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Abstract

Evolving ontologies by domain experts is difficult and typically cannot be performed without the
assistance of an ontology engineer. This process takes a long time and often recurrent model-
ing errors have to be resolved. This doctoral thesis proposes a technique for creating controlled
ontology evolution scenarios that ensure consistency of possible ontology evolutions and give
guarantees to the domain expert that his/her updates do not cause inconsistency. We introduce
ontology templates that formalize the notion of controlled evolution together with a consistency
checking algorithm. Ontology templates are reusable across multiple scenarios which helps on-
tology engineers to manage whole ontology evolution. In addition, the algorithm for consistency
checking can be used within an auxiliary reasoning service that provides ontology engineers with
new options to check certain expectations of the evolving ontology. The specific contributions of
the thesis are: (1) framework and methodology for definition of ontology evolution scenarios, (2)
algorithms to compute ontological implications of the evolution scenarios, (3) proposal of new
non-standard reasoning service that implements the algorithms to support ontology engineering
process, (4) prototypical implementation of the service and its experimental evaluation, and (5)
validation of the approach on real cases.
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1 Introduction

With the growing amount of data, formal ontologies are becoming more and more popular for
capturing the shared meaning of heterogeneous, incomplete data as well as subsequent data inte-
gration. These features distinguish open-world ontologies from closed-world relational databases.
Ontologies provide more expressive constructs to capture data meaning, not only at instance level
(particular cases) but also at schema level (general knowledge). Logic-based formalization of
ontologies is exploited during automated reasoning, in particular for inferring new knowledge,
powerful consistency checking [1], query answering [2], or error explanation [3].

Ontology engineering (and ontology design in particular) is a complex engineering discipline,
requiring a deep knowledge of the particular domain as well as a familiarity with top-level on-
tologies, existing domain ontologies and design methodologies. During ontology design, domain
experts and computer scientists cooperate. As a result of some ontology engineering methodolo-
gies like Methontology [4], a core schema is designed in cooperation with both parties, possibly
with the use of ontology design patterns [5]. However, an ontology is a dynamic body and
evolves in time as new knowledge becomes available. The evolution process is tackled in ex-
isting ontology engineering methodologies at a high level, requiring – among others – ontology
consistency to be maintained.

In order to make ontology evolution efficient, domain experts can be given tools to enrich the
ontology themselves. For example, in the MONDIS project [6, 7] we came across the scenario
where domain experts had to develop taxonomical knowledge. Although they were able to per-
form this task (e.g. they developed the taxonomy of building components and materials), they
were not able to judge the computational impact of the evolution. Due to the unknown nature
of the evolution, ontology consistency has to be checked on the fly which slows the work down.
Even worse, in the case where ontology enrichment results in an inconsistency/unsatisfiability or
any other undesired inference, it has to be debugged and explained by standard techniques [3].
This process is typically hard for domain experts to understand and interpret and requires the
assistance of computer scientists during all ontology evolution scenarios.

To cope with these problems, we introduce the idea of controlled ontology enrichment and
formalize it into the notion of ontology templates – a compact representation of controlled evo-
lution scenarios. Ontology templates define simple ontology evolution scenarios for which the
domain expert can be sure that the knowledge he/she creates does not cause inconsistency. A pos-
sible impact of the ontology templates on the ontology consistency is precomputed in advance,
before the domain expert starts evolving the ontology.

We will explain the motivation as well as formalization of our framework with the real-case
example of the MONDIS project. Within the project, a core ontology [8] for the description

1



1. Introduction

of monuments was created and later enriched with MONDIS-specific taxonomies. The domain
experts were asked to add general knowledge about the developed taxonomies using specific
relations of the core ontology. An example of such a relation is the “hasMaterial” relation,
expressing that a building component (object described by the concept “Component”) is made
of a building material (object described by the concept “Material“). Using the relation it can
be stated at a terminological level which building component type may/may not be associated
with which building material type. For example, it can be said that an object of type pillar may
be made of wood, but may not be made of glass. Within the thesis, we will illustrate, using this
running example how this specific evolution scenario can be formalized by ontology templates
and how it can be used to check its consistency in advance – thus possibly providing human-
readable explanations or fixes of the modeling errors.

1.1 Thesis contributions

This thesis proposes a novel technique in the field of ontology engineering. The technique sug-
gests breaking down parts of an ontology evolution into small evolution scenarios based on in-
teraction with domain experts. Each ontology evolution scenario is defined in terms of atomic
additions and restrictions on their use. Atomic additions are organized by higher order statements
which we call ontology templates. Ontology templates are also used to formulate restrictions on
use of those atomic operations. With such formalization we provide a semi-automatic approach
for creation of correct and complete set of restrictions applicable to the scenario. As a conse-
quence we are able to guide domain expert through the evolution explaining him precomputed
consequences of his actions. Ontology templates play important role not only in explanation of
restrictions to domain experts, but also provide a way to share and reuse higher order statements
accross the scenarios. We argue and show on real cases that it is useful to organize part of the
knowledge using ontology templates. It can help to domain experts as well as ontology engineers
to check their expectations about consequences of an ontology evolution. This technique can be
implemented to existing ontology editors, or scripting tools as will be demonstrated. Moreover,
the output of this formalization can be directly used to guide model-driven Semantic Web appli-
cations. The specific contributions of this thesis are :

◦ framework and methodology for definition of ontology evolution scenarios

◦ algorithms to compute ontological implications of the evolution scenarios

◦ proposal of new non-standard reasoning service that implements the algorithms to support
ontological engineering methods

◦ prototypical implementation of the service and its experimental evaluation

◦ validation of the approach on real cases

2



1.2. Structure of the text

1.2 Structure of the text

Chapter 2 reviews works related to our approach and introduces the necessary background on
formal ontology languages, error explanation and privacy protection languages in order to un-
derstand the rest of the text. Chapter 3 presents the formal model of ontology evolution, ontology
template validation and reasoning services and methodoloty to use ontology templates. Chap-
ter 4 presents the prototypical implementation of the ideas and evaluation of the implementation.
Chapter 5 demonstrates the techniques on two use cases. The thesis is concluded by Chapter 6.
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2 Background and State-of-the-Art

This chapter is divided into two sections. The first section describes the theoretical background
needed to understand the following chapters. The second section describes related work to our
approach.

2.1 Theoretical Background

This section provides an overview of the ontological background needed to understand the fol-
lowing sections as well as technologies that are used in our framework for privacy protection.
P3P is used to specify privacy policies of services while SemPref specifies privacy preferences
of users. The creation of privacy policies and privacy preferences is guided by semantic tech-
nologies OWL and SPARQL-DL. An ontology, within the scope of this thesis, is a specification
of conceptualization [9] – an abstract and simplified view of the world shared between applica-
tions or people. It uses declarative logic-based formalism to describe entities and relationships
between those entities within the domain of interest. Statements about the domain are called
axioms.

2.1.1 ALC DL - Syntax and Semantics

Current ontology standards, like OWL 2 [10], are based on description logics. Description logics
are monotonic and decidable subsets of first-order predicate logic typically aimed at knowledge
representation. Although our framework is not dependent on any particular variant of Descrip-
tion Logics (DL), we will use the ALC language [11], basic description logic capturing the
fundamentals of more expressive formalisms used in the semantic web domain.

An ontology is represented in terms of individuals (representing particulars, i.e. concrete
objects), concepts (representing universals, i.e. set of objects) and roles (representing relations
between objects).

ALC Syntax The vocabulary of ALC consists of three disjoint sets of concept names (NC),
role names (NR), and individual names (NI). Let A be a concept name and R a role name. Any
ALC concept can be constructed inductively by the following syntax rules:

C →A | > | ⊥ | ¬C | ∃R.C | ∀R.C |
C1 uC2| C1 tC2

(2.1)

5



2. Background and State-of-the-Art

An ontology consists of a finite set of axioms – concept inclusion axioms of the form C1 v C2,
class assertions of the form C(a), and role assertion of the form R(a, b).

ALC Semantics The formal semantics of ALC is defined by interpretation I which is a pair
〈∆I, .I〉. A non-empty set ∆I denotes the domain of interpretation. .I is an interpretation function
that maps each concept name A ∈ NC to a subset of ∆I, and each role name R ∈ NR to a subset
of ∆I × ∆I. The interpretation function is extended for concepts in the following way :

>I = ∆I

⊥I = ∅

(¬C)I = ∆I \CI

(C1 uC2)I = (C1)I ∩ (C2)I

(C1 tC2)I = (C1)I ∪ (C2)I

(∃R.>)I = {a ∈ ∆I | ∃b.〈a, b〉 ∈ RI}
(∀R.C)I = {a ∈ ∆I | ∀b.〈a, b〉 ∈ RI → b ∈ CI}

We say that an ontology O is consistent if there is an interpretation I such that for every
axioms α, I entails α. Formally, ∀α ∈ O,I � α such that:

I � (C1 v C2) ∈ O iff (C1)I ⊆ (C2)I

I � C(a) ∈ O iff aI ∈ CI

I � R(b, c) ∈ O iff 〈bI, cI〉 ∈ S I

An interpretation I that satisfies O is called the model of O. An ontology O entails an axiom
α if every model of O satisfies the axiom α. O entails an ontology O‘ if every model of O is also
model of O‘.

In addition to ontology consistency and entailment checking, more complicated reasoning
services that make use of consistency checking are necessary in practical cases. We will need the
error explanation service that can explain ontology inconsistency in terms of a minimal inconsis-
tency preserving set (MIPS)1.

Formally, for an inconsistent ontology O, a MIPS is a set of axioms µ v O which is in-
consistent, and minimal with this property, i.e. ∀α ∈ µ : (µ \ {α}) is consistent. Generally, an
inconsistent ontology can have many “roots of inconsistency” corresponding to many MIPS-es.
Computing all of them is an exponential problem in the number of ontology consistency checks
[13]. Fortunately, computing a single MIPS is polynomial, as shown in [13]. We will use this
technique for computing a single MIPS during evolution schema consistency checking in Section
3.3.

In addition, we will need a technique for solving a well known NP-Complete problem, i.e.
finding a minimal hitting set [14] [15] of some X, where X is a set of subsets of a finite set S . A
minimal hitting set of X is a minimal set S ′ such that S ′ ⊆ S and S ′ contain at least one element

1In the literature, concept unsatisfiability, or general entailment explanations are often considered [12] instead
of an ontology consistency explanation. We will use just the latter notion, as both concept unsatisfiability and
entailments can be reduced to ontology inconsistency problems as shown in [1].
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2.1. Theoretical Background

from each subset in X. In Diagnosis subfield of artificial intelligence, this problem refers to
finding finding minimal diagnoses of conflict set. Moreover, in this thesis we will be computing
minimal diagnosis based on conflict sets represented by MIPS of an ontology.

2.1.2 P3P

P3P is an XML-based language that enables services to describe their privacy practices in a
structured computer-readable form. It comes in two versions: P3P 1.0 [16], which became a
W3C recommendation in April 16, 2002 and P3P 1.1 [17] which has been a working group note
since November 16, 2006. Each P3P policy file may contain one or more policies. Each policy
is specified by a POLICY element and may include the following sub-elements:

◦ ENTITY - identifies the legal entity making a representation of privacy practices

◦ ACCESS - indicates whether the site allows users to access the various kinds of informa-
tion collected about them

◦ DISPUTES-GROUP - describes dispute resolution procedures to be followed when dis-
putes arise about service’s privacy practices

◦ EXTENSION - describes an extension to the syntax

◦ STATEMENT - describes what data practices are applied to what data types

The POLICY element may contain multiple STATEMENT elements. Each statement defines
what data (e.g. user’s name) and data categories (e.g. user’s health data) are being collected
as well as for which purposes (e.g. historical preservation), recipients (e.g. public fora) and
retention (e.g. for the stated purpose) that define the attributes of the collection. Thus, the
STATEMENT element may contain the following sub-elements:

◦ DATA-GROUP - specifies what data will be collected from a user

◦ PURPOSE - describes for what purposes the collected data are used

◦ RECIPIENT - describes with whom the collected data will be shared

◦ RETENTION - describes how long the collected data will be held for

For each of the above sub-elements of the STATEMENT element a predefined set of values and
extension mechanism to define new values is specified. For example, some of the predefined
values (subelements of PURPOSE) of the PURPOSE element are:

◦ current - completion and support of activity for which the data were provided

◦ individual-analysis - doing research and analysis that uses information about the user

◦ telemarketing - contacting visitors for the marketing of services or products via telephone

7



2. Background and State-of-the-Art

◦ contact - contacting visitors for the marketing of services or products

Each of the purpose values can also have an attribute required that accepts the following values:

◦ opt-in - the user has to affirmatively request usage of data for this purpose

◦ opt-out - the data may be collected for this purpose unless the user requests otherwise

◦ always - the data will be used for this purpose (this is the default value).

The DATA-GROUP element contains one or more DATA sub-elements. A DATA element refers
to one or more datatypes (data identifiers). An example of such a datatype that describes the
user’s family name would be #user.name.family. Most of the predefined data types are
grouped into one or more data categories, which provide another way to refer to collected data.
For example, data type #user.name.family or #user.home-info.postal.street (user’s
street address) are both associated with the category physical (user’s physical contact infor-
mation). The "optional" attribute of DATA can be used to state that a particular data element
collection is optional, otherwise (and by default) it is required.

An example of a P3P policy is shown in Figure 2.1. The first statement in the policy expresses
that the datatype #user.home-info (user’s home contact information) is collected for the pur-
poses contact and individual-analysis. The usage of collected data for contact purpose may be
opt-out by user while for the individual-analysis purpose it is required. According to the second
statement, the only data that cannot be opt-out for contact purpose is #user.home-info.online.email
(user’s email address) and #user.name (user’s name). The recipient of all the collected data is
ours (i.e. the data is shared with the service’s entity).

The major problem of P3P is its lack of formal semantics. The solution to this issue pro-
posed by [18] defines two possible semantics compatible with P3P specification: data-centric
and purpose-centric relational semantics. Both semantics are based on the translation of P3P
policies into relational schema. There is an expressiveness vs. simplicity trade off between the
data-centric and the purpose-centric semantics of P3P policies. Data-centric semantics is more
coarse-grained, however it has sufficient expressiveness for the use in our privacy scenario, thus
from this point on we will stick to it.

Data-centric semantics uses a relational schema with five relations (d-purpose, d-recipient,
d-retention, d-collection, d-category). The relational schema of the relations taken from [19] is
shown in Figure 2.1.2. Given a set of P3P statements it is straightforward to translate them to the
corresponding database content: for each data type item in a P3P statement, one needs to pair it
with purpose, recipient and retention and assign it to the corresponding relations. Note that [19]
does not address all P3P elements such as access, entity and disputes-group, but it is very simple
to extend it to handle these attributes as well, as their semantics is rather weak in P3P. For the
sake of simplicity, we will not consider those attributes in the rest of this paper.

Although a P3P policy file has to comply with the P3P XML schema file defined by W3C,
it can contain semantic inconsistencies. Many of the inconsistencies were identified in [20, 21].
Additionally, Li et al. [18] characterized similar types of inconsistencies and created three classes
of integrity constraints that should be fulfilled by every P3P policy:
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<POLICY>
<STATEMENT>
<DATA-GROUP>
<DATA ref="#user.home-info"/>

</DATA-GROUP>
<PURPOSE>
<contact required="opt-out"/>
<individual-analysis required="always"/>

</PURPOSE>
<RECIPIENT>
<ours required="always"/>

</RECIPIENT>
</STATEMENT>
<STATEMENT>
<DATA-GROUP>
<DATA ref="#user.home-info.online.email"/>
<DATA ref="#user.name" />

</DATA-GROUP>
<PURPOSE>
<contact required="always"/>

</PURPOSE>
<RECIPIENT>
<ours required="always"/>

</RECIPIENT>
</STATEMENT>

</POLICY>

Figure 2.1: an example of a P3P policy. The first statement expresses that the datatype
#user.home-info is collected for purpose contact whose usage may be opt-out and pur-
pose individual-analysis, whose usage is always required. The second statement says
that the datatype #user.home-info.online.email (user’s email address) and #user.name
(user’s name) is always required for the contact purpose. The recipient of all the collected
data is ours (i.e. the data is shared with the service’s entity).

◦ Data-centric constraints: the keys in the relations defining semantics generates four func-
tional dependency constraints. For example, in the d-purpose relation, a pair (data, pur-
pose) uniquely defines a value of the required field of the relation (see Figure 2.1.2). Con-
sider the policy example in Figure 2.1. The data-centric constraint would be violated if
we added a new statement that collects the #user.home-info datatype for the contact
purpose that is opt-in (contact purpose would become both opt-in and opt-out for the same
data - #user.home-info).

9
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Relation name Field name Allowed values Key for the relation

d-purpose
data URI reference to datatype

(data, purpose)purpose The P3P-defined purpose values
required opt-in, opt-out, always

d-recipient
data URI reference to datatype

(data, recipient)recipient The P3P-defined recipient values
required opt-in, opt-out, always

d-retention
data URI reference to datatype

(data)retention The P3P-defined retention values

d-collection
data URI reference to datatype

(data)optional required, optional

d-category
data URI reference to datatype

(data,category)category The P3P-defined category values

Table 2.1: The schema of basic relations according to data-centric semantics

◦ Data-hierarchy constraints: datatypes in P3P are organized in hierarchies (we will speak
about children, resp. parents and descendants, resp. ascendants for this P3P data hierar-
chy traversal description). Each node represents a particular datatype. The P3P semantics
specifies that whenever a policy statement refers to a datatype represented by the node
it may also collect any datatype of its descendant nodes. Consider again the first state-
ment of the policy from Figure 2.1. The #user.home-info datatype is collected for
the contact purpose that may be opt-out by the user. It is reasonable to assume that a
service may collect some more specific datatype such as #user.home-info.postal or
#user.home-info.online for the contact purpose that is "at least opt-out" (i.e. the re-
quired attribute should be opt-out or always, but not opt-in). Thus, a service should be
allowed to add a new statement to the policy in Figure 2.1, that e.g. collects the
#user.home-info.online.email datatype for contact purpose which is always required
(or opt-out) (see the second statement in Figure 2.1). Based on the above observation, Li
et al. [18] define a total ordering "<" for the values of the required attribute of PURPOSE
values such that opt-in < opt-out < always. Using the ">" relation the above constraint
can be formulated as follows: for d-purpose(d1, p1, r1) and d-purpose(d2, p2, r2), if d1 is
more specific than d2 and p1 = p2, then r1 ≥ r2 must hold. A similar ordering was defined
for values of the relation d-recipient, d-collection and d-retention.

◦ Semantic vocabulary constraints: some P3P predefined values are related to other P3P
pre-defined values in a way that one value may forbid or request the usage of the other
predefined value. As an example of a statement violating such a constraint, consider a
statement that collects data for purpose "historical" with retention value "no-retention".
The purpose "historical" implies that the collected information is going to be archived,
while "no-retention" implies that collected information must not be logged, archived or
otherwise stored.

In the following text we will describe how semantic technologies can be used to create a
framework that is able to identify any inconsistencies in P3P policies. In order to define the
inconsistencies more clearly we will define three classes of restrictions that the P3P framework
should consider according to the scope in which they should be satisfied:
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◦ statement-scope restrictions: include all restrictions that must be satisfied in a P3P state-
ment without knowing the context of the statement (i.e. the whole P3P policy). As an
example of such a restriction, consider the first statement of the example policy depicted
in Figure 2.1. In the statement a service states that the collection of #user.home-info
data is required (the default value of the "optional" attribute is "no"). Thus it is reason-
able to assume that at least one purpose and one recipient should be declared as always
required. Otherwise, it would be unclear weather #user.home-info data may be col-
lected (but not used) or it should be not collected at all. Thus, if we change the statement’s
purpose individual-analysis or recipient ours to be opt-in or opt-out, the statement would
become inconsistent according to this statement-scope restriction.

◦ global-scope restrictions: include all restrictions that must be satisfied in the P3P model
and do not depend on a particular P3P policy. An example of such a restriction, presented
in section Section 5.2.1, shows the category propagation semantics.

◦ policy-scope restrictions: include all restrictions that are neither statement-scope restric-
tions nor global-scope restrictions. An example of such a restriction is the following se-
mantic vocabulary constraint: the stated-purpose retention in a P3P policy signals that the
referenced data will be retained for the period necessary to meet the stated purposes. How-
ever, if multiple purposes of the datatype are specified it may lead to confusion. In such
cases, it seems reasonable to have just one purpose value. Another example of policy-scope
restrictions are data-centric constraints explained above.

2.1.3 Sempref

Privacy preferences in SemPref are expressed, similarly to APPEL, using two kinds of rules:
accept rules and reject rules. Each rule has a head and a body. A rule head defines the behavior
of the rule i.e. accept or reject. The rule body is a set of constraints that specifies conditions on
data, purpose and recipient, etc. Each constraint consists of zero or more predicates that either
test a set membership (i.e. one can use it to express either that an element is in a set or that an
element is not in a set) or check a value of an attribute. An example of a complex reject rule
introduced in [18] is in Figure 2.2. The rule in the figure rejects policies that provide personal
information (datatypes from categories physical, demographic and uniqueid) to third parties, but
only when the collection of such information is required or data sharing is always.

The reject rule in the figure contains two statements. Each of the statements contains three
predicates. The relationship among multiple predicates in constraints is logical and.

2.1.4 OWL and SPARQL-DL

Although the SemPref language uses traditional relational database technology to provide well-
defined semantics to (a rather vague specification of) P3P privacy policies, it still turns out that
one can easily produce a privacy policy that is semantically inconsistent. Due to their flexibility
and high expressiveness, semantic web technologies, and especially the Web Ontology Language
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reject:

[ data-category ∈ {physical, demographic, uniqueid}
collection=required
recipient < {ours}]

[ data-category ∈ {physical, demographic, uniqueid}
recipient < {ours}
recipient-required ∈ {always} ]

Figure 2.2: An example of two SemPref rules that reject policies which provide personal in-
formation (datatypes physical, demographic, uniqueid) to third parties, but only when the
collection of such information is required (first rule) or data sharing is always (second rule).
Predicates in the rule body are connected as logical and.

OWL [22], seem to be an appropriate formalism to capture these semantic inconsistencies. OWL
became a W3C recommendation in 2004 and since then, many knowledge modeling applica-
tion areas adopted it as a first-choice knowledge representation language. From the knowledge
modeling point of view, its main difference to classical relational database technology is the
open world assumption (OWA) that - together with full logical negation - makes it a perfect fit
for a distributed and incomplete web environment. OWA, however, disallows using rule engine
for sound and complete reasoning. Additionally, OWL is richer in expressiveness providing a
bunch of additional constructs, like subsumption relations between unary predicates (classes)
and binary predicates (properties), transitivity and symmetry of properties, inverse properties or
cardinality restrictions. The upcoming standard OWL 2 [23] raises the expressiveness even more
to support e.g. property composition, qualified cardinality restrictions and complex data ranges.

Unfortunately, there is no standard language/engine to query OWL ontologies that would
be widely accepted by the community. The first-choice option for query answering in OWL
ontologies is often the W3C recommendation for querying Resource Description Framework
(RDF), the SPARQL language. However, SPARQL is primarily targeted at querying RDF which
is significantly weaker in expressiveness than OWL. This might cause incomplete results w.r.t
OWL semantics when used to query OWL ontologies. A solution that is adopted in this paper
is to use SPARQL syntax to pose SPARQL-DL queries. SPARQL-DL [24, 25] is a language
extending standard conjunctive data queries (analogous to SQL) by constructs expressing meta-
queries. These meta-queries are especially useful when building complex ontologies with an
expressive and complex Tbox part, which is our case. Using SPARQL-DL we can easily traverse
the policy ontology described below.

2.1.5 SPARQL Inferencing Notation (SPIN)

Effective management of SPARQL (SPARQL-DL) queries is important when there are multiple
queries that share common parts. Although, the SPARQL standard [26] does not address this
issue, there is the language SPIN (SPARQL Inferencing Notation) [27] that can be used for this
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purpose. SPIN is a collection of RDF vocabularies (currently a W3C Member Submission) en-
abling the use of SPARQL to define constraints and inference rules on Semantic Web models. It
also provides meta-modeling capabilities that allow users to define their own SPARQL functions
and query templates. TopBraid Composer [28] is an editor for Semantic Web ontologies that
provides comprehensive support for SPIN, including an inference engine, editors and parsers.

The SPIN API 2 is an open source Java API that provides (1) converters between textual
SPARQL syntax and the SPIN RDF Vocabulary, (2) a SPIN-based constraint checking and infer-
encing engine, (3) support to execute user-defined SPIN functions and templates. The SPIN API
is built on the Apache Jena [29] which is one of the most mature frameworks to build Semantic
Web applications.

As an example of SPIN serialization consider query that evaluate true if there is a person
older than 18 years. Such a query can be represented by SPARQL ASK query :

# must be at least 18 years old
ASK WHERE {

?person my:age ?age .
FILTER (?age < 18) .

}

The serialization of this query in SPIN is as follows:

[ a sp:Ask ;
rdfs:comment "must be at least 18 years old"^^xsd:string ;
sp:where ([ sp:object sp:_age ;

sp:predicate my:age ;
sp:subject spin:_person

] [ a sp:Filter ;
sp:expression

[ sp:arg1 sp:_age ;
sp:arg2 18 ;
a sp:lt

]
])

]

2.1.6 Activities related to ontologies

Activities related to ontologies that are relevant to our work can be defined according to [30] as
follows:

◦ Ontology management is a set of methods and techniques that support creating, modifying,
versioning, querying, and storing ontologies.

2http://topbraid.org/spin/api/, cit. 10.9.2015
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◦ Ontology modification refers to the activity of changing the ontology without considering
its consistency of ontologies.

◦ Ontology evolution refers to the activity of facilitating the modification of an ontology by
preserving its consistency.

2.2 Related Work

This section provides an overview of related work in the area of template-based management and
second-order reasoning over ontologies.

Ontology Pre-Processor Language (OPPL) [31] is a domain-specific macro language for the
manipulation of ontologies written in OWL. There exists a Java API to use the language within
an application as well as plugins for the major OWL editor Protege [32]. The plugins allow for
defining macros – operations (such as add/remove axiom, rename entity) on an ontology, which
are parameterized by variables. Variable values can be assigned to the macros by OPPL query, or
manually by setting the values in a form. The OPPL Patterns plugin [33] provides a mechanism
to find out whether the macro-based modification of an ontology is safe – it cannot change the
interpretation of existing symbols within the ontology. The analysis outputs which variables
can take symbols from the signature of the ontology and which variables must be outside the
signature in order for the modification to be safe. This provides a certain insight into the possible
effect of the macro for an ontology engineer before applying it.

Another approach [34] using OPPL defines common anti-patterns that can be used as addi-
tional information to ontology debugging services. When a modeling error occurs, anti-patterns
can help in explaining the error at a higher level. If there are more explanations of modeling
errors, the explanations are prioritized such that anti-pattern based explanations are used first.

A major RDF-based ontology editor TopBraid Composer integrates SPIN [27] templates to
parameterize operations over ontologies. SPIN templates are parameterized SPARQL queries
that can be serialized into RDF. They are useful to attach additional validation constraints or in-
ference rules to OWL classes, in order to validate/infer over their instances. However, validation
constraints at the axiom level are by design not very convenient to use.

The approach [35] uses Description Logics with Temporal Logic operators to formally char-
acterize and reason about ontology evolution. The approach allows for expressing some state-
ments about previous snapshots of an ontology (i.e. whether a concept was satisfiable in any
snapshot or all previous snapshots).

There are many approaches that extend Description Logic [36, 37, 38] in order to provide
reasoning with higher-level constructs. However, reasoning is incomplete for second-order logic,
thus they provide either too weak extension [39] towards second-order or they extend too simple
description logic (such as [40]). Hence such approaches are not applicable to our use case.

The paper [41] provides a second-order framework and related calculus to unify and solve
many non-standard reasoning tasks in Description Logics such as concept unification, concept
contraction etc.
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Computationally, our approach closely relates to minimal hitting set problem or to one of its
relatives such as the minimum set cover problem, and especially in model-based diagnosis and
Reiter’s [14] first principles. It describes technical systems as composed of several components
that may cease to operate as designed. The discrepancy between the expected and observed be-
havior of the system results from the malfunctioning of one or more components. The minimal
diagnoses refers to finding smallest set of faulty components that needs to be replaced for the
system to work. Reiter showed that diagnoses, i.e. minimal hitting sets of conflict sets can be
computed by HS-trees. Greiner [42] has revised HS-tree into an HS-DAG to provide efective
pruning of the HS-tree. BHS-tree algorithm based on a binary-tree and Boolean algebra algo-
rithm was intruduced by [43] and then later optimized by Pill et al. [44]. Another interesting
aproach based on binary matrix is provided by Staccato [45]. We will use Reiter’s, Staccato,
BHS-tree and both variants of Boolean algorithms within the thesis as optional variant to com-
pute hitting sets. An empirical evaluation of the algorithms is published in [46].

Our approach in most cases will have large number of small conflict sets, which might be
applicable for kernelization techniques (such as [47]) of so called d-hitting set problems, where
d represents restriction on size of conflict set. Such techiques are however not applicable in cases
where input is minimal conflict set, which will be our case.

Current methodologies for ontology engineering, like Methontology [4], Neon methodology
[48], On-to-knowledge methodology [49], and Uschold and KingâĂŹs methodology [50] try to
guide ontology engineer in various phases of the ontology lifecycle. Yet, they are not specific
w.r.t. the ontology engineering activity itself – it is completely in the hands of the ontology
engineer. Comparing to them, our approach focuses on systematization and optimization of the
recurring process of ontology enrichment. In this sense, my approach is complementary to the
existing ontology engineering methodologies.
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3 Formalization of Ontology Evolution

The goal of this chapter is the formalization of ontology evolution, motivated by Section ??, in
which it would be possible to (1) describe controlled ontology evolution by atomic operations,
(2) predict ontological implications of such operations in advance, and (3) manage multiple on-
tology evolution scenarios. The first section of this chapter defines a conceptual model for ontol-
ogy evolution scenarios. The second section defines a formal model for the computation of the
ontological implications. The third section introduces algorithms to compute such ontological
implications, proves their correctness and completeness, and describes their computational com-
plexity. Most of the content of the second and the third section was published also in [51]. The
last section of this chapter provides methodology for the use of the provided conceptual model
in order to manage evolution scenarios effectively, taking into account computational limits of
the approach.

3.1 Conceptual Model for Controlled Ontology Evolution

An ontology evolution starts from an initial ontology that is modified by the addition and removal
of axioms. In a controlled ontology evolution scenario we assume that each atomic operation of
the evolution adds/removes a predefined set of axioms called ontology template grounding, where
ontology template defines a family of such sets. Moreover, we assume that the initial ontology
will be the stable part of the evolution, i.e. no axioms from this ontology will be removed during
the evolution. We will call this stable initial ontology core ontology of the evolution.

Recall the description of ontology activities from Section 2.1.6. In the same sense with re-
spect to the scenario from the previous paragraph we will use terms (1) template-based ontology
modification – an ontology modification using ontology templates, when the consistency of the
ontology is not considered, and (2) template-based ontology evolution – an ontology modification
using ontology templates, when the consistency of the ontology is considered. In addition, we
will use the term template-based ontology extension to refer to both an activity and an ontology
that was created from a core ontology by the addition of some ontology template groundings.

The goal of this conceptual model for a controlled ontology evolution is to guide the user
within the process. Although many atomic operations (in terms of additions and removals) could
be applied during the process, it is not important to track all those operations within the model.
The evolved ontology on which we need to build a guidance is a set of axioms and the order in
which the axioms were added is irrelevant for our purpose. Without a loss of generality we could
even assume that the evolution is a sequence of atomic additions only. Removals will not need
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Figure 3.1: Conceptual model for controlled ontology evolution

any guidance as they will not cause any ontological issues due to the open world assumption. On
the other hand it is useful to track which atomic additions form the current state of the evolved
ontology. We will refer to them as instantiations of ontology templates. Each ontology template
instantiation represents some template grounding (set of axioms) of one ontology template. Note
that one set of axioms can be potentially generated from different template groundings thus
instantiations provide a way to track their origin.

Finally, to provide guidance on which ontology template instantiations can be added based on
the state of the evolution we define the terms constraint and constraint instantiation. Constraint
instantiation defines which sets of ontology template instantiations cannot be used together, while
constraint defines some family of those sets. There are two reasons why constrains are applied to
controlled ontology evolution. First, some applications of ontology template instantiations could
cause ontological consequences that are undesired. An example would be the inconsistence of
the ontology or the unsatisfiability of its concepts. Second, the constraint is outside the scope of
the ontology that is being evolved. This happens for example when the ontology language is not
expressive enough to encode this constraint, or this constraint does not apply to every use of this
ontology.

Another issue that our conceptual model needs to solve is the manageability of multiple on-
tology evolution scenarios. Ontology templates are higher level constructs that are meant to be
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reused across multiple scenarios. Based on the concrete evolution scenario each ontology tem-
plate is used to generate a set of ontology template instantiations. In order for ontology templates
to be reusable to some extent we should separate the context from which instantiations are gen-
erated from the definition of a template. In most cases, the context from which the instantiations
are generated is core ontology. Our proposal is however to optionally include part of “generation
procedure” in the definition of an ontology template. Thus for each ontology evolution scenario
we will define a scenario context which will be used in combination with ontology templates to
generate its instantiations. Next, we will define some relations between concrete ontology tem-
plates that allow the reuse of ontology templates by restricting a set of groundings they generate.

Based on the above requirements we created the conceptual model presented in Figure 3.1.
As an example of its usage, consider the example about building components and materials.
The core ontology could be Monument Damage Ontology, the scenario context could be some
external ontology that defines building components and materials. An ontology template could
be represented by query that creates the groundings from the external ontology.

In the following section, we restrict our scope to define ontology templates and related terms
to provide reasoning services.

3.2 Formal Model for Reasoning

As stated in the introductory part of this thesis, there are reasons for the inclusion of additional
semantics to parts of the ontology and in order to support extended reasoning, it must be done in
a formal way.

First, the grammar of logic-based ontology languages is typically designed to find a compro-
mise between contradicting requirements such as support for reasoning, simplicity of grammar
constructors, and ease of adoption by software tools. For example, to support reasoning, on-
tology languages restrict the grammar to constructs that in most or all cases make reasoning
decidable. Thus, the basic building block of an ontology language, an ontology axiom, is usu-
ally not convenient to express some statement in a person’s mind. Especially in cases where the
ontology contains a lot of complex and recurring structural patterns, it is easier to think of such
patterns as wholes.

Second, there are many cases where the possible evolution of ontology by an application
can be described in terms of atomic operations on the ontology. If we are able to formalize the
possible space of the evolution, we can apply reasoning techniques of the source language to
provide inference or debugging services of the evolving ontology in advance.

The formal model able to describe the mentioned evolution and its reasoning services must
be able to describe: the initial setting from which ontology evolution starts; atomic operations
of the evolution using some higher level constructs (“a template”), and a way to express new
inference and debugging services in terms of defined atomic operations.

An ontology evolution starts from an initial ontology that is being modified by the addition
and removal of axioms. We assume that each atomic operation of the evolution adds/removes a
predefined axiom set called axiom template grounding, where axiom template defines a family of
such sets. Moreover, we assume that the initial ontology will be the stable part of the evolution,
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i.e. no axioms from this ontology will be removed during the evolution. This stable initial
ontology we call the core ontology of the evolution.

In the following text we define described terms formally.

3.2.1 ALCx Syntax

Ontology Template We denote NX = {X1, X2, ..} a set of concept name variables1. We define
languageALCx by extendingALCDL as follows. A concept template is an expression defined
by rules for ALC concepts (2.1) extended with the new rule C → X, where X ∈ NX. An axiom
template is defined the same way as the ALC axiom in Section 2.1.1 with concept templates in
place of concepts. Similarly, an ontology template is a finite set of axiom templates. We call the
axiom/ontology template ground if it does not contain any variable. A function Υ : NX → P(NA)
is a variable domain function – it maps each concept name variable to a subset of all concept
names.

Ontology Template Set An ontology template set is a set Λ = {Ti | 1 ≤ i ≤ nΛ} such that:

◦ each Ti = {ti j | 1 ≤ j ≤ nTi} is an ontology template that consists of axiom templates ti j

◦ var(ti j) is a set of all variables occurring in the signature of axiom template ti j

◦ var(Ti) =
⋃

var(ti j) is a set of all variables occurring in ontology template Ti

◦ var(Λ) =
⋃

var(Ti) is a set of all variables occurring in Λ

Recall the motivating example from the introductory chapter and consider the ontology of
building components and materials that contains four axioms (we will use the abbreviation OM
for concept OrganicMaterial and VE for concept VerticalElement later in the text):

OCM = {Pillar v VerticalElement,
VerticalElement v Component,
Wood v OrganicMaterial,
OrganicMaterial v Material}

ΛCM = {T1,T2} is an ontology template set such that:

◦ T1 = {$COMP1 v ∀hasMaterial.¬$MAT1 }

◦ T2 = {_c : $COMP2 u ∃hasMaterial.$MAT2 }

_c is an anonymous individual [52]. Ontology template T1 states that all individuals of type
$COMP1 must have material that does not belong to concept $MAT1. Ontology template T2

states that there exists some individual of type $COMP2 that has material of type $MAT2. Υ is a
variable domain function such that:

1Although I define the whole framework for concept name variables to cover the most typical ontology evolution
scenario. Yet, the framework can be easily extended to support also individual variables or role variables.
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◦ Υ($COMP1) = Υ($COMP2) = {Pillar,VerticalElement,Component}

◦ Υ($MAT1) = Υ($MAT2) = {Wood,OrganicMaterial,Material}

Substitution Set Intuitively we define the notion of substitution σ and a set of substitutions
Σ = {σ1, σ2, ..}. In the context of an ontology template T these notions will help us to differentiate
between one grounding of T and all possible groundings of T . In the context of an ontology
template set these notions help us to differentiate between one grounding of all templates from
Λ and all possible ontology template groundings that define possible evolutions w.r.t. Λ. The
concrete definitions are:

◦ var ⊆ NX – a set of variables

◦ σ : var → NA is a substitution (variable substitution function) – a function from a subset of
concept variables to concept names. We will use the notation: σ = {[X1/A1], ..., [Xn/An]},
where [Xi/Ai] means that σ maps variable Xi to the concept name Ai; dom(σ) for the
domain of σ.

◦ σ is ground substitution w.r.t. T if var(σ(T )) = ∅. We call σ(T ) grounding of axiom
template w.r.t. σ and define template(σ) = T . Similarly, ground substitution can be
extended to Λ.

◦ σwg is the weakest ground substitution of σ w.r.t. T if ∀σ′(σ′ is ground substitution and an
extension of σ) =⇒ σ′(T ) |= σwg(T )

◦ Σ is a set of substitutions

◦ Σ is a ground substitution set w.r.t. T if every σ ∈ Σ is ground w.r.t. T . Similarly the
definition can be extended to Λ.

As an example, consider substitution σ‘ = {[$COMP1/Pillar]} and ground substitutions
σ1, σ2, σ3, σ4 such that:

– σ1 = {[$COMP1/Pillar], [$MAT1/Wood]}

– σ2 = {[$COMP1/VE], [$MAT1/OM]}

– σ3 = {[$COMP2/Pillar], [$MAT2/OM]}

– σ4 = {[$COMP2/VE], [$MAT2/Wood]}

σ‘ is not ground substitution w.r.t. T1 as dom(σ‘) = {$COMP1} does not contain $MAT1.
σ1, σ2 are ground substitutions w.r.t. T1, while σ3, σ4 are ground substitutions w.r.t. T2.
Thus template(σ1) = template(σ2) = T1. {σ1, σ2} and {σ1, σ3} are examples of ground
substitution sets w.r.t. T1 and Λ, respectively. {σ‘, σ2} is not a ground substitution set w.r.t.
T1 or T2.
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Instantiation Set In order to define possible extensions of a core ontology and an ontology
template set, we define the notion of an instantiation set. Intuitively, any possible extension
of the core ontology w.r.t. ontology template set, i.e. an ontology O′ can be defined by one
instantiation. O′ is the result of applying the instantiation to the core ontology and ontology
template set. Let O be a core ontology, Λ be an ontology template set, Σi a substitution set for
each i:

◦ A substitution Σ is an instantiation w.r.t. Λ, if every σ ∈ Σ is a ground substitution of an
ontology template T from Λ such that dom(σ) = var(T ).

◦ S = {Σ1,Σ2, ..Σi} is an instantiation set w.r.t. Λ if each non-empty Σi is an instantiation
w.r.t. Λ.

◦ cl(S) is a closure of S under inclusion, i.e. cl(S) = {Σ′ | Σ ∈ S ∧ Σ′ ⊆ Σ}. If S = cl(S)
we say that instantiation S is closed under inclusion.

◦ max⊆(S) is a set of all maximal elements of S w.r.t. a partially ordered set ordered by
inclusion.

◦ An instantiation set is complete if it is a power-set of some substitution set, i.e. S = P(Σ).

Any subset of {σ1, σ2, σ3, σ4} is an instantiation w.r.t. Λ, while the substitution set {σ1, (σ2∪

σ3)} is an example of a ground substitution set which is not an instantiation w.r.t. Λ. S′ =

{{σ1, σ2}, {σ1, σ3}, {σ1}} is an example of an instantiation set, while its closure under inclusion is
the set cl(S′) = {{σ1, σ2}, {σ1, σ3}, {σ1}, {σ2}, {σ3}, ∅} and max⊆(S′) = {{σ1, σ2}, {σ1, σ3}}

Instantiation function Intuitively, an instantiation function applies substitutions to relevant
ontology templates. For ground substitutions it returns a list of axioms, otherwise it returns
list of partially substituted axiom templates. Let T be an ontology template, Λ be an ontology
template set, an instantiation function IF is defined as follows :

◦ IF(σ,T ) = σ(T )

◦ IF(Σ,Λ) = {α | α ∈ IF(σ,T ) ∧ (σ ∈ Σ) ∧ (T ∈ Λ) ∧ (dom(σ) ∩ var(T ) , ∅)}

◦ IF(S,Λ) =
⋃

Σ∈S IF(Σ,Λ)

For example, IF(σ‘,T1) = {Pillar v ∀hasMaterial.¬$MAT1}, while IF(σ1,T1) = IF({σ1},Λ) =

IF({{σ1}},Λ) = {Pillar v ∀hasMaterial.¬Wood}

Modification graph Let S be some instantiation set representing all possible extensions of a
core ontology O w.r.t. ontology template set Λ. A modification graph of S is an oriented graph
where:

◦ each node represents one instantiation from S,
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Figure 3.2: Complete modification graph w.r.t. a canonical evolution schema 〈O,Λ,SG,SV〉,
green (red) sub-graph represents SG (SV), respectively.

◦ each edge connects an instantiation from a node representing Σi to a node representing Σ j

if there exists a non empty substitution σ such that (σ < Σi) ∧ (Σi ∪ {σ} = Σ j).

We say that a modification graph is complete if it is a graph of a complete instantiation set.
Figure 3.2 shows a modification graph for the complete instantiation set which is a power-set of
four grounding substitutions – σ1, σ2, σ3, σ4. In the context of an ontology extension activity
w.r.t. O and Λ, the bottom node with label “{}” refers to a core ontology O, while the top
node with label “{σ1, σ2, σ3, σ4}” refers to an ontology that was created by the addition of four
ontology template groundings – O∪ IF({σ1, σ2, σ3, σ4},Λ). Each edge of a graph can be viewed
as addition or removal (if opposite direction is considered) of one ontology template grounding.

Evolution schema For a template-based ontology extension activity we define an evolution
schema as a 4-tuple ES = 〈O,Λ,SG,SV〉 such that

◦ O is a core ontology

◦ Λ is an ontology template set

◦ SG is a generating instantiation set – an instantiation set that defines all possible template-
based extensions of O w.r.t. Λ
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◦ SV is a validating instantiation set – an instantiation set that defines all minimal instantia-
tions preserving inconsistency

In addition, we define:

◦ 〈O,Λ,SG,SV〉 is canonical if SG is closed under inclusion.

◦ SC = {ΣG ∈ SG | ∀ΣV ∈ SV : ΣV * ΣG} is a combined instantiation set w.r.t. some
evolution schema 〈O,Λ,SG,SV〉.

An example of a canonical evolution schema 〈O,Λ,SG,SV〉 is visualized in Figure 3.2. The
generating instantiation set SG is visualized by the color green, while the validating instantiation
set SV is visualized by the color red. Note that, for any graph of instantiation set closed under
inclusion (such as SG) it holds that if it contains a node representing substitution set Σ it also
contains a complete sub-graph w.r.t. Σ.

3.2.2 ALCx Semantics

Similarly to MIPS described in Section 2.1, but adapted to ontology templates, we say that an
instantiation Σ is a MIPS minimal inconsistency preserving set w.r.t. an ontology O and an
ontology template set Λ if the following conditions hold:

◦ inconsistency condition, i.e. (O ∪ IF(Σ,Λ)) is inconsistent

◦ minimality condition, i.e. ∀Σ′ ⊂ Σ =⇒ (O ∪ IF(Σ′,Λ)) is consistent

Let ES = 〈O,Λ,SG,SV〉 be an evolution schema and SC be its combined instantiation set.

◦ A validating instantiation set S′
V

is correct w.r.t. evolution schema 〈O,Λ,SG,SV〉, if O is
consistent and for each Σ ∈ S′

V
, such that Σ ∈ cl(SG) : Σ is MIPS w.r.t. O and Λ.

◦ The evolution schema ES is (necessarily) consistent if SV is correct w.r.t. 〈O,Λ,SG, ∅〉
and for every substitution set Σ ∈ SC there exists an interpretation I such that I � (O ∪
IF(Σ,Λ)).

Recall the example of the evolution schema 〈O,Λ,SG,SV〉 from Figure 3.2 as well as the
definitions of substitutions σ1, σ2, σ3, σ4. We will show that the evolution schema in the figure
is consistent. First, it is easy to see that SV = {{σ2, σ3}, {σ2, σ4}} is correct w.r.t. the evolution
schema – ontologies O∪ IF({σ2, σ3},Λ) and O∪ IF({σ2, σ4},Λ) are both inconsistent, while on-
tologies O, O∪IF({σ2},Λ), O∪IF({σ3},Λ), and O∪IF({σ4} are consistent. Second, according to
the provided definitionSC = {{σ1, σ3, σ4}, {σ1, σ3}, {σ1, σ4}, {σ3, σ4}, {σ1}, {σ2}, {σ3}, {σ4}, {}}. It
can be shown that for each Σ ∈ SC an ontology O ∪ IF(Σ,Λ) is consistent (i.e. has model). Fig-
ure 3.3 shows a combined instantiation set SC as a blue sub-graph. The red sub-graph shows all
inconsistent instantiations of the evolution. {σ2, σ3, σ4} is an example of inconsistent instantia-
tion which is not minimal. max⊆(SC) is a set of all nodes that does not have a parent in SC, i.e.
{{σ1, σ3, σ4}, {σ3, σ4}, {σ3}}. Moreover, SV is MIPS w.r.t. O and Λ and note, that this is true for
each consistent evolution.
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Figure 3.3: Complete modification graph w.r.t. a canonical evolution schema 〈O,Λ,SG,SV〉,
sub-graph with red and blue nodes represents SG, red sub-graph represents a set of inconsistent
instantiations, blue sub-graph represents SC.

3.3 Reasoning Service

OWL2 and many other DL based languages provide a set of useful services for querying, val-
idating and debugging errors within an ontology. One of the most basic services is consistency
checking of an ontology. If the consistency check fails during the manual development of the
ontology, an ontology engineer typically starts appropriate debugging services to find the root
cause of the problem and fix it.

Let’s imagine, that an ontology engineer identifies some higher level patterns within the on-
tology and creates an ontology template in order to simplify his work. He assigns a domain
to each variable within the template which significantly reduces his time when filling in the
templates. Unfortunately, he is still not satisfied as there are many dependent variables in the
template. Some of them could be filled in automatically, others could have a set of values sig-
nificantly reduced based on already assigned variables of the form. He decides to create a better
instantiation function (not only based on variable domains) by providing some additional rela-
tionships between particular variables of the template. He creates new ontology templates, fills
in some data based on them and runs a consistency check, which fails. After he spends quite
a long time trying to find out the ontology error, he decides to add a validation constraint for
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ontology templates, so it will not happen again in such a situation. This again reduces variable
values within the forms of ontology templates. He also adds a non-technical textual description
of validation constraint as he plans to provide some ontology templates forms to domain experts
to populate the ontology. The only thing he is missing is: 1) a way to find out whether the vali-
dation constraint is not too restrictive, i.e. it does not exclude some consistent ontology template
groundings, 2) whether there are some other possible inconsistences that ontology templates can
create. Points 1) and 2) can be answered by new reasoning service for ontology templates as
follows.

Reasoning services Let 〈O,Λ,SG,SV〉 be an ontology evolution scheme and S‘V an instanti-
ation set:

◦ validation constraint check – takes S‘V and 〈O,Λ,SG,SV〉 as parameters and returns true
if S‘V is a correct validation instantiation set w.r.t. evolution scheme 〈O,Λ,SG,SV〉. Oth-
erwise it returns an ontology that proves the incorrectness of theS‘V. Algorithm 1 provides
a description of the service.

◦ evolution scheme consistency check – takes 〈O,Λ,SG,SV〉 as a parameter returns true if
〈O,Λ,SG,SV〉 is consistent. Otherwise it returns an ontology that proves either the incon-
sistency of the whole scheme or the incorrectness of the validation set SV. Algorithm 3
provides a description of the service.

In the following text we define three algorithms needed for reasoning services together with
proof of their soundness and completeness. The algorithms have two outputs – an output value
and global variable E which represents an error by tuple of a textual message and ontology that
proves the error.

Algorithm 1 checks the correctness of validation constraints w.r.t. some evolution schema.

◦ Termination – The only looping structures are “foreach” constructs over a finite immutable
set, thus the algorithm terminates.

◦ Soundness – If the algorithm returned true, thus the execution did not step inside the code
within the lines (2-4), (7-9) and (12-14) – we will make abbreviation MISS() to express this
fact. The MISS(2-4) implies that the ontology O is consistent, the MISS(7-9) implies that
for each Σ ∈ (S‘V ∩ cl(SG)) the inconsistency criterion holds. The MISS(12-14) implies
that ∀σ ∈ Σ : O ∪ IF(Σ − {σ},Λ) is consistent. For an arbitrary Σ′ ⊂ Σ it is true that
Σ′ ⊆ Σ − {σ} for some σ. Thus (O ∪ IF(Σ′,Λ)) ⊆ (O ∪ IF(Σ − {σ},Λ)) and the minimality
condition implies from monotonicity of entailment2 [1] inALC.

◦ Completeness – Let O be a consistent ontology, Σ ∈ (S‘V ∩ cl(SG)) and Σ is MIPS w.r.t.
O and Λ. The algorithm returns true as MISS(2-4), MISS(7-9) and MISS(12-14) is trivially
guaranteed from preconditions.

2Monotonic logic such asALC ensures that if O is consistent, than any subset O′ is also consistent.

26



3.3. Reasoning Service

◦ Complexity – Let O, Λ, S be an ontology, an ontology template set and an instantion set,
respectively. We will use l(O), l(Λ), l(S) to denote the length (size) of their encoding
within the algorithm. The upper bound complexity of the ontology consistency (satisfia-
bility) check of ALC is PSPACE [1]. Thus lines (2-4) are in PSPACE w.r.t. l(O). The
computation of the condition on line (5) is at most polynomial w.r.t. SG and S′

V
. The size

of O′ and O′′ is at most l(O) + l(Λ) ∗ l(S′
V

), thus polynomially bounded by l(O), l(Λ), and
l(S′

V
). Loop (5-14) is executed at most l(S′

V
) times and its inner loop is thus executed at

most l(S′
V

)2 times. The size of O′′ and O′ is at most l(O) + l(Λ) ∗ l(S′
V

). Thus the number
of consistency checks within lines (5-14) as well as the size of the checked ontology is
bounded polynomially and therefore can be computed in PSPACE. From the above analy-
sis it implies that Algorithm 1 uses input l(SG) to compute only line (5) which can be done
polynomially w.r.t. l(SG) and l(S′

V
). The algorithm is in PSPACE w.r.t. l(O), l(Λ), l(S′

V
)

and l(SG).

Algorithm 1: Check validating constraint correctness
1 is_correct_VC (S‘V, 〈O,Λ,SG,SV〉) : boolean is

Result: Returns true, if S‘V is a correct validation instantiation set w.r.t. the evolution
scheme 〈O,Λ,SG,SV〉. Otherwise it returns false and an ontology that proves
incorrectness of the S‘V.

2 if not is_consistent(O) then
3 E ← 〈“core ontology is not consistent”,O〉
4 return false

5 foreach Σ ∈ (S‘V ∩ cl(SG)) do
6 O′ ← (O ∪ IF(Σ,Λ))
7 if is_consistent(O′) then
8 E ← 〈“validation constraint not correct”,O′〉
9 return false

10 foreach σ ∈ Σ do
11 O′′ ← (O ∪ IF(Σ − {σ},Λ))
12 if not is_consistent(O′′) then
13 E ← 〈“validation constraint is not minimal”,O′′〉
14 return false

15 return true

Algorithm 2 computes an instantiation Σ′ which is MIPS w.r.t. an ontology O, an ontology
template set Λ, and an instantiation Σ. It assumes to call two external functions: compute single
MIPS of an ontology and compute a hitting set, both explained in section 2.1. The algorithm
works as follows:
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Algorithm 2: Get single MIPS instantiation
1 get_single_MIPS_instantiation (O,Λ,Σ) : Σ′ is

Result: Returns an arbitrary instantiation Σ′ ⊆ Σ that causes inconsistency w.r.t. O and
is minimal with respect to template-based extension of O using Λ and Σ. In
the case where O is inconsistent or instantiation Σ does not lead to
inconsistence, it returns ∅

2 if not is_consistent(O) then
3 E ← 〈“core ontology is not consistent”,O〉
4 return ∅
5 M ← {}
6 O′′ ← O
7 foreach σ ∈ Σ do
8 O′ ← IF(σ,Λ) − O
9 M ← M ∪ {〈α, σ〉 | α ∈ O‘}

10 O′′ ← O′′ ∪ O′

11 OsMIPS ←get_single_MIPS(O′′)
12 SMIPS ← {{σ | 〈α, σ〉 ∈ M} | α ∈ OsMIPS }

13 return get_single_minimal_HTS(SMIPS)

◦ lines (5-10) define ontology O′′ = IF(Σ,Λ) and relation M that maps each axiom α such
that α < O to a set of substitutions {σi} that could lead to the grounded axiom α. σi

represents a ground substitution of an ontology template from Λ,

◦ lines (11-12) compute single MIPS of ontology O ∪ IF(Σ,Λ) i.e. a set of axioms OsMIPS

which are transformed to a set of substitution sets SsMIPS where each substitution repre-
sents an axiom from OsMIPS ,

◦ line (13) computes minimal hitting set of SMIPS .

To prove the correctness of the algorithm let us assume that O is consistent, O ∪ IF(Σ,Λ) is
inconsistent, but the algorithm outputs Σ′ failing the inconsistency condition. From the mono-
tonicity of entailment and the fact that OsMIPS ⊆ O ∪ IF(Σ,Λ) it implies that OsMIPS must be a
consistent ontology which is a contradiction. Let us assume that Σ‘ satisfies the inconsistency
condition but fails the minimality condition. Thus there exists σ ∈ Σ′ and Σ′′ = Σ′− {σ} such that
O ∪ IF(Σ′′,Λ) is inconsistent. This implies that either the computed hitting set is not minimal
or the axiom set returned by the single mips algorithm is not minimal – this is a contradiction,
and thus we proved that Σ′ must satisfy both the inconsistence and minimality conditions. The
termination of the algorithm is satisfied because only looping structures are “foreach” constructs
over a finite immutable set.

The complexity of Algorithm 2 can be evaluated using function l that defines the size of the
encoding of the input as explained above. Lines (2-4) can be evaluated in PSPACE w.r.t. l(O).
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The size of O′′ is polynomial w.r.t. l(O), l(Λ) and l(Σ). The algorithm for single MIPS is PSPACE
[13] and the algorithm for minimal HTS is NP-complete [15] problem. Thus Algorithm 2 is
PSPACE w.r.t. l(O), l(Λ), and l(Σ).

Algorithm 3: Check evolution schema consistency
1 is_consistent_ES (〈O,Λ,SG,SV〉) : boolean is

Result: Returns true, if evolution schema 〈O,Λ,SG,SV〉 is consistent. Otherwise it
returns false and an ontology that proves its inconsistency.

2 if not is_correct_VC(SV, 〈O,Λ,SG, ∅〉) then
3 return false

4 SC ← {ΣG ∈ SG | ∀ΣV ∈ SV : ΣV * ΣG}

5 foreach Σ ∈ max⊆(SC) do
6 ΣsMIPS ← get_single_MIPS_instantiation(O,Λ,Σ)
7 if ΣsMIPS , ∅ then
8 E ← 〈“evolution generates inconsistent ontology”,O ∪ IF(ΣsMIPS ,Λ)〉
9 return false

10 return true

Algorithm 3 checks the consistency of the evolution schema. It uses an algorithm to compute
single MIPS instantiation only to return a meaningful explanation if the consistency check fails.

◦ Termination – implies from only one “foreach” constructs over a finite set.

◦ Soundness – Let us assume the algorithm returned true. Thus from MISS(2-3) it implies
that SV is correct and O is consistent. From lines (5-9) and MISS(7-9) it implies that for
each Σ ∈ max⊆(SC) it implies that O ∪ IF(Σ,Λ) is consistent. For any Σ′ ∈ SC it holds
that is subset of Σ and again due to monotonicity it implies that O∪ IF(Σ′,Λ) is consistent,
thus there exists an interpretation I that satisfies the ontology.

◦ Correctness – This assumes we have interpretation I for each Σ ∈ SC and that lines (7-9)
are not executed. Thus the algorithm returns true.

◦ Complexity – Let l be a function defining the size of the encoding of the input as used
above. The upper bound complexity of lines (2-3) is PSPACE w.r.t. l(SV), l(O), and l(Λ).
The computation of SG at line (4) is polynomial w.r.t. l(SG) and l(SV). Loop (5-9) is
evaluated at most l(SG) times. Single MIPS instantiations (line 6) is computed in PSPACE
w.r.t. l(O), l(Λ), l(SG)) as explained above. Thus Algorithm 3 is in PSPACE w.r.t. l(O),
l(Λ), l(SG), and l(SV) .

3.3.1 Alternative approach for evolution schema consistency

Until now the algorithms for checking the correctness of validating constraints (Algorithm 1) and
consistency evolution (Algorithm 3) only relied on a standard reasoning service for checking the
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consistency of an ontology. Although the reasoning service to compute single MIPS is used by
Algorithm 2, it is there only to provide a more concise explanation of an error to a user.

If the following text we will introduce an alternative approach to check the consistency of an
evolution schema. However, this algorithm will directly depend on a more advanced service of a
reasoner, i.e. the computation of all MIPS of an ontology. The algorithm is straightforward: (1)
it computes all MIPS of an ontology that consist of a core ontology and all possible groundings
of all ontology templates, (2) translates MIPS represented by ontological axioms into MIPS
represented by instantiations, (3) checks whether the combined instantiation set of the evolution
schema is compliant with computed MIPS of instantiations.

The computation of all MIPS and their translation from a set of ontological axioms to a set of
instantiations is described in Algorithm 4. Compared to Algorithm 2 for computation of single
MIPS, the algorithm requires multiple calls of the procedure to find all minimal hitting sets.

The alternative algorithm for checking the consistency of an evolution schema is described
in Algorithm 5. Termination, soundness and correctness can be shown same way as the previous
algorithm. The complexity is in addition limited by computation of MIPS of the ontology which
is NP-complete problem.

Algorithm 4: Get all MIPS instantiations
1 get_all_MIPS_instantiations (O,Λ,Σ) : S is

Result: Returns a set of all instantiations Σ′ ⊆ Σ that causes inconsistency w.r.t. O and
is minimal with respect to template-based extension of O using Λ and Σ. In
the case where O is inconsistent or instantiation Σ does not lead to
inconsistence, it returns ∅

2 if not is_consistent(O) then
3 E ← 〈“core ontology is not consistent”,O〉
4 return ∅
5 M ← {}
6 O′′ ← O
7 foreach σ ∈ Σ do
8 O′ ← IF(σ,Λ) − O
9 M ← M ∪ {〈α, σ〉 | α ∈ O‘}

10 O′′ ← O′′ ∪ O′

11 S ← ∅

12 foreach OsMIPS ∈get_all_MIPS(O′′) do
13 SMIPS ← {{σ | 〈α, σ〉 ∈ M} | α ∈ OsMIPS }

14 S ← S ∪ get_all_minimal_HTS(SMIPS)

15 return S
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Algorithm 5: Check evolution schema consistency alternative
1 is_consistent_ES (〈O,Λ,SG,SV〉) : boolean is

Result: Returns true, if evolution schema 〈O,Λ,SG,SV〉 is consistent. Otherwise it
returns false and an ontology that proves its inconsistency.

2 if not is_correct_VC(SV, 〈O,Λ,SG, ∅〉) then
3 return false

4 SC ← {ΣG ∈ SG | ∀ΣV ∈ SV : ΣV * ΣG}

5 ΣC ←
⋃

Σ∈SC
Σ

6 SMIPS ← get_all_MIPS_instantiations(O,Λ,ΣC)
7 ΣsMIPS ← get_any_element(SC ∪ SMIPS)
8 if ΣsMIPS , ∅ then
9 E ← 〈“evolution generates inconsistent ontology”,O ∪ IF(ΣsMIPS ,Λ)〉

10 return false

11 return true

3.3.2 Notes on algorithms for consistency of evolution schema

Note that computation of maximal non-conflicting set in Algorithm 3 (i.e. line 5) is in fact the
hitting set problem, which as will be shown in Section 4.4, is the performance bottleneck of the
approach. On the other hand, Algorithm 5 computation of MIPS is very similar problem. The
difference is that Algorithm 3 computes it on conflicting sets of instantiations, while Algorithm 5
computes it at level of ontological axioms. Moreover, it is easy to see that both algorithms can
be implemented incrementally (i.e. checking one maximal ontology/diagnosis of conflict at a
time). In Algorithm 5 it is possible due to incremental support for generation of justifications
of the inconsistency, which is implemented in existing reasoners (e.g. Pellet [53]). Similarly,
for Algorithm 3, it is possible to generate one minimal diagnosis at a time with an hitting set
algorithm such as Reiter’s algorithm.

3.4 Methodology for Defining Ontology Evolution Scenar-
ios

The reasoning service as defined in this chapter provides a useful tool to define and discover
ontology evolution scenarios. However the complexity of those algorithms shows their limita-
tions as well. This section proposes a methodology to define ontology evolution scenarios with
respect to those limitations in general. A more detailed discussion on limitations and related
suggestions for improvement will be described in Section 4.4 which provides an evaluation of
the implemented prototype.
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3.4.1 Intended uses of evolution scenarios

Based on our experience with the above formalization of ontology templates we identified the
following situations where ontology templates are useful:

◦ Direct interaction of the domain expert with the ontology – this is our main use of the
formalization which was tested in the MONDIS project. In this situation, our framework
is used to explain some consequences of his actions to the domain expert. Each validation
constraint describes a set of similar explanations parameterized by concrete values that
form the instantiations of the ontology templates. In such situations reasoning services as
described above are crucial to use it effectively.

◦ Model-driven applications – this is similar to the previous situation with the difference
that the scope of the application is typically too big to be included in one scenario due to
the computational limitations of the reasoning service. In such situations we propose to
define a full scenario that can be either directly integrated into the application as show in
Chapter 5 or just be used to keep track of all instantiations. The complete scenario should
be restricted to a new “examining” scenario with a smaller problem space that would be
feasible for experiments with the reasoning service (see Section 4.4).

◦ Auxiliary tool for ontological experiments – in addition to other standard services avail-
able for ontologies (such as consistency check, classification, justifications etc.), the rea-
soning service brings new opportunities for an ontology developer. It allows the checking
of certain implications of the ontology with higher order statements, which is one of the
motivations originating from the privacy protection use-case (see Section 5.2).

◦ Management of higher level statements – Within the MONDIS project it turned out to
be very useful to organize ontology templates into evolution scenarios even if they are not
used with the reasoning service. Keeping track of higher level statements of the ontology is
useful when (1) knowledge is gathered from external resources and needs to be transformed
to an ontology (see Section 5.1), (2) knowledge needs to be transformed from one ontology
design pattern to another, (3) the higher level statements are complex and manually entered
by ontology editor. An enhancement of an ontology editor in such a case is described
in Section ??. In situations with many scenarios and ontology templates we suggest to
organize scenarios into purpose specific taxonomies while organizing ontology templates
into more generic categories such as the organization of ontology design patterns.

3.4.2 Main workflow for defining evolution scenarios

The formalization of the ontology evolution scenario can be decoupled into a sequence of mul-
tiple tasks. We will provide a guidelines for each task separately and demonstrate it on our
motivating example of building components and materials from Chapter 1. The workflow of the
defining ontology evolution scenario can be formulated info the following tasks:
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◦ Identify the purpose of the evolution scenario – The purpose of the scenario defines its
intended goal, i.e. the main function for which it will be used. As mentioned in Chapter 1
the goal of the controlled evolution scenario is to extend ontology in terms of axioms.

Example: “Enriching of the MONDIS specific part of Monument Damage Ontology with
relations between types of Building components and materials.”

◦ Identify end-users and intended uses of the evolution scenario – End-users are users
that will be interacting with the evolution scenario. This task specifies them together with
their intended uses of the scenario as specified above.

Example: “The scenario will be used in the mind-mapping software Ontomind [54], where
domain experts should have access to the ontological consequences of their actions imme-
diately.”

◦ Identify the scope of the evolution scenario – The scope of the evolution scenario in-
cludes the definition of the core ontology and scenario context. The core ontology is used
as the starting point of the evolution scenario and the scenario context is a source of input
data for the definition of atomic operations within the scenario. They both must be selected
carefully with respect to intended uses (see Section 3.4.1) as they define the problem space
of algorithms for computing consequences of actions within the evolution scenario. To
reduce the size of the core ontology one can exclude axioms that will not participate in the
inconsistency of the evolved ontology. This can be done by the extraction of the semantic
module of the ontology [55]. Moreover, if intended end-users are domain experts, some
of the ontological consequences heavily depending on the core ontology might be hard
to explain to them, if they did not participate in the formalization of the core-ontology.
Another option to reduce the problem space is to run the scenario at the beginning with a
smaller core ontology and later, when some atomic operations are already applied to the
evolution (i.e. the space of possible evolutions is restricted), we can compute the restricted
evaluation scenario again. Although the scenario context is the same as the core ontology
in many cases, in general it can be any artifact from which atomic additions are generated,
such as a third-party ontology, a file in CSV format, a Microsoft Excel Spreadsheet docu-
ment, or a mindmap. A general rule to reduce the problem space using the scenario context
is to choose a context that will generate minimum atomic operations of the evolution that
is required. For the implementation specific analysis of the problems see Section 4.4.

Example: “As a core ontology and scenario context for our scenario we will use the core
conceptual model of Monument Damage Ontology extended with simple taxonomic re-
lations of the form A1 v A2, where A1 and A2 are atomic concepts.” In this case, the
evolution scenario is very simple to explain to the user. Later when some of the relations
are already asserted we can add other types of axioms (such as disjointness between atomic
classes) or even a full semantic sub-module related to the evolution scenario.

◦ Define atomic operations and ontology templates – The purpose of this task is to define
all possible atomic additions that can be applied to the core ontology and their related
ontology templates from which they will be generated. This is defined by the purpose of
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the evolution scenario and typically requires the study of ontology design patterns to define
proper ways to formalize ontology templates. The distinguishing property of ontology
templates in comparison to a design patterns is that their identity is also defined by the
way their instantiations are computed from a scenario context. This allows the reuse of the
ontology templates in more a fine-grained way than ontology design patterns are typically
used. We suggest using this feature of ontology templates if managing multiple ontology
scenarios.

Example: “We will use ontology templates T1 = {$COMP1 v ∀hasMaterial.¬$MAT1 }
and T2 = {_c : $COMP2 u ∃hasMaterial.$MAT2 }, where values for building compo-
nents and materials will be from the taxonomy of the class Component and class Material
respectively.”

◦ Define generating constraints – Generating constraints are restrictions on the usage of
atomic additions that are not encoded in the core ontology. Within semantic web applica-
tions they can be encoded by SPARQL or SWRL. Generally, any query/rule language with
closed world interpretation can be used. In order to maintain them effectively an imple-
mentation of ontology templates should directly incorporate them into the generation of
instantiations as shown in Chapter 4.

◦ Define and check validating constraints – Validating constraints are restrictions on the
usage of atomic additions that are encoded in the core ontology. As a consequence they are
in many cases not easy to find or to formulate explicitly. The provided reasoning service
together with the help of an ontology reasoner supporting the generation of justifications of
an entailment should be of great help in such cases. The reasoning service is limited only
to checking consistency of the evolved ontology. On the other hand, due to the reducibility
of entailment problems [13] it is easy to use this service for any entailment of the evolved
ontology. Section 4.4 demonstrates how this reasoning service can be used to check the sat-
isfiability of all classes. Workflow of actions to check correctness of validating constraints
is described in Figure 3.4.

◦ Validate evolution scenario – An ontology evolution scenario is consistent if its valida-
tion constraints explain “exactly” all restrictions that are encoded in the ontology, but not
excluded by generating constraints. The importance of this task is very dependent on the
intended use of the scenario as defined in Section 3.4.1. Workflow of actions to check
consistency of evolution schema is described in Figure 3.4.

34



3.4. Methodology for Defining Ontology Evolution Scenarios

Figure 3.4: Workflow of actions for checking the correctness of validation constraints.
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Figure 3.5: Workflow of actions for checking the consistency of evolution schema.
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4 Software design and implementation

This chapter presents design and implementation of the formal framework presented in Chapter 3
and its related tools. First section describes a semantic web ontology to represent the conceptual
model of the controlled evolution, which is enable to fulfill all scenarios discussed in the chapter.
Second section describes design and implementation of command-line utilities for management
of template-based evolution. Last two sections describes design and implementation of template-
based reasoning service and its evaluation.

4.1 Ontology of SPARQL-based Controlled Evolution

Section 3.1 introduced conceptual model for scenarios of controlled ontology evolution. We
will extend this model towards concrete representation of ontology templates, constraint and its
instantiations and implement it in form of semantic web ontology that uses extended SPARQL
query language encoded by SPIN vocabulary.

Purpose and Scope Purpose of the Ontology of Controlled Evolution is to provide a knowl-
edge model for description of scenarios and reasoning over controlled ontology evolution. The
ontology should be able to represent complete scenario in terms of inputs and outputs of reason-
ing services within the controlled evolution.

Intended Uses and End-Users Intended end-users are ontology engineers that can use use it
for (1) specification of ontology-guided evolution scenarios for domain experts, (2) definition
of atomic operations and restrictions of their use within model-driven systems, (3) exploring
consequences of an evolution scenario, (4) management of higher level statements.

Non-functional requirements The ontology should be divided into two separate parts provid-
ing (1) a consensual knowledge model of controlled ontology evolution and (2) concrete repre-
sentations of inputs and outputs of reasoning services.

Functional requirements We represent functional requirements in form of competency ques-
tions [48] that ontology should be able to answer.

(CQ_1) What are the ontology templates of this evolution scenario ?

(CQ_2) What is the core ontology that this ontology evolution extends ?
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(CQ_3) What is the scenario context of this ontology evolution ?

(CQ_4) Which groundings of ontology templates are added in evolved ontology ?

(CQ_5) What validation/generation constraint are applicable to this ontology evolution ?

(CQ_6) How many groundings has this ontology template within this evolution scenario ?

(CQ_7) Which generation constraints are violated in evolved ontology ?

(CQ_8) Which validation constraints are violated in evolved ontology ?

(CQ_9) What are possible groundings that can be added to evolved ontology without break-
ing its consistency ?

(CQ_10) Which are minimal sets of groundings explaining inconsistency in evolved ontology
?

(CQ_11) What groundings i need to remove in order for the evolved ontology to become con-
sistent ?

(CQ_12) How many violations of constrains are present in evolved ontology ?

(CQ_13) Which ontology templates cannot participate in any inconsistency of evolved ontol-
ogy ?

(CQ_14) Which ontology templates can cause inconsistency of evolved ontology without par-
ticipation of other ontology templates ?

(CQ_15) Are there any ontology templates that are restrictions this template ?

(CQ_16) What are variables of this ontology template ?

(CQ_17) What is variable assignment of this ontology template grounding ?

(CQ_18) How can be template groundings constructed from ontology template based on this
evolution context ?

(CQ_19) Are there any templates that generate same groundings within this evolution scenario
?

Note that competency questions CQ_1-15 can be answered from conceptual model from
Section 3.1 and will be implemented by an ontology to which we will refer as “Ontology of
Controlled Evolution”. Requirements specified by CQ_16-19 represents extension of this con-
ceptual model that will be implemented as its extension to which we will refer as “Ontology of
ARQ-based Controlled Evolution”.
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4.1.1 Ontology of Controlled Evolution

The conceptual model from Section 3.1 is in a straightforward way represented as OWL2 com-
pliant ontology. Concepts are represented as OWL classes, while relations are represented as
OWL object properties. Existential dependence between concepts is expressed in the ontology
by existential quantification restrictions. As an example consider definition of ontology template
instantiation : OTInstantiation subClassOf (definesVariableAssignmentOf some OntologyTem-
plate) and (isCreatedIn some OntologyEvolutionScenario).

4.1.2 SPARQL-based Extension

Ontology of SPARQL-based Controlled Evolution is an RDF ontology that imports Ontolog of
Controlled Evolution. It uses SPIN vocabulary (see Section 2.1.5) to represent ontology tem-
plates as well as generating and validating constraints in terms of SPARQL queries1. Variables
in ontology templates correspond to subset of output variables of SPARQL queries. Moreover
due to RDF representation of SPARQL queries, we can reference and share parts of the SPARQL
query such as graph patterns, variables etc. Examples of representation of ontology templates
and constraints are provided in the following sections.

An alternative approach that was considered together with SPIN representation of ontology
templates is OPPL scripting language. In comparison to SPIN, it is designed specificaly to query
with OWL semantics and make operations over OWL ontologies. Therefore similar construct
as we needed to represent in our ontology could be represented by OPPL in easier and more
straightforward way. On the other hand, OPPL does not allow reuse of parts of the queries to
such granularity as SPIN and is limited only to OWL2 compliant ontologies. The reuse of parts of
the query, typicaly encoded using SPIN templates is key feature to manage ontology templates
effectively. In following text we disscuss specific features and proposed used of the ontology
separately.

Representation of ontology templates The reasoning service for controlled ontology evolu-
tion from Section 3.2 allows for only variables in place of concepts. Our implementation extend
this notion where variables can represent also roles and individuals of the ontology. This is useful
for cases where the reasoning within the scenario is not required. Also note that the mentioned
reasoning service can be easily extended to support such variables. In addition it allows to rep-
resent multi-valued variables in cases where ontology templates depends on dynamic number of
variables. This occurs axioms using OWL2 union and intersection class expressions. Although
SPARQL has very limited support for construction of such expressions from variable bindings,
the SPIN vocabulary provides the extension function tops:constructRDFList to support it. It can
be used in graph pattern matching part of the query to generate and bind specific parts of the
RDF list into SPARQL variables. An example of SPARQL-based ontology template is shown in
A.

1As an alternative we provide way to repesent the scenario by SPARQL textual form only, which has however
limitations in reuse and some other advanced features of the ontology that are discussed later.
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Referencing ontology templates from a domain ontology We propose to reference represen-
tations of ontology templates from within domain ontologies using SPIN property spin:imports.
It can be used to link the base URI of a domain ontology with a SPIN file, specified by the base
URI of the SPIN file. For a SPIN constraint checker (or rule engine), the spin:imports keyword
has the same meaning as owl:imports, i.e. all triples from the imported file will be added to the
current RDF graph. However, the triples specified by spin:imports will not be imported in an
OWL sense and therefore remain invisible to any OWL tool.

Representation of generating and validating constraints Generating and validating con-
straints are defined by SPARQL select queries. They execute over the ontological model of
the evolution scenario, core ontology and scenario context to return all combinations of ontology
instantiations that should be excluded from the ontology evolution. Examples of generating and
validating constrants are shown in 4.3. Note that this is possible only because ontology template
groundings are represented in Ontology of Controlled Evolution as first class entities – OWL
individuals.

4.2 Command-line Utilities for Management of Ontology
Templates

We implemented platform-independent command-line interface for management of ontology
templates. It supports templates as described in previous section as well as simple abstract tem-
plates represented in extended Manchester OWL syntax.

The command-line interface has following modules :

◦ find-axiom – used to find set of axioms that were created from specified ontology template.
Alternative finds set of axioms that are annotated in specified way.

◦ add-axiom – used to add set of axioms into an ontology.

◦ remove-axiom – used to remove set of axioms from an ontology.

◦ instantiate-template – used to generated groundings of ontology templates that are op-
tionally annotated by some meta-data using OWL2 annotation properties.

◦ check-validating-constraint – provides interface for checking correctness of validating
constraints w.r.t. some evolution schema as defined by Algorithm 1.

◦ check-evolution-schema – provides interface for checking consistency of evolution schema
as defined by Algorithm 3 and Algorithm 5.

◦ generate-evolution-scenario – generates full representation of evolution scenario in On-
tology of SPARQL-based Controlled Evolution that can be used as input for a semantic
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web application. Optionally it can generates axioms and SPIN rules that (1) can be di-
rectly used with any ontology editor supporting SPIN-compliant reasoning engine to sim-
ulate ontology evolution scenario, (2) can be directly used with TopBraid composer to
support form-based population of ontology templates and answer all requirements defined
by CQ 1-19.

4.3 Prototype Implementation of the Reasoning Service

We created a prototype implementation of reasoning service over ontology templates as well as
set of tools to manage templates within command-line interface 2.

It is written in Java and uses Pellet query engine [53] to evaluate SPARQL [56] and SPARQL-
DL queries [2].

Ontology templates are encoded using syntax of “construct template” of SPARQL construct
query [56]. Instantiation sets can be defined by a set of generating and validating SPARQL /

SPARQL-DL queries . The definitions of ontology templates and instantiation sets are attached
to an ontology using OWL2 compliant annotations.

There are 2 types of validating queries that we differentiate in implementation: flat validating
queries – can validate ontology templates only with each other; multidimensional validating
queries – can in addition formulate constraints including more groundings of one template. More
formally, flat validation query represents instantiation set SV such that each Σ ∈ SV is set
of grounding substitutions of mutually different ontology templates (i.e. ∀σi, σ j ∈ Σ : (σi ,
σ j) =⇒ template(σi) , template(σ j)). Examples of both types of the queries are shown in the
following sections.

Flat validating queries and generating queries are SPARQL / SPARQL-DL select queries
over the core ontology. Result of a query, i.e. variable bindings is after execution transformed
into instantiation set. To evaluate multidimensional validating queries we introduced Evolution
schema ontology, an OWL 2 ontology that describes concrete evolution schema. Within the
ontology, each ground substitution of an ontology template is represented by unique individual
together with its variable mappings. Thus query over evolution scheme ontology can answer
questions such as “Which ontology template groundings (substitutions) has variable $COMP1

assigned to value Component ?”. Instead of core ontology, a multidimensional query queries
dataset consisting of core ontology and evolution schema ontology. This is implemented through
“group graph pattern” [56] of SPARQL language.

4.3.1 MONDIS project use case

Ontology templates are currently used within the research project MONDIS3. Aim of the project
is to create a knowledge-based system for description of monuments, their damage analysis, in-
tervention planning and prevention in the field of cultural heritage protection. Recall the example
ontology from Section 3.2 about components and materials and their templates T1,T2:

2http://kbss.felk.cvut.cz/web/portal/web/blaskmir/ontology-templates, cit. 10.8.2015
3http://www.mondis.cz, cit. 10.8.2015
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$COMP1 $MAT1

Pillar Wood
Pillar OrganicMaterial

VerticalElement Wood
VerticalElement OrganicMaterial

Table 4.1: Result of generating query for T1

The example ontology is proper fragment of Monument Damage Ontology [8, 57] developed
within the project MONDIS. The ontology templates T1 and T2 were used by domain experts to
collect general knowledge about sub-concepts of Component and Material.

The generating query used for the template T1 was :

SELECT $COMP1 $MAT1
WHERE {

$COMP1 r d f : s u b C l a s s O f Component .
$MAT1 r d f : s u b C l a s s O f M a t e r i a l .
FILTER ( ! ($COMP1 = Component ) )
FILTER ( ! ($MAT1 = M a t e r i a l ) )

}
}

The SPARQL-DL query over the core ontology returns variable bindings as shown in Ta-
ble 4.1. Each row of the query result can be naturally transformed to instantiation with one sub-
stitution (e.g. second row of the table is {σ} where σ = {[$COMP1/Pillar], [$MAT1/Wood]}.
Same query, but with appropriate variable names was used for generating query of T2.

One of the validating query was query :

SELECT $COMP1 $MAT1 $COMP2 $MAT2
WHERE {

$COMP2 r d f : s u b C l a s s O f $COMP1 .
$MAT2 r d f : s u b C l a s s O f $MAT1 .

}

Each row of the validating query result can be transformed into instantiation consisting of 2
substitutions {σi, σ j}, e.g. :

◦ σi = {[$COMP1/Pillar], [$MAT1/Wood]}

◦ σ j = {[$COMP2/Pillar], [$MAT2/OM]}

The generating query of T1, generating query of T2 and the validating query are actually
not evaluated alone as the combined instantiation can be evaluated by one SPARQL query. On
the other hand, if S1 and S2 are resulting instantiation sets of the generating queries w.r.t. T1

and T2, the canonical SG can be constructed by P(S1 ∪ S2). Let S′ be resulting instantiation
set of the validation query. The validating instantiation set SV can be constructed by splitting
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each substitution within S′ into two ground substitutions, i.e. SV = {{σ1, σ2} | σ ∈ S
′ ∧ σ1 =

σ|var(T1) ∧ σ2 = σ|var(T2)}.
Within the MONDIS project, similar templates were created also between other top level con-

cepts that are related to diagnosis and intervention of damages (i.e. concept Mani f estationO f Damage,
Agent, Mechanism, Intervention) [57]. In addition to this general knowledge, some real object
descriptions (e.g. about “north tower of Prague’s castle and its crack”) were collected using
concept and role assertions.

4.3.2 P3P use case

Validating queries will be demonstrated on use case from domain of privacy protection. It will be
also shown how two groundings of one ontology template can generate inconsistencies. P3P [58]
is W3C recommendation for expressing service privacy practices. The practices are described by
XML-based P3P policies in terms of data that will be collected, purposes for which the data will
be used, a period how long the data will be held etc. In the paper [59], we proposed framework
for detection and explanation of P3P policy inconsistencies using semantic technologies. The
policies are transformed to an ontology and then validated by ontology consistency check and
set of SPARQL-DL queries. This was implemented in P3P privacy policy editor [60]. Although
P3P editor was able to find inconsistencies we were not able to provide user human-readable
message to explain inconsistency as we did not know about them in advance. This can be done
by framework described in this thesis.

One of the ontology templates (T ) used in our P3P framework is the following :

$DATA v∃hasPurpose.($PURu
∃hasRequirement.$REQ)

$DATA v∀hasPurpose.((¬$PUR)
t ∀hasRequirement.$REQ)

$DATA_TR v∃hasPurpose.$PUR
$DATA_TR v∀hasPurpose.((¬$PUR)t

∀hasRequirement.(Alwayst
$REQ1 t $REQ))

The ontology template T is used to state that some data ($DAT A) such as “User’s business
contact information” is collected for some purpose ($PUR) such as “Marketing of services or
products”. The $REQ variable indicates requirement to which extent is the purpose required for
the service. The requirement can be one of 3 values : opt-in - the user has to affirmatively request
usage of data for this purpose; opt-out - the data may be collected for this purpose unless the user
requests otherwise; always - the data will be used for this purpose.

Variables $DAT A_TR and $REQ1 can be generated from variables $DAT A and $REQ, re-
spectively. A validating query is expressed in SPARQL query, which can well describe the
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syntactic nature of generated dependencies. Validation query can be expressed using dataset of
core ontology and controlled evolution scenaro ontology as follows :

SELECT $IS1 $IS2 WHERE {

# query t o e v o l u t i o n s c e n a r i o o n t o l o g y
GRAPH p3p : e v o l u t i o n S c h e m a {

$IS1 a r g :DATA_TR $DATA_TR1 ;
a r g :PUR $PUR ;
a r g :REQ $REQ1 .

$IS2 a r g :DATA_TR $DATA_TR2 ;
a r g :PUR $PUR ;
a r g :REQ $REQ2 .

}

# query t o core o n t o l o g y
GRAPH p3p : {

$DATA_TR1
( r d f : s u b C l a s s O f )+ $DATA_TR2 .

}
FILTER ( i s S t r o n g e r ( $REQ1 , $REQ2 ) )

}

The first part of the query is evaluated on the evolution scenario ontology. It selects all
instantiations $IS 1 and $IS 2 such that their purposes are same value. $PUR is bound to this
value. $DAT A_TR1 binds to “DATA_TR” variable of original template. Similarly, $DAT A_TR2,
$REQ1 and $REQ2 are bound. The second part of the query is evaluated on the core ontology,
i.e. the P3P ontology. isS tronger is SPIN-based SPARQL function that relates requirements,
it is true if used for arguments 〈always, opt-out〉, 〈always, opt-in〉, 〈opt-out, opt-in〉 and false
otherwise. Transformation of the query to the validating instantiation set is straight-forward as
each row of the query result is translated to one instantiation {σ1, σ2} directly corresponding to
values of $IS 1 and $IS 2.

4.4 Experimental Evaluation of the Reasoning Service

Section 3.2 introduced two algorithms to compute consistency of evolution schema i.e. Algo-
rithm 3 and Algorithm 5. The first algorithm computes consistency of the schema in straight-
forward way. It checks correctness of all validation constraints and then compute maximal in-
stantiations that should be possible to add to core ontology without becoming inconsistent. As
stated in Section 3.3.2, this is well known NP-complete problem of finding all minimal hitting
sets of a set. The hitting set is computed from union of all instantiations created from generating
and validating constraints. On the other hand, the Algorithm 5 computes it other way around.
It precomputes MIPS from groundings of all possible instantiations and then checks that they

44



4.4. Experimental Evaluation of the Reasoning Service

are correctly expressed by generating and validating constraints. In the following text we will
compare those algorithms on provided P3P and MONDIS examples.

4.4.1 Initial Setting of The Experiment

From both examples we provided 5 different size core ontologies. Such ontologies were queried
as described in previous chapter in order to create instantiations and related groundings. The
queries were executed on the core ontologies, thus the core ontologies represent as well the
scenario context of the evolution. Each of the examples has one validation constraint that was
executed in order to retrieve validating instantiations as described in the previous text. The
Algorithm 3 (referred as “main algorithm”) for computation of consistency schema uses hitting
set algorithm. We will differentiate following hitting set algorithms used for the evaluation (see
Section 2.1 for overview of the algorithms):

◦ reiter – the Reiter’s algorithm [14].

◦ bool-lin-jiang – the Boolean Algebra algorithm published by by Lin and Jang [43].

◦ boolean-algebra – the Boolean Algebra algorithm optimized by Pill et al. [44].

◦ BHS-tree – the BHS-tree algorithm [43] that is based on a binary tree.

◦ staccato – the Staccato algorithm [45] that is based on a binary matrix.

The Algorithm 5 (referred as “alternative algorithm”) uses Pellet reasoner to compute diag-
noses on “modification closure ontology”. In the evaluation we will compare only evaluations of
Pellet’s computation of all diagnoses with computation of the mentioned hitting set algorithms.
Other computation times are irrelevant as every consistency check used within the evaluation
took at most 200 ms. For the complex cases, this is with respect to overall computation time
irrelevant. By label pellet we will represent computation time to generate all diagnoses of size
pellet-diagnoses. If the hitting set algorithm or Pellet’s computation of diagnoses does not finish
in provided time we will represent it as “–”. In case of Pellet due to incremental generation of
explanations we can output set of computed diagnoses even if the algorithm does not terminate.

We will use following variables that represents the structures of inputs and outputs of the
evaluations:

◦ core-classes – represents number of OWL2 classes OWL2 within the core ontology.

◦ core-axioms – represents number of OWL2 axioms within the core ontology.

◦ closure-axioms – represents number of OWL2 axioms within the “modification closure
ontology”, i.e. the ontology that was created by adding all possible groundings of ontology
templates.

◦ otis – represents number of instantiations whose groundings were added to core ontology
in order to evaluate the scenario.
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core-classes core-axioms closure-axioms otis oti-conflicts oti-diagnoses
O1 7 12 66 12 12 18
O2 8 14 86 16 15 54
O3 11 20 146 28 36 450
O4 12 22 211 42 48 18900
O5 13 24 240 64 52

Table 4.2: Input and output structures used in evaluation for MONIS example ontology.

reiter bool-lin-jiang BHS-tree boolean-algebra staccato pellet pellet-diagnoses
O1 15 10 11 9 255 95 7
O2 54 46 19 13 1141 127 9
O3 1107 165 112 69 – 253 16
O4 – 174200 243339 38946 – 302 23
O5 – – – – – 450 25

Table 4.3: Computation times of the MONDIS evaluation.

◦ oti-conflicts – represents number of instantiations of validation constraints, i.e. number of
conflicts that validation constraints describes over “modification closure ontology” .

◦ oti-diagnoses – represents number of minimal diagnoses that were generated based on
validation constrains using the hitting set algorithm.

Each evaluation on the ontology was computed 5 times and the average value was computed.
For the hitting set algorithms as well as for the Pellet’s computations we set a hard limit of 20
minutes. If the computation does not finish by this time, it is terminated. All the hitting set
algorithms were implemented in JAVA based on descriptions provided by the sreferences. It was
evaluated on SGI 2200 Origin, CPU 4400 Mhz, MIPS R12000 (IP27) processors, main memory
1 GB.

4.4.2 MONDIS Example

We evaluated consistency schema algorithms on 5 examples of ontologies based on MONDIS
example templates used within this thesis, i.e. :

◦ T1 = {$COMP1 v ∀hasMaterial.¬$MAT1 }

◦ T2 = {_c : $COMP2 u ∃hasMaterial.$MAT2 }

The core ontologies contained only taxonomy of concepts (i.e. only subClassOf axioms
between atomic OWL2 classes). We used one validation constraint, i.e. the SPARQL query
described in Section . Description on input and output structures of the evaluation is provided in
Table 4.2, while the computation times in milliseconds are provided in Table 4.3.
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core-classes core-axioms closure-axioms otis oti-conflicts oti-diagnoses
O1 36 83 183 6 9 6
O2 37 85 250 12 18 36
O3 39 90 321 18 30 196
O4 41 95 392 24 48 625
O5 44 102 626 45 99

Table 4.4: Input and output structures used in evaluation for P3P example ontology.

4.4.3 P3P Example

We evaluated consistency schema algorithms on 5 examples of ontologies based on P3P example
templates used within this thesis, i.e. :

One of the ontology templates (T ) used in our P3P framework is the following :

$DATA v∃hasPurpose.($PURu
∃hasRequirement.$REQ)

$DATA v∀hasPurpose.((¬$PUR)
t ∀hasRequirement.$REQ)

$DATA_TR v∃hasPurpose.$PUR
$DATA_TR v∀hasPurpose.((¬$PUR)t

∀hasRequirement.(Alwayst
$REQ1 t $REQ))

The smallest P3P ontology i.e. O1 contained 83 axioms, from which (a) 39 logical axioms,
(b) 36 OWL2 classes, (c) 7 OWL2 object properties, (d) 30 subClassOf axioms, (e) 6 equivalent-
Classes axioms, (f) 2 DisjointClasses axioms, (g) 6 general concept inclusion axioms and (g) 1
object property range axiom. Thus the ontology has expresivity ofALC DL.

In the case of P3P we needed to check not only consistency of ontology but also satisfiability
of classes. This can be simulated by adding one individual per each class. Such ontology is
consistent if and only if original ontology is consistent and has all classes satisfiable. Description
on input and output structures of the evaluation is provided in Table 4.4, while the computation
times in milliseconds are provided in Table 4.5.

4.4.4 Results

The results of the evaluation shows that the “main approach” of computing schema consistency
is useful in cases where core ontology is of big size. This is due to the fact that computation of
the hitting sets are not dependent on the core ontology. The “alternative approach” is most-likely
good choice in cases where the core ontology is small. It is shown in the MONDIS example that
it outperforms the “main approach”. In the P3P case, the “alternative approach” did not terminate
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reiter bool-lin-jiang BHS-tree boolean-algebra staccato pellet pellet-diagnoses
O1 9 11 12 9 21 – 67
O2 24 11 17 13 1986 – 103
O3 95 28 46 34 – – 101
O4 3165 91 300 113 – – 98
O5 – – – – – 87

Table 4.5: Computation times of the P3P evaluation

even with the smallest ontology. Even though it is useful as it provides a lot of justifications of
the inconsistencies which may detect inconsistency in the evolution schema. An interesting idea
would be to use algorithms for computing MIPS, that depends on the order of input axioms such
as CS-trees [61]. If such axioms are ordered “correctly” they generate diagnoses faster. The
knowledge about relation between ontology templates and their groundings could help order the
input set of axioms for such algorithms.
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This chapter presents two cases where ontology templates were used. First section describe use
of the templates in MONDIS project while second section describe full design of system based
on ontology templates.

5.1 MONDIS Use Case

In the MONDIS project, the ontology developed in a close cooperation of a domain expert with
a knowledge engineer needs to be enriched mainly with the knowledge of new protection tech-
niques. However, form the manageability point of view, it is necessary to get rid off the presence
of the knowledge engineer in the evolution process. The only applicable approach is to prepare
evolution scenarios expressed in terms of ontology templates that allow the domain engineer
himself to evolve the ontology in a consistent way. Realization of scenarios were done in Onto-
mind – a mindmapping software developed within the project [54]. Creation of the mindmaps
within the tool is associated with generation of ontological axioms. SPARQL-based ontology
of controlled evolution was used here to guide user within the process of creation, explaining
inconsistencies immediately when they occurs.

5.2 P3P use case

This section presents design of service for validating of P3P policies that uses ontology templates
in translation process. At first we present a mechanism for translating a P3P policy into a pol-
icy ontology (i.e. core ontology in context controlled evolution scenario) and a set of integrity
constraints (i.e. generating constraints in context of controlled evolution scenario) in the form
of SPARQL-DL queries. If a policy ontology created by the translation is consistent, all of its
classes satisfiable and all integrity constraint satisied, the original P3P policy is "semantically
consistent", i.e. it can be used by the service. If any of these tests fails, the P3P policy is "se-
mantically inconsistent", i.e. it is not possible for the service to be compliant with the policy.
Translation from a P3P policy to a policy ontology can be divided into three steps. First, we load
a generic policy ontology - a common upper ontology of all P3P policies. Second, we translate
each statement of the P3P policy into a set of OWL axioms that pose restrictions to some classes
of the generic policy ontology. Third, we check all integrity constrains. In the following three
sections we describe the generic policy ontology. Later in the text, we describe a mechanism
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for translating P3P policy statements into policy ontology axioms and a mechanism for creating
integrity constraints using SPARQL-DL queries. Last section shown support for editing

5.2.1 P3P Policy ontology design

In this section we present the mechanism for translating a P3P policy into a policy ontology and
a set of integrity constraints in the form of SPARQL-DL queries. If a policy ontology created
by the translation is consistent, all of its classes satisfiable and all integrity constraints satisfied,
the the original P3P policy is "semantically consistent", i.e. it can be fulfilled by the service. If
any of these tests fail, the P3P policy is "semantically inconsistent", i.e. it is not possible for the
service to be compliant with the policy. Translation from a P3P policy to a policy ontology can
be divided into three steps. First, we load a generic policy ontology - a common upper ontology
of all P3P policies. Second, we translate each statement of the P3P policy into a set of OWL
axioms that pose restrictions to some classes of the generic policy ontology. Third, we check
all integrity constrains. In the following three sections we describe the generic policy ontology.
Later, in the text, we describe a mechanism for translating P3P policy statements into policy
ontology axioms and a mechanism for creating integrity constraints using SPARQL-DL queries.

5.2.1.1 Basic structure of the policy ontology

To keep the reasoning as efficient as possible (in this case to preserve the pseudo-tree model
property of the designed ontology), we decided to use only class and property taxonomies for
axiomatization. Basic structure of the P3P generic policy ontology is shown in Figure 5.5:

◦ Data - represents a set of all P3P datatypes. Each P3P datatype corresponds to a subclass
of the Data class. (e.g. User.home-info is a subclass of the Data class).

◦ Category - represents a set of all P3P categories. Each P3P category corresponds to a
subclass of the Category class. (e.g. Physical is subclass of the Category class)

◦ Purpose, Recipient and Retention - describes a set of all its P3P purposes (recipients,
retentions). Each of the P3P purposes (recipients, retentions) correspond to a subclass of
Purpose (Recipient, Retention) class. All subclasses of the Purpose (Recipient, Retention)
class are disjoint classes. (e.g. both Telemarketing and Contact are subclasses of the
Purpose class and Telemarketing is disjoint with Contact, etc.)

◦ CollectionType - corresponds to the optional attribute of the P3P datatype element. Its two
direct subclasses Optional and Mandatory specify whether the collection of a P3P datatype
is optional or mandatory.

◦ Requirement - corresponds to the required attribute of the P3P purpose or the P3P recipi-
ent. Its direct subclasses specify to which extent the purpose/recipient is required for the
service. It has 3 mutually disjoint subclasses: Opt-in, Opt-out and Always which corre-
spond to P3P values of the required attribute.
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5.2. P3P use case

Figure 5.1: Basic structure of the P3P policy ontology. Circles represents basic classes, arrows
represents object properties pointing from its domain to its range, e.g. The domain of the object
property hasRecipient is Data class, while its range is Recipient class.
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BasicData
User_RP
User
User.home-info_RP
User.home-info
User.home-info.postal_RP
User.home-info.postal
...

User.home-info.online_RP
User.home-info.online
...

Figure 5.2: Taxonomy defined by datatype classes

The figure additionally illustrates how the top-level classes are connected to each other by
object properties. The central class of the figure is the Data class. The Data class references the
Category, Purpose, Recipient, Retention and CollectionType classes by object properties hasPur-
pose, hasRecipient, hasRetention, hasCategory and hasCollectionType respectively. Note the
direct correspondence of described object properties with database schema relations (d-purpose,
d-recipient, etc.) described in Section 2.1. Additionally, both the Purpose and the Recipient class
reference the Requirement class by the object property hasRequirement.

5.2.2 Datatype taxonomies

P3P defines a hierarchy of datatypes that specify what information is collected from a user. For
example, a service can state to collect datatypes #user.home-info.postal and #user.home-info.online,
which would mean that any information about the postal and online address of a user may be
collected. Similarly, a service can state to collect the datatype #user.home-info, which would
mean that any information about the user’s home contact information including #user.home-info.postal,
#user.home-info.online, and #user.home-info.telecom (telecomunication information)
may be collected.

For modeling datatypes, the part-whole relation is an appropriate choice. For each datatype
x that is an immediate part of a datatype y, an axiom x isPartOf some y can be defined. Then
for each datatype, its reflexive part class is created (we will label it by _RP suffix), i.e. the class
representing the given datatype and all datatypes that are its parts (transitively). Thus, one could
add axiom x_RP EquivalentTo (x or isPartOf some x) for each datatype x and define isPartOf
as a transitive object property by axiom trans(isPartOf ). Such a set of axioms would lead, after
classification, to the taxonomy shown in Figure 5.2).

Taxonomy in the figure is particularly useful for our modeling purposes. For each P3P
datatype "#x" we have two representative classes in the policy ontology. The first, own datatype
class (x) that can be used whenever we need to restrict a particular datatype class without af-
fecting its datatype parts. On the contrary, the second, reflexive part of datatype (x_RP) can be
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used whenever we need to propagate the restriction applied to a given datatype to all its datatype
parts. Due to performance issues we did not use the partOf object property. Instead, we created
the taxonomy from Figure 5.2), explicitly by subclass axioms.

5.2.2.1 Data category propagation

In P3P, there are two different ways to address data that are collected from a user. First, a
service may list particular datatypes that will be collected (e.g. #user.home-info.postal).
Second, a service may list categories of data that will be collected (e.g. physical category). P3P
specification defines what datatypes may be collected for each category (e.g. for the physical
category it is #user.home-info.postal.street,
#user.home-info.telecom.telephone, etc.).

To determine what datatypes belong to which category we use the hasCategory object prop-
erty and state x subClassOf hasCategory some y, for each datatype x that is in the category y.
Additionally, for further evaluation of integrity constraints we need to be able to find out what
categories might be collected if a service collects a particular datatype.

If we consider the example where a service collects only #user.home-info.postal datatype,
since #user.home-info.postal.street is in data category physical and #user.home-info.postal.city
is in category demographic, a service may collect both physical and demographic data categories.
For this purpose we introduce a new transitive object property inheritsCategoriesFrom. Both the
domain and the range of the property is Data class. The object property is very similar to the
hasPart object property (i.e. the inverse of isPartOf object property). The following axioms
demonstrate how the object property inheritsCategoriesFrom is used for the datatype classes
from the above example:

◦ User.home-info.postal.street subClassOf hasCategory some Physical

◦ User.home-info.postal.city subClassOf hasCategory some Demographic

◦ User.home-info.postal subClassOf
inheritsCategoriesFrom some User.home-info.postal.street

◦ User.home-info.postal subClassOf
inheritsCategoriesFrom some User.home-info.postal.city

◦ transitive(inheritsCategoriesFrom)

The policy additionaly contains classes DirectPhysicalData and InferredPhysicalData de-
fined as follows :

◦ DirectPhysicalData equivalentTo hasCategory some Physical

◦ InferredPhysicalData equivalentTo DirectPhysicalData or (inheritsCategoriesFrom some
DirectPhysicalData)
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CategorizedData
InferredDemographicData
User
User.home-info
User.home-info.postal
DirectDemographicData
User.home-info.postal.city

InferredPhysicalData
User
User.home-info
User.home-info.postal
DirectPhysicalData
User.home-info.postal.street

...

Figure 5.3: Taxonomy of direct and inherited categories

The class DirectPhysicalData is a superclass of all datatype class es for which category Phys-
ical was asserted from the P3P specification. The class InferredPhysicalData is a superclass of
all datatype classes whose parts might collect some datatypes that are from Physical categories.
To see the classes after classification see Figure 5.3.

5.2.2.2 P3P policy translation algorithm

Previous sections of this chapter described the generic policy ontology that defines the basic
structure of P3P, datatype taxonomies and category propagation. This ontology is imported into
a new ontology that represents a particular P3P policy.

The algorithm for translation a P3P policy into a policy ontology is shown in Figure 5.4. It
accepts the generic policy ontology and a P3P policy as inputs and outputs a new policy on-
tology that corresponds to the original P3P policy. At first, the algorithm imports the generic
policy ontology into the newly created ontology (line 1-2). Then, a new ontology axiom set is
created from each P3P statement as follows. According to data-centric semantics explained in
Section 2.1, every P3P policy can be translated into five database schema relations. To simplify
the translation principle, assume that we add a special axiom to our axiom set for every instance
of each relation occurring in the P3P statement.

We can demonstrate it with an example from Figure 2.1. It is stated in the first statement
that #user.home-info is collected for the purpose contact that may be opt-out and for the
purpose individual-analysis that is always required. The recipient of the data is ours and is
always required. The P3P statement translation generates the following axioms:

◦ User.home-info subClassOf hasPurpose some
(Contact and hasRequirement some Opt-out)
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1: function translate(GenO, Pol)
2: Input: GenO generic policy ontology, Pol P3P policy.
3: Output: semantically valid policy ontology PO corresponding to the P3P policy Pol, or an

error whenever an inconsistency is found.
4: create an empty policy ontology PO

5: import GenO to PO

6: for each P3P statement S ∈ Pol do
7: create an ontology axiom set AS from S
8: check AS for statement constraints
9: add each axiom from AS to ontology PO

10: check PO for policy inconsistencies
11: return PO

12: end function

Figure 5.4: Algorithm for checking the consistency of P3P policy. The algorithm creates and
imports the generic policy ontology into the newly created ontology (lines 4-5). Each P3P state-
ment is translated to the axiom set, which is checked for statement-scope inconsistencies (lines
7-8), then it is added to the new ontology and policy-scope inconsistencies are checked (lines
9-10).

◦ User.home-info subClassOf hasPurpose some
(Individual-analysis and hasRequirement some Always)

◦ User.home-info subClassOf hasRecipient some
(Ours and hasRequirement some Always)

These axioms are basic axioms of the translation procedure. In order to express policy model
restrictions discussed in Section 2.1, more axioms need to be added which is discussed in the
following sections. Continuing the explanation of the algorithm from Figure 5.4, the next line
(line 5) checks statement- scope restrictions discussed in section Section 2.1. If P3P statement-
scope restrictions are violated, the algorithm stops and points to the particular condition that
was not satisfied. Otherwise, the algorithm continues and incrementally adds axioms to the
final policy ontology (line 6), while continually checking the consistency of the ontology. By
checking the consistency of the ontology, some of the policy-scope restrictions (see Section 2.1)
are checked. If the ontology becomes inconsistent or some of the classes become unsatisfiable,
the algorithm terminates and the last axiom that was added is identified causing the problem.
Otherwise, the algorithm continues and processes other policy-scope restrictions (line 7) that are
expressed by means of SPARQL-DL queries. If all the query checks pass it is guaranteed that the
new policy ontology is valid according to the model discussed in Section 2.1 and it is returned
by the algorithm.

55



5. Use Cases

5.2.2.3 Policy model restrictions expressed in OWL

Ontology axioms in the policy ontology are used for expressing both global-scope and policy-
scope restrictions that were discussed in Section 2.1. All global-scope restrictions were expressed
in the generic policy ontology. An example of such a restriction is the propagation of P3P
categories through the object property inheritsCategoriesFrom.

Policy-scope restrictions used in the policy ontology have one of three forms:

◦ subclass axioms restricting a datatype class (e.g. class User.home-info),

◦ subclass axioms restricting reflexive parts of a datatype class (e.g. class User.home-info_RP),

◦ general inclusion axioms (GCI).

An example of policy-scope restrictions that use OWL axioms to restrict a datatype class
are data-centric (functional) constraints (see Section 2.1). Data-centric constraints of the first
statement of the policy from Figure 2.1 are translated as follows:

◦ User.home-info subClassOf hasPurpose only
((not Contact) or hasRequirement only Opt-out)

◦ User.home-info subClassOf hasPurpose only
((not Individual-analysis) or hasRequirement only Always)

◦ User.home-info subClassOf hasRecipient only
((not Our) or hasRequirement only Always)

The first OWL axiom ensures that if any other P3P statement states that #user.home-info is
collected for the Contact purpose, its requirement must be Opt-out. If this condition is violated,
class User.home-info will become unsatisfiable. Similarly, the second and the third OWL axiom
is created.

An example of P3P policy-scope restrictions that use OWL statements restricting reflexive
part of the datatype class are all data hierarchy constraints (see Section 2.1). The first statement
of the policy from Figure 2.1 expresses data hierarchy constraints as follows:

◦ User.home-info_RP subClassOf hasPurpose some Contact

◦ User.home-info_RP subClassOf hasPurpose only
((not Contact) or (hasRequirement only (Opt-out or Always))

◦ User.home-info_RP subClassOf hasPurpose some Individual-analysis

◦ User.home-info_RP subClassOf hasPurpose only
((not Individual-analysis) or (hasRequirement only Always)

◦ User.home-info_RP subClassOf hasRecipient some Ours
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◦ User.home-info_RP subClassOf hasRecipient only
((not Ours) or (hasRequirement only Always)

The first OWL axiom states that contact purpose should be propagated to all sub-parts of the
#user.home-info datatype. The second OWL axiom states that sub-parts of the datatype can
have contact purpose either opt-out or required (always). This pair of OWL axioms ensures that
the data hierarchy constraint for the contact purpose holds. Similarly, the next two pairs of OWL
axioms ensure that data hierarchy constraints hold for the purpose individual-analysis and the
recipient ours.

5.2.2.4 Policy model restrictions expressed in SPARQL-DL

Some of the policy model restrictions are natural to the model with respect to the close-world
assumption. For such cases we used the SPARQL-DL query language. The queries are used to
express some statement-scope restrictions and policy-scope restrictions.

As an example of a statement-scope restriction, consider the constraint defined in Section 2.1.
The constraint defines that if a collection of some datatypes in a statement is required, then at least
one purpose must be specified as always required. The following SPARQL-DL query checks this
constraint:

SELECT ?x WHERE {
?x subClassOf (hasCollection some Required ) .
NOT { ?x subClassOf (hasPurpose some

(hasRequirement some Always) }
}

The query returns all datatype classes whose collection is required (first and second line) and
for which there is not any purpose with the requirement "always" (third line). Thus, the results of
the query are those datatypes that violate the constraint. If the query does not return any answers,
then this policy-scope restriction is satisfied.

Note that the NOT operator is not part of the SPARQL-DL syntax, but can be encoded by
a combination of OPTIONAL, FILTER and BOUND operators in SPARQL (see Negation as a
Failure pattern in [26]).

To run a query for a P3P statement scoped property we have to use the generic policy ontology
that is populated with only a basic translation of the P3P statement. Each statement of the P3P
policy and each query may run in parallel. For a demonstration of SPARQL-DL queries in the
scope of the whole P3P policy we will use a condition that restricts stated-purpose retention to a
number of purposes allowed (Section 2.1) :

SELECT ?x WHERE {
?x subClassOf ((hasRetention some Stated-purpose)

and (hasPurpose min 2))
}
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The query returns all datatype classes for which at least two purposes are defined and its
retention is defined as "stated-purpose". If the query returns an empty set, the restriction was not
violated for any datatype.

5.2.3 P3P Privacy framework design

To validate the proposed policy model described in Section 5.2.1 we need a framework which can
visualize our results and allows us to experiment with policy restrictions in an easy way. This
chapter describes the design of such a framework. Section 5.2.3.1 identifies the requirements
and proposes the framework which consists of four logicaly separated modules. Section 5.2.3.2
explains the necessary enrichment of the policy ontology that will be used in the framework. The
rest of the chapter describes individual modules and reveals their implementation details.

5.2.3.1 Design of privacy framework

The privacy framework has to be able to process input a P3P file, transform it to the policy
ontology, examine this ontology in order to find inconsistencies and explain these inconsistencies
to a user in a human readable way. These requirements naturally divide the framework into four
modules: selection module, transformation module, reasoning module and visualization module.

Each of the modules requires a configuration input from a user of framework, i.e. the se-
lection module needs to define queries that will be answered on concrete P3P data; the trans-
formation module requires a user to define what axioms should be created from the input data;
the reasoning module must be configured by a user to generate the most relevant explanations of
inconsistencies and visualisation module requires the user to define mapping from OWL expla-
nations to human readable descriptions.

Clearly, the hardest part of configuring the modules lies in the definition of policy constrains
which is carried out in the transformation module. It must be designed in a way that shows
very clearly what the results of transformation are. Thus, it seems appropriate to represent a
transformation module interface to the user as an ontology template, i.e. axioms with variables.
Additionally, the structure of data that are substituted to ontology template must be as simple as
possible, which brings us to design decisions of the selection module.

The selection module queries P3P input data and prepares its output to be consumed by the
transformation module. To make output as simple as possible we propose that the result of the
selection module is organized in a table structure. The table structure can be seen as rows of
entries where each entry is a map of variables (column names) to its data. The same variables
that occur in entries are then used in ontology template of the transformation module. Each row
of data is translated exactly to one axiom of policy ontology.

The content of variables from the output of the selection module should either be a valid IRI
[62] of an OWL entity defined in the generic policy ontology or a string constant. Therefore,
the selection module needs a mechanism to map the IRI of a P3P element into the IRI of an
OWL entity. This map can also be reused by the visualization module, so it seems appropriate to
implement it by annotations to the generic policy ontology that are shared among the modules.
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The reasoning module adds axioms generated from the transformation module and continu-
ously checks the consistency of the ontology and the satisfiability of its classes. If needed, the
axioms generated from the translation module can be annotated by other metadata (e.g. what
were the variables of the data, what is the original template, etc.) to help improve explanations
of inconsistency/unsatisfiability.

The following section explains the necessary enrichment of the policy ontology that will
be used in the selection and visualization modules. Afterwards, a detailed description of each
module follows.

5.2.3.2 Structure of enriched policy ontology

P3P 1.1 specification [17] refers to three XML schema files that allow the validation of P3P
policy files, the P3P 1.1 base data schema document, the P3P 1.1 policy schema document and
the P3P 1.0 policy schema document. In order to extend predefined elements of P3P files, there
is an EXTENSION element defined in most of the XML elements of both P3P policy schema
documents. P3P datatypes can be extended by creating a new file similar to the P3P 1.1 base
data schema document, including it in the P3P 1.1 policy schema document and defining root
datatype elements of newly added datatypes.

Like the structure of P3P XML schema files, the policy ontology defined in Section 5.2.1 is
distributed into multiple ontology files :

◦ p3p-language.owl - contains definitions of all the classes and object properties mentioned
in Section 5.2.1 except for the classes that represent datatypes and their reflexive parts
(e.g. definition of User.home-info or User.home-info_RP is not included). Examples of
such entities are Purpose, Telemarketing, hasRetention, DirectDemographicData, Inferred-
PhysicalData, etc.

◦ p3p-bds.owl - imports p3p-language.owl ontology and contains only the definitions of
all datatypes and their reflexive parts. As explained in Section 5.2.1, the definition of a
datatype describes its related categories (e.g. User.home-info subClassOf hasCategory
Physical) and its related datatypes (e.g. User.home-info inheritsCategoriesFrom some
User.home-info.postal).

◦ generic-policy.owl - imports p3p-language.owl and p3p-bds.owl. Moreover, the ontol-
ogy contains general class axioms that represent policy-scope restrictions discussed in
Section 5.2.1 (e.g. hasPurpose some Historical SubClassOf hasRetention only (not (No-
retention))). This ontology represents generic policy ontology which is imported into the
policy ontology. The policy ontology only contains axioms that are specific to the transla-
tion of concrete input P3P file.

In comparison to extension mechanisms of P3P XML schema files, extensions to generic pol-
icy ontology are more straightforward. Both, the P3P language extension and the P3P datatypes
extension can be realized by the import of a new ontology into generic policy ontology.

In addition to policy ontology modules we define two ontology files that provide us P3P
metadata to defined classes of the policy ontology:
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Figure 5.5: Import structure of enriched P3P policy ontology. Ovals represent ontologies, ar-
rows represent import statements pointing from the importing ontology to the ontology being
imported, e.g. the ontology from the file generic-policy.owl imports the ontology from the file
p3p-language.owl.

◦ p3p-language-mapping.owl - imports p3p-language.owl ontology and annotates its classes
with links to the corresponding definitions of P3P elements, its human readable descrip-
tion etc. Annotation property hasXMLMapping is used to link classes of the policy on-
tology to the elements of P3P files. As an example consider annotation Purpose Annota-
tions(hasXMLMapping
"http://www.w3.org/2002/01/P3Pv1#PURPOSE").

◦ p3p-bds-mapping.owl - imports p3p-bds.owl ontology and annotates its classes with links
to the corresponding elements of P3P datatype definitions, its human readable translations
etc. An example of such an annotation is User.home-info Annotations (hasXMLMapping
"http://www.w3.org/2006/01/P3Pv11BDS#user.home-info", hasXMLLabel "User’s Home
Contact Information"@en).

The annotation enrichment of the policy ontology not only provides helpful information while
editing the ontology, but is also used in other modules of the framework. The overall structure of
the policy ontology with P3P metadata annotations is described in Figure 5.5.

5.2.3.3 Selection Module

The selection module queries an input P3P file and produces variable to data mappings that
are consumed by the transformation module. The input file is loaded to the selection module
once, but it can be queried multiple times. Each query is specified by a selection term, that is
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$ID <- id(p3p10:STATEMENT)
$DATA <- p3p-language:BasicData

$PURPOSE <- p3p-language:Purpose
$REQUIREMENT <- p3p-language:Requirement

Figure 5.6: An example of a selection term that queries for variables ID, DATA, PURPOSE and
REQUIREMENT.

ID DATA PURPOSE REQUIREMENT
1 User.home-info Contact Opt-out
1 User.home-info Individual-analysis Always
2 User.home-info.online.email Contact Always
2 User.name Contact Always

Figure 5.7: An example result of the selection module’s query for variables ID, DATA, PUR-
POSE and REQUIREMENT.

a string in a meta language that the selection module understands. Ideally, the selection term
should only declaratively describe the output variables of the query and its meaning in a result
set. Additionally, the selection module must process P3P metadata defined in ontologies p3p-
language-mapping.owl and p3p-bds-mapping.owl to be able to output the results in terms (IRIs)
of the general policy ontology.

As an example of the selection term consider Figure 5.6. It contains 4 lines, where each line
contains a definition of a variable and it’s type (e.g. the first line defines the variable DATA with
type BasicData). Consider the example of policy from Figure 2.1. After executing the selection
term on this policy, the result set could be as described in Figure 5.7.

5.2.3.4 Transformation Module

The transformation module consumes input from the selection module and produces OWL ax-
ioms that are then loaded into the reasoning module. The module manages the set of ontology
templates, where each of them is bind to some selection term. More than one ontology template
can be bound to one selection term. To translate an ontology template to a set of OWL axioms -
first, the selection term associated with the ontology template is executed in the selection module;
second, the result is substituted to variables of ontology template.

To demonstrate, how the substitution works, consider the ontology template:

◦ $DATA subClassOf hasPurpose some
($PURPOSE and (hasRequirement some $REQUIREMENT))
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After substitution of data from Figure 5.7, the transformation module would produce the
following axioms :

◦ User.home-info subClassOf hasPurpose some
(Contact and (hasRequirement some Opt-out))

◦ User.home-info subClassOf hasPurpose some
(Individual-analysis and (hasRequirement some Always))

◦ User.home-info.online.email subClassOf hasPurpose some
(Contact and (hasRequirement some Always))

◦ User.name subClassOf hasPurpose some
(Contact and (hasRequirement some Always))

5.2.3.5 Reasoning Module

The reasoning module adds OWL axioms generated by the transformation module to the policy
ontology while testing the consistency of the ontology, the satisfiability of its classes and in-
tegrity constraints expressed in sparql-dl queries. To demonstrate implementation difficulties of
the user-friendly reasoning module, consider a modified version of an example policy ontology
form the Figure 2.1, where the required attribute of the contact purpose is modified to be opt-in
(instead of always required). As explained in Section 2.1.2, such a policy violates data-hierarchy
constrains. After the addition of all translations of ontology templates from the transformation
module, the policy ontology will contain the following unsatisfiable classes: User, User.home-
info, User.home-info.online and User.home-info.online.email.

The reasoning module can pick one of the datatype classes and provide an explanation of the
unsatisfiability. In this case, the best choice is the most specific datatype class i.e. User.home-
info.online.email. It provides the shortest and the most eligible explanation of the problem by
following axioms:

◦ DisjointClasses : Always, Opt-in, Opt-out

◦ User.home-info.online.email subClassOf hasPurpose some
(Contact and (hasRequirement some Opt-in))

◦ User.home-info.online.email subClassOf
User.home-info.online.email_RP

◦ User.home-info.online.email_RP subClassOf
User.home-info.online_RP

◦ User.home-info.online_RP subClassOf User.home-info_RP

◦ User.home-info_RP subClassOf hasPurpose only
((not Contact) or (hasRequirement only (Always or Opt-out)))
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Even this set of axioms is too long to identify a problem. It becomes much clearer if we
remove all the axioms that are defined in generic policy ontology (notice that sometimes this
might not be s feasible solution). We end up with two axioms:

◦ User.home-info.online.email subClassOf hasPurpose some
(Contact and (hasRequirement some Opt-in))

◦ User.home-info_RP subClassOf hasPurpose only
((not Contact) or (hasRequirement only (Always or Opt-out)))

The first axiom is an instance of basic axiom translation procedure. It simply states that user’s
email is collected for contact purpose that can be opt-in. The second axiom is an instance of data
hierarchy constraints described in Section 5.2.1. The statement expresses that any of the user’s
home contact information can be collected and is either required to collect or its collection can
be opt-out. The user’s email belongs to the user’s home contact information but its collection is
opt-in, which is in contradiction to the previous statement.

5.2.3.6 Visualization Module

The transformation module can annotate axioms it produces in order that other modules get
useful information. Such useful information would be a list of original template variables and
their values. For the case discussed in the previous section we could than easily generate a hu-
man readable explanation as: "Statement 1 collects users’ home contact information for contact
purpose that can be opt-out. It coincides with statement 2 that collect users’ email address for
contact purpose that is opt-in."

5.2.4 Evolution Scenario in Ontology Editor

Consider the P3P example from the previous chapter. The validation query was fired on the
following constraint violation : “User’s business contact information” is collected for “Marketing
of services or products” with requirement “always”. “User’s business telephone number” is
collected for “Marketing of services or products” with requirement “opt-out”.

We use the evolution scenario ontology within TopBraid Composer [28] to edit concrete
instantiations of templates, i.e. instead of creating ontology templates directly in P3P ontology
we create only instantiations within the evolution scenario ontology, which are then synchronized
with the core ontology. It allows us to have specialized forms for each template as shown in
Figure 5.8. In addition using the query above we can create SPIN constraint on instantiations that
provides human-readable explanations of inconsistencies and fixes as it is shown in Figure 5.8
and Figure 5.9. The provided framework can be used with Free Edition of TopBraid Composer.
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Figure 5.8: P3P error in TopBraid composer.
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Figure 5.9: Suggestion for fix in TopBraid composer.
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6 Conclusions

This thesis has introduced a formal technique for controlling ontology evolution by domain ex-
perts or ontology engineers. The technique guarantees them that – as long as the changes they
make comply with the evolution templates – the evolution preserves ontology consistency.

The formal framework only depends on the ontology consistency checking algorithm and a
single MIPS algorithm for the underlyingDL. Thus, although introduced in this thesis for ALC,
it can be easily extended to more expressive description logics, such as S ROIQ(D) [63] which is
used in the current ontology standard OWL 2. Moreover it seems straight-forward to extend the
framework with individual variables, role name variables, and general concept variables.

The introduced technique has a far-reaching impact on the process of ontology design and
evolution. As our experience in the MONDIS project shows, domain experts feel more comfort-
able and less frustrated when they can predict the impact of changes they make. Another impact
is the optimization of ontology engineering resources during the evolution phase.

The introduced research has opened several interesting research topics. First, we introduced
two cases of ontology evolution. In the future we would like to experiment with various ontology
templates w.r.t. their usability for domain experts. Compared to ontology design patterns that
are meant for ontology engineers (in the same sense as software design patterns are meant for
software engineers), ontology templates are also meant for domain experts – thus, they have to
be simple, intuitive and have the formal guarantees introduced in this thesis.

Second, it was shown that our framework can be used not only for providing consistency
within the evolution scenario, but also for specific entailments of the ontology. In the P3P case,
the framework was used to check satisfiability of all classes within the scenario. It would be
interesting to provide an ontology engineer with a service that would enhance these possibilities
to check arbitrary entailments within the evolution, even formulated on the same level as the
ontology templates are. This would provide a “query language” for an ontology engineer to
check his/her assumptions of the evolving ontology and thus validate his/her intentions.

Third, our evaluation of prototype service brought up new ideas for optimization of the pro-
vided algorithms.
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Brief Summary of the Thesis

Sophisticated information systems make often use of ontologies that express the semantics of
data the system is processing. Such systems include various applications of semantic web and
are using technologies of semantic web. However, it is a seldom case when an ontology stays
in the same status for the whole life cycle of the application that makes use of it. Normally, the
ontology needs to be modified – typically extended – during its life cycle. Such a process of
permanent small changes made to the ontology is referred as an ontology evolution.

Evolving ontologies by domain experts is difficult and typically cannot be performed with-
out the assistance of an ontology engineer. This process takes a long time and often recurrent
modeling errors have to be resolved. This doctoral thesis proposes a technique for creating
controlled ontology evolution scenarios that ensure the consistency of the possible ontology evo-
lution and give guarantees to the domain expert that his/her updates do not cause inconsistency.
We introduce ontology templates that formalize the notion of controlled evolution together with
consistency checking algorithm. The ontology templates are reusable across multiple scenarios
which helps ontology engineers to manage whole ontology evolution. In addition, the algorithm
for the consistency check can be used for auxiliary reasoning service that provides to ontology
engineers new options to check certain expectations of the evolving ontology. The specific con-
tributions are: (1) framework and methodology for definition of ontology evolution scenarios,
(2) algorithms to compute ontological implications of the evolution scenarios, (3) proposal of
new non-standard reasoning service that implements the algorithms to support ontological engi-
neering methods, (4) prototypical implementation of the service and its experimental evaluation,
and (5) validation of the approach on real cases.

The research was motivated by the experience gained during two projects – Netcarity and
MONDIS. In Netcarity, the domain was privacy protection. The P3P/Appel approach proposed
by the WWW consortium has proven insufficient semantics. This is why a novel approach based
on description logic was proposed within Netcarity project. It includes the transformation of
P3P policy into an ontology, which can be viewed as an evolution of a generic privacy ontology.
To ensure that the transformation process will result into a consistent ontology, the need of a
controlled evolution process was discovered.

In the MONDIS project, the ontology developed in a close cooperation of a domain expert
with a knowledge engineer needs to be enriched mainly with the knowledge of new protection
techniques. However, form the manageability point of view, it is necessary to get rid off the
presence of the knowledge engineer in the evolution process. The only applicable approach is
to prepare evolution scenarios expressed in terms of ontology templates that allow the domain
engineer himself to evolve the ontology in a consistent way.
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The thesis demonstrate the practical meaning and applicability of the developed evolution
framework on the two above introduce use cases. The thesis open also interesting topics for
a future work. First, we would like to experiment with various ontology templates w.r.t. their
usability for domain experts. Compared to ontology design patterns that are meant for ontology
engineers (in the same sense as software design patterns are meant for software engineers), on-
tology templates are also meant for domain experts – thus, they have to be simpler, intuitive and
have the formal guarantees introduced in this thesis. Second, it was shown that our framework
can be used not only for providing consistency within the evolution scenario, but also for specific
entailments of the ontology. In the P3P case, the framework was used to check satisfiability of
all classes within the scenario. It would be interesting to provide an ontology engineer a ser-
vice that would enhance these possibilities to check arbitrary entailments, even formulated in
terms of ontology templates. Third, our evaluation of prototype service brought up new ideas for
optimization of the provided algorithms.
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A Represenation of Ontology Temlate in SPARQL-
based Controlled Evolution

Example of ontology template

Abstract ALCx syntax

T1 = {$COMPONENT v ∀hasMaterial.¬$MAT ERIAL }

Related SPARQL construct query

CONSTRUCT {
$component rdfs:subClassOf

[ a owl:Restriction ;
owl:onProperty cms:hasMaterial ;
owl:allValuesFrom
[ a owl:Class ;
owl:complementOf $material ;

];
] .

$component a owl:Class .
$material a owl:Class .
cms:hasMaterial a owl:ObjectProperty .

}
WHERE {

$component (rdfs:subClassOf)+ cms:Component .
$material (rdfs:subClassOf)+ cms:Material .

}

Representation of the template

:ot-component-not-possible-material
rdfs:label "Not possible material of component"@en ;
rdf:type owl:NamedIndividual ;
ot-core:hasSpinQueryForConterpart [
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A. Represenation of Ontology Temlate in SPARQL-based Controlled Evolution

rdf:type sp:Construct ;
sp:templates (

[
sp:object _:b78525 ;
sp:predicate rdfs:subClassOf ;
sp:subject sp:_component ;

]
[
sp:object owl:Restriction ;
sp:predicate rdf:type ;
sp:subject _:b78525 ;

]
[
sp:object cms:hasMaterial ;
sp:predicate owl:onProperty ;
sp:subject _:b78525 ;

]
[
sp:object _:b31822 ;
sp:predicate owl:allValuesFrom ;
sp:subject _:b78525 ;

]
[
sp:object owl:Class ;
sp:predicate rdf:type ;
sp:subject _:b31822 ;

]
[
sp:object sp:_material ;
sp:predicate owl:complementOf ;
sp:subject _:b31822 ;

]
[
sp:object owl:Class ;
sp:predicate rdf:type ;
sp:subject sp:_component ;

]
[
sp:object owl:Class ;
sp:predicate rdf:type ;
sp:subject sp:_material ;

]
[
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sp:object owl:ObjectProperty ;
sp:predicate rdf:type ;
sp:subject cms:hasMaterial ;

]
) ;

sp:text """CONSTRUCT {
$component rdfs:subClassOf

[ a owl:Restriction ;
owl:onProperty cms:hasMaterial ;
owl:allValuesFrom
[ a owl:Class ;
owl:complementOf $material ;

];
] .

$component a owl:Class .
$material a owl:Class .
cms:hasMaterial a owl:ObjectProperty .

}
WHERE {

$component (rdfs:subClassOf)+ cms:Component .
$material (rdfs:subClassOf)+ cms:Material .

}"""^^xsd:string ;
sp:where (

[
rdf:type sp:TriplePath ;
sp:object cms:Component ;
sp:path [

rdf:type sp:ModPath ;
sp:modMax -2 ;
sp:modMin 1 ;
sp:subPath rdfs:subClassOf ;

] ;
sp:subject sp:_component ;

]
[
rdf:type sp:TriplePath ;
sp:object cms:Material ;
sp:path [

rdf:type sp:ModPath ;
sp:modMax -2 ;
sp:modMin 1 ;
sp:subPath rdfs:subClassOf ;

] ;
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sp:subject sp:_material ;
]

) ;
] ;

rdfs:subClassOf :MondisOTI ;
.
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