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Abstract

This thesis is dedicated to the design of practical and efficient models anitlaigo
for the production processes. The key addressed issue are thetaléepracess
plans, supporting much more flexible definition of the scheduling problems.

With respect to the state of the art in the scheduling area, this thesis aims to cover
the gap for the solution approaches that incorporate both the selectiorcespnolan
and the fine scheduling within a single model. Consequently, there are two main
goals of the thesis - first, to propose a suitable mathematical model capablesto cov
standard scheduling problems together with the definition of the alternativegsroc
plans and second, to design, implement and evaluate algorithms for thraerdiffe
problems with alternative process plans, emerging from real productimegses.

The mathematical model for the considered scheduling problems is based on
the well known Resource Constrained Project Scheduling Problem (RG#SEh
is combined with the formalism of Nested Temporal Networks With Alternatives
(NTNA). Such a model reflects the typical structure of the production gemseand it
keeps most of the assumptions and constraints from the powerful RCPSRvirdme
The proposed model involves renewable resources with non-unaagibggequence
dependent setup times, release times and deadlines of activities and geddeatiz
poral constraints. Thus, it allows very general and flexible definitione$theduling
problems with many realistic constraints.

Three different scheduling problems with alternative process plans areirth
more detail. The first studied problem involves negative time-lags and thesgial
minimize the total schedule length. For such a problem we have developsilumnn
tive heuristic algorithm where the activities are being scheduled and wuhsicu
according to their dynamic priorities. The second studied problem is motivatixtb
production processes where the goal is to utilize the expensive machineghsas
possible and, therefore, the time spent by setting up such machines is mininieed. T
solution approach is based on the iterative method with separation of a schedule
time-disjunctive parts where the local search is applied. The criterion éothiind
considered problem is the minimization of the total production cost consisting of the
costs corresponding to the selected production operations (activitiesgaalization
for late jobs. Two different evolutionary based heuristic algorithms are tassolve
such a problem and their results are thoroughly compared in extensieempance
evaluation.

Since there are no standard benchmarks for the proposed scheduling wede
have used the new generated instances specific for each problenstutdtieas well
as the existing instances for the similar problems from the literature. Although the
available instances usually cover only a part of our approach, all tsigraed algo-
rithms showed very good performance. In most cases, the results weretitivenpe
even better when compared to the algorithms designed to the specific sulbapsoble
of the general concept used in this thesis.

vi



Abstrakt

Tato diserténi prace se &nuje ravrhu a implementaci efektiich modell a algo-
ritm0 protesen praktickych probEBmii z oblasti optimalizaceswobrich proces. Po-
zornost je ¥novana hlavé problematice alternatiich wrobrich postuf, ktee s
sebou pin&dSej moznost velmi flexibilnho zadn pro rozvrhovatulohy.

S ohledem na angtu souvisdgich pra¢ v oblasti kombinatorick optimalizace
je dilem teto pice roifit portfolio existujcich @Fistupl ofeSen, které spojuje ybér
konkrétriho wrobriho postupu a samaodrozvrhowan vybranych operatv jednom
spoléném modelu. Pace se tak &nuje edeEim dvema propojepm temaéim -
zapné vytvderi vhodreho modelu pro zvolgntyp rozvrhovaech Gloh a zadrub
navrhu, implementaci a testawi optimaliza&nich algoritmi profeSeri rozvrhovadch
problemt s alternativami, ktérjsou motivony realymi vyrobrimi procesy.

Matematick model pro uvaovare probEmy vyctaz z notace Resource Con-
strained Project Scheduling Problem (RCPSP) &jeidale roZifena o definici alter-
nativrich wrobrich postu@ s vywitim formalismu Nested Temporal Networks With
Alternatives (NTNA). Navieny model odpoida typicke struktiie wrobrich proceé
a @itom zachoava eSinu fedpokladi a omezenpro RCPSP. Model zahrnuje ob-
novitelré zdroje s libovolnou disletri kapacitou, pestavboe Casy a zobe@ra tem-
poralni omezei (minimalni a maxinalni ¢asow intervaly mezi zéatky operatv
rozvrhu). Oky tomu umanuje naviery model velmi flexibilni pristup k definici
Uloh pro rozvrhoari vyrobrich proceé s mnohatasto podivanymi omezeimi.

Prace se dle \enuje detail@ ffem iznym rozvrhova@m Gloham s alternativimi
vyrobrimi postupy. Prvihlloha zahrnuje kladna Aporre hrany mezi operacemi,
kritériem je minimalizace @ky cekEho rozvrhu. Pro tento prddin byla vytvdena
konstruktivii heuristika, ve kte¥ jsou jednotli¢ operace fidavany a odebrany z
rozvrhu na aklace dynamickch priorit. Motivad pro druhoutlohu jsou Wrobni
procesy, ve ktgrch hraj zasadiroli drahé stroje, u nich je pofeba minimalizovat
financné nakladré prestavby.ReSer je v tomto ffipadé zalzeno na iterativhheuris-
tice, kte@é vyuwZiva lokalni optimalizaci pratasoe disjunktn ¢asti rozvrhu. Kriériem
ve frefi Uloze je minimalizace celkgeh rakladl spojerych s Wrobrim planem. Ty
jsou dany zapre cenou samofrth wrobrich operata za druke penalizacza pozé
dokortere zakazky. PrafeSen jsou vytvdeny dva odBré evoliEni algoritmy, jejicte
vykonnost je dkladré porovrana vellym mnazstvim testl.

Jelikaz je model uvdovary v této p@aci inovativii a prozaltm neexistuj zadra
stadardizovaa testovatdata, bylo pro $echny testy pdiito dvou zdrofi dat - zapré
nové vygenerovaa instance pro kadou uvaovanou rozvrhovadilohu a zadrué in-
stance podobyth probEmi z literatury. Pestde tyto instance reflektujen uiitou
Cast rami uvaovare problematiky, 8echny vytvéerg algoritmy ukazujvelmi do-
brou wWkonnost. Ve eSiné pripadi jsou jejich sledky srovnateka nebo i legi nez
vysledky uadéreé v literatue.
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Nomenclature

List of Variables and Constants

n
0,n+1
m
a,b,i,j,k
A

AS

R

out;

number of activities

dummy activities that start and end the project
number of resource types

general indices

set of activities

set of selected activities

set of resource types

resource type

capacity of resource typ&y

processing time

release time

deadline

duedate

processing cost

weight

tardiness

demand of activity for the resource typ&y,
general temporal constraint (time-lag)
sequence dependent setup time

input label of node in graph

input label of node in graph

binary decision variable that determines the presence of the
activity in the schedule

start time

binary decision variable that determines whether activity
is assigned to a resource uqiof resource typezy



max

2 Nomenclature
Ziu binary decision variable that determines whether activity
is assigned to a resource unit under serialized index
U length of the longest path between activitiendj
Tij binary decision variable of the ILP model
Yij binary decision variable of the ILP model
Tijk binary decision variable of the ILP model
Yijk binary decision variable of the ILP model
Gijk binary decision variable of the ILP model
i binary decision variable of the ILP model
UB high positive constant
Craz schedule length
G general label for graph
174 set of vertices (hodes)
E set of edges (arcs)
Gs graph consisting of selected activities
Gtemp complete graph with temporal constraints
GPree graph with precedence-based temporal constraints
5 out-degree of a node
o; in-degree of a node
Pijl directed path from nodeto nodej
B; ; branching of a graph delimited by nodeand;
By branch of a graph
pred (i) set of direct predecessors of nade
succ (i) set of direct successors of node
M set of all pairs of activities with potential resource conflict
nestedAlt classification for the problems with alternative process plans
in a nested form
STsp classification for the sequence dependent setup times
gpr classification for the generalized temporal constraints
temp classification for the generalized temporal constraints
l;’}m classification for the minimal (positive) time-lags
min classification for the minimal (positive) time-lags
al By standard classification for the scheduling problems
S schedule
CLB lower bound for the schedule length
cyus upper bound for the schedule length
Qcurrent current threshold for the schedule length



Nomenclature

timerp
timerp
priority;
nAdds;
(U

top;
scheduled;
t

tcpu
feas
RF
DF
RC
#res
TOS
#AB
H#APP
PPAct
AOS
NL
AAS

O (N)

lower bound for the activity start time

upper bound for the activity start time

auxiliary variable for the release time constraint
auxiliary variable for the deadline constraint

flexibility of the activity for scheduling

earliest start time with respect to temporal constraints
earliest start time with respect to resource constraints
time window in the schedule

left border of the time window

right border of the time window

current priority of activity

number of scheduling attempts for the activity
resource sequence for resource type

topological order of activity

denotes whether the activity is currently scheduled
time

time used by CPU for computation

percentage ratio of feasible solutions found by the algorithm

release time factor

deadline factor

resource constrainedness

number of resource types

total order strength

number of alternative branchings

number of alternative process plans

average number of activities per process plan
average order strength

maximal level of nested alternative branching
average activity slack

linear complexity
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NTNA
IPPS
CPU
RAM
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PAR
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NP
IRSA
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Resource Constrained Project Scheduling Problem
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Goals and Objectives

This thesis is dedicated to the scheduling problems where some parts of thizoes
processes can be performed in maiégrnative, ways. Three problems based on the
same model are studied and both the exact solution and the heuristic algorithm are
developed for each of them. The problems differ in the considered aegamtstas well

as in the objective function, which determines the goal of the optimisation. The goa

of this thesis were set as follows:

1. Propose a common representation for the scheduling problems that inklude a
ternative processes.

2. For each studied problem, establish a mathematical formulation using the pro-
posed representation.

3. Develop an algorithm to solve large instances for each of the problems.

4. Compare the proposed solution methods with the similar works from the litera-
ture.

5. Propose the methodology for evaluation and comparison of differertigolu
approaches.






Chapter 1

Introduction

In the recent years, manufacturing (and other) processes are bgamaria and more
complex and flexible. On one hand, the companies need to utilize expensiltecpro
tion resources - machines, workforce, additional tools - to make the prodwedtion
fective in terms of their expenses. On the second hand, they need ty séititfe
demands of the current market, which is very dynamic. Therefore, itris hene-
ficial, if not even necessary, to define the process plans as precssphysaible and
then let an artificial system to resolve which operations and in which ordebwill
performed according to the resource environment and the given jobs.

This thesis is focused on the scheduling problems, for which there is a high fle
ibility in the problem definition. The most of the work is dedicated to the scheduling
problems with the alternative process plans, especially the problems relatieel to
production processes. In case of the alternative process plans, éhatiops can
be performed in various ways, using fully automated machines, semi-automated
chines or performed manually with some special equipment. Three relateld i
with the alternative process plans are addressed in detail.

The first studied problem is the scheduling of the wire harnesses production
which involves the alternative process plans, generalized temporal @onstfpos-
itive and negative time-lags) and sequence dependent setup times. dhis ¢
minimize the total schedule length. For the second studied problem, the goal is to
maximize the utilization of the expensive machines in the production of electrical
contacts and, therefore, the time spent by setting up such resources is minintized
goal in the third studied problem, motivated by the production in the printing com-
pany, is to minimize the total production cost. In this case, the hard constraims (lik
deadlines) are substituted by the soft constraints that are reflected in tlutivebje
function.



10 1.1 Contribution and Outline

1.1 Contribution and Outline

The main contribution of this thesis is the formulation of the novel scheduling prob-
lem, where the resource constrained project scheduling problem is egtéydhe
definition of the alternative process plans - denoteB@PSP-APPSuch alternative
process plans specify the rules for the selection of activities, i.e. whickitagiwill

be present in the schedule and which will be not. Therefore, a newialesriable

has to be established and, consequently, the search space is more cortipExgtA
there were several attempts to incorporate the alternative choices into dwkob
process, there is no particular work dedicated to the general conictiyet problem

as considered in this thesis.

The proposed model encapsulates shared resources with an arbgcetedca-
pacity, selection constraints defined via the alternative process plansaligagtem-
poral constraints among activities and sequence dependent setup timése Eon-
sidered problem, we propose a formal representation based on the exgtogiches
from the literature. Finally, the mathematical formulation of the common constraints
is formulated as the mixed integer linear programming model.

The second contribution is the consideration of three different specifidgms
based on the proposed RCPSP-APP problem. Each particular problentivatet
by the different needs of the production companies and, therefore jectiob func-
tion as well as several specific constraints and assumptions are adjustestedgpa
Therefore, the mathematical model is formulated for each specific problaresely
as well.

The third contribution is represent by the heuristic solution approach fdr eac
considered problem. The algorithms are designed with intention to solve the large
instances for which the exact methods are not able to find the solution ofshredie
quality in a reasonable time. For the first two problems, we have developedame
structive algorithms and for the third one, two different evolutionary algorithras a
adapted. The proposed algorithms are evaluated on a variety of instanuteding
the new generated benchmarks as well as the existing datasets for the siotilams
from the literature.

The fourth contribution lies in an evaluation metric for the characterisation of the
instances and in the consequent methodology of testing different algorithmeewith
spect to the proposed evaluation metric. The main focus is paid to the strywotypal
erties closely related to the definition of the alternative process plans. Suelria
enables one to distinguish between the effectiveness of the proposeithahgofor
different types of instances, reflecting e.g. the ratio of the alternativélgdgrarts or
the tightness of the temporal constraints. The proposed evaluation metric issa nece
sary prerequisite for a fair comparison (not only) of the proposedstaualgorithms,
since the complexity of the instance is dependent on many factors, not ortheon
number of activities.
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The main contributions of this thesis are, namely:

a) formulation of the novel scheduling problem with alternative process plans
based on the RCPSP formalism,

b) consideration of three related problems with different criteria togetheravith
mathematical formulation,

¢) a heuristic algorithm for each considered problem designed for sobfitige
large scale instances,

d) an evaluation metric for instances and a testing methodology for the comparison
of different solution approaches.

The thesis is organized as follows: Sectib@ provides the literature overview
related to the problems considered in this thesis. Chapigrdedicated to the de-
scription of the general scheduling model, including the formal classification. The
next three chapters contain the specific problems from the area ofudictgedith
alternative process plans. The RCPSP with alternative process plugeraeralized
temporal constraints is studied in Chap®mwhere the definition of the evaluation
metric for the instances and the testing methodology for different solution agipes
is included as a part of the computational experiments. Next, the total setup time
minimization objective function is considered in Chapteand finally, Chapteb is
dedicated to the problem where the total production cost is being minimized.- Chap
ter 6 concludes the work.

1.2 Related Work

To address the problem involving alternative ways how to select andhessiigities
(operations, tasks) to the schedule, several modeling approaches aamberf the
literature. In the most cases, some type of special graph is used to modetsbagqe
of alternatives in the scheduling problem. To avoid any misunderstandingss le
assume that the notiomstivity, operationandtaskhave the same meaning and the
term activity we will be used in this thesis. Furthermore, to address the presence
of alternatives in the scheduling, the teatternative process planwill be used in
the rest of the work. The benefit of the alternative process plansita@fifior the
production processes is shownuigher(2003, where the need of having an effective
solution methodology is appointed and emphasized by the experimental results.
Beck and Fox(2000 established thélodified Temporal Graplwith so called
XorNodesAndNodesandActivityNodedo model the possibility of choice among the
alternative process plans that are interconnected via the aforementiotes! feach
activity has a certain probability to be assigned (selected) into the finadsiehand
the authors proposed a propagation technique for the probability valegththe
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graph with both the parallel parts (delimited BpdNodeysand the alternative parts
(delimited byXorNodes.

Another approach to model the alternative process plans in scheduling, similar
to the Modified Temporal Graph methodology, was presenteBaiak (2004 and
Bartak andéepek(ZOO?, 2008. The authors used a special type of graph callem-
poral Network with Alternativeswvhich is a directed acyclic graph where the nodes
represent activities and the arcs correspond to temporal constraintgcal.oon-
straints, which represent alternative process plans, are specifedththe input and
output labels of each node. If only the structure of the network is coresidee. tem-
poral constraints are ignored, we obtain Barallel/Alternative Graph(P/A Graph.

Both Beck and FoX2000 andBartak andéepek(ZOO?, 2008 focused on the repre-
sentation of the alternative process plans, the construction of the schedlfilis itot
considered.

Kis (2003 studied a job shop scheduling problem with processing alternatives
where the goal is to minimize the makespan. Each job is represented by d specia
graph consisting of two types of subgraptend-subgraphandor-subgraphswhich
are both composed by more routes.rdAiteis a directed path from the first node to
the last node of the subgraph. All routes have to be scheduled foraedesubgraph
while exactly one route has to be selected for each or-subgraph.

Finally, Shao et al(2009, Leung et al(2010 andLi et al. (2010 dealt with the
problem of integrated planning and scheduling (IPPS), which is close tolirshjmp
problem with alternative process plans, since each job includes more tiltemays
(process plans) to complete the product. The goal is to select a procedsmpdach
job and to schedule job activities such that the schedule length is minimized. The
IPPS problem was studied alsoMoon et al.(2002 where the problem is extended
by the unit loads of products and transportation times among the machines.

Capacho and Past{2006 2008 andCapacho et a2009 studied an assembly
line balancing problem with alternatives, where certain parts can be peatiessev-
eral alternative modes and the goal is to balance the workload of the avaiable
sources.

1.2.1 Resource Constrained Project Scheduling Problem

The resource constrained project scheduling problé@RCPSP is well known NP-
hard (sedlazewicz et al(1983) problem, with many real applications. Several exact
solution procedures have been proposedgymeulemeester and Herroel€i®92),
Mingozzi et al.(1999, Brucker et al.(1998 and Dorndorf et al.(2000. For larger
problem instances, heuristic and metaheuristic solution procedures hewepte
posed, see e.g. an overview published Kxlisch and Hartmanr(200§. Other
overviews of the problem can be foundlameli et al.(1993, Ozdamar and Ulusoy
(1995, Blazewicz et al.(1996, Herroelen et al(1998, Brucker et al.(19993 and
Kolisch and Padma(2001).
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Herroelen et al(1999 and Brucker et al.(19999 summarized the notation of
the RCPSP problems and their extensions using the well-knejgy notation
(Blazewicz et al(1983). Hartmann and Briskor(010 published an extensive sur-
vey with many various forms and extensions of the resource constranogecip
scheduling problem. The concept of activities, temporal constraints, nEsgon-
straints and objective functions are discussed and the state of the art lgesagum-
marized.

1.2.2 Extensions of the RCPSP

One of the existing extensions of the RCPSP problem ismhb#éi-mode resource
constrained project scheduling problgfdRCPSP where each activity can be exe-
cuted in one of several alternative modes with different processing timessogrce
demands (se®e Reyck and Herroele(l999; Neumann et al(2003). Moreover,
multi-mode problem includes also the definition of non-renewable resources-in ge
eral case. The basic goal of the problem is to determine a mode and a stamrtime f
each activity, such that the total duration of the project is minimized.

De Reyck and Herroele(1999 proposed a local search based methodology for
MRCPSP with generalized precedence constraints with objective to minimize the
project durationNeumann et al2003 formulated a mathematical model and a gen-
eral algorithm scheme for the MRCPSP problddeblaere et al(2011) proposed an
exact scheduling procedure based on the Branch & Bound algorithm angrals
posed a tabu search heuristic for the MRCPSP with a criterion to minimize thetproje
duration. The currently best known search procedure for the proMGPSP is
the scatter search presented/an Peteghem and Vanhouci011). An overview of
all the available metaheuristic solution procedures for this problem can be fou
Van Peteghem and Vanhouc{&014).

Salewski et al.(1997) considered the RCPSP with mode identity constraints,
which is a generalization of the multi-mode case where the set of all jobs is parti-
tioned into disjoint subsets while all activities forming one subset have to lsegsed
in the same modeKuster et al.(2006 proposed the extended resource constrained
project scheduling problemx{RCPSF, which incorporates the concept of alterna-
tive activities. The authors prove that any multi-mode RCPSP can be formulated
as anx-RCPSP since each mode of an activity can be represented as an alternative
with exactly one activity. The authors focused on the rescheduling prob¥tinh
is used for a comprehensive disruption managemgetlenbrink (2012 presented
the RCPSP with a flexible project structulRGPSP-P} which is is a generaliza-
tion of the RCPSP-APP in terms of the structure and logical constraints. ©bhkepr
involves the non-renewable resources but there are no additionataiotsslike time-
lags or setup times; considered objective function is the makespan.
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Chapter 2

Scheduling Model

This chapter is dedicated to the description of the new proposed model fahieLd-

ing with alternative process plans. The motivation for the research is, in $hpltice,
the scheduling of the production processes which typically involve more thanane
how to complete the product. Not only are the resource requirements difféue
the processing times, precedence relations and also the number of activiteehin e
process plan can differ in general as well.

The process plan defines a set of activities such that their executionttetios
completion of a product. Each process plan is formed by a set of disjunctiviias
where no activity can be included more than once in a process plan. On #re oth
hand, an activity can be included in an arbitrary number process plansis&\e
termalternative process plarsince there are more process plans in the studied prob-
lem while only one of them has to be executed. Hence the goal of the dittgedu
is to choose a subset of all activities that forms one process plan aeadudelthem
according to the given criterion.

Traditional scheduling algorithms, accordingBtazewicz et al(1996; Brucker
(2007, assume exactly given set of activities to be scheduled, i.e. only onegsroc
plan is defined. In this thesis, the traditional scheduling approach is extéydad
definition of alternative process plans, i.e. the traditional time scheduling and the
decision which process plan will be executed are both integrated into obkepr.

The studied problem is formulated as an extension of the resource coedtrain
project scheduling problem (RCPSP). Although the RCPSP is a well-studagd pr
lem, there were only a few attempts to include the alternatives into the scheduling
process. However, the alternative process plans can be found agal part of the
production processes and therefore we have decided to extend the R@REM
by the definition of the alternative process plans. The following sectionsdeav
detailed description of the new proposed model for the resource constrawjedtp
scheduling problem with alternative process plans.

15
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2.1 Overall Problem Statement

The general problem studied in this thesis is identified by the set of activities,
set of resources, the set of constraints and the objective functionedeébrof three
specific problems in this thesis, there are some differences in the definitiarh arie
described in more detail. This section provides a general overview of the coparton
of the proposed scheduling model. First, the overall description of the pradlero-
vided, then the detailed definition of the nested temporal networks with altermative
used for the problem representations, is stated. Subsequently, all $idereql con-
straints are described, the objective function is discussed and finallyagsification

of the studied problem is provided.

Let the production consist af indivisible operations performed on the specified
machines according to the process plan. Consequently, there is arset dfhon-
preemptive activitiesd = {0,...n + 1} to be scheduled on a set of resource
typesR = {R; ... R,,} where each resource tyg®, € R has a discrete capacity
0, > 1, i.e. 6; resource units are available for resource tye Each activityi is
characterized by the processing time> 0, the release time; > 0 and the resource
demandr? > 0 for the resource typ&;, € R. Only mono-resource activities are
considered in this thesis, meaning that each activity demands exactly angces
i.€. > vp.erir, >0 (1) = 1foralli € {1...n}. The processing time of the activity
specifies the time needed for its execution, which must be performed withountpree
tion (interruption). Release time determines the earliest time where the activity can
be scheduled. Activitie8 andn + 1 with py = p,41 = 0 andrf = rRF ; = 0 for
all R;, € R denotedummyactivities such that activitg is a predecessor and activity
n + 1 is a successor of all other activities. Precedence relations together with the
definition of alternative process plans are specified using an NTNA formdtiem
Section2.3).

In the rest of the thesis, the problem defined in the previous paragragudt is
dressed as thesource constrained project scheduling problem with alternative pro-
cess plangRCPSP-APP Since all the activities demand for, at most, one resource
type and there are no additional resources, the problem can be adtledss as the
machine scheduling problefseeRand(1977); Blazewicz et al(1991)). Nonethe-
less, the term RCPSP-APP will be used in this thesis, since the scheduling model is
designed with intention to establish a general notation for the problems with alterna-
tive process plans.

2.2 Goal of the Scheduling

The goal of the scheduling for the problem described in the previous sestton
select a subset® C A of all activities (i.e. one process plan) and then to schedule
AS to a given set of resources while the value of the objective function is minimized
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To represent the schedule, three types of variables are considered:

e v; € {0,1} - determines the presence of the activity in the schedule. # 1,
then activityi is present in the schedule and it is calleelectedactivity; if
v; = 0, then the activityi is not in the schedule and it is callegjectedactivity.

e s; € N - determines the start time of the activity in the schedule. If the activity
is rejected ¢; = 0), then its start time is arbitrary and it has no significance.

e zig, € {0,1} - determines whether activityis assigned to a resource ugiof
resource typei,. As for the start time, if activity is rejected, then;,, = 0.

The values of the of all the variables are mutually constrained by a set set of
selection, temporal and resource constraints. The constraints for seledidtivities
are defined in Sectioh.4, the temporal constraints are given in Sectiomand finally,
the resource constraints are defined in Secligh The objective function, as well
some additional constraints, are defined for each considered prolanassy.

2.3 Problem Structure Representation

The structure of the scheduling problems is, in the most cases, representegl by
Activity-on-NodgAoN) networks. The nodes of the AoN graph represent activities
and edges represent precedence relations. On the contrary, inbser@gation using
the Activity-on-Arc(AoA) networks, activities are represented by the arcs of the net-
work and the nodes represent events, i.e. completion of some activities aethtbe
also the precedence relations. Any problem represented by the AoN) (Ast&nce
can be transformed to a problem represented by the AoA (AoN) instaaceahere
is a mutual transformation for any problem. The similarities and differencestbf bo
approaches are summarizedkalisch and Padma(R00]). Both representations for
the same instance are depicted in Figeire

The representation of the problems studied in this thesis is based on the Activity-
on-Node model, each activity therefore corresponds to one node. |d$sccAoN
networks are designed for the problems, where all the underlying acitidiee to be
scheduled and, therefore, an extended model have to be used in tlod tasalter-
native process plans. The attempts to propose a modeling approach forgtalstn
problems with alternative process plans have been maBledk and FoxX2000, Kis
(2003 andChryssolouris et al(1989, but the models are too restrictive and/or not
enough general for the representation of the RCPSP-APP problem.

2.3.1 Nested Temporal Networks with Alternatives

Another approach to deal with the (not only) scheduling problems with atteena
process plans in general has been proposeBdiak andCepek(2007), who pro-
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AoN k
(a) AoN networ (b) AoA network

Fig. 2.1: Example of the AoN and AoA representation of the same instance

posed thdemporal Networks with Alternativ€ENA). The TNA is an acyclic directed
graph where nodes represent activities and edges represent tbocgmstaaints.

Each nodé of the graph (corresponding to activityhas an input label; and an
output labebut;, denoting the type of input and outparanching which can be either
parallel or alternative If there is a parallel branching at the output (input) of node
i, thenout; = 0 (in; = 0) and, vice versa, if there is a alternative branching at the
output (input) of node, thenout; = 1 (in; = 1). If activity < has only one predecessor
(successor), thein; = 0 (out; = 0). Furthermore, each nodés assigned a binary
valuew;, indicating whether the corresponding activity will be present in the sd¢bedu
(vi = 1) or not (v; = 0).

According toBartak andéepek(ZOO?), the problem in assignment of values
for the TNA instance is NP-complete in case that some values are predéfirntider
words, if some activities are selected a priory, then the decision whetherekists a
feasible assignment of values for the whole instance is NP-complete problem. The
solution, motivated by the real processes, lies in the more restrictive form ®@f\tAe
calledNested Temporal Networks with AlternatiyB§ NA). The assignment of the
values for the NTNA instances is proved to be a problem with polynomial coritylex
(seeBartak andCepek(2008).

The NTNA is a special form of the TNA, where the parallel and altern&traech-
ings are arbitrary nested one in another but no other interaction among tiehbra
ings is allowed. LetG = {V, E} be a directed acyclic graph, whevé = A and
E = {V(i,j) € V?:iis adirect predecessor ¢}. Furthermore, leV (G) be in a
topological order, i.ei < j for all (i,j) € E (G) (see e.gKorte and Vyger(2000).
Finally, leta € V (G) be a node with out-degree” > 1 andb € V (G) be a node
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with out-degre&, > 1. Then a connected component®felimited by nodea and
b is called abranchingif and only if all the following properties hold:

e a<b

e a € Py, for each directed pathy, ; from node0 to nodeb in G
® b€ P41 for each directed path, ,, ) fromaton + 1in G
e out, = 1ny

e bis minimal for a giveru

A branching in the NTNA instance, delimited by nodesndb, is denoted as
Bap = {Vi € V(G): 3P, ;) N3Py} U{a,b}. If for eacha € V(G) : 6F > 1
there is a corresponding € V' (G) such thatB3, ; is a branching as defined in the
previous paragraph, then gra@tcorresponds to the NTNA instance. Each branching
consists of a set of branché,, = {Bi1 ... Bs+(,)}, where B, denotes thék-th
branchof such a branching. Each branéh € B, is a set of activities that form a
connected component of gragh starting by some successor of nadand ending
by the corresponding predecessor of nade

Fig. 2.2: Example of the NTNA instance
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An example of the NTNA instance is depicted in Fig@r& For a better illustra-
tion, parallel branchings are denotedR&Rand alternative branchings are denoted
asALT. The meaning of the parallel branching is the same as for the scheduling prob
lems without alternatives - after the first activity is scheduled, all the ssocebave
to be scheduled as well. In case of the alternative branching only ocessaar has
to be scheduled, i.e. only one path through the corresponding part gfehk has to
be selected. With respect to the scheduling model, the constraints for the seddction
activities for each branching, ; are:

¢ both activitiess andb are selected/rejected simultaneously,

e all successors ofi and predecessors ofin the parallel branching are se-
lected/rejected simultaneously,

e only one successor af and one predecessor bfare selected ift: andb are
selected in the alternative branching,

e all successors aof and predecessors bfare rejected it andb are rejected in
the alternative branching,

The constraints for the selection of activities (represented; lwalues) resulting
from the NTNA instance are stated in Sectidd. The presented NTNA formalism
is used for the representation of the problem structure for all scheduloigepns
considered in this thesis.

2.4 Selection Constraints

The selection constraints determine which activities will be selected to be & gzt o
schedule and which will be rejected. The selection constraints are deroedlie
NTNA instance as follows:

1. When there is a parallel branching at the input/output of selected aét{vity/
out; = 0), all its direct predecessors/successors have to be selectedyvilfyacti
1 is rejected, all its direct predecessors/successors have to be rejected

2. When there is an alternative branching at the input/output of selectsityacti
i (in;/out; = 1), exactly one of its direct predecessors/successors has to be
selected. If activityi is rejected, all its direct predecessors/successors have to
be rejected.

3. When there is a simple precedence between activitéasl j (i has only one
successof and vice versd has only one predecess)rboth activities have to
be selected/rejected simultaneously.

4. Dummy activitie®) andn + 1 have to be always scheduled.
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The resulting constraints are:

vy = Z vj Vie A:out; =1 (2.2)
Vj€suce(i)

vi= Y v VieAd:ing=1 (2.2)
Vjepred(i)

v; = V(i,j) € A% s out; = 0 Nin; = 0 A j € succ (i) (2.3)

dwix1 (2.4)

€A

where :

succ (i) ={Vj € A:(i,j) € E(G)},pred(i) ={Vj € A:(j,i) € E(G)}

Any assignment ofy; values that fulfills the equationg.()-(2.4) corresponds to
one process plan. The existence of a non-empty solution is always ernbargc
to the nested structure of the NTNA instance (Bestak andéepek(Zooa). The
selection constraints are the same for all the scheduling problems considéne in
thesis. A feasible assignment of values and the resulting selection of activities
corresponding to a feasible process plan is shown in FigukeThe assignment of
v; values and the resulting process plan formed by selected activities is oreesik th
feasible process plans that can be found for the considered instance.

(a) Assignment of; values (b) Selected process plan

Fig. 2.3: Feasible assignment@gfand the resulting process plan
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2.5 Temporal Constraints

The formalism of the Nested Temporal Networks with Alternatives allows also to
define the temporal constraints for all precedence-related nodest{es}ivA pair

of real numbersa; ;, b; ;] is assigned to each edge j) € £ (G), whereq; ; is the
minimal time distance of start times of activitieand; in the schedule ang} ; is the
maximal time distance of the start times. In this thesis, the constraint for the minimal
time distancey; ; is involved in each of the considered problems. More precisely, the
concept ofyeneral temporal constrainta the form ofpositive and negative time-lags

is considered.

The positive and negative time-lags (shortly time-lags) are defined suck tha
lij < s; forall (4,7) € A2, wherel;; € R is the length of the time-lag and is the
start time of activity: in the schedule. The constraints imposed:py andb; ; in the
NTNA instance form a special case of the time-lags, since they are regtrictbe
precedence-related activities only. In this thesis, we consjgder 0 andl;; < 0 for
all (¢,7) € E(G), i.e. the successor cannot never start before its predecessor in the
NTNA instance. If there is no temporal constraint for a pair of activitieg) € A2,
thenlij = —0Q.

Some specific assumptions with respect to the time-lags are given for each
scheduling problem separately. The common assumption is that there is no cycle
with a positive length in the time-lags definition for any process plan. For this
purpose, letd® C A represent a subset of activities corresponding to a feasible
process plan. Furthermore, l&f“™ be a graph with node¥ (G'™?) = A5
and edgesE (G'™?) = {V(i,j) € V (G'*") x V (G*")} where each edge
eij € E (Gtemp) has the weight (length) equal {gy. To detect the cycle with a
positive length inG'*™?, the longest paths are calculated by Floyd's algorithm (see
e.g. Korte and Vygen(2000). If G contains any cycle with a positive length,
then there will be at least one node for which the longest path to itself isegrtban
zero. On the contrary, if the graph does not contain any positive ahee the longest
paths for each node to itself is equal or less then zero. We assume tleastherpos-
itive cycle for any.A® C A. In case that there was a positive cycle for a process plan,
there would be no feasible solution for such a process plan.

The common temporal constraints for all the problems studied in this thesis are as
follows:

s;>ri—UB-v; Vie A (25)
5;>8i+1i; —UB- (2 —v; —v;) Y (i,7) € A? (2.6)
UB > VZZE;\ max <pi + g}gﬁ (stij) ,g}gﬁ (lij)> (2.7)

Formula @.5) ensures that no selected activity is scheduled before its release time.
Thanks to the high positive constaiif3, the release times for rejected activities are
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always satisfied. Formul& (6) defines the positive time-lags for all pairs of selected
activities. The positive time-lag is considered if and only if both activities elexsed
and, therefore, the rejected activities do not influence the schedule at all.

2.6 Resource Constraints

The resource constraints are based on the commonly used assumption lhisg-eac
source unit can process, at most, one activity at the time. In other wardgadr
of activities cannot overlap on the same resource unit in the same time. Tdmasec
straightforward resource constraint is that each selected activity ignadsthe ap-
propriate number of resource units of the specified resource type. édnwthds, the
resource demand of each selected activity is satisfied. The resoumeade of the
rejected activities need not satisfied, since such activities are not iniibdide at all.

In addition to the before mentioned assumptions, we consideseaeence de-
pendent setup timdalso calledchangeover timgghat represent an additional time
needed for setting up the resource between the consequently schedtigés A
setup timest;; > 0 determines the minimal time distance between the completion
time of activity : and start time of activityj if 7 and;j are scheduled consequently
on the same resource type and they share at least one unit of suatcesspe. We
presume that the setup times satisfy the triangular inequatlity- st ;. > st;;, for all
{i,j,k} € A3 (Brucker, 2007).

The resource constraints, including the setup times, are then specifatbas f

> zik =RE-v; VieV,vkeR  (2.8)

Ziuk+zjvk—1§1_yij V(i,j)EM,V/{TER,VUE{l...Qk} (2.9)
—zij + i <0 V(i,j) e M (2.10)
Si+pi+5tij < Sj+UB- (1_55@]+y1])+UB (2—’(}1‘—1}]')

V(i,j) e M (2.11)
Sj +pj +Stﬂ < s; + UB - (xl-j +yij) +UB- (2 — V5 —Uj)

V(i,j) e M (2.12)
where :
Tij, Yij € {0, 1} M = {(i,j) e A2 i< jnTk: Rf > 0/\R§ > O}
For the purpose of the resource constraints definition, two auxiliary Vasiflave

to be introduced. First, let;; be a binary decision variable such that = 1 if activity

i is followed by activity;j on the same resource type ang = 0 otherwise. Second,
let y;; be a binary decision variable such thaf = 1 if activities i and j do not
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share any resource unit on any resource in the schedule andotieeitbie resource
constraints need not to be considered gnd= 0 otherwise, i.e. there is at least one
resource unit of the given resource type assigned tobatialj. Furthermore, lei\t
be a set of all activity pairs for which there is a potential resource cob#isveen the
two activities in such a pair.

Equation £.8) ensures that the resource demand of each selected activity is sat-
isfied while there are no assigned resource units for the rejected actiibesiula
(2.9 determines the pairs of activities (valuesygf) for which there might be a re-
source conflict, i.e. activities that share at least one resource uné ehthe resource
type. FormulaZ.10 only determine the;;; values for all pairs of activities for which
there cannot be an actual resource conflict. Finally, the assumption ofemnlayeping
activities on the same resource unit in the same type is defined using a double in
equality .11 and €.12). For each pair of activitiesandj competing for the same
resource unit of the same resource type, eith@ecedeg (s; + p; + st;; < s;) orj
precedes (s; + p; + stj; < ;).

2.7 Classification of the problem

For the classification of the problem described in the previous text, we use the
well known «|3|y notation (seeBlazewicz et al.(1996), wherea defines the re-
source environment; stands for the specification of activities and additional con-
straints andy defines the objective function. AccordingBoucker et al(19993, the
above described problem can be classified&3$nested Alt, temp, STsp|— where

PS stands for the resource constrained project scheduling probleny denotes
the generalized temporal constraints &iflsp represents the sequence dependent
setup times. According tblerroelen et al(1999, the problem can be specified as
m, 1|nestedAlt, gpr, s;;|— wherem, 1 defines the renewable resources with constant
availability in time, gpr represents the generalized temporal constraintssgnde-
notes sequence dependent setup times.

For both classifications, the field is extended by the termested Alt to denote
the presence of the alternative process plans in the nested form (gEmn3e3). In
this thesis, we will address the considered problem agefwirce constrained project
scheduling problem with alternative process plaf®CPSP-APPSince there are no
additional resources, the problem can be addressed also asatiigne scheduling
problem yet the term RCPSP-APP will be used throughout the thesis.

The objective function is not specified in the classification since the criterion is
specified for each of the considered scheduling problems separatalythe cases,
the objective function is a convex function dependent on the selection oftiestand
their start times and order on the resources.
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RCPSP-APP with positive and
negative time-lags

The motivation for the research is the scheduling of production processes typich
ically involve more than one way how to complete the product. Such alternative pro
cess plans occur in the production of wire harnesses, where operatipnsdiace

a wire harness can be performed in various ways, using fully automatednasch
semi-automated machines or manually operated ones with special equipment. The
problem can be formalized as an extension of Btgtemp, STsp|Car Problem.
Therefore, we deal with the resource constrained project schedutigem which

is further extended by the positive and negative time-lags, sequeneadba setup
times and alternative process plans. Time-lags (also called generalized &&ogor
straints) are useful to specify the relative time position of two activities in gé&ner
Sequence dependent setup times serve to cover the time needed to ceaamdh

ment or set up a machine between two different operations. The optimality amiterio

to minimize the schedule length. The combination of generalized temporal constraints
and logical constraints (in form of alternative process plans) makegdiem even

more difficult since we have to introduce new decision variables into the pnoble

This chapter presents the resource constrained project schedulisigmraith
alternative process plans (RCPSP-APP) motivated by the real produftiotre
harnesses. Sectioh1 contains the statement and the mathematical model of the
PS|nestedAlt, temp, STsp|Cra. problem with the representation based on the
RCPSP-APP formalism. The model also considers sequence dependentirses
and generalized temporal constraints (positive and negative time-lagsgurstic
method, where the choice of process plan and traditional scheduling aneekesi-
multaneously, is described in Sectidr?. Computational experiments together with
the novel evaluation metric for the instances and the testing methodology foediffe
algorithms are provided in Secti@?3. Section3.4 concludes the work.
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3.1 Problem Statement

The major part of the problem considered in this chapter is defined in thalbve
problem statement in Chapter Therefore, the problem includes the set of activities
A, the set of resourceR and the selection, temporal and resource constraints as
defined in Chapte®. In addition to this, each activity € A has a deadlind; > 0,
which is the hard constraint for the activity completion time in any schedule. The
key part of the problem statement are the positive and negative time-lagsthbe
defined for any pair of activities.

To represent the problem structure, the formalism of the Nested Tempetal N
works with Alternatives is used as described in Sectiohl An example of the
NTNA instance with all the necessary data for the scheduling problem istddpic
Figure3.1 In addition to the temporal constraints imposed by the direct precedence
relations, there are two further minimal time-lalgs = 3 andiy;14 = 6 and one
maximal time-lagyy = —16. The setup times are given for each resource separately;
there are no setup times for resouResince it is dedicated to dummy activities only.

The goal is to minimize the total schedule length, also catte#tespanwhich is
denoted a€’,,,,, and is equal to the completion time of the last activity in the sched-
ule. The described problem can be classified’&$nested Alt, temp, STsp|Craax
or m, 1|nestedAlt, gpr, s;;|Cmae USING the same classification schemes as in Sec-
tion 2.7. In the rest of the chapter, only the first notation will be used.

p=[0,8,2,1,3,2,1,5,6,4,3,7,4,3,6,0]
=[0,0,0,6,6,6,6,5,0,0,2,5,5,5,0, 0]
d=[5,9,9,9,9,9,9, 15, 25, 15, 21, 25, 23, 26, 30, 30]
res=[3,1,1,2,2,1,1,1,2,2,2,1,2,1,2,3]
R=[0,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 0]
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Fig. 3.1: Example of the NTNA instance
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3.1.1 Mathematical Model

In this section, the mathematical model for tR&|nested Alt, temp, STsp|Cmax
problem is formulated. Except the constraints imposed by the deadlines of astivitie
(3.1, all the formulas in the mathematical model below are taken over from ChHapter
All the parameters, constants and variable domains are the same as in Chapter
well. The objective is to minimize the makespan, which is defined as the maximal
completion time over all the activities in the schedule.

3 a . .
min <gilex (si + pl)>
subject to:

(2.1) — (2.12)
si+pi <di+UB-(1—v;) Vie A (3.1)

3.1.2 Problem Complexity

Let us focus on the complexity of the problem considered in this chaptepoldem
PS|temp, STsp|Chmaq, i-€. the case without alternative process plans, is NP-hard
since itis a generalization of ther;, de |C'maz Problem (see reduction of this problem
from a 3-partition problem iLenstra et al(1977). If the resource constraints are
omitted, we have & Soo|temp|Ci,q, Problem, which can be solved in polynomial
time (e.g. using linear programming while eliminating the resource constraints). On
the other hand, the problefSoo|nested Alt, temp|Cinaz, IS NP-hard, despite the
resource constraints relaxation, seepek et al(2012 for more details. This leads

to the observation that the computation of the earliest start times for all activities
i € Ais an NP-hard for the probler®S|nested Alt, temp, STsp|Cha SiNCE the
PSoo|nestedAlt, temp|Crnqy pProblem is a sub-problem of finding the earliest start
times for all activities.

3.2 Heuristic Algorithm

SinceP S|nested Alt, temp, STsp|Cmaz IS an NP-hard problem, the optimal solution
can be obtained, in reasonable amount of time, only for small instances rg®@ira
stances, we propose a heuristic algorithm that does not ensure findiogtiaral
solution, but it is able to handle instances with a significantly larger amount of acti
ities. The idea of this algorithm, called Iterative Resource Scheduling with Akerna
tives (RSA, is based on an IRS algorithm fétS|temp, st;;|Cpae inspired by soft-
ware pipe-lining and presented Rau (1994 and extended bylanzlek andSiicha
(2009 who focused on the acyclic scheduling problem and introduced so ¢aked
give resourcesnto the problem. It is a constructive method where activities are
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being added to the schedule according to their actual priority or being esivibv

the partial schedule is not feasible. The input of the algorithm is an instdrtbe o
PS|nestedAlt, temp, STsp|Cae Problem. The output of the algorithm is a sched-

ule S determined by the selected activities, their start times and assigned resource
units, i.e. S = [s, v, z]. The main purpose of the proposed heuristic is to deal with
the problems where a feasible schedule cannot be found in polynomial tireadnal

case. The optimization of th&,,,,. criterion is achieved by the gradual tightening of

the constraint for the schedule length.

3.2.1 Initialization

The algorithm starts with the estimation of the bounds for the schedule length.
The upper bound is computed @82, = Y max (pi + maz (st;j) , max (lij)>

VieA VieA VieA
(seeBrucker et al. 1999). The lower bound is computed &&-2 = sLB, | ie.
the lower bound of the earliest start time of activity+ 1. For this purpose, let
G'™? pe a directed graph with nod@s(G**?) = A and edgest (G'*™?) =
{(i,j) € V(G™™P) x V(G'™P) : ;; # —oo} with weights equal td;;. Further-
more, let GP™¢ be a directed graph with noddg(G?*c) = V(G!*™?) and
E(GFree) = {(i,j) € E(G™™P) : iis a direct predecessor gfin the NTNA}.
Then the estimated%Z  is equal to the shortest path length between nadasd
n + 1in GP"*¢ computed by Dijkstra’s algorithnKrte and Vygen2000).

In the original IRS algorithm, the priority of an activity is equal to its longest
path length to the terminal activity + 1. Due to NP-hardness of the longest path
lengths computation in our case, we use only the estimation retrieved¥f8i#, i.e.
negative time-lags are omitted. Moreover, we have to distinguish prioritiesdiego
to alternative process plans. Therefore, the priority of an activity asge with its
estimated distance to the end of the schedule and decreases with the length of th
alternative branch in which the activity is included. To compute priorities, wedat
aprior; = €1 - Uint1 — €2 - Ugpen,close TOr €aCh activity: wherew; ; is the longest
path length between nodésand j in G'"?, the open andclose are activities that
start and terminate the minimal alternative branch containing activéiiyd ¢; and
co are constants. Minimal alternative branch for activitis the alternative branch
(see SectiorB.1) containing activity; such that there is no other alternative branch
containing activity; with the lower number of activities. In the example in FigGré
the open andclose for activity 5 are activities and6 respectively. For activity,
the open andclose are activitiesl and8. Based on the algorithm testing on various
instances, the best performance is achieved when the longest pathtetig¢hend
of the schedule is given higher influence on the priority value (wecuge = 5/3).
Finally, the prioritypriority; of each activityi is set to a value equal to the position of
its aprior; value in the ascending order of albrior values. In other words, activity
with the lowestaprior value will have priority equal td, next activity will have
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priority equal to 2 and the activity with the highesgirior value will have priority
equal ton + 2.

3.2.2 Mainloop

In each iteration of the main loop, the functigimdSchedule tries to find the sched-

ule with the given upper bound while the number of steps is limited by the param-
eterbudget that is usually set as a number of activities multiplied by the parameter
budget Ratio. If a feasible schedule is found, all activities are shifted to the left by
the label-correcting algorithm (sé&rucker and Kunst2006 so that the constraints
and the order of activities i are kept. A new upper bound of the schedule length is
computed agVB = Ccurrent 1 and the next iteration of the loop is performed. If a

feasible schedul§ is not found for the given schedule length, the algorithm modifies
the priority according to the returned partial schedule.

Algorithm 1 IRSA(budgetRatio, maxMaodifications, instance)
computeCLB ‘andCVB -

max max’
set initial priorities;
budget = budget Ratio - n;
actual M odi fications = 0;
while Y8 > CLB
S = findSchedule (C’%fx,priority, budget) :
if S'is feasible
s = shiftLeft(S);
CgLan = Spt1 — 15
else

if actual M odi fications < maxM odifications

priority = modi fyPriority (priority, S);
actual M odi fications = actual M odi fications + 1;
else
break;
end
end
end

A general observation for heuristic algorithms is that more incorrect deciarens
made at the beginning and, therefore, the priority of the earliest scheactigdies
and activities that have been added to the schedule more often is decrBaséahc-
tion findSchedule is then called for the same upper bou@f{Z, using the modified



30 3.2 Heuristic Algorithm

priorities. If the schedule was not found and the maximum number of priority mod
ification steps determined by the parametetzModi fications is exhausted, the
algorithm returns the best schedule.

3.2.3 Innerloop

In the inner loop of the IRSA algorithm, priorities are updated in the function
updatePriority (see Algorithm2) such that the priority is increased for the activ-
ities marked as selected and proportionally decreased to the number of inglusion
of the activity into the schedule. This update of priorities allows the heuristic to
switch between alternative branches instead of staying in the same selectiba fo
whole run of the algorithm. For each activity the priority is updated such that
priority; = priority; + 0.5 - v; — 0.5 - nAdds; wherenAdds; denotes the num-

ber of inclusions of activity to the schedule. Activity: with the highest priority is

Algorithm 2 Inner loop of IRSA
findSchedule (C%GBI, priority, budget)

scheduled = {};

nAdds; = 0Vi € A;
s; = 0Vi € A,

v; =0Vi € A,

while budget > 0

priority = update Priority (priority, nAdds,v);

k= mazx priority;) ;
VjeA:j¢scheduledNjé¢rejected ( ]) ’

LB

s = max si+lik);

k VjEscheduled( J J ) ’

UB _ nUB .

S = Cma:p — Pk;

[conflicts, sg] = findSlot (k, scheduled, séB, sgB) ;
nAdds, = nAddsy + 1;

[s, scheduled]| = insert Activity (k, si, conflicts) ;

v = findSelected (v, scheduled) ;

if schedule is complete

return.s;
end
budget = budget — 1;
end
returns;

end
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found among the set of not yet scheduled activities and a time wir@g#, s/ 7 )
where activityk can be scheduled is computed. The lower bound for start ¢jyffe
is calculated as the minimum time such that all temporal constrajntsi;;, < s
forall j € scheduled : 1;;, > 0 are satisfied, wherecheduled is a set of activities
that forms the current partial schedule. The start time upper b@@ﬁds set to the
maximal value such that the activity is completed before the givefi,.

The function findSlot tries to find the earliest time slot within the given time
window with respect to the resource constraints. In other words, the timmahte
given bysEP andsY? is explored while searching for a time point where the given
activity can be scheduled without violating any resource constraint. Seegu
pendent setup times are also considered. If no feasible time position is finemd,
the time slot is set teﬁB if the activity is being added to the schedule for the first
time. If the activity has been already included into the schedule in previopsitste
time slot is set tas=? + 1 to avoid cycling of the algorithm. The functigfindSlot
then returns all conflicting activities, i.e. activities that cannot be kept indhedule
without violating any resource or temporal constraint with respect to the ldatieat
activity.

Activity k is then inserted into the partial schedule and all activities marked as
conflicting are removed in order to keep the partial schedule feasible dinamy If
an unscheduled activity (i.e. activity actually removed from the schedwuahismber
of some alternative branch, then all activities in the same alternative besiaciiso
removed. The list of the selected/rejected activities is then updated; theusetie
activities are marked as selected, activities belonging to the same alternati b
are also marked as selected activities and all activities that cannot be tadtrex
schedule without violating propagation rules from the mathematical model are marked
as rejected activities. The selection/rejection of other activities is not decieted y
If each activity is already scheduled or marked as rejected, then thdweh® is
complete.

3.2.4 Example of the IRSA Algorithm Progress

Figure 3.2 illustrates one iteration of the IRSA main loop for the instance depicted
in Figure 3.1, considering three resource types with capacity equal to one . In the
initialization, the algorithm setsriority = (16 15109786 111413125324 1)

and consequently it starts with the addition of activitynto the schedule. Then
activity 1 is added to the schedule and its start time is set to its lower bound , i.e.
s1 = 0 (step 1 in Figure3.2). Then activity8 is scheduled and the next not yet
scheduled activity with the highest priority % which has to be scheduled to the
same resource as activigy Its time window is given as{? = 8 ands{? = 16,
resulting fromlyy = 8 andigy = —16. Within the given time window, there is no
space to schedule activity without violation of resource constraints and therefore
activity 8 is marked as conflicting in functiofiindSiot and then removed from the
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Fig. 3.2: Example of the IRSA algorithm progress
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schedule in functiorinsert Activity (step 3). Activity9 is scheduled instead and its
start time is set t@. In the following step, activityl0 is added and then activiis
added back to the schedule. Then the algorithm adds the activities one oy ¢me

the last activityn + 1 and the schedule is complete, since each activity is marked as
scheduled or rejected.

3.3 Computational Experiments

This section presents extensive computational experiments for the problermddiefi
Section3.1 First, the performance evaluation for the mathematical model proposed
in Section3.1.1is shown. Two different solution approaches have been used for the
mathematical model, namely timeixed integer linear programming@MILP) and the
constraint programmingCP).

The optimal solutions obtained by both mathematical solvers are then used for the
first evaluation of the IRSA algorithm. The heuristic algorithm is further evaluated
on the instances of integrated process planning and scheduling (IR mprfrom
Shao et al(2009, which is a specific sub-problem of the problem considered in this
chapter. Furthermore, the instances of the job shop scheduling problem aétspr
ing alternatives fronkis (2003 are used to test slightly modified version of the IRSA
algorithm.

Section3.3.6is dedicated to the description of the evaluation metric for the char-
acterisation of the instances for the RCPSP-APP problem. The statistical method
used for the comparison of the different solution approaches and for teardea-
tion of the important instance properties are described in the same section. ,Finally
the results of the heuristic algorithm are compared with CP solver and discuigbed
respect to the proposed evaluation metric.

All experiments were performed on a PC with 2x Intel Core 2 Quad CPU at
2.83GHz with 8GB of RAM. The IRSA algorithm was implemented in C# language
and the MILP and CP models have been developed and tested in the IBM ILOG
CPLEX Optimization Studio 12.4.

3.3.1 Generated Instances

Up to our knowledge, there are no available standard benchmarks faoittssd-
eredPS|nestedAlt, temp, STsp|Cmas Problem. Therefore, randomly generated in-
stances have been used to test both solvers of the mathematical model dr84he |
algorithm. The datasets with 30 (denoted as D30), 50 (D50), 100 (D1002@nd
(D200) activities per instance were generated, each dataset conta@Gngindom
instances. The datasets are formed by very diverse instances, bsthutttare of the
NTNA instance and the attributes of resources and activities are gahéraite the
random distributions with wide range of values.
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The number of resource types for each instance is randomly genemratedfer-
val (1, Ryqz) WhereR,,,. is 2 for D30 activities, 3 for D50 activities and 5 for D100
and D200 activities. The capacity of each resource type is randomlyajeddrom
intervald,, € (1,5). Each setup time is randomly generated from the inteffval0).

The parameters of the activities were generated from the uniform distmibutio
with the following boundaries: processing tirpe € (1,10) and resource demand
RF € (1,3) for one resource typé?, € R. Release times and deadlines are
generated based on the estimation of the schedule length and adjusted by the re
lease time factoR F' and the deadline factab F’, similarly to the method used in
Vanhoucke et al(2007). First, the minimal schedule length is estimated as a max-
imum from two numbers - the critical path lengthp and the schedule length es-
timate based on the resources availabilityy. Then the release times are gener-

ated from the intervat; € <O, %> and the deadlines from the interval

d; € (0, DF - mazx (lcp,lra)). Finally, the release times and deadlines are sorted in
non-decreasing order and assigned to the activities based on thegeeedlations
from activity 0 towards activityn + 1.

The critical path lengtlicp is computed as the minimal schedule length while
the resource constraints are relaxed, i.e. only the temporal constraiotaaidered.
Since the considered problem remains NP-hard even if the resourdeadaoissare not
considered (see Secti@nl.?), only the non-negative time-lags are considered for the
lcp calculation. To calculatég 4, the processing time of each activity is multiplied
by its resource demand and the resulting values are summed up for eaaicedygpe
separately. A schedule length estimate for each resource is then caladabedtotal
consumption demand over the capacity of a resource. Finally, the highesttestima

. . Rk
over all resource types is considered, ig4 = max ( SRR
Vke{l..m} \viey

3.3.2 Mathematical Model Complexity

To handle the mathematical model formulated in Sec#idnl, we use two different
approaches, namely the mixed integer linear programming (MILP) and the @omstr
programming (CP). Solvers for both the MILP and the CP problem formulatiaves h
been developed and tested in the IBM ILOG CPLEX Optimization Studio 12.4. Both
solvers were tested on four datasets D30, D50, D100 and D200, lmhstdn the
previous section.

Two performance indicators were used in order to determine the respetita-
tiveness of the solvers. First, the ratio of the optimal solutions with respeceto th
assigned solution time has been observed, i.e. the number of instances sdhed to
optimum by the particular solver in a certain time limit is calculated for each dataset.
Then the time limit is increased and the same instances are solved again; the total
range of the time limit was set from 1 to 300 seconds. Second, the mean vahee of
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Dataset D30 D50 D100 D200
tcpu MILP CP | MILP CP | MILP CP | MILP CP
1 51 29 36 18 9 4 6 3
10 72 56 a7 27 17 8 11 5
30 80 76 58 36 22 15 14 9
60 98 97 60 42 25 17 19 14
300 100 100 62 45 30 21 21 19

Table 3.1: The ratio of optimal solutions for the mathematical solvers

objective function over each dataset is observed for both solvers.

The ratio of the instances solved to the optimum depending on the given time
limit for both solvers is depicted in Tablg.1 where rowDataset denotes the set
of instances, column-py contains the time limits for both solvers in seconds and
columnsMILP andC P denote the ratios of the instances solved to the optimum
in percent. The mean objective values for both solvers with respect to sigmed
time limit are then shown in Table.2 where the abbreviations has the same meaning
and the values in column&//LP andC P denote the mean value of the objective
function over all instances with the same number of activities.

Although the results achieved by both solvers may seem similar and the depen-
dency on the assigned time limit comparable at first sight, several importésmtéat
be derived from the experiments. First, the ratio of instances solved tqtimeum is
always higher for the MILP solver. On the contrary, the mean value oblijective
function is, in the most cases, lower (i.e. better) for the CP solver. Therréasothe
different search strategies for both approaches. The MILP solasisd on a branch
and bound method while the CP solver uses the restarted mechanism with the loca
search optimization. The same holds for the increase in the ratio of optimal selution
and for the mean objective value if the time limit is being increased.

We can conclude that both solvers represent a solution methodology ipgpvid
very good results for instances with up to 50 activities. For the instanceswaith
than 100 activities, the tested solvers do not represent approach fasatal appli-
cations where the response is needed in a short term.

3.3.3 Performance Evaluation of IRSA algorithm

The IRSA algorithm was evaluated using the same set of instances as fotliRe M
and CP solvers in the previous section. The parameters of the algorithm etece s
budget Ratio = 6 andmaxM odi fications = 2. Two performance measurements
were used to test the effectiveness of the IRSA algorithm. First, we carb&laum-
ber of the instances for which IRSA found a feasible solution and setbadnean
difference of the IRSA algorithm from the optimal values is observed. Meseatl
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Dataset D30 D50 D100 D200
tcpu MILP CP | MILP CP | MILP CP | MILP CP
1 148 145 242 237| 510 501| 1002 990
10 139 137 229 228| 494 491 982 974
30 136 135| 226 223| 480 475 973 969
60 133 132 222 220| 465 460| 968 962
300 132 132 221 218| 459 455 965 958

Table 3.2: The mean objective values for the mathematical solvers

Dataset D30 | D50 | D100 | D200

feas[%] | 97 | 98 | 95.1 | 96.8
diff [%)] || 2.12| 2.45| 4.24 | 6.51

Table 3.3: Overall performance evaluation of the IRSA algorithm

results are summarized in Talde8whereDataset denotes the set of instancgaas
stand for the ratio of the feasible solutions afigf denotes the mean difference of
the IRSA results from the optimal values for a particular dataset.

Due to the complexity of the mathematical model of the considered problem, the
optimal can be found only for a subset of all instances in datasets DHOD200 in a
reasonable time (4 hours time limit). Therefore, the IRSA algorithm is evaluatgd on
on the instances for which the optimal solution has been found using the MidLP a
CP solvers. The total number of feasible solutions is 82 for the dataset Diti084a
for the dataset D200.

In conjunction to the overall performance evaluation of the IRSA algorithm, we
have tested the influence of the algorithm settings on the quality of the result®iand o
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Fig. 3.3: Performance evaluation of IRSA algorithm and MILP model
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n 10 | 50 | 100 | 250 | 500 | 1000 | 2000
t[s] | 0.01]| 0.06| 0.12| 0.31| 1.07| 2.55| 5.72

Table 3.4: Solving time for IRSA algorithm

the respective solution time. The influence ofthéget Ratio parameter is illustrated
in Figure 3.3(a) where the mean difference from the optimum and the solution time
are depicted in dependence on the given budget for the algorithm. Eigiiog shows
the influence of thenax M odi fications parameter. The tests were performed using
the D100 dataset as proposed in Secidhl

Finally, we have evaluated the average running time of the IRSA algorithmdor th
instances with a wide range of the number of activities. The mean solving time for
the IRSA algorithm with regard to the number of activities is shown in TableFor
each number of activities, 20 feasible instances with were generated afdragters
of the algorithm were the same as in previous paragraph$pidget Ratio = 6 and
mazx M odi fications = 2.

3.3.4 Integrated process planning and scheduling

The Integrated process planning and scheduling (IPPS) problem sindédo et al.
(2009 is used to prove the effectiveness of our algorithms for the schedulihdgmns
containing alternatives. IPPS is again a subproblem of the problem eoegith this
chapter. The goal is to select and schedule a subset of all activitied lbasthe
precedence graph containing alternative routes and alternative madsigmment
such that the makespan is minimized.

Instance 1 2 3 4 5 6 7
Shaoetal(2009 | 116 116 95 93 116 116 16p
IRSA 117 119 98 93 119 117 171

Table 3.5: Comparison of IRSA algorithm wighao et al(2009

In Shao et al(2009 there are six small instances (1-6) of IPPS and one bigger
instance (7) obtained by joining all small instances into one graph. The cmmpar
of the reported objective values and the values obtained by the IRSAtaigdor all
seven instances is depicted in TaBl&é. It should be appointed out that the objective
value for the first instance indicated Bhao et al(2009 is not possible, since the
optimal value is 117 instead of 116. The mean solution time report&hao et al.
(2009 is 1 second for small instances, while for the bigger one there is no solution
time at all. The algorithm was coded in C++ language and run on a machine with 2.40
GHz Pentium IV. The mean running times for the IRSA algorithms is 12 ms for small
instances and 2s for the bigger one.
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As can be seen from Tab5, the IRSA algorithm is competitive with the evolu-
tionary algorithms proposed Bhao et al(2009. Therefore we can conclude that the
solution methodology is eligible to solve the problems with alternative process plans.

3.3.5 Evaluation on AJSP instances

Finally, we have evaluated the IRSA algorithm on the instances ofdbeshop
scheduling problem with processing alternatiy8dSP) proposed bigis (2003. We
have decided to solve such instances since our problem is the genevalizexh of
the AJSP problem. The results are depicted in T&bdevhere columns GA, TABU
and RAND contain the results found by algorithms propose&isy(2003 and col-
umn IRSA contains the results found by the IRSA algoritldiff, is the ratio of the
schedule length found by the given algorithm over the lower bound estimgptiua: b
MILP solver andt is the average computational time in seconds.

As we can see, the results found by the algorithms proposed by Kis (especially
TABU algorithm) are superior than the results found by the IRSA algorithm. On the
other hand, the increase in the computational time in dependence on the number of
activities is more crucial for algorithms proposed by Kis. The total computational
time for each instance is also much lower in case of the IRSA algorithm, although the
comparison is not straightforward sinkés (2003 reported that C++ language was
used and the tests were performed on a machine with Pentium 1l 400 MHz.

GA TABU RND IRSA

Instances|| diff t[s] diff t[s] diff t[s] diff | t[s]
a01-a03 || 1.025| 3.812| 1.021| 2.331| 1.023| 3.308 || 1.062 | 0.07
a04-a06 || 1.042| 17.04| 1.011| 11.38| 1.024| 16.78| 1.096| 0.16
a07-a09 || 1.042| 40.52| 1.012| 30.76| 1.095| 42.98 || 1.077 | 0.39
al0-al2 || 1.042| 78.67| 1.005| 67.68| 1.093| 87.04| 1.137| 0.62
al3-al5|| 1.020| 27.55| 1.014| 71.29| 1.098| 29.92 || 1.251| 0.14
al6-al8 || 1.051| 67.57| 1.012| 49.27| 1.135| 77.41|| 1.263| 0.27
al9-a21 || 1.068| 124.8| 1.015| 97.14| 1.149| 153.1| 1.235| 0.67
a22-a24 || 1.072| 60.31| 1.042| 43.23| 1.136| 72.02|| 1.299| 0.31
a25-a27 || 1.123| 147.8| 1.058| 131.4| 1.203| 191.6| 1.364| 1.11
a28-a30 || 1.145| 274.3| 1.025| 274.1| 1.212| 386.3| 1.259| 1.02
a3l-a33|| 1.152| 100.5| 1.083| 82.76| 1.249| 130.8| 1.341| 0.85
a34-a36 || 1.157| 243.6| 1.060| 253.8| 1.261| 347.7| 1.381| 1.93
a37-a39 || 1.151| 457.7| 1.036| 327.6| 1.232| 709.5| 1.258| 2.42

Table 3.6: Comparison of IRSA algorithm wikis (2003

The problem assumed in this chapter is more general than the problem ddscrib
by Kis. The main difference is that positive time-lags are restricted to bd tmua
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processing times of activities and there are no negative time-lags at all inJtbe A
instances. We also assume more general definition of alternative processvblare

the alternative and parallel branchings can be arbitrary nested onethreanFurther-
more, we do not focus on the particular situation where activities are joined in jobs
with the specific precedence relations and resource assignment. Finakyatkeno
sequence dependent setup times in the AJSP problem.

To solve the AJSP instances, we have slightly modified funcfimalSiot in the
IRSA algorithm. Each job in the AJSP problem is a sequence of activities veltere
most one activity can be in process at each time but the order of activitiesin an
subgraphs is not specified. Therefore, the funcfiomdSlot has to check one more
constraint during the search for the feasible time position, i.e. the feasible time po
sition of an activity has to satisfy three type of constraints - temporal constraints
resource constraints and job constraints.

3.3.6 Evaluation Metric for Instances

In this section, the evaluation metric for the characterisation of the instancesfor th
problem described in Sectidhlis proposed. The instances can be described by the
resource availability, parameters of activities and structure propertigseatorre-
sponding Nested Temporal Network with Alternatives (NTNA) instance. pacp-

erty for each instance is represented by a numerical value that is latkfarsine
comparison of different solution approaches.

3.3.6.1 Resource environment

For the evaluation of the generated instances, we use two properties vidctres
to the resource environment for each instance. First,Nbmber of Resource
Types (#res) #res is the number of resources types for the particular instance,
equal tom according to the problem statement in Sectibfh. Second, theRe-
sources Constrainednes§R(C) is a measure related to the average consumption of
resources by activities over all resource types, used e.ddemeulemeester et al.
(2003. The value of the resource constrainedness for resourcefitype calculated
asRCy, = g-- = - Yvica R, 1-€. itis an average demand of all activities that require
resource typeR;. over its capacity. The overall resource constrainedness is then given
as an average over all resourde§ = L - > vke{1..m} L2Ck- A higher number indi-
cates a more resource constrained problem where activities have todsecrdore
sequentially on resources than for a low#t' value.

3.3.6.2 Structural properties

The structure of the NTNA instance is generated based on many inputsfiikeothe
minimum and maximum number of branches in both parallel and alternative branch-
ings, the ratio of the alternative branchings, etc. For the computationalieseres,
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we propose a set of structural properties that can be measured foigenerated
instance:

TheTotal Order Strength (T°OS) is the order strength of the NTNA instance regard-
less of the types of branchings. The order strength of a directed agyafty withn
nodes is calculated as the actual number of edges in the transitive closiwesgoaph
over the maximal number of edges, iBOS = 2 - |E jpsure| /7 - (n — 1). The tran-
sitive closure of a graph is a graph, where nodasd; are connected by the edge if
and only if there is a directed path fraio j in the original graph. An instance with
a higher value of the order strength is usually easier to solve since theafntere
activities is given in advance. For the instance in Figufethe value is calculated as
TOS =2-64/ (16 - 15) = 0.53.

The Number of Alternative Branchings (#AB) is the actual number of alterna-
tive branchings in an instance, i.e. it is equal to the number of nodes in NT&A th
have the alternative output label. In the example in Figutethere are 3 alternative
branchings.

TheNumber of Alternative Process Plang# A P P) is the total number of selection-
feasible process plans that can be derived for a particular instanothdr words, it is

a total number of unique combinations of selected activities that will satisfy the rules
for parallel and alternative branchings. The higher number of prgiass, the larger
the solution space, since there are more possibilities how to create a schdwre. T
are 6 different process plans that can be found in the example in Fidlure

The Average Order Strength (AOS) is computed in a similar way &850S5, but
instead of calculating one value of the order strength for the whole instai@s,
represents the average value computed over all process plans dgpacatalculate
the order strength of a process plan, a subgraph induced by the acthatexted

in the process plans is taken into account. As can be seen from the exgsrimen
Section3.3.8 the AOS value is, in most cases, slightly higher than @5 value.
On the other hand, a counter-example whdr@s is lower thanT'OS can be also
found. TheTOS value for the example in Figurg.1 is an average value over 6
process plans, resulting ihOS = 0.62.

TheAverage Number of Activities per Process PlarfP P Act) is given as an average
number of selected activities over all possible process plans. Generallgigher
number the more difficult instances, since the resulting RCPSP problem contains more
activities. The average number of activities per process plan in Figlie PP Act =
67/6 =11.17.

The Maximal Level of Nested Alternative Branching (/N L) is the highest level of
nesting with respect to alternative branchings. For the instances withounzgives,
the value of N L is zero. For the instance depicted in FigGré, the value ofN L is

2 since the alternative branching determined by activitiead6 is nested in another
one.
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3.3.6.3 Attributes of activities

For each generated instance, theerage Activity Slack (AAS) is calculated as a
difference between the latest and the earliest start time of an activity in tiegl-sc
ule. The earliest start timest; is derived from the release time of activityand the
precedence relations among the activities from the first activity towards thenlas
Similarly, the latest start timést; is derived from the deadline of activityand the
precedence relations from the last activity towards the first one. Thatadtiack is
then calculated adS; = Ist; — est; and the average activity slack is then given as
AAS = % D viea ASi.

3.3.7 Evaluation Methodology

The metric composed &FOS, AOS, #AB, #APP, PPAct, NL, #res, RC and
AAS introduced in the previous paragraphs is used to characterize all iastand
find out which type of problem structure is better to solve by which speddjic-a
rithm. In other words, our intention is to determine whether each property piays a
important role if a different solution approaches are applied. To find euttbst im-
portant properties that, we first separate the instances into three setxfodataset

- instances where the CP algorithm was able to find a better solution, instanees wh
the IRSA algorithm was better and instances where the objective value wsartige

for both. Then we use Two-sampigest for equal means (s&nedecor and Cochran
(1989) to distinguish between statistically important factors and factors that do not
have an important influence on the solution quality.

The two-sample-test for equal meang-fest for short) is a statistical method
how to determine whether two sets with the same distribution have the same mean
value at a given significance level. In our case, we want to determinthedthere
is an important relationship between the values of a specific measured prapérty
the solution quality of two different solution approaches. For this purpoeé;tést
is used for two sets of instances for each dataset - instances whekddR&l better
results and instances where CP is better. The output of-tést is the so called-
valuewhich represents the significance that the mean values of both compararksets
the same. A highep-value corresponds to a higher significance that the mean values
are identical and, vice versa, a low number means that the mean valuedenendif
If the mean values are different, then we can conclude that the testeerfyrbps an
important influence on the effectiveness of the different solution aphesa

The assumption for thetest is either a normal distribution or at least sufficient
amount of data (at least 30 elements), which is satisfied in our case, sinanere g
ate 100 instances per dataset. The calculations withintlst not only consider the
mean values, but also the standard deviation of the values. The results leeking
for are those where thevalue is low, then the mean values are different and, there-
fore, the property significantly influences the effectiveness of thengapproaches.
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3.3.8 Experiments for Evaluation Metric

The evaluation metric for the characterization of the instances and the cordasg
evaluation methodology proposed in the previous text are tested using thealB&A
rithm and the CP solver. In addition to the datasets defined in Setfiof) two new
datasets with 50 activities per instance were generated, differing in tigeemEsnt of
release times and deadlines. Dataset D50L contagseinstances where the release
times and deadlines do not form a difficult constraint for finding a feastilgien.

On the contrary, release times and deadlines for dataset D50T arégrarywhich

is reflected in the number of feasible solutions found. Release times and deadlines
for the former dataset D50 represent the intermediate step between rier fovo.
The rationale to generate new datasets is to examine the dependency of tiom solu
approaches on the temporal constraints in more detail, since they directly a#luen
the ratio of the feasible solutions as well as the value of the objective function.

The settings (i.e. the solving time) for the CP solver were adjusted such that
the results are comparable with the results achieved by the IRSA algorithm in the
terms of the objective values. Thus, the impact of the properties of the testan
can be evaluated for the similar quality of the results. Furthermore, two differe
search limits of the CP solver and the IRSA heuristic were used for the tatase
D100 and D200. Therefore, datasets denoted as D100a and D100b fiolldw-
ing tables contains the results for the same instances, only the settings of the al-
gorithms were changed. The fail limit for the CP solver was increased fi@d0 5
(D100a) to 10000 (D100b) and the parameters of the IRSA algorithm vegreo s
budget Ratio = 6 andmax M odi fications = 2 (D100a) and tdudget Ratio = 12
andmax M odi fications = 4 (D100b). The same situation is then for D200a and
D200b, where the same dataset D200 is used.

The overall results of both the CP approach and the IRSA heuristic avensh
Table3.7. Columnfeasibledenotes the number of the feasible solutions (out of 100),

Constraint Programming IRSA

Dataset|| feasible | best | tepy [ms] || feasible | best | tepy [ms]
D30 100 36 967 97 37 18
D50L 100 33 1121 100 35 49
D50 100 36 1095 98 32 60
D50T 84 5 3066 79 6 59
D100a 79 31 2026 78 34 86
D100b 83 40 4699 79 8 180
D200a 54 12 5969 62 28 199
D200b 61 29 10085 62 7 372

Table 3.7: Results for new datasets
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D30 | 70S | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
CP 046 | 046 | 1.17 | 4.7 269 | 0.82| 1.26 | 0.87 | 229.13
IRSA | 048 | 046 | 1.14 | 556 | 27.61 | 0.77| 1.38 | 0.68 | 227.41
pvalue| 051 | 0.95 | 0.82 | 055 | 005 |046| 001 | O | 0.59
DSOL | 70S | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
cP 041 | 041 | 1.89 | 11.96 | 43.72 | 1.09| 1.2 | 0.9 | 675.3
IRSA | 0.47 | 0.46 | 2.11 | 13.09 | 41.76 | 1.19| 1.34 | 0.67 | 662.31
pvalue | 0.01 | 0.01 | 014 | 034 | 001 |019| 02 | 0 0

D50 | 70S | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
CP 0.45 | 045 | 1.83 | 8.31 | 4381 | 1.05| 1.28 | 0.85]| 167.82
IRSA | 0.46 | 0.46 | 2.09 | 15.87 | 41.19 | 1.08| 1.29 | 0.67 | 164.52
pvalue| 05 | 0.8 | 0.1 0 0 064| 077 | 0 | 037
DSOT | 70S | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
cP 037 | 042 | 2.41 | 1859 | 3668 | 1.36| 1.68 | 0.87 | 57.82
IRSA | 0.41 | 047 | 2.75 | 2411 | 32.07 | 1.75| 1.43 | 0.64| 52.71
pvalue | 0.54 | 0.39 | 0.39 | 037 | 009 |028| 008| 0 | 056
D100a | 70S | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
cP 042 | 044 | 348 | 5058 | 847 | 15 | 1.93 | 0.81] 1701.2
IRSA | 0.46 | 0.47 | 3.88 | 116.74 | 81.63 | 1.52| 2.1 | 0.78| 1632.8
pvalue| 022 | 036 | 0.12 | 001 | 012 | 0.86| 0.17 | 0.09| 056
D100b | TOS | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
cP 041 | 041 | 3.64 | 97.62 | 83.76 | 1.48| 2.02 | 0.81 | 1743.4
IRSA | 0.43 | 0.42 | 3.82 | 77.97 | 83.94 | 1.53| 2.09 | 0.67 | 1524.2
pvalue| 052 | 0.71 | 062 | 039 | 094 |066| 069 | 0 0.2
D200a | T7OS | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
CP 0.37 | 0.37 | 8.34 | 1002.3 | 160.34 | 2.24 | 2.13 | 0.85| 2099.9
IRSA | 0.39 | 0.4 | 815 | 1594.2 | 159.95 | 2.18 | 2.43 | 0.74 | 2340.5
pvalue | 0.47 | 0.37 | 0.67 | 021 | 092 |058| 02 | 0 | 0.09
D200b | T7OS | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
cP 0.36 | 0.37 | 8.05 | 14852 | 161.24 | 2.1 | 2.25 | 0.8 | 2200.7
IRSA | 0.42 | 0.42 | 8.63 | 2186.6 | 161.42 | 2.37| 2.2 | 0.72| 2278.1
pvalue| 0.19 | 0.21 | 029 | 029 | 097 |025| 082 | 0 | 067

Table 3.8: Evaluation of properties for new datasets
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columnbestdenotes the number of the solutions where the corresponding solution
method found strictly better solution than the other one. Finally, coltypnshows

the computation time in milliseconds. Generally, the IRSA heuristic is faster but it
does not significantly improve the solutions with the increasing solution time. The
constraint programming solver needs a longer time to obtain the same quality of the
solutions, but then, with increasing time limit, it is still able to considerably improve
the solutions. The prove can be found in comparison of results for D10D4.@8b

and D200a vs D200b.

The evaluation of the properties importance is shown in Ta8lie For each tested
property, we can derive the following conclusion based on the obtagserts:

- The total order strengtif{0.5) and the average order strengi(q.S) are closely
related in both the values and the influence for the solution approach. The im-
portance of both properties is rather low, with the exception for D50a dathse
general, we can conclude that the CP approach is slightly better for instaitbe
lower order strength (regardless total or average), i.e. for more gdansliences.

- The number of alternative branchingé4 B) and the number of alternative process
plans ¢+ AP P) are also quite related to each other, since each alternative branching
rises the number of process plans. Both factors have a high influence différ-
ent solution approaches. With a growing number of the alternative brarschirdy
especially with a growing number of alternative process plans, the IRSAskieu
usually becomes more effective than the CP approach. The reason may ke in th
limited branching strategy of the CP solver, which is then not able to explore more
alternatives of the activities selection.

- The average number of activities per process plaR {ct) seems to be important
for the smaller instances, where the constraint programming approach isefnore
fective for a higher number of activities per process plan. For the largemioss,
the property looses its importance.

- The maximal level of nested alternative branchingl() does not show any signif-
icant importance for the effectiveness of the solution approaches.y|lftlza CP
approach is better for a lower number, i.e. less nested instances.

- The number of resourceg{es) also does not have a high importance for the qual-
ity of the solutions of both approaches. On the other hand, the resouwnes c
strainednessK(C') became the most important factor with respect to the results of
the ¢-tests over all the instances. The CP approach is always better for er high
value, i.e. for the instances where the activities have higher resourcedsaiad
the resources become a more critical constraint of a problem.

- The average activity slackA(AS) is an important factor for 3 datasets while for
the others the influence is not conclusive. The CP approach is usually foette
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higher average activity slack, but not with a great significance and mereior
the largest dataset, the opposite progress is shown.

Based on the experiments, we can conclude that the CP approach is raotieeff
for the instances with lower ratio of alternative parts (propegtesB, #APP and
NUL), less predefined order of activities in the schedule (prop€fi@s and AO.S)
and more constrained resource environment (propefties and RC). The impact
of the propertyA AS is not straightforward from the experiments.

The CP approach can be used also for instances with more than 200 activities
such instances are not included in this thesis since the difference in thi@sdione
to achieve comparable results is becoming too high.

3.4 Conclusion

This chapter is dedicated to the resource constrained project schecwbigrp with
alternative process plamdS|nested Alt, temp, STsp|Chaz, Motivated by the pro-
duction of the wire harnesses in Styl Rizé/Ne have decided to represent the struc-
ture of the problem by Nested Temporal Networks with Alternatives andudoh s
representation, the mathematical model able to solve, in a reasonable amount of time,
instances with up to 50 activities per resource time is presented.

In order to solve larger problems in the nested form, we have developbdithie-
tic algorithm IRSA. Computational experiments demonstrate good performance of
this algorithm with a mean difference from the optimal value of the makespan less
than 7%, while solving time for instances with 200 activities within 300 millisec-
onds. Instances with up to 2000 activities can be solved in the order of sefeonds.
Moreover, the instances of two related problems have been used for thihaigo
evaluation and the experiments showed that the IRSA algorithm is able to solve much
more specific problems with good quality of solutions in very short time.

Finally, we have presented a novel metric for the characterization of thedesta
of scheduling problems with alternative process plans. Such a metric is arséub f
comparison of the different solution approaches, namely the constragrigpnaing
solver and the IRSA algorithm. The results of the experiments are evaluatihe by
statistical methods and the important properties are derived and discussed
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Chapter 4

RCPSP-APP under minimization
of the total setup time

This chapter is dedicated to the RCPSP-APP problem where the goal is to minimize
the total setup timgTST), which is equal to the sum of the overall performed setup
time in the schedule. The main motivation for the research is the manufacturing of the
small electrical connectors, where the reconfiguration of the machineeyysostly

and the correct order of jobs is crucial. Up to our knowledge, there iexigiing
solution approach for such a problem and therefore, a new model and lzenigistic
algorithm is proposed for the considered problem with the intention to solve large
instances with up to 1000 activities.

Sequence dependent setup tilf@so callecchangeovensare crucial for the prob-
lems where the resources are very expensive in terms of wasting their tinrmanbg-u
essary setups. Setup times represent the time necessary to reconfigasstinee or
to change its functionality. During this time period, no work on the resouraebea
performed, which can cause the entire process flow to be inefficientprbidem in
minimisation of the total setup time is a part of many manufacturing processes (we
“sell the machinery time”). Yet the setup times are almost always considefgd o
as a problem constraint, not as a part of the criterion. One of the main gfoilis
research is to fill the gap in this area, i.e. to propose a generic approdehltwith
the minimisation of the total setup time.

Allahverdi et al.(2008 dealt with the setup times in general and published a sur-
vey in which many different problems related to the setup times are summarised. T
authors also reported on solution approaches and proposed a notatidirofahese
problems.Yuan et al.(2004) published a study for a metal casting company concern-
ing the minimisation of the total setup costs in which the authors demonstrate the
importance of setup times by calculating the savings to the comgaogacci et al.
(2000 dealt with the general shop problem with the sequence dependentisetsp
The authors proposed a two phase Pareto heuristic to minimise the makedpha an

47
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total setup costs. In the first phase, the makespan is minimised and, in the second
phase, the total setup costs are minimised, while the makespan is not allowed to ge
worse.Wang and Wan@1997) focused on a single machine earliness tardiness prob-
lem with sequence dependent setup times. The objective function is to minimise the
total setup time, earliness and tardinelssrabi (2010 proposed a hybrid simulated
annealing algorithm for the single machine problem with sequence deperdept s
times. The objective function is given by the sum of the setup costs, deltsaros
holding costs.

The main contribution of this chapter is the formulation of the novel problem,
incorporating the criterion based on the performed setup times into the area of th
resource constrained project scheduling problems with alternativegsrptans. Such
a problem has not been studied before in this range. There were oaly atempts
to deal with the scheduling problems where the criterion reflects the setup tiimes. T
closest problem that can be found in the literature, when compared to theaahp
studied in this chapter, was published Bycacci et al(2000 who focused on the
job shop problem with the alternative machines while the makespan and the total
setup time is minimised. Compared to the problem studidoicacci et al(2000),
the model proposed in this chapter is developed for more general problamejyn
for non-unary resources, deadlines of activities and more complex groedules
including alternative process plans.

The second contribution lies in the newly developed algorithm able to solve the
instances of the RCPSP-APP problem with up to 1000 activities. The gfaets of
the algorithm is evaluated using the datasets publish&itfuoker and Thiel€1996
while the proposed algorithm outperforms the results presentdébaacci et al.
(2000. Moreover, the algorithm presented in this chapter is able to solve instances
with 1000 activities within dozens of seconds.

The rest of the chapter is organised as follows: Sectigprovides a definition of
the considered problem for which the mathematical model is presented in S&étion
A new heuristic algorithm is proposed in Sectib3. Sectiord.4 presents the results
of the performance evaluation of the developed algorithm and Setticconcludes
the work.

4.1 Problem statement

In conjunction to the common definition in Chap&reach each activity € A has a
deadlined; > 0. The temporal constraints are given as the non-negative start to start
time-lags restricted to the precedence-constrained activities only;;i.e. 0 for all
(i,j) € E(G) andl; ; = —oo otherwiseG represents the NTNA instance as defined
in Section2.5.

The instance of the problem considered in this chapter is depicted in Fdgure
Several time-lags are used to demonstrate how the temporal constraints aeel defi
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p=10,3,2,1,3,2,1,7,2,3,2,3,2,3,2,0]
r=[0,0,0,6,6,6,6,5,0,0,2,5,5,5,0, 0]
d=[5,9,9,9, 15, 15, 20, 9, 25,9, 11, 15, 13, 16, 20, 30|
res=[4,2,1,2,2,3,1,3,3,1,2,3,3,3,2,4]
R=[0,2,2,1,2,3,2,1,1,2,2,3,2,2,1,0]
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Fig. 4.1: Nested temporal network with alternatives - example

see e.g. time-lagy; = 8 that forces activity7 to start at least 8 time units after the
start time of activityl. All the parameters related to the activities are also included.

The goal of the scheduling process is to minimize the total setup time, denoted as
TST, which is equal to the sum of all the setup times performed in the schedule. In
addition to the variables for the schedule representation defined in S2iariable
fi; € {0,1} is defined as follows: If activitiesand; are scheduled subsequently on
the same resource type and they share at least one unit of its resapeasty, then
fi; =1, fi; = 0 otherwise.

The setup time from activity to activity j is always considered only once in the
objective function, regardless the actual number of the resource units aigeichared
by both activities. Lets assume that activityequires three units of a certain resource
type and activity; also requires three units of the same resource types. Furthermore,
lets assume that activityis assigned to resource unit$, 2,4} and activityj is as-
signed to resource uni{g, 3, 4}. Although the activities share two resource units, the
setup time fron to j will be added to the value of the objective function only once.

The considered problem is denoted}aS|nestedAlt7lg?i”,STSD7rj,Jj|TST
or aSml\nestedAlt,mz‘n,STSD,rj,oij\TST using the same extended notation of
Brucker et al(19999 andHerroelen et al(1999, respectively as in Sectidh7. The

termr; stands for the release times afyddenotes the deadlines.
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4.2 Mathematical formulation

The mathematical formulation using the mixed integer linear programming (MILP)
for the problem defined in the previous section is formulated below. For atighe
efficiency of the model, variable,;, is substituted by variable,,, i.e. only one index

u is used to reference the assigned resource units of a certain resgoeceThe
mutual conversion betwedn, k) andu is given as follows:

k—1
g=1
k k—1
k = argmin Zeq >upiv=1u— Zﬁq (4.2)
k
q=1 q=1

In addition to variabless;, v;, fi; and zj, (25,) defined in the previous sec-
tion, auxiliary binary variableg;;, x;;, andy,;; are used. Variablg;;, determines
whether activities andj are selected and assigned to the same resourcé gnith
that: is a direct predecessor pn such resource unit. Similarly, variablg, deter-
mines whether activitiesandj are selected and assigned to the same resource unit
k such thati is an arbitrary (direct or propagated) predecessqgrafi such resource
unit. Finally, variabley;;,, determines whether both activitieandj are assigned to
resource unik.

min Z Z fij . Stij

VicAVjEA
subject to:
(2.1) = (2.7),(3.1)
C+6, -1
> ziu =R, Vie AVge{l..mkC=>0; (4.3)
u=C+1 j=1

8j+pj+stji < si+UB - (Tiju + 1 — yiju) +UB - (2 —v; — v5)

V(i,j)e A2:i#jYue{l...K} (4.4)
Si+pi +stij <sj+UB-(2—ziju — Yiju) + UB - (2 —v; — v;)

V(i,j)e A2:i#j;Yue{l...K} (4.5)

2o0u =1 Vue{l...K} (4.6)
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Zngtu =1 Vue{l...K} (4.7)
yijuz,zw—i—zju—l V(Z,])GAQZ#],VUE{lK} (48)
Yiju < Ziu V(i,j) € A i# jsVue{l...K} (4.9)
Tiju < Yiju V(i,j) € A% i # j;Yue {l...K} (4.10)
n+1

> Giju = ziu Vie AiVue{l...K} (4.11)
j=1

> Giju = zju Vie AVue{l...K} (4.12)
=0

Giju < Tiju V(i,j) € A% Vue {1...K} (4.13)
fi UB>= > giju V(i,j) € A (4.14)

Vue{l...K'}
where :

m
Fig Zius Gigur Tigus Yigu € {0,115 K =D 5
qg=1

The constraints for the selection of the activities and the temporal constrants ar
taken over from Chaptet. New formulas 4.3)-(4.14) serve to define the resource
constraints in a similar way as for formulaz.§-(2.12. The key issue is that new
formulated constraints allow to reflect the performed setup times in the objeative f
tion.

Formulas ¢.4) and ¢@.5 prevent more activities (from overlapping) on one re-
source unit in one moment. Equatiohd) ensures that the number of the assigned
resource units is equal to the resource demand for each activity. Eumiétié) and
(4.7) are used to assign dummy activitiésndn + 1 to each resource unit of each
resource type, which then ease the definition of the constraints related tettipe s
times. Formulas4.8) and @.9) constrain the value of variablg;;, - if both activities
are scheduled on the same resource unit, fagns equal to 1; 0 otherwise. Formula
(4.10 determines the value of variabig, - if both activitiesi and; are assigned to
the same resource urit they must be scheduled sequentially. Equatibf) forces
each activity to have only one direct successor on each assignedaesoit. Simi-
larly, Equation ¢.12) forces each activity to have only one direct predecessor on each
resource unit. Formulat(13 prevents the cycles in values of varialilg; for each
resource unit. Finally, Formulal (14 determines whether a particular setup time has
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to be taken into consideration in the objective function, i.e. whether activided j
are scheduled subsequently on the same resource unit.

4.3 Heuristic algorithm

This section is dedicated to the description of the heuristic algorithm designed¢o solv
the large instances of the problem defined in SectiGnThe goal is to find a schedule
determined by the selection of activities (variabfg their start times (variablg) and
their assignment to resources (variabjlg.) such that all the constraints are satisfied
and the total setup time (TST) value is minimised.

The basic scheme of the proposed heuristic algorithm, c8ll€dAL(Setup Time
Optimization ALgorithm), consists of two phases - the initial phase to find any feasib
solution and the local search for the improvement of the objective valueinitfa
phase is inspired by the IRSA algorithm presented in Se¢tipand the local search,
based on a time separation technique, is inspired by the wadtkadcci et al(2000.

If a feasible solution is not found (due to the presence of deadlines) in thé jiitiae,
the local search is not started at all and the algorithm is terminated.

4.3.1 Initial solution

In the first phase, the STOAL algorithm tries to find any feasible solution byt g
ual construction of a schedule with a simple backtracking scheme for reog¥eom
infeasible solutions. The activities are added into the schedule one by aeiage
to the priority rules, which resolve both the selection of activities and theiresegu
ing on the resources. Since the goal is to find any feasible scheduleshibdute is
constructed without considering the value of the objective function. Oneasiile
solution is found, the initial phase is terminated. The basic procedure foritta in
phase of the algorithm is shown in AlgorithBn

4.3.1.1 Propagation of release times and deadlines

The first step of the initial solution is the propagation of the release times and the
deadlines among all the activities using the structure of the instance. Theyptigma
serves for tightening the absolute time windows of the activities, resulting in more
accurate estimates of their priorities for adding to the schedule.

The propagation of the release times among the activities is performed from ac-
tivity 0 towards activityn + 1 using the temporal constraints defined by the NTNA
instance. The release time for activitys calculated as; = max (r;, 7;). If there is

an alternative branching ending in activityin; = 1), thenr; = y I(nlgl o (rj + Lji);
7:(J,%)€
ri = max (r; + ;) otherwise.

Vj:(j,i)€E
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Algorithm 3 Initial phase of the STOAL algorithm
Propagate release times and deadlines
Establish priorities of branches for schedule construction
Add activity 0 to ready set
Set the maximum number of backtracking steps
while (ready set is not empty
1 = select activity from ready set
Try to schedule activity and update release times of activities in ready set
if (activity i is not successfully schedulgd
Apply backtracking scheme
if (maximum number of backtracking steps reaghed
End with failure
endif
end if
Update ready set
end while
Return solution

Similarly, the propagation of the deadlines among the activities is performed
from activity n + 1 towards activity0. The deadline of activity, using the tempo-

ral constraints defined by the NTNA instance, is calculated;as: min (d d; )

If there is an alternative branching starting in activitfout, = 1), then d; =
max d li; + d = min d l;; + p;) otherwise.
Vj:(i,j)eE( — 5~ lig T pi); Vj:(i,j)EE( — Py~ gt )

The values of the release time and the deadline for each activity are updatgd u
the described propagation technigque and for the rest of the algorithm eimeti
values are considered.

4.3.1.2 Periorities of branches for schedule construction

After the propagation of the temporal constraints, the priorities of all the acsvitie
are calculated. For this purpose, we define fthgibility of activity ¢ as flex; =
JZ- — p; — 1;. The lower flexibility values correspond to the activities that have a more
tight time window and, therefore, they are more critical in the scheduling prothss
flexibility is used to determine the selection of the activities as well as to determine
the actual order in which the activities are added into the schedule.

The priority of the branches in each alternative branching is determirfetiass.
Let By, = {Bi1...Bs+(q)} be the set of all branches of the alternative branching that
begins in node and ends in nod&, 6" (a) is the out-degree of node Each branch
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B; € B, consists of activities that form a subgraph starting by some successor of
activity a and ending by the corresponding predecessor of activitfhe average
flexibility of all the activities inB,; is then given aglex, = average(flex;) for all
i € Bj, Bj € By. To estimate the probability that a branch would be successfully
scheduled with respect to the temporal constraints, the activities with the flexibility
lower than the average flexibility of the alternative branching are the mostatritic
Therefore, to calculate the total flexibility of branéh) € B,;, the following formula
is usedflexp, = Y (flex, — flex;) foralli € B; : flex; < flex,.

Once the total flexibility of each branch in the alternative branching is cadéxljla
the branches are sorted in each alternative branching for later $elmhstruction.
To distinguish the order between two branches of the same alternativénbmgnihe
total flexibility is used - the branch with a lowgtex 5, value has a higher priority. If
two branches have the same total flexibility, then the branch with a lower nurfiber o
activities has a higher priority. Finally, if even the number of activities is the same
use the branch starting by the activity with the lower number (to keep the deterministic
nature of the algorithm).

4.3.1.3 Schedule construction

The schedule is constructed by adding one activity from the ready setlniteaa-
tion according to theerial generation schem{&GS described byolisch (1996, i.e.
each activity is scheduled to the earliest possible time point with respect tontkhe te
poral and the resource constraints. Teadyset is a set of all the activities for which
all the required predecessors are already scheduled. The ordhbicin thie activities
are added to the schedule is determined by their flexibility (defined in the peevio
section), which is being updated after each change in the schedule. dfigityds
scheduled, then it is removed from the ready set and the ready sehisrfupdated as
follows: if there is an output alternative branching defined for the odiiseheduled
activity, its direct successor belonging to the branch with the highesitgrisadded
to the ready set; otherwise all direct successors of the currentideldealctivity are
added to the ready set. At the beginning, the ready set only containiya@tiv

To select a particular activity from the ready set, an attempt to scheduleesah r
activity is first evaluated and then the activity with the lowest evaluation is sibed
An attempt to schedule the activity and its evaluation is carried out in the following
way: First, activity: from the ready set is taken and the earliest time is calculated

’ 7 1 R
Vj:(4,0)EE
the earliest start time with respect to the resource constraints. Therass¢sd the
schedule attempt is then calculated’as= y I(nlgl . (cij —p; — (s + lij)). Finally,
J:(t,g)€
the activity with the lowest assessment is selected to be scheduled. We tngtiube
the most critical activity first and since tli¢ value represents the minimal flexibil-

ass; = max (3§emp s’fes> wheres!®™ = max (Ti7 max s; + ljl-> ands;® is
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ity of all the successors of activity the lower values correspond to more critical
activities.

If s;+p; > d; holds for any activity from the ready set, then the activity cannot be
scheduled and a backtracking scheme (see Settibf.9 is applied. The rationale
is straightforward - if activity; from the ready set cannot be scheduled currently,
it cannot be scheduled even later. Since all the activities from the restdyase
to be scheduled sooner or later, there is no way how to obtain a feasildduteh
with respect to the partial schedule and the current set of ready astivitieerefore,
recovering from such a dead-end is achieved by the backtrackiegnech

Activity i, selected from the ready set, is always assigned at the end of the sched
ule on the demanded resource tyBg. In other words the activity is assigned to
the R¥ resource units such that it is the last scheduled activity (with the highest sta
time) on each of the assigned resource units. For this purpose, the atg&gatps
the information about the last activity on each resource unit for eachinesaoype.

Letlast, = argmax {s;} be the last activity on the-th unit of resource typé;
JjeA:zjqr=1

andL = {last; ...lastg, } be the set of the last activities over all units of resource

type Ry.. Then the algorithm searches for a seR{ﬁfresource units/ € £ such that

s; = ma}%c{sj + p; + st;;} is minimal. Such a task can be easily accomplished by
jE

sorting and selecting an appropriate number of resource units. Finally, aétigity
assigned to all resource units frqfhand its start time is set tg. As soon as activity
i is scheduled, the ready set is updated as described before.

4.3.1.4 Backtracking scheme

The backtracking scheme is used for recovering from the situation whenrtherfu
activity can be scheduled with the satisfaction of all the defined constraimeshdck-
tracking scheme used in this chapter consists of unscheduling a part ahidute

and updating the ready set and release times of the activities. Then thexe arays

how to continue with schedule construction in another direction - first, the selection
of the activities can be changed and second, the sequence of the adhmitesne
resources can be modified. After the backtracking scheme is applied,tbéuse
construction continues in the same way as described in the previous section.

If activity ¢+ cannot be scheduled at some point of the schedule construction, then
the backtracking method is chosen up to the structure of the NTNA instaaee (s
Section4.l). If activity ¢ is a part of the alternative branching (i.e. the most nested
branching, in which the alternative is included, is the alternative branghingn a
change in the selection of activities is used. Otherwise, the change in thensety
of activities on the resources is used. Even with the backtracking methoddiplie
may happen that, activity still cannot be successfully scheduled. Then the whole
branching, in which the activity is nested, is unscheduled and we applathgrack-
ing method for the activity that starts such a branching. If further badkitrg is not
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possible (backtracking from activiy), the entire algorithm ends with failure.

4.3.1.5 Change of the selection of activities

Let activity 7 be a part of branclB, in alternative branching that consists &f
branches3,, = {B; ... B, ... By}. The change of the activities selection imposed
by backtracking for activity starts by unscheduling all the activities preceding activ-
ity 7 in the same branch, i.&; € B, : there is a directed path frofrto i in the NTNA
instance. Then the first activity of brand, is added to the ready set whel is

the next branch afteB, with respect to the priorities defined in Secti®r3.1.2 If
there is no such brandh,, then the backtracking is not successful and the algorithm
continues with the backtracking for the activity that starts the alternativecbiraon
Bay. The priorities of the branches 8y, are then reset to the initial state.

RaJO.. e RaJO.. o
R3 12 5 R3 11 5
i 3 ......... o i o
R 9 R 9
0 4 8 12 16 0 4 ts 12 16
t
(a) Alt change before (b) Alt change after

Fig. 4.2: Change of the activities selection in the schedule

An example of the backtracking by the change of the selection of activities is de-
picted in Figuret.2, which is based on the example presented in FiguteThe next
activity from the ready set to be added into the schedule in Figuais activity 13
(demanding resourcRs), which cannot be scheduled within its deadline. Therefore,
the selection is changed such that the branch formed by activities 12 andd-3 is
moved from the schedule and the branch containing activity 11 is seledtede3ult
with scheduled activity 11 is shown in Figute2h

4.3.1.6 Change of the sequence on resources

In the case when activityis a part of the parallel branching, the change of the activi-
ties sequencing on the resources is used as the backtracking methadadtiviy j
scheduled on the same resource type as is demanded by acts/iigund such that
there is no directed path fromto ¢ in the NTNA instance and has the maximal
start time. Activityj and all its successors in NTNA are unscheduled (both direct and
propagated successors). Activjtis added to the ready set and the schedule on all the
resources is updated by shifting the activities to the left, since a part ofsharmes
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(a) Resource change before (b) Resource change after

Fig. 4.3: Change of the sequencing of activities on the resource

capacity is released by unscheduling actiyignd all its successors in NTNA. Finally,
the algorithm continues with a new attempt to schedule activity
An example of the backtracking by the change of activities sequencing on the
resource is shown in Figure3, based on the example presented in Figufieagain.
The next activity from the ready set to be added into the schedule in Fig8ee
is activity 10 (demanding resourd®,), but its addition to the last position on the
resource would violate its deadline. Therefore, the sequencing of activitighe
resource is changed such that activity 4 is unscheduled, activity 10éslsled first
and then activity 4 is scheduled. The resulting schedule is depicted in Fidiire
Regardless of the type of the backtracking scheme used, the partial kcisedu
kept feasible and the set of ready activities is up to date. Then the algowimimees
with the schedule construction as described in the previous section. The maximal
number of the applied backtracking steps can be set as an input pararftter o
algorithm.

4.3.2 Schedule improvement

The aim of the second phase of the STOAL algorithm is to improve the value of the
objective function of the schedule found in the initial phase of the algorithm. The
basic idea is to divide the whole schedule into more independent parts antbthen
optimise each part separately, while the rest of the schedule has to stay ifac
time-separation design for schedule improvement has been propdsecdcci et al.
(2000 where the goal is to minimise the makespan and then the total setup time for
the general shop problem. The model defined in Sectidris a generalisation of
the problem studied ifrocacci et al(2000 and, therefore, the heuristic algorithm
described in this section uses only the basic idea of time-separation while most of the
algorithm is redesigned for the needs of the problem studied in this chapter.

To improve the value of the objective function, only the sequencing of actvitie
on the resources is modified, the selection of activities is not changed. nvaihas,
the second phase of the algorithm works with the fixed set of selected astivitie
basic scheme of the second phase of the STOAL algorithm is depicted in Algarithm
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wherenumberOfRepetitions specifies the number of repetitions of the local search
procedures over the whole schedule.

Algorithm 4 Second phase of the STOAL algorithm
for (i = 1...numberOfRepetitions)

Determine the first time window

while (not reached the end of the schedule
Determine activities for the time window
Determine set of ready activities
Optimise the time window
if (objective value improved

Integrate time window into overall schedule

endif
Determine the next time window

end while

end for

4.3.2.1 Time window

The principle of the time-separation technique is to divide the whole schedule into
more disjunctive parts, calletime windows and to optimise the value of the ob-
jective function for each time window such that the rest of the schedule is not
changed at all. The time window is formed by a set of all scheduled activi-
ties for which the start time and the completion time lie in the same time inter-
val (timey, g, timegp) Wheretimer g is the time windowleft borderandtimerp
is the time windowright border. A time window is therefore defined ag/ =
{Vie A:s; >timerp A s; +p; < timerp}. To determine the left and the right
border, the maximal number of activities per resource type in a time windowds use
i.e. the activities are being added into the time window until the the predefined num-
ber of activities is met for any resource. Using such an approach, diiibavindows
will be of the similar complexity (a similar number of possible resource conflicts to
resolve) even though the absolute time-length of the windows can be quésediff

For eachi € W the window release time and the window deadline is calculated
such that if activity; is scheduled within this interval, the rest of the schedule is not
influenced at all. For this purpose, both the temporal and the resours&raiots
have to be considered. Since the problem studied in this chapter includaesmaoy
resources, the window release time and deadline of an activity is diffeveath
resource unit. The window release time of activitjor resource uniyy is given

> ~temp ~res ~temp ~res
as Tiq = Imax (Ti ,T’i ) Wherer- = max (S' + l ) and’ﬁ —
q 7 . i J Ju iq
Vi¢W:(ji)EE
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Fig. 4.4. Example of the optimisation within the time window

' max (sj +pj + stj;). The window release time of the activityis
VjeA:sj<timerpNzjq=1
calculated as the minimum time such that scheduling of activityl never affect any
activity before the current time window. Therefore, only the activitiesahaiprior to
the time window are considered for the window release time computation.

Similarly, the window deadline of activity for resource unity is given as

d;; = min (Jtemp, jr@s) where 4™ = min si—1;;) and d7es =
q 1 1q 7 Vj%W:(i,j)GE( J 1]) 1q
max (sj — pi — sti;). As for the window release time, the win-

Vj€A:sj+p;>timerpAzjq=1
dow deadline of activity is calculated such that the activity will never influence the
schedule after the time window.

After the optimisation of a time window, the next time window is set such that
there is one-half overlapping with the current time window in terms of the indlude
activities. Let{51 e s|W|} be the start times of all the activities from the current time
window sorted in non-decreasing ordéi/| is the number of activities in the time
window. Then the left border of the next time window is calculatediaser,g =
srwy/21- The right border is then set with respect to the maximal number of activities
per resource type.

Figure4.4 depicts an example of the time window before (Figlirég and after
(Figure4.4D) the optimisation. The example is not related to the instance depicted in
Figure4.1, a bigger instance is used instead to show a meaningful time window. The
time window is delimited by the left border (vertical dashed line at time 6) and the
right border (time 19). All the activities that start and end within the time window
are included into the optimisation process while the rest of the schedule (astivitie
without numbers) is not allowed to be modified at all. The left border for the next
time window is depicted in Figuré.4bat time 11.

4.3.2.2 Selection from ready set

The schedule construction method is quite similar to the one used in the initial phase,
only the rules to choose an activity to be scheduled and also the backgackiame
are different. The optimisation of the schedule in a time window begins by udskzhe
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ing all the activities in this time window. Then the set of ready activities, which ca
be currently added into the schedule, is established, similar to the initial phtse o
algorithm. The set of ready activities contains (in each time moment) all the activities,
for which all predecessors are already scheduled. For this pymesassume that
the selection of the activities is fixed, i.e. the rejected activities are not coaedide
at all. The ready set is updated after each step of the algorithm - after eaetius-
ing/unscheduling of an activity.

To select one activity from the set of ready activities, the algorithm trieshtedsc
ule each activity from the ready set and then the activity, which causemitfimal
increase in the total setup time, is selected and actually scheduled. Theavessign
of an activity to the resource type demanded is handled also with respeettarih
imal increase of the objective value. Therefore, activity always scheduled to the
resource units where the setup time is the lowest, with respect to the temporal con
straints given by, andd;,. In case that the activity cannot be scheduled within the
specified release time and deadline, the activities are being\reschedulekﬂ‘dxn@d
order. If the activity is successfully scheduled withify andd,,, then it is assured
that no temporal constraints are violated considering the schedule outsitim¢he
window.

4.3.2.3 Limited discrepancy search

The method selecting an activity from the ready set, described in the presaotisn,

is used in combination with thimited discrepancy searc{L.DS). Limited discrep-
ancy search proposed blarvey and Ginsber{1995 is a special kind of the branch
and bound (B&B) algorithm where the total number of the tested nodes is very lim-
ited. Generally, an activity from the ready set to be scheduled is chosenrhg
heuristic rule and a schedule is constructed while following that rule. le chthe
limited discrepancy search, there are some points in the schedule conatfuatied
discrepancies) where the heuristic rule is not used, which can lead fer@difsched-
ule. The process of finding the solution for the single time window is repeatedsde
times, while the discrepancy is used in different moments of the schedulewmnstr
tion.

In the branch and bound algorithm, the actual schedule is determined byrthe cu
rent node in the search tree.si&arch treas a directed acyclic graph (more precisely
out-tree graph), where each node corresponds to a (partial) delsetermined by
the order in which the activities are added to the schedule, using the ssv&iagion
scheme. Each node has the number of successors equal to the numlzelycdae
tivities with respect to the current schedule. A complete schedule is repeesay
each leaf of the search tree, the rest of the nodes represent thegudwdidules. A full
branch and bound algorithm basically enumerates all feasible schedulgsoadile
cuts in the tree dues to an estimation of the upper and lower bounds.

The limited discrepancy search is based on the same principle with the exception



Chapter 4 RCPSP-APP under minimization of the total setup time 61

Algorithm 5 Optimisation of the time window schedule
bestSchedule = current schedule
for(h=0...n)

Unschedule: — h activities
Determine ready activities
Select activityi by discrepancy on level
while (activity < can be scheduled
Update ready activities
if (ready setis emply
break
end if
Select activity: by heuristic rule

end while
if (new best schedule fouind
bestSchedule = current schedule
end if
end for
returnbestSchedule

that instead of constructing the full search tree, a heuristic rule is alwssd 10
determine only one successor of each node, which is further expahlded, for some
predefined nodes in the graph, the discrepancy is used to searchlieragioection,
which means that the heuristic rule is not used and a different direction gerho
The nodes where the discrepancy is used and also the number of disgespzan be
chosen in a wide range. In our case, we always use, at most, ongpdiscyeper one
schedule construction.

Let the time window consists of activities. Then the depth of the search tree (the
number of decision points) is equal#to The attempt to construct a schedule follows
the heuristic rule (described in the previous section) in each decision pbieih. dach
attempt contains exactly one discrepancy on lével{1...n} and the heuristic rule
is used in all other nodes. As a consequence there ard attempts to construct a
schedule within one time window. Each attempt is evaluated in terms of the objective
function and at the end, the best schedule is compared with the originalbe laed
if the improvement in the objective value is achieved, the time window schedule is
embedded into the overall schedule.

The activity to be scheduled in cases of discrepancy is chosen as follwstsad
of selecting the activity, which causes the minimal increase in the objective, value
activity ¢ with the lowest value ofl; — p; — s; is used. This way, the least flexible
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Fig. 4.5: Example of the limited discrepancy search

activity is added into the schedule at a node where the discrepancy is used

If activity 7, selected from the ready set, cannot be scheduled due to a violation of
the temporal constraints, the current attempt to construct the schedule is tednina
The algorithm then continues with the next attempt while the level of discrepancy
used is increased by one. To save the time wasted by unnecessarylischadd
unscheduling steps, thieth iteration of the limited discrepancy search always starts
from the schedule, wherk — 1 activities are already scheduled from the previous
iteration. The overall scheme of the limited discrepancy search is depictedan Alg
rithm 5.

An example of the limited discrepancy search for the time window depicted in
Figure4.4is shown in Figurel.5. For each iteration of the local search, the discrep-
ancy is used in different level (denotedigsand, therefore, also the sequence in which
the activities are scheduled is modified.

4.4 Performance evaluation

Two sources of instances have been used for the performancetevalithe algo-
rithm proposed in Sectiof.3, designed to solve the problems with alternative process
plans. First, the STOAL algorithm is evaluated on randomly generated instande
compared with the IRSA algorithm proposed in Sectibh Second, the standard
benchmarks oBrucker and Thiel¢1996 are used and the results of the STOAL al-
gorithm are compared with the results reporteéacacci et al(2000. Furthermore,
various settings of the STOAL algorithm are discussed and tested on largecesta
of the problem (up to 1000 activities). The STOAL algorithm was implemented in the
C# language and the experiments were performed on a PC with an Intel Carad2 Q
CPU at 2.83GHz with 8GB of RAM.
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Dataset | D30 | D50 | D100 | D200
IRSA feas [%] 98 | 100 | 96 | 97
TST 120 | 254 | 494 | 942

Cras 148 | 243 | 521 | 1054

tepu 5 36 | 112 | 322

STOAL || feas [%)] 99 | 100 | 98 | 98
TST 101 | 215 | 427 | 824

Craz 171 | 282 | 618 | 1263

tepu 3 12 | 77 | 141

TST™ (%] | 15.84| 15.35| 13.56| 12.53

C% %] | 13.46| 13.83| 15.71| 16.55

Table 4.1: Comparison with IRSA algorithm using new random instances

4.4.1 Comparison with IRSA algorithm on random instances

The datasets D30, D50, D100 and D200, introduced in Se¢tiér, are used to
compare the STOAL algorithm with the IRSA algorithm described in Chaptéa-

ble 4.1 shows the comparison of the results obtained by the IRSA algorithm and by
the STOAL algorithm. Columns represent datasets, rows contain objectivesvalu
and other performance indicators. Abbreviatjas determines the percentage ratio
of feasible solutions found by each algorithfiS7T contains an arithmetic average
value of the objective function for instances that were successfullydblydoth al-
gorithms,time determines the average computational time (in milliseconds) to solve
a single instancel ST states the improvement of the STOAL algorithm over the
IRSA algorithm in terms of th@'ST value and, finallyC?! denotes the deteriora-
tion of the makespan value achieved by the STOAL algorithm over the residivadh

by the IRSA algorithm.

The number of feasible solutions found is almost the same for both tested algo-
rithms, but the STOAL algorithm outperforms the IRSA algorithm in both "
value and the solution time. The fact that the success rate in finding feadiltiers®
is equal proves that the STOAL algorithm is very effective for the comsdieempo-
ral constraints, since the IRSA algorithm was developed with the main aim torfind a
feasible solution.

4.4.2 Comparison with algorithm of Focacci et al.(2000

For a further evaluation of the STOAL algorithm, the instances of the general job
shop problem proposed Brucker and Thield1996 are used. As a reference, the
results for such instances reported-imcacci et al(2000 are considered. The prob-
lem studied inBrucker and Thielg1996 is a sub-problem of the problem defined
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Focacci STOAL
Dataset|| TST | Craz || TST | Craw | TST™™ [%] | C2E %]
t2-ps12 || 1530 | 1445 1010| 1920 33.99 32.87
t2-ps13 || 1430| 1658 | 1330| 1872 7.00 18.93
t2-pss12|| 1220 | 1362 || 950 | 1599 22.13 17.4
t2-pssl13|| 1140| 1522 1140| 1610 0 5.78
average|l 1330| 1497| 1110| 1825 16.54 18.74

Table 4.2: Comparison withocacci et al(2000

in Section4.1 since there are no release times or deadlines, no alternative process
plans and the resources are considered to be unary. The objectot@fureported
in Focacci et al(2000 is twofold, first the makespan in minimised and then the total
setup time is being minimised without a deterioration of the makespan value.
Table4.2 shows the comparison of the STOAL algorithm with the one published
by Focacci et al(2000. The meaning of the abbreviations in the table is the same as
for Table4.1. Compared with the algorithm described Bgcacci et al(2000, the
STOAL algorithm improved the value of the total setup time by more than 16% in
average. The price for the better value of the TST is the higher value ofdkespan,
by almost 19% in average. Such a trade-off between the makespan aothtrsetup
time shows the good efficiency of the STOAL algorithm proposed in terms of the to
setup time criterion.

4.4.3 Configuration of the STOAL algorithm

As described in Sectioa.3, there are three main input parameters of the algorithm,
which influence both the solution quality and the running time. Namely the maxi-
mum number of backtracking steps, the maximum number of activities per resource
in a time window and the number of repetitions of the sliding windows local search
procedure. To determine the influence of the settings on the quality of the selution
and the running time of the algorithm, the following set of additional experiments was
performed.

For each of the algorithm settings, three different values are tested on four
datasets, each containing 100 instances.nbbé&ium datasets with 50 and 200 activ-
ities from Sectiont.4.1together with two further datasets with 500 and 1000 activities
per instance are used. The number of resource typssandomly chosen from inter-
val (1, 10) for both datasets with 500 and 1000 activities while the rest of the instances
properties is the same as in Sectiba. 1

First, the influence of the maximal number of backtracking steps on the num-
ber of the feasible solutions is evaluated. For this purpose, only the initiaslepha
of the algorithm is executed and the number of feasible solutions (out of 100) fo
each dataset and the average solution time in milliseconds is observed. The maxima
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’ #backtracks H 0.1-n H 0.3-n H 0.5-n ‘
n feas | t [ms] || feas | t [ms] || feas | t [ms]
50 54 1 60 4 60 7
200 39 2 62 7 63 16
500 42 10 57 54 61 107
1000 37 24 59 118 62 252

Table 4.3: Influence of the backtracking scheme settings

’ #resActivities H 10 H 15 H 20 ‘
n TST | t[ms] || TST | t[ms] | TST | t[ms]
50 221 15 221 14 223 16
200 663 | 110 662 | 112 662 | 115
500 1500 | 470 || 1497 | 484 | 1495| 501
1000 2677 | 1140 || 2672 | 1325 || 2665 | 1578

Table 4.4: Influence of the number of activities per resource

number of backtracking steps, denoted#&lsicktracks, is calculated as a multi-
ple of the number of activities and for the evaluation, three values have bedn us
#backtracks = {0.1-n, 0.3-n, 0.5-n}. The overall test results are depicted in
Table4.3 wheren denotes the number of activitiefeas determines the number of
feasible solutions (out of 100) found by the STOAL algorithm arjehs| denotes
the average solution time in milliseconds. Based on the results in Fablge can
conclude that the optimal number of backtracking steps lies below half the mafbe
the activities. A further increase of the number of backtracks does niadse the
number of feasible solutions.

Second, the influence of the maximal number of activities per resource within
a time window, denoted agresActivities, on the solution quality is determined.
The same four datasets as in the previous case are used and thremthifdues are
considered:#resActivities = {10, 15, 20}. Table4.4 contains the results of the
evaluation,7’ST determines the average value of the objective function. For smaller
instances, there is no significant influence of the number of activities peunree on
the solution quality. For larger instances, the higher number of activities peunee
leads to a better solution quality while there is also a minor growth in the solution
time.

Finally, the influence of the number of the local search procedure repstitien
noted as#repetitions, on the solution quality is studied. Again, the same datasets as
in both previous experiments are used. As for the previous parametessdifferent
values are consideredtrepetitions = {1, 2, 4}. The results in Tablé.5show the
high importance of the number of the sliding windows repetitions on both the solution
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’ #repetitions H 1 H 2 H 4 ‘
n TST | t[ms] || TST | t[ms] || TST | t[ms]
50 224 7 221 14 220 29
200 668 58 662 | 112 659 | 213
500 1504 | 253 || 1497 | 484 | 1491| 956
1000 2692 | 685 || 2672 | 1325 || 2659 | 2428

Table 4.5: Influence of the sliding windows repetitions

guality and the solution time. Naturally, the higher number of repetitions results in a
better quality while the increase in the solution time is more or less linear with respect
to the number of repetitions.

4.5 Conclusion

The content of this chapter fills the gap in the literature, where only verypfeves

of work have been dedicated to scheduling problems with setup times as & thart o
criterion. The setup times are usually considered only as a constraint.rdpesgd
innovative model combines the RCPSP problem with the alternative processapidn

the criterion to minimise the total setup time in the schedule. Furthermore, The model
includes the release time and deadline for each activity and the non-negfativeo

start time-lags for precedence constrained activities. For such a modes, stiidied
problem, the mathematical formulation, using the mixed integer linear programming
(MILP), is proposed.

The two-phase heuristic algorithm is then developed to solve the large instance
of the considered problem. The goal of the algorithm first phase is to finteasible
solution and the second phase, based on the time separation of the schatkde, is
cated to improve the existing schedule in terms of the total setup time. The STOAL
algorithm is compared with the existing approaches for similar problems. The-exper
iments show a very good performance of the STOAL algorithm in both the quélity o
the solutions and the running time. Finally, various settings of the algorithm and their
influence on the obtained results are evaluated using the instances with 0p0o 1
activities.



Chapter 5

Minimization of the total
production cost for the
RCPSP-APP

The main motivation for this research is the production process optimisation in a print-
ing company, where the scheduling problem involves alternative processaid the

goal is to minimise the total production cost given by both the processing dgsts-0
duction operations and the penalties caused by late jobs. In our approttthalts of

the objective function are optimised simultaneously using the concept of diterna
process plans. We propose a model and a solution approach that clesaratae
process plans as well as the realistic criterion composed of two differetst pEo
cover the needs of the printing production, we consider resources withimany ca-
pacities, sequence dependent setup times and generalised temporalircisnstthe

form of non-negative start to start time lags.

In literature, there are only a few attempts to introduce a tardiness-based obje
tive function into the area of the resource constrained project scheduiatdem.
Ballesin et al.(2006 studied the RCPSP where the criterion is to minimise the total
tardiness of all activitiesvanhoucke et al2001) proposed a branch-and-bound algo-
rithm for the RCPSPWET problem that is a resource constrained projeetigiing
problem with the minimisation of the total weighted earliness-tardiness as a criterion.
Franck and Schwind{1995 mentioned a MRCPSP with the objective to minimise
the sum of the earliness and tardiness vall®@sedo and Singgi1999, Essafi et al.
(2008, Zhou et al (2009, Bulbul (2011) andZhang and W{2011) dealt with the job
shop scheduling problem, with the total weighted tardiness as an objectst#ofun
Naderi et al(2009 focused on the flow shop problem where the objective function is
the minimisation of the total weighted tardiness.

The presence of the cost of activities in the scheduling is mainly represented
by the discrete time/cost trade-off problem (DTCTP) where each actigisyahfi-
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nite set of modes given by the duration and processing c8btabtay and Steiner
(2007 published a survey dedicated to scheduling problems with discretely con-
trollable processing times of activitiesvanhoucke and Debel007) presented a
metaheuristic solution procedure for the DTCTP and based on the computagenal r
sults, the authors concluded that, due to the efficient character of thieadgadthm

of Demeulemeester et g[1999, the metaheuristic solutions for the DTCTP can not
compete with the truncated solutions found by the exact algorithm.

The first contribution of this chapter is the novel scheduling problem, where th
RCPSP problem with alternative process plans (RCPSP-APP) is emhlaytiee re-
alistic criterion composed of two different parts, namely the total weighted &sslin
and the total processing costs. The combination of the alternative procassapia
the objective function reflecting two different sources of the productiotsées nat-
ural step towards the demands of the modern production. The approach to rinimis
the makespan for whatever price used in Chaftean be applied only for special
cases with the hard temporal constraints where the main goal is to find anyldeasib
schedule. In this chapter, we consider the general case where this tmateet the
customer demands (due dates) and, in the same time, minimise the processing costs
The inclusion of both demands in the objective function is supported by tsemqce
of the alternative process plans, which allow to reflect the cost of thalasziection
in a straightforward manner.

The IRSA algorithm proposed in Chaptércannot be directly applied to solve
the problem considered in this chapter since it does not include due detes@
cessing costs of activities. Furthermore, the search method in the IRSAtlahgor
is rather straightforward and strongly dependent on the temporal constizat go
hand in hand with the makespan criterion. Therefore, we use two diffesemistic
algorithms to solve the considered problem. The second contribution of thitechap
is the adaptation and the detailed comparison of two algorithms, while each of them
uses unique model and search strategies. To prove the effectivétiesalgorithms,
the job shop instances presentedBiilbul (2011) are used as well as the instances of
the integrated process planning and scheduling presentubio et al(2009.

The chapter is organised as follows: The problem statement, including the math
ematical model, is given in Sectiénl. Section5.2is dedicated to the description of
two heuristic algorithms for the considered problem. The performance ¢ealud
both algorithms is given in Sectidn3and Sectiorb.4 concludes the work.

5.1 Problem statement

The definition of the problem studied in this chapter is based on the problem state
ment in Sectior2.1. In addition to this, each activity € A has a due daté; > 0,
tardiness costy; > 0 and processing cogt > 0. All the new activity parame-
ters are reflected in the objective function. In this chapter we considerramy
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Fig. 5.1. Example of the NTNA instance

negative time-lagg;; > 0 for all (¢, j) € A; if there is no temporal constraint, then
l;j = —oo. The goal of the scheduling is to minimize the total production cost equal
to the sum of the total processing costs and the total weighted tardiifeé€s =
>.c¢j-vj + > w;-T; whereT; = max (s; + p; — dj,0) is the tardiness of an ac-
tivity. The considered problem can be denotedPasnestedAlt, l;j, STsp|T PC

or ml|min, p;, 65, nestedAlt, s;,|T PC using the same classification schemes as in
Section2.7.

The instance of the problem considered in this chapter is depicted in Figure
Several time-lags are used to demonstrate how the temporal constraints aed,defin
see e.g. time-lagy; = 8 that forces activity7 to start at least 8 time units after the
start time of activityl. All the parameters related to the activities are also included.

5.1.1 Mathematical model

The mathematical model for the studied problem is based on the definition given in
Chapter2. In addition to this, formulaX.1) serves to determine the tardiness of each
activity. If the activity i is rejected ¢; = 0) then the tardines%; = 0. Note that
there is no particular rule for the start times of the rejected activities. A @nsto

force the start times of the rejected activities to be equal to zero could leel #td

the model but it would be of no benefit for the solution. Therefore, the actliaés



70 5.2 Heuristic algorithms

of the start times for the rejected activities are let to be decided by a partsnilar
search method. The goal is to minimise the total production cost given by the total
processing cost and the total weighted tardiness.

Min.Zci-w+ ZwZTz

Vie A Vic A
subject to:

(2.1) — (2.12)

T,>si+pi—di—UB-(1—v) Vie A (5.1)

5.2 Heuristic algorithms

To solve large scale instances of the problem considered in Sécfiowe have de-
veloped two heuristic algorithms, namely the discrete differential evolution ([ADE)
gorithm and the scatter search (ScS) algorithm. Both algorithms are populatieh-bas
methods and they can search a large solution space while the local searetiyes
are used to improve the quality of the solutions found. However, each algargbm
different solution representations and search strategies.

5.2.1 DDE algorithm

The DDE algorithm used for the solution of the problem considered in this ahapte
is inspired by the work offasgetiren et al(2009 who used DDE to minimise the
total weighted tardiness for the single machine problem. The basic principie of
DDE algorithm is similar to a genetic algorithm - first, the initial population has to be
established and then, mutation and crossover operators are perforniee $etected
individuals and for a defined number of iterations. However, there are sopogtant
differences. The emphasis is put on the quality of individual members of thiéwo
population. Therefore, a local search, using the knowledge of thdgonolis used

to improve individuals. Furthermore, all operations (mutation, crossover ant loca
search) are performed as incremental modifications over an existing scivesteed

of generating the schedule from scratch after any change.

5.2.1.1 Individual representation

Each individual represents one schedule, i.e. it contains informatiorn #wse-
lection, start times and resource assignment of activities. We intend to utilize loca
search procedures and the mutation and crossover operators will also empley s
routines from the local search procedures. Therefore, the repaties of an individ-

ual should be designed such that these modifications of the schedule witftepes
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R[]
R [7][e]

R,
R,
(b) Solution

(a) Process plan

Fig. 5.2: Example of solution representation

in an effective way. Furthermore, since the considered problem inclugesdence
relations, the feasibility of each schedule modification has to be verified as well. For
this purpose, two representations of a schedule are used simultaneously.

First, anactivities orderof all selected activities is used. An activities order is
an ordered set of selected activities from which the schedule is obtajntt [se-
rial schedule generation scheme (&adisch, 1996. A feasible activities order is an
order that results in a feasible schedule, with respect to both resauwideraporal
constraints. In other words, a feasible activities order is an ordertbathf a serial
generation scheme is applied while scheduling activities as soon as possilvk, the
sulting schedule is time and resource feasible. An activities order is asgimeradh
individual.

Second, a set of resource sequences is assigned to each individtedource
sequencey, = (i € V :v; = 1 ARF > 0) is an ordered set of selected activities as-
signed to resource type If activity j is the next element iy, after activitys, then
j is called a direct resource successoi ahd, vice versa, is called a direct resource
predecessor of. A resource sequence can be understood as a subset of the activities
order such that all activities in a resource sequence are assignedsemtieaesource
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type. The activities in the resource sequence are in the same order asaittitie
ties order representation. For each resource type, there is a comlggpoesource
sequence for each individual.

The advantage of simultaneous utilization of both representations is that an ac-
tivities order serves for a fast and effective feasibility check while #source
sequences are used to eliminate inefficient local modifications of the schedule in
mutation and crossover operators and local search methods. A set dfiesctiv
corresponding to one process plan is depicted in Figutexand a schedule is
shown in Figure5.2h  The activities order representation of such a schedule is
(0,1,7,9,10,12,8,13,14,15) and the representation by the resource sequences is
{1 = (1,10) , 92 = (7,9) , 93 = (12,8,13) ,¢4 = (14)}. The dummy activities)
and15 are not included in any resource sequence since they have zeroceesied
mand.

5.2.1.2 Feasibility testing

A typical operation performed in the DDE algorithm described in this chapter is the
rescheduling of an activity in the existing schedule from one resource position
another. Representation of a solution only by an activities order would iasuliny
computational operations that change the activities order but not the solutilin itse
which is very inefficient. Therefore, a set of resource sequenaeseibto determine
a set of possible schedule modifications imposed by a given activity. Inctamen
updates of an activities order, maintaining its feasibility, are used to che@hwh
resource positions are feasible for an activity with respect to the existirglsiehas
described in the following text.

Let V¥ C V be a set of all selected activities in some schedule. @6t

be a directed graph with nodes(G¥™) = V¥ and edgesE (Gtsemp) _

{(i,j) € V5 x V¥ :1;; > 0}. Furthermore, leG%¢* be a directed graph with nodes
V(G¥*) = VS and edged (G%*) = {(i,j) € V¥ x V¥ : i is a direct predeces-
sor of j in the resource sequenceFinally, let Gs be a directed graph with nodes
V(Gs) = V° and edges (Gg) = {E (Gt;mp) UE (Gges)}. The nodes of7g
correspond to all the selected activities and the edgésatpresent all the temporal
constraints and the constraints imposed by the sequencing of activitiesamages.
A feasible activities order, corresponding to a feasible schedule, issgnaent of
a unique numbetop; to each nodeé € V (Gg) such thatop; < top; for each pair
of activities (i, j) € FE (Gg). In other words, grapli/s corresponding to a feasible
activities order has to be acyclic, since a feasible activities order isagquaiwvith a
topological order of nodek (Gg).

For fast detection of infeasible schedule modifications, an algorithm for maintain-
ing a topological order under edge insertions publishe@pgccamela et a{1999
is used as follows: Two edges representing the old resource precedenegtivity
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1 are removed and two edges representing the new resource precedenadded to
Gs. The new solution results in a feasible schedule if and onfysifis acyclic, i.e. a
feasible topological order can be found for verti¢€6G s). Removal of an edge (see
Spaccamela et al1996 does not influence the topological order at all. Therefore,
only the addition of edges has to be checked with respect to the feasibility toitbe
logical order. To detect whether the addition of an edge will result in a @yfclee
graph, only a part of the topological order has to be explored (arslldpsipdated).
For the purpose of feasibility testing inside the DDE algorithm, we define the
methodreinsert Activity (i, old, new) which returns true if activityi can be rein-
serted from resource positi@id to resource positionew with respect to the current
solution. In case of a feasible reinsertion, the activities order is updateelaasv
G s and the appropriate resource sequence. Otherwise, the functiorsrigiser An
amortised running time ofeinsert Activity method isO (N) for each edge insertion
whereN is the number of activities ifrg.

5.2.1.3 Main loop

The pseudo-code of the main loop of the DDE algorithm is depicted in Algorithm
First, an initial population is found (see Sectior2.1.9 and then the mutation (Sec-
tion 5.2.1.6 and the crossover (Sectian2.1.7) are performed for each individual for
a given number of iterations. Furthermore, a local search, describedtiorge@.1.5

is performed after each mutation and crossover to improve the quality of eagidind
ual. A reference individual for the crossover function is selected ulmgpurnament
method, where a certain number of individuals are randomly selected fropoghe
lation and the best one is given as the reference individual. In this chapyer of
individuals are randomly selected from the population. To establish a nesvagem,
the best individual from the following triplet is chosen for each member oftieent
generation: currenndividual, mutantindividual (resulting from the mutation) and
trial _individual (resulting from the crossover).

5.2.1.4 |Initial population

A serial schedule generation scheme (seksch, 1996 is used to establish an initial
population. There are two reasons to select the serial scheme: Firsthédraproven

that utilization of the parallel scheme may lead to non-optimal solution even if the
optimal order of the activities to be scheduled is used. The second risdbahusing

the parallel scheme, the initial solutions would be more similar to each other. On the
contrary, the serial scheme adds only one activity into the schedule inteeation,
which leads to more diverse solutions (with randomized selection). Since we need
to explore as much solution space as possible, the set of diverse solutionays al
more profitable. In the beginning, a set of ready activilidsis established and the
objective value is set tobj = 0. Then, one activity is randomly selected from the
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Algorithm 6 DDE main loop
Establish initial population
bestindividual = best of initial population
foriteration = 1...number_of _iterations
for each individualin the population
mutantindividual = mutate(individual)
mutantindividual = localSearch(mutantindividual)
referenceindividual = tournamentSelect(populatior
trial _individual = crossover(mutantindividual, referenceindividual)
trial _individual = localSearch(trial _individual)
Select best individual ofindividual, mutantindividual, trial _individual}
Add the best one to the next generation
end for
If the new global best solution is found, assign itestindividual
end for
Returnbestindividual

set of ready activities in each iteration of the generation scheme. Once attigity

be scheduled is found, it is marked as selected and its start time is computed as the
maximum from two values - the start time with respect to the temporal constraints and
the start time with respect to the resource constraints. In order to calcutastati

time with respect to the resource constrainﬁs(for keR: Rf > () resource units

is assigned to activity in the first place. To fasten the DDE algorithm, a variable
zivk € {0, 1} is substituted by a variablg € Z* such thatz;,, = 1 if and only if

v; = 1, RF > 0ands; < v < § + RF; z,, = 0 otherwise. Instead of assigning
particular units of a resource for each activity, only the first dpibf a resource
used by activity: is defined and the rest of the activity’s resource demand is assigned
to the consequent units of a resource. In other words, an activity ignassto a
consecutive set of resource units defined by the first assigned; umity. Once a set

of resource units is assigned to activityits start time is calculated as the minimum
start time that fulfills the constraint (including setup times) for each assigrsedirce

unit. After scheduling activity, its tardiness can be immediately calculated as-

max (s; + p; — d;,0). Consequently, the value of the objective function is updated
such thabbj = obj + w; - T; + ¢;.

The set of ready activities is then updated. Activitis removed froml/ % and
if there is an alternative branching at the output of its direct predecas®dTNA,
a depth first search procedure is performed to find all activities thatotdoe set as
selected without the violation of rules for the selection of activities (see Cortstrain
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(1)-(4)). Such activities are removed frovif* and marked as rejected. Finally, ac-
tivities that become ready after scheduling of activigre added td/ . Activity i
becomes ready if it is not marked as rejected and all the actiVijiesV : 1;; > 0}
are already scheduled or marked as rejected.

If V1 is an empty set, the initial solution is completed and the schedule generation
ends. The solution is, so far, represented by the resource sequemgeherefore,
graphGgy is created as described in Secti®R.1.2and the initial topological order
for activities (vertices ot~ g) is found (see e.g<orte and Vyger(2000).

5.2.1.5 Local search

The local search method used in this chapter is inspired by the iterated insertio
scheme, called RIS, published Bgsgetiren et al(2009. The basic principle is to
find the best resource position of an activity in the fixed order of all othtviges.
For this purpose, an activity is put on each feasible position in such arsezjaad
the position with the best value of the objective function of the whole solution is kept.
Such a search is performed for each activity in the schedule. The leaaitsonly
modifies the sequencing of the selected activities on the resources, theaéthe
activities itself is not changed at all. Therefore, it only optimizes the total hted
tardiness part of the criterion.

Since we consider a set of non-unary resources, the RIS methotedda that
it searches for the best activity position in an appropriate resourceseginstead
of the whole sequence of the selected activities represented by the ticpblogler.
Moreover, due to the presence of the precedence constraints,aidly eeinsertion
has to be checked with respect to the feasibility of the schedule. Theref@thod
reinsert Activity (i, old, new) (see Sectiorb.2.1.9) is used every time activity is
moved from resource positiasid to another resource positiorew in resource se-
quenceyy. If the reinsertion of an activity is feasible with respect to the current
schedule, the start times and the first assigned units of the activities ated@hd
the total weighted tardiness of the schedule is simultaneously updated asinedl. S
the re-generation of the whole schedule is time consuming, we update the start time
and the first assigned units only for activities that are actually influengeeifiserting
an activity while the start times and first assigned units of all other activitregire
unchanged.

5.2.1.6 Mutation

The local search method RIS, described in the previous section, is dedicated

prove the total weighted tardiness part of the objective function only withwariging

the selection of activities. To explore the solution space with a different seleftion
activities as well, both the mutation and crossover are mainly focused on the selection
change.
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To change a selection of activities, one alternative branching is randolabtesd
in the mutation. A random selection of alternative branching is operated onlytwver
set of the actual selected branchings, i.e. one of their branches énttyrselected.
Then a selection of activities in the branching is randomly changed, i.e. all agtivitie
in the selected branch are unscheduled and a different branch esmbnskelected and
all activities in the new branch are being scheduled. If another alteerai@nching is
nested in the newly selected branch, a random branch is always seleatédactivity
is scheduled on the first feasible position into the current schedule. @bibiley of
scheduling activityi is tested by the-einsert Activity (i, —, new) method, where
the initial position of the activity is not given and the positinaw is iterated over
the resource sequence. Once a feasible position is found for all nevtiestin the
schedule, the schedule is updated in the same way as described in thagpsegtion,
i.e. start times and assigned units are updated only for the actual influectbgties.

5.2.1.7 Crossover

The crossover operator in our approach is mainly dedicated to changeldwtion
of the activities. Two given individuals - theriginal individual and thereference
individual - are combined and the nevial individual is generated. To generate the
offspring there are two possibilities based on the selection obtiginal andrefer-
enceindividuals.

If the activities selection of both parent individuals is the same, then the sthnda
one-point crossover can be applied (see 8lwpo et al.2009. If the selection of
activities differ between theriginal and referenceindividual, the selection of the
offspringis established as follows: For each alternative branching whereritieal
andreferencendividuals differ, the branch with the lower contribution for the value
of the objective function is selected. This way, the solution is modified towards the
selection with the lower value of the objective function. Each of the activitiegwh
is added to the schedule by the crossover operator, is scheduled tcstHedsible
position in the resource sequence demanded by an activity.

5.2.2 Scatter search algorithm

Scatter search (ScS) is a population-based meta-heuristic, propos&dvey et al.
(2000, in which solutions are intelligently combined to yield better solutions. The
scatter search method involves deterministic procedures that can inchiderprspe-

cific knowledge and can, therefore, be implemented in a variety of waydegraes

of sophistication. In this chapter, the scatter search procedure fordb&epr under
study makes use of the biased random sampling in order to obtain a diverse initial
population of solution vectors. A solution vector is represented by two lists: an ac
tivity list, which determines the sequence in which the activities are schedcared,

an alternative list, which determines which alternative will be chosen. Soluéon v
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tors are transformed in schedules using the serial generation schermanbme the
existing solution, a solution improvement method that calculates the possible theoret-
ical improvement is applied in order to obtain improvements in the objective fumctio
Two local search procedures, one focusing on the activity list andomusing on the
alternative list, are applied - with predefined probability - on the generatestisles
in order to decrease the total production cost.

The main difference with the DDE algorithm presented in Seciianlis three-
fold: a) the individual representation of the schedule. Where the DDHitllgois
only representing the selected activities in its activity list, the ScS algorithm takes all
activities into account, even if these are not selected. Therefore,oaddist (the
alternative list) is used and needed in order to indicate which alternativeiserdtho-
sen. b) the search process. While the DDE algorithm is mainly based on@rand
combination of individuals, the ScS algorithm is known to intensify its solution by
only combining the solutions that are part of the reference set of the bdsterse
solutions. c) the local search process. The process in the DDE algorithesruak
of an iterated insertion scheme, which means that each individual will be evdluate
several times, while in the ScS algorithm the process to minimise the overall tardi-
ness cost is only applied once, namely the one that will make the largesttibabr
improvement in the objective function.

5.2.2.1 Individual representation

In the scatter search algorithm, a population is represented by two lists: atydistiv
and an alternative list. The activity list determines the sequence in whichtiéies
will be scheduled and is represented by a list of priorities. The alterriaivedicates
which alternative mode will be chosen for each alternative branching. bré&ig3
an example of an individual representation is given. The length of the adistiig
determined by the number of activities in the projec}t, the length of the alternative
list by the total number of alternative branching4|j.

112|3|4|5|6|7|8|9|10/A1A2/A3
23|28|13|10|18|28|30|23|23(10( B|A | C

Activity list Alternative list

Fig. 5.3: Individual representation

The modes chosen in the alternative list determine the activities that are being
selected. Rather than changing the length of the individual vector diegeod the
alternatives chosen, each activity in the activity list gets a priority value.sBime is
true for the nested alternative branchings in the alternative list. Even tihangy (or
more) nested alternative branchings are not chosen, the alternativasitgieén an
alternative mode. This means that the total length of the representation is alyjs
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ton + |A|. Such a representation makes it easier to deal with than the representation
with varying lengths. Moreover, it enables the procedure to maintain histatata
that can be used in later generations, although it is not used in the cureent on

5.2.2.2 Scatter search procedure

The scatter search has a generic structure as outlined in Algorithm

Algorithm 7 Scatter search main loop
Diversification Generation Method
bestindividual = best of initial population
W hile Stop Criterion not met

Subset Generation Method
Solution Combination Method
Improvement Method
Reference Set Update Method
End W hile
Returnbestindividual

5.2.2.2.1 Diversification Generation Method In this first step, a poaP of Psize
solution vectors is generated. In order to obtain a diversified initial population
solution vectors, a random priority is assigned to each activity. The prioaiyev
varies between 0 and 100 and will determine the sequence in which the agitiitie

be scheduled, taking into account the precedence relations. It is asswanaditities

with a lower priority will be scheduled first. For the generation of the alteraativ
mode list, an alternative mode is chosen for each alternative in such a way that the
probability of assigning a mode to that alternative is inversely proportional to the
number of times the alternative mode is already chosen. In this way, a diwrsifie
initial pool of Psize solution vectors is generated.

5.2.2.2.2 Subset Generation Method Each solution vector is then evaluated by
using a serial schedule generation scheme (SGS), which translates tiensgtator

into a schedul&, taking into account the precedence and resource constraints. Based
on the fitness function of each solution, two diverse populations are coddinots

the pool P of solution vectors: a seB;, with the b; best solutions of the solution
set P and a setB,, with by diverse solutions. For the subsBt, a threshold; on

the minimal distance between the elements is imposed in pursuit of diversity. The
subsetB, contains theé, best solutions fronP\ B; that are sufficiently distant from

the elements oB;. The diversity inBs is achieved by a threshold on the smallest
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distance to any element iB; with to > t;. The distance between two solutions is
measured as follows:

n .
B 0 if seq? = seq”
12 = z;{ 1 otherwise
1=
Whereseq? indicates the sequence number of activigccording to the priority

list of population elemenp. If there are less solutions iB, than the predefined
numberb,, the setB; is filled up with randomly generated schedules, according to
the procedure explained in Sectibr.2.1

5.2.2.2.3 Solution Combination Method Once the two reference subsets are gen-
erated, a new pool of solutions is created by combining pairs of referehd#ias

in a systematic and controlled way. New solutions are created by combining two
elements from th€3; and B, reference set. First, each pair By is combined to
generate two children. In the solution combination phase, the two selected population
elements produce a new offspring which inherit parts of their parentacieaistics.

A new child is generated by randomly selecting an activify € [0, n]), copying all

the activities|0, r] from the first solution vector and copying all the other priorities
from the second element.

The solution combination method for the alternative list is based on the Harmony
Search procedur&eem et al(2001) and uses a frequency matrix of the alternative
lists in theB; subset. To assign an alternative mode to an alternative, a random subset
element is chosen and the mode for the alternative of that element is assighed to
new element alternative. In order to maintain enough diversification, apildly is
used to randomly assign an alternative mode to an alternative.

Next to the combination of the pairs @f; elements, offsprings are constructed
using the same subset generation method from one elementfr@md one fronBs.
Choosing the two reference solutions out of the same cluster stimulates intisific
while choosing them from different clusters stimulates diversification.

5.2.2.2.4 The Improvement Method After the solution combination method,
each new solution vector consists of a newly generated activity list and lg gen
erated alternative list. Before the evaluation of this new vector is execusadiition
improvement method is applied in order to obtain improvements in the objective func
tion. The applied procedure can be described as follows:

e First, for every pair of activities in the project which are not interrelatggiece-
dence relations, the theoretical improvement in the objective function is caltulate
if the activities are swapped. This theoretical improvement is calculated@asgo

IT = Ccurrent - Cswap (52)
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with I7 the theoretical improvement, ., -.: the tardiness cost related to both
activities andCy,,q;, the tardiness cost if both activities where swapped and stand
alone (given the start date of the first activity and the known due dafEisis
Cswap does not take the precedence relation into account, that is why we call it the
possible theoretical improvement. All positive theoretical improvement vaases
well as the swapped activities are stored.

e Second, one swap is chosen randomly using a weighted probability fun@tien.
probability that a swap is chosen is proportional to the theoretical improveshent
the swap: the higher the theoretical improvement, the larger the chanceehat th
swap will be chosen.

e Finally, this swap is applied to the solution vector and the schedule generation
scheme is applied to calculate the improved solution vector.

The final improvement that will be found in the objective function after this im-
provement method will not always be as positive as the theoretical improidras
predicted. This is due to the precedence relations of both of the swappeitiezcti
with other activities in the schedule which are not taken into account durengah
culation of I.

Since this improvement method is CPU demanding, especially for an increasing
number of activities, a quick/accelerated improvement method is used in the proc
dure. This method randomly chooses two activities until a positive theorétical
provement value is obtained. If afterconsecutive attempts no positiye is found,
no further changes are applied.

5.2.2.2.5 Reference Set Update MethodEach new and improved solution vector
is then evaluated and added to the pBobf solution vectors. Out of this pool, the
two reference subsets are again generated according to the pededaribed above.

The algorithm is applied as long as the stop criterion is not met.

5.3 Evaluation

To prove the effectiveness of the proposed solution methodology, wehrese data
sources for the evaluation of both algorithms. First, the job shop instancessee

by Pinedo and Singg1999 are used to prove that the algorithms perform well for
the total weighted tardiness (TWT) criterion. Second, the instances ofteéggated
process planning and scheduling propose&bgo et al(2009 are used to prove the
effectiveness for the problems with alternative process plans. Finadygemerate
random instances of the problem defined in Secfidrto compare the performance

of both algorithms on instances with various structure. Furthermore, the ggdpo
metric for the instances characterisation is used to find the important propeitties
respect to the solution quality of both algorithms. Both algorithms were implemented
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in C# language and the experiments were performed on a PC with 2x Intel Core 2
Quad CPU at 2.83GHz with 8GB of RAM.

5.3.1 Mathematical model complexity

Exact solution of the mathematical model presented in Sebtibrican be used only

for very small instances. In our previous research (see Chaptitthas been shown
that the MILP solver is able to solve the instances with 30 activities within one minute.
For 50 activities, the number of instances solved to optimality decreased toTa(2%.
proposed model comprised hard temporal constraints and straightforwjectiabd
function - makespan. The absence of hard temporal constraints and thesitempo
objective function considered in this chapter make the exact solution methddsda
effective. We have conducted several experiments with IBM ILOG CPMILP
solver and the results showed that the solver was able to optimally solve, within on
minute time limit, only 65% of instances with 20 activities. For 30 activities, there
was only 28% of optimal solutions.

Next to the experiments with the MILP solver, we have used the constraint pr
gramming solver as well; the results were present@h’pek et al(2013. Due to the
restarted search procedure in the ILOG CP solver, the number of instanedsich
the optimal solution has been found and proved is rather low - 39% for iregawith
20 activities and 11% for instances with 30 activities. On the contrary, temge
value of the objective function was about 20% better than for the MILP suolithin
the same time.

To obtain the results of the same overall quality as the heuristic algorithms pro-
posed in this chapter, the exact solvers ne@d more CPU time for instances with
20 activities. For the instances with 50 activities, the exact solvers aregerable
to compete with heuristic approaches even if the time limit is increased to 10 minutes
per instance.

5.3.2 Job shop problem

The job shop problem with the TWT criterion represents a special suldgmmoof the
problem considered in this chapter. Therefore, we can solve the instaresented in
Pinedo and Singgll999 by both of our algorithms. There are three similar datasets,
each containing 22 instances with 10 jobs and 10 machines. All dataseistadins
the same instances, but with the different assignment of the due date.vdlbes
results of our algorithms are compared with the results publishé&liibil (2011
who used a hybrid shifting bottleneck-tabu search heuristic. Talilsummarises
the results over each dataset for the DDE algoritinD(F), the scatter search algo-
rithm (S¢S) and the results published Bjilbul (2011) for the G/MAI algorithm with
setting (2,2,2,1,1,1,1,1,1,1)-RR¢ ).

The same measurements agsBiibil (2011 are used for our algorithms. First,
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DDE ScS G/MAI
best | worst | avg best | worst avg
Setl| Totalgap[%] || 2.69 | 13.24| 7.92 || 26.94| 31.95 | 28.94 12.49
Optimal 12 3 - 0 0 - 3
New best 6 1 - 0 0 - 3
Time [s] / NoS 33.41/- 29.67 /65 000 31.53/-
Set2 | Totalgap[%] || 5.51 | 36.34 | 19.89 || 79.20 | 99.35 | 88.21 18.97
Optimal 18 5 - 0 0 - 11
New best 0 0 - 0 0 - 0
Time [s] / NoS 32.04 /- 29.82 /65 000 30.11/-
Set3| Total gap [%] || 10.48 | 55.99 | 31.07 || 118 | 158.69| 145.35 37.20
Optimal 17 11 - 6 6 - 13
New best 1 0 - 0 0 - 0
Time [s] / NoS 18.51/- 29.81 /65 000 26.32 /-

Table 5.1: Comparison witBulbul (2011)

we measured the total gap, for each dataset, denotdiag gap that is the per-
centage difference between the total sum of the objective values otsults and
the objective values stated Rinedo and Singdg1999. Second, the number of solu-
tions with the value of the objective function equal or le@p#imal) and strictly less
(N ew best) than stated ifPinedo and Singdd 999 is calculated. Finally, the average
running time of the algorithms in seconds denoted’ase is showed. The number
of generated schedules for the ScS algorithm is indicated@&s. Both algorithms
presented in this chapter use some kind of randomization and thereforénstacicte

is solved five times (using different random seeds) by each algorithm anietst
(best), the worst {vorst) and the averagex{g) value for each instance is observed.
The number of the optimal and new best solutions are not given for the avesgts
of both algorithms, since this information is identical to the worst results (if the value
is optimal in the worst case, it has to be the same for all algorithm runs).

The results show very good performance of the DDE algorithm, despite ¢he fa
that the job shop scheduling is a very specific sub-problem of the proldasidered
in this chapter. The average results of the DDE algorithm outperforms thésres
of the reference algorithm presentedBiilbll (2011) and the best values are very
close to the optimal ones. For the first set of instances, the averadfeofate DDE
algorithm is by4.57% closer to the optimum; for the second set, DDE is worse by
0.92%; for the third set, the DDE algorithm is closer to the optimum6by3% than
the reference algorithm presentedialbl (2011). Moreover, the algorithm was able
to find 7 new best solutions compared to the values presenteth@do and Singer
(1999. Comparison of computational times is not fully representative, diidbil
(2017 implemented the algorithm in Visual Basic. Nonetheless, we believe that the
results in Tablé.1represent an adequate proof that the DDE and ScS algorithms are
more than competitive while the total weighted tardiness criterion is considered in the
area of the RCPSP problems.
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5.3.3 Integrated process planning and scheduling

The integrated process planning and scheduling (IPPS) problem stu@éddret al.
(2009 is used to prove the effectiveness of our algorithms for the schedulirg pro
lems containing alternatives. IPPS is again a special case of the probfsine®d

in this chapter. The goal is to select and schedule a subset of all acthaises on
the precedence graph containing alternative routes and alternativenmassign-
ment such that the makespan is minimisedShao et al(2009 there are six small
instances (1-6) of IPPS and one bigger instance (7) obtained by joilhisgall in-
stances into one graph. The makespan minimisation can be easily transformed to
the minimisation of TWT value by assigning the due date equal to zero for the last
node (activity) of the graph and setting the rest of the due dates to a suffidege
value. The comparison of the reported objective values and the valuéseabtay
our algorithms for all seven instances is depicted in Tahke It should be pointed
out that the objective value for the first instance indicate8hiao et al(2009 is not
possible, since the optimal value is 117 instead of 116. It can be seemstywtting
the schedule according to the process plan selected in the paper, whistdehe
value 117. The average solution time reportedirao et al(2009 is 1 second for
small instances, while for the bigger one there is no solution time at all. Thegavera
running times for our algorithms is 120 ms for small instances and 17s for therbigg
one with the same settings. For small instances (1-6), the algorithms alwaysgenv
to the optimal value. For the bigger instance (7), the value denot&ag is the
average value over ten runs of the algorithms and the value denofet:asis the
minimal obtained value of the objective function.

Instance 1 2 3 4 5 6 | 7best 7worst 7avg
Shaoetal(2009 | 116 116 95 93 116 116 - 162
DDE algorithm 117 116 95 93 116 116 147 166 157
ScS algorithm 117 116 95 93 116 116 150 171 158

Table 5.2: Comparison witBhao et al(2009

Using the algorithms proposed in this chapter, we are able to obtain equal or
better values of the objective values in a shorter time than is indicat8tan et al.
(2009. Therefore we can conclude that the solution methodology is eligible to solve
the problems with alternative process plans.

5.3.4 Computational Results

To the best of our knowledge, there are no benchmark instances fprablem de-
fined in Sectiorb.1. Therefore, new random instances were generated for the final
performance evaluation of both algorithms. The datasets with 10, 20, 50nHGDa
activities per instance were generated, each dataset containing sl@drrarstances.
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DDE ScS
Dataset|| fiean ‘ best ‘ tepu (M) || fmean ‘ best ‘ tepu (M) ‘ NoS
D10 484 39 28 487 3 25 100
484 39 52 487 3 51 200
D20 859 52 115 869 4 102 200
858 | 51 237 869 3 213 400
D50 1511 | 46 237 1519 | 27 244 500

1511 | 45 467 1519 | 19 483 1000
D100 2667 | 64 581 2677 | 67 559 1000
2665 | 62 972 2677 | 64 993 2000
D200 4555 | 50 2210 4559 | 181 2186 | 2000
4549 | 56 4219 4559 | 165 4175 | 4000

Table 5.3: Results for generated instances

For each instance, we run both the DDE algorithm and the ScS algorithm for 10
times and the average value of the objective function is considered foraheaton.
The overall results for both algorithms over all datasets are summarised inSTable
Two configurations of both algorithms are used to solve the instances. The nmaximu
number of schedule generation steps for the scatter search algorithm is@¢ned
the number of activities in the first case and 20 times the number of activities in
the second case. The configuration of the DDE algorithm was adjusted torrun fo
a similar time resulting in the number of individuals equal to 10 and the number of
iterations between 30 and 80. The reason to use the running time as the main common
measure for both algorithms is that the number of generated schedules, &hibk ¢
used for the ScS algorithm, is not applicable for the DDE algorithm since there ar
only few generated schedules that are further updated incrementadiytirié saved
in the DDE algorithm thanks to the reduction of the repeated schedule generation is
dedicated to the incremental schedule updates.

Each labelDx in Table 5.3 stands for the dataset withactivities per instance
while the first row corresponds to the first configuration of the algorithmgtamdec-
ond row to the second configuration with extended stopping criterion. Cofiy,
represents the average value of the objective function obtained byesponding al-
gorithm for a given dataset. Colundast contains the number of instances for which
the corresponding algorithm found a strictly better solution (for the aver@ge wover
10 runs). Columrt,,, contains the mean solution time in milliseconds. The number
of generated schedules for the ScS algorithm is denotédads

As can be observed from Table3, the results obtained by both algorithms are
very competitive. On one hand, the DDE algorithm was able to find better results
from the point of view of the objective function value. On the other handntimeber
of strictly better solutions is higher for the ScS algorithm, especially with a growing
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number of activities per instance. Based on the results we can concludeftintiter
increase of the solution time for the ScS algorithm will not lead to an improvement
in the results. On the contrary, the DDE algorithm showed an improvemergulfse
with a growing solution time. Therefore, we can conclude that the convesgien

the objective value is faster with the ScS algorithm while the solution time increase is
more rationale for the DDE algorithm when searching for a better solution.

The evaluation of both algorithms with respect to the measured properties of in-
stances is depicted in Talbie4, where dataset®50, D100andD200are used again.
For each dataset and each measured property,-tiwt is evaluated while the two
sets being compared are the sets of instances where the strictly best sestduwd
by the DDE algorithm {et?PF) and the ScS algorithms¢t°°°) respectively. The
second setsetS<%) for dataset®10andD20is too small for a fully conclusive-test
evaluation, those datasets are not considered in TallleAs in Table5.3, two con-
figurations of each algorithm are tested. The rows Wit FE' (Sc¢S) label contain
an average value of a specific metric over all instances of a given tiatasee the
DDE (ScS) algorithm found better results. Rowsalue then contain the results of
thet-test, i.e. the significance level that the mean values of both sets are equal.

As mentioned before, a lowervalue corresponds to the more important prop-
erty from the algorithm comparison point of view. Based on the results in Talile
the most important properties with respect to solution algorithm are the number of
alternative branchings{AB) and the number of alternative process plafsiP P).
For both properties, the ScS algorithm was better for higher values, i.estances
with more alternatives in the selection of the activities. The next property frem th
importance point of view is the resource constrainedn&%s)( where the DDE al-
gorithm was better for higher values corresponding to the instances with caraes
resources. For the average activity slackA(S), the ScS algorithm was better for
instances with tighter time windows of activities. The last properties where a solid
importance has been observed are the total and average order s{fEagthand
AOS), which are closely related both in the values and in the influence for the so-
lution algorithm effectiveness. For both properties, the DDE algorithm was slightly
better for less pre-ordered instances, i.e. those where more decidiates! t® or-
ders of activities on resources are needed. The rest of the prophoties possess a
significant influence for the different solution methods or the results are amisiguo

The reason for the ScS algorithm being clearly better for the instances with a
higher ratio of alternative parts is that more time of the algorithm is dedicated td trave
across the solution space based on the evolutionary operators. In thel@diEhan,

a strong emphasis is put on the local search for the TWT part of the critandn
therefore, it is better for instances with less alternative process pldresprbof can

also be found in the evaluation of the algorithms on the instances of the job shop
problem fromBulbul (2011) where no alternatives are present and the DDE algorithm
shows much better performance than ScS.
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D50 TOS | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
DDE 0.44 | 0.49 1.85 8.85 36.83 | 1.26 | 187 | 0.72| 17.48
ScS 0.45 | 0.53 | 2.09 11.80 4037 | 1.22| 193 | 0.61| 6.93
p-value 0.66 | 0.23 | 0.48 0.47 0.18 0.83| 0.80 | 0.02| 0.17
DDE 0.45 | 047 2.00 6.89 38.05 | 1.22| 189 | 0.72 | 14.24
ScS 0.46 | 0.52 2.00 11.78 40.47 | 1.32| 195 | 0.64 | 10.58
p-value 0.60 | 0.21 1.00 0.27 0.38 0.62| 0.82 | 0.17| 0.57
D100 TOS | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
DDE 0.48 | 048 | 3.44 80.59 85.21 | 1.38| 2.81 | 0.68 | 93.27
ScS 052 | 052 | 455 | 230.15 | 8343 | 1.49| 275 | 0.65| 84.55
p-value 0.25 | 0.23 | 0.00 0.01 0.44 025| 0.79 | 0.20 | 0.51
DDE 0.48 | 0.49 3.40 77.39 85.48 | 1.37| 2.85 | 0.68 | 95.45
ScS 051 | 051 | 439 | 257.88 | 8594 | 144 | 2.67 | 0.65| 85.02
p-value 0.29 | 035 | 0.00 0.13 0.85 0.52| 0.47 | 0.22 | 0.35
D200 TOS | AOS | #AB | #APP | PPAct | NL | #res | RC | AAS
DDE 0.46 | 046 | 6.47 | 1903.69| 167.82 | 1.73 | 2.80 | 0.67 | 265.27
ScS 0.48 | 0.47 8.03 | 7496.32| 170.00 | 1.65| 2.99 | 0.65 | 234.24
8 p-value | 0.43 | 0.53 | 0.00 0.05 0.50 0.41| 044 | 046 | 0.28
DDE 0.46 | 045 | 6.67 | 2518.59| 169.40 | 1.72 | 2.80 | 0.67 | 265.74
ScS 0.48 | 0.48 | 8.04 | 7848.33| 170.84 | 1.62 | 2.84 | 0.65 | 251.89
p-value 0.44 | 0.37 0.00 0.06 0.63 0.31| 0.84 | 041 | 0.32

Table 5.4: Results of metric for new datasets

5.4 Conclusion

In this chapter, we present a new scheduling problem that combines aratiern
process plans definition and a realistic objective function composed of twq parts
lated to both the processing costs and the meeting of the due dates. Theliaghedu
model is based on the resource constrained project scheduling problemitertia-

tive process plans and formulated as the integer linear programming problem. Fo
the proposed model, two evolutionary algorithms with distinct search strategies are
developed. Both algorithms showed a good performance for the relateidm® es-
pecially the discrete differential evolution algorithm which is fully competitive with
the existing methods for much more specialized problems.

The algorithms were evaluated using a novel metric for the characterisatiom of th
instances properties. To find the most important properties with respect éffelce
tiveness of the solution methods, the Two-santgtiest for equal means is used. Such
an evaluation strategy can be used for any metric or solution approach whitddhe
tive importance of a specific property can be straightforwardly deffraed the result
of the t-test. Consequently, the proposed evaluation method can be easily adapted to
any scheduling problem where more solution approaches are to be compared.

The result of the comparison of two developed heuristic approaches is ¢hext in
mental updates with a local search used in the DDE algorithm is better for preble
with more parallel structure and scarce resources. On the contralpjepr®contain-
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ing more alternative parts (more alternative process plans) were solvediyette
scatter search algorithm where the main emphasis is put on the evolutionarioopera
and wide travel across the solution space.
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Chapter 6

Conclusion

This chapter concludes the work and summarizes the achievements with teshec
Goals and Objectives Chapter .

6.1 Main Achievements and Contributions

The first achieved contribution of this thesis lies in the novel mathematical madel fo
the production scheduling with alternative process plans. Thanks to the utilization
of the Nested Temporal Networks with Alternatives (NTNA), the model raspbe
natural structure of the production processes, where certain part®qaoduced in
more alternative ways, yielding the same final product in the end. Morgibyee-
serves the assumptions and constraints of the Resource ConstrainetsFESofeciul-
ing Problem (RCPSP) that is the most commonly used scheduling frameworlefor th
production scheduling problems. Consequently, the resulting RCPSP-ARPSERC
with alternative process plans) model offers very flexible definition of teytion
scheduling problems while it supports the utilization of a broad variety of solution
approaches for the RCPSP problems. The power of the proposed matatmadel
is demonstrated on three specific problems. Although the problems differ impssu
tions, constraints and objective function, the common mathematical formulas from
Chapter2 can be used for all the problems without any loss.

The second contribution is represented by the design and implementation of four
different heuristic algorithms for three considered problems. The solutiproaph
for each considered problem was selected considering the specifitaiotssand
objective function. The solution for the problems with hard constraints anérrath
straightforward criterion is based on fast deterministic heuristics with limiteddiud
(number of iterations). On the contrary, the approach for the last proldasy (o
find a feasible solution but the objective is more complex) utilizes population based
methods in order to explore the search space is more directions simultaneoussly. D
to the fact that the general problem considered in this thesis has noshahed in

89
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such an extent so far, there are no standard benchmarks availablethBiess, based
on the results in each chapter, we can conclude that the heuristic algoritbpused
in this thesis are able to compete with the specialized algorithms for the specific sub-
problems. In some cases, the results were even better that the best $wiations
so far. In addition to the experiments for the heuristic algorithms, the perfoeranc
two different exact methods, namely constraint programming and mixed irtegar
programming, is evaluated as well.

The third contribution of the thesis is the novel evaluation metric for the instances
of the problems with alternative process plans. This metric is used togethestaith
dard statistic methods to find out the important properties of the instancesatreat h
the main influence on the performance of different algorithms. The main focus is
naturally paid to the structural properties of the instances, especially tadperp
ties bound to the definition of the alternative process plans. The evaluation metric
is used in Chaptes and Chapteb to distinguish the effectiveness of more solution
approaches with respect to the type of the instances.

6.2 Revision of Goals and Objectives

The fulfillment of the stated goals and objectives is summarized below.

1. The goal to propose a representation for the scheduling problems wittealter
tive processes was satisfied in Chagtewhere the common model for the rest
of the work is established. The formulation reflects the state of the art in the
scheduling area and fills the gap in the existing approaches for the problems
with alternatives.

2. A mathematical formulation for three studied problems based on the proposed
representation is stated in ChapgrChapter4 and Chapteb, respectively.
Each chapter presents extensions and/or modifications of the common part fro
Chapter2 that are specific for the current scheduling problem. In addition to
the formulation itself, Chapte# contains the comparison of the exact solution
methods, namely the MILP and CP approaches. The results showed that the
effectiveness of both solvers is comparable; on the one hand MILPagipis
better in proving optimal solutions, on the other hand the value of the objective
function with the increasing solution time converges faster in case of CP solver.

3. The goal to develop the solution methods for large instances is fulfilled by the
design and implementation of four heuristic algorithms, all implemented in the
C# language. Chaptérdescribes the constructive heuristic algorithm with an
un-scheduling step that is designed with intention to solve the instances with
hard temporal constraints (release times, deadline and positive-negative time-
lags). The algorithm is able to solve instances with 2000 activities in less than
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10 seconds and when compared to the constraint programming, it consumes
approximately 30x less time to achieve the solutions of the same overall quality.

The STOAL heuristic algorithm developed for the problem considered ipCha
ter 4 is based on the fast search for any feasible solution in combination with
the local search for the time-disjunctive parts of the schedule. Thanke to th
fact that the negative time-lags are not present in the problem, the STOAL a
gorithm is able to run even faster than the before mentioned IRSA algorithm. It
is able to solve the instances with up to 1000 activities in less than 3 seconds.

Finally, there are two different population based algorithms designed for the
problem presented in Chaptér Both algorithms are comparable in both so-
lution time and objective function for the random generated instances and are
able to solve problems with a few hundreds of activities within 5 seconds. Note
that the exact solvers for the considered problem are able to effectizakjle

only instance with up to 40 activities; for larger instances the exact methods are
no longer applicable, mainly due to the composite criterion.

4. To satisfy the objective that lies in the comparison of proposed algorithms with
existing approaches from the literature, we have carefully selected ableast
similar problem with available datasets for each implemented algorithm. The
performance of the IRSA algorithm is first evaluated on a small dataset for a
specific sub-problem froi8hao et al(2009. The results achieved by the IRSA
algorithm are slightly worse in criterion but much better in the computation
time. For the comparison with the second source of datasetsKisrf2003,
the IRSA algorithm was extended to handle additional constraints considered
in the paper. The results showed that IRSA needed only 1% of the CPU time
compared to the algorithm proposed in the paper. The average value of the
objective function was 15% worse in case of IRSA if compared to the best of
three algorihtms proposed iis (2003.

The STOAL algorithm was compared with the work lebcacci et al(2000

using four available datasets. The CPU time is not indicated in the paper and,
therefore, only values of the objective function were compared. The $TOA
algorithm were able to find the results with the total setup time (TST) lower by
more than 16%. It should be noted that there is almost the same deterioration
for the schedule length, which was a part of the criterion in the paper [t it
not in our approach. Therefore, we can conclude that on one har®ThAL
algorithm is very effective for TST criterion. On the other hand its natuesdo

not consider other parameters of the schedule (like makespan) to be imiportan
for the scheduling process.

The last two algorithms, dedicated to deal with the total production cost crite-
rion, were first evaluated on the same datase$ludio et al(2009 as for the
IRSA algorithm. Even though the original criterion was the minimization of
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the schedule length, both the discrete differential evolution (DDE) and #te sc

ter search (ScS) algorithms outperformed the paper results in the criterion as
well as in the computational time. Finally, the datasets fRinmedo and Singer
(1999 were used and the results were compared with the approach presented in
Bulbul (2011). The problem considered in the papers forms only a very specific
sub-problem of the problem considered in this thesis, yet the DDE algorithm
was able to find the results that are more than 3.5% better when compared to
Bulbul (2011) .

5. The last goal of the thesis related to the evaluation methodology for the prob
lems with alternative process plans is satisfied in Seci@n/. We have ex-
plored many properties that are related to the structure, resource reneno
and attributes of activities from which nine most important were extracted and
used as the metric for evaluation of the instances. The relative importance of
specific properties for the performance of different solution appreafden-
straint programming versus heuristic algorithm) is then evaluated by the stan-
dard statistical methods. As a result, we can conclude that CP approach is
performing better for the instances with more constrained resources. On the
contrary, the IRSA algorithm is better if the number of alternative process plan
increases. The same methodology is used also for the comparison of the two
population based algorithms in Chapfer

6.3 Concluding Remarks

As stated in the previous section, all the goals and objectives set for the Were
successfully achieved. The proposed model and solution approacttesck differ-

ent problems with alternative process plans extends the scheduling thyetbigy ew
type of scheduling problems with a high flexibility. Based on the number of citations
referencing our first published paper within a short period, it is appdhat the re-
search in the area of alternative process plans will be dynamic in the fufinere

are many challenging issues - developing new algorithms, considering adtitom
straints, generation of new public instances etc.
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This thesis is focused on the scheduling problems with
alternative process plans. Its goals were set as follows:

1. To propose a common representation for the scheduling
problems that include alternative processes.

2. To establish a mathematical formulation using the proposed
representation for each studied problem.

3. To develop an algorithm to solve large instances for each of
the problems.

4. To compare the proposed solution methods with the similar
works from the literature.

5. To propose the methodology for evaluation and comparison
of different solution approaches.
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