighbours? The numerical simula-
tions shown in Figs. 1.5 and 1.6 con�rm it. We can see that the responses
of the agents are identical in all systems for about �rst 18 seconds. This
example raises yet another question. Why are the responses at the begin-
ning of the simulation identical?

Answering the aforementioned questions is the aim of this thesis.
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Figure 1.5: The topologies of the distributed systems.

1.4 Organization of the Thesis

The thesis is organized as follows. The second chapter introduces the
travelling waves in a multi-agent system with path-graph topology, which
is based on the work by [Martinec et al. (2014b)]. It focuses on the
case where the agents are identical and have the symmetric bidirectional
controller, which is generalized in the third chapter for the case where the
agents are not identical. The third chapter is mainly based on [Martinec
et al. (2014c)]. The fourth chapter, presented in [Martinec et al. (2015a)],
analyzes how the wave propagates in system with the path-graph topology
of identical agents but asymmetric bidirectional controller. A part of the
�fth chapter has been presented in [Martinec et al. (2015b)]. This chapter
also generalizes the travelling wave concept from the path graph to general
graph topology.
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Figure 1.6: The comparison of the responses of the systems with four
di�erent interaction topologies. The topologies are given in Fig. 1.5 and
they are related to this �gures as follows: top-left panel - topology I); top-
right panel - topology II); bottom-left panel - topology III); bottom-right
panel - topology IV).
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2 Path-graph topology and the

waves

In this chapter, a �nite one-dimensional platoon of vehicles moving along
a highway lane is considered. Each individual vehicle in the platoon is
locally controlled by a bidirectional controller, which represents a string-
damper connection in mechanical structures and hence enables a wave to
propagate back and forth along the line. One or both of the platoon ends
are controlled by the wave-absorbing controller allowing active absorption
of the traveling wave.

The key objective of the chapter is to generalize the principle of the wave-
based control for vehicular platoons in such a way that the distances
between vehicles are additionally considered. In this regard, the presented
concept o�ers a symmetric version of bidirectional control enhanced by
the feedback control of one or both platoon ends. Thus, it signi�cantly
decreases long transient oscillations during platoon manoeuvres such as
acceleration/deceleration or changing the distances between vehicles. In
addition, the chapter contributes to the following a) It generalizes the wave
transfer function description for arbitrary dynamics of the local system,
b) it o�ers a convergent recursive algorithm for the approximation of the
wave transfer function, c) it presents an alternative way of deriving the
wave transfer function using a continued fraction approach, and d) it
provides the mathematical derivation of the transfer functions describing
re�ections at the platoon ends.
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Chapter 2. Path-graph topology and the waves

2.1 Local control of the platoon vehicles

A vehicle in a platoon indexed by n is modelled in the Laplace domain as

Xn(s) = P (s)Un(s), (2.1)

where s is the Laplace variable, Xn(s) is a position of the nth vehicle in
the Laplace domain, P (s) represents the transfer function of the system
dynamics and Un(s) is the system input which is generated by the local
controller of the vehicle speci�ed in the following.

Except for the leader, indexed n = 0, and the rear-end vehicle, each vehicle
in the platoon is equipped with a symmetric bidirectional controller C(s)
with the task of equalizing the distances to its immediate predecessor and
successor, giving

Un(s) = C(s)(Dn−1(s)−Dn(s)), (2.2)

whereDn(s) is the distance between vehicles indexed by n and n+1, hence
Dn(s) = Xn(s)−Xn+1(s) and Dn−1(s) = Xn−1(s)−Xn(s). Substituting
(2.2) into (2.1) yields the resulting model of the in-platoon vehicle with
the bidirectional control for the inter-vehicle distances,

Xn(s) = P (s)C(s)(Xn−1(s)− 2Xn(s) +Xn+1(s)). (2.3)

Using the notation,

α(s) =
1

P (s)C(s)
+ 2, (2.4)

equation (2.3) is rewritten as

Xn(s) =
1

α(s)
(Xn−1 +Xn+1). (2.5)

The vehicle at the rear end of the platoon is driven by the predecessor fol-
lowing algorithm and is supposed to equalize the distance to its immediate

14



2.2. Wave Transfer Function

predecessor and reference distance Dref,

XN (s) =
1

α(s)− 1
(XN−1(s)−Dref(s)), (2.6)

where XN (s) is the position of the vehicle at the rear end of the platoon.

To carry out numerical simulations, we will use the model that is of-
ten used in associated theoretical studies. The vehicle is described by
a double integrator model with a simple (linear) model of friction, ξ,
and is controlled by a PI controller. Hence, P (s) = 1/(s2 + ξs) and
C(s) = (kps + ki)/(s), where kp and ki are proportional and integral
gains of the PI controller, respectively. Such a model was also used in the
experimental studies presented in [Martinec et al. (2012)].

2.1.1 Analyzed properties

The DC gain describing the steady-state ampli�cation of a system and
L2 string stability describing the ampli�cation of disturbance in a system
with the path-graph topology are important analytical tools of system
performance analysis. They are de�ned as follows.

De�nition 1. The DC gain κG of the transfer function G(s) is de�ned

as κG = lims→0G(s).

De�nition 2. (From [Eyre et al. (1998)]) A system is called L2 string

stable if there is an upper bound on the L2-induced system norm of T0,n
that does not depend on the number of agents, where T0,n is the transfer

function from Xref(s), that is the reference position of the leader, to Xn(s).

2.2 Wave Transfer Function

The bidirectional property of locally controlled systems causes that a
change in the movement of the leading vehicle propagates through the
platoon as a wave. To describe this wave, we need to �nd out how a
change in the position of a vehicle is in�uenced by a change in the posi-
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Chapter 2. Path-graph topology and the waves

tion of its immediate neighbours. For a moment, let us assume that the
length of the platoon is in�nite, so that there is no platoon end where the
wave can re�ect. A generalization for a platoon with one platoon end,
i.e., a semi-in�nite platoon, is done in the next section.

2.2.1 Mathematical model of the wave transfer function

In accordance with the standard arguments for the wave equation as
found, for instance, in [Asmar (2004)], the solution to the wave equation
can be decomposed into two components: An(s) and Bn(s) (also called
wave variables in the literature), which represent two waves propagating
along a platoon in the forward and backward directions, respectively.

To �nd a transfer function describing the wave propagation, we are search-
ing for two linearly independent recurrence relations that satisfy (2.5).
We �rst recursively apply (2.5) and (2.6) with Dref(s) = 0 for a platoon
with an increasing number of vehicles. The transfer function for a pla-
toon with two vehicles is A1/A0 = (α − 1)−1, for a platoon with three
vehicles A1/A0 =

(
α− (α− 1)−1

)−1, for a platoon with four vehicles

A1/A0 =
(
α−

(
α− (α− 1)−1

)−1)−1 and so on. Continuing recursively,

A1/A0 is expressed by the continued fraction

A1

A0
=

1

α− 1

α− 1

α− 1

. . .

. (2.7)

On the other hand, the continued-fraction expansion of a square root is
given by [Jones and Thron (1984)]√

z2 + y = z +
y

2z +
y

2z +
y

2z +
y

. . .

. (2.8)
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2.2. Wave Transfer Function

Letting the number of vehicles approach in�nity, the right-hand sides of
(2.7) and (2.8) are equal, provided that y = −1 and z = α/2. Hence,

A1

A0
=
α

2
− 1

2

√
α2 − 4. (2.9)

Likewise, the transfer function A2/A1 can be derived from (2.5) and (2.6)
for n = 2 as

αA1 = A0 +A2. (2.10)

Substituting for A0 from the previous recursive step (2.9) gives

αA1 = A1

(
α

2
+

1

2

√
α2 − 4

)
+A2, (2.11)

which provides

A2

A1
=
α

2
− 1

2

√
α2 − 4. (2.12)

Continuing recursively, we can �nd that the transfer function An+1/An is
again equal to (2.9) or (2.12). We can conclude that the transfer function
from the nth to (n+1)th vehicle is the same for each vehicle, and is equal
to

G1(s) =
α(s)

2
− 1

2

√
α2(s)− 4. (2.13)

Analogously, the second linearly independent recurrence relation of (2.5)
and (2.6) is searched for by their recursive application with a decreasing
index of vehicles. After similar algebraic manipulations as for An, we �nd

Bn
Bn−1

= α− 1

α− 1

α− 1

α− 1

. . .

. (2.14)
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Letting the number of vehicles approach in�nity, the right-hand sides of
(2.14) and (2.8) are equal provided that y = −1 and z = α/2. Hence,

Bn
Bn−1

=
α

2
+

1

2

√
α2 − 4. (2.15)

The transfer function from nth to (n− 1)th vehicle is again the same for
each vehicle, and is equal to

G2(s) =
α(s)

2
+

1

2

√
α2(s)− 4. (2.16)

The resulting model of the vehicular platoon with an in�nite number of
vehicles is therefore described as follows

Xn(s) = An(s) +Bn(s), (2.17)

An+1(s) = G1(s)An(s), (2.18)

Bn(s) = G2(s)Bn−1(s), (2.19)

G1(s) = G−12 (s), (2.20)

where (2.20) follows from the multiplication of (2.13) and (2.16). Equa-
tions (2.18)-(2.19) express the rheological property of the platoon, that is,
they de�ne the form of how these two components propagate through the
platoon. Equation (2.20) expresses the principle of reciprocity, that is, if
A(s) propagates with the help of G1(s) to higher indexes of vehicles, then
B(s) propagates with the help of G1(s) to lower indexes of vehicles.

It should be noted that if there is a boundary in the system, e.g., if
the length of the platoon is �nite, where the rheology property for wave
propagation changes abruptly, the principles must be supplemented by
boundary conditions. We discuss this case in the following section.

The resulting model is summarized in the following Theorem.

Theorem 1. The model of the vehicular platoon with an in�nite number
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2.2. Wave Transfer Function

of vehicles is

Xn(s) = An(s) +Bn(s), (2.21)

An+1(s) = G(s)An(s), (2.22)

Bn(s) = G(s)Bn+1(s), (2.23)

where G(s) = G1(s) is the Wave Transfer Function and G2(s) = G−1(s) =

1/G(s),

G(s) =
1

2
α(s)− 1

2

√
α2(s)− 4, (2.24)

G−1(s) =
1

2
α(s) +

1

2

√
α2(s)− 4, (2.25)

with α(s) = 2 + 1/M(s), or, alternatively, α(s) = G(s) +G−1(s).

Remark. We can see that the Wave Transfer Function is linear and ir-

rational. The irrationality of the function comes from the separation of

the output, Xn(s), into two travelling waves, An(s) and Bn(s), that are

independent of each other as they travel in the system with in�nite num-

ber of vehicles. However, every system with a �nite number of identical

vehicles and path-graph topology has the leader and the rear-end vehicle,

which represent boundaries and cause re�ections of the travelling waves.

In this case, An and Bn are no longer independent. Therefore, to �nd

the wave transfer functions, we have to consider a system with in�nite

number of vehicles. In�nite dimensionality of the system then makes the

transfer functions to be irrational.

In basic wave physics, the boundary is assumed to satisfy the spatial causal-

ity, that is, the boundary condition does not a�ect the wave travelling to-

wards it. In other words, (2.21)-(2.23) hold regardless of the topological

distance and dynamics of the rear-end vehicle. Therefore, we can apply

(2.21)-(2.23) to describe the travelling waves even in a system with a �nite

number of vehicles, although, these relations are valid only for the vehicles

that are not placed on the boundary. The boundary vehicle that causes the

re�ection of the waves must be treated separately, see Section 2.3. In gen-

eral, any vehicle that is not described by (2.3) represents a boundary for
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Chapter 2. Path-graph topology and the waves

the travelling wave. This can be generalized even for vehicles (or agents)

that have more than two neighbours. This is shown in Chapter 5. There-

fore, the travelling-wave decomposition, (2.21)-(2.25) is valid even for a

path graph that is part of a more complex graph.

In view of the Wave Transfer Function, the term `travelling wave' can be
de�ned as follows.

De�nition 3. The travelling wave is a disturbance that travels in the

system in the forward direction from An(s) to An+1(s) and in the backward

direction from Bn+1(s) to Bn(s).

2.2.2 Veri�cation of the wave transfer function

We now outline an alternative way to derive the wave transfer function.
Let the model of the vehicular platoon (2.21)-(2.23) hold and now search
for the transfer functions G1(s) and G2(s) that satisfy these three equa-
tions. Substituting (2.21) into (2.5) yields

α(An +Bn) = An−1 +Bn−1 +An+1 +Bn+1, (2.26)

which, in view of (2.22) and (2.23), is

α(s) = G1(s) +G2(s). (2.27)

We can substitute either for G1(s) or G2(s) from (2.20). Either possibility
leads to the same quadratic equation (m = 1, 2),

G2
m(s)− α(s)Gm(s) + 1 = 0, (2.28)

with two linearly independent solutions,

Gm(s) =
α

2
∓ 1

2

√
α2 − 4. (2.29)

Let G1(s) be chosen as the solution with the negative sign in front of
the square root. Then (2.20) only allows G2(s) to be the solution with
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2.2. Wave Transfer Function

the positive sign in front of the square root. Hence, G1(s) and G2(s) are
identical to those derived in the previous section. The quadratic equation
(2.28) can be employed as a starting model for the positioning of multi-link
�exible mechanical systems [O'Connor (2006)].

2.2.3 Approximation of the wave transfer function

It will be shown later that to be able to implement the wave-absorbing
controller, we need to �nd the impulse response of the wave transfer func-
tion, i.e., the inverse Laplace transform of G(s). Due to the presence of
the square root in G(s), it is very challenging to �nd an exact impulse re-
sponse of G(s). However, we can approximate the impulse response with
a �nite impulse response (FIR) �lter. Therefore, we �rst approximate the
wave transfer function in the Laplace domain, then transform this ap-
proximate form to the time domain and �nally truncate and sample the
approximate impulse response to obtain FIR �lter coe�cients.

The square root function in (2.29) can be approximated by various ways,
e.g., Newton's method, the binomial theorem, or continued fraction expan-
sion (2.7). We employ the last option since it guarantees the convergence
of iterative approximations and is applicable to an arbitrary dynamics
of the local system with generalized parameter α(s) as in (2.4). The re-
cursive formula (2.7) immediately provides the iterative approximation of
G(s),

Gl(s) =
1

α(s)−Gl−1(s)
, (2.30)

where l = 1, 2, . . ., and the initial value G0(s) = 1. The approximate Gl(s)
can be transformed to the time domain by Matlab or Mathematica. Our
experience with the inverse Laplace solvers for the Fractional Calculus
Crone [Malti et al. (2012)], invlap [de Hoog et al. (1982)], weeks [Weeks
(1966)] and nilt [Brancik (1999)] in Matlab is that, while they are not
capable of performing the inverse Laplace transform of (2.29) due to the
square root function, they carry out the inverse Laplace transform of Gl(s)
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Figure 2.1: Characteristics of the approximateG(s) after several iterations
by (2.30) for kp = ki = ξ = 4.

without complications since (2.30) is a rational function.

The approximate Gl(s) can be interpreted as follows. Equation (2.30)
represents the transfer function from the position of the leader to the po-
sition of the �rst follower in a platoon of l vehicles. Increasing the number
of iterations (2.30) means that the length of a platoon grows and the ef-
fect of the rear-end vehicle on G(s) weakens. The approximation of G(s)
therefore successively improves. Fig. 2.1 show the Bode characteristics
Gl(s) and the associated impulse responses for various numbers of itera-
tions, respectively. Increasing the numbers of iterations makes the peak
in the Bode characteristic sharper, more localized and moves it towards
lower frequencies, eventually disappearing entirely. The basic character-
istic of the impulse response is adjusted after a few iterations while small
di�erences occur at longer times. To obtain the FIR �lter coe�cients, we
truncate the approximate impulse response at a few seconds and sample
it with an appropriate frequency. In our numerical simulations it is suf-
�cient to stop the iterative procedure after 20 iterations, to truncate the
impulse response at 15 to 25 seconds and sample it at the frequency of
100Hz. The error caused by the truncation is shown in Fig. 2.2.
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Figure 2.2: Continued fraction approximation. Compared 'full' and
'truncated-in-time' approximations. The approximation was constructed
in 25 recursive steps, truncated at time 25 s and sampled with frequency
200Hz. The oscillations in the phase near frequency 100Hz are caused by
numerical instabilities.

2.3 Re�ection of the wave at platoon ends

To be able to design a wave-absorbing controller for the platoon end,
we �rst need to mathematically describe the wave re�ection. In contrast
to the previous section where an in�nite platoon is considered, we now
consider a semi-in�nite platoon having one end that is either controlled
externally (forced end) or allowed to move freely (free end). When a wave
propagates along a platoon and reaches its free end, it is re�ected with
the same polarity, i.e., the same sign of amplitude, but with the opposite
polarity at the �xed/forced end. This phenomenon, known from basic
wave physics [French (2003)], is discussed in the following in terms of the
wave transfer function.

2.3.1 The forced-end boundary

A vehicle that is externally controlled and is not linked with the other
vehicles is called the forced-end boundary. However, the neighbouring
vehicle is one-directionally linked with this forced boundary. The platoon
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Chapter 2. Path-graph topology and the waves

leader therefore represents the forced-end boundary. The re�ection at the
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Figure 2.3: Scheme of the wave re�ection at the leader, i.e., the re�ection
at the forced-end boundary, described by (2.31).

forced-end boundary is sketched in Fig. 2.3. A change in the position of
the forced end, X0, generates the outgoing wave as a �rst contribution to
A1. Moreover, the incoming wave (B1) is re�ected at the forced end and
transformed to the outgoing wave as the second contribution to A1.

Lemma 1. The re�ection at the forced-end boundary is described by

A1(s) = G(s)X0(s)−G(s)2B1(s). (2.31)

Proof. We �rst combine (2.21)-(2.23) to obtain

Xn+1(s) = G(s)An(s) +G−1(s)Bn(s), (2.32)

Xn−1(s) = G−1(s)An(s) +G(s)Bn(s). (2.33)

Equation (2.5), speci�ed for the �rst vehicle behind the platoon leader, is

α(s)X1(s) = X0(s) +X2(s). (2.34)

Substituting (2.21) for X1(s) and (2.32) for X2(s) yields

α(s)(A1(s) +B1(s)) = X0(s) +G(s)A1(s) +G−1(s)B1(s), (2.35)
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2.3. Re�ection of the wave at platoon ends

which can be rewritten for A1(s) as

A1(s) =
1

α(s)−G(s)
X0(s) +

G−1(s)− α(s)
α(s)−G(s)

B1(s). (2.36)

The term in front of B1(s) can be arranged as

G−1(s)− α(s)
α(s)−G(s)

=
−α(s)

2 + 1
2

√
α2(s)− 4

α(s)
2 + 1

2

√
α2(s)− 4

= − G(s)

G−1(s)
= −G2(s),

(2.37)

Similarly, the term in front of X0(s) is expressed as

1

α(s)−G(s)
=

1
α(s)
2 + 1

2

√
α2(s)− 4

=
1

G−1(s)
= G(s). (2.38)

Finally, we have

A1(s) = G(s)X0(s)−G2(s)B1(s). (2.39)

Eq.(2.31) �rst shows that changing the position of the forced end is trans-
lated to A1 through G. Second, since the DC gain of G is equal to plus
one (see Fig. 2.2), the minus sign in front of G2 causes the wave to be
re�ected with the opposite sign.

2.3.2 The free-end boundary

A free-end boundary is a boundary where a vehicle is two-directionally
linked with one neighbour only and, additionally, it is aware of the ref-
erence distance. The rear-end vehicle described by (2.6) represents the
free-end boundary.

The re�ection at the free-end boundary is outlined in Fig. 2.4. The wave
travelling from the free-end boundary (BN ) is composed of two parts, the
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Figure 2.4: Scheme of the wave re�ection at the rear-end vehicle, i.e., the
re�ection at the free-end boundary, described by (2.40).

incoming wave (AN ) which is re�ected back and the component due to
adjusting the reference distance Dref.

Lemma 2. The re�ection at the free-end boundary is described by

BN (s) = G(s)AN (s) +
G(s)− 1

α(s)− 2
Dref(s). (2.40)

Proof. Substituting (2.21) and (2.33) into (2.6) yields

(AN (s)+BN (s))(α(s)−1) = G−1(s)AN (s)+G(s)BN (s)−Dref(s), (2.41)

which, after rearranging, gives

BN (s) =
G−1(s)− α(s) + 1

α(s)− 1−G(s)
AN (s)−

1

α(s)− 1−G(s)
Dref(s), (2.42)

where

G−1(s)− α(s) + 1

α(s)− 1−G(s)
=

1− α(s)
2 + 1

2

√
α2(s)− 4

−1 + α(s)
2 + 1

2

√
α2(s)− 4

=

α(s)− α2(s)
2 −

√
α2(s)− 4 + α(s)

2

√
α2(s)− 4

2− α(s)
=

2− α(s)
2− α(s)

G(s) = G(s).

(2.43)
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Similarly,

1

α(s)− 1−G(s)
= G(s)

1

G−1(s)− α(s) + 1
=(

α(s)

2
− 1

2

√
α2(s)− 4

)
1− α(s)

2 + 1
2

√
α2(s)− 4(

1− α(s)
2

)2
− 1

4(α
2(s)− 4)

=
G(s)− 1

2− α(s)
.

(2.44)

Hence, (2.42) is

BN (s) = G(s)AN (s) +
G(s)− 1

α(s)− 2
Dref(s). (2.45)

The re�ection from the free-end boundary does not change the sign which
is expressed by the plus sign in front of G(s)AN (s). Moreover, the signal
re�ected from the free-end is delayed as a linear function of G(s), while
as a quadratic function when it is re�ected from the forced-end boundary,
as shown by (2.31).

It should be noted that the veri�cation of the above wave-based model
was done in [O'Connor (2007)]. The transfer function

XN (s)

X0(s)
= GN (s)

1 +G(s)

1 +G2N+1(s)
, (2.46)

where N is the index of the last vehicle, was shown to be identical to
the transfer function derived by the state space description. This result
is valid not only for a double integrator with P controller, but also for an
arbitrary dynamics of the local system.

2.4 Wave-absorbing controller

The three main control requirements are: i) to have the platoon travelling
with the reference velocity vref, ii) to keep inter-vehicle distances dref and
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iii) to actively absorb the wave travelling towards the platoon's end.

This section introduces three possible con�gurations of the platoon with
the wave-absorbing controller. First, we will describe the con�guration
where the wave-absorbing controller is implemented at the platoon leader.

2.4.1 Front-sided wave-absorbing controller

Absorption of the wave

To absorb the incoming wave at the platoon front, the transfer function
from B1 to A1 in (2.31) has to be equal to zero, where B1 is the amplitude
of the wave travelling from the rear-end vehicle and observed at the vehicle
indexed as 1, while A1 is the amplitude of the wave travelling from the
leader and observed at the vehicle indexed as 1. In other words, we are
searching for X0 (a commanded position for the leader) to satisfy the
equation GX0/B1 −G2 = 0. The only solution is

X0(s) = G(s)B1(s). (2.47)

To be consistent with the model (2.21)-(2.20), we denote B0 = GB1 and
A0 = X0 − B0. Then (2.31) is expressed as A1 = GX0 − GB0 = GA0.
Summarizing, the wave components of the leader are

B0(s) = G(s)X1(s)−G2(s)A0(s), (2.48)

A0(s) = X0(s)−B0(s). (2.49)

This means that, if one component of the position of the leader is equal
to B0, then the leader absorbs the incoming wave. We can imagine it as
the leader is pushed/pulled by its followers and it manoeuvres like one of
the in-platoon vehicles.
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2.4. Wave-absorbing controller

Acceleration to the reference velocity

The previous algorithm actively absorbs the incoming wave to the platoon
leader. To change the platoon velocity and inter-vehicle distances are
other tasks to be solved.

To accelerate the platoon, we need to add an external/reference input,
Xref, to the leader, which causes the change of (2.47) to X0 = B0 +Xref.
The rear-end vehicle represents the free-end boundary, therefore, B0 is
expressed by the combination of (2.22), (2.23), (2.31) and (2.48) as B0 =

G2N+1Xref. The resulting transfer function from Xref to X0 is

X0(s)

Xref(s)
= 1 +G2N+1(s). (2.50)

Fig. 2.2 showed that the DC gain of G is equal to one, therefore, the DC
gain of (1 + G2N+1(s)) is equal to two. This means that to accelerate
the platoon to reference velocity vref, the leader must be commanded to
accelerate to a velocity vref/2 at the beginning of the manoeuver, as shown
in Fig. 2.5.

Fig. 2.5 additionally shows an independent validation of the wave transfer
function approach. The derivation of the sum of A + B velocity compo-
nents (red crosses) of the wave travelling through the platoon are com-
pared against the velocities simulated by the Matlab Simulink (green plus
signs). We can see an excellent agreement between the wave-transfer-
function-derived and independently-simulated velocities.

Changing of the inter-vehicle distances

Increasing the inter-vehicle distances poses a more di�cult task than
merely accelerating the platoon. The reason is that the rear-end vehicle
reacts to the change of reference distance dref by acceleration/decelera-
tion. This creates a velocity wave propagating towards the leader who
absorbs it by changing its velocity. This means, however, that when all
vehicles reach the desired inter-vehicle distance dref, the whole platoon
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Figure 2.5: Simulation of the velocity wave propagating through the pla-
toon with the Front-sided wave-absorbing controller at several time in-
stances. At the beginning, t = 0 s, all platoon vehicles are standing except
for the leader which accelerates to a velocity 0.5ms−1. At intermediate
times, the wave travels to the rear vehicle, where it is re�ected and travels
back to the leader to be completely absorbed. By propagating, it forces
platoon vehicles to accelerate by another 0.5ms−1 to a velocity 1ms−1.
At the �nal stage, t = 30 s, the leader is the last one reaching the velocity
1ms−1 and the whole platoon moves with 1ms−1. The red crosses rep-
resent the derivation of A + B positional components computed by the
wave transfer function approach, the green plus signs are the velocities
simulated by the Matlab Simulink.

travels with a new velocity di�erent from the original. Only by an addi-
tional action by the leader, see the next paragraph, the original velocity
can be reestablished.

Although the platoon has a �nite number of vehicles, it behaves like a
semi-in�nite platoon because no wave re�ects from the platoon leader,
who is equipped with the wave absorber. Since (2.40) holds for a semi-
in�nite platoon, it can be now used to determine the transfer function
from Dref to the velocity of the leader, V0(s), that is

V0(s)

Dref(s)
= GN (s)

s(G(s)− 1)

α(s)− 2
. (2.51)

The DC gain of (2.51) reads as

κf = lim
s→0

(
GN (s)

s(G(s)− 1)

α(s)− 2

)
. (2.52)
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In the case where the reference distance is changed and the leader does
not accelerate, the velocity of the platoon changes by κfdref. This means
that the platoon slows down or even moves backwards. To compensate
this undesirable velocity change, the leader is commanded to accelerate
to the velocity (−κfdref)/2. The platoon will consequently travel with
the original velocity, hence compensating for the acceleration/deceleration
of the rear-end vehicle. This leads to the DC gain of (2.51) for the PI
controller to be (−

√
ki/ξ).

Overall control of the leader

Let us now assume that the leader has a positional controller with input
Xf(s). Summarizing preceding subsections yields the resulting control law
of the leader in the following theorem.

Theorem 2. The wave-absorbing control law of the leader is

Xf(s) = Xref(s) +B0(s) = (1−G2(s))Xref(s) +G(s)X1(s). (2.53)

From the above discussion, Xref(s) must be represented by a ramp signal
with slope w0,

w0 =
1

2
(vref − κfdref) , (2.54)

to ensure that the platoon travels with a reference velocity vref and inter-
vehicle distances dref. In case of the PI controller, w0 =

(
vref +

√
ki/ξdref

)
/2.

The Front-sided wave-absorbing controller is summarized in Fig. 2.6.

2.4.2 Rear-sided wave-absorbing controller

Instead of placing the wave-absorbing controller at the platoon front, it
can be placed at the platoon rear. In this case, the platoon has one leader
in the front and one wave-absorbing controller at the rear. However,
the absence of the predecessor follower in the platoon has an important
consequence. Any velocity change by the leader, V0(s), causes a change in
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Figure 2.6: Scheme of the Front-sided wave-absorbing vehicular platoon
controller.

the distance to the �rst follower, D1(s), as shows the following corollary.
Consequently, all other distances between vehicles are changed.

Corollary 1. The wave-absorbing controller implemented on the leader

changes the transfer function D1(s)/V0(s), where V0(s) is the velocity of

the leader and D1(s) = X0(s) −X1(s) is the distance between the leader

and the �rst follower, as follows

D1(s)

V0(s)
=

1

s
(1−G(s)). (2.55)

Proof. Assuming a semi-in�nite platoon, equation (2.9) gives X1(s) =

G(s)X0(s). Hence,

D1(s) = X0(s)−G(s)X0(s) =
1

s
(1−G(s))V0(s). (2.56)

This negative e�ect is to be compensated by an acceleration/deceleration
of the rear-end vehicle. We denote κr to be the DC gain of the transfer
function from V0(s) to D1(s). Having speci�ed the DC gain, a certain
reference signal needs to be sent to the platoon end to set up a desired
inter-vehicle distance dref. The input to the positional controller of the
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rear-end vehicle, Xr(s), is expressed, analogous to (2.53), as

Xr(s) = Xref,rear(s) +G(s)AN−1(s), (2.57)

where G(s)AN−1(s) = G(s)XN−1(s) − (G(s))2Xref,rear(s) is the transfer
function of the wave absorber and Xref,rear(s) is a reference ramp signal
with slope wr,

wr =
1

2
(vref − κrdref) . (2.58)

In other words, the platoon leader drives the platoon to travel with ve-
locity vref, while the rear-end vehicle makes the platoon travel with inter-
vehicle distances dref. For the PI controller case, κr = ki/ξ.

It should be stressed that, for this type of control, the last vehicle must
know the reference velocity of the whole platoon. This may be undesirable,
since only the leader is usually aware of the reference velocity. It may,
however, be useful in situations, for instance, when the leader is not able
to measure the distance to its immediate follower, or when the leader has
no access to the reference distance.

2.4.3 Two-sided wave-absorbing controller

The Front-sided and Rear-sided wave-absorbing controllers can be com-
bined by implementing wave absorbers to both the platoon leader and the
rear-end vehicle. In this case, no wave is re�ected back from neither of
the platoon ends.

The input to the positional controller of the leader is given by (2.53) with
the ramp signal (2.54), while the input to the positional controller of the
rear-end vehicle is (2.57) with the ramp signal (2.58). In this way, each
platoon end generates a velocity wave propagating towards the opposite
end. Likewise, as for the Front-sided and Rear-sided wave-absorbing con-
trollers (Section 2.4.1 and 2.4.2), the amplitudes of the two waves are
summed up to vref, meaning that the platoon travels with velocity vref
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and inter-vehicle distances dref.

2.4.4 Asymptotic and string stability

First, we prove the important lemma on theH∞ norm of the Wave transfer
function.

Lemma 3. The H∞ norm of the Wave transfer function is limited as

follows

||G(s)||∞ ≤ 1. (2.59)

Proof. We will show that ||G−1(s)||∞ ≥ 1. Then it implies that ||G(s)||∞ ≤
1. To inspect the ampli�cation and phase shift on frequency ω, we substi-
tute ω for s in the de�nition of G−1(s) in (2.25), where  is the imaginary
unit, and obtain the complex number z2 in the polar form,

z2 = r2 exp(ϕ2). (2.60)

Similarly as in (2.16), we can separate z2 into two parts,

z2 =
1

2
z +

1

2

√
zs, (2.61)

where

z = α(ω) = r exp(ϕ),

zs = z2 − 4 = rs exp(ϕs). (2.62)

The magnitude rs is given by

rs = (r2 cos(2ϕ)− 4)2 + (r2 sin(2ϕ))2 = r4 + 8r2 + 16− 16r2 cos2 ϕ.

(2.63)
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with magnitude r2 then expressed as

r2 =

[
1

4

(
r2 + rs + 2r

√
rs

(
cos

ϕs
2

cosϕ+ sin
ϕs
2

sinϕ
))] 1

2

=

[
1

4

(
r2 + rs + 2r

√
rs cos

(
ϕ− ϕs

2

))] 1
2

. (2.64)

The minimum of rs over all possible phases is for ϕ = kπ, k ∈ Z, and is
equal to

min(rs) =
√
r4 − 8r2 + 16 = |r2− 4| =

{
4− r2 if 0 ≤ r ≤ 2

r2 − 4 if r > 2
(2.65)

Therefore,

1

4
(r2 + rs) ≥ 1. (2.66)

In the next step, we will show that |ϕ − ϕs/2| ≤ π/2, which means that
cos (ϕ− ϕs/2) is nonnegative. It is a known fact that the sum of two
complex numbers with phases δ1 and δ2, where δ1 ≤ δ2 and δ1, δ2 ∈
[−π, π), yields a complex number with the phase δ ∈ [−π, π), that is

δ ∈ [δ1, δ2] if |δ1 − δ2| < π, (2.67)

δ ∈ [δ2, δ1] if |δ1 − δ2| > π, (2.68)

δ = δ1 or δ = δ2 if |δ1 − δ2| = π. (2.69)

This implies that

|δ − δ2| ≤ π ∧ |δ1 − δ| ≤ π. (2.70)

The phase ϕs calculated from (2.62) is ϕs = 2ϕ − θ, where |θ| ≤ π
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according to (2.70). Then,∣∣∣ϕ− ϕs
2

∣∣∣ = ∣∣∣∣ϕ− ϕ+
1

2
θ

∣∣∣∣ = 1

2
|θ| ≤ 1

2
π. (2.71)

Therefore,

cos
(
ϕ− ϕs

2

)
≥ 0 (2.72)

and (2.64) gives,

r2 ≥ 1. (2.73)

This means that the ampli�cation of G−1(s) for all frequencies is greater
or equal to one, or the ampli�cation of G(s) for all frequencies is less than
or equal to one, hence ||G(s)||∞ ≤ 1.

Lemma 4. If M(s) is proper and has no CRHP (closed-right half plane)

zeros and no CRHP poles, except for poles at the origin, and if

1 + 4M(ω) (2.74)

does not intersect the non-positive real axis for ω ∈ (0,∞), where M(s) =

P (s)C(s), then the wave transfer function G(s) is asymptotically stable.

Proof. The proof is based on [Curtain and Morris (2009)] (Theorem A.2),
which states: A linear system is stable if and only if its transfer function

T (s) is analytic in the right-half plane and ||T ||∞ < ∞, where ||T ||∞ =

supRe(s)>0 |T (s)|.

It was proved in Lemma 3 that the WTF de�ned by (2.24) satis�es
||G||∞ ≤ 1. Hence, it remains to derive the condition, when the WTF is
analytic in the right-half plane.

First, we treat the square root function in (2.24). In the complex function
analysis, for instance p. 99-100 in [Stein and Shakarchi (2010)], it is
shown that the square root function f(z) =

√
z is analytic everywhere,
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except for the non-positive real axis. Therefore, f2(α) =
√
α2 − 4 in (2.24)

is analytic everywhere, except for α ∈ 〈−2, 2〉 on the real axis. Since
α(s) = 2 + 1/M(s), we can say that f2(α) is analytic everywhere, except
for the interval (−∞,−1/4〉. Due to the Maximum modulus principle
(Theorem 4.5 [Stein and Shakarchi (2010)]), we can assess the analyticity
by the Nyquist plot ofM(s). This means that, ifM(ω) does not intersect
interval (−∞,−1/4〉 for ω ∈ (0,∞), then the WTF is stable.

The �rst part of the WTF, 1 + 0.5/M , is a rational transfer function. A
rational function is analytic in the CRHP if and only if it has no singular-
ities in this plane. The only possible singularities of 1+0.5/M are CRHP
zeros of M(s). Therefore, if M(s) has no CRHP zero, then 1 + 0.5/M is
analytic. Since the di�erence of two analytic functions is again analytic,
then the WTF is analytic and asymptotically stable under the above con-
ditions.

We follow the L2 string stability de�nition from De�nition 2. In the case
of the platoon with the Front-sided wave-absorbing controller, the position
of the nth vehicle is described by

Xn(s) = (Gn(s) +G2N+1−n(s))X0(s). (2.75)

Due to the triangle inequality and the fact that ||G||∞ ≤ 1, which is shown
in Lemma 3, we obtain

||Gn(s)+G2N+1−n(s)||∞ ≤ ||Gn(s)||∞+ ||G2N+1−n(s)||∞ ≤ 2. (2.76)

This means that the magnitude of the maximum peak in the frequency
response of the transfer function from the position of the leader to the
position of the nth vehicle is less than or equal to 2. Since the L2-induced
norm andH∞ coincide, we can state that the platoon with the Front-sided
wave-absorbing controller is L2 string stable.

The position of the nth vehicle with the absorber placed at the rear-end
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vehicle is

Xn(s) = Gn(s)X0(s) + (GN−n(s)−GN+n(s))XN (s). (2.77)

We apply the same idea and state that the H∞ norm of both Gn(s) and
(GN−n(s) −GN+n(s)) are bounded regardless of the number of vehicles.
Therefore, the platoon with the Rear-sided wave-absorbing control is L2

string stable.

The position of the nth vehicle in a platoon with absorbers on both ends
is expressed as

Xn(s) = Gn(s)X0(s) +GN−n(s)XN (s), (2.78)

which immediately shows that the platoon with the Two-sided wave-
absorbing controller is also L2 string stable.

The results of this section can be summarized in the following lemma.

Lemma 5. The platoon bidirectional controller and the wave-absorbing

controller implemented on the leader and/or on the rear-end vehicle is L2

string stable.

2.5 Numerical simulations

We consider the linear friction of our system from Section 2.1 to be ξ = 4

and search for the parameters of the PI controller such that oscillations
of the impulse response of G(s) are minimized. The parameters kp =

ki = 4 satisfy this requirement. All numerical simulations are run for the
platoon of 50 vehicles to demonstrate that the wave-absorbing controllers
are capable of controlling large platoons.

To demonstrate the advantages of the wave-absorbing controllers, we will
compare their performance against a simple bidirectional control without
any wave-absorbing controller. This means that the leader travels with
a constant velocity vref for the whole time of the simulation. Fig. 2.7
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shows the outcome of a numerical simulation when the leader without
wave-absorbing controller increases its velocity. We can see signi�cant
limitations in the bidirectional control, where the oscillatory behaviour in
the movement of the platoon is caused by numerous wave re�ections from
both platoon ends. Eventually, the platoon settles to the desired velocity
after many velocity oscillations. These oscillations not only signi�cantly
prolong the settling time, but they could lead to accidents inside the
platoon.
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Figure 2.7: Simulation of the platoon without the wave-absorbing con-
troller when the leader accelerates to a velocity vref = 1ms−1. The refer-
ence distance is kept �xed, dref = 1m, for the whole time.

The performance of the Front-sided wave-absorbing controller during two
platoon manoeuvrers is shown in Fig. 2.8. In the �rst 150 s manoeuver,
the platoon accelerates to reach a desired velocity. In comparison with the
simple bidirectional control, see Fig. 2.7, the settling time is now signi�-
cantly shorter. Moreover, under some circumstances, it can be guaranteed
that vehicles do not crash into each other during the platoon acceleration.
In fact, the distances between vehicles are increased at the beginning of
the acceleration as suggested by (2.55) and shown in the middle panel of
Fig. 2.8. However, the distances may undershoot the initial inter-vehicles
distances in the second part of the acceleration manoeuver. If the im-
pulse response of the wave transfer function is tuned such that it does
not undershoot the zero value, then the distances between vehicles can
not become less than the initial inter-vehicle distances. In the opposite
case (not shown here), where the platoon travels with a constant velocity
and starts to decelerate, the distances between vehicles are temporarily
decreased and a collision may occur.
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Figure 2.8: Simulation of two platoon manoeuvrers with the Front-sided
wave-absorbing controller. At the beginning, the vehicles are standing
still separated by one meter. For the �rst manoeuver, the platoon is
commanded to accelerate to vref = 1ms−1 with dref = 1m starting at
time t = 0 s. At time t = 150 s, the platoon is commanded to perform
the second manoeuver such that the reference distance is increased to
dref = 1.5m without changing the reference velocity.

At time t = 150 s in Fig. 2.8, the platoon is commanded to perform
the second manoeuver such that the reference distance is increased, but
the reference velocity is kept unchanged. The rear-end vehicle reacts to
this command at the same time as the leader since it is controlled by the
reference distance that is now changing. However, the end vehicles di�er
in action; the leader accelerates, while the rear-end vehicle decelerates.
This behaviour creates an undesirable overshoot in distances.

A numerical simulation of the two manoeuvrers for the platoon controlled
by the Rear-sided wave-absorbing controller is shown in Fig. 2.9. During
the acceleration manoeuver the inter-vehicle distances between vehicles
closer to the rear end are temporarily decreased while those for vehicles
near the leader are temporarily increased. During the changing-distance
manoeuver, on the other hand, no overshoot in distances occurs.

In Fig. 2.10, the acceleration and changing-distance manoeuvrers carried
out for the one-sided wave-absorbing controllers are now performed for
the two-sided wave-absorbing controller. Since both platoon ends are
fully controlled, the settling time is only half of that for the one-sided
wave-absorbing controllers. The middle panel in Fig. 2.10 shows that
there is no overshoot in distances during the second manoeuver. On the
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Figure 2.9: As in Fig. 2.8 but for the Rear-sided wave-absorbing con-
troller.

other hand, there is no guarantee that the vehicles will not collide during
the acceleration manoeuver.
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Figure 2.10: As in Fig. 2.8 but for the Two-sided wave-absorbing con-
troller. The second command to increase dref comes at t = 100 s.

2.5.1 Asymmetric bidirectional controller

The so-called asymmetric bidirectional controller, introduced in [Barooah
et al. (2009)], is another approach to improve the performance of the
bidirectional controller. The idea is to implement two local controllers
with di�erent parameters for each vehicle, the 'front' controller and the
'rear' controller. The 'front' controller keeps the reference distance to the
predecessor, while the 'rear' controller keeps the reference distance to the
follower. In our numerical simulations, we choose the same parameters
for the 'front' PI controller kfp = kfi = 4, but di�erent parameters for the
'rear' PI controller krp = kri = 3.6. The parameter of the linear friction
remains the same, i.e. ξ = 4.
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Numerical simulations of the asymmetric bidirectional controller are shown
in Fig. 2.11. The settling time is shorter than for the symmetric bidirec-
tional controller (in agreement with [Barooah et al. (2009)]) but at the
cost of higher overshoots, which corresponds to the fact that H∞ norm
grows exponentially with the number of vehicles in the platoon, [Herman
et al. (2014a)]. Fig. 2.11 also reveals that the performance of the asym-
metric bidirectional controller is worse, in terms of the settling time and
the overshoots, than the performance of a platoon with a wave absorber.
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Figure 2.11: Numerical simulation of the platoon with the asymmetric
bidirectional controller accelerating to vref = 1ms−1 .

2.5.2 Evaluation of the performance

We now numerically evaluate the performance of the acceleration manoeu-
ver described in the previous section with the help of the mean squared
error (MSE) criterion,

MSE =
1

N + 1

N∑
n=0

1

T

T∑
t=0

(vref(t)− vn(t))2, (2.79)

where T is the simulation time (in our case T = 500 s), vref(t) is the
reference velocity of the platoon at time t and vn(t) is the actual velocity
of the nth vehicle at time t.

The comparison in performance of the �ve controllers for various platoon
lengths is depicted in Fig. 2.12. We can see that the MSE increases
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linearly for all wave-absorbing controllers, but quadratically for the sim-
ple symmetric bidirectional control and exponentially for the asymmetric
bidirectional control. Moreover, a linear increase in MSE for the Two-
sided controller is only about half of that for the Front-sided controller.
The linear increase of MSE for the Rear-sided controller lies between these
two cases. Evidently, the wave-absorbing controller qualitatively improves
the performance of the bidirectional control.
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Figure 2.12: MSE performance evaluation of the acceleration manoeuver
from Figs. 2.7, 2.8 and 2.10. The �ve controllers are evaluated; simple
symmetric bidirectional and asymmetric bidirectional (left panel), Front-
sided wave-absorbing controller (solid line in the middle panel), Rear-sided
wave-absorbing controller (dashed line in the middle panel) and Two-
sided wave-absorbing controller (right panel) for various platoon lengths
according to (2.79).

The settling time of the acceleration manoeuver arising from the all �ve
types of controllers are compared in Fig. 2.13. We can see that the
settling time increases quadratically with platoon length for a platoon
with simple symmetric bidirectional controller with no wave absorber, as
was shown in [Hao and Barooah (2012b)], but approximately linearly for
a platoon with wave-absorbing controllers. The qualitative improvement
of the settling time is caused by the fact that the wave absorber changes
the structure of a platoon to a multiple identical system connected in
series, for instance, the transfer function of the Two-sided wave-absorbing
architecture is GN . In fact, the settling time of such a system grows nearly
linearly, as analytically outlined in 2.7.1.
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Figure 2.13: The time required for platoons of various lengths to acceler-
ate and stay within a range of 5% of vref. The left panel shows comparison
of the asymmetric bidirectional architecture with the symmetric bidirec-
tional controller with no wave absorber. The middle panel compares the
asymmetric bidirectional architecture with the Front-sided wave absorber.
The settling time of all the wave-absorbing architectures is compared in
the right panel.

2.5.3 E�ect of noise in the platoon

This subsection examines the performance of the �ve controllers when
noise is present in the system. The reference commands for a platoon
of 20 vehicles are vref = 0ms−1 and dref = 0m, that is, the platoon is
commanded not to move. A normally distributed noise is simulated for
2000 seconds and added to distance measurements of each vehicle, except
for the leader. Di�erent realizations of the normally distributed noise with
the mean value µ = 0 and variance σ2 = 1 are applied to each vehicle.

Table 2.1 assesses quantitatively the e�ect of noise on the performance of
the �ve controllers. The mean squared error of positions, MSEpos, and
the arithmetic mean of positions, Meanpos, show that the platoon without
any absorber and with the Rear-sided wave-absorbing controller perform
signi�cantly better than with the other two controllers. This is due to the
fact that at least one of the platoon ends is anchored at position 0, mean-
ing that the platoon does not drift away from position 0, which is not the
case for the Front-sided and Two-sided wave-absorbing controllers. De-
spite the disturbances by noise, all wave-absorbing controllers are better
at maintaining the coherence of the platoon than the simple bidirectional
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controller, as indicated by the mean squared error of inter-vehicle dis-
tances, MSEdist, and the maximum distance between the leader and the
rear end, MAXdist.

Table 2.1: Performance of the �ve controllers when considering the nor-
mally distributed noise a�ecting distance measurement of vehicles. Four
criterions used for the evaluation are introduced in the text.

MSEpos Meanpos MSEdist MAXdist

Sym. (no abs.) 2.7× 107 2× 10−3 1.9× 105 5.75

Asym. (no abs.) 1.1× 107 22× 10−3 1.7× 105 5.6

Front-sided

wave abs.
8.4× 107 −3.9 2.4× 104 1.37

Rear-sided

wave abs.
7.1× 105 3.2× 10−3 2.5× 104 1.15

Two-sided

wave abs.
1.3× 108 −3.1 1.8× 104 0.64

2.5.4 Oscillatory bidirectional controller

It should be pointed out that the wave-absorbing controller is conceptu-
alized as an extension of the symmetric bidirectional controller. It is not
capable of attenuating the wave travelling inside the platoon, but only at
the platoon ends. If the bidirectional control scheme is not properly de-
signed, then the wave may be ampli�ed before it reaches one of the ends.
In such a case, the bidirectional controller needs to be redesigned to resolve
the ampli�cation problem. A rule of thumb is to design a bidirectional
controller such that the impulse response of G(s) does not undershoot the
zero value.

Numerical simulations of a poorly designed bidirectional controller are
shown in Fig. 2.14, where the PI coe�cients are the same as in the
previous section, kp = 4, ki = 4, but the linear friction is signi�cantly
smaller, ξ = 1.03 (compared with ξ = 4 previously). We can see that
the behaviour of the whole platoon is oscillatory and that the wave is
ampli�ed as it travels inside the platoon. When the wave reaches the rear-
end vehicle, it is absorbed with the Rear-sided wave-absorbing controller.
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Figure 2.14: Numerical simulation of the platoon accelerating to vref =
1ms−1 with a poorly designed bidirectional controller. The vehicles are
indexed from left to right by 0, 5, 10, 15, . . ., 120. The rear-end vehicle
is equipped with the wave-absorbing controller.

2.6 Conclusions

This chapter introduces novel concepts for the control of a vehicular pla-
toon, which signi�cantly improve the popular bidirectional control. The
main idea is to control the front or both ends of a platoon to actively
damp the waves of positional changes arriving from the opposite platoon
end. The absorbing-end vehicle is assumed to i) measure the distance to
its neighbour, ii) know its own position and iii) represent the dynamics of
a vehicle in terms of the wave transfer function.

The new schemes allow us to control the platoon velocity and the inter-
vehicle distances without long-lasting transient and oscillatory behaviour.
The velocity errors during the platoon manoeuvres with the traditional
bidirectional control grows quadratically with the number of vehicles in
the platoon, while errors grow only linearly for the bidirectional control
enhanced with the wave-absorbing controller. Moreover, the platoon with
the wave-absorbing controller is string stable.

Additionally, the wave-absorbing controller preserves the advantages of
bidirectional control such as: i) The lack of a need for vehicle-to-vehicle
communication, ii) none of the vehicles needs to know the number of
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vehicles in the platoon, iii) an in-platoon vehicle does not need to know
its index relative position in the platoon, and iv) an in-platoon vehicle
does not need to know the reference velocity and the reference distance
of the platoon.

However, a considerable mathematical di�culty in the wave-absorbing
control lies in �nding the impulse response of the wave transfer function.
Here, we proposed the iterative approach of constructing an approxima-
tion of the wave transfer function that is based on a continued fraction
representation. Even for a small number of iterative steps, when the wave
transfer function is rather roughly approximated, the wave-absorbing con-
trol still performs e�ciently to damp oscillations in the platoon's charac-
teristics (i.e., velocity, inter-vehicle distances).

It should be noted that the absorbing-end vehicle is assumed to be equipped
with the positional controller since the di�erences in positions between
vehicles are controlled. Alternatively, when the absorbing-end vehicle is
equipped with a velocity controller, the commanded position of the vehicle
derived using (2.53) or (2.57) can be numerically di�erentiated to obtain
the velocity commanded to the absorbing-end vehicle.

Undesirable overshoots in the velocities or inter-vehicle distances of the
wave-absorbing control can be eliminated by introducing time delays in
the reference signal applied to one of the platoon ends. An appropriate
value of this time delay is dependent upon the platoon length and thus it
requires the extension of the wave-absorbing control. This topic warrants
further investigation.

2.7 Appendix to the chapter

2.7.1 Settling time of systems in series

We aim to show that the settling time of the identical systems connected
in a series grows nearly linearly with the number of vehicles. The key idea
is to �nd an appropriate �rst-order system with an envelope that contains
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the impulse response of the given individual system, therefore, it gives an
upper-limit estimate of the settling time. It is important to stress that
this 'proof' considers the settling time of the impulse response.

Let us assume an asymptotically stable linear system of an arbitrary order,
T (s), and a linear �rst-order system Te(s) = λ/(s + ε). We denote the
settling times of (T (s))K and (Te(s))

K as τK and τe,K , respectively. The
parameters λ and ε are chosen such that: a) τe,1 > τ1 and b) the impulse
response of T (s) is bounded by the envelope of the impulse response of
Te(s), which implies that τe,K > τK for K ∈ N. This means that τe,K
gives an upper limit of the settling time τK . We de�ne τe,1 as the time
elapsed until the impulse response of Te(s) enters (and does not leave it
afterwards) a deviation band ±η. In other words, τe,1 is a solution of the
equation

λ exp (−ετe,1) = η, (2.80)

that is

τe,1 = −
1

ε
ln
(η
λ

)
. (2.81)

Inverse Laplace transform of (Te(s))K is

gK(t) = λK
1

(K − 1)!
tK−1 exp (−εt) . (2.82)

Therefore, the settling time τe,K is a solution of the equation

λK
1

(K − 1)!
τK−1e,K exp (−ετe,K) = η. (2.83)

It may happen that there are more than two solutions of (2.83). In that
case, we take the largest real solution. In this regard, the settling time
τe,K is expressed as

τe,K = −(K − 1)
1

ε
W−1

(
−(K − 1)−1ελ−N/(N−1) K−1

√
η(K − 1)!

)
,

K > 1, (2.84)
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where W−1 is the lower branch of the Lambert-W function, see [Corless
et al. (1996)]. Finally, substituting (2.80) into (2.84) gives

τe,K = −(K − 1)
1

ε
W−1

(
−(K − 1)−1ελ−1 exp

(
−ετe,1
(K − 1)

)
K−1
√

(K − 1)!
)
, K > 1. (2.85)

The settling time described in (2.85) grows almost linearly with the in-
creasing number of vehicles as shown in Fig. 2.15.
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Figure 2.15: The settling time of the identical systems connected in a
series evaluated according to (2.81) and (2.84) compared with a linear
growth of the settling time. Parameters of the system are: ε = 1, λ = 1
and η = 0.05.

2.7.2 Approximation of the Wave transfer function using

Newton's method

Newton's method is an iterative process of �nding the roots of a function.
The iterative process is de�ned as

xn+1 = xn −
f(xn)

f ′(xn)
, (2.86)
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where xn is the nth approximation of the root of the function. The ap-
plicability of Newton's method to complex quadratic polynomials was al-
ready studied by A. Cayley in 1879 [Cayley (1879)]. Later, by work of P.
Fatou and G. Julia, the method was generalized for polynomials of higher
orders. It turned out that the basin of attraction of complex polynomials,
especially of higher order polynomials is very complex and needs to be
revised very carefully. Every root of the complex polynomial has its own
basin of attraction, a Fatou set, which is separated from the basin of other
roots by the Julia set. The set of complex numbers from the Julia set do
not converge to any root. Interestingly enough, the Julia set has usually
fractal structure.

Carlson and Halijak in 1963 [Carlson and Halijak (1964)] were the �rst to
show that the Newton's method can be applied even for the approximation

of irrational functions, such as
(
1

s

) 1

n . Here, the method will be used to

approximate G(s) by a rational transfer function based on the quadratic
function

f(G(s)) = G2(s)− α(s)G(s) + 1, (2.87)

which comes from (2.28). The �rst derivative of f

f ′(G(s)) =
dF (G(s))

dG(s)
= 2G(s)− α(s). (2.88)

Newton's recursive formula (2.86) is then

G(s)n+1 = G(s)n −
f(Gn(s))

f ′(Gn(s))

= G(s)n −
G2(s)n − α(s)G(s)n + 1

2G(s)n − α(s)
=

G2(s)n − 1

2G(s)n − α(s)
.

(2.89)

The higher number of iteration means the better approximation but also
the higher order of the approximate system. It was also proven that New-
ton's method converges quadratically for the roots of a single multiplicity.
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Therefore, only a few iterations are usually su�cient to get a satisfactory
approximation.

How to choose the initial guess, G(s)0, is a di�cult question to answer.
We expect that the Julia set is connected and that there are two basins
of attractions i.e. two Fatou sets, since we have two di�erent roots. We
can immediately see that the initial guess G(s)0 = 1

2α(s) is problematic.
Newton's method also fails to converge, if the initial guess is equal to one
of the roots, i.e. G(s)0 = G(s) and G(s)0 = 1/G(s).

We experimentally found out that the relative order of G(s)0 plays a
crucial role. Speci�cally, G(s)0 converges to G(s) only if G(s)0 satis�es

rG0 < rα, (2.90)

where rG0 and rα are the relative degree of G(s)0 and α(s), respectively.

For example, rα = 2 for α(s) =
s3 + ξs2 + 2kps+ 2ki

kps+ ki
, therefore, choosing

G(s)0 =
s2

s+ 1
, the iteration converge to G(s) but for G(s)0 =

s3

s+ 1
or

G(s)0 = s2 the iteration converge to 1/G(s) etc. The results of the ap-
proximations are shown in Fig. 2.16. We can see that 3 iteration steps give
a very similar result as 20 steps of the Continued Fraction approximation.

It is convenient to use the approximation of the Wave transfer function in
the time domain. Therefore, we carry out the inverse Laplace transform
of the approximate G(s)n and truncate it in time, similarly as for the
Continued-fraction approximation. The result is shown in Fig. 2.17.

Di�erent equation used for approximation

We can also use a di�erent equation for Newton's approximation. In the
platoon of two vehicles, that means one leader and one follower (N = 1),
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Figure 2.16: Comparison of Newton's and Continued fraction approxima-
tions for system with kp = ki = ξ = 4. The index at g shows the number
of iteration steps.

the transfer function between their positions is

X1(s)

X0(s)
=

1

α(s)− 1
=

P (s)C(s)

1 + P (s)C(s)
. (2.91)

With the knowledge of the forced and free boundary re�ections, we can
express this transfer function as

X1(s)

X0(s)
=
G(s)(1 +G(s))

1 +G3(s)
. (2.92)

Therefore,

f2(G(s)) =
G(s)(1 +G(s))

1 +G3(s)
− 1

α(s)− 1
= 0 (2.93)

and

f ′2(G(s)) =
dF2(G(s))

dG(s)
=

1−G2(s)

(G2(s)−G(s) + 1)2
. (2.94)
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Figure 2.17: Comparison of `full' and `truncated-in-time' Newton's ap-
proximations. The approximation was constructed in 3 iteration steps,
truncated at time 50 s and sampled with frequency 200Hz.

The resulting approximation formula is then

G(s)n+1 = G(s)n −
f2(Gn(s))

f ′2(Gn(s))
. (2.95)

Although this approximation works, it is less numerically stable than the
quadratic-equation approximation in (2.89) because of higher order of the
approximation.

It should be noted that other iterative root-�nding algorithms, such as e.g.
Halley's, Whittaker's, Chebyshev's etc., see [Amat et al. (2004)], may also
be used to approximate the Wave transfer function in the Laplace domain.

2.7.3 Approximation of the Wave transfer function using

binomial theorem

Another type of approximation is based on the binomial theorem

(1 + x)k =

∞∑
k=0

(
n

k

)
xk, (2.96)
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where(
n

k

)
=

k∏
l=1

n− l + 1

l
. (2.97)

We carry out the binomial approximation for the system used in simula-

tions, where α(s) =
s3 + ξs2 + 2kps+ 2ki

kps+ ki
and the Wave transfer function

G(s) =
s3 + ξs2 + 2kps+ 2ki

2(ki + kps)

−
s
√
s4 + 2ξs3 + ξ2s2 + 4kps2 + 4kpξs+ 4kis+ 4kiξ

2(ki + kps)
.

(2.98)

The binomial approximation has three steps. In the �rst step show that
the binomial expansion of the square root polynomial cancels out the non-
square root polynomial in the numerator of (2.98) and thus this transfer
function proper. In the second step we show how to expand the square
root using the binomial theorem. In the last step we �nd the impulse
response of (2.98).

First step � The transfer function is proper

Let us de�ne ε implicitly by

s
√
ξ2s2 + 2ξs3 + 4kpξs+ 4kiξ + s4 + 4kps2 + 4kis = s3

√
1 + ε.

(2.99)

This gives

ε =
2ξ

s
+

4kp + ξ2

s2
+

4kpξ + 4ki
s3

+
4kiξ

s4
. (2.100)
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By the binomial theorem, we have

√
1 + ε = 1 +

1

2
ε− 1

8
ε2 +

1

16
ε3 + ... =

∞∑
n=0

(
0.5

n

)
εn. (2.101)

The approximation is then given as

√
1 + ε ≈

nmax∑
n=0

(
0.5

n

)
εn, (2.102)

where nmax is the maximum number of iterations.

Now, we focus on the numerator of (2.98). Setting nmax = 1 yields

num1 = s3 + ξs2 + 2kps+ 2ki − s3(1 + 0.5ε) = −ξ
2

2
s− 2kpξ −

2kiξ

s
.

(2.103)

Increasing the number of iterations to nmax = 3 yields

num3 = s3 + ξs2 + 2kps+ 2ki − s3(1 + 0.5ε− 1

8
ε2 +

1

16
ε3)

= −ξ
2

2
s− 2kpξ −

2kiξ

s
+
s3

8
ε2 − s3

16
ε3

=
1

s

(
2k2p +

5ξ4

8

)
+

1

s2
(...) +

1

s3
(...) +

1

s4
(...) + ... (2.104)

In other words, the largest power of s in the numerator is −1 after 3

iterations. The higher iterations do not change this power. This shows
that the binomial approximation of (2.98) is proper.
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Second step � Expansion of the square root

By the binomial theorem, we have

(x+ y)β =

β∑
α=0

(
β

α

)
xαy(β−α) =

β∑
α=0

(
β

α

)
(x1 + x2)

α(y1 + y2)
(β−α)

=

β∑
α=0

(
β

α

) α∑
γ=0

xγ1x
(α−γ)
2

β−α∑
δ=0

(
β − α
δ

)
yδ1y

(β−α−δ)
2

=

β∑
α=0

α∑
γ=0

(β−α)∑
δ=0

(
β

α

)(
α

γ

)(
β − α
δ

)
xγ1x

(α−γ)
2 yδ1y

(β−α−δ)
2 .

(2.105)

By (2.100), the nth power of ε is

εn =

(
2ξ

s
+

4kp + ξ2

s2
+

4kpξ + 4ki
s3

+
4kia

s4

)n
=

(
A

s
+
B

s2
+
C

s3
+
D

s4

)n
, (2.106)

where A = 2ξ, B = 4kp+ ξ
2, C = 4kpξ+4ki and D = 4kiξ. Applying the

expansion (2.105) yields

εn =
n∑
k=0

k∑
l=0

(n−k)∑
h=0

(
n

k

)(
k

l

)(
n− k
h

)
AlB(k−l)ChD(n−k−h)

s(4n−2k−l−h)
. (2.107)

Last step � Inverse Laplace transform

It is now possible, yet very laboriously, to �nd inverse Laplace transform
of (2.98). Let us split the transfer function into two polynomials

G(s) = P1(s) + P2(s) (2.108)

56



2.7. Appendix to the chapter

where

P1(s) =
s3 + ξs2 + 2kps+ 2ki − s3(1 + 0.5ε− 1

8ε
2 + 1

16ε
3)

2(kps+ ki)
(2.109)

which was shown to be proper and

P2(s) ≈ s3
∑nmax

n=4

(
0.5
n

)
εn

2(kps+ ki)
. (2.110)

It can be shown that

1

sn(s+ λ)
= L

{
(−1)n e

−λt

λn
+
n−1∑
k=0

(−1)(n−k+1) tk

k!λn−k

}
, (2.111)

where L symbolizes the Laplace transform. This formula can be used to
�nd the inverse Laplace transform of both P1(s) and P2(s). Rather than
�nding it by hand, we use Matlab or Mathematica.

Fig. 2.18 shows the comparison of the Binomial approximations for several
values of nmax and Newton's approximation. We can see that we need
a large number of iteration steps of the Binomial method, which is a
signi�cant drawback of the method.

2.7.4 Wave transfer function - double integrator model

We validate the three approximating methods by carrying out the Laplace
transform analytically for a simple example of a double-integrator system.
In such a system α = s2 + 2 and

G(s) = 1 +
s2

2
− s

2

√
s2 + 4. (2.112)

We will show that the inverse Laplace transform leads to the Bessel func-
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Figure 2.18: Comparison of the Binomial and Newton's approximations
for the system with kp = ki = ξ = 4. The index at g shows the number
of iteration steps.

tions. We use the following properties of the Bessel functions

L{J0(2t)} =
1√
s2 + 4

, (2.113)

(J0(2t))
′ = −2J1(2t), (2.114)

(J1(2t))
′ = 2J0(2t)−

J1(2t)

t
, (2.115)

where J0(t) is the Bessel function of the �rst kind and zero order.

We di�erentiate the square root term in (2.112) with respect to s

dG

ds
= s− s3 + 2s√

s4 + 4s2
= s− s2 + 2√

s2 + 4
, (2.116)

Using (2.113) and the following rules for the Inverse Laplace transform

f ′′(t) = L−1
{
s2F (s)− sf(0)− f ′(0)

}
(2.117)

1

t
f(t) = L−1

{∫ ∞
s

F (σ)dσ

}
, (2.118)
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we �nd

g(t) =
1

t
(J0(2t))

′′ + 2J0(2t), (2.119)

where

(J0(2t))
′′ = (−2J1(2t))′ =

2

t
J1(2t)− 4J0(2t). (2.120)

We note that the `s' in (2.116) corresponds to the initial condition of the
Bessel functions from (J0(2t))

′′ as

s (J0(2t))t=0 + (−2J1(2t))t=0 = s. (2.121)

Therefore

g(t) =
2

t2
J1(2t)−

2

t
J0(2t). (2.122)

We can see in Fig. 2.19 that Newton's and the Continued fraction methods
give identical approximation of the Wave transfer function.

2.7.5 Overview of some Wave transfer functions

The overview of the Wave transfer functions is shown in Figs. 2.20 and
2.21. All the step responses converge to one due to at least one integrator
in the agent's model. The Wave transfer functions for the systems with
three integrators (bottom panels) are asymptotically stable, despite the
fact that the multi-agent system with the path-graph topology is asymp-
totically unstable (see Table 7.1, p. 156).
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Figure 2.20: The comparison of the impulse and step responses of the
Wave transfer function for various agent models.
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Figure 2.21: The comparison of the Bode frequency response of the Wave
transfer function for various agent models.
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3 Heterogeneous agents and the

waves

The previous chapter shows that the interaction between the vehicles, or
generally� agents, causes that a change in the output (e.g. position) of
even a remote agent a�ects all the other agents. If we study their responses
from the local point-of-view, we can notice that the change is propagated
as a wave. For instance, if the �rst agent changes its output, it initiates a
wave that travels along the system to the last agent, where it is re�ected
and travels back. When it reaches the �rst agent, it re�ects back again.
These two re�ections at the system boundaries signi�cantly prolong the
settling time.

The same phenomenon is occurs if the agents are non-identical, for in-
stance, if the agents have di�erent dynamics, or di�erent controllers. In
fact, the travelling wave is partially re�ected at non-identical agents inside
the multi-agent system. We can imagine this behaviour as the re�ection
of the wave at a boundary between two media of di�erent properties, see
for instance [French (2003)]. A wave re�ection is usually an undesired
e�ect since it prolongs the settling time. One way to avoid the re�ections
inside the system is to force the agents to be identical, which is usually
impractical, or even impossible. On the other hand, a wave description
allows us to design a feedback controller that compensates the di�erent
dynamics of the agents, which shortens the settling time.

In this chapter, we aim to provide the mathematical description of the
travelling waves propagating along a multi-agent system with non-identical
agents and path-graph topology. The underlying questions are: How do
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the di�erent dynamics of the agents a�ect the travelling wave? How to
mathematically describe this e�ect? How to compensate it?

The main contributions of the chapter are: i) mathematical description
of the travelling waves in a multi-agent system with non-identical agents
and a path-graph topology (Theorems 3 and 4), ii) a local performance
analysis of the multi-agent system by the analysis of the wave ampli�-
cation determined by the DC gains (Lemma 7), and iii) a design of a
controller that prevents a re�ection of the travelling wave, which shortens
the transient of the system (Theorems 5 and 6).

3.1 Mathematical preliminaries

3.1.1 Local control law

We consider a multi-agent system with a path-graph interaction topology.
The dynamics of agents is described by a linear single-input-single-output
model with the transfer function Pn(s), where n is index of the agent.
The output, Xn(s), is given as

Xn(s) = Pn(s)Un(s), (3.1)

where Un(s) is the input to the agent generated by a local control law of
the agent. This law aims to equalize agent output with the outputs of the
two neighbouring agents. It is modelled as

Un(s) = Cf,n(s)(Xn−1(s)−Xn(s)) + Cr,n(s)(Xn+1(s)−Xn(s))

+ Cf,n(s)Wf,n(s) + Cr,n(s)Wr,n(s), (3.2)

where Cf,n(s) and Cr,n(s) are transfer functions of the controllers of the
front and rear agents, respectively, Wf,n(s) and Wr,n(s) are the inputs to
the agent. We assume that the inputs are equal to zero unless we specify
them otherwise. We consider that each agent may have a di�erent dy-
namical model as well as a di�erent set of controllers and denote the front
agent transfer function (ATF) and rear ATF by Mf,n(s) = Pn(s)Cf,n(s)
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and Mr,n(s) = Pn(s)Cr,n(s), respectively. The resulting model of the
nth agent, assuming zero initial conditions, is shown in Fig. 3.1 and is
described as

Xn(s) =Mf,n(s)(Xn−1(s)−Xn(s)) +Mr,n(s)(Xn+1(s)−Xn(s))

+Mf,n(s)Wf,n(s) +Mr,n(s)Wr,n(s). (3.3)

Figure 3.1: The model of nth agent.

The �rst agent is described as

X1(s) =Mf,1(s)(Wf,1(s)−X1(s)) +Mr,1(s)(X2(s)−X1(s)), (3.4)

where Wf,1(s) = Xref(s) is the external input to the multi-agent system,
which represents the reference output of the multi-agent system. The last
agent, i.e. the rear-end agent (n = N) of the system, is described as

XN (s) =Mf,N (s)(XN−1(s)−XN (s)). (3.5)
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3.1.2 The wave generated by an input to the agent

We generalize (2.21) for the case with a non-zero input. For now, we
consider only the input Wr,n while Wf,n = 0. Hence, the model (3.3) of
the nth agent is

Xn(s) =Mf,n(s)(Xn−1(s)−Xn(s)) +Mr,n(s)(Xn+1(s)−Xn(s))

+Mr,n(s)Wr,n(s). (3.6)

In this case, the input Wr,n(s) generates a wave that propagates in the
multi-agent system in the same manner as described by (2.22) and (2.23).
However, (2.21) is changed as follows

Xn(s) = G(s)An−1(s) +G(s)Bn+1(s) + Tr,n(s)Wr,n(s), (3.7)

where Tr,n(s) = Xn(s)/Wr,n(s) for N →∞. We are interested in �nding
Tr,n(s), hence, we substitute (2.22) and (2.23) into (3.6) and get

Tr,nWr,n =Mf,n(GTr,nWr,n − Tr,nWr,n)

+Mr,n(GTr,nWr,n − Tr,nWr,n) +Mr,nWr,n. (3.8)

Rearranging results in

Tr,n(s) =
Mr,n(s)

1 +Mf,n(s) +Mr,n(s)−Mf,n(s)G(s)−Mr,n(s)G(s)
.

(3.9)

The transfer function Tf,n(s) = Xn(s)/Wf,n for a non-zero input Wf,n can
be arranged in a similar way as Tr,n(s).

3.2 Soft and hard boundaries

3.2.1 Mathematical de�nition of the boundaries

We consider that the multi-agent system consists of non-identical agents.
In general, we can distinguish between three cases: i) Mr,n 6= Mf,n+1, ii)
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Mf,n 6=Mr,n, and iii) a combination of i) and ii). All three cases causes a
partial re�ection of the travelling wave. Therefore, we can consider them
as boundaries for the wave. First, let us focus on the boundaries caused
by i) and ii).

De�nition 4. The soft boundary is a virtual boundary between two agents,

indexed s and s+ 1, with the following property

Mr,s(s) 6=Mf,s+1(s), (3.10)

where Mr,s(s) and Mf,s+1(s) de�nes the model of an agent in (3.3).

The soft boundary is, for instance, located in a platoon of non-identical
vehicles governed by the same symmetric bidirectional control law, see
[Martinec et al. (2014d)], or in a mass-spring model with identical springs
but non-identical masses.

The second type of boundary is de�ned as follows.

De�nition 5. The hard boundary is a virtual boundary located at the hth

agent with the property

Mf,h(s) 6=Mr,h(s), (3.11)

where Mf,h(s) and Mr,h(s) de�nes the model of an agent in (3.3).

The hard boundary is, for instance, located in a platoon of identical vehi-
cles governed by the asymmetric bidirectional control, or in a mass-spring
model with identical masses but di�erent springs, see Fig. 3.2.

The adjective `hard' emphasizes the fact that the hard boundary is lo-
cated at an agent, in contrast to the soft boundary, located between two
agents. To distinguish between the incident, transmitted and re�ected
waves at the hard boundary, we decompose Xh to the hard-boundary
wave components as

Xh(s) = Ah,L(s) +Bh,L(s) = Ah,R(s) +Bh,R(s), (3.12)
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Figure 3.2: Scheme of a multi-agent system with the soft (top panel) and
hard (bottom panel) boundaries, respectively. The blue and red squares
are agents with the WTFs of G(s) and H(s), respectively, de�ned later.
The virtual connections between the agents are illustrated by springs. The
blue-red spring is the soft boundary and the blue-red square is the hard
boundary.

where the indexes L and R denote the wave components that are next to
the left and right sides of the boundary, respectively. Changing the output
of the agent with the hard boundary initiates two waves propagating in
opposite directions with di�erent dynamics. This is treated in following
technical lemma.

Lemma 6. If there is no other boundary next to the hard-boundary agent,

then

Ah,L(s) = G(s)Ah−1(s), Bh,L(s) = G−1(s)Bh−1(s), (3.13)

Ah,R(s) = H−1(s)Ah+1(s), Bh,R(s) = H(s)Bh+1(s), (3.14)

where

G(s) =
1

2
α1 −

1

2

√
α2
1 − 4, H(s) =

1

2
α2 −

√
α2
2 − 4, (3.15)

α1 = 2 + 1/Mf,h(s) and α2 = 2 + 1/Mr,h(s).

Proof. The proof is the same as the proof of Theorem 1 in Section 2.2.1.
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In this case, two di�erent sets of continued fractions can be found, one
converges to G and G−1, and the other one to H and H−1.

The third case introduced at the beginning of this section, that is the com-
bination of the soft and hard boundaries, can be treated by generalization
of Lemma 6 given in Section 3.5.

3.2.2 Mathematical description of the boundaries

Theorem 3. A soft boundary is described in the Laplace domain by the

following four boundary-transfer functions (BTFs),

Taa =
As+1

As
=
H −HG2

1−HG
, Tba =

As+1

Bs+1
=
HG−H2

1−HG
, (3.16)

Tbb =
Bs
Bs+1

=
G−H2G

1−HG
, Tab =

Bs
As

=
HG−G2

1−HG
, (3.17)

where

G(s) =
1

2
α1 −

1

2

√
α2
1 − 4, H(s) =

1

2
α2 −

√
α2
2 − 4, (3.18)

α1 = 2 + 1/Mr,s(s) and α2 = 2 + 1/Mf,s+1(s).

Proof. This technical result follows the mathematical derivation of re�ec-
tion at a forced boundary derived in Lemma 1. The model of a forced
boundary was shown to be A1 = GX0 − G2B1. We can use this result
and describe the soft boundary as

As+1 = −H2Bs+1 +HXs, (3.19)

Bs = −G2As +GXs+1. (3.20)

Substituting (2.21) for Xs and (3.20) for Bs yields

As+1 = −H2Bs+1 +H(As −G2As +G(As+1 +Bs+1)). (3.21)
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Separating As+1 gives the �nal result

As+1 = As
H −HG2

1−HG
+Bs+1

HG−H2

1−HG
. (3.22)

Similarly, substituting (2.21) for Xs and (3.19) for As+1 gives

Bs = −G2As +G(−H2Bs+1 +H(As +Bs) +Bs+1). (3.23)

Finally, separating Bn yields

Bs = Bs+1
G−GH2

1−HG
+As

HG−G2

1−HG
(3.24)

The interpretation of the theorem is as follows. If there is a wave trav-
elling to the soft boundary from the left-hand side, then it is partially
re�ected from the boundary (described by Tab) and partially transmitted
through the boundary (described by Taa). Likewise, if the wave travels
from the opposite side, then the transfer functions Tba and Tbb represent
the respective waves. Mathematically,

Xs(s) = G(s)(1 + Tab(s))As−1(s) + Tbb(s)Bs+1(s), (3.25)

Xs+1(s) = H(s)(1 + Tba(s))Bs+2(s) + Taa(s)As(s). (3.26)

The forced-end boundary is an example of the soft boundary. Substituting
G = 0 into (3.16) and (3.17) gives Taa = H, Tba = −H2 and Tbb = Tab =

0.

Theorem 4. The BTFs describing the hard boundary in the Laplace do-

main are

TAA =
Ah,R
Ah,L

=
(1 +G)(1−H)

1−HG
, TBA =

Ah,R
Bh,R

=
H −G
1−HG

, (3.27)

TBB =
Bh,L
Bh,R

=
(1 +H)(1−G)

1−HG
, TAB =

Bh,L
Ah,L

=
G−H
1−HG

, (3.28)
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where G and H are given by (3.15).

Proof. From (3.3), the output of the agent can be rewritten as

Xh(s) = TL(s)Xh−1(s) + TR(s)Xh+1(s), (3.29)

where TL =Mf,h/(1+Mf,h+Mr,h) and TR =Mr,h/(1+Mf,h+Mr,h). We
combine (2.21), (3.13) and (3.14), and obtain

Xh−1 = Ah−1 +Bh−1 = G−1Ah,L +GBh,L, (3.30)

Xh+1 = Ah+1 +Bh+1 = HAh,R +H−1Bh,R. (3.31)

Substituting (3.30) and (3.31) into (3.29) and using (3.12) for Xh, we have

Ah,L +Bh,L = TL(G
−1Ah,L +GBh,L) + TR(HAh,R +H−1Bh,R).

(3.32)

Rearranging (3.32) with respect to the hard-boundary wave components
gives

Ah,L(1− TLG−1) +Bh,L(1− TLG) = Bh,R(TRH
−1) +Ah,RTRH.

(3.33)

The four wave components are now reduced to three components by sub-
stituting Ah,R = Ah,L +Bh,L −Bh,R into (3.33),

Bh,L = Bh,R
TRH − TRH−1

TLG+ TRH − 1
+Ah,L

1− TLG−1 − TRH
TLG+ TRH − 1

, (3.34)

or, alternatively, by substituting Bh,L = Ah,R +Bh,R −Ah,L,

Ah,R = Ah,L
TLG− TLG−1

TLG+ TRH − 1
+Bh,R

1− TLG− TRH−1

TLG+ TRH − 1
. (3.35)

These formulas can further be simpli�ed by expressing TL and TR in
terms of G and H. Speci�cally, Mf,h =

(
G+G−1 − 2

)−1 and Mr,h =
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(
H +H−1 − 2

)−1. Substituting them into (3.34) and (3.35) yields

Bh,L = Bh,R
(1 +H)(1−G)

1−HG
+Ah,L

G−H
1−HG

, (3.36)

Ah,R = Ah,L
(1 +G)(1−H)

1−HG
+Bh,R

H −G
1−HG

, (3.37)

which proves the Theorem.

The interpretation of the theorem is as follows. A wave incident from the
left side of the hard boundary (described by Ah,L) is partially re�ected
from the boundary (described by TAB) and partially transmitted through
the boundary (described by TAA). For the wave incidenting from the
opposite side (described by Bh,R), the transfer functions are TBA and TBB,
respectively. The output of the hard-boundary agent can be expressed in
two equivalent ways,

Xh = G(1 + TAB)Ah−1 +HTBBBh+1, (3.38)

Xh = GTAAAh−1 +H(1 + TBA)Bh+1. (3.39)

The free-end boundary from Section 2.3.2 is an example of the soft bound-
ary. In this case H = 0, which gives TAA = TBB = G and TAB = TBA = 0.

For the case of identical agents, that is, when G = H, Theorems 3 and 4
yield Taa = Tbb = G, Tab = Tba = TAB = TBA = 0 and TAA = TBB = 1,
which is in agreement with (2.21)-(2.23).

3.2.3 Properties of the boundaries

Although the above de�nitions and physical interpretations of the bound-
aries are di�erent, they have some common features. For instance, they
have bounded DC gains, or there is an inverse-reciprocity relation indi-
cating that Taa is closely related to TBB rather than to TAA, while Tab is
related to TBA, and so on. More speci�cations are as follows.
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Corollary 2. The soft and hard BTFs are related as follows,

Taa(s) = TBB(s) +G(s)− 1, Tba(s) = H(s)TAB(s), (3.40)

Tbb(s) = TAA(s) +H(s)− 1, Tab(s) = G(s)TBA(s), (3.41)

TAA(s) = 1 + TAB(s), TBB(s) = 1 + TBA(s), (3.42)

TAA(s) + TBB(s) = 2, TAB(s) + TBA(s) = 0. (3.43)

Proof. By straightforward application of Theorem 3 and Theorem 4.

The amplitude of the wave that is re�ected at or transmitted through the
boundary can be approximated by the DC gain of the BTFs. Usually,
there is at least one integrator both in the front and rear ATFs allowing
the agent to follow the ramp of Xref, which can, for instance, represent
that a vehicular platoon travelling with constant velocity. In this case, it
holds.

Corollary 3. If there is at least one integrator in the front ATF and at

least one integrator in the rear ATF, then the DC gains of the BTFs are

related as follows

κaa + κbb = 2, κab + κba = 0, (3.44)

κaa − κab = 1, κbb − κba = 1, (3.45)

κaa = κBB, κba =κAB, κbb = κAA, κab = κBA, (3.46)

where κaa is the DC gain of Taa, κab is the DC gain of Tab etc.

Proof. Under the above assumptions, the DC gain of a WTF is equal to
one, i.e. limG(s)s→0 = 1 and limH(s)s→0 = 1. Then, the proof is a
straightforward application of Corollary 2.

The particular values of κaa and κbb are given by the following lemma.

Lemma 7. Let both Mr,n and Mf,n+1 have at least one integrator. If Mr,n

and Mf,n+1 have the same number of integrators, then the DC gains of the
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soft BTFs are

κaa =
2√

n1,0d2,0
n2,0d1,0

+ 1

, κbb =
2√

n2,0d1,0
n1,0d2,0

+ 1

, (3.47)

where n1,0/d1,0 = lims→0 s
k1Mr,n, n2,0/d2,0 = lims→0 s

k2Mf,n+1, and k1
and k2 is the number of integrators in Mr,n and Mf,n+1, respectively. If

Mr,n has more integrators than Mf,n+1, then

κaa = 0, κbb = 2. (3.48)

If Mf,n+1 has more integrators than Mr,n, then

κaa = 2, κbb = 0. (3.49)

Proof. Let us denote α1 = 2+1/Mr,n = 2+d1/n1 and α2 = 2+1/Mf,n+1 =

2+d2/n2. We will begin with deriving the DC gain κaa of the Taa transfer
function,

κaa = lim
s→0

Taa = lim
s→0

H −HG2

1−HG
= lim

s→0

1−G2

H−1 −G
=

0

0
, (3.50)

since lims→0G = lims→0H = 1 for at least one integrator in Mr,n and
Mf,n+1. Applying l'Hopital's rule to (3.50) gives

κaa = lim
s→0

2G

H−2H ′ (G′)−1 + 1
= lim

s→0

2

H ′ (G′)−1 + 1
, (3.51)

where the symbol ′ denotes the di�erentiation with respect to variable s.
First, the di�erentiation of (3.18) yields

G′ =
1

2
α′1 −

1

2

α1α
′
1√

α2
1 − 4

. (3.52)
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3.2. Soft and hard boundaries

The individual contributions to lims→0G
′ are

lim
s→0

α′1 = lim
s→0

d′1n1 − d1n′1
n21

=

{
∈ R, if k1 = 1,

0, if k1 > 1,
(3.53)

and

lim
s→0

α′1√
α2
1 − 4

= lim
s→0

d′1n1 − d1n′1
n1
√
d21 + 4d1n1

= lim
s→0

s(k1/2)
(
s(k1/2)−1k1d1,0n1 − s(k1/2)d1,0n′1

)
s(k1/2)n1

√
sk1d21,0 + 4d1,0n1

= lim
s→0

(
s(k1/2)−1k1d1,0n1

)
n1
√

4d1,0n1
= lim

s→0
k1s

(k1/2)−1 1

2

√
d1,0
n1,0

, (3.54)

where d1,0 = lims→0 s
−k1d1 and n1,0 = lims→0 n1. Moreover lims→0 α1 =

2. Similarly, lims→0H
′ can be evaluated. Then

lim
s→0

H ′

G′
= lim

s→0
s(k2−k1)/2

k2
k1

√
n1,0d2,0
n2,0d1,0

, (3.55)

where d2,0 = lims→0 s
−k2d2 and n2,0 = lims→0 n2. Finally, substituting

(3.55) into (3.51) yields

κaa = lim
s→0

2

s(k2−k1)/2
k2
k1

√
n1,0d2,0
n2,0d1,0

+ 1

. (3.56)

Therefore, if Mr,n and Mf,n+1 have the same number of integrators (k1 =
k2), then (3.56) simpli�es to (3.47). If k2 > k1, i.e., Mf,n+1 have more
integrators than Mr,n, then (3.55) converges to zero and κaa = 2. In the
opposite case, (3.55) diverges and κaa = 0. The DC gain κbb = 2− κaa is
from (3.44).

Corollary 4. If there is at least one integrator in the front ATF and at

least one integrator in the rear ATF, then the DC gains of the BTFs are
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bounded as

−1 ≤ κab, κba, κAB, κBA ≤ 1, (3.57)

0 ≤ κaa, κbb, κAA, κBB ≤ 2. (3.58)

Proof. The soft-boundary DC gains are treated by Lemma 7 and Corol-
lary 3. The hard-boundary DC gains can be calculated using Corol-
lary 3.

3.3 Controllers for the boundaries

We now design a feedback controller compensating the fact that the agents
are not identical. The motivation is to prevent the undesired re�ection of
waves and thus to shorten the settling time.

3.3.1 The soft boundary controller

A soft-boundary controller can be designed for various purposes, for in-
stance, to prevent or modify wave's transmission through the boundary.
We now design an absorbing controller that prevents the re�ection of a
wave from the soft boundary. The derivation will be presented only for the
left side of the boundary since the derivation for its right side is analogous.

First, we add input Wr,s to the sth agent. By the combination of (3.25)
and (3.9), we get

Xs = (1 + Tab)As + TbbBs+1 + Tr,n(1 + Tab)Wr,s. (3.59)

We want to design a controller that prevents the re�ection of the wave
travelling to the soft boundary from the left, which is described by term
TabAs. Therefore, we set Wr,s(s) = Ff,S(s)As(s), where Ff,S(s) is a trans-
fer function of a controller that prevents the re�ection of the wave. To
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3.3. Controllers for the boundaries

prevent the re�ection, we eliminate term TabAs by requiring

Tab(s)As(s) + Tr,n(s)(1 + Tab(s))Ff,S(s)As(s) = 0, (3.60)

which is the constraint for the controller,

Ff,S(s) =
−Tab(s)

Tr,n(s)(1 + Tab(s))
. (3.61)

Substituting for Tab(s) from (3.17) and for Tr,n(s) from (3.9), the `absorb-
ing' transfer function has a simple form

Ff,S(s) = G(s)−H(s). (3.62)

It remains to specify As, which represents a wave incident on the soft
boundary from the left. By (2.21), (2.22) and (2.23), we have

As(s) = G(Xs−1 −Bs−1) = GXs−1 −G2(Xs −As), (3.63)

which leads to

As(s) =
G(s)

1−G2(s)
Xs−1(s)−

G2(s)

1−G2(s)
Xs(s). (3.64)

Therefore, the left-side-absorbing control law CL,S is described by the
consequential application of the above equations as

CL,S =Mr,sWr,s =Mr,sFf,SAs

=Mr,s (G−H)
G

1−G2
(Xs−1 −GXs) . (3.65)

The model of sth agent with implemented left-side absorbing controller is
shown in Fig. 3.3.

By modifying (3.59), the output of the sth agent with the left- and right-
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Chapter 3. Heterogeneous agents and the waves

Figure 3.3: The model of sth agent with the left-side absorbing controller
(highlighted in blue), where TCLS = G(s)(G(s)−H(s))/(1−G2(s)) from
(3.65). The front and rear ATFs are identical since, for now we assume
only one soft boundary in the system as at the top of Fig. 3.2.

side absorbing controllers is

Xs = (1 + Tab)As + TbbBs+1 + Ff,STr,n(1 + Tab)As

+ TbbFr,STf,nBs+1 = GAs−1 +GBs+1, (3.66)

where Fr,S(s) is equivalent to Ff,S(s) for the right side of the soft boundary.
Likewise, the output of the (s+1)th agent with the absorbing controllers
is

Xs+1(s) = H(s)As(s) +H(s)Bs+2(s). (3.67)

The results can be summarized in the following theorem.

Theorem 5. The control law preventing any wave to be re�ected from the

soft boundary is described in the Laplace domain as

Xs =Mr,s(Xs−1 − 2Xs +Xs+1) + CL,S, (3.68)

Xs+1 =Mf,s+1(Xs − 2Xs+1 +Xs+2) + CR,S, (3.69)
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3.3. Controllers for the boundaries

where

CL,S =Mr,s
G(G−H)

1−G2
(Xs−1 −GXs) , (3.70)

CR,S =Mf,s+1
H(H −G)
1−H2

(Xs+1 −HXs) . (3.71)

We note that the control law described in Theorem 5 is the only way to
fully absorb a wave since term TabAs in (3.59) is cancelled by the choice
of Wr,s(s) = Ff,S(s)As(s).

3.3.2 The hard boundary controller

Controlling the hard boundary is similar to that of the soft boundary in
Section 3.3.1. Here, we only provide a brief description of the absorbing-
controller design.

The output of the hth agent from (3.38) controlled with additional input
Wf,h(s) is

Xh = (1 + TAB)Ah,L + TBBBh,R + Tf,nWf,h, (3.72)

where Wf,h(s) = Ff,H(s)Ah,L(s) and Ff,H(s) is a transfer function of a
controller that prevents the re�ection of a wave. To prevent the re�ection
of the wave travelling towards the hard boundary from the left, we set
TABAh,L = −Ff,HTf,nWf,h. Hence,

Ff,H(s) = −
TAB(s)

Tf,n(s)
=

(H(s)−G(s))(1−G(s))
G(s)(1−H(s))

. (3.73)

The Ah,L term represents the wave travelling towards the hard boundary
from the left, which is again computed by (3.64),

Ah,L(s) =
G(s)

1−G2(s)
Xh−1(s)−

G2(s)

1−G2(s)
Xh(s). (3.74)
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The left-side-absorbing control law is then

CL,H =Mf,hFf,HAh,L =Mf,h
H −G

(1 +G)(1−H)
(Xh−1 −GXh). (3.75)

The design of the right-side absorbing controller is similar. When both
controllers are implemented on the hth agent, we get

Xh(s) = Ah,L(s) +Bh,R(s) = G(s)Ah−1(s) +H(s)Bh+1(s), (3.76)

where (3.42) have been considered.

Combining (3.76) and (3.12) gives Ah,L = Ah,R and Bh,L = Bh,R. In
words, the hard boundary between the wave components indexed by L
and R is removed at the hth agent and the wave transmits through the
agent without being re�ected.

The results can be summarized in the following theorem.

Theorem 6. The control law that prevents any wave to be re�ected from

the hard boundary is described in the Laplace domain as

Xh =Mf,h(Xh−1 +Xh) +Mr,h(Xh+1 −Xh) + CL,H + CR,H, (3.77)

where

CL,H =Mf,h
H −G

(1 +G)(1−H)
(Xh−1 −GXh), (3.78)

CR,H =Mr,h
G−H

(1 +H)(1−G)
(Xh+1 −HXh). (3.79)

By comparison of Theorems 5 and 6 we can see that we need to implement
the wave absorber on two agents for the soft boundary but only on one
agent for the hard boundary.
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3.3. Controllers for the boundaries

3.3.3 Stability of the controllers

The stability of the proposed controllers is treated by the following theo-
rem.

Theorem 7. If the WTFs are asymptotically stable, then the multi-agent

system with the path-graph topology and the control law from Theorem 5 or

Theorem 6 is asymptotically stable. Furthermore, the control laws and the

wave absorbers, located on the �rst or rear-end agent make the multi-agent

system L2 string stable.

Proof. In this proof, we assume that there is only one soft boundary in
a multi-agent system. However, the proof for the case with multiple soft
and/or hard boundaries can be carried out analogously. We consider a
multi-agent system with a path-graph topology with Mf,i = Mr,i, Mf,j =

Mr,j , where i = 1, 2, ...,m and j = m+ 1,m+ 2, ..., k. Therefore, there is
a soft boundary between agents indexed by m and m+ 1.

First, we prove the theorem for the case with a wave absorber only on the
�rst agent. If there is a wave absorber implemented on the �rst agent,
then the combination of (2.22), (2.23) (3.66) and (3.67) gives

Xp(s)

Xref(s)
= Gp(s) +G2m+1−p(s)H2k(s), if p ≤ m, (3.80)

Xp(s)

Xref(s)
= Gm(s)Hp−m(s) +Gm(s)H2k+1+m−p(s), if p > m.

(3.81)

In the alternative case of the wave absorbers implemented either on the
rear-end agent, or on both the �rst and the rear-end agents, the output
of the pth agent is described by

Xp(s)

Xref(s)
= Gp(s), if p ≤ m, (3.82)

Xp(s)

Xref(s)
= Gm(s)Hp−m(s), if p > m. (3.83)
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Since G and H are asymptotically stable, and ||G||∞ ≤ 1 and ||H||∞ ≤ 1,
then (3.80)-(3.83) are asymptotically stable too and have the H∞ norm
limited regardless of the number of agents in the system. In view of
De�nition 2, we see that these two systems are L2 string stable.

Now, we prove the theorem for the case with no wave absorber on the
�rst or rear-end agents. First, we show a way to �nd the transfer function
from Xref to X1 for the system with m = 3 and k = 5. In this case,
A1 = GXref −G7H10A1 and B1 = G6H10Xref −G7H10B1, hence

X1(s)

Xref(s)
=
A1(s) +B1(s)

Xref(s)
=
G(s) +G6(s)H10(s)

1 +G7(s)H10(s)
. (3.84)

Similarly,

X2(s)

Xref(s)
=
G2(s) +G5(s)H10(s)

1 +G7(s)H10(s)
, (3.85)

and so on. For the pth agent, we have

Xp(s)

Xref(s)
=
Gp(s) +G2m+1−p(s)H2k(s)

1 +G2m+1(s)H2k(s)
, if p ≤ m, (3.86)

Xp(s)

Xref(s)
=
Gm(s)Hp−m(s) +Gm(s)Hk+2m+3−p(s)

1 +G2m+1(s)H2k(s)
, if p > m.

(3.87)

Note that the transfer functions between two arbitrary agents can be
expressed similarly.

Due to (2.24), we have M/(1+2M) = G/(1+G2). The Nyquist criterion
of stability states that if M/(1 + λM) is stable for λ ∈ (0, 4〉, and if
there are neither CRHP poles nor CRHP zeros inM(s), then the Nyquist
curve of M(s) does not encircle the point [−1/4, 0]. Hence, M(s) does
not intersect the interval (−∞,−1/4〉. Therefore, if (2.74) holds, then
M/(1 + 2M) is asymptotically stable.

In view of the Nyquist criterion of stability, we can say that, ifM/(1+2M)

is stable, that is, if G/(1+G2) is stable, and if ||G||∞ ≤ 1 and ||H||∞ ≤ 1,
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then the transfer function

G(s)

1 +G2(s)Gq1(s)Hq2(s)
, (3.88)

is asymptotically stable for q1, q2 ∈ N. Furthermore, since G and H are
asymptotically stable, then the transfer function

G(s)Gq3(s)Hq4(s)

1 +G2(s)Gq1(s)Hq2(s)
, (3.89)

is asymptotically stable for q3, q4 ∈ N. Comparing (3.89) with (3.86) and
(3.87), we can say that the transfer function between two arbitrary agents
in a system with no wave absorber on the �rst or rear-end agents and with
the control law given by Theorem 5 is asymptotically stable.

The proof of the control law from Theorem 6 can be carried out analo-
gously. The only di�erence is in di�erent powers of G and H in (3.80)-
(3.83), (3.86) and (3.87), which does not a�ect neither the asymptotic nor
string stability.

3.4 Numerical simulations of the soft boundary

The numerical simulations are carried out with WaveBox, which is a set
of functions and examples in MATLAB that numerically approximates
WTFs and BTFs. The WaveBox also contains a set of examples that
show the e�ect of boundaries and absorbers. Some of the examples are
presented in this section. The WaveBox was written by the author of the
thesis and is available at [Martinec (2015)].
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3.4.1 Soft boundary performance

The numerical simulations are carried out for a system with 8 agents
described by

Mf,i(s) =Mr,i(s) =
4s+ 4

s2(s+ 4)
, i = 1, 2, 3, 4, (3.90)

Mf,j(s) =Mr,j(s) =
s+ 1

s2(s+ 3)
, j = 5, 6, 7, 8, (3.91)

which represents a double integrator agent with a linear model of friction
controlled by a PI controller. Therefore, we consider a multi-agent system
with 8 agents and a soft boundary located between the 4th and 5th agent.

The e�ect of the soft boundary is demonstrated in Fig. 3.4, where the
wave-absorbing controllers on the �rst and rear-end agents are addition-
ally implemented.

The performance of individual control strategies are shown in Fig. 3.5.
Comparing the bottom-left and top-left panels, we can see that the soft-
boundary absorber does not shorten the settling time if it is not com-
bined with other absorbers on the �rst or rear-end agents. In the case
of the absorber on the �rst agent (top-middle panel), the wave keeps re-
�ecting between the soft boundary and the non-absorbing rear-end agent
which prolongs the transient. The implementation of the soft-boundary
absorber (bottom-middle panel) shortens the transient since it prevents
the wave from being re�ected back and forth. The absorbers implemented
on both the �rst and rear-end agents (top-right panel) cause a change of
the steady-state value, as predicted by Lemma 7. There are two possi-
ble ways to obtain a desired steady-state: a) overcompensate the input
signal (see [Martinec et al. (2014d)]), or b) implement the soft-boundary
absorber (bottom-right panel).

Fig. 3.6 shows the comparison of the inputs to the fourth agent for (i)
the multi-agent system with 8 identical agents (blue solid line), where
each agent is described by (3.90), (ii) the multi-agent system with non-
identical agents described by (3.90)-(3.91) without the soft-boundary ab-
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Figure 3.4: Simulation of the wave propagating in a multi-agent system
with the path-graph topology de�ned by (3.90)-(3.91). At the beginning,
t = 0+ s, outputs of all agents are 0 except xref(t), which is changed from 0
to 1. At intermediate times, the wave travels to the soft boundary, where
it is transmitted and attenuated by factor κaa and re�ected by factor κab.
As the wave propagates back to the �st agent, it forces the �rst four agents
to change their output by κab (negative value in this case). The waves are
absorbed on 1st and 8th agents by the wave-absorbing controllers. The
blue circles and red crosses represent a(t) and b(t) components of the wave,
respectively. The green plus signs stand for the outputs of the agents. The
0th agent is the input to the system from (2.53), i.e. X0(s) = Wf,1(s),
A0(s) = Xref(s) and B0(s) = GB1(s).

sorber (green dashed line), and (iii) the multi-agent system as in (ii) but
with the soft-boundary absorber (red pluses). The input for (i) and (ii)
is described by VI(s) = (Xs−1(s) +Xs+1(s)− 2Xs(s)), that means the
output error. The input for (iii) is VIII(s) = VI(s) +CL,S(s)/Mr,s(s), that
means the same as for (i) and (ii) plus the control law from (3.70). The
wave absorbers on both the �rst and rear-end agents are implemented in
all cases. We can see that the inputs to the fourth agent are the same for
cases (i) and (iii). Therefore, the output of the wave-absorber is the di�er-
ence between (ii) and (iii), which shows that the output of the controller
is feasible.

85



Chapter 3. Heterogeneous agents and the waves

0 50 100 150 200
0

1

2

No absorber

O
ut

pu
t [

−
]

0 10 20 30 40 50
0

0.5

1

Absorber location: first

0 5 10 15 20 25
0

0.5

1

Absorber locations: first & last

0 50 100 150 200
0

1

2

Absorber location: boundary

Time [s]

O
ut

pu
t [

−
]

0 10 20 30 40 50
0

0.5

1

Absorber locations: first & boundary

Time [s]
0 5 10 15 20 25

0

0.5

1

Absorber locations: first & boundary & last

Time [s]

Figure 3.5: The performance comparison of individual control strategies
for a multi-agent system with the soft boundary. The multi-agent system
is de�ned by (3.90)-(3.91) with xref(0) = 1 and xi(0) = 0 for i = 1, 2, ..., N .
The step responses of six individual control strategies are compared. The
top-left: the system with no absorber; top-middle: the system with the
absorber implemented on the �rst agent; top-right: the system with the
absorbers implemented on the �rst and rear-end agents. In the bottom
panels, the soft-boundary absorber between the agents 4 and 5 is addi-
tionally implemented.

3.4.2 Local e�ect of the DC gains

A local e�ect of the BTF DC gains is demonstrated in Fig. 3.7 for �rst 120
seconds of the step response of a multi-agent system with a path-graph
topology described by

Mf,i(s) =Mr,i(s) =
4s+ 4

s2(s+ 4)
, i = 1, 2, ..., 40, (3.92)

Mf,j(s) =Mr,j(s) =
s+ kp
s2(s+ 3)

, j = 41, 42, ..., 80. (3.93)

Applying (2.21)-(2.23) and (3.26), the output of the 41st agent is

X41(s) = Taa(s)A40(s) + (1 + Tba(s))B41(s), (3.94)

where B41(s) is the wave that is transmitted through the boundary, travels
from the 41st agent to the 80th agent, is re�ected and travels back to the
41st agent, hence, B41(s) = Taa(s)H

79(s)A40(s). It takes certain time for
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Figure 3.6: The comparison of the inputs to the fourth agent for three
di�erent multi-agent systems. The label 'SB abs.' stands for the soft-
boundary absorber described by (3.65).

the wave to propagate, therefore, we can approximate the output X41(s)

as

X41(s) ≈ Taa(s)A40(s). (3.95)

The approximation gives the exact results in the time-domain until the
wave returns back to the 41st agent, which happens at about t = 110 s.

We can see that it takes approximately 25 seconds (from t = 30 s to t =
55 s) for the wave to settle. After that, the output can be approximated
by the DC gain of Taa(s) since the input is the unit-step signal of Xref(s)

and the steady-state value of the wave is not changed as it travels to the
40th agent. Hence,

x41(t) ≈ κaa. (3.96)

This example shows that the travelling wave approach allows us to approx-
imate the output and how it is changed when we change the coe�cients
of the system, which is kp in this case. The most important feature of
the approximation is that it does not consider interactions among other
agents. In other words, there can be an arbitrarily number of agents with
an arbitrarily complex interaction topology after the 41st agent.
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Figure 3.7: The numerical simulations of multi-agent system described by
(3.92)-(3.93) for di�erent values of kp. The output of the 41st agent is
shown.

3.5 A combination of soft and hard boundaries

The soft and hard boundaries are two special cases of system boundaries.
The two boundaries can be combined to form any type of complex bound-
ary. The idea is to represent the transfer function of a complex boundary
in terms of the soft- and hard-boundary BTFs. The combination of the
two boundaries requires to relax the assumptions for (3.13) and (3.14),
that is, there is no other boundary next to the hard or soft boundary.

Figure 3.8: Scheme of the complex boundary between 2nd and 3rd agents
composed of the soft and hard boundaries next to each other in a multi-
agent system described by (3.97)-(3.98). The blue arrow in front of the
�rst agent represents the input to the system.

The approach is demonstrated for the complex boundary in the multi-
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agent system, shown in Fig. 3.8, and described by

Mf,i(s) =Mr,i(s) =
4s+ 4

s2(s+ 4)
, i = 1, 2, 4, 5, (3.97)

Mf,3(s) =
s+ 1

s2(s+ 3)
, Mr,3(s) =

4s+ 4

s2(s+ 4)
. (3.98)

The boundary is formed by the combination of the soft boundary located
between the agents indexed by 2 and 3 and the hard boundary located
at the 3rd agent. This con�guration violates the boundary conditions in
(3.13) since now the wave travelling to A3,L and the wave travelling from
B3,L transmit through the soft boundary. In view of Theorem 3, we have

A3,L(s) = Taa(s)A2(s) + Tba(s)B3,L(s), (3.99)

B2(s) = Tab(s)A2(s) + Tbb(s)B3,L(s). (3.100)

The second part of the complex boundary is composed of the hard bound-
ary. Hence, by Theorem 4, we have

A3,R(s) = TAA(s)A3,L(s) + TBA(s)B3,R(s), (3.101)

B3,L(s) = TAB(s)A3,L(s) + TBB(s)B3,R(s), (3.102)

where the overlined transfer functions are di�erent from those in (3.27)
and (3.28). The original transfer function TAA describes the wave prop-
agating from blue to red agent, while TAA describes the wave propagat-
ing in the opposite direction. Due to the same reasoning, TAA = TBB,
TBB = TAA, TAB = TBA and TBA = TAB for this complex boundary.

The same procedure can be applied to the wave-absorbing controller.
They can be combined to absorb the wave re�ecting from boundaries
of various complexity.

The independent validation of the WTF approach is shown in Fig. 3.9,
where the results of the WTF approach is compared with the simulation
by the state-space approach. We can see that the two results are identical.
Although the validation is based on numerical simulation, we can validate
it also analytically by �nding the transfer function fromXref(s) to (A2(s)+
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B2(s)). This transfer function is identical to the rational transfer function
obtained by the state-space approach using (3.97)-(3.98).
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Figure 3.9: The comparison of the outputs of the 2nd agent simulated
by the state-space approach using (3.97)-(3.98) (solid line) and that com-
puted by the WTF approach using (3.99)-(3.102). The response to the
step change of xref(t) is shown.

3.6 Conclusions

This chapter introduces a local approach to a multi-agent system with
a path-graph interaction topology and non-identical agents agents. It
mathematically describes two basic types of boundaries in a multi-agent
system with non-identical agents and their e�ect on the waves travelling in
the system. The wave description allows us to design a feedback controller
to compensate the undesired e�ect of the boundaries, which shortens the
settling time of the multi-agent system. Moreover, such a controller makes
the multi-agent system string stable provided that the system is equipped
with at least one wave absorber on the �rst or rear-end agents.
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3.7 Appendix to the chapter

3.7.1 Approximation of the Boundary Transfer Functions

The soft and hard BTFs (3.16), (3.17), (3.27) and (3.28) are composed of
two di�erent irrational WTFs. Since to �nd an analytical impulse response
to the irrational BTFs is usually di�cult, it is convenient to construct an
approximation of BTF impulse responses. There are at least two ways to
do it, both are based on the approximations of G(s) and H(s).

First, the BTFs are approximated by a linear combination of rational
approximations of G(s) and H(s) in the Laplace domain. To �nd the
impulse response of a rational-function approximation is a routine pro-
cedure for the inverse-Laplace-transform solvers. However, depending on
the oscillatory character of the system, only the �rst few seconds of the
approximate impulse response are usually reliable. They are followed by
numerical instabilities due to a high-order approximation of the transfer
function and the limited precision of computational software.

Figure 3.10: Feedback connection for approximating TAB(s).

Second, a numerically more reliable way is to use approximated impulse
responses of G(s) and H(s) in a feedback connection. For instance, the
impulse response of TAB = (G − H)/(1 − HG) is approximated by the
feedback connection shown in Fig. 3.10.

3.7.2 Overview of the DC gains � Table 3.1
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4 Asymmetric control law and

the waves

It was shown in the previous chapter that any type of system inhomogene-
ity creates a boundary and causes partial re�ection of the travelling wave.
The mathematical analysis of the asymmetric bidirectional connection be-
tween agents is then complicated since there are two boundaries between
the neighbouring agents, see Fig. 4.1. This chapter shows that the analy-
sis is considerably simpli�ed by introducing the asymmetric wave transfer
function (AWTF). The AWTF is derived in the same manner as the the
wave transfer function presented in Section 2.2 but for a multi-agent sys-
tem with identical agents and identical but asymmetric controllers.

Figure 4.1: The travelling waves in system with the asymmetric bidi-
rectional controller. There are two boundaries (one soft and one hard)
between the agents, which causes multiple re�ections of the wave inside
the system.

Recently, papers [Hao et al. (2012)] and [Cantos and Veerman (2014)]
introduce a novel type of asymmetric bidirectional control by assuming
nonequal asymmetries between the output states. They showed that dif-
ferent couplings between the positions and velocities in the double inte-
grator system can be bene�cial for decreasing the transient and overshoots
of the system response. The latter paper also suggests that the symmetry
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Chapter 4. Asymmetric control law and the waves

in the positional coupling is necessary for the asymptotic and �ock sta-
bilities of an oscillator array. The reasoning of both papers were based on
mathematical simulations and reasonable conjectures, which raise the fol-
lowing questions. Can the 'symmetry' condition be generalized for more
complex agent dynamics? Is the symmetric coupling necessary for other
types of graphs than a path graph? Answering these questions is the main
aim of this chapter. Speci�cally, it shows that the symmetric coupling be-
tween the agent positions, represented by the identical DC gains of the
controllers, is necessary for the string stability. This result holds for arbi-
trary graph and agent's model, which is a complementary result to prior
�ndings about the string stability of asymmetric bidirectional control.

4.1 Mathematical preliminaries

We consider a formation of identical agents with a path-graph interaction
topology. The goal of the formation is to drive along a line with equal
distances between the agents.

The dynamics of agents is described by a linear single-input-single-output
model. The output of the model is the position of the agent, Xn(s),
described as

Xn(s) = P (s)Un(s), (4.1)

where n denotes index of the agent, P (s) is the transfer function of the
model and Un(s) is the input to the agent generated by the local controllers
onboard the agent. The goal of the controllers is to equalize relative dis-
tances to the immediate neighbours. Each agent has two controllers Cf(s)

and Cr(s) that control the front and rear distances of the agent, respec-
tively. We describe the controllers by transfer functions, which allows the
representation of arbitrary couplings between the agents. In other words,
the controllers may be of an arbitrary order and structure. We consider
that each agent has the same set of controllers but the two controllers
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may be di�erent, i.e. Cf(s) 6= Cr(s). Then

Un(s) =Cf(s) (Xn−1(s)−Xn(s))

+ Cr(s)(Xn+1(s)−Xn(s)). (4.2)

The resulting model of the nth agent is shown in Fig. 4.2 and described
by

Xn(s) =Mf(s)(Xn−1(s)−Xn(s))

+Mr(s)(Xn+1(s)−Xn(s)), (4.3)

where Mf(s) = Cf(s)P (s) and Mr(s) = Cr(s)P (s).

Figure 4.2: The model of nth agent.

The �rst agent (n = 0), the leader, is externally controlled and serves as
a reference signal for the distributed system. The rear-end agent (n = N)
of the path graph is described by

XN (s) =Mf(s)(XN−1(s)−XN (s)). (4.4)

Assumption 1. Throughout this chapter, we assume that

(a) Mf(s) and Mr(s) have the same number of p integrators.

(b) Mf(s) and Mr(s) are proper.

(c) Mf(s) and Mr(s) have no CRHP (closed-right half plane) zeros and
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no CRPH poles except of p poles in the origin.

It is convenient to express Mf(s) and Mr(s) as

Mf(s) =
1

sp
nf(s)

df(s)
=

1

sp

∑Lf

k=0 nf,ks
k∑Kf

k=0 df,ks
k
, (4.5)

Mr(s) =
1

sp
nr(s)

dr(s)
=

1

sp

∑Lr

k=0 nr,ks
k∑Kr

k=0 dr,ks
k
, (4.6)

where Kf, Lf, Kr and Lr is the order of polynomial nf(s), df(s), nr(s)
and dr(s), respectively, and nf,k, df,k, nr,k and dr,k are their coe�cients.
Without loss of generality we assume nf,0 6= 0, nr,0 6= 0 and df,0 = dr,0 = 1.

The traditional asymmetric bidirectional control, see [Barooah et al. (2009)]
or [Tangerman et al. (2012)], assumes that Mf(s) = µMr(s), where µ is a
constant gain. We allow the asymmetry to be more general than scaling
and focus on the relation between the kth coe�cients of (4.5) and (4.6).

De�nition 6. We say that the distributed system has symmetric posi-
tional coupling if the open-loop model of an agent has

nf,0
df,0

=
nr,0
dr,0

. (4.7)

In other words, the positional coupling is symmetric if the DC gain of
Mf(s)/Mr(s) is equal to one. Similarly, the velocity coupling is symmetric
if nf,1/df,1 = nr,1/dr,1.

4.2 Wave transfer function for asymmetric bidi-

rectional connection

4.2.1 Introduction of the asymmetric wave approach

The bidirectional property of locally controlled agents causes that any
change in the position of the leader is propagated through the distributed
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connection

system as a wave. When the wave reaches the rear-end agent, it re�ects
and propagates back to the leader, where it re�ects again. This section
describes the propagation of this wave.

The basic idea is to describe the position of the nth agent in a distributed
system with a path graph topology by two components, An(s) and Bn(s),
that represent two waves propagating along a distributed system in the
forward and backward directions, respectively, similarly as in Chapter 2.
However, the wave propagates di�erently in the directions due to the
asymmetric connection. The mathematical model of such a distributed
system (see Fig. 4.3) is then

Xn(s) = An(s) +Bn(s), (4.8)

An+1(s) = G+(s)An(s), (4.9)

Bn(s) = G−(s)Bn+1(s), (4.10)

where n ∈ {1, 2, ..., N−1}, G+(s) andG−(s) are asymmetric wave transfer

functions (AWTFs), which describe how the wave propagates in the sys-
tem in the forward, (4.9), and backward, (4.10), directions, respectively.
They are given in the following lemma.

Figure 4.3: Scheme of waves travelling in a distributed system with a path
graph topology. The squares stand for agents and springs illustrate the
virtual connections between the agents created by the controllers. Note
that all the agents are identical.
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Lemma 8. AWTFs G+(s) and G−(s) are given by

G+(s) =
1

2
β(s)− 1

2

√
β2(s)− 4

Mf(s)

Mr(s)
, (4.11)

G−(s) =
1

2
α(s)− 1

2

√
α2(s)− 4

Mr(s)

Mf(s)
, (4.12)

where Mf(s) and Mr(s) de�ne the system in (4.3) and

α(s) =
1 +Mf(s) +Mr(s)

Mf(s)
, β(s) =

1 +Mf(s) +Mr(s)

Mr(s)
. (4.13)

Proof. Quadratic-equation proof

The proof is based on the same approach as in Section 2.2.2 or also in
Section 3.1 of [O'Connor (2006)]. We note that the Laplace variable `s' is
dropped in the following notation.

The substitution of (4.8)-(4.10) into (4.3) yields

An +Bn =Mf

(
(G−1+ An +G−Bn)− (An +Bn)

)
+Mr

(
(G+An +G−1− Bn)− (An +Bn)

)
. (4.14)

This equation can be decomposed into A and B parts as

1 =MfG
−1
+ −Mf +MrG+ −Mr, (4.15)

1 =MfG− −Mf +MrG
−1
− −Mr. (4.16)

We rearrange it and get

G2
+ − βG+ +

Mf

Mr

= 0, (4.17)

G2
− − αG− +

Mr

Mf

= 0, (4.18)

where α and β are from (4.13). The solutions of the quadratic equations
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are given by

G+(s)1,2 =
1

2
β(s)± 1

2

√
β2(s)− 4

Mf(s)

Mr(s)
, (4.19)

G−(s)1,2 =
1

2
α(s)± 1

2

√
α2(s)− 4

Mr(s)

Mf(s)
. (4.20)

We have speci�ed that G+(s) describes the wave propagating along the
system in the forward direction, i.e. from nth to (n + 1)th agent. The
propagation of the wave is causal, therefore, the transfer function describ-
ing this phenomenon must be either proper or strictly proper. We will
show that the transfer functions G+(s) with a plus sign in front of the
second term in (4.19) is not proper.

The de�nition of a proper irrational transfer function is given in De�ni-
tion B.1 of [Curtain and Morris (2009)], which states: The function G is

proper if, for su�ciently large ρ, it holds

sup
Re s≥0∩|s|>ρ

|G(s)| <∞. (4.21)

Due to Assumption 1, the norm of (4.19) can be unbounded only for
s → ∞. In addition, also lims→∞ β(s) = ∞, lims→∞

√
β2 − 4Mf/Mr =

lims→∞ β. Therefore

lim
s→∞

(
1

2
β(s) +

1

2

√
β2(s)− 4

Mf(s)

Mr(s)

)
=∞, (4.22)

lim
s→∞

(
1

2
β(s)− 1

2

√
β2(s)− 4

Mf(s)

Mr(s)

)
= 0. (4.23)

Analogous arguments apply to G−(s). We choose the proper solutions of
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(4.17) and (4.18), hence,

G+(s) =
1

2
β(s)− 1

2

√
β2(s)− 4

Mf(s)

Mr(s)
, (4.24)

G−(s) =
1

2
α(s)− 1

2

√
α2(s)− 4

Mr(s)

Mf(s)
. (4.25)

Continued-fraction-expansion proof

We also present the alternative proof based on the continued-fraction ex-
pansion. First, we �nd the transfer function describing the propagation in
the forward direction, G+(s). The transfer function from X0(s) to X1(s)

in a system with one leader and one follower is X1/X0 = Mf/(1 +Mf).
For two followers is X1/X0 = (Mf/Mr) (β −Mf/(1 +Mf))

−1. Continuing
recursively for N →∞, X1/X0 is expressed by the continued fraction as

X1(s)

X0(s)
=

Mf(s)/Mr(s)

β(s)− Mf(s)/Mr(s)

β(s)− . . .

. (4.26)

Representing a square root function as the continued fraction, see [Jones
and Thron (1984)],√

z2 + y = z +
y

2z +
y

2z +
. . .

, (4.27)

we have

X1(s)

X0(s)
=

1

2
β(s)− 1

2

√
β2(s)− 4

Mf(s)

Mr(s)
. (4.28)
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Similarly, we can �nd that

Xn(s)

Xn−1(s)
=

1

2
β(s)− 1

2

√
β2(s)− 4

Mf(s)

Mr(s)
. (4.29)

The transfer function G−(s) describing the propagation in the opposite
direction can be found analogously. Namely, let the leader be placed at
the opposite end of the system. Then the transfer function from X0(s) to
X−1(s) is

X−1(s)

X0(s)
=

Mr(s)/Mf(s)

α(s)− Mr(s)/Mf(s)

α(s)− . . .

=
1

2
α(s)− 1

2

√
α2(s)− 4

Mr(s)

Mf(s)
.

(4.30)

We note that the re�ections of the wave from the leader and the rear-end
agent described by the following lemma are not used in the derivation
of the main result of this chapter. However, we feel obliged to derive
them to fully cover the issue of waves in asymmetric bidirectional control.
Moreover, we use the re�ections for numerical veri�cation of the proposed
AWTF approach.

Lemma 9. The re�ection from the leader and the rear-end agent in the

path graph is described by the transfer function T1(s) = A1(s)/B1(s) and

TN (s) = BN (s)/AN (s), respectively. The transfer functions are given by

T1(s) =
A1(s)

B1(s)
= −G+(s)G−(s), (4.31)

TN (s) =
BN (s)

AN (s)
= G−(s)

G+(s)− 1

G−(s)− 1
, (4.32)

respectively.
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Proof. The position X1(s) in (4.3) can be rewritten using (4.13) as

X1 =
1

α
X0 +

1

β
X2. (4.33)

Substituting for X1 = A1 +B1 and X2 = G+A1 +G−1− B1 from (4.9) and
(4.10) yields

A1 =
1

α

1

1− 1

β
G+

X0 +
1

β

α

α

G−1− − β

1− 1

β
G+

B1. (4.34)

The last expression can be further simpli�ed by the following arrange-
ments. First, from (4.13) we have

β

α
=
Mf

Mr

. (4.35)

Further, by (4.11) and (4.35), it can be shown that

G−1+ =
Mr

Mf

(
1

2
β +

1

2

√
β2 − 4

Mf

Mr

)

=
α

β
(β −G+) = α

(
1− 1

β
G+

)
. (4.36)

Likewise,

G−1− =
β

α
(α−G−). (4.37)

By rearranging (4.37), it gives

G− = α− α

β
G−1− . (4.38)

Substituting (4.35), (4.36) and (4.38) into (4.34) gives

A1 = G+X0 −G+G−B1 = G+X0 + T1B1. (4.39)
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Now, we derive the re�ection relation for the rear-end agent. Substituting
(4.9), (4.10) and (4.8) into (4.4) gives

AN +BN =Mf(G
−1
+ AN +G−BN −AN −BN ). (4.40)

By rearranging, it gives

BN =
1 +Mf −MfG

−1
+

MfG− −Mf − 1
AN . (4.41)

By (4.36) and (4.38), we have MfG
−1
+ = −MrG+ + (Mr +Mf + 1) and

MfG− = −MrG
−1
− +(Mr+Mf+1). Substituting these into (4.41) results

in

BN =
Mr(G+ − 1)

Mr(1−G−1− )
AN = G−

G+ − 1

G− − 1
AN . (4.42)

4.2.2 Veri�cation of the asymmetric wave approach

An independent validation of the AWTF approach is shown in Fig. 4.4.
The numerical simulation shows the response of 20 agents with the path-
graph topology, where

Mf(s) =
1

3

4s+ 4

s2(s/3 + 1)
, Mr(s) =

1

3

2.5s+ 4

s2(s/3 + 1)
. (4.43)

We can see excellent agreement between the state-space approach based
on (4.3) and the AWTF approach. The waves A10 and B10 are computed
as

A10 = G10
+X0 + TNG

19
+ T1G

19
−A10, (4.44)

B10 = G10
− TNG

20
+X0 + TNG

19
+ T1G

19
−B10. (4.45)

The �rst term on the right-hand side describes the wave traveling to the
agent due to a change of X0(s). The second term describes the wave
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returning back to the agent due to the re�ections at the leader and the
rear-end agent. The wave X10 is a sum of A10 and B10.

We can also see that the approximation x10(t) ≈ a10(t) holds in the time-
domain for the �rst 20 seconds, then the wave returns back to the 10th
agent which causes an increase of B10.

0 20 40 60 80 100
0

0.5

1

1.5

2

Time [s]

A
m

pl
itu

de
 [−

]

 

 State space: X
10

Wave: X
10

Wave: A
10

Wave: B
10

Figure 4.4: The comparison of the positions of the 10th agent in the
system de�ned by (4.43) simulated by the state-space approach using
(4.3) (blue solid line) and by the AWTF's approach using (4.9), (4.10)
and Lemmas 8 and 9 (green crosses). The two components A10 and B10

from (4.8) are shown with the dashed red and blue lines, respectively. The
response on the step change of X0 is shown.

4.2.3 Properties of AWTFs

To be able to track the leader travelling at a constant velocity with the
zero steady-state error we require two integrators to be present in the
model of each agent. The DC gains of the AWTFs in this case are limited
to one as the following lemma describes.

Lemma 10. If there is at least one integrator inMf(s) andMr(s), de�ned

by (4.5) and (4.6), then the DC gains of the AWTFs given by (4.11) and
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(4.12) are

lim
s→0

G+(s) = κ, lim
s→0

G−(s) = 1, if 0 < κ < 1, (4.46)

lim
s→0

G+(s) = 1, lim
s→0

G−(s) = 1/κ, if κ ≥ 1, (4.47)

where

κ = lim
s→0

Mf(s)

Mr(s)
=
nf,0
nr,0

. (4.48)

Proof. First, we prove the DC gain of G+. Since there is at least one
integrator in Mr(s), then the limit of β(s) given by (4.13) is

lim
s→0

β(s) = lim
s→0

(
1 +

1

Mr(s)
+
Mf(s)

Mr(s)

)
= 1 + κ. (4.49)

Substituting from (4.49) into (4.11) gives

lim
s→0

G+(s) =
1

2

(
1 + κ−

√
(1 + κ)2 − 4κ

)
=

1

2
(1 + κ− |1− κ|). (4.50)

The proof of the DC gain of G− is similar.

Another important characteristics of the AWTFs are the asymptotic sta-
bility and the H∞ norm.

Theorem 8. If Mf(s) and Mr(s) de�ned by (4.5)-(4.6) satisfy Assump-

tion 1 and if the Nyquist plot of

TG(s) = (Mf(s)−Mr(s))
2 + 2Mf(s) + 2Mr(s) + 1 (4.51)

does not intersect the non-positive real axis, then the AWTFs given by

(4.11) and (4.12) are asymptotically stable.

Proof. The proof is based on Theorem A.2 [Curtain and Morris (2009)],
which states: A linear system is stable if and only if its transfer function
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T (s) is analytic in the right-half plane and ||T ||∞ < ∞, where ||T ||∞ =

supRe(s)>0 |T (s)|.

We have shown that the norms of G+(s) and G−(s) are bounded in the
proof of Lemma 8, hence, we focus on their analyticity. We use the result
of the complex function analysis, which states that the square root func-
tion f(z) =

√
z is analytic everywhere except for the non-positive real

axis (e.g., [Stein and Shakarchi (2010)]). The second term of G+(s) is

f2,+(s) =
1

2

√
β2(s)− 4

Mf(s)

Mr(s)
=

1

2

√
1 +Ms(s)

M2
r (s)

, (4.52)

whereMs =M2
r +M

2
f +2Mr+2Mf−2MrMf = (Mr−Mf)

2+2(Mr+Mf).
We apply the same analysis as in Figure 1.9 of Section 1.2 of [Kelly (2006)].
Term

√
1/Mr is analytic everywhere except for the non-positive real axis,

where it has a branch cut. The non-analyticity is caused by functional
discontinuity, which is, in this case, only a sign change. Due to that,
the overlapping branch cuts of

√
1/Mr · 1/Mr cancel each other, which

means that
√
1/M2

r is continuous and analytic even on the non-positive
real axis. Then f2,+ is analytic if and only if

√
1 +Ms is analytic. Hence,

if the Nyquist plot of 1+Ms does not intersect the non-positive real axis,
then f2,+ is analytic.

The �rst terms of the AWTFs, α/2 and β/2, are rational transfer func-
tions. A rational function is analytic in the ORHP (open-right half plane)
if and only if it has no singularities, in this case ORHP zeros and ORHP
poles of Mf and Mr. Therefore, if Mf and Mr have no ORHP zeros, nor
ORHP poles, then α/2 and β/2 are analytic.

Observe that

G+(s) =
1

2
β(s)− 1

2

√
1 +Ms(s)

M2
r (s)

, (4.53)

is an analytic function since the Nyquist plot of (1 + Ms(s)) does not
intersect the non-positive real axis and β(s) and α(s) do not have ORHP
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poles due to the condition thatMf(s) andMr(s) have no CRHP zeros nor
CRHP poles.

Theorem 9. If the AWTFs given by (4.11) and (4.12) are asymptotically

stable, there are two integrators in Mf(s) and Mr(s), given by (4.5)-(4.6),

and

nf,0 6= nr,0, (4.54)

df,0 = dr,0 = 1, (4.55)

nf,0 > 0, nr,0 > 0, (4.56)

then either ||G+(s)||∞ > 1 or ||G−(s)||∞ > 1.

Proof. First, we prove that ||G+||∞ > 1 if κ > 1, where κ 6= 1 due to
(4.54). By ω0 we denote a frequency that is close to 0 and evaluate the
real and imaginary parts of the individual transfer functions as

x1 + y1 =
Mf(ω0)

Mr(ω0)
, x2 + y2 =

1

Mr(ω0)
, (4.57)

x = x1 + x2 and y = y1 + y2. The Taylor series expansion of (4.57)
evaluated at ω0 yield

x1(ω0) = kx,1 − kx,2ω2
0 + kx,3ω

4
0 − ..., (4.58)

y1(ω0) = ky,1ω0 − ky,2ω3
0 + ky,3ω

5
0 − ..., (4.59)

x2(ω0) = −lx,1ω2
0 + lx,2ω

4
0 − lx,3ω6

0 + ..., (4.60)

y2(ω0) = −ly,1ω3
0 + ly,2ω

5
0 − ly,3ω7

0 + ..., (4.61)

where we assumed that Mr has two integrators. We note that kx,1 = κ

and lx,1 = 1/nr,0. The other coe�cients, kx,2, kx,3, etc., obtained from
Taylor series are not important due to limit ω0 → 0 as we show later in
the proof.
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Substituting (4.57) into (4.11) gives the real part of G+(ω0) as

Re{G+(ω0)} =
1

2
(1 + x)− 1

2

√
|z|+Re{z}

2
, (4.62)

where we used Re{
√
z} =

√
|z|/2 + Re{z}/2, see e.g. Section 3.7.27 in

[Abramowitz and Stegun (1964)], and

z = β2(ω0)− 4
Mf(ω0)

Mr(ω0)

= (1 + x2 − y2 + 2x− 4x1) + (2y + 2xy − 4y1). (4.63)

In order to complete the proof, we show that Re{G+(ω0)} > 1, hence,
we solve the following inequality

(1 + x)−
√
|z|+Re{z}

2
> 2. (4.64)

We simplify it as(
2(x− 1)2 − Re{z}

)2 − Re{z}2 − Im{z}2 > 0, (4.65)

substitute into it from (4.63) and obtain

−x2(x1 − 1)2 − y1y2(x1 + x2 − 1)− 2x22(x1 − 1)− x32
− y22(x1 + x2) > 0. (4.66)

We substitute from (4.58)-(4.61) into (4.66) and get

lx,1(kx,1 − 1)2ω2
0 +O(ω4

0, ω
6
0, ω

8
0, ...) > 0, (4.67)

where O(ω4
0, ω

6
0, ω

8
0, ...) stands for the polynomial with powers ω4

0, ω
6
0, ω

8
0

etc. The lowest order term in (4.67) is ω2
0. Therefore, the inequality in

(4.64) holds for ω0 close to zero if lx,1 = 1/nr,0 > 0. We assume in (4.56)
that nr,0 > 0, hence, Re{G+(ω0)} > 1 and ||G+||∞ > 1. Similarly, it can
be shown that ||G−||∞ > 1 if 0 < κ < 1 and nf,0 > 0. Hence, if nf,0 6= nr,0
then κ 6= 1 and either ||G+(s)||∞ > 1 or ||G−(s)||∞ > 1.

108



4.3. Implications for the graphs with asymmetric coupling

4.3 Implications for the graphs with asymmetric

coupling

In this section, we follow the argument given in the Introduction that cer-
tain features in the performance of the distributed system can be inferred
from the analysis of wave propagation between the agents because of the
local nature of the AWTFs.

De�nition 7. We say that the distributed system is locally-string stable
if the AWTFs are asymptotically stable and

||G+(s)||∞ ≤ 1 and ||G−(s)||∞ ≤ 1. (4.68)

Otherwise, the system is called locally-string unstable.

Similarly to the string stabilities mentioned in the introduction, the local-
string stability also deals with the performance of the distributed system.
It also describes whether the disturbance acting on an agent ampli�es as
it propagates through the system. However, the local-string stability de-
scribes the performance from the local point of view without considering
the whole distributed system. The local description is particularly advan-
tageous for a large distributed system, where the traditional Laplacian
approach is di�cult to apply.

The e�ect of the local-string instability is illustrated in Fig. 4.5. The
left panels show the response of the system with the symmetric bidirec-
tional control, which is locally-string stable. The right panels show the
response of the system with the asymmetric control, where the asymmetry
is in both the position and velocity. This makes the system locally-string
unstable. We can see (top-right panel) that the overshoot of the locally-
string unstable system increases with the index of the agent. The more
agents the wave transmits through, the larger the overshoot is, due to the
fact that ||G+(s)||∞ > 1. This does not happen for the locally-string sta-
ble system (top-left panel). We can see that even the locally-string stable
system eventually overshoots the input signal (bottom-left panel) which
is due to the re�ection of the wave at the last agent.
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Figure 4.5: The comparison of the responses of the locally-string stable
system (left panels) with the locally-string unstable system (right panels).

The main contribution of this chapter is given in the following Theorem.

Theorem 10. If i) there are two integrators in the dynamics of the agents,

ii) the AWTFs given by (4.11) and (4.12) are asymptotically stable, iii) a

part of the topology of the distributed system is a path graph, and iv) the

positional coupling between the agents that are lying on the path graph is

asymmetric, then the distributed system is locally-string unstable.

Proof. If the positional coupling is asymmetric, then nf,0/df,0 6= nr,0/dr,0
by De�nition 6. Since we can always transform Mf(s) and Mr(s) such
that df,0 = dr,0 = 1, then nf,0 6= nr,0. Therefore, ||G+(s)||∞ > 1 or
||G−(s)||∞ > 1, which follows from Theorem 9, and the distributed system
is locally-string unstable.

We can interpret Theorem 10 as follows. ||G+(s)||∞ > 1 causes that
the disturbance is ampli�ed as it propagates from Xi(s) to Xi+1(s), from
Xi+1(s) to Xi+2(s), from Xi+2(s) to Xi+3(s) etc. The larger the path
graph is, the more is the disturbance ampli�ed. Similarly, if ||G−(s)||∞ >

1, then the disturbance is ampli�ed as it propagates in the opposite di-
rection.
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Theorem 10 is in agreement with the results of [Barooah et al. (2009)],
[Tangerman et al. (2012)] or [Herman et al. (2015a)], which state that if
the asymmetry is in the form of Mf(s) = µMr(s) with µ being a constant
gain, then the system is string unstable. However, Theorem 10 is more
general since it states that the distributed system is string unstable if the
DC gain of Mf/Mr is not equal to one. Hence, it allows the asymmetry
to be more complex.

We should emphasize that Theorem 10 does not disprove an asymmetry in
the velocity coupling. In fact, the asymmetric velocity coupling may im-
prove the transient of the system, as the simulation example in Section 4.4
shows.

The key part of the derivation of G+ and G− is that the agent has two
neighbours. Therefore, we can apply the decomposition of the waves from
(4.8)-(4.12) to each agent that has two neighbours. In other words, if the
agents connected in a path-graph topology are parts of a system with a
more complex graph topology, then G+ and G− are the same.

4.4 Mathematical simulations

4.4.1 Path-graph topology

The mathematical simulations compare three di�erent control strategies
for two di�erent sizes of a path graph. The results are shown in Fig. 4.6,
where the agent is modelled as a double integrator with a linear model of
friction controlled by a PI controller, that is

Mf =
1

3

4s+ 4

s2(s/3 + 1)
(4.69)

for all three cases. But

Mr =Mf, Mr =
2.5

4
Mf, Mr =

1

3

2.5s+ 4

s2(s/3 + 1)
, (4.70 a, b, c)

for the left, middle and right panels, respectively.
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Figure 4.6: The numerical simulations showing the position of the last
agent in the distributed system with a path-graph topology when the
leader changes its position from 0 to 1. The �gure compares three di�erent
bidirectional control strategies: i) the symmetric (the left panels) de�ned
by (4.70a), ii) the traditional asymmetric control with asymmetries in both
positional and velocity couplings (the middle panels), see (4.70b), and iii)
the combined symmetric positional with asymmetric velocity couplings
(the right panels), see (4.70c). The top and bottom panels show the
system with 20 and 50 agents, respectively.

We can see that the symmetric bidirectional control has a very long tran-
sient (the left panel), which is shortened when the asymmetry is intro-
duced to both positional and velocity couplings (the middle panel). How-
ever, the asymmetry in the positional coupling causes a large overshoot
which even scales with the size of the graph due to the local-string insta-
bility. When the positional coupling is kept symmetric and the velocity
coupling asymmetric (the right panel), the overshoot is smaller than for
the symmetric case. Moreover, we can see that the transient scales ap-
proximately linearly with the size of the graph.

Fig. 4.7 shows the numerical validation of Theorem 9 for Mf and Mr de-
�ned by (4.69) and (4.70b)-(4.70c). We can see that, if there is asymmetry
in the positional coupling (solid line), i.e. when nf,0 6= nr,0, then the H∞
norm of G+ is greater than one. The norm is reduced to one by making
the positional coupling symmetric (dashed line).
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Figure 4.7: The comparison of the frequency characteristics for two dif-
ferent transfer functions G+(s). The asymmetries in the couplings are
de�ned as in Fig. 4.6.

4.4.2 Complex graph topology

The numerical simulations in the previous section are carried out for a
distributed system with a path graph topology. However, Theorem 10
holds also for a more complex graphs because of the local nature of the
AWTFs. This can nicely be demonstrated on a graph, where a path
graph is a part of a more complex graph as in Fig. 4.8. Although, the
string stability is de�ned and studied mostly for the path graphs, we can
observe the same phenomenon, that is, the ampli�cation of a disturbance
as it propagates in the system. The top panels of Fig. 4.9 show that
the condition of the symmetric positional coupling is violated. Such a
phenomenon is di�cult to identify by the traditional state-space approach.

Figure 4.8: The topology of the distributed system, where the black and
green nodes represent the agents with the symmetric and asymmetric
couplings, respectively. The 'L'-node is the leader of the system. 'Q'-
nodes lie on the same path, which di�ers from the path of 'P'-nodes.
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Figure 4.9: The numerical simulations showing the positions of agents Q2,
Q5, Q8, P1, P4 and P7 of the system with the topology in Fig. 4.8. The
input to the system is the Dirac pulse, which represents the noise acting
on the leader. The agents at the top and bottom panels have Mf and Mr

de�ned as in the middle and right panels in Fig. 4.6, respectively.

4.5 Conclusions

This chapter examines a multi-agent system with an asymmetric bidirec-
tional control, where the coupling between the agents is allowed to be
arbitrarily complex. The proposed approach reveals that the symmetric
positional coupling, i.e. identical DC gains of the controllers, is neces-
sary for the string stability of the multi-agent system. This �nding does
not disprove the asymmetry for other couplings. In fact, it is numerically
shown that, if the asymmetry in the velocity coupling is adjusted properly,
then the system's performance may be improved.

4.6 Appendix to the chapter

4.6.1 DC gain of TN

This section shows how to carry out the DC gain of the transfer function
describing the re�ection of the wave at the rear-end agent from Lemma 9.
We assume that the system has a symmetric positional coupling, i.e.
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nf,0 = nr,0 and df,0 = dr,0 = 1, and that there are two integrators in
Mf(s) and Mr(s). We note that we omit argument `s' from the equations
where it is obvious.

The DC gain of TN (s) is given by

κT,N = lim
s→0

TN (s) = lim
s→0

G−(s) lim
s→0

G+(s)− 1

G−(s)− 1
. (4.71)

The DC gain of G− and G+ is equal to one because of the integrators in
Mf and Mr. Therefore, we expand the second term of (4.71) as

G+ − 1

G− − 1
=


1

2
β − 1

2

√
β2 − 4

Mf

Mr

− 1

1

2
α− 1

2

√
α2 − 4

Mr

Mf

− 1


2

s
2

s

=
Pn,1 −

√
Pn,2

Pd,1 −
√
Pd,2

, (4.72)

where the de�nition of substituted terms Pn,1, Pn,2, Pd,1, Pd,2 is obvious.

Now we evaluate the individual terms. We start with Pn,1,

Pn,1 =
β − 2

s
=

1

sMr

− 1

s
+

Mf

sMr

. (4.73)

Because of two integrators in Mr, lims→0
1

sMr

= 0 and

Mf

sMr

− 1

s
=
nfdr − nrdf
snrdf

, (4.74)

where nf(s), df(s), nr(s) and dr(s) are de�ned in (4.5)-(4.6). Hence,

lim
s→0

nfdr − nrdf
snrdf

=
nf,0dr,0 − nr,0df,0

0nr,0df,0
=

0

0
. (4.75)

Applying l'Hospital rule gives

(nfdr − nrdf)′

(snrdf)′
=
n′fdr + nfd

′
r − n′rdf − nrd′f

s(nrdf)′ + nrdf
. (4.76)
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Then

lim
s→0

Pn,1 =
nf,1dr,0 + nf,0dr,1 − nr,1df,0 − nr,0df,1

nr,0df,0
. (4.77)

Similarly,

lim
s→0

Pd,1 = lim
s→0

1

sMf

− 1

s
+

Mr

sMf

=
nr,1df,0 + nr,0df,1 − nf,1dr,0 − nf,0dr,1

nf,0dr,0
. (4.78)

Pn,2 term is calculated as follows

Pn,2 =
1

s2

(
β2 − 4

Mf

Mr

)
=

1

s2

(
1

M2
r

+
2

Mr

+ 2
Mf

M2
r

+

(
Mf

Mr

− 1

)2
)

= s2
d2r
n2r

+
2dr
nr

+
2d2rnf
n2rdf

+ P 2
n,3, (4.79)

where

Pn,3 =
1

s

(
nfdr
dfnr

− 1

)
. (4.80)

Since lims→0 Pn,3 = 0/0, we apply l'Hospital rule. It gives

lim
s→0

Pn,3 = lim
s→0

(n′fdr + nfd
′
r)dfnr − nfdr(d′fnr + dfn

′
r)

d2f n
2
r

=
(nf,1dr,0 + nf,0dr,1)df,0nr,0 − nf,0dr,0(df,1nr,0 + df,0nr,1)

d2f,0n
2
r,0

.

(4.81)

Similarly

Pd,2 = s2
d2f
n2f

+
2df
nf

+
2d2f nr
n2f dr

+ P 2
d,3, (4.82)
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and

lim
s→0

Pd,3 =
(nr,1df,0 + nr,0df,1)dr,0nf,0 − nr,0df,0(dr,1nf,0 + dr,0nf,1)

d2r,0n
2
f,0

.

(4.83)

Assuming nf,0 = nr,0 and df,0 = dr,0 gives

Pn,1 = −Pd,1, Pn,2 = Pd,2, Pn,3 = −Pd,3. (4.84)

Then substituting (4.79) and (4.84) into (4.72) gives

lim
s→0

Pn,1 −
√
Pn,2

Pd,1 −
√
Pd,2

=

Pn,1 −
√
P 2
n,3 + 4

dr,0
nr,0

−Pn,1 −
√
P 2
n,3 + 4

dr,0
nr,0

= −
P 2
n,1 − 2Pn,1

√
P 2
n,3 + 4

dr,0
nr,0

+ P 2
n,3 + 4

dr,0
nr,0

P 2
n,1 − P 2

n,3 − 4
dr,0
nr,0

,

(4.85)

where (4.81) is simpli�ed as

Pn,3 =
nr,1 − nf,1

nr,0
+
df,1 − dr,1

df,0
. (4.86)

Simplifying (4.85) and substituting it into (4.71) yields

κT,N = 1 +
nr,0
2dr,0

Pn,3

(
Pn,3 +

√
P 2
n,3 + 4

dr,0
nr,0

)
. (4.87)

We illustrate the importance of the DC gain on the response of the dis-
tributed system with a path-graph topology. Fig. 4.10 shows the response
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Chapter 4. Asymmetric control law and the waves

of 40 agents de�ned by

Mf(s) =
nf,1s+ nf,0

s2
, Mr(s) =

nr,1s+ nr,0
s2

, (4.88)

where nf,1 = 5 and nf,0 = 1. Parameters nr,1 and nr,0 are changed in
the simulations. We can see that the asymmetric velocity coupling signif-
icantly reduces overshoots of the system and the transient of the system
is consequently shortened. The value of the overshoot is equal to κT,N ,
that is the DC gain of TN (4.87). Fig. 4.11 shows that the lower the value
of nr,1 is, the lower the DC gain is.
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Figure 4.10: The response of the system de�ned in (4.88). The values
of the DC gain, κT,N , carried out by (4.87), are: 1 (top-left panel), 0.17
(top-right panel) and 0.026 (bottom-left panel).
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5 General graph topology and

the waves

This chapter generalizes the previous chapters by considering a system
with a general graph topology. In comparison to the system with the path-
graph topology the agent has more than two neighbours. The chapter
provides a mathematical description of the re�ection and transmission of
travelling wave. It also presents a way how to prevent the re�ection of
the wave in such a system.

5.1 Mathematical preliminaries

The behaviour of nth agent in a multi-agent system is described by

Xn(s) = P (s)Un(s), (5.1)

where s is the Laplace variable, Xn(s) is the output of the agent, P (s)
is the transfer function of the agent and Un(s) is the input to the agent
that is carried out by the local controller of the agent with the task to
equalize Xn(s) with outputs of its neighbouring agents. We assume that
each agent may have arbitrary number of neighbours, hence,

Un(s) = C(s)
∑
k∈Nb

(Xk(s)−Xn(s)), (5.2)
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Chapter 5. General graph topology and the waves

where Nb is a set of neighbouring agents of the nth agent and C(s) is the
transfer function of the controller. The model of the agent is then

Xn(s) =M(s)
∑
k∈Nb

(Xk(s)−Xn(s)), (5.3)

where M(s) = P (s)C(s) can be expressed as

Xn(s) = TN (s)
∑
k∈Nb

Xk(s). (5.4)

Here TN (s) = M(s)/(1 +NM(s)) and N is the number of neighbours of
nth agent.

5.2 Notation of the waves

To describe waves in a multi-agent system with a general graph topology,
we need to introduce a di�erent notation for the wave components. We
replace An and Bn by W d

n,n+1 and W a
n+1,n, respectively. The �rst lower

index is the index of the agent where the wave departs, while the second
lower index is the index of the agent where the wave arrives. The upper
index denotes if the wave departs from ('d') or arrives at ('a') the agent.
The example is shown in Fig. 5.1.

Expressing (2.21) in the newly introduced notation gives

Xn(s) =W d
n,n+1(s) +W a

n+1,n(s) =W a
n−1,n(s) +W d

n,n−1(s), (5.5)

where we assume that agents denoted (n− 1) and (n+ 1) are neighbours
of nth agent. Similarly, (2.22) and (2.23) are expressed as

W a
n,n+1(s) = G(s)W d

n,n+1(s), (5.6)

W a
n+1,n(s) = G(s)W d

n+1,n(s), (5.7)

respectively. For example, in Fig. 5.1 it holds X1 =W d
1,0+W

a
0,1 =W d

1,3+

W a
3,1 =W d

1,2 +W a
2,1 and W

a
1,2 = GW d

1,2 etc.
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5.3. Mathematical description of the waves

Figure 5.1: Notation of the wave components in a multi-agent system.

5.3 Mathematical description of the waves

It was shown in Chapter 2 that the wave travelling in a multi-agent system
with a path graph topology and identical agents re�ects only at the path-
graph ends: the leader and the rear-end agent. The situation is more
complicated in the case when the agent has multiple neighbours. In such
a case, the wave partially re�ects at the agent itself as well, which is
described by the following theorem.

Theorem 11. The transfer function, Tt,N (s), describing the wave trans-

mitting through the agent with N neighbours, and the transfer function,

Tr,N (s), describing the wave re�ecting from the agent with N neighbours,

are

Tt,N (s) =
W d
n,n−1(s)

W a
n+1,n(s)

=
TN (s)(1−G2(s))

G(s)(1−NTN (s)G(s))
, N ≥ 2, (5.8)

Tr,N (s) =
W d
n,n−1(s)

W a
n−1,n(s)

=
(N − 1)TN (s)G

2(s) + TN (s)−G(s)
G(s)(1−NTN (s)G(s))

, N ≥ 1,

(5.9)

where (n− 1)th and (n+ 1)th are neighbouring agents of nth agent.
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Proof. We substitute (5.5) into (5.4) and obtain

W a
n−1,n +W d

n,n−1 = TN
∑
k∈Nb

(W d
k,n +W a

n,k), (5.10)

where we assume that (n−1)th agent is the neighbour of nth agent, hence
(n − 1)th agent is also a part of set Nb. Eq. (5.5) can alternatively be
expressed as

W a
n,k = GXn −GW a

k,n = GW a
n−1,n +GW d

n,n−1 −GW a
k,n. (5.11)

Substituting (5.11) into (5.10) and rearranging it gives

W a
n−1,n +W d

n,n−1 =TN (G
−1 −G)

∑
k∈Nb

(W a
k,n)

+NTNG(W
a
n−1,n +W d

n,n−1). (5.12)

Next, we separate the wave arriving from (n− 1)th agent, that is W a
n−1,n,

(1−NTNG)W d
n,n−1 = TN (G

−1 −G)
∑

k∈Nb,k 6=(n−1)

(W a
k,n)

+ (NTNG+ TN (G
−1 −G)− 1)W a

n−1,n. (5.13)

Finally, separating the wave departing from nth agent to (n− 1)th agent,
W d
n,n−1,

W d
n,n−1 =

TN (1−G2)

G(1−NTNG)
∑

k∈Nb,k 6=(n−1)

W a
k,n

+
(N − 1)TNG

2 + TN −G
G(1−NTNG)

W a
n−1,n. (5.14)

Then

Tr,N =
W d
n,n−1

W a
n−1,n

=
(N − 1)TNG

2 + TN −G
G(1−NTNG)

(5.15)

is the transfer function which describes the re�ection of the wave from the
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5.3. Mathematical description of the waves

nth agent, and

Tt,N =
W d
n,n−1
W a
k,n

=
TN (1−G2)

G(1−NTNG)
(5.16)

describes the transmission of the wave through the nth agent.

Figure 5.2: The detail of the re�ection and transmission of the wave trav-
elling from the 0th agent in Fig. 5.1, where G is the Wave transfer function
from (2.24), Tt,3 and Tr,3 are the transfer functions de�ned by (5.8) and
(5.9), respectively, with N = 3. Note that all agents are identical. The
waves travelling from 2nd or 3rd agent are propagated analogously.

The interpretation of the theorem is as follows. If there is a wave travelling
to the agent with multiple neighbours, then it is partially re�ected from
this agent (described by Tr,N (s)) and partially transmitted (described by
Tt,N (s)). For example, the output, X1(s), of the multi-agent system in
Fig. 5.2 can be expressed as

X1 = (1 + Tr,3)W
a
0,1 + Tt,3W

a
2,1 + Tt,3W

a
3,1. (5.17)

The output is composed of three parts since the agent has three neigh-
bours: i) wave that travels from 0th agent and re�ects back to 0th agent,
ii) wave that travels from 2nd agent and transmits to the 0th agent, and
iii) wave that travels from 3rd agent and transmits to the 0th agent. We
note that X1(s) can be expressed equivalently by calculating the re�ected
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Chapter 5. General graph topology and the waves

wave travelling either from 2nd or 3rd agent.

5.4 Properties of the waves

Theorem 11 reveals an interesting relation between the transmitted and
re�ected waves. It is described by the following corollary.

Corollary 5. The transfer functions Tt,N and Tr,N are related as follows

Tt,N − Tr,N = 1, (5.18)

for N ≥ 2.

Proof. By the substitution for Tt,N and Tr,N from Theorem 11.

Theorem 11 is in agreement with the result of Section 2.3 that the wave
in a multi-agent system with a path-graph topology and identical agents
re�ects only at the path-graph ends.

One of the important properties of the transfer function is the DC gain.
The DC gain can be used to analyze the ampli�cation/attenuation of
the travelling wave as it propagates through the agent. The simulation
example is shown in Section 5.5.2.

Lemma 11. If the open-loop model of the agent, M(s), has at least one

integrator, then the DC gains of Tt,N and Tr,N depend only on the number

of neighbours, N . Speci�cally,

κT = lim
s→0

Tt,N (s) =
2

N
, (5.19)

κR = lim
s→0

Tr,N (s) =
2

N
− 1, (5.20)

where κT and κR are the DC gains of transfer functions Tt,N and Tr,N ,

respectively.
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5.4. Properties of the waves

Proof. If there is at least one integrator in the open-loop system of the
agent, M(s), then

lim
s→0

TN = lim
s→0

M(s)

1 +NM(s)
=

1

N
(5.21)

and

lim
s→0

G = lim
s→0

1

2
α(s)− 1

2

√
α2(s)− 4 = 1, (5.22)

since lims→0 α(s) = lims→0 1/M(s) + 2 = 2. Then

κT = lim
s→0

Tt,N = lim
s→0

1

G2
lim
s→0

TN (1−G2)

G−1 −NTN
= 1 · 0

0
. (5.23)

Applying l'Hopital's rule gives

lim
s→0

Tlim = lim
s→0

T ′N (1−G2) + TN (−2GG′)
−G−2G′ −NT ′N

= lim
s→0

T ′N (1−G2)

G′
+ TN (−2G)

−G−2 −
NT ′N
G′

, (5.24)

where ′ denotes the derivative with respect to the Laplace variable s.

We denoteM(s) = n(s)/d(s), where n(s) and d(s) are the polynomials in
the numerator and denominator of M(s), respectively. Then,

T ′N (s) =

(
n(s)

d(s) +Nn(s)

)′
=
n′(s)d(s)− n(s)d′(s)

(d(s) +Nn(s))2
. (5.25)

and

G′ =
1

2
α′ − αα′

2
√
α2 − 4

, (5.26)
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Chapter 5. General graph topology and the waves

where

α′ =
d′(s)n(s)− d(s)n′(s)

n2(s)
. (5.27)

Now, we need to specify the number of integrators in M(s).

One integrator in M(s)

One integrator in M(s) causes that lims→0 d
′(s) 6= 0 and lims→0 d(s) = 0,

hence, lims→0 T
′
N 6= 0 and | lims→0 T

′
N | ≤ ∞.

Moreover lims→0 α
′ 6= 0 and consequently lims→0G

′ = −∞. Substituting
for TN , T ′N , G and G′ into (5.24) gives lims→0 Tlim = 2/N . Then

κT = lim
s→0

Tt,N = lim
s→0

1

G2
Tlim = 1 · 2

N
=

2

N
. (5.28)

More than one integrator in the OL

For two and more integrators, lims→0 d
′(s) = 0 and lims→0 T

′
N = 0, but

lims→0 α
′ = 0. Hence, we need to treat separately the limit of α′/

√
α2 − 4

as follows

α′√
α2 − 4

=
d′(s)n(s)− d(s)n′(s)

n(s)
√
d2(s) + 4d(s)n(s)

=

=
sp/2

(
s(p/2)−1d′(s)n(s)− sp/2d(s)n′(s)

)
sp/2n(s)

√
spd2(s) + 4d(s)n(s)

, (5.29)

where p is the number of integrators in M(s) and the overline symbol
denotes the polynomial that is factored by the highest power of s, e.g.
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5.5. The e�ect of the boundary in numerical simulations

d(s) = spd(s) or d′(s) = s(p−1)d′(s). In view of (5.29), the limit of G′ is

lim
s→0

G′(s) =


−∞ if p = 1,

λ ∈ R if p = 2,

0 if p ≥ 3.

(5.30)

Therefore, substituting from (5.30) into (5.24) gives

κT = lim
s→0

Tt,N = lim
s→0

1

G2
Tlim = 1 · 2 lim

s→0
TN =

2

N
. (5.31)

The DC gain of the 're�ected' transfer function is inferred from (5.18) as

κR = κT − 1. (5.32)

5.5 The e�ect of the boundary in numerical sim-

ulations

5.5.1 The travelling waves

The numerical simulations are carried out for P (s) = 1/(s(s + 4)) and
C(s) = (4s + 4)/s, which represents a second order system with a linear
friction controlled by a PI controller. Hence, the complete model of the
agent is M(s) = (4s + 4)/(s2(s + 4)). The topology of the multi-agent
system considered in simulations is shown in Fig. 5.3. We can see that
only the agent indexed P7 has three neighbours. We choose such a graph
topology on the purpose to make the wave transmissions and re�ections
more transparent.

The way how the wave propagates in the system with the topology in
Fig. 5.3 is shown in Fig. 5.4. The individual panels show:

• top-left � The wave is initiated by the leader and propagates to agent
P7.
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Figure 5.3: The topology of the multi-agent system used in numerical
simulations, where the 'L-node' is the externally controlled leader of the
system.

• top-middle � The wave is being transmitted to 'Q' and 'R' parts of the
graph (blue circles) and it is also re�ected back to 'P' part (red crosses).

• top-right � The wave is re�ected from agent R12 and propagates back
to agent P7 (red crosses).

• bottom-left and middle � The wave arriving to agent P7 from 'R' part
is transmitted to 'P' and 'Q' parts of the graph. We can see it by
the increase of W a

i+1,i (red crosses) for agents P1 - P7 and W a
i−1,i (blue

circles).
• bottom-right � The wave travelling from P7 to P1 is re�ected from the

leader with the negative sign and travels back to P7. We can see it by
the decrease of W a

i−1,i for P1 - P7 (blue circles).

Independent numerical validation of Theorem 11 is shown in the top panel
of Fig. 5.5. We can see excellent agreement between the state-space
and the wave approaches. The bottom panel shows individual waves
traveling through agent P7, where W1 = W a

P6,P7, W2 = Tr,3W
a
P6,P7,

W3 = Tt,3W
a
Q1,P7 and W4 = Tt,3W

a
R1,P7. In other words, W2 is the wave

that travels from 'P' part of the graph and re�ects from agent P7, and
W3 and W4 are waves that travel from 'Q' and 'R' parts of the graph,
respectively, and transmit through agent P7. Therefore,

W d
P7,P6 =W2 +W3 +W4 (5.33)
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Figure 5.4: The numerical simulation of the wave propagating in the graph
in Fig. 5.3. At the beginning, t = 0 s, all agents are at position 0 except of
the leader, which changes its position from 0 to 1. At intermediate times,
the wave travels to agent P7, where it is partially transmitted to the 'Q'
and 'R' parts of the graph and partially re�ected back to the leader. The
blue circles and red crosses representW a

i−1,i andW
a
i+1,i components of the

wave on the ith agent, respectively. We can imagine these components as
the left-to-right and right-to-left wave in the graph in Fig. 5.3, or as A
and B components in the notation used in (2.21), respectively.

and

XP7 =W a
P6,P7 +W d

P7,P6

=W a
P6,P7 + Tr,3W

a
P6,P7 + Tt,3W

a
Q1,P7 + Tt,3W

a
R1,P7. (5.34)

5.5.2 The e�ect of multiple neighbours

The local e�ect of the agent with more than two neighbours is demon-
strated for the topology shown in Fig. 5.6. The response of the system,
when the leader changes its position from 0 to 1, is given in Fig. 5.7. We
can see that the more neighbours an agent has, the smaller the amplitude
of the wave passing through the agent is. The �gure also numerically ver-
i�es Lemma 11. Although the DC gain determines the steady state of the
system, we can use it to approximate its output, in this case the position,
even before the multi-agent system reaches its steady state. The trans-
mitted wave is almost settled for time between 35 and 45 seconds and the
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Figure 5.5: The top panel shows the comparison of the positions of agent
P7 in Fig. 5.4 simulated by the state-space approach using (5.4) (solid
line) and by wave approach using (5.8) and (5.9) (plus signs). The bot-
tom panel shows individual contributions of three waves arriving from the
neighbouring agents of agent P7.

re�ected wave returns back to agent P2 after about 45 seconds. Therefore
the position of agent P2 between 35 and 45 seconds is approximated by
(5.19).

5.6 Design of an absorber for the agent

The description of the boundary allows us to design a controller that
prevents re�ection of the wave. The design is similar as for the soft and
hard boundary in Section 3.3. We will show how to absorb the wave
arriving to an agent from one direction. The design of the absorber for
the other directions is analogous. We will demonstrate the design for the
system shown in Fig. 5.1 by preventing the re�ection of the wave travelling
from the 0th agent.

First, we need to determine the response of the agent to an additional
input, analogously as in Section 3.1.2. The model (5.3) of the 1st agent is
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5.6. Design of an absorber for the agent

Figure 5.6: The star-graph topology of the multi-agent system. The cen-
tral agent, CN, has N neighbours. Each branch of the star graph has 20
agents with 'L-node' being the leader of the system.

modi�ed as

X1(s) =M(s)
∑

k∈{0,2,3}

(Xk(s)−X1(s)) +M(s)V0,1(s), (5.35)

where V0,1(s) is the additional input of the agent as shown in Fig. 5.8.

We are interested in �nding transfer function Ta,3(s) = X1(s)/V0,1(s)
for N → ∞, that is, the transfer function from the additional input to
the position of the agent in a system with an in�nite number of agents.
Hence, we do not consider the boundary conditions in the system, i.e.
we disregard the waves re�ected from the boundaries. Substituting Ta,3,
(2.22) and (2.23) into (5.35) gives

Ta,3(s)V0,1(s) =M(s) (X0(s) +X2(s) +X3(s)− 3Ta,3(s)V0,1(s) + V0,1(s))

=M(s) (3G(s)Ta,3(s)V0,1(s)− 3Ta,3(s)V0,1(s) + V0,1(s)) .

(5.36)

Rearranging yields

Ta,3(s) =
M(s)

1 + 3M(s)− 3M(s)G(s)
. (5.37)

The position of the 1st agent is described by (5.5), (5.8) and (5.9). We
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Figure 5.7: Numerical simulations of multi-agent systems with di�erent
interaction topology. The topology is a star graph shown in Fig 5.6, where
N denotes the number of neighbours of the central agent CN. The vertical
axis shows the position of agent P2.

add the input V0,1(s) to the model and get

X1(s) =(1 + Tr,3(s))W
a
0,1(s) + Tt,3(s)W

a
2,1(s) + Tt,3(s)W

a
3,1(s)

+ Ta,3(s)V0,1(s). (5.38)

The re�ection of the wave travelling from the 0th agent is described
by term Tr,3(s)W

a
0,1(s). To eliminate the re�ection, we set V0,1(s) =

Figure 5.8: The model of 1st agent with the absorbing controller (high-
lighted in blue) that absorbs the wave travelling from the 0th agent, where
TCa(s) = G(s)/(1 +G(s)) from (5.45).
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5.6. Design of an absorber for the agent

−Fa(s)W a
0,1(s) and get

Tr,3(s)W
a
0,1(s) = Ta,3(s)Fa(s)W

a
0,1(s), (5.39)

where Fa(s) is the transfer function of the controller that prevents the
re�ection of the wave. Rearranging (5.39) gives

Fa(s) =
−Tr,3(s)
Ta,3(s)

= 1−G(s). (5.40)

The wave travelling from the 0th agent, W a
0,1(s), is given as in (3.64), that

is

W a
0,1(s) =

G(s)

1−G2(s)
X0(s)−

G2(s)

1−G2(s)
X1(s). (5.41)

The absorbing control law is then given as

Ca(s) =M(s)V0,1(s) =M(s)Fa(s)W
a
0,1(s)

=M(s)
G(s)

1 +G(s)
(X0(s)−G(s)X1(s)). (5.42)

Substituting the control law from (5.42) into (5.38) yields

X1(s) =W a
0,1(s) + Tt,3(s)W

a
2,1(s) + Tt,3(s)W

a
3,1(s). (5.43)

We can see that the wave does not re�ect back to the 0th agent since
Tr,3(s)W

a
0,1(s) term is not present in the equation. Similarly, we can design

absorbers for the waves travelling from other agents.

The results is summarized in the following theorem.

Theorem 12. Let the agent indexed as b has Nb > 2 neighbours. The

control law that prevents the re�ection of the wave travelling from the
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agent indexed as m, where m ⊂ Nb, is given by

Xb(s) =M(s)
∑
k∈Nb

(Xk(s)−Xb(s)) + Ca(s), (5.44)

where

Ca(s) =M(s)
G(s)

1 +G(s)
(Xm(s)−G(s)Xb(s)). (5.45)

The performance of the individual control strategies of the system shown
in Fig. 5.3 is compared in Fig. 5.9. We can see that the system without
the absorber (top-left panel) has a very long transient. The transient can
be shortened if we implement the absorber (2.53) to some of the system
boundaries (bottom-left panel). The transient can further be shortened by
implementing the absorber (2.53) to all agents with only one neighbour
(top-right panel). However, we can see that the steady state value is
changed from 1 to 2/3 due to the boundary at agent P7. This e�ect is
compensated by the implementation of the absorber (5.44) to agent P7

(bottom-right panel), which prevents the re�ection of the wave.

5.7 Extension for the non-identical agents

The travelling-wave approach can further be generalized for the case of
non-identical agents in the multi-agent system. In such a case, the input
to the agent changes from (5.2) to

Un(s) =
∑
i∈Nb

Ci,n(s)(Xi(s)−Xn(s)), (5.46)

where Ci,n is the transfer function of the controller of the nth agent to-
wards the ith agent. Therefore, (5.3) is modi�ed as

Xn(s) =
∑
i∈Nb

Mi,n(s)(Xi(s)−Xn(s)), (5.47)
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Figure 5.9: The performance comparison of individual control strategies
for a multi-agent system shown in Fig. 5.3. The step response of four indi-
vidual control strategies are compared. The top-left: the system with no
absorber; top-right: the system with the absorber implemented to agents
P1, Q22 and R12; bottom-left: the system with the absorber implemented
to agents P1 and Q22; bottom-right: the system with the absorber imple-
mented to agents P1, Q22, R12 and P7.

where Mi,n(s) = P (s)Ci,n, or, alternatively,

Xn(s) = Tn(s)
∑
i∈Nb

Mi,n(s)Xi(s), (5.48)

where Tn(s) =
(
1 +

∑
i∈Nb

Mi,n(s)
)−1

. The wave transfer function de-
scribing the wave propagation is de�ned by

Gi,n(s) = 1 +
1

2Mi,n(s)
− 1

2

√
1

M2
i,n(s)

+
4

Mi,n(s)
. (5.49)

Similarly, as for the path-graph topology in Chapter 3, we need to distin-
guish between two cases: i) Mi,n(s) 6=Mj,n(s) for i, j ∈ Nb, i 6= j, and ii)
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(a) Hard boundary on the 1st agent.
(b) Two soft boundaries between
agents 0 and 1, and, 1 and 2.

Figure 5.10: Boundaries in a general graph

Mk,n(s) 6= Mn,k(s). We can imagine that i) as a generalization of a hard
boundary for a general graph, while ii) is the soft boundary described by
the same equations as in Section 3.2.1. The two boundaries are shown in
Fig. 5.10.

Theorem 13. The transfer function, Tt(s), describing the wave trans-

mitting through the agent with more than two neighbours, and the transfer

function, Tr(s), describing the wave re�ecting from the agent with more

than two neighbours, are

Tt(s) =
W d
n,k(s)

W a
j,n(s)

=
Tn(s)Mj,n(s)

(
G−1j,n(s)−Gj,n(s)

)
1− Tn(s)

∑
i∈Nb

Mi,n(s)Gi,n(s)
, j ∈ Nb \ k

(5.50)

Tr(s) =
W d
n,k(s)

W a
k,n(s)

=
Tn(s)Mk,n(s)G

−1
k,n(s)

1− Tn(s)
∑

i∈Nb
Mi,n(s)Gi,n(s)

+
Tn(s)

∑
j∈Nb\kMj,n(s)Gj,n(s)− 1

1− Tn(s)
∑

i∈Nb
Mi,n(s)Gi,n(s)

, (5.51)

where k is the index of the agent where the wave transmits and Nb is a

set of neighbouring agents to the nth agent.
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Proof. Since the derivation is entirely carried out in the Laplace domain,
we omit the argument `s' from notations.

Similarly to (5.5), we express the output of the nth agent as

Xn =W a
k,n +W d

n,k =W a
j,n +W d

n,j , j ∈ Nb \ k. (5.52)

Hence,

W d
n,j =W a

k,n +W d
n,k −W a

j,n, (5.53)

We assume there is no soft boundary between the agents, hence Gi,n =

Gn,i, Mi,n =Mn,i and

W a
n,i = Gi,nW

d
n,i, i ∈ Nb (5.54)

W d
i,n = G−1i,nW

a
i,n. i ∈ Nb (5.55)

Substituting (5.54) and (5.55) into (5.53) gives

W a
n,j = Gj,nW

a
k,n +Gj,nW

d
n,k −Gj,nW a

j,n. (5.56)

Next, we substitute (5.52) into (5.48) and separate the part of the waves
with index k.

W a
k,n +W d

n,k =TnMk,n

(
W a
n,k +W d

k,n

)
+ Tn

∑
j∈Nb\k

Mj,n

(
W a
n,j +W d

j,n

)
. (5.57)

Substituting from (5.54) and (5.55) for W a
n,k and W d

k,n and rearranging
the result yields

(1− TnMk,nG
−1
k,n)W

a
k,n + (1− TnMk,nGk,n)W

d
n,k =

Tn
∑

j∈Nb\k

Mj,n

(
W a
n,j +W d

j,n

)
. (5.58)
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Now, we substitute for W a
n,j from (5.56) and get

(1− TnMk,nG
−1
k,n)W

a
k,n + (1− TnMk,nGk,n)W

d
n,k =

Tn
∑

j∈Nb\k

Mj,n

(
Gj,nW

a
k,n +Gj,nW

d
n,k −Gj,nW a

j,n +W d
j,n

)
. (5.59)

Substituting for W d
j,n from (5.55) and rearranging the result gives1− TnMk,nG
−1
k,n − Tn

∑
j∈Nb\k

Mj,nGj,n

W a
k,n

+

1− TnMk,nGk,n − Tn
∑

j∈Nb\k

Mj,nGj,n

W d
n,k =

Tn
∑

j∈Nb\k

Mj,n

(
−Gj,n +G−1j,n

)
W a
j,n. (5.60)

Finally, we substitute

− TnMk,nGk,n − Tn
∑

j∈Nb\k

Mj,nGj,n = −Tn
∑
i∈Nb

Mi,nGi,n (5.61)

into (5.60) and obtain

W d
n,k =

TnMk,nG
−1
k,n + Tn

∑
j∈Nb\kMj,nGj,n − 1

1− Tn
∑

i∈Nb
Mi,nGi,n

W a
k,n

+
∑

j∈Nb\k

TnMj,n

(
G−1j,n −Gj,n

)
1− Tn

∑
i∈Nb

Mi,nGi,n
W a
j,n. (5.62)

The interpretation of Theorem 13 is following. If there is a wave travelling
to the agent with more than two neighbours, then the wave is partially
re�ected from the boundary (described by Tr(s)) and partially transmitted
through the boundary (described by Tt(s)), see Fig. 5.11. Moreover, Tt(s)
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Figure 5.11: The transfer functions describing the wave re�ection and
transmission as stated by Theorem 13.

is independent of index k, which is the index of the agent where the wave
is investigated. Tt(s) changes with a change of the jth index, which means
by a change of the direction where the wave travels from. Therefore, we
can state the following Corollary.

Corollary 6. The wave transmits through the hard boundary equivalently

in all directions.

However, it should be emphasized that the wave may propagate di�erently
as it departs from the hard boundary after the transmission.

5.8 Conclusions

This chapter generalizes the travelling-wave approach to a multi-agent
system with a general graph topology. It is shown that there are bound-
aries even in a system with identical agents. The boundaries are created
at the agents with more than two neighbours. The undesired e�ect of the
boundary can be suppressed by implementing of a wave-absorbing con-
troller. By the numerical simulations we show that the wave-absorbing
controller may signi�cantly shorten the settling time of the system.
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5.9 Appendix to the chapter

A boundary on the agent with multiple neighbours makes the analysis of
a large multi-agent system cumbersome. The analysis may be simpli�ed
by introducing a similar "trick" as in Chapter 4. That is, we derive
a Wave transfer function that describes waves in a multi-agent system,
where each agent, except of those on the boundary, has three neighbours
as shows Fig. 5.12.

Figure 5.12: Topology of a "three-neighbours" multi-agent system. The
blue circle is the leader that represents the input to the system.

The 1st agent in the system is described by

X1(s) =M(s)(X0(s) +X2(s) +X3(s)− 3X1(s)). (5.63)

By the recursive process, identical to that described in Section 2.2.1, we
get

X1(s)

X0(s)
=

1

1 + 3M(s)

M(s)
− 2

1 + 3M(s)

M(s)
− 2

1 + 3M(s)

M(s)
− . . .

. (5.64)
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Applying the continued-fraction expansion from (2.8), we obtain

X1(s)

X0(s)
= G3N(s) =

1 + 3M(s)

4M(s)
− 1

2

√(
1 + 3M(s)

2M(s)

)2

− 2, (5.65)

which is the Wave transfer function for a multi-agent system where each
agent has three neighbours. This allows us to more easily describe the way
how the wave propagates in such a system. It also allows us to approx-
imate the outputs of the agents, similarly as described in Section 3.4.2.
For instance, if we change the position of the leader by Xref(s), then

X1(s) ≈ G3N(s)X0(s), (5.66)

X2,3(s) ≈ G2
3N(s)X0(s), (5.67)

X4,5,6,7(s) ≈ G3
3N(s)X0(s), (5.68)

etc.

Similarly as for the three-neighbours system, we can derive a wave transfer
function that describes the waves in a system, where the agents have
four, �ve, etc. neighbours. This is summarized in Table 5.1. Their step
responses are shown in Fig. 5.13.

The quadratic equation used for the Newton's approximation is, in this
case, given as

fN (GNN(s)) = (N − 1)G2
NN(s)−

1 +NM(s)

M(s)
GNN(s) + 1. (5.69)

141



Table 5.1: The overview of wave transfer functions for multi-agent sys-
tems, where each agent has N neighbours. The DC gain is carried out
with the assumption that M(s) has at least one integrator. We note that
we omit the argument `s' from the "N" wave transfer functions.

Topology "N" wave transfer function DC gain

G2N =
1 + 2M

2M
−

√(
1 + 2M

2M

)2

− 1 1
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2

√(
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2M

)2
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1
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6M
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√(
1 + 4M

2M

)2
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Figure 5.13: Comparison of step responses of the "N" wave transfer func-
tions from Table 5.1 with M(s) = 1/s2.

142



6 Conclusions

6.1 Contributions of the Wave transfer function

approach

Wave transfer function

The wave approach is a complementary tool to the traditional state-space
approach for the description and analysis of a multi-agent system. The
wave approach gives insight into the local and temporal ampli�cation
or attenuation of the input command on the individual agents. This is
particularly useful for a large-scale multi-agent system.

Let us illustrate it on the example of a multi-agent system with a path-
graph topology. Let, for instance, the position of one agent of a system
be externally changed due to an external reference command or a distur-
bance. Then this reference command also a�ects outputs of the neigh-
bouring agents. We can think of this command as a 'wave' propagating
in the system.The closed-form formula for the transfer function among
the outputs of the agents can be found by the traditional approach, for
instance, by the state-space description of the multi-agent system. As an
example, we can �nd the transfer function T1,2(s) = X2(s)/X1(s) from the
output of the �rst agent to the output of the second agent. However, to
�nd this transfer function, the whole multi-agent system must be taken
into consideration. Transfer function T1,2(s) then describes the overall
behaviour of the multi-agent system since all the interactions among the
agents and, in addition, the e�ect of boundary conditions are captured in
this transfer function. This overall description is well suited for determin-
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ing the asymptotic stability of a system, but it does not reveal the local
behaviour of agents.

On the other hand, the transfer function A2(s)/A1(s), or B1(s)/B2(s),
describes the interaction among the �rst and second agents from the local
perspective, which means that it does not take into consideration nei-
ther the interactions among other agents nor the e�ect of the boundary
conditions. The amplitude of the wave that is re�ected or transmitted
through the boundary can be approximated by the DC gain of the trans-
fer functions. The approximation allows us to analyze the output of an
agent before a re�ected wave returns back to the agent. In other words,
the wave approach provides a closed-loop formula that approximates the
output of an agent. The important aspect is that the approximation is
analytic allowing the mathematical analysis of its properties. Based on
that, we can infer properties of the multi-agent system. The approxima-
tion is not a�ected by the number of agents or the interaction topology
of other agents in the system. In fact, it gives exact results only until the
re�ected wave returns back to the agent. However, the wave approach
also allows us to consider the e�ect of the re�ected wave and extend the
validity of the approximation.

An important feature of the Wave transfer function approach is that it
describes the dynamics of the agent by two transfer functions (Mf(s) and
Mr(s)). This allows us to analyze even an asymmetric bidirectional con-
trol law with an arbitrary type of asymmetry and make conclusions (e.g.
Theorem 10), which, the author believes, would be very challenging to
make with the traditional approach.

It should be noted that the local transfer functions, i.e. the Wave or
Boundary transfer functions, can also be used to provide the overall trans-
fer function X2(s)/X1(s) by taking [A2(s) + B2(s)]/[A1(s) + B1(s)]. It
can be shown on the examples that this transfer function has no square
root, so it is rational and is equal to T1,2(s). However, this calculation
again requires to consider interactions among all the other agents, which
is rather complicated with the wave approach.
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Wave-absorbing controller

The advantage of the wave controller is that it allows the modi�cation
of the re�ection conditions for the travelling waves on a boundary. Im-
portantly, this modi�cation does not require to change controllers of the
other agents in the system and, under certain conditions, it can make the
system string stable. Another advantage is that the output of the con-
troller is only slightly modi�ed. Therefore, the proposed control law is
feasible.

The disadvantage is that the agent with the wave controller is required
to know its own output, for instance, by the odometry, and the output
of its immediate neighbour, which can be obtained either by the relative
measurement or communication with the neighbour. Another di�culty
is that the agent requires to know its own and neighbour's dynamical
models. If these conditions are not satis�ed, for instance, the dynamical
model of neighbours is known only approximately, or the information
about the neighbour's output is delayed in time, then the wave is not
fully absorbed and it partially re�ects back to the system. However, the
numerical simulations show that the response of the system may still be
improved since these schemes are relatively robust to inaccuracies. This
is in agreement with experience from practical implementations of the
wave absorbers, see for instance [Saigo et al. (2004)], [Kreuzer and Steidl
(2011)] or [O'Connor et al. (2008)].

We consider the wave controllers as an illustration what can be achieved
by the application of the wave approach. We note that, although some
simpler controllers may improve the transient of a system, only the wave
absorber fully absorbs the travelling wave.

Relation to the basic wave physics

The important feature of the wave approach is that it is in agreement
with �ndings of the basic wave physics. Most of the results of this thesis
can immediately be put into correspondence with known wave physics
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phenomenons. For instance, i) the decomposition of the agent output
into two travelling waves (Theorem 1, p. 18) vs. travelling waves and
their superposition (Chapter 7 of [French (2003)]), ii) the re�ections at
the forced and free-end boundaries (Section 2.3, p. 23) vs. re�ections at
a �xed and free ends (Fig. 8-1, p. 255 of [French (2003)]), iii) the soft and
hard boundaries (Section 3.2.1, p. 66) vs. wave pulses encountering the
boundary between two media (Fig. 8-4, p. 260 of [French (2003)]), etc.

The fact that the links between the agents are created by the controllers
allows us to generalize the Wave transfer function approach even to the
asymmetric case (Chapter 4). As a result of this generalization, the wave
does not propagate equally in the forward and backward directions. This
makes the physical interpretation of the asymmetric link unclear, since,
to the best of author's knowledge, a device such as an asymmetric spring
violates the Third Newton's Law and cannot exist in nature.

It is also important to emphasize that the generalization of the wave
approach to a general-graph topology (Chapter 5) cannot be interpreted
in terms of waves in two or three dimensional space (part of Chapter 7 of
[French (2003)]).

6.2 Contributions of the author

The goal of the thesis was to analyze the wave-based control and to gen-
eralize this approach to the �eld of the distributed control. This required
to solve several challenging problems that were new in the �eld.

The �rst problem was to generalize the Wave transfer function for an agent
with arbitrary dynamics and to use it for the design of a wave-absorbing
controller that improves the performance of the system, speci�cally, the
transient and also the string stability of the system. The generalization
also required to develop a method that approximates the Wave transfer
function. The results are presented in [Martinec et al. (2014a)] and
[Martinec et al. (2014b)] (XIII1 and I).

1The roman letters tag the publications of the author given on p. 169.
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The second problem was to show how di�erent dynamics of some agents
in the system a�ect the wave travelling in the system. This was solved
by introducing the soft and hard boundary concept, which led to the
derivation of the local control law that prevents the wave to be re�ected
from these boundaries. The most challenging problem here was to show
that this control law makes the system asymptotically and string stable.
The results are presented in [Martinec et al. (2014d)] and [Martinec et al.
(2014c)] (XIV and II).

The drawback of the approach mentioned in the previous paragraph is
that we assume that the wave is travelling equivalently in both directions.
This assumption is satisfactory if most of the agents use a symmetric
bidirectional control law. However, if most of the agents use an asymmet-
ric control law, then there are many boundaries in the system, which is
cumbersome to handle. This drawback was resolved by generalizing the
travelling wave approach for the wave travelling unequally in both direc-
tions. An unequal propagation inherently includes the boundaries on the
agents caused by the asymmetric control law, which makes the descrip-
tion of the multi-agent system by this generalized approach signi�cantly
easier. The most important result of this problem is that the symmet-
ric positional coupling is a necessary condition for achieving the string
stability, as presented in [Martinec et al. (2015a)] (V).

The last problem that was solved in the thesis is the generalization of the
travelling wave approach to a multi-agent system with a general-graph
topology, i.e. to a system where an agent may have more than two neigh-
bours. The agent with multiple neighbours represents a boundary for the
travelling wave even if the agent has the identical dynamics as its neigh-
bours. This case is presented in [Martinec et al. (2015b)] (XVIII). The
thesis further elaborates the approach and presents the control law that
prevents the re�ection of waves. Based on the numerical simulations, it is
shown that the control law shortens the transient of the system. However,
due to the lack of time and space limitations, it has not been analytically
derived under which conditions the system with the control law is asymp-
totically stable. It is likely that the proof would be similar to the proof
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of Theorem 7. It has also been shown how to generalize the concept for a
non-identical agent with multiple neighbours.

6.3 Open problems

The travelling-wave approach is a new approach in the �eld of the dis-
tributed control. To the best of author's knowledge, the approach has not
been rigorously analyzed from the control-theory point-of-view by other
authors. Despite the new results presented in the thesis, there are other
open problems ranging from general questions regarding the asymptotic
stability of the Wave transfer function over the analysis of the multi-agent
system properties to potential applications of the wave absorbers.

Here is a list of some of open problems:

Mathematical open problems

• Derive necessary conditions for the asymptotic stability of the Wave
transfer function. The conditions given by Lemma 4 are only su�cient.

• Find an exact analytical impulse response of the Wave transfer func-
tions. The state-of-the-art software is not capable to perform the in-
verse Laplace transform of an irrational transfer function (discussion
on p. 21).

• Based on the author's experience and numerical simulations, the New-
ton's method (Section 2.7.2) is numerically a more reliable method for
an approximation of the Wave transfer functions than other methods.
However, it remains open in which sense (norm) the approximation by
Newton's method converges to the Wave transfer function. It is also
not solved yet how to choose the initial guess of Newton's iterations
and why the relative order of the initial guess determines the root to
which the method converges.
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Open problems related to the control theory

• It is well described how the location of poles and zeros of a ratio-
nal transfer function a�ect its time response. Regarding the irrational
transfer function, it is still a challenge for investigations ([Curtain and
Morris (2009)]). Similarly, it would be also worth to analytically investi-
gate how the model of an agent a�ects the impulse/step/Bode response
of the Wave transfer function (Fig. 2.20, p. 61).

• The numerical simulations (Fig. 1.1, p. 8) of the symmetric bidirectional
control law show that the outputs of the agents oscillate between zero
and two if they respond to the unit step in xref. However, the proof
of that is yet to be shown. The wave approach may be a suitable tool
for the proof since it shows that the H∞ norm of the Wave transfer
function is bounded by one (Lemma 3, p. 34).

• Theorem 10 (p. 110) gives the condition for the local-string stability of
the system. However, the numerical simulations show that the multi-
agent system is locally-string unstable but asymptotically stable even
in the cases when the Asymmetric Wave transfer function tends to
be asymptotically unstable. Therefore, it seems that the boundary
conditions, that is the �rst and the last agents, asymptotically stabilize
a multi-agent system. The way how and why it is possible is to be
solved.

• Section 5.6 derives the wave-absorbing controller for a multi-agent sys-
tem with a general-graph topology. The numerical simulations show
that the controller may shorten the settling time. However, if the
graph has a limit cycle, then the controller may even destabilize the
whole system, which raises the question. What is the optimal number
and locations of the absorbers?

• It is shown in Section 5.6 that the Wave transfer function description
of a system with an asymmetric bidirectional control is complicated
since there are two boundaries between the neighbouring agents. This
problem is solved by introducing the Asymmetric wave transfer func-
tion. The same problem occurs in a system with the general-graph
topology since the wave also re�ects at each agent with more than two
neighbours. For some topologies, the problem can be solved by the ap-
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Figure 6.1: Examples of topologies

proach introduced in Section 5.9. It is not clear how to apply the same
trick for more general topologies, for instance, those shown in Fig. 6.1.
The largest di�culty seems to be due the cycles that are present in the
graph.

• It is not discussed in this thesis that the control e�ort of the wave-
absorbing controller is closely related to the zero-vibration input shapers.
The preliminary results, mostly based on the numerical simulations, are
given in [Martinec et al. (2015c)] (XVII). However, a thorough analyt-
ical comparison is yet to be carried out.

• Examine the possibility to generalize the Wave transfer function for a
nonlinear system.

General open problems

• Carry on in the investigation of properties of the topologies given in
Table 5.1 (p. 142). An asymmetric coupling between the agents may
possibly be also treated by this approach. It would be worth to in-
vestigate it since systems with a general-graph topology are not well
explored and the simpli�cation of their description may reveal inter-
esting properties similar to `necessity of symmetric positional coupling'
treated by Theorem 10 (p. 110).

• The physical interpretation of the `necessity of symmetric positional
coupling' (Theorem 10, p. 110) is still unclear.

• Examine possible practical applications of the wave-absorbing controllers
(Theorems 2, 5 and 6, pages 31, 78 and 80).

• The authors of [Cantos and Veerman (2014)] analyze the transient of
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a large array of linear oscillators. They argue that a wave behaviour is
apparent in the response of the system and give an analytic estimate of
the so-called signal velocity, which represents the speed of the wave. It
may be possible that a similar analytic measure of the wave speed could
be obtained by the travelling-wave approach presented in the thesis.
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7 Appendix

7.1 Wavebox

The current state-of-the-art software (see the discussion in Section 2.2.3,
p. 21) is not capable to carry out the inverse Laplace transform of an
irrational transfer function such as the wave transfer function. To be able
to run numerical simulations, the author implemented a set of functions
with examples in Matlab. Therefore, the reader can run the simulations
without the necessity of implementing the approximation methods. The
set of functions, called WaveBox, is available for download at Matlab
Central [Martinec (2015)].

The current version of the WaveBox (ver 1.1) contains:

Examples

Example1 � This example demonstrates the absorption of the wave in a
multi-agent system with a path-graph topology where all agents
are identical (see Section 2.5, p. 38). The wave is absorbed on the
leader, which has no dynamics.

Example2 � The same as in Example1 but the leader has its own internal
dynamics.

Example3 � This example demonstrates the absorption of the wave in a
multi-agent system with a path-graph topology where the agents
are not identical. One soft boundary is assumed to be in the system
(see Section 3.4, p. 83).

Example4 � The same as in Example3 but with the hard boundary.
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Example5 � This example is a combination of Example3 and Example4.
It shows behaviour of the system with a complex boundary (com-
bination of the soft and hard boundaries).

Example6 � This example demonstrates the absorption of the wave in a
multi-agent system with a general topology where the agents are
identical but can have multiple neighbours (see Section 5.5, p. 127).

Methods

approximate_AWTF� Approximates the Asymmetric wave transfer func-
tions by (4.11)-(4.12) (p. 98).

approximate_BGTF � Approximates the transfer functions describing the
transmission and re�ection of the waves, Tt,N (s) and Tr,N (s) (The-
orem 11, p. 121), on an agent with multiple neighbours.

approximate_BTF � Approximates the Boundary transfer functions for
prescribed front and rear agent transfer functions (see (3.3), p. 65).

approximate_WTF � Approximates the Wave transfer function for the
given open-loop model of the agent (Sections 2.5 and 2.7.2, p. 38
and p. 49).

decompose_waves � Decomposes the outputs of two neighbouring agents
into two travelling waves A and B (Theorem 1, p. 18).

init_absorber_BGTF � Initializes the wave absorber for a boundary on
an agent with multiple neighbours (Theorem 12, p. 133).

init_absorber_BTF � Initializes the wave absorber for the soft and hard
boundaries (Theorems 5 and 6, p. 78 and p. 80).

init_absorber_leader � Initializes the wave absorber for the leader or the
rear-end agent (Theorem 2, p. 31).

It should be noted that, in some cases, the approximation methods may
run into a numerical instability. This exhibits as a sudden instability after
seemingly settled response. The problem is usually resolved by a change
of the number of iterations or the time-length of the approximation.

154



7.2. Overview of the results from distributed control -

Table 7.1

7.2 Overview of the results from distributed con-

trol - Table 7.1

Comments to Table 7.1

PF1 - The eigenvalues of the system do not converge to 0 as for (SB1).

PF2, SB2 and PA2 - [Martinec et al. (2014b)] analytically shows that the
transient of identical systems connected in a series (PF2) grows better
than linearly with the number of agents. The same paper numerically
shows that the transient of the symmetric bidirectional control (SB2)
scales quadratically. (SB2) is also supported by the results of [Barooah
et al. (2009)] that the least stable eigenvalue, i.e. the smallest eigenvalue
of the system approaches 0 as O(1/N2). In contrast, the eigenvalues in
PF2 are multiplied and do not converge to 0. The least stable eigenvalue
in PA2 is also bounded away from zero and converges as O(1/N), see [Hao
and Barooah (2012a)], therefore, its transient is faster than of the SB2.

PF3, PF4 and PF5 - The closed loop transfer function from the input to
the output of the nth agent is Tn(s) = (M(s)/(1 +M(s)))n, where M(s)

has one, two or three integrators. A proper choose of the numerator of
M(s) can asymptotically stabilize Tn(s).

PF6 and PF8 - The closed loop transfer function from the input to the
output of the nth agent is Tn(s) = (M(s)/(1 +M(s)))n, where M(s) has
one integrator. If ||T (s)||∞ ≤ 1, then the system is string (PF6) and �ock
(PF8) stable.

PF7, PF9, PF10 proved by [Seiler et al. (2004)].

SB1, SB3, SB6 and SB8 - [Barooah and Hespanha (2005)] proved that, if
the open-loop model has one integrator and the deviation of the leader's
trajectory from a constant velocity is bounded in L2 norm, then the spac-
ing errors between the vehicles is bounded, irrespective of the number of
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Table 7.1

vehicles. Hence, we call the system string and �ock stable.

SB4 - It was shown in [Barooah et al. (2009)] that the system with two
integrators can be made stable and that the least stable eigenvalue of the
system approaches 0 as O(1/N2).

SB5 can not be made asymptotically stable as showed in [Barooah and
Hespanha (2005)].

SB10, PA5, Ls10 and La10 - [Herman et al. (2015b)] showed that a
circular system where the agents has three integrators is asymptotically
unstable, which was also showed in [Cantos and Veerman (2014)] for one
particular system. However, a path-graph can be made asymptotically
stable, for instance, by the predecessor following algorithm. [Herman
et al. (2015b)] further numerically con�rms the conjecture of [Cantos and
Veerman (2014)] that, if the circular system is asymptotically unstable,
then the path-graph system is either asymptotically or �ock unstable.
The reasoning is that a disturbance inside the circular system grows as it
propagates from its origin. If the disturbance acts inside the path-graph
system, then the boundary conditions (the �rst and the last agents) may
asymptotically stabilize the system. Therefore, a su�ciently high value
of N leads to asymptotically unstable path-graph system, however, if N
is small then the system can be made asymptotically stable.

SB7 and SB9 - It was shown in [Veerman et al. (2007)] that the peak in
the Bode characteristics grows approximately linearly with the number of
agents.

PA1 and PA3 - The system has eigenvalues on the negative real axis, see
for instance [Herman et al. (2014b)].

PA4 - It was shown in [Hao and Barooah (2012a)] that the least sta-
ble eigenvalue of the system is bounded away from 0 and the eigenvalue
approaches it as O(1/N).

PA6 and PA8 - It was shown in [Herman et al. (2014b)] that at most one
integrator in the open-loop model is a necessary condition for the string
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stability. Although the condition is not su�cient, the appropriate choice
of the controller makes the system string stable.

PA7, PA9 and PA10 follows from the product form shown in [Herman et al.
(2014a)] and [Herman et al. (2015a)] that two integrators in the agent's
model cause the harmonic instability. PA7 and PA9 are also independently
veri�ed by [Martinec et al. (2015a)].

Ls7, Ls9, SO7 and SO9 - The system with a path-graph topology can be
made locally-string stable as shown in [Martinec et al. (2015a)]. It seems
that the system is string unstable due to the boundary conditions, that
is, the �rst and the last vehicles, as in the case of (SB7). If that is true,
then it should be �ock stable since the disturbance in the system is not
going to scaled exponentially with the number of vehicles.

La7, La9, AO7 and AO9 - It was shown in [Martinec et al. (2015a)]
that the symmetric positional coupling (cf,0 = cr,0) is a necessary but not
su�cient condition for the string stability. Otherwise, the travelling wave
in the system is exponentially ampli�ed as it propagates in the system.
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