
Roman Čapek

Scheduling with Alterna�ve

Process Plans

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Control Engineering

August 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Library of the Czech Technical University in Prague

https://core.ac.uk/display/47182073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Scheduling with Alternative Process Plans

Doctoral Thesis

RomanČapek

Prague, August 2015

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Control Engineering and Robotics

Supervisor: prof. Dr. Ing. Zdeněk Hanźalek
Supervisor specialists: Ing. PřemyslŠůcha, PhD.

RomanČapek:Scheduling with Alternative Process Plans, PhD. The-
sis, Czech Technical University in Prague, Faculty of Electrical Engi-
neering, Department of Control Engineeringc© Prague, August 2015

This thesis is dedicated to my family, with true love.

Declaration
This doctoral thesis is submitted in partial fulfillment of the requirements for the de-
gree of doctor (Ph.D.). The work submitted in this dissertation is the result of my own
investigation, except where otherwise stated. I declare that I worked outthis thesis
independently and I quoted all used sources of information in accord with Methodical
instructions about ethical principles for writing academic thesis. Moreover I declare
that it has not already been accepted for any degree and is also not being concurrently
submitted for any other degree.

Czech Technical University in Prague
Prague, August 2015 RomanČapek

Acknowledgments
First of all, I would like to give my great thanks to my thesis advisers prof. Dr.
Ing. Zdeňek Hanźalek and Ing. P̌remyslŠůcha, PhD. for their expert guidance and
unselfish support throughout my PhD. studies.

The kindest thanks of all belong to my family members for their great support and
undying patience during the whole studies.

I am grateful to all my colleagues and friends from our research groupfor a friendly
atmosphere and positive attitude during our collective work.

Last but not least I would like to express my thanks to all people from our department
who were helping me and other students to successfully go through all the studies
every day.

Thanks to everyone who has helped me during the PhD. studies.

This work was supported by the Ministry of Education of the Czech Republic under
the Projects OE09004, ME10039 and Research Program MSM6840770038. This
work was also supported by the Grant Agency of the Czech Republic under the Project
GACR P103/12/1994 and by the Technology Agency of the Czech Republicunder the
Centre for Applied Cybernetics TE01020197.

Czech Technical University in Prague
Prague, August 2015 RomanČapek

Abstract

This thesis is dedicated to the design of practical and efficient models and algorithms
for the production processes. The key addressed issue are the alternative process
plans, supporting much more flexible definition of the scheduling problems.

With respect to the state of the art in the scheduling area, this thesis aims to cover
the gap for the solution approaches that incorporate both the selection of process plan
and the fine scheduling within a single model. Consequently, there are two main
goals of the thesis - first, to propose a suitable mathematical model capable to cover
standard scheduling problems together with the definition of the alternative process
plans and second, to design, implement and evaluate algorithms for three different
problems with alternative process plans, emerging from real production processes.

The mathematical model for the considered scheduling problems is based on
the well known Resource Constrained Project Scheduling Problem (RCPSP) which
is combined with the formalism of Nested Temporal Networks With Alternatives
(NTNA). Such a model reflects the typical structure of the production processes and it
keeps most of the assumptions and constraints from the powerful RCPSP framework.
The proposed model involves renewable resources with non-unary capacity, sequence
dependent setup times, release times and deadlines of activities and generalized tem-
poral constraints. Thus, it allows very general and flexible definition of the scheduling
problems with many realistic constraints.

Three different scheduling problems with alternative process plans are then in
more detail. The first studied problem involves negative time-lags and the goalis to
minimize the total schedule length. For such a problem we have developed construc-
tive heuristic algorithm where the activities are being scheduled and un-scheduled
according to their dynamic priorities. The second studied problem is motivated by the
production processes where the goal is to utilize the expensive machines asmuch as
possible and, therefore, the time spent by setting up such machines is minimized. The
solution approach is based on the iterative method with separation of a scheduleinto
time-disjunctive parts where the local search is applied. The criterion for the third
considered problem is the minimization of the total production cost consisting of the
costs corresponding to the selected production operations (activities) and penalization
for late jobs. Two different evolutionary based heuristic algorithms are usedto solve
such a problem and their results are thoroughly compared in extensive performance
evaluation.

Since there are no standard benchmarks for the proposed scheduling model, we
have used the new generated instances specific for each problem under study as well
as the existing instances for the similar problems from the literature. Although the
available instances usually cover only a part of our approach, all the designed algo-
rithms showed very good performance. In most cases, the results were competitive or
even better when compared to the algorithms designed to the specific sub-problems
of the general concept used in this thesis.

vi

Abstrakt

Tato disertǎcńı práce se v̌enuje ńavrhu a implementaci efektivnı́ch model̊u a algo-
ritmů prořěseńı prakticḱych probĺemů z oblasti optimalizace v́yrobńıch proces̊u. Po-
zornost je v̌enov́ana hlavňe problematice alternativnı́ch výrobńıch postup̊u, kteŕe s
sebou p̌riná̌sej́ı možnost velmi flexibilńıho zad́ańı pro rozvrhovaćı úlohy.

S ohledem na analýzu souvisej́ıćıch praćı v oblasti kombinatoricḱe optimalizace
je ćılem t́eto pŕace rožśıřit portfolio existuj́ıćıch p̌rı́stup̊u o řěseńı, kteŕe spojuje v́yběr
konkŕetńıho výrobńıho postupu a samotné rozvrhov́ańı vybrańych operaćı v jednom
spolěcném modelu. Pŕace se tak v̌enuje p̌redev̌śım dvěma propojeńym temat̊um -
zaprv́e vytvǒreńı vhodńeho modelu pro zvoleńy typ rozvrhovaćıch úloh a zadruh́e
návrhu, implementaci a testováńı optimalizǎcńıch algoritm̊u prořěseńı rozvrhov́aćıch
probĺemů s alternativami, které jsou motivov́any realńymi výrobńımi procesy.

Matematicḱy model pro uvǎzovańe probĺemy vych́aźı z notace Resource Con-
strained Project Scheduling Problem (RCPSP), která je d́ale rožśıřena o definici alter-
nativńıch výrobńıch postup̊u s vyǔzitı́m formalismu Nested Temporal Networks With
Alternatives (NTNA). Navřzeńy model odpov́ıdá typicḱe struktǔre výrobńıch proces̊u
a p̌ritom zachov́avá věťsinu p̌redpoklad̊u a omezeńı pro RCPSP. Model zahrnuje ob-
novitelńe zdroje s libovolnou diskrétńı kapacitou, p̌restavbov́e časy a zobecňeńa tem-
poŕalńı omezeńı (minimálńı a maxiḿalńı časov́e intervaly mezi zǎcátky operaćı v
rozvrhu). D́ıky tomu umǒzňuje navřzeńy model velmi flexibilńı přı́stup k definici
úloh pro rozvrhov́ańı výrobńıch proces̊u s mnohǎcasto poǔźıvańymi omezeńımi.

Pŕace se d́ale v̌enuje detailňe ťrem r̊uzńym rozvrhovaćım úlohám s alternativńımi
výrobńımi postupy. Prvńı úloha zahrnuje kladńe a źaporńe hrany mezi operacemi,
kritériem je minimalizace d́elky ceĺeho rozvrhu. Pro tento problém byla vytvǒrena
konstruktivńı heuristika, ve kteŕe jsou jednotliv́e operace p̌ridávány a odeb́ırány z
rozvrhu na źaklaďe dynamicḱych priorit. Motivaćı pro druhouúlohu jsou v́yrobńı
procesy, ve kteŕych hraj́ı zásadńı roli drah́e stroje, u nicȟz je poťreba minimalizovat
finaňcně ńakladńe p̌restavby.Řěseńı je v tomto p̌rı́paďe zalǒzeno na iterativńı heuris-
tice, kteŕa vyǔźıvá lokálńı optimalizaci prǒcasov̌e disjunktńı části rozvrhu. Krit́eriem
ve ťret́ı úloze je minimalizace celkov́ych ńaklad̊u spojeńych s v́yrobńım plánem. Ty
jsou d́any zaprv́e cenou samotńych výrobńıch operaćı a za druh́e penalizaćı za pozďe
dokoňceńe zaḱazky. Prǒrěseńı jsou vytvǒreny dva odlǐsńe evolǔcńı algoritmy, jejicȟz
výkonnost je d̊ukladňe porovńana velḱym mnǒzstv́ım test̊u.

Jelikǒz je model uvǎzovańy v této pŕaci inovativńı a prozat́ım neexistuj́ı žádńa
stadardizovańa testovaćı data, bylo pro v̌sechny testy poǔzito dvou zdroj̊u dat - zaprv́e
nově vygenerovańe instance pro kǎzdou uvǎzovanou rozvrhovacı́ úlohu a zadruh́e in-
stance podobńych probĺemů z literatury. P̌restǒze tyto instance reflektujı́ jen uřcitou
část ńami uvǎzovańe problematiky, v̌sechny vytvǒreńe algoritmy ukazujı́ velmi do-
brou v́ykonnost. Ve v̌eťsině p̌rı́pad̊u jsou jejich v́ysledky srovnatelńe nebo i lep̌śı něz
výsledky uv́aďeńe v literatǔre.

vii

viii

Contents

Nomenclature 1

Abbreviations 5

Goals and Objectives 7

1 Introduction 9
1.1 Contribution and Outline. 10
1.2 Related Work. 11

1.2.1 Resource Constrained Project Scheduling Problem. 12
1.2.2 Extensions of the RCPSP. 13

2 Scheduling Model 15
2.1 Overall Problem Statement. 16
2.2 Goal of the Scheduling. 16
2.3 Problem Structure Representation. 17

2.3.1 Nested Temporal Networks with Alternatives. 17
2.4 Selection Constraints. 20
2.5 Temporal Constraints. 22
2.6 Resource Constraints. 23
2.7 Classification of the problem. 24

3 RCPSP-APP with positive and negative time-lags 25
3.1 Problem Statement. 26

3.1.1 Mathematical Model. 27
3.1.2 Problem Complexity. 27

3.2 Heuristic Algorithm. 27
3.2.1 Initialization . 28
3.2.2 Main loop. 29
3.2.3 Inner loop. 30
3.2.4 Example of the IRSA Algorithm Progress. 31

3.3 Computational Experiments. 33

ix

x CONTENTS

3.3.1 Generated Instances. 33
3.3.2 Mathematical Model Complexity. 34
3.3.3 Performance Evaluation of IRSA algorithm. 35
3.3.4 Integrated process planning and scheduling. 37
3.3.5 Evaluation on AJSP instances. 38
3.3.6 Evaluation Metric for Instances. 39
3.3.7 Evaluation Methodology. 41
3.3.8 Experiments for Evaluation Metric. 42

3.4 Conclusion . 45

4 RCPSP-APP under minimization of the total setup time 47
4.1 Problem statement. 48
4.2 Mathematical formulation . 50
4.3 Heuristic algorithm. 52

4.3.1 Initial solution . 52
4.3.2 Schedule improvement. 57

4.4 Performance evaluation. 62
4.4.1 Comparison with IRSA algorithm on random instances. . . . 63
4.4.2 Comparison with algorithm ofFocacci et al.(2000) 63
4.4.3 Configuration of the STOAL algorithm. 64

4.5 Conclusion . 66

5 Minimization of the total production cost for the RCPSP-APP 67
5.1 Problem statement. 68

5.1.1 Mathematical model. 69
5.2 Heuristic algorithms. 70

5.2.1 DDE algorithm. 70
5.2.2 Scatter search algorithm. 76

5.3 Evaluation. 80
5.3.1 Mathematical model complexity. 81
5.3.2 Job shop problem. 81
5.3.3 Integrated process planning and scheduling. 83
5.3.4 Computational Results. 83

5.4 Conclusion . 86

6 Conclusion 89
6.1 Main Achievements and Contributions. 89
6.2 Revision of Goals and Objectives. 90
6.3 Concluding Remarks. 92

Bibliography 93

Curriculum Vitae 99

Contents xi

List of Author’s Publications 101

xii

List of Figures

2.1 Example of the AoN and AoA representation of the same instance. . 18
2.2 Example of the NTNA instance. 19
2.3 Feasible assignment ofvi and the resulting process plan. 21

3.1 Example of the NTNA instance. 26
3.2 Example of the IRSA algorithm progress. 32
3.3 Performance evaluation of IRSA algorithm and MILP model. 36

4.1 Nested temporal network with alternatives - example. 49
4.2 Change of the activities selection in the schedule. 56
4.3 Change of the sequencing of activities on the resource. 57
4.4 Example of the optimisation within the time window. 59
4.5 Example of the limited discrepancy search. 62

5.1 Example of the NTNA instance. 69
5.2 Example of solution representation. 71
5.3 Individual representation. 77

xiii

xiv

List of Tables

3.1 The ratio of optimal solutions for the mathematical solvers. 35
3.2 The mean objective values for the mathematical solvers. 36
3.3 Overall performance evaluation of the IRSA algorithm. 36
3.4 Solving time for IRSA algorithm. 37
3.5 Comparison of IRSA algorithm withShao et al.(2009) 37
3.6 Comparison of IRSA algorithm withKis (2003) 38
3.7 Results for new datasets. 42
3.8 Evaluation of properties for new datasets. 43

4.1 Comparison with IRSA algorithm using new random instances. . . . 63
4.2 Comparison withFocacci et al.(2000) 64
4.3 Influence of the backtracking scheme settings. 65
4.4 Influence of the number of activities per resource. 65
4.5 Influence of the sliding windows repetitions. 66

5.1 Comparison withBülbül (2011) . 82
5.2 Comparison withShao et al.(2009) 83
5.3 Results for generated instances. 84
5.4 Results of metric for new datasets. 86

xv

xvi

Nomenclature

List of Variables and Constants

n number of activities
0, n+ 1 dummy activities that start and end the project
m number of resource types
a, b, i, j, k general indices
A set of activities
AS set of selected activities
R set of resource types
Rk resource type
θk capacity of resource typeRk

pi processing time
ri release time
d̃i deadline
di duedate
ci processing cost
wi weight
Ti tardiness
Rk
i demand of activityi for the resource typeRk

lij general temporal constraint (time-lag)
stij sequence dependent setup time
ini input label of node in graph
outi input label of node in graph
vi binary decision variable that determines the presence of the

activity in the schedule
si start time
ziqk binary decision variable that determines whether activityi

is assigned to a resource unitq of resource typeRk

1

2 Nomenclature

ziu binary decision variable that determines whether activityi
is assigned to a resource unit under serialized indexu

uij length of the longest path between activitiesi andj
xij binary decision variable of the ILP model
yij binary decision variable of the ILP model
xijk binary decision variable of the ILP model
yijk binary decision variable of the ILP model
gijk binary decision variable of the ILP model
fij binary decision variable of the ILP model
UB high positive constant
Cmax schedule length
G general label for graph
V set of vertices (nodes)
E set of edges (arcs)
GS graph consisting of selected activities
Gtemp complete graph with temporal constraints
Gprec graph with precedence-based temporal constraints
δ+i out-degree of a node
δ−i in-degree of a node
P[i,j] directed path from nodei to nodej
Bi,j branching of a graph delimited by nodesi andj
Bk branch of a graph
pred (i) set of direct predecessors of nodei
succ (i) set of direct successors of nodei
M set of all pairs of activities with potential resource conflict
nestedAlt classification for the problems with alternative process plans

in a nested form
STSD classification for the sequence dependent setup times
gpr classification for the generalized temporal constraints
temp classification for the generalized temporal constraints
lmin
ij classification for the minimal (positive) time-lags
min classification for the minimal (positive) time-lags
α|β|γ standard classification for the scheduling problems
S schedule
CLB
max lower bound for the schedule length

CUB
max upper bound for the schedule length

Ccurrent
max current threshold for the schedule length

Nomenclature 3

sLBi lower bound for the activity start time
sUB
i upper bound for the activity start time
r̂i auxiliary variable for the release time constraint
d̂i auxiliary variable for the deadline constraint
flexi flexibility of the activity for scheduling
stemp
i earliest start time with respect to temporal constraints
sresi earliest start time with respect to resource constraints
W time window in the schedule
timeLB left border of the time window
timeRB right border of the time window
priorityi current priority of activity
nAddsi number of scheduling attempts for the activity
ψk resource sequence for resource typek
topi topological order of activity
scheduledi denotes whether the activity is currently scheduled
t time
tcpu time used by CPU for computation
feas percentage ratio of feasible solutions found by the algorithm
RF release time factor
DF deadline factor
RC resource constrainedness
#res number of resource types
TOS total order strength
#AB number of alternative branchings
#APP number of alternative process plans
PPAct average number of activities per process plan
AOS average order strength
NL maximal level of nested alternative branching
AAS average activity slack
O (N) linear complexity

4

Abbreviations

List of Abbreviations

PS project scheduling
RCPSP Resource Constrained Project Scheduling Problem
MRCPSP multi-mode RCPSP
DTCTP discrete time/cost trade-off problem
APP alternative process plans
RCPSP-APP Resource Constrained Project Scheduling Problem with al-

ternative process plans
TNA Temporal Network with Alternatives
NTNA Nested Temporal Network with Alternatives
IPPS integrated process planning and scheduling
CPU central processing unit
RAM random access memory
ALT denotes alternative branching
PAR denotes parallel branching
AoN Activity-on-Node network
AoA Activity-on-Arc network
NP Non-deterministic Polynomial-time
IRSA Iterative Resource Scheduling with Alternatives
STOAL Setup Time Optimization ALgorithm
CP constraint programming
ILP integer linear programming
MILP mixed-integer linear programming
AJSP job shop scheduling problem with processing alternatives
GA genetic algorithm
ScS scatter search
DDE discrete differential evolution

5

6 Abbreviations

TABU tabu search algorithm
TST total setup time
TPC total production cost
TWT total weighted tardiness
SGS serial generation scheme
RIS referenced insertion scheme

Goals and Objectives

This thesis is dedicated to the scheduling problems where some parts of the considered
processes can be performed in more,alternative, ways. Three problems based on the
same model are studied and both the exact solution and the heuristic algorithm are
developed for each of them. The problems differ in the considered constraints as well
as in the objective function, which determines the goal of the optimisation. The goals
of this thesis were set as follows:

1. Propose a common representation for the scheduling problems that include al-
ternative processes.

2. For each studied problem, establish a mathematical formulation using the pro-
posed representation.

3. Develop an algorithm to solve large instances for each of the problems.

4. Compare the proposed solution methods with the similar works from the litera-
ture.

5. Propose the methodology for evaluation and comparison of different solution
approaches.

7

8

Chapter 1

Introduction

In the recent years, manufacturing (and other) processes are becoming more and more
complex and flexible. On one hand, the companies need to utilize expensive produc-
tion resources - machines, workforce, additional tools - to make the productionef-
fective in terms of their expenses. On the second hand, they need to satisfy all the
demands of the current market, which is very dynamic. Therefore, it is very bene-
ficial, if not even necessary, to define the process plans as precisely as possible and
then let an artificial system to resolve which operations and in which order willbe
performed according to the resource environment and the given jobs.

This thesis is focused on the scheduling problems, for which there is a high flex-
ibility in the problem definition. The most of the work is dedicated to the scheduling
problems with the alternative process plans, especially the problems related tothe
production processes. In case of the alternative process plans, the operations can
be performed in various ways, using fully automated machines, semi-automatedma-
chines or performed manually with some special equipment. Three related problems
with the alternative process plans are addressed in detail.

The first studied problem is the scheduling of the wire harnesses production,
which involves the alternative process plans, generalized temporal constraints (pos-
itive and negative time-lags) and sequence dependent setup times. The goal is to
minimize the total schedule length. For the second studied problem, the goal is to
maximize the utilization of the expensive machines in the production of electrical
contacts and, therefore, the time spent by setting up such resources is minimized. The
goal in the third studied problem, motivated by the production in the printing com-
pany, is to minimize the total production cost. In this case, the hard constraints (like
deadlines) are substituted by the soft constraints that are reflected in the objective
function.

9

10 1.1 Contribution and Outline

1.1 Contribution and Outline

The main contribution of this thesis is the formulation of the novel scheduling prob-
lem, where the resource constrained project scheduling problem is extended by the
definition of the alternative process plans - denoted asRCPSP-APP. Such alternative
process plans specify the rules for the selection of activities, i.e. which activities will
be present in the schedule and which will be not. Therefore, a new decision variable
has to be established and, consequently, the search space is more complex. Although
there were several attempts to incorporate the alternative choices into the scheduling
process, there is no particular work dedicated to the general concept of the problem
as considered in this thesis.

The proposed model encapsulates shared resources with an arbitrary discrete ca-
pacity, selection constraints defined via the alternative process plans, generalized tem-
poral constraints among activities and sequence dependent setup times. For the con-
sidered problem, we propose a formal representation based on the existingapproaches
from the literature. Finally, the mathematical formulation of the common constraints
is formulated as the mixed integer linear programming model.

The second contribution is the consideration of three different specific problems
based on the proposed RCPSP-APP problem. Each particular problem is motivated
by the different needs of the production companies and, therefore, an objective func-
tion as well as several specific constraints and assumptions are adjusted separately.
Therefore, the mathematical model is formulated for each specific problem separately
as well.

The third contribution is represent by the heuristic solution approach for each
considered problem. The algorithms are designed with intention to solve the large
instances for which the exact methods are not able to find the solution of the desired
quality in a reasonable time. For the first two problems, we have developed new con-
structive algorithms and for the third one, two different evolutionary algorithms are
adapted. The proposed algorithms are evaluated on a variety of instances,including
the new generated benchmarks as well as the existing datasets for the similar problems
from the literature.

The fourth contribution lies in an evaluation metric for the characterisation of the
instances and in the consequent methodology of testing different algorithms withre-
spect to the proposed evaluation metric. The main focus is paid to the structuralprop-
erties closely related to the definition of the alternative process plans. Such ametric
enables one to distinguish between the effectiveness of the proposed algorithms for
different types of instances, reflecting e.g. the ratio of the alternative/parallel parts or
the tightness of the temporal constraints. The proposed evaluation metric is a neces-
sary prerequisite for a fair comparison (not only) of the proposed heuristic algorithms,
since the complexity of the instance is dependent on many factors, not only onthe
number of activities.

Chapter 1 Introduction 11

The main contributions of this thesis are, namely:

a) formulation of the novel scheduling problem with alternative process plans
based on the RCPSP formalism,

b) consideration of three related problems with different criteria together witha
mathematical formulation,

c) a heuristic algorithm for each considered problem designed for solvingof the
large scale instances,

d) an evaluation metric for instances and a testing methodology for the comparison
of different solution approaches.

The thesis is organized as follows: Section1.2 provides the literature overview
related to the problems considered in this thesis. Chapter2 is dedicated to the de-
scription of the general scheduling model, including the formal classification. The
next three chapters contain the specific problems from the area of scheduling with
alternative process plans. The RCPSP with alternative process plans and generalized
temporal constraints is studied in Chapter3, where the definition of the evaluation
metric for the instances and the testing methodology for different solution approaches
is included as a part of the computational experiments. Next, the total setup time
minimization objective function is considered in Chapter4 and finally, Chapter5 is
dedicated to the problem where the total production cost is being minimized. Chap-
ter6 concludes the work.

1.2 Related Work

To address the problem involving alternative ways how to select and assign activities
(operations, tasks) to the schedule, several modeling approaches can be found in the
literature. In the most cases, some type of special graph is used to model the presence
of alternatives in the scheduling problem. To avoid any misunderstandings, let us
assume that the notionsactivity, operationand taskhave the same meaning and the
term activity we will be used in this thesis. Furthermore, to address the presence
of alternatives in the scheduling, the termalternative process planswill be used in
the rest of the work. The benefit of the alternative process plans definition for the
production processes is shown inUsher(2003), where the need of having an effective
solution methodology is appointed and emphasized by the experimental results.

Beck and Fox(2000) established theModified Temporal Graphwith so called
XorNodes, AndNodesandActivityNodesto model the possibility of choice among the
alternative process plans that are interconnected via the aforementioned nodes. Each
activity has a certain probability to be assigned (selected) into the final schedule and
the authors proposed a propagation technique for the probability values through the

12 1.2 Related Work

graph with both the parallel parts (delimited byAndNodes) and the alternative parts
(delimited byXorNodes).

Another approach to model the alternative process plans in scheduling, similar
to the Modified Temporal Graph methodology, was presented byBart́ak (2004) and
Bart́ak andČepek(2007, 2008). The authors used a special type of graph calledTem-
poral Network with Alternatives, which is a directed acyclic graph where the nodes
represent activities and the arcs correspond to temporal constraints. Logical con-
straints, which represent alternative process plans, are specified through the input and
output labels of each node. If only the structure of the network is considered, i.e. tem-
poral constraints are ignored, we obtain theParallel/Alternative Graph(P/A Graph).
Both Beck and Fox(2000) andBart́ak andČepek(2007, 2008) focused on the repre-
sentation of the alternative process plans, the construction of the schedule itself is not
considered.

Kis (2003) studied a job shop scheduling problem with processing alternatives
where the goal is to minimize the makespan. Each job is represented by a special
graph consisting of two types of subgraphs -and-subgraphsandor-subgraphs, which
are both composed by more routes. Aroute is a directed path from the first node to
the last node of the subgraph. All routes have to be scheduled for eachand-subgraph
while exactly one route has to be selected for each or-subgraph.

Finally, Shao et al.(2009), Leung et al.(2010) andLi et al. (2010) dealt with the
problem of integrated planning and scheduling (IPPS), which is close to the job shop
problem with alternative process plans, since each job includes more alternative ways
(process plans) to complete the product. The goal is to select a process plan for each
job and to schedule job activities such that the schedule length is minimized. The
IPPS problem was studied also inMoon et al.(2002) where the problem is extended
by the unit loads of products and transportation times among the machines.

Capacho and Pastor(2006, 2008) andCapacho et al.(2009) studied an assembly
line balancing problem with alternatives, where certain parts can be processed in sev-
eral alternative modes and the goal is to balance the workload of the availablere-
sources.

1.2.1 Resource Constrained Project Scheduling Problem

The resource constrained project scheduling problem(RCPSP) is well known NP-
hard (seeBlazewicz et al.(1983)) problem, with many real applications. Several exact
solution procedures have been proposed byDemeulemeester and Herroelen(1992),
Mingozzi et al.(1998), Brucker et al.(1998) andDorndorf et al.(2000). For larger
problem instances, heuristic and metaheuristic solution procedures have been pro-
posed, see e.g. an overview published byKolisch and Hartmann(2006). Other
overviews of the problem can be found inIcmeli et al.(1993), Özdamar and Ulusoy
(1995), Blazewicz et al.(1996), Herroelen et al.(1998), Brucker et al.(1999a) and
Kolisch and Padman(2001).

Chapter 1 Introduction 13

Herroelen et al.(1999) and Brucker et al.(1999a) summarized the notation of
the RCPSP problems and their extensions using the well-knownα|β|γ notation
(Blazewicz et al.(1983)). Hartmann and Briskorn(2010) published an extensive sur-
vey with many various forms and extensions of the resource constrained project
scheduling problem. The concept of activities, temporal constraints, resource con-
straints and objective functions are discussed and the state of the art literature is sum-
marized.

1.2.2 Extensions of the RCPSP

One of the existing extensions of the RCPSP problem is themulti-mode resource
constrained project scheduling problem(MRCPSP) where each activity can be exe-
cuted in one of several alternative modes with different processing times andresource
demands (seeDe Reyck and Herroelen(1999); Neumann et al.(2003)). Moreover,
multi-mode problem includes also the definition of non-renewable resources in gen-
eral case. The basic goal of the problem is to determine a mode and a start time for
each activity, such that the total duration of the project is minimized.

De Reyck and Herroelen(1999) proposed a local search based methodology for
MRCPSP with generalized precedence constraints with objective to minimize the
project duration.Neumann et al.(2003) formulated a mathematical model and a gen-
eral algorithm scheme for the MRCPSP problem.Deblaere et al.(2011) proposed an
exact scheduling procedure based on the Branch & Bound algorithm and also pro-
posed a tabu search heuristic for the MRCPSP with a criterion to minimize the project
duration. The currently best known search procedure for the problemMRCPSP is
the scatter search presented inVan Peteghem and Vanhoucke(2011). An overview of
all the available metaheuristic solution procedures for this problem can be found in
Van Peteghem and Vanhoucke(2014).

Salewski et al.(1997) considered the RCPSP with mode identity constraints,
which is a generalization of the multi-mode case where the set of all jobs is parti-
tioned into disjoint subsets while all activities forming one subset have to be processed
in the same mode.Kuster et al.(2006) proposed the extended resource constrained
project scheduling problem (x-RCPSP), which incorporates the concept of alterna-
tive activities. The authors prove that any multi-mode RCPSP can be formulated
as anx-RCPSP, since each mode of an activity can be represented as an alternative
with exactly one activity. The authors focused on the rescheduling problem,which
is used for a comprehensive disruption management.Kellenbrink (2012) presented
the RCPSP with a flexible project structure (RCPSP-PS), which is is a generaliza-
tion of the RCPSP-APP in terms of the structure and logical constraints. The problem
involves the non-renewable resources but there are no additional constraints like time-
lags or setup times; considered objective function is the makespan.

14

Chapter 2

Scheduling Model

This chapter is dedicated to the description of the new proposed model for the schedul-
ing with alternative process plans. The motivation for the research is, in the first place,
the scheduling of the production processes which typically involve more than oneway
how to complete the product. Not only are the resource requirements different, but
the processing times, precedence relations and also the number of activities in each
process plan can differ in general as well.

The process plan defines a set of activities such that their execution leadsto the
completion of a product. Each process plan is formed by a set of disjunctive activities
where no activity can be included more than once in a process plan. On the other
hand, an activity can be included in an arbitrary number process plans. Weuse the
termalternative process planssince there are more process plans in the studied prob-
lem while only one of them has to be executed. Hence the goal of the scheduling
is to choose a subset of all activities that forms one process plan and schedule them
according to the given criterion.

Traditional scheduling algorithms, according toBlazewicz et al.(1996); Brucker
(2007), assume exactly given set of activities to be scheduled, i.e. only one process
plan is defined. In this thesis, the traditional scheduling approach is extendedby a
definition of alternative process plans, i.e. the traditional time scheduling and the
decision which process plan will be executed are both integrated into one problem.

The studied problem is formulated as an extension of the resource constrained
project scheduling problem (RCPSP). Although the RCPSP is a well-studied prob-
lem, there were only a few attempts to include the alternatives into the scheduling
process. However, the alternative process plans can be found as a natural part of the
production processes and therefore we have decided to extend the RCPSPproblem
by the definition of the alternative process plans. The following sections provide a
detailed description of the new proposed model for the resource constrained project
scheduling problem with alternative process plans.

15

16 2.1 Overall Problem Statement

2.1 Overall Problem Statement

The general problem studied in this thesis is identified by the set of activities,the
set of resources, the set of constraints and the objective function. Foreach of three
specific problems in this thesis, there are some differences in the definition, which are
described in more detail. This section provides a general overview of the commonpart
of the proposed scheduling model. First, the overall description of the problemis pro-
vided, then the detailed definition of the nested temporal networks with alternatives,
used for the problem representations, is stated. Subsequently, all the considered con-
straints are described, the objective function is discussed and finally, the classification
of the studied problem is provided.

Let the production consist ofn indivisible operations performed on the specified
machines according to the process plan. Consequently, there is a set ofn + 2 non-
preemptive activitiesA = {0, . . . n + 1} to be scheduled on a set ofm resource
typesR = {R1 . . . Rm} where each resource typeRk ∈ R has a discrete capacity
θk ≥ 1, i.e. θk resource units are available for resource typeRk. Each activityi is
characterized by the processing timepi ≥ 0, the release timeri ≥ 0 and the resource
demandRk

i ≥ 0 for the resource typeRk ∈ R. Only mono-resource activities are
considered in this thesis, meaning that each activity demands exactly one resource,
i.e.

∑
∀Rk∈R:Rik>0 (1) = 1 for all i ∈ {1 . . . n}. The processing time of the activity

specifies the time needed for its execution, which must be performed without preemp-
tion (interruption). Release time determines the earliest time where the activity can
be scheduled. Activities0 andn + 1 with p0 = pn+1 = 0 andRk

0 = Rk
n+1 = 0 for

all Rk ∈ R denotedummyactivities such that activity0 is a predecessor and activity
n + 1 is a successor of all other activities. Precedence relations together with the
definition of alternative process plans are specified using an NTNA formalism(see
Section2.3).

In the rest of the thesis, the problem defined in the previous paragraph isad-
dressed as theresource constrained project scheduling problem with alternative pro-
cess plans(RCPSP-APP). Since all the activities demand for, at most, one resource
type and there are no additional resources, the problem can be addressed also as the
machine scheduling problem(seeRand(1977); Blazewicz et al.(1991)). Nonethe-
less, the term RCPSP-APP will be used in this thesis, since the scheduling model is
designed with intention to establish a general notation for the problems with alterna-
tive process plans.

2.2 Goal of the Scheduling

The goal of the scheduling for the problem described in the previous sectionis to
select a subsetAS ⊆ A of all activities (i.e. one process plan) and then to schedule
AS to a given set of resources while the value of the objective function is minimized.

Chapter 2 Scheduling Model 17

To represent the schedule, three types of variables are considered:

• vi ∈ {0, 1} - determines the presence of the activity in the schedule. Ifvi = 1,
then activityi is present in the schedule and it is calledselectedactivity; if
vi = 0, then the activityi is not in the schedule and it is calledrejectedactivity.

• si ∈ N
0 - determines the start time of the activity in the schedule. If the activity

is rejected (vi = 0), then its start time is arbitrary and it has no significance.

• ziqk ∈ {0, 1} - determines whether activityi is assigned to a resource unitq of
resource typeRk. As for the start time, if activityi is rejected, thenziqk = 0.

The values of the of all the variables are mutually constrained by a set set of
selection, temporal and resource constraints. The constraints for selection ofactivities
are defined in Section2.4, the temporal constraints are given in Section2.5and finally,
the resource constraints are defined in Section2.6. The objective function, as well
some additional constraints, are defined for each considered problem separately.

2.3 Problem Structure Representation

The structure of the scheduling problems is, in the most cases, represented bythe
Activity-on-Node(AoN) networks. The nodes of the AoN graph represent activities
and edges represent precedence relations. On the contrary, in the representation using
theActivity-on-Arc(AoA) networks, activities are represented by the arcs of the net-
work and the nodes represent events, i.e. completion of some activities and, therefore,
also the precedence relations. Any problem represented by the AoN (AoA) instance
can be transformed to a problem represented by the AoA (AoN) instance,i.e. there
is a mutual transformation for any problem. The similarities and differences of both
approaches are summarized inKolisch and Padman(2001). Both representations for
the same instance are depicted in Figure2.1.

The representation of the problems studied in this thesis is based on the Activity-
on-Node model, each activity therefore corresponds to one node. The classic AoN
networks are designed for the problems, where all the underlying activities have to be
scheduled and, therefore, an extended model have to be used in the caseof the alter-
native process plans. The attempts to propose a modeling approach for the scheduling
problems with alternative process plans have been made inBeck and Fox(2000), Kis
(2003) andChryssolouris et al.(1985), but the models are too restrictive and/or not
enough general for the representation of the RCPSP-APP problem.

2.3.1 Nested Temporal Networks with Alternatives

Another approach to deal with the (not only) scheduling problems with alternative
process plans in general has been proposed byBart́ak andČepek(2007), who pro-

18 2.3 Problem Structure Representation

0

1

2

3

5

4

(a) AoN network

0

1

5

2

3

4

(b) AoA network

Fig. 2.1: Example of the AoN and AoA representation of the same instance

posed theTemporal Networks with Alternatives(TNA). The TNA is an acyclic directed
graph where nodes represent activities and edges represent temporal constraints.

Each nodei of the graph (corresponding to activityi) has an input labelini and an
output labelouti, denoting the type of input and outputbranching, which can be either
parallel or alternative. If there is a parallel branching at the output (input) of node
i, thenouti = 0 (ini = 0) and, vice versa, if there is a alternative branching at the
output (input) of nodei, thenouti = 1 (ini = 1). If activity i has only one predecessor
(successor), thenini = 0 (outi = 0). Furthermore, each nodei is assigned a binary
valuevi, indicating whether the corresponding activity will be present in the schedule
(vi = 1) or not (vi = 0).

According toBart́ak andČepek(2007), the problem in assignment ofvi values
for the TNA instance is NP-complete in case that some values are predefined.In other
words, if some activities are selected a priory, then the decision whether there exists a
feasible assignment ofvi values for the whole instance is NP-complete problem. The
solution, motivated by the real processes, lies in the more restrictive form of theTNA
calledNested Temporal Networks with Alternatives(NTNA). The assignment of thevi
values for the NTNA instances is proved to be a problem with polynomial complexity
(seeBart́ak andČepek(2008)).

The NTNA is a special form of the TNA, where the parallel and alternativebranch-
ings are arbitrary nested one in another but no other interaction among the branch-
ings is allowed. LetG = {V,E} be a directed acyclic graph, whereV ≡ A and
E =

{
∀ (i, j) ∈ V 2 : i is a direct predecessor ofj

}
. Furthermore, letV (G) be in a

topological order, i.e.i < j for all (i, j) ∈ E (G) (see e.g.Korte and Vygen(2000)).
Finally, let a ∈ V (G) be a node with out-degreeδ+a > 1 andb ∈ V (G) be a node

Chapter 2 Scheduling Model 19

with out-degreeδ−b > 1. Then a connected component ofG delimited by nodesa and
b is called abranchingif and only if all the following properties hold:

• a < b

• a ∈ P[0,b] for each directed pathP[0,b] from node0 to nodeb in G

• b ∈ P[a,n+1] for each directed pathP[a,n+1] from a to n+ 1 in G

• outa = inb

• b is minimal for a givena

A branching in the NTNA instance, delimited by nodesa and b, is denoted as
Ba,b =

{
∀i ∈ V (G) : ∃P[a,i] ∧ ∃P[i,b]

}⋃
{a, b}. If for eacha ∈ V (G) : δ+a > 1

there is a correspondingb ∈ V (G) such thatBa,b is a branching as defined in the
previous paragraph, then graphG corresponds to the NTNA instance. Each branching
consists of a set of branchesBa,b = {B1 . . . Bδ+(a)}, whereBk denotes thek-th
branchof such a branching. Each branchBk ∈ Ba is a set of activities that form a
connected component of graphG, starting by some successor of nodea and ending
by the corresponding predecessor of nodeb.

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

out =1
3

out =0
0

1

out =1
10

in =1
6

in =1
8

in =1
14

in =0
15

out =1

Fig. 2.2: Example of the NTNA instance

20 2.4 Selection Constraints

An example of the NTNA instance is depicted in Figure2.2. For a better illustra-
tion, parallel branchings are denoted asPARand alternative branchings are denoted
asALT. The meaning of the parallel branching is the same as for the scheduling prob-
lems without alternatives - after the first activity is scheduled, all the successors have
to be scheduled as well. In case of the alternative branching only one successor has
to be scheduled, i.e. only one path through the corresponding part of thegraph has to
be selected. With respect to the scheduling model, the constraints for the selectionof
activities for each branchingBa,b are:

• both activitiesa andb are selected/rejected simultaneously,

• all successors ofa and predecessors ofb in the parallel branching are se-
lected/rejected simultaneously,

• only one successor ofa and one predecessor ofb are selected ifa andb are
selected in the alternative branching,

• all successors ofa and predecessors ofb are rejected ifa andb are rejected in
the alternative branching,

The constraints for the selection of activities (represented byvi values) resulting
from the NTNA instance are stated in Section2.4. The presented NTNA formalism
is used for the representation of the problem structure for all scheduling problems
considered in this thesis.

2.4 Selection Constraints

The selection constraints determine which activities will be selected to be a part of the
schedule and which will be rejected. The selection constraints are derived from the
NTNA instance as follows:

1. When there is a parallel branching at the input/output of selected activityi (ini/
outi = 0), all its direct predecessors/successors have to be selected. If activity
i is rejected, all its direct predecessors/successors have to be rejected.

2. When there is an alternative branching at the input/output of selected activity
i (ini/outi = 1), exactly one of its direct predecessors/successors has to be
selected. If activityi is rejected, all its direct predecessors/successors have to
be rejected.

3. When there is a simple precedence between activitiesi andj (i has only one
successorj and vice versaj has only one predecessori), both activities have to
be selected/rejected simultaneously.

4. Dummy activities0 andn+ 1 have to be always scheduled.

Chapter 2 Scheduling Model 21

The resulting constraints are:

vi =
∑

∀j∈succ(i)

vj ∀i ∈ A : outi = 1 (2.1)

vi =
∑

∀j∈pred(i)

vj ∀i ∈ A : ini = 1 (2.2)

vi = vj ∀ (i, j) ∈ A2 : outi = 0 ∧ inj = 0 ∧ j ∈ succ (i) (2.3)
∑

i∈A

vi ≥ 1 (2.4)

where :

succ (i) = {∀j ∈ A : (i, j) ∈ E (G)} , pred (i) = {∀j ∈ A : (j, i) ∈ E (G)}

Any assignment ofvi values that fulfills the equations (2.1)-(2.4) corresponds to
one process plan. The existence of a non-empty solution is always ensuredthanks
to the nested structure of the NTNA instance (seeBart́ak andČepek(2008)). The
selection constraints are the same for all the scheduling problems considered inthis
thesis. A feasible assignment ofvi values and the resulting selection of activities
corresponding to a feasible process plan is shown in Figure2.3. The assignment of
vi values and the resulting process plan formed by selected activities is one of the six
feasible process plans that can be found for the considered instance.

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

8

v =1
0

v =1
1

v =0
2

v =0
3

v =0
4

v =0
5

v =0
6

v =1
10

v =1
11

v =1
7

v =0
12

v =1
14

v =1
15

v =1
8

v =1
9

v =0
12

(a) Assignment ofvi values

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

(b) Selected process plan

Fig. 2.3: Feasible assignment ofvi and the resulting process plan

22 2.5 Temporal Constraints

2.5 Temporal Constraints

The formalism of the Nested Temporal Networks with Alternatives allows also to
define the temporal constraints for all precedence-related nodes (activities). A pair
of real numbers[ai,j , bi,j] is assigned to each edge(i, j) ∈ E (G), whereai,j is the
minimal time distance of start times of activitiesi andj in the schedule andbi,j is the
maximal time distance of the start times. In this thesis, the constraint for the minimal
time distanceai,j is involved in each of the considered problems. More precisely, the
concept ofgeneral temporal constraintsin the form ofpositive and negative time-lags,
is considered.

The positive and negative time-lags (shortly time-lags) are defined such that si +
lij ≤ sj for all (i, j) ∈ A2, wherelij ∈ R is the length of the time-lag andsi is the
start time of activityi in the schedule. The constraints imposed byai,j andbi,j in the
NTNA instance form a special case of the time-lags, since they are restricted to the
precedence-related activities only. In this thesis, we considerlij ≥ 0 andlji ≤ 0 for
all (i, j) ∈ E (G), i.e. the successor cannot never start before its predecessor in the
NTNA instance. If there is no temporal constraint for a pair of activities(i, j) ∈ A2,
thenlij = −∞.

Some specific assumptions with respect to the time-lags are given for each
scheduling problem separately. The common assumption is that there is no cycle
with a positive length in the time-lags definition for any process plan. For this
purpose, letAS ⊆ A represent a subset of activities corresponding to a feasible
process plan. Furthermore, letGtemp be a graph with nodesV

(
Gtemp

)
= AS

and edgesE
(
Gtemp

)
=

{
∀ (i, j) ∈ V

(
Gtemp

)
× V

(
Gtemp

)}
where each edge

eij ∈ E
(
Gtemp

)
has the weight (length) equal tolij . To detect the cycle with a

positive length inGtemp, the longest paths are calculated by Floyd’s algorithm (see
e.g. Korte and Vygen(2000)). If Gtemp contains any cycle with a positive length,
then there will be at least one node for which the longest path to itself is greater then
zero. On the contrary, if the graph does not contain any positive cycle,then the longest
paths for each node to itself is equal or less then zero. We assume that there is no pos-
itive cycle for anyAS ⊆ A. In case that there was a positive cycle for a process plan,
there would be no feasible solution for such a process plan.
The common temporal constraints for all the problems studied in this thesis are as
follows:

si ≥ ri − UB · vi ∀i ∈ A (2.5)

sj ≥ si + lij − UB · (2− vi − vj) ∀ (i, j) ∈ A2 (2.6)

UB >
∑

∀i∈A

max

(
pi + max

∀j∈A
(stij) ,max

∀j∈A
(lij)

)
(2.7)

Formula (2.5) ensures that no selected activity is scheduled before its release time.
Thanks to the high positive constantUB, the release times for rejected activities are

Chapter 2 Scheduling Model 23

always satisfied. Formula (2.6) defines the positive time-lags for all pairs of selected
activities. The positive time-lag is considered if and only if both activities are selected
and, therefore, the rejected activities do not influence the schedule at all.

2.6 Resource Constraints

The resource constraints are based on the commonly used assumption that each re-
source unit can process, at most, one activity at the time. In other words, any pair
of activities cannot overlap on the same resource unit in the same time. The second
straightforward resource constraint is that each selected activity is assigned the ap-
propriate number of resource units of the specified resource type. In other words, the
resource demand of each selected activity is satisfied. The resource demands of the
rejected activities need not satisfied, since such activities are not in the schedule at all.

In addition to the before mentioned assumptions, we consider thesequence de-
pendent setup times(also calledchangeover times) that represent an additional time
needed for setting up the resource between the consequently scheduled activities. A
setup timestij ≥ 0 determines the minimal time distance between the completion
time of activity i and start time of activityj if i andj are scheduled consequently
on the same resource type and they share at least one unit of such resource type. We
presume that the setup times satisfy the triangular inequalitystij + stjk ≥ stik for all
{i, j, k} ∈ A3 (Brucker, 2007).

The resource constraints, including the setup times, are then specified as follows:

θk∑

v=1

zivk = Rk
i · vi ∀i ∈ V , ∀k ∈ R (2.8)

zivk + zjvk − 1 ≤ 1− yij ∀ (i, j) ∈ M, ∀k ∈ R, ∀v ∈ {1 . . . θk} (2.9)

− xij + yij ≤ 0 ∀ (i, j) ∈ M (2.10)

si + pi + stij ≤ sj + UB · (1− xij + yij) + UB · (2− vi − vj)

∀ (i, j) ∈ M (2.11)

sj + pj + stji ≤ si + UB · (xij + yij) + UB · (2− vi − vj)

∀ (i, j) ∈ M (2.12)

where :

xij , yij ∈ {0, 1};M =
{
(i, j) ∈ A2 : i < j ∧ ∃k : Rk

i > 0 ∧ Rk
j > 0

}

For the purpose of the resource constraints definition, two auxiliary variables have
to be introduced. First, letxij be a binary decision variable such thatxij = 1 if activity
i is followed by activityj on the same resource type andxij = 0 otherwise. Second,
let yij be a binary decision variable such thatyij = 1 if activities i and j do not

24 2.7 Classification of the problem

share any resource unit on any resource in the schedule and, therefore, the resource
constraints need not to be considered andyij = 0 otherwise, i.e. there is at least one
resource unit of the given resource type assigned to bothi andj. Furthermore, letM
be a set of all activity pairs for which there is a potential resource conflict between the
two activities in such a pair.

Equation (2.8) ensures that the resource demand of each selected activity is sat-
isfied while there are no assigned resource units for the rejected activities. Formula
(2.9) determines the pairs of activities (values ofyij) for which there might be a re-
source conflict, i.e. activities that share at least one resource unit of the same resource
type. Formula (2.10) only determine thexij values for all pairs of activities for which
there cannot be an actual resource conflict. Finally, the assumption of no-overlapping
activities on the same resource unit in the same type is defined using a double in-
equality (2.11) and (2.12). For each pair of activitiesi andj competing for the same
resource unit of the same resource type, eitheri precedesj (si + pi + stij ≤ sj) or j
precedesi (sj + pj + stji ≤ si).

2.7 Classification of the problem

For the classification of the problem described in the previous text, we use the
well known α|β|γ notation (seeBlazewicz et al.(1996)), whereα defines the re-
source environment,β stands for the specification of activities and additional con-
straints andγ defines the objective function. According toBrucker et al.(1999a), the
above described problem can be classified asPS|nestedAlt, temp, STSD|− where
PS stands for the resource constrained project scheduling problem,temp denotes
the generalized temporal constraints andSTSD represents the sequence dependent
setup times. According toHerroelen et al.(1999), the problem can be specified as
m, 1|nestedAlt, gpr, sij |− wherem, 1 defines the renewable resources with constant
availability in time,gpr represents the generalized temporal constraints andsij de-
notes sequence dependent setup times.

For both classifications, theβ field is extended by the termnestedAlt to denote
the presence of the alternative process plans in the nested form (see Section 2.3). In
this thesis, we will address the considered problem as theresource constrained project
scheduling problem with alternative process plans- RCPSP-APP. Since there are no
additional resources, the problem can be addressed also as themachine scheduling
problem, yet the term RCPSP-APP will be used throughout the thesis.

The objective function is not specified in the classification since the criterion is
specified for each of the considered scheduling problems separately. Inall the cases,
the objective function is a convex function dependent on the selection of activities and
their start times and order on the resources.

Chapter 3

RCPSP-APP with positive and
negative time-lags

The motivation for the research is the scheduling of production processes whichtyp-
ically involve more than one way how to complete the product. Such alternative pro-
cess plans occur in the production of wire harnesses, where operations toproduce
a wire harness can be performed in various ways, using fully automated machines,
semi-automated machines or manually operated ones with special equipment. The
problem can be formalized as an extension of thePS|temp, STSD|Cmax problem.
Therefore, we deal with the resource constrained project scheduling problem which
is further extended by the positive and negative time-lags, sequence dependent setup
times and alternative process plans. Time-lags (also called generalized temporal con-
straints) are useful to specify the relative time position of two activities in general.
Sequence dependent setup times serve to cover the time needed to change the equip-
ment or set up a machine between two different operations. The optimality criterion is
to minimize the schedule length. The combination of generalized temporal constraints
and logical constraints (in form of alternative process plans) makes the problem even
more difficult since we have to introduce new decision variables into the problem.

This chapter presents the resource constrained project scheduling problem with
alternative process plans (RCPSP-APP) motivated by the real productionof wire
harnesses. Section3.1 contains the statement and the mathematical model of the
PS|nestedAlt, temp, STSD|Cmax problem with the representation based on the
RCPSP-APP formalism. The model also considers sequence dependent setup times
and generalized temporal constraints (positive and negative time-lags). A heuristic
method, where the choice of process plan and traditional scheduling are executed si-
multaneously, is described in Section3.2. Computational experiments together with
the novel evaluation metric for the instances and the testing methodology for different
algorithms are provided in Section3.3. Section3.4concludes the work.

25

26 3.1 Problem Statement

3.1 Problem Statement

The major part of the problem considered in this chapter is defined in the overall
problem statement in Chapter2. Therefore, the problem includes the set of activities
A, the set of resourcesR and the selection, temporal and resource constraints as
defined in Chapter2. In addition to this, each activityi ∈ A has a deadlinẽdi ≥ 0,
which is the hard constraint for the activity completion time in any schedule. The
key part of the problem statement are the positive and negative time-lags that can be
defined for any pair of activities.

To represent the problem structure, the formalism of the Nested Temporal Net-
works with Alternatives is used as described in Section2.3.1. An example of the
NTNA instance with all the necessary data for the scheduling problem is depicted in
Figure3.1. In addition to the temporal constraints imposed by the direct precedence
relations, there are two further minimal time-lagsl9 7 = 3 and l11 14 = 6 and one
maximal time-lagl9 0 = −16. The setup times are given for each resource separately;
there are no setup times for resourceR3 since it is dedicated to dummy activities only.

The goal is to minimize the total schedule length, also calledmakespan, which is
denoted asCmax and is equal to the completion time of the last activity in the sched-
ule. The described problem can be classified asPS|nestedAlt, temp, STSD|Cmax

or m, 1|nestedAlt, gpr, sij |Cmax using the same classification schemes as in Sec-
tion 2.7. In the rest of the chapter, only the first notation will be used.

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

l = 3
9 7

l =8
0 9

l =0
1 2

l = -16
9 0

l = 6
11 14

l = 3
9 10

l = 8
10 12

l = 1
12 13

l = 0
10 11

l = 5
11 14 l = 5

13 14

l = 0
14 15

l = 0
8 15

l =0
0 1

l =10
1 7

l =4
2 3

l =2
3 5

l =0
3 4

l =3
4 6

l =3
5 6

l =0
7 8

l =4
6 8

p=[0, 8, 2, 1, 3, 2, 1, 5, 6, 4, 3, 7, 4, 3, 6, 0]

r=[0, 0, 0, 6, 6, 6, 6, 5, 0, 0, 2, 5, 5, 5, 0, 0]

d=[5, 9, 9, 9, 9, , 9, 15, 25, 15, 21, 25, 23, 26, 30, 30]9

res=[3, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3]

=[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

~

R i i

k

R1 3 4 8 9 10 12 14

3 0 0 2 2 2 1 1

4 0 0 2 2 2 1 1

8 2 2 0 0 2 1 1

9 2 2 0 0 0 1 1

10 2 2 2 0 0 1 1

12 1 1 1 1 1 0 0

14 1 1 1 1 1 0 0

R2 1 2 5 6 7 11 13

1 0 0 0 0 2 2 2

2 0 0 0 0 2 2 2

5 0 0 0 0 2 2 2

6 0 0 0 0 0 2 2

7 2 2 2 0 0 0 0

11 2 2 2 2 0 0 0

13 2 2 2 2 0 0 0

Fig. 3.1: Example of the NTNA instance

Chapter 3 RCPSP-APP with positive and negative time-lags 27

3.1.1 Mathematical Model

In this section, the mathematical model for thePS|nestedAlt, temp, STSD|Cmax

problem is formulated. Except the constraints imposed by the deadlines of activities
(3.1), all the formulas in the mathematical model below are taken over from Chapter2.
All the parameters, constants and variable domains are the same as in Chapter2 as
well. The objective is to minimize the makespan, which is defined as the maximal
completion time over all the activities in the schedule.

min

(
max
∀i∈A

(si + pi)

)

subject to:

(2.1)− (2.12)

si + pi ≤ d̃i + UB · (1− vi) ∀i ∈ A (3.1)

3.1.2 Problem Complexity

Let us focus on the complexity of the problem considered in this chapter. Theproblem
PS|temp, STSD|Cmax, i.e. the case without alternative process plans, is NP-hard
since it is a generalization of the1|rj , d̃j |Cmax problem (see reduction of this problem
from a 3-partition problem inLenstra et al.(1977)). If the resource constraints are
omitted, we have aPS∞|temp|Cmax problem, which can be solved in polynomial
time (e.g. using linear programming while eliminating the resource constraints). On
the other hand, the problemPS∞|nestedAlt, temp|Cmax, is NP-hard, despite the
resource constraints relaxation, seeČapek et al.(2012) for more details. This leads
to the observation that the computation of the earliest start times for all activities
i ∈ A is an NP-hard for the problemPS|nestedAlt, temp, STSD|Cmax since the
PS∞|nestedAlt, temp|Cmax problem is a sub-problem of finding the earliest start
times for all activities.

3.2 Heuristic Algorithm

SincePS|nestedAlt, temp, STSD|Cmax is an NP-hard problem, the optimal solution
can be obtained, in reasonable amount of time, only for small instances. For large in-
stances, we propose a heuristic algorithm that does not ensure finding anoptimal
solution, but it is able to handle instances with a significantly larger amount of activ-
ities. The idea of this algorithm, called Iterative Resource Scheduling with Alterna-
tives (IRSA), is based on an IRS algorithm forPS|temp, stij |Cmax inspired by soft-
ware pipe-lining and presented byRau(1994) and extended byHanźalek andŠůcha
(2009) who focused on the acyclic scheduling problem and introduced so calledtake-
give resourcesinto the problem. It is a constructive method where activities are

28 3.2 Heuristic Algorithm

being added to the schedule according to their actual priority or being removed if
the partial schedule is not feasible. The input of the algorithm is an instance of the
PS|nestedAlt, temp, STSD|Cmax problem. The output of the algorithm is a sched-
ule S determined by the selected activities, their start times and assigned resource
units, i.e. S = [s, v, z]. The main purpose of the proposed heuristic is to deal with
the problems where a feasible schedule cannot be found in polynomial time in general
case. The optimization of theCmax criterion is achieved by the gradual tightening of
the constraint for the schedule length.

3.2.1 Initialization

The algorithm starts with the estimation of the bounds for the schedule length.

The upper bound is computed asCUB
max =

∑
∀i∈A

max

(
pi +max

∀j∈A
(stij) ,max

∀j∈A
(lij)

)

(seeBrucker et al., 1999b). The lower bound is computed asCLB
max = sLBn+1, i.e.

the lower bound of the earliest start time of activityn + 1. For this purpose, let
Gtemp be a directed graph with nodesV (Gtemp) = A and edgesE

(
Gtemp

)
={

(i, j) ∈ V (Gtemp)× V (Gtemp) : lij 6= −∞
}

with weights equal tolij . Further-
more, let Gprec be a directed graph with nodesV (Gprec) = V (Gtemp) and
E (Gprec) = {(i, j) ∈ E

(
Gtemp

)
: i is a direct predecessor ofj in the NTNA}.

Then the estimatedCLB
max is equal to the shortest path length between nodes0 and

n+ 1 in Gprec computed by Dijkstra’s algorithm (Korte and Vygen, 2000).
In the original IRS algorithm, the priority of an activity is equal to its longest

path length to the terminal activityn + 1. Due to NP-hardness of the longest path
lengths computation in our case, we use only the estimation retrieved fromGtemp, i.e.
negative time-lags are omitted. Moreover, we have to distinguish priorities according
to alternative process plans. Therefore, the priority of an activity increases with its
estimated distance to the end of the schedule and decreases with the length of the
alternative branch in which the activity is included. To compute priorities, we first set
apriori = c1 · ui,n+1 − c2 · uopen,close for each activityi whereui,j is the longest
path length between nodesi andj in Gtemp, theopen andclose are activities that
start and terminate the minimal alternative branch containing activityi and c1 and
c2 are constants. Minimal alternative branch for activityi is the alternative branch
(see Section3.1) containing activityi such that there is no other alternative branch
containing activityi with the lower number of activities. In the example in Figure3.1,
the open andclose for activity 5 are activities3 and6 respectively. For activity2,
theopen andclose are activities1 and8. Based on the algorithm testing on various
instances, the best performance is achieved when the longest path lengthto the end
of the schedule is given higher influence on the priority value (we usec1/c2 = 5/3).
Finally, the prioritypriorityi of each activityi is set to a value equal to the position of
its apriori value in the ascending order of allaprior values. In other words, activity
with the lowestaprior value will have priority equal to1, next activity will have

Chapter 3 RCPSP-APP with positive and negative time-lags 29

priority equal to 2 and the activity with the highestaprior value will have priority
equal ton+ 2.

3.2.2 Main loop

In each iteration of the main loop, the functionfindSchedule tries to find the sched-
ule with the given upper bound while the number of steps is limited by the param-
eterbudget that is usually set as a number of activities multiplied by the parameter
budgetRatio. If a feasible schedule is found, all activities are shifted to the left by
the label-correcting algorithm (seeBrucker and Kunst, 2006) so that the constraints
and the order of activities inS are kept. A new upper bound of the schedule length is
computed asCUB

max = Ccurrent
max −1 and the next iteration of the loop is performed. If a

feasible scheduleS is not found for the given schedule length, the algorithm modifies
the priority according to the returned partial schedule.

Algorithm 1 IRSA(budgetRatio, maxModifications, instance)

computeCLB
max andCUB

max;

set initialpriorities;

budget = budgetRatio · n;

actualModifications = 0;

whileCUB
max ≥ CLB

max

S = findSchedule
(
CUB
max, priority, budget

)
;

if S is feasible

s = shiftLeft (S) ;

CUB
max = sn+1 − 1;

else

if actualModifications < maxModifications

priority = modifyPriority (priority, S);

actualModifications = actualModifications+ 1;

else

break;

end

end

end

A general observation for heuristic algorithms is that more incorrect decisionsare
made at the beginning and, therefore, the priority of the earliest scheduledactivities
and activities that have been added to the schedule more often is decreased. The func-
tion findSchedule is then called for the same upper boundCUB

max using the modified

30 3.2 Heuristic Algorithm

priorities. If the schedule was not found and the maximum number of priority mod-
ification steps determined by the parametermaxModifications is exhausted, the
algorithm returns the best schedule.

3.2.3 Inner loop

In the inner loop of the IRSA algorithm, priorities are updated in the function
updatePriority (see Algorithm2) such that the priority is increased for the activ-
ities marked as selected and proportionally decreased to the number of inclusions
of the activity into the schedule. This update of priorities allows the heuristic to
switch between alternative branches instead of staying in the same selection for the
whole run of the algorithm. For each activityi, the priority is updated such that
priorityi = priorityi + 0.5 · vi − 0.5 · nAddsi wherenAddsi denotes the num-
ber of inclusions of activityi to the schedule. Activityk with the highest priority is

Algorithm 2 Inner loop of IRSA

findSchedule
(
CUB
max, priority, budget

)

scheduled = {} ;

nAddsi = 0 ∀i ∈ A;

si = 0 ∀i ∈ A;

vi = 0 ∀i ∈ A;

while budget ≥ 0

priority = updatePriority (priority, nAdds, v);

k = max
∀j∈A:j /∈scheduled∧j /∈rejected

(priorityj) ;

sLBk = max
∀j∈scheduled

(sj + ljk) ;

sUB
k = CUB

max − pk;

[conflicts, sk] = findSlot
(
k, scheduled, sLBk , sUB

k

)
;

nAddsk = nAddsk + 1;

[s, scheduled] = insertActivity (k, sk, conflicts) ;

v = findSelected (v, scheduled) ;

if schedule is complete

returnS;

end

budget = budget− 1;

end

returnS;

end

Chapter 3 RCPSP-APP with positive and negative time-lags 31

found among the set of not yet scheduled activities and a time window
〈
sLBk , sUB

k

〉

where activityk can be scheduled is computed. The lower bound for start timesLBk
is calculated as the minimum time such that all temporal constraintssj + ljk ≤ sk
for all j ∈ scheduled : ljk ≥ 0 are satisfied, wherescheduled is a set of activities
that forms the current partial schedule. The start time upper boundsUB

k is set to the
maximal value such that the activity is completed before the givenCUB

max.
The functionfindSlot tries to find the earliest time slot within the given time

window with respect to the resource constraints. In other words, the time interval
given bysLBk andsUB

k is explored while searching for a time point where the given
activity can be scheduled without violating any resource constraint. Sequence de-
pendent setup times are also considered. If no feasible time position is found,then
the time slot is set tosLBk if the activity is being added to the schedule for the first
time. If the activity has been already included into the schedule in previous step, its
time slot is set tosLBk + 1 to avoid cycling of the algorithm. The functionfindSlot
then returns all conflicting activities, i.e. activities that cannot be kept in the schedule
without violating any resource or temporal constraint with respect to the last included
activity.

Activity k is then inserted into the partial schedule and all activities marked as
conflicting are removed in order to keep the partial schedule feasible at anytime. If
an unscheduled activity (i.e. activity actually removed from the schedule) isa member
of some alternative branch, then all activities in the same alternative branchare also
removed. The list of the selected/rejected activities is then updated; the scheduled
activities are marked as selected, activities belonging to the same alternative branch
are also marked as selected activities and all activities that cannot be addedto the
schedule without violating propagation rules from the mathematical model are marked
as rejected activities. The selection/rejection of other activities is not decided yet.
If each activity is already scheduled or marked as rejected, then the schedule S is
complete.

3.2.4 Example of the IRSA Algorithm Progress

Figure3.2 illustrates one iteration of the IRSA main loop for the instance depicted
in Figure3.1, considering three resource types with capacity equal to one . In the
initialization, the algorithm setspriority = (16 15 10 9 7 8 6 11 14 13 12 5 3 2 4 1)
and consequently it starts with the addition of activity0 into the schedule. Then
activity 1 is added to the schedule and its start time is set to its lower bound , i.e.
s1 = 0 (step 1 in Figure3.2). Then activity8 is scheduled and the next not yet
scheduled activity with the highest priority is9, which has to be scheduled to the
same resource as activity8. Its time window is given assLB9 = 8 andsUB

9 = 16,
resulting froml09 = 8 and l90 = −16. Within the given time window, there is no
space to schedule activity9 without violation of resource constraints and therefore
activity 8 is marked as conflicting in functionfindSlot and then removed from the

32 3.2 Heuristic Algorithm

0 10 20 30 40
t

1

109

7 11

148

0

0 10 20 30 40
t

0

0 10 20 30 40
t

0

0 10 20 30 40
t

0

0 10 20 30 40
t

1

0

0 10 20 30 40
t

1

9

0

0 10 20 30 40
t

1

10 9 8

0

0 10 20 30 40
t

1

109

7

8

0

0 10 20 30 40
t

1

109

7 11

8

0

0 10 20 30 40
t

1

109

7 11

148

0 n+1

1

10

3

5

9

7

2

8

6

4

9

1

1

8

10

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

Fig. 3.2: Example of the IRSA algorithm progress

Chapter 3 RCPSP-APP with positive and negative time-lags 33

schedule in functioninsertActivity (step 3). Activity9 is scheduled instead and its
start time is set to8. In the following step, activity10 is added and then activity8 is
added back to the schedule. Then the algorithm adds the activities one by oneup to
the last activityn + 1 and the schedule is complete, since each activity is marked as
scheduled or rejected.

3.3 Computational Experiments

This section presents extensive computational experiments for the problem defined in
Section3.1. First, the performance evaluation for the mathematical model proposed
in Section3.1.1is shown. Two different solution approaches have been used for the
mathematical model, namely themixed integer linear programming(MILP) and the
constraint programming(CP).

The optimal solutions obtained by both mathematical solvers are then used for the
first evaluation of the IRSA algorithm. The heuristic algorithm is further evaluated
on the instances of integrated process planning and scheduling (IPPS) problem from
Shao et al.(2009), which is a specific sub-problem of the problem considered in this
chapter. Furthermore, the instances of the job shop scheduling problem with process-
ing alternatives fromKis (2003) are used to test slightly modified version of the IRSA
algorithm.

Section3.3.6is dedicated to the description of the evaluation metric for the char-
acterisation of the instances for the RCPSP-APP problem. The statistical methods
used for the comparison of the different solution approaches and for the determina-
tion of the important instance properties are described in the same section. Finally,
the results of the heuristic algorithm are compared with CP solver and discussedwith
respect to the proposed evaluation metric.

All experiments were performed on a PC with 2x Intel Core 2 Quad CPU at
2.83GHz with 8GB of RAM. The IRSA algorithm was implemented in C# language
and the MILP and CP models have been developed and tested in the IBM ILOG
CPLEX Optimization Studio 12.4.

3.3.1 Generated Instances

Up to our knowledge, there are no available standard benchmarks for theconsid-
eredPS|nestedAlt, temp, STSD|Cmax problem. Therefore, randomly generated in-
stances have been used to test both solvers of the mathematical model and the IRSA
algorithm. The datasets with 30 (denoted as D30), 50 (D50), 100 (D100) and200
(D200) activities per instance were generated, each dataset containing100 random
instances. The datasets are formed by very diverse instances, both thestructure of the
NTNA instance and the attributes of resources and activities are generated from the
random distributions with wide range of values.

34 3.3 Computational Experiments

The number of resource types for each instance is randomly generated from inter-
val 〈1, Rmax〉 whereRmax is 2 for D30 activities, 3 for D50 activities and 5 for D100
and D200 activities. The capacity of each resource type is randomly generated from
intervalθk ∈ 〈1, 5〉. Each setup time is randomly generated from the interval〈5, 10〉.

The parameters of the activities were generated from the uniform distribution
with the following boundaries: processing timepi ∈ 〈1, 10〉 and resource demand
Rk
i ∈ 〈1, 3〉 for one resource typeRk ∈ R. Release times and deadlines are

generated based on the estimation of the schedule length and adjusted by the re-
lease time factorRF and the deadline factorDF , similarly to the method used in
Vanhoucke et al.(2001). First, the minimal schedule length is estimated as a max-
imum from two numbers - the critical path lengthlCP and the schedule length es-
timate based on the resources availabilitylRA. Then the release times are gener-

ated from the intervalri ∈
〈
0, max(lCP ,lRA)

RF

〉
and the deadlines from the interval

d̃i ∈ 〈0, DF ·max (lCP , lRA)〉. Finally, the release times and deadlines are sorted in
non-decreasing order and assigned to the activities based on the precedence relations
from activity0 towards activityn+ 1.

The critical path lengthlCP is computed as the minimal schedule length while
the resource constraints are relaxed, i.e. only the temporal constraints areconsidered.
Since the considered problem remains NP-hard even if the resource constraints are not
considered (see Section3.1.2), only the non-negative time-lags are considered for the
lCP calculation. To calculatelRA, the processing time of each activity is multiplied
by its resource demand and the resulting values are summed up for each resource type
separately. A schedule length estimate for each resource is then calculatedas the total
consumption demand over the capacity of a resource. Finally, the highest estimate

over all resource types is considered, i.e.lRA = max
∀k∈{1...m}

(∑
∀i∈V

pi·R
k
i

θk

)
.

3.3.2 Mathematical Model Complexity

To handle the mathematical model formulated in Section3.1.1, we use two different
approaches, namely the mixed integer linear programming (MILP) and the constraint
programming (CP). Solvers for both the MILP and the CP problem formulations have
been developed and tested in the IBM ILOG CPLEX Optimization Studio 12.4. Both
solvers were tested on four datasets D30, D50, D100 and D200, described in the
previous section.

Two performance indicators were used in order to determine the respective effec-
tiveness of the solvers. First, the ratio of the optimal solutions with respect to the
assigned solution time has been observed, i.e. the number of instances solved tothe
optimum by the particular solver in a certain time limit is calculated for each dataset.
Then the time limit is increased and the same instances are solved again; the total
range of the time limit was set from 1 to 300 seconds. Second, the mean value ofthe

Chapter 3 RCPSP-APP with positive and negative time-lags 35

Dataset D30 D50 D100 D200

tCPU MILP CP MILP CP MILP CP MILP CP

1 51 29 36 18 9 4 6 3
10 72 56 47 27 17 8 11 5
30 80 76 58 36 22 15 14 9
60 98 97 60 42 25 17 19 14
300 100 100 62 45 30 21 21 19

Table 3.1: The ratio of optimal solutions for the mathematical solvers

objective function over each dataset is observed for both solvers.
The ratio of the instances solved to the optimum depending on the given time

limit for both solvers is depicted in Table3.1 where rowDataset denotes the set
of instances, columntCPU contains the time limits for both solvers in seconds and
columnsMILP andCP denote the ratios of the instances solved to the optimum
in percent. The mean objective values for both solvers with respect to the assigned
time limit are then shown in Table3.2where the abbreviations has the same meaning
and the values in columnsMILP andCP denote the mean value of the objective
function over all instances with the same number of activities.

Although the results achieved by both solvers may seem similar and the depen-
dency on the assigned time limit comparable at first sight, several important facts can
be derived from the experiments. First, the ratio of instances solved to the optimum is
always higher for the MILP solver. On the contrary, the mean value of theobjective
function is, in the most cases, lower (i.e. better) for the CP solver. The reason is in the
different search strategies for both approaches. The MILP solver isbased on a branch
and bound method while the CP solver uses the restarted mechanism with the local
search optimization. The same holds for the increase in the ratio of optimal solutions
and for the mean objective value if the time limit is being increased.

We can conclude that both solvers represent a solution methodology providing
very good results for instances with up to 50 activities. For the instances withmore
than 100 activities, the tested solvers do not represent approach useful for real appli-
cations where the response is needed in a short term.

3.3.3 Performance Evaluation of IRSA algorithm

The IRSA algorithm was evaluated using the same set of instances as for the MILP
and CP solvers in the previous section. The parameters of the algorithm were set to
budgetRatio = 6 andmaxModifications = 2. Two performance measurements
were used to test the effectiveness of the IRSA algorithm. First, we consider the num-
ber of the instances for which IRSA found a feasible solution and second,the mean
difference of the IRSA algorithm from the optimal values is observed. The overall

36 3.3 Computational Experiments

Dataset D30 D50 D100 D200

tCPU MILP CP MILP CP MILP CP MILP CP

1 148 145 242 237 510 501 1002 990
10 139 137 229 228 494 491 982 974
30 136 135 226 223 480 475 973 969
60 133 132 222 220 465 460 968 962
300 132 132 221 218 459 455 965 958

Table 3.2: The mean objective values for the mathematical solvers

Dataset D30 D50 D100 D200

feas [%] 97 98 95.1 96.8
diff [%] 2.12 2.45 4.24 6.51

Table 3.3: Overall performance evaluation of the IRSA algorithm

results are summarized in Table3.3whereDataset denotes the set of instances,feas
stand for the ratio of the feasible solutions anddiff denotes the mean difference of
the IRSA results from the optimal values for a particular dataset.

Due to the complexity of the mathematical model of the considered problem, the
optimal can be found only for a subset of all instances in datasets D100 and D200 in a
reasonable time (4 hours time limit). Therefore, the IRSA algorithm is evaluated only
on the instances for which the optimal solution has been found using the MILP and
CP solvers. The total number of feasible solutions is 82 for the dataset D100 and 64
for the dataset D200.

In conjunction to the overall performance evaluation of the IRSA algorithm, we
have tested the influence of the algorithm settings on the quality of the results and on

1 2 3 4 5 6 7 8 9 10

2.5

3

3.5

4

D
if
fe

rn
c
e
 [
%

]

budgetRatio

Mean difference

Mean CPU time

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

C
P

U
 t
im

e
 [
s
]

(a) Budget

0 1 2 3 4 5

3
3.5

4
4.5

D
if
fe

rn
c
e
 [
%

]

maxModifications

Mean difference

Mean CPU time

0 1 2 3 4 5
0
0.05
0.1
0.15

C
P

U
 t
im

e
 [
s
]

(b) Modifications

Fig. 3.3: Performance evaluation of IRSA algorithm and MILP model

Chapter 3 RCPSP-APP with positive and negative time-lags 37

n 10 50 100 250 500 1000 2000
t [s] 0.01 0.06 0.12 0.31 1.07 2.55 5.72

Table 3.4: Solving time for IRSA algorithm

the respective solution time. The influence of thebudgetRatio parameter is illustrated
in Figure3.3(a) where the mean difference from the optimum and the solution time
are depicted in dependence on the given budget for the algorithm. Figure3.3(b) shows
the influence of themaxModifications parameter. The tests were performed using
the D100 dataset as proposed in Section3.3.1.

Finally, we have evaluated the average running time of the IRSA algorithm for the
instances with a wide range of the number of activities. The mean solving time for
the IRSA algorithm with regard to the number of activities is shown in Table3.4. For
each number of activities, 20 feasible instances with were generated. The parameters
of the algorithm were the same as in previous paragraphs, i.e.budgetRatio = 6 and
maxModifications = 2.

3.3.4 Integrated process planning and scheduling

The Integrated process planning and scheduling (IPPS) problem studiedin Shao et al.
(2009) is used to prove the effectiveness of our algorithms for the scheduling problems
containing alternatives. IPPS is again a subproblem of the problem considered in this
chapter. The goal is to select and schedule a subset of all activities based on the
precedence graph containing alternative routes and alternative machineassignment
such that the makespan is minimized.

Instance 1 2 3 4 5 6 7
Shao et al.(2009) 116 116 95 93 116 116 162
IRSA 117 119 98 93 119 117 171

Table 3.5: Comparison of IRSA algorithm withShao et al.(2009)

In Shao et al.(2009) there are six small instances (1-6) of IPPS and one bigger
instance (7) obtained by joining all small instances into one graph. The comparison
of the reported objective values and the values obtained by the IRSA algorithm for all
seven instances is depicted in Table3.5. It should be appointed out that the objective
value for the first instance indicated inShao et al.(2009) is not possible, since the
optimal value is 117 instead of 116. The mean solution time reported inShao et al.
(2009) is 1 second for small instances, while for the bigger one there is no solution
time at all. The algorithm was coded in C++ language and run on a machine with 2.40
GHz Pentium IV. The mean running times for the IRSA algorithms is 12 ms for small
instances and 2s for the bigger one.

38 3.3 Computational Experiments

As can be seen from Table3.5, the IRSA algorithm is competitive with the evolu-
tionary algorithms proposed inShao et al.(2009). Therefore we can conclude that the
solution methodology is eligible to solve the problems with alternative process plans.

3.3.5 Evaluation on AJSP instances

Finally, we have evaluated the IRSA algorithm on the instances of thejob-shop
scheduling problem with processing alternatives(AJSP) proposed byKis (2003). We
have decided to solve such instances since our problem is the generalizedversion of
the AJSP problem. The results are depicted in Table3.6 where columns GA, TABU
and RAND contain the results found by algorithms proposed byKis (2003) and col-
umn IRSA contains the results found by the IRSA algorithm,diff is the ratio of the
schedule length found by the given algorithm over the lower bound estimated by the
MILP solver andt is the average computational time in seconds.

As we can see, the results found by the algorithms proposed by Kis (especially
TABU algorithm) are superior than the results found by the IRSA algorithm. On the
other hand, the increase in the computational time in dependence on the number of
activities is more crucial for algorithms proposed by Kis. The total computational
time for each instance is also much lower in case of the IRSA algorithm, although the
comparison is not straightforward sinceKis (2003) reported that C++ language was
used and the tests were performed on a machine with Pentium II 400 MHz.

GA TABU RND IRSA
Instances diff t [s] diff t [s] diff t [s] diff t [s]
a01-a03 1.025 3.812 1.021 2.331 1.023 3.308 1.062 0.07
a04-a06 1.042 17.04 1.011 11.38 1.024 16.78 1.096 0.16
a07-a09 1.042 40.52 1.012 30.76 1.095 42.98 1.077 0.39
a10-a12 1.042 78.67 1.005 67.68 1.093 87.04 1.137 0.62
a13-a15 1.020 27.55 1.014 71.29 1.098 29.92 1.251 0.14
a16-a18 1.051 67.57 1.012 49.27 1.135 77.41 1.263 0.27
a19-a21 1.068 124.8 1.015 97.14 1.149 153.1 1.235 0.67
a22-a24 1.072 60.31 1.042 43.23 1.136 72.02 1.299 0.31
a25-a27 1.123 147.8 1.058 131.4 1.203 191.6 1.364 1.11
a28-a30 1.145 274.3 1.025 274.1 1.212 386.3 1.259 1.02
a31-a33 1.152 100.5 1.083 82.76 1.249 130.8 1.341 0.85
a34-a36 1.157 243.6 1.060 253.8 1.261 347.7 1.381 1.93
a37-a39 1.151 457.7 1.036 327.6 1.232 709.5 1.258 2.42

Table 3.6: Comparison of IRSA algorithm withKis (2003)

The problem assumed in this chapter is more general than the problem described
by Kis. The main difference is that positive time-lags are restricted to be equal to

Chapter 3 RCPSP-APP with positive and negative time-lags 39

processing times of activities and there are no negative time-lags at all in the AJSP
instances. We also assume more general definition of alternative process plans where
the alternative and parallel branchings can be arbitrary nested one in another. Further-
more, we do not focus on the particular situation where activities are joined in jobs
with the specific precedence relations and resource assignment. Finally, there are no
sequence dependent setup times in the AJSP problem.

To solve the AJSP instances, we have slightly modified functionfindSlot in the
IRSA algorithm. Each job in the AJSP problem is a sequence of activities whereat
most one activity can be in process at each time but the order of activities in and-
subgraphs is not specified. Therefore, the functionfindSlot has to check one more
constraint during the search for the feasible time position, i.e. the feasible time po-
sition of an activity has to satisfy three type of constraints - temporal constraints,
resource constraints and job constraints.

3.3.6 Evaluation Metric for Instances

In this section, the evaluation metric for the characterisation of the instances for the
problem described in Section2.1 is proposed. The instances can be described by the
resource availability, parameters of activities and structure properties ofthe corre-
sponding Nested Temporal Network with Alternatives (NTNA) instance. Eachprop-
erty for each instance is represented by a numerical value that is later used for the
comparison of different solution approaches.

3.3.6.1 Resource environment

For the evaluation of the generated instances, we use two properties with respect
to the resource environment for each instance. First, theNumber of Resource
Types (#res) #res is the number of resources types for the particular instance,
equal tom according to the problem statement in Section2.1. Second, theRe-
sources Constrainedness(RC) is a measure related to the average consumption of
resources by activities over all resource types, used e.g. inDemeulemeester et al.
(2003). The value of the resource constrainedness for resource typeRk is calculated
asRCk = 1

θk
· 1
n ·

∑
∀i∈AR

k
i , i.e. it is an average demand of all activities that require

resource typeRk over its capacity. The overall resource constrainedness is then given
as an average over all resourcesRC = 1

m ·
∑

∀k∈{1...m}RCk. A higher number indi-
cates a more resource constrained problem where activities have to be ordered more
sequentially on resources than for a lowerRC value.

3.3.6.2 Structural properties

The structure of the NTNA instance is generated based on many input factors like the
minimum and maximum number of branches in both parallel and alternative branch-
ings, the ratio of the alternative branchings, etc. For the computational experiments,

40 3.3 Computational Experiments

we propose a set of structural properties that can be measured for each generated
instance:

TheTotal Order Strength (TOS) is the order strength of the NTNA instance regard-
less of the types of branchings. The order strength of a directed acyclicgraph withn
nodes is calculated as the actual number of edges in the transitive closure ofthe graph
over the maximal number of edges, i.e.TOS = 2 · |Eclosure| /n · (n− 1). The tran-
sitive closure of a graph is a graph, where nodesi andj are connected by the edge if
and only if there is a directed path fromi to j in the original graph. An instance with
a higher value of the order strength is usually easier to solve since the order of more
activities is given in advance. For the instance in Figure3.1, the value is calculated as
TOS = 2 · 64/ (16 · 15) = 0.53.
The Number of Alternative Branchings (#AB) is the actual number of alterna-
tive branchings in an instance, i.e. it is equal to the number of nodes in NTNA that
have the alternative output label. In the example in Figure3.1, there are 3 alternative
branchings.
TheNumber of Alternative Process Plans(#APP) is the total number of selection-
feasible process plans that can be derived for a particular instance. In other words, it is
a total number of unique combinations of selected activities that will satisfy the rules
for parallel and alternative branchings. The higher number of processplans, the larger
the solution space, since there are more possibilities how to create a schedule. There
are 6 different process plans that can be found in the example in Figure3.1.
The Average Order Strength (AOS) is computed in a similar way asTOS, but
instead of calculating one value of the order strength for the whole instance,AOS
represents the average value computed over all process plans separately. To calculate
the order strength of a process plan, a subgraph induced by the activitiesselected
in the process plans is taken into account. As can be seen from the experiments in
Section3.3.8, theAOS value is, in most cases, slightly higher than theTOS value.
On the other hand, a counter-example whereAOS is lower thanTOS can be also
found. TheTOS value for the example in Figure3.1 is an average value over 6
process plans, resulting inAOS = 0.62.
TheAverage Number of Activities per Process Plan(PPAct) is given as an average
number of selected activities over all possible process plans. Generally, the higher
number the more difficult instances, since the resulting RCPSP problem contains more
activities. The average number of activities per process plan in Figure3.1isPPAct =
67/6 = 11.17.
TheMaximal Level of Nested Alternative Branching (NL) is the highest level of
nesting with respect to alternative branchings. For the instances without alternatives,
the value ofNL is zero. For the instance depicted in Figure3.1, the value ofNL is
2 since the alternative branching determined by activities3 and6 is nested in another
one.

Chapter 3 RCPSP-APP with positive and negative time-lags 41

3.3.6.3 Attributes of activities

For each generated instance, theAverage Activity Slack (AAS) is calculated as a
difference between the latest and the earliest start time of an activity in the sched-
ule. The earliest start timeesti is derived from the release time of activityi and the
precedence relations among the activities from the first activity towards the last one.
Similarly, the latest start timelsti is derived from the deadline of activityi and the
precedence relations from the last activity towards the first one. The activity slack is
then calculated asASi = lsti − esti and the average activity slack is then given as
AAS = 1

n ·
∑

∀i∈AASi.

3.3.7 Evaluation Methodology

The metric composed ofTOS, AOS, #AB, #APP , PPAct, NL, #res, RC and
AAS introduced in the previous paragraphs is used to characterize all instances and
find out which type of problem structure is better to solve by which specific algo-
rithm. In other words, our intention is to determine whether each property plays an
important role if a different solution approaches are applied. To find out the most im-
portant properties that, we first separate the instances into three sets foreach dataset
- instances where the CP algorithm was able to find a better solution, instances where
the IRSA algorithm was better and instances where the objective value was thesame
for both. Then we use Two-samplet-test for equal means (seeSnedecor and Cochran
(1989)) to distinguish between statistically important factors and factors that do not
have an important influence on the solution quality.

The two-samplet-test for equal means (t-test for short) is a statistical method
how to determine whether two sets with the same distribution have the same mean
value at a given significance level. In our case, we want to determine whether there
is an important relationship between the values of a specific measured propertyand
the solution quality of two different solution approaches. For this purpose, the t-test
is used for two sets of instances for each dataset - instances where IRSA found better
results and instances where CP is better. The output of thet-test is the so calledp-
valuewhich represents the significance that the mean values of both compared setsare
the same. A higherp-value corresponds to a higher significance that the mean values
are identical and, vice versa, a low number means that the mean values are different.
If the mean values are different, then we can conclude that the tested property has an
important influence on the effectiveness of the different solution approaches.

The assumption for thet-test is either a normal distribution or at least sufficient
amount of data (at least 30 elements), which is satisfied in our case, since we gener-
ate 100 instances per dataset. The calculations within thet-test not only consider the
mean values, but also the standard deviation of the values. The results we are looking
for are those where thep-value is low, then the mean values are different and, there-
fore, the property significantly influences the effectiveness of the given approaches.

42 3.3 Computational Experiments

3.3.8 Experiments for Evaluation Metric

The evaluation metric for the characterization of the instances and the corresponding
evaluation methodology proposed in the previous text are tested using the IRSAalgo-
rithm and the CP solver. In addition to the datasets defined in Section3.3.1, two new
datasets with 50 activities per instance were generated, differing in the assignment of
release times and deadlines. Dataset D50L containslooseinstances where the release
times and deadlines do not form a difficult constraint for finding a feasible solution.
On the contrary, release times and deadlines for dataset D50T are verytight, which
is reflected in the number of feasible solutions found. Release times and deadlines
for the former dataset D50 represent the intermediate step between the former two.
The rationale to generate new datasets is to examine the dependency of the solution
approaches on the temporal constraints in more detail, since they directly influence
the ratio of the feasible solutions as well as the value of the objective function.

The settings (i.e. the solving time) for the CP solver were adjusted such that
the results are comparable with the results achieved by the IRSA algorithm in the
terms of the objective values. Thus, the impact of the properties of the instances
can be evaluated for the similar quality of the results. Furthermore, two different
search limits of the CP solver and the IRSA heuristic were used for the datasets
D100 and D200. Therefore, datasets denoted as D100a and D100b in the follow-
ing tables contains the results for the same instances, only the settings of the al-
gorithms were changed. The fail limit for the CP solver was increased from 5000
(D100a) to 10000 (D100b) and the parameters of the IRSA algorithm were set to
budgetRatio = 6 andmaxModifications = 2 (D100a) and tobudgetRatio = 12
andmaxModifications = 4 (D100b). The same situation is then for D200a and
D200b, where the same dataset D200 is used.

The overall results of both the CP approach and the IRSA heuristic are shown in
Table3.7. Columnfeasibledenotes the number of the feasible solutions (out of 100),

Constraint Programming IRSA
Dataset feasible best tcpu [ms] feasible best tcpu [ms]

D30 100 36 967 97 37 18
D50L 100 33 1121 100 35 49
D50 100 36 1095 98 32 60
D50T 84 5 3066 79 6 59
D100a 79 31 2026 78 34 86
D100b 83 40 4699 79 8 180
D200a 54 12 5969 62 28 199
D200b 61 29 10085 62 7 372

Table 3.7: Results for new datasets

Chapter 3 RCPSP-APP with positive and negative time-lags 43

D30 TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.46 0.46 1.17 4.7 26.9 0.82 1.26 0.87 229.13
IRSA 0.48 0.46 1.14 5.56 27.61 0.77 1.38 0.68 227.41
p-value 0.51 0.95 0.82 0.55 0.05 0.46 0.01 0 0.59

D50L TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.41 0.41 1.89 11.96 43.72 1.09 1.2 0.9 675.3
IRSA 0.47 0.46 2.11 13.09 41.76 1.19 1.34 0.67 662.31
p-value 0.01 0.01 0.14 0.34 0.01 0.19 0.2 0 0

D50 TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.45 0.45 1.83 8.31 43.81 1.05 1.28 0.85 167.82
IRSA 0.46 0.46 2.09 15.87 41.19 1.08 1.29 0.67 164.52
p-value 0.5 0.8 0.1 0 0 0.64 0.77 0 0.37

D50T TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.37 0.42 2.41 18.59 36.68 1.36 1.68 0.87 57.82
IRSA 0.41 0.47 2.75 24.11 32.07 1.75 1.43 0.64 52.71
p-value 0.54 0.39 0.39 0.37 0.09 0.28 0.08 0 0.56

D100a TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.42 0.44 3.48 50.58 84.7 1.5 1.93 0.81 1701.2
IRSA 0.46 0.47 3.88 116.74 81.63 1.52 2.1 0.78 1632.8
p-value 0.22 0.36 0.12 0.01 0.12 0.86 0.17 0.09 0.56

D100b TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.41 0.41 3.64 97.62 83.76 1.48 2.02 0.81 1743.4
IRSA 0.43 0.42 3.82 77.97 83.94 1.53 2.09 0.67 1524.2
p-value 0.52 0.71 0.62 0.39 0.94 0.66 0.69 0 0.2

D200a TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.37 0.37 8.34 1002.3 160.34 2.24 2.13 0.85 2099.9
IRSA 0.39 0.4 8.15 1594.2 159.95 2.18 2.43 0.74 2340.5
p-value 0.47 0.37 0.67 0.21 0.92 0.58 0.2 0 0.09

D200b TOS AOS #AB #APP PPAct NL #res RC AAS
CP 0.36 0.37 8.05 1485.2 161.24 2.1 2.25 0.8 2200.7
IRSA 0.42 0.42 8.63 2186.6 161.42 2.37 2.2 0.72 2278.1
p-value 0.19 0.21 0.29 0.29 0.97 0.25 0.82 0 0.67

Table 3.8: Evaluation of properties for new datasets

44 3.3 Computational Experiments

columnbestdenotes the number of the solutions where the corresponding solution
method found strictly better solution than the other one. Finally, columntcpu shows
the computation time in milliseconds. Generally, the IRSA heuristic is faster but it
does not significantly improve the solutions with the increasing solution time. The
constraint programming solver needs a longer time to obtain the same quality of the
solutions, but then, with increasing time limit, it is still able to considerably improve
the solutions. The prove can be found in comparison of results for D100a vsD100b
and D200a vs D200b.
The evaluation of the properties importance is shown in Table3.8. For each tested
property, we can derive the following conclusion based on the obtained results:

- The total order strength (TOS) and the average order strength (AOS) are closely
related in both the values and the influence for the solution approach. The im-
portance of both properties is rather low, with the exception for D50a dataset. In
general, we can conclude that the CP approach is slightly better for instances with
lower order strength (regardless total or average), i.e. for more parallel instances.

- The number of alternative branchings (#AB) and the number of alternative process
plans (#APP) are also quite related to each other, since each alternative branching
rises the number of process plans. Both factors have a high influence on the differ-
ent solution approaches. With a growing number of the alternative branchings and
especially with a growing number of alternative process plans, the IRSA heuristic
usually becomes more effective than the CP approach. The reason may lie in the
limited branching strategy of the CP solver, which is then not able to explore more
alternatives of the activities selection.

- The average number of activities per process plan (PPAct) seems to be important
for the smaller instances, where the constraint programming approach is moreef-
fective for a higher number of activities per process plan. For the larger instances,
the property looses its importance.

- The maximal level of nested alternative branching (NL) does not show any signif-
icant importance for the effectiveness of the solution approaches. If any, the CP
approach is better for a lower number, i.e. less nested instances.

- The number of resources (#res) also does not have a high importance for the qual-
ity of the solutions of both approaches. On the other hand, the resources con-
strainedness (RC) became the most important factor with respect to the results of
the t-tests over all the instances. The CP approach is always better for a higher
value, i.e. for the instances where the activities have higher resource demands and
the resources become a more critical constraint of a problem.

- The average activity slack (AAS) is an important factor for 3 datasets while for
the others the influence is not conclusive. The CP approach is usually better for a

Chapter 3 RCPSP-APP with positive and negative time-lags 45

higher average activity slack, but not with a great significance and moreover, for
the largest dataset, the opposite progress is shown.

Based on the experiments, we can conclude that the CP approach is more effective
for the instances with lower ratio of alternative parts (properties#AB, #APP and
NL), less predefined order of activities in the schedule (propertiesTOS andAOS)
and more constrained resource environment (properties#res andRC). The impact
of the propertyAAS is not straightforward from the experiments.

The CP approach can be used also for instances with more than 200 activities, but
such instances are not included in this thesis since the difference in the solution time
to achieve comparable results is becoming too high.

3.4 Conclusion

This chapter is dedicated to the resource constrained project scheduling problem with
alternative process plansPS|nestedAlt, temp, STSD|Cmax, motivated by the pro-
duction of the wire harnesses in Styl Plzeň. We have decided to represent the struc-
ture of the problem by Nested Temporal Networks with Alternatives and for such
representation, the mathematical model able to solve, in a reasonable amount of time,
instances with up to 50 activities per resource time is presented.

In order to solve larger problems in the nested form, we have developed theheuris-
tic algorithm IRSA. Computational experiments demonstrate good performance of
this algorithm with a mean difference from the optimal value of the makespan less
than 7%, while solving time for instances with 200 activities within 300 millisec-
onds. Instances with up to 2000 activities can be solved in the order of a few seconds.
Moreover, the instances of two related problems have been used for the algorithm
evaluation and the experiments showed that the IRSA algorithm is able to solve much
more specific problems with good quality of solutions in very short time.

Finally, we have presented a novel metric for the characterization of the instances
of scheduling problems with alternative process plans. Such a metric is used for the
comparison of the different solution approaches, namely the constraint programming
solver and the IRSA algorithm. The results of the experiments are evaluated bythe
statistical methods and the important properties are derived and discussed.

46

Chapter 4

RCPSP-APP under minimization
of the total setup time

This chapter is dedicated to the RCPSP-APP problem where the goal is to minimize
the total setup time(TST), which is equal to the sum of the overall performed setup
time in the schedule. The main motivation for the research is the manufacturing of the
small electrical connectors, where the reconfiguration of the machinery is very costly
and the correct order of jobs is crucial. Up to our knowledge, there is noexisting
solution approach for such a problem and therefore, a new model and a new heuristic
algorithm is proposed for the considered problem with the intention to solve large
instances with up to 1000 activities.

Sequence dependent setup times(also calledchangeovers) are crucial for the prob-
lems where the resources are very expensive in terms of wasting their time by unnec-
essary setups. Setup times represent the time necessary to reconfigure theresource or
to change its functionality. During this time period, no work on the resources can be
performed, which can cause the entire process flow to be inefficient. Theproblem in
minimisation of the total setup time is a part of many manufacturing processes (we
“sell the machinery time”). Yet the setup times are almost always considered only
as a problem constraint, not as a part of the criterion. One of the main goalsof this
research is to fill the gap in this area, i.e. to propose a generic approach todeal with
the minimisation of the total setup time.

Allahverdi et al.(2008) dealt with the setup times in general and published a sur-
vey in which many different problems related to the setup times are summarised. The
authors also reported on solution approaches and proposed a notation forall of these
problems.Yuan et al.(2004) published a study for a metal casting company concern-
ing the minimisation of the total setup costs in which the authors demonstrate the
importance of setup times by calculating the savings to the company.Focacci et al.
(2000) dealt with the general shop problem with the sequence dependent setuptimes.
The authors proposed a two phase Pareto heuristic to minimise the makespan and the

47

48 4.1 Problem statement

total setup costs. In the first phase, the makespan is minimised and, in the second
phase, the total setup costs are minimised, while the makespan is not allowed to get
worse.Wang and Wang(1997) focused on a single machine earliness tardiness prob-
lem with sequence dependent setup times. The objective function is to minimise the
total setup time, earliness and tardiness.Mirabi (2010) proposed a hybrid simulated
annealing algorithm for the single machine problem with sequence dependent setup
times. The objective function is given by the sum of the setup costs, delay costs and
holding costs.

The main contribution of this chapter is the formulation of the novel problem,
incorporating the criterion based on the performed setup times into the area of the
resource constrained project scheduling problems with alternative process plans. Such
a problem has not been studied before in this range. There were only a few attempts
to deal with the scheduling problems where the criterion reflects the setup times. The
closest problem that can be found in the literature, when compared to the approach
studied in this chapter, was published byFocacci et al.(2000) who focused on the
job shop problem with the alternative machines while the makespan and the total
setup time is minimised. Compared to the problem studied inFocacci et al.(2000),
the model proposed in this chapter is developed for more general problems, namely
for non-unary resources, deadlines of activities and more complex precedence rules
including alternative process plans.

The second contribution lies in the newly developed algorithm able to solve the
instances of the RCPSP-APP problem with up to 1000 activities. The effectiveness of
the algorithm is evaluated using the datasets published inBrucker and Thiele(1996)
while the proposed algorithm outperforms the results presented inFocacci et al.
(2000). Moreover, the algorithm presented in this chapter is able to solve instances
with 1000 activities within dozens of seconds.

The rest of the chapter is organised as follows: Section4.1provides a definition of
the considered problem for which the mathematical model is presented in Section4.2.
A new heuristic algorithm is proposed in Section4.3. Section4.4presents the results
of the performance evaluation of the developed algorithm and Section4.5 concludes
the work.

4.1 Problem statement

In conjunction to the common definition in Chapter2, each each activityi ∈ A has a
deadlined̃i ≥ 0. The temporal constraints are given as the non-negative start to start
time-lags restricted to the precedence-constrained activities only, i.e.lij ≥ 0 for all
(i, j) ∈ E (G) andli,j = −∞ otherwise;G represents the NTNA instance as defined
in Section2.5.

The instance of the problem considered in this chapter is depicted in Figure4.1.
Several time-lags are used to demonstrate how the temporal constraints are defined,

Chapter 4 RCPSP-APP under minimization of the total setup time 49

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

out =1
3

out =0
0

l =8

1

out =1
10

in =1
6

in =1
8

in =1
14

in =0
15

out =1

1 7

l =0
0 9

l =2
7 8

p=[0, 3, 2, 1, 3, 2, 1, 7, 2, 3, 2, 3, 2, 3, 2, 0]

r=[0, 0, 0, 6, 6, 6, 6, 5, 0, 0, 2, 5, 5, 5, 0, 0]

d=[5, 9, 9, 9, 15, , 20, 9, 25, 9, 11, 15, 13, 16, 20, 30]15

res=[4, 2, 1, 2, 2, 3, 1, 3, 3, 1, 2, 3, 3, 3, 2, 4]

=[0, 2, 2, 1, 2, 3, 2, 1, 1, 2, 2, 3, 2, 2, 1, 0]

~

R i i

k

R1 2 6 9

2 0 3 1

6 3 0 3

9 1 3 0

R2 1 3 4 10 14

1 0 3 3 4 2

3 2 0 2 4 2

4 3 3 0 2 3

10 4 4 2 0 2

14 3 2 3 2 0

R3 5 7 8 11 12 13

5 0 2 2 0 0 3

7 2 0 0 2 3 3

8 2 0 0 2 3 3

11 0 3 3 0 0 3

12 0 2 2 0 0 3

13 3 3 3 3 3 0

Fig. 4.1: Nested temporal network with alternatives - example

see e.g. time-lagl17 = 8 that forces activity7 to start at least 8 time units after the
start time of activity1. All the parameters related to the activities are also included.

The goal of the scheduling process is to minimize the total setup time, denoted as
TST, which is equal to the sum of all the setup times performed in the schedule. In
addition to the variables for the schedule representation defined in Section2.2variable
fij ∈ {0, 1} is defined as follows: If activitiesi andj are scheduled subsequently on
the same resource type and they share at least one unit of its resource capacity, then
fij = 1; fij = 0 otherwise.

The setup time from activityi to activity j is always considered only once in the
objective function, regardless the actual number of the resource units which are shared
by both activities. Lets assume that activityi requires three units of a certain resource
type and activityj also requires three units of the same resource types. Furthermore,
lets assume that activityi is assigned to resource units{1, 2, 4} and activityj is as-
signed to resource units{2, 3, 4}. Although the activities share two resource units, the
setup time fromi to j will be added to the value of the objective function only once.

The considered problem is denoted asPS|nestedAlt, lmin
ij , STSD, rj , d̃j |TST

or asm1|nestedAlt,min, STSD, rj , d̃j |TST using the same extended notation of
Brucker et al.(1999a) andHerroelen et al.(1999), respectively as in Section2.7. The
termrj stands for the release times andd̃j denotes the deadlines.

50 4.2 Mathematical formulation

4.2 Mathematical formulation

The mathematical formulation using the mixed integer linear programming (MILP)
for the problem defined in the previous section is formulated below. For a higher
efficiency of the model, variablezivk is substituted by variableziu, i.e. only one index
u is used to reference the assigned resource units of a certain resourcetype. The
mutual conversion between(v, k) andu is given as follows:

u =

k−1∑

q=1

θq + v (4.1)

k = argmin
k





k∑

q=1

θq ≥ u



 ; v = u−

k−1∑

q=1

θq (4.2)

In addition to variablessi, vi, fij and zivk (ziu) defined in the previous sec-
tion, auxiliary binary variablesgijk, xijk andyijk are used. Variablegijk determines
whether activitiesi andj are selected and assigned to the same resource unitk such
thati is a direct predecessor ofj on such resource unit. Similarly, variablexijk deter-
mines whether activitiesi andj are selected and assigned to the same resource unit
k such thati is an arbitrary (direct or propagated) predecessor ofj on such resource
unit. Finally, variableyijk determines whether both activitiesi andj are assigned to
resource unitk.

min
∑

∀i∈A

∑

∀j∈A

fij · stij

subject to:

(2.1)− (2.7), (3.1)

C+θq∑

u=C+1

ziu = R
q
i · vi ∀i ∈ A; ∀q ∈ {1 . . .m};C =

q−1∑

j=1

θj (4.3)

sj + pj + stji ≤ si + UB · (xiju + 1− yiju) + UB · (2− vi − vj)

∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (4.4)

si + pi + stij ≤ sj + UB · (2− xiju − yiju) + UB · (2− vi − vj)

∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (4.5)

z0u = 1 ∀u ∈ {1 . . .K} (4.6)

Chapter 4 RCPSP-APP under minimization of the total setup time 51

zn+1u = 1 ∀u ∈ {1 . . .K} (4.7)

yiju ≥ ziu + zju − 1 ∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (4.8)

yiju ≤ ziu ∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (4.9)

xiju ≤ yiju ∀(i, j) ∈ A2 : i 6= j; ∀u ∈ {1 . . .K} (4.10)

n+1∑

j=1

giju = ziu ∀i ∈ A; ∀u ∈ {1 . . .K} (4.11)

n∑

i=0

giju = zju ∀j ∈ A; ∀u ∈ {1 . . .K} (4.12)

giju ≤ xiju ∀(i, j) ∈ A2; ∀u ∈ {1 . . .K} (4.13)

fij · UB ≥
∑

∀u∈{1...K}

giju ∀(i, j) ∈ A2 (4.14)

where :

fij , ziu, giju, xiju, yiju ∈ {0, 1};K =
m∑

q=1

θq;

The constraints for the selection of the activities and the temporal constraints are
taken over from Chapter2. New formulas (4.3)-(4.14) serve to define the resource
constraints in a similar way as for formulas (2.8)-(2.12). The key issue is that new
formulated constraints allow to reflect the performed setup times in the objective func-
tion.

Formulas (4.4) and (4.5) prevent more activities (from overlapping) on one re-
source unit in one moment. Equation (4.3) ensures that the number of the assigned
resource units is equal to the resource demand for each activity. Equations (4.6) and
(4.7) are used to assign dummy activities0 andn + 1 to each resource unit of each
resource type, which then ease the definition of the constraints related to the setup
times. Formulas (4.8) and (4.9) constrain the value of variableyijk - if both activities
are scheduled on the same resource unit, thenyijk is equal to 1; 0 otherwise. Formula
(4.10) determines the value of variablexijk - if both activitiesi andj are assigned to
the same resource unitk, they must be scheduled sequentially. Equation (4.11) forces
each activity to have only one direct successor on each assigned resource unit. Simi-
larly, Equation (4.12) forces each activity to have only one direct predecessor on each
resource unit. Formula (4.13) prevents the cycles in values of variablegijk for each
resource unit. Finally, Formula (4.14) determines whether a particular setup time has

52 4.3 Heuristic algorithm

to be taken into consideration in the objective function, i.e. whether activitiesi andj
are scheduled subsequently on the same resource unit.

4.3 Heuristic algorithm

This section is dedicated to the description of the heuristic algorithm designed to solve
the large instances of the problem defined in Section4.1. The goal is to find a schedule
determined by the selection of activities (variablevi), their start times (variablesi) and
their assignment to resources (variablezivk) such that all the constraints are satisfied
and the total setup time (TST) value is minimised.

The basic scheme of the proposed heuristic algorithm, calledSTOAL(Setup Time
Optimization ALgorithm), consists of two phases - the initial phase to find any feasible
solution and the local search for the improvement of the objective value. Theinitial
phase is inspired by the IRSA algorithm presented in Section3.2and the local search,
based on a time separation technique, is inspired by the work ofFocacci et al.(2000).
If a feasible solution is not found (due to the presence of deadlines) in the initial phase,
the local search is not started at all and the algorithm is terminated.

4.3.1 Initial solution

In the first phase, the STOAL algorithm tries to find any feasible solution by the grad-
ual construction of a schedule with a simple backtracking scheme for recovering from
infeasible solutions. The activities are added into the schedule one by one according
to the priority rules, which resolve both the selection of activities and their sequenc-
ing on the resources. Since the goal is to find any feasible schedule, the schedule is
constructed without considering the value of the objective function. Once a feasible
solution is found, the initial phase is terminated. The basic procedure for the initial
phase of the algorithm is shown in Algorithm3.

4.3.1.1 Propagation of release times and deadlines

The first step of the initial solution is the propagation of the release times and the
deadlines among all the activities using the structure of the instance. The propagation
serves for tightening the absolute time windows of the activities, resulting in more
accurate estimates of their priorities for adding to the schedule.

The propagation of the release times among the activities is performed from ac-
tivity 0 towards activityn + 1 using the temporal constraints defined by the NTNA
instance. The release time for activityi is calculated asri = max (ri, r̂i). If there is
an alternative branching ending in activityi (ini = 1), thenr̂i = min

∀j:(j,i)∈E
(rj + lji);

r̂i = max
∀j:(j,i)∈E

(rj + lji) otherwise.

Chapter 4 RCPSP-APP under minimization of the total setup time 53

Algorithm 3 Initial phase of the STOAL algorithm

Propagate release times and deadlines

Establish priorities of branches for schedule construction

Add activity0 to ready set

Set the maximum number of backtracking steps

while (ready set is not empty)

i = select activity from ready set

Try to schedule activityi and update release times of activities in ready set

if (activity i is not successfully scheduled)

Apply backtracking scheme

if (maximum number of backtracking steps reached)

End with failure

end if

end if

Update ready set

end while

Return solution

Similarly, the propagation of the deadlines among the activities is performed
from activity n + 1 towards activity0. The deadline of activityi, using the tempo-

ral constraints defined by the NTNA instance, is calculated asd̃i = min
(
d̃i, d̂i

)
.

If there is an alternative branching starting in activityi (outi = 1), then d̂i =
max

∀j:(i,j)∈E
(d̃j − pj − lij + pi); d̂i = min

∀j:(i,j)∈E
(d̃j − pj − lij + pi) otherwise.

The values of the release time and the deadline for each activity are updated using
the described propagation technique and for the rest of the algorithm run, the new
values are considered.

4.3.1.2 Priorities of branches for schedule construction

After the propagation of the temporal constraints, the priorities of all the activities
are calculated. For this purpose, we define theflexibility of activity i as flexi =
d̃i − pi − ri. The lower flexibility values correspond to the activities that have a more
tight time window and, therefore, they are more critical in the scheduling process. The
flexibility is used to determine the selection of the activities as well as to determine
the actual order in which the activities are added into the schedule.

The priority of the branches in each alternative branching is determined asfollows.
Let Bab = {B1...Bδ+(a)} be the set of all branches of the alternative branching that
begins in nodea and ends in nodeb, δ+(a) is the out-degree of nodea. Each branch

54 4.3 Heuristic algorithm

Bj ∈ Bab consists of activities that form a subgraph starting by some successor of
activity a and ending by the corresponding predecessor of activityb. The average
flexibility of all the activities inBab is then given asflexa = average(flexi) for all
i ∈ Bj , Bj ∈ Bab. To estimate the probability that a branch would be successfully
scheduled with respect to the temporal constraints, the activities with the flexibility
lower than the average flexibility of the alternative branching are the most critical.
Therefore, to calculate the total flexibility of branchBj ∈ Bab, the following formula
is usedflexBj

=
∑

(flexa − flexi) for all i ∈ Bj : flexi ≤ flexa.
Once the total flexibility of each branch in the alternative branching is calculated,

the branches are sorted in each alternative branching for later schedule construction.
To distinguish the order between two branches of the same alternative branching, the
total flexibility is used - the branch with a lowerflexBj

value has a higher priority. If
two branches have the same total flexibility, then the branch with a lower number of
activities has a higher priority. Finally, if even the number of activities is the same, we
use the branch starting by the activity with the lower number (to keep the deterministic
nature of the algorithm).

4.3.1.3 Schedule construction

The schedule is constructed by adding one activity from the ready set in each itera-
tion according to theserial generation scheme(SGS) described byKolisch(1996), i.e.
each activity is scheduled to the earliest possible time point with respect to the tem-
poral and the resource constraints. Thereadyset is a set of all the activities for which
all the required predecessors are already scheduled. The order in which the activities
are added to the schedule is determined by their flexibility (defined in the previous
section), which is being updated after each change in the schedule. If an activity is
scheduled, then it is removed from the ready set and the ready set is further updated as
follows: if there is an output alternative branching defined for the current scheduled
activity, its direct successor belonging to the branch with the highest priority is added
to the ready set; otherwise all direct successors of the current scheduled activity are
added to the ready set. At the beginning, the ready set only contains activity 0.

To select a particular activity from the ready set, an attempt to schedule each ready
activity is first evaluated and then the activity with the lowest evaluation is scheduled.
An attempt to schedule the activity and its evaluation is carried out in the following
way: First, activityi from the ready set is taken and the earliest time is calculated

assi = max
(
stemp
i , sresi

)
wherestemp

i = max

(
ri, max

∀j:(j,i)∈E
sj + lji

)
andsresi is

the earliest start time with respect to the resource constraints. The assessment of the

schedule attempt is then calculated asCi = min
∀j:(i,j)∈E

(
d̃j − pj − (si + lij)

)
. Finally,

the activity with the lowest assessment is selected to be scheduled. We try to schedule
the most critical activity first and since theCi value represents the minimal flexibil-

Chapter 4 RCPSP-APP under minimization of the total setup time 55

ity of all the successors of activityi, the lower values correspond to more critical
activities.

If si+pi > d̃i holds for any activity from the ready set, then the activity cannot be
scheduled and a backtracking scheme (see Section4.3.1.4) is applied. The rationale
is straightforward - if activityi from the ready set cannot be scheduled currently,
it cannot be scheduled even later. Since all the activities from the ready set have
to be scheduled sooner or later, there is no way how to obtain a feasible schedule
with respect to the partial schedule and the current set of ready activities. Therefore,
recovering from such a dead-end is achieved by the backtracking scheme.

Activity i, selected from the ready set, is always assigned at the end of the sched-
ule on the demanded resource typeRk. In other words the activity is assigned to
the Rk

i resource units such that it is the last scheduled activity (with the highest start
time) on each of the assigned resource units. For this purpose, the algorithm keeps
the information about the last activity on each resource unit for each resource type.
Let lastq = argmax

j∈A:zjqk=1
{sj} be the last activity on theq-th unit of resource typeRk

andL = {last1 . . . lastθk} be the set of the last activities over all units of resource
typeRk. Then the algorithm searches for a set ofRk

i resource unitsJ ∈ L such that
si = max

j∈J
{sj + pj + stji} is minimal. Such a task can be easily accomplished by

sorting and selecting an appropriate number of resource units. Finally, activityi is
assigned to all resource units fromJ and its start time is set tosi. As soon as activity
i is scheduled, the ready set is updated as described before.

4.3.1.4 Backtracking scheme

The backtracking scheme is used for recovering from the situation when no further
activity can be scheduled with the satisfaction of all the defined constraints. The back-
tracking scheme used in this chapter consists of unscheduling a part of the schedule
and updating the ready set and release times of the activities. Then there aretwo ways
how to continue with schedule construction in another direction - first, the selection
of the activities can be changed and second, the sequence of the activitieson some
resources can be modified. After the backtracking scheme is applied, the schedule
construction continues in the same way as described in the previous section.

If activity i cannot be scheduled at some point of the schedule construction, then
the backtracking method is chosen up to the structure of the NTNA instance (see
Section4.1). If activity i is a part of the alternative branching (i.e. the most nested
branching, in which the alternative is included, is the alternative branching), then a
change in the selection of activities is used. Otherwise, the change in the sequencing
of activities on the resources is used. Even with the backtracking method applied it
may happen that, activityi still cannot be successfully scheduled. Then the whole
branching, in which the activity is nested, is unscheduled and we apply the backtrack-
ing method for the activity that starts such a branching. If further backtracking is not

56 4.3 Heuristic algorithm

possible (backtracking from activity0), the entire algorithm ends with failure.

4.3.1.5 Change of the selection of activities

Let activity i be a part of branchBx in alternative branching that consists ofN
branchesBab = {B1 . . . Bx . . . BN}. The change of the activities selection imposed
by backtracking for activityi starts by unscheduling all the activities preceding activ-
ity i in the same branch, i.e.∀j ∈ Bx : there is a directed path fromj to i in the NTNA
instance. Then the first activity of branchBy is added to the ready set whereBy is
the next branch afterBx with respect to the priorities defined in Section4.3.1.2. If
there is no such branchBy, then the backtracking is not successful and the algorithm
continues with the backtracking for the activity that starts the alternative branching
Bab. The priorities of the branches inBab are then reset to the initial state.

R
1

R
4

R
3

R
2

0 4 8 12 16
t

1
3

2 9

10

12
5

0

(a) Alt change before

R
1

R
4

R
3

R
2

0 4 8 12 16
t

1
3

2 9

10

11

0

5

(b) Alt change after

Fig. 4.2: Change of the activities selection in the schedule

An example of the backtracking by the change of the selection of activities is de-
picted in Figure4.2, which is based on the example presented in Figure4.1. The next
activity from the ready set to be added into the schedule in Figure4.2ais activity 13
(demanding resourceR3), which cannot be scheduled within its deadline. Therefore,
the selection is changed such that the branch formed by activities 12 and 13 isre-
moved from the schedule and the branch containing activity 11 is selected. The result
with scheduled activity 11 is shown in Figure4.2b.

4.3.1.6 Change of the sequence on resources

In the case when activityi is a part of the parallel branching, the change of the activi-
ties sequencing on the resources is used as the backtracking method. First, activity j
scheduled on the same resource type as is demanded by activityi is found such that
there is no directed path fromj to i in the NTNA instance andj has the maximal
start time. Activityj and all its successors in NTNA are unscheduled (both direct and
propagated successors). Activityj is added to the ready set and the schedule on all the
resources is updated by shifting the activities to the left, since a part of the resources

Chapter 4 RCPSP-APP under minimization of the total setup time 57

R
1

R
4

R
3

R
2

0 4 8 12 16
t

1
3

2 9

4

0

(a) Resource change before

R
1

R
4

R
3

R
2

0 4 8 12 16
t

1
3

2 9

10

0

4

(b) Resource change after

Fig. 4.3: Change of the sequencing of activities on the resource

capacity is released by unscheduling activityj and all its successors in NTNA. Finally,
the algorithm continues with a new attempt to schedule activityi.

An example of the backtracking by the change of activities sequencing on the
resource is shown in Figure4.3, based on the example presented in Figure4.1again.
The next activity from the ready set to be added into the schedule in Figure4.3a
is activity 10 (demanding resourceR2), but its addition to the last position on the
resource would violate its deadline. Therefore, the sequencing of activities on the
resource is changed such that activity 4 is unscheduled, activity 10 is scheduled first
and then activity 4 is scheduled. The resulting schedule is depicted in Figure4.3b

Regardless of the type of the backtracking scheme used, the partial schedule is
kept feasible and the set of ready activities is up to date. Then the algorithm continues
with the schedule construction as described in the previous section. The maximal
number of the applied backtracking steps can be set as an input parameter of the
algorithm.

4.3.2 Schedule improvement

The aim of the second phase of the STOAL algorithm is to improve the value of the
objective function of the schedule found in the initial phase of the algorithm. The
basic idea is to divide the whole schedule into more independent parts and thento
optimise each part separately, while the rest of the schedule has to stay intact. The
time-separation design for schedule improvement has been proposed inFocacci et al.
(2000) where the goal is to minimise the makespan and then the total setup time for
the general shop problem. The model defined in Section4.1 is a generalisation of
the problem studied inFocacci et al.(2000) and, therefore, the heuristic algorithm
described in this section uses only the basic idea of time-separation while most of the
algorithm is redesigned for the needs of the problem studied in this chapter.

To improve the value of the objective function, only the sequencing of activities
on the resources is modified, the selection of activities is not changed. In other words,
the second phase of the algorithm works with the fixed set of selected activities. The
basic scheme of the second phase of the STOAL algorithm is depicted in Algorithm4

58 4.3 Heuristic algorithm

wherenumberOfRepetitions specifies the number of repetitions of the local search
procedures over the whole schedule.

Algorithm 4 Second phase of the STOAL algorithm

for (i = 1 . . . numberOfRepetitions)

Determine the first time window

while (not reached the end of the schedule)

Determine activities for the time window

Determine set of ready activities

Optimise the time window

if (objective value improved)

Integrate time window into overall schedule

end if

Determine the next time window

end while

end for

4.3.2.1 Time window

The principle of the time-separation technique is to divide the whole schedule into
more disjunctive parts, calledtime windows, and to optimise the value of the ob-
jective function for each time window such that the rest of the schedule is not
changed at all. The time window is formed by a set of all scheduled activi-
ties for which the start time and the completion time lie in the same time inter-
val 〈timeLB, timeRB〉 wheretimeLB is the time windowleft border and timeRB

is the time windowright border. A time window is therefore defined asW =
{∀i ∈ A : si ≥ timeLB ∧ si + pi ≤ timeRB}. To determine the left and the right
border, the maximal number of activities per resource type in a time window is used,
i.e. the activities are being added into the time window until the the predefined num-
ber of activities is met for any resource. Using such an approach, all thetime windows
will be of the similar complexity (a similar number of possible resource conflicts to
resolve) even though the absolute time-length of the windows can be quite different.

For eachi ∈ W the window release time and the window deadline is calculated
such that if activityi is scheduled within this interval, the rest of the schedule is not
influenced at all. For this purpose, both the temporal and the resource constraints
have to be considered. Since the problem studied in this chapter includes non-unary
resources, the window release time and deadline of an activity is different for each
resource unit. The window release time of activityi for resource unitq is given

as r̂iq = max
(
r̂ temp
i , r̂ res

iq

)
where r̂ temp

i = max
∀j /∈W:(j,i)∈E

(sj + lji) and r̂ res
iq =

Chapter 4 RCPSP-APP under minimization of the total setup time 59

R
1

R
4

R
3

R
2

0 4 8 12 16
t

20 24

9

64

2
3

8

11

10

12

13
14

15

16

17
18

19

20

21

22

23

timeLB timeRB

(a) Time window before

R
1

R
4

R
3

R
2

0 4 8 12 16 20 24

9

6
4

2
3

8

11

10

12

13
14

15

16

17
18

19

20

21

22

23

t
timeLB

(b) Time window after

Fig. 4.4: Example of the optimisation within the time window

max
∀j∈A:sj<timeLB∧zjq=1

(sj + pj + stji). The window release time of the activityi is

calculated as the minimum time such that scheduling of activityiwill never affect any
activity before the current time window. Therefore, only the activities thatare prior to
the time window are considered for the window release time computation.

Similarly, the window deadline of activityi for resource unitq is given as

d̂iq = min
(
d̂ temp
i , d̂ res

iq

)
where d̂ temp

i = min
∀j /∈W:(i,j)∈E

(sj − lij) and d̂ res
iq =

max
∀j∈A:sj+pj>timeRB∧zjq=1

(sj − pi − stij). As for the window release time, the win-

dow deadline of activityi is calculated such that the activity will never influence the
schedule after the time window.

After the optimisation of a time window, the next time window is set such that
there is one-half overlapping with the current time window in terms of the included
activities. Let

{
s1 . . . s|W|

}
be the start times of all the activities from the current time

window sorted in non-decreasing order,|W | is the number of activities in the time
window. Then the left border of the next time window is calculated astimeLB =
s⌈|W|/2⌉. The right border is then set with respect to the maximal number of activities
per resource type.

Figure4.4 depicts an example of the time window before (Figure4.4a) and after
(Figure4.4b) the optimisation. The example is not related to the instance depicted in
Figure4.1, a bigger instance is used instead to show a meaningful time window. The
time window is delimited by the left border (vertical dashed line at time 6) and the
right border (time 19). All the activities that start and end within the time window
are included into the optimisation process while the rest of the schedule (activities
without numbers) is not allowed to be modified at all. The left border for the next
time window is depicted in Figure4.4bat time 11.

4.3.2.2 Selection from ready set

The schedule construction method is quite similar to the one used in the initial phase,
only the rules to choose an activity to be scheduled and also the backtracking scheme
are different. The optimisation of the schedule in a time window begins by unschedul-

60 4.3 Heuristic algorithm

ing all the activities in this time window. Then the set of ready activities, which can
be currently added into the schedule, is established, similar to the initial phase of the
algorithm. The set of ready activities contains (in each time moment) all the activities,
for which all predecessors are already scheduled. For this purpose, we assume that
the selection of the activities is fixed, i.e. the rejected activities are not considered
at all. The ready set is updated after each step of the algorithm - after each schedul-
ing/unscheduling of an activity.

To select one activity from the set of ready activities, the algorithm tries to sched-
ule each activity from the ready set and then the activity, which caused theminimal
increase in the total setup time, is selected and actually scheduled. The assignment
of an activity to the resource type demanded is handled also with respect to the min-
imal increase of the objective value. Therefore, activityi is always scheduled to the
resource units where the setup time is the lowest, with respect to the temporal con-
straints given bŷriq andd̂iq. In case that the activity cannot be scheduled within the
specified release time and deadline, the activities are being rescheduled in a different
order. If the activity is successfully scheduled within̂riq and d̂iq, then it is assured
that no temporal constraints are violated considering the schedule outside thetime
window.

4.3.2.3 Limited discrepancy search

The method selecting an activity from the ready set, described in the previoussection,
is used in combination with thelimited discrepancy search(LDS). Limited discrep-
ancy search proposed byHarvey and Ginsberg(1995) is a special kind of the branch
and bound (B&B) algorithm where the total number of the tested nodes is very lim-
ited. Generally, an activity from the ready set to be scheduled is chosen bysome
heuristic rule and a schedule is constructed while following that rule. In case of the
limited discrepancy search, there are some points in the schedule construction (called
discrepancies) where the heuristic rule is not used, which can lead to a different sched-
ule. The process of finding the solution for the single time window is repeated several
times, while the discrepancy is used in different moments of the schedule construc-
tion.

In the branch and bound algorithm, the actual schedule is determined by the cur-
rent node in the search tree. Asearch treeis a directed acyclic graph (more precisely
out-tree graph), where each node corresponds to a (partial) schedule determined by
the order in which the activities are added to the schedule, using the serial generation
scheme. Each node has the number of successors equal to the number of ready ac-
tivities with respect to the current schedule. A complete schedule is represented by
each leaf of the search tree, the rest of the nodes represent the partial schedules. A full
branch and bound algorithm basically enumerates all feasible schedules withpossible
cuts in the tree dues to an estimation of the upper and lower bounds.

The limited discrepancy search is based on the same principle with the exception

Chapter 4 RCPSP-APP under minimization of the total setup time 61

Algorithm 5 Optimisation of the time window schedule

bestSchedule = current schedule

for (h = 0 . . . n)

Unschedulen− h activities

Determine ready activities

Select activityi by discrepancy on levelh

while (activity i can be scheduled)

Update ready activities

if (ready set is empty)

break

end if

Select activityi by heuristic rule

end while

if (new best schedule found)

bestSchedule = current schedule

end if

end for

returnbestSchedule

that instead of constructing the full search tree, a heuristic rule is always used to
determine only one successor of each node, which is further expanded. Then, for some
predefined nodes in the graph, the discrepancy is used to search in another direction,
which means that the heuristic rule is not used and a different direction is chosen.
The nodes where the discrepancy is used and also the number of discrepancies can be
chosen in a wide range. In our case, we always use, at most, one discrepancy per one
schedule construction.

Let the time window consists ofn activities. Then the depth of the search tree (the
number of decision points) is equal ton. The attempt to construct a schedule follows
the heuristic rule (described in the previous section) in each decision point. Then each
attempt contains exactly one discrepancy on levelh ∈ {1 . . . n} and the heuristic rule
is used in all other nodes. As a consequence there aren + 1 attempts to construct a
schedule within one time window. Each attempt is evaluated in terms of the objective
function and at the end, the best schedule is compared with the original schedule and
if the improvement in the objective value is achieved, the time window schedule is
embedded into the overall schedule.

The activity to be scheduled in cases of discrepancy is chosen as follows: Instead
of selecting the activity, which causes the minimal increase in the objective value,
activity i with the lowest value of̂di − pi − si is used. This way, the least flexible

62 4.4 Performance evaluation

h=0

23

18

15

11

2

h=1

2

15

11

10

23

h=2

10

15

11

18

2

h=3

23

10

15

18

2

h=4

23

18

11

10

2

Fig. 4.5: Example of the limited discrepancy search

activity is added into the schedule at a node where the discrepancy is used.
If activity i, selected from the ready set, cannot be scheduled due to a violation of

the temporal constraints, the current attempt to construct the schedule is terminated.
The algorithm then continues with the next attempt while the level of discrepancy
used is increased by one. To save the time wasted by unnecessary scheduling and
unscheduling steps, theh-th iteration of the limited discrepancy search always starts
from the schedule, whereh − 1 activities are already scheduled from the previous
iteration. The overall scheme of the limited discrepancy search is depicted in Algo-
rithm 5.

An example of the limited discrepancy search for the time window depicted in
Figure4.4 is shown in Figure4.5. For each iteration of the local search, the discrep-
ancy is used in different level (denoted ash) and, therefore, also the sequence in which
the activities are scheduled is modified.

4.4 Performance evaluation

Two sources of instances have been used for the performance evaluation of the algo-
rithm proposed in Section4.3, designed to solve the problems with alternative process
plans. First, the STOAL algorithm is evaluated on randomly generated instances and
compared with the IRSA algorithm proposed in Section3.2. Second, the standard
benchmarks ofBrucker and Thiele(1996) are used and the results of the STOAL al-
gorithm are compared with the results reported inFocacci et al.(2000). Furthermore,
various settings of the STOAL algorithm are discussed and tested on large instances
of the problem (up to 1000 activities). The STOAL algorithm was implemented in the
C# language and the experiments were performed on a PC with an Intel Core 2 Quad
CPU at 2.83GHz with 8GB of RAM.

Chapter 4 RCPSP-APP under minimization of the total setup time 63

Dataset D30 D50 D100 D200

IRSA feas [%] 98 100 96 97
TST 120 254 494 942
Cmax 148 243 521 1054
tcpu 5 36 112 322

STOAL feas [%] 99 100 98 98
TST 101 215 427 824
Cmax 171 282 618 1263
tcpu 3 12 77 141

TST impr [%] 15.84 15.35 13.56 12.53
Cdet
max [%] 13.46 13.83 15.71 16.55

Table 4.1: Comparison with IRSA algorithm using new random instances

4.4.1 Comparison with IRSA algorithm on random instances

The datasets D30, D50, D100 and D200, introduced in Section3.3.1, are used to
compare the STOAL algorithm with the IRSA algorithm described in Chapter3. Ta-
ble 4.1 shows the comparison of the results obtained by the IRSA algorithm and by
the STOAL algorithm. Columns represent datasets, rows contain objective values
and other performance indicators. Abbreviationfeas determines the percentage ratio
of feasible solutions found by each algorithm,TST contains an arithmetic average
value of the objective function for instances that were successfully solved by both al-
gorithms,time determines the average computational time (in milliseconds) to solve
a single instance,TST impr states the improvement of the STOAL algorithm over the
IRSA algorithm in terms of theTST value and, finally,Cdet

max denotes the deteriora-
tion of the makespan value achieved by the STOAL algorithm over the result achieved
by the IRSA algorithm.

The number of feasible solutions found is almost the same for both tested algo-
rithms, but the STOAL algorithm outperforms the IRSA algorithm in both theTST
value and the solution time. The fact that the success rate in finding feasible solutions
is equal proves that the STOAL algorithm is very effective for the considered tempo-
ral constraints, since the IRSA algorithm was developed with the main aim to find any
feasible solution.

4.4.2 Comparison with algorithm ofFocacci et al.(2000)

For a further evaluation of the STOAL algorithm, the instances of the general job
shop problem proposed byBrucker and Thiele(1996) are used. As a reference, the
results for such instances reported inFocacci et al.(2000) are considered. The prob-
lem studied inBrucker and Thiele(1996) is a sub-problem of the problem defined

64 4.4 Performance evaluation

Focacci STOAL
Dataset TST Cmax TST Cmax TST impr [%] Cdet

max [%]

t2-ps12 1 530 1 445 1 010 1 920 33.99 32.87
t2-ps13 1 430 1 658 1 330 1 872 7.00 18.93
t2-pss12 1 220 1 362 950 1 599 22.13 17.4
t2-pss13 1 140 1 522 1 140 1 610 0 5.78
average 1 330 1 497 1 110 1 825 16.54 18.74

Table 4.2: Comparison withFocacci et al.(2000)

in Section4.1 since there are no release times or deadlines, no alternative process
plans and the resources are considered to be unary. The objective function reported
in Focacci et al.(2000) is twofold, first the makespan in minimised and then the total
setup time is being minimised without a deterioration of the makespan value.

Table4.2shows the comparison of the STOAL algorithm with the one published
by Focacci et al.(2000). The meaning of the abbreviations in the table is the same as
for Table4.1. Compared with the algorithm described byFocacci et al.(2000), the
STOAL algorithm improved the value of the total setup time by more than 16% in
average. The price for the better value of the TST is the higher value of themakespan,
by almost 19% in average. Such a trade-off between the makespan and thetotal setup
time shows the good efficiency of the STOAL algorithm proposed in terms of the total
setup time criterion.

4.4.3 Configuration of the STOAL algorithm

As described in Section4.3, there are three main input parameters of the algorithm,
which influence both the solution quality and the running time. Namely the maxi-
mum number of backtracking steps, the maximum number of activities per resource
in a time window and the number of repetitions of the sliding windows local search
procedure. To determine the influence of the settings on the quality of the solutions
and the running time of the algorithm, the following set of additional experiments was
performed.

For each of the algorithm settings, three different values are tested on four
datasets, each containing 100 instances. Themedium datasets with 50 and 200 activ-
ities from Section4.4.1together with two further datasets with 500 and 1000 activities
per instance are used. The number of resource typesm is randomly chosen from inter-
val 〈1, 10〉 for both datasets with 500 and 1000 activities while the rest of the instances
properties is the same as in Section4.4.1.

First, the influence of the maximal number of backtracking steps on the num-
ber of the feasible solutions is evaluated. For this purpose, only the initial phase
of the algorithm is executed and the number of feasible solutions (out of 100) for
each dataset and the average solution time in milliseconds is observed. The maximal

Chapter 4 RCPSP-APP under minimization of the total setup time 65

#backtracks 0.1 · n 0.3 · n 0.5 · n

n feas t [ms] feas t [ms] feas t [ms]

50 54 1 60 4 60 7
200 39 2 62 7 63 16
500 42 10 57 54 61 107
1000 37 24 59 118 62 252

Table 4.3: Influence of the backtracking scheme settings

#resActivities 10 15 20

n TST t [ms] TST t [ms] TST t [ms]

50 221 15 221 14 223 16
200 663 110 662 112 662 115
500 1500 470 1497 484 1495 501
1000 2677 1140 2672 1325 2665 1578

Table 4.4: Influence of the number of activities per resource

number of backtracking steps, denoted as#backtracks, is calculated as a multi-
ple of the number of activities and for the evaluation, three values have been used:
#backtracks = {0.1 · n, 0.3 · n, 0.5 · n}. The overall test results are depicted in
Table4.3 wheren denotes the number of activities,feas determines the number of
feasible solutions (out of 100) found by the STOAL algorithm andt [ms] denotes
the average solution time in milliseconds. Based on the results in Table4.3 we can
conclude that the optimal number of backtracking steps lies below half the number of
the activities. A further increase of the number of backtracks does not increase the
number of feasible solutions.

Second, the influence of the maximal number of activities per resource within
a time window, denoted as#resActivities, on the solution quality is determined.
The same four datasets as in the previous case are used and three different values are
considered:#resActivities = {10, 15, 20}. Table4.4 contains the results of the
evaluation,TST determines the average value of the objective function. For smaller
instances, there is no significant influence of the number of activities per resource on
the solution quality. For larger instances, the higher number of activities per resource
leads to a better solution quality while there is also a minor growth in the solution
time.

Finally, the influence of the number of the local search procedure repetitions, de-
noted as#repetitions, on the solution quality is studied. Again, the same datasets as
in both previous experiments are used. As for the previous parameters, three different
values are considered:#repetitions = {1, 2, 4}. The results in Table4.5show the
high importance of the number of the sliding windows repetitions on both the solution

66 4.5 Conclusion

#repetitions 1 2 4

n TST t [ms] TST t [ms] TST t [ms]

50 224 7 221 14 220 29
200 668 58 662 112 659 213
500 1504 253 1497 484 1491 956
1000 2692 685 2672 1325 2659 2428

Table 4.5: Influence of the sliding windows repetitions

quality and the solution time. Naturally, the higher number of repetitions results in a
better quality while the increase in the solution time is more or less linear with respect
to the number of repetitions.

4.5 Conclusion

The content of this chapter fills the gap in the literature, where only very fewpieces
of work have been dedicated to scheduling problems with setup times as a part of the
criterion. The setup times are usually considered only as a constraint. The proposed
innovative model combines the RCPSP problem with the alternative process plans and
the criterion to minimise the total setup time in the schedule. Furthermore, The model
includes the release time and deadline for each activity and the non-negativestart to
start time-lags for precedence constrained activities. For such a model, of the studied
problem, the mathematical formulation, using the mixed integer linear programming
(MILP), is proposed.

The two-phase heuristic algorithm is then developed to solve the large instances
of the considered problem. The goal of the algorithm first phase is to find any feasible
solution and the second phase, based on the time separation of the schedule, isdedi-
cated to improve the existing schedule in terms of the total setup time. The STOAL
algorithm is compared with the existing approaches for similar problems. The exper-
iments show a very good performance of the STOAL algorithm in both the quality of
the solutions and the running time. Finally, various settings of the algorithm and their
influence on the obtained results are evaluated using the instances with up to 1000
activities.

Chapter 5

Minimization of the total
production cost for the
RCPSP-APP

The main motivation for this research is the production process optimisation in a print-
ing company, where the scheduling problem involves alternative process plans and the
goal is to minimise the total production cost given by both the processing costs of pro-
duction operations and the penalties caused by late jobs. In our approach, both parts of
the objective function are optimised simultaneously using the concept of alternative
process plans. We propose a model and a solution approach that covers alternative
process plans as well as the realistic criterion composed of two different parts. To
cover the needs of the printing production, we consider resources with non-unary ca-
pacities, sequence dependent setup times and generalised temporal constraints in the
form of non-negative start to start time lags.

In literature, there are only a few attempts to introduce a tardiness-based objec-
tive function into the area of the resource constrained project schedulingproblem.
Ballest́ın et al.(2006) studied the RCPSP where the criterion is to minimise the total
tardiness of all activities.Vanhoucke et al.(2001) proposed a branch-and-bound algo-
rithm for the RCPSPWET problem that is a resource constrained project scheduling
problem with the minimisation of the total weighted earliness-tardiness as a criterion.
Franck and Schwindt(1995) mentioned a MRCPSP with the objective to minimise
the sum of the earliness and tardiness values.Pinedo and Singer(1999), Essafi et al.
(2008), Zhou et al.(2009), Bülbül (2011) andZhang and Wu(2011) dealt with the job
shop scheduling problem, with the total weighted tardiness as an objective function.
Naderi et al.(2009) focused on the flow shop problem where the objective function is
the minimisation of the total weighted tardiness.

The presence of the cost of activities in the scheduling is mainly represented
by the discrete time/cost trade-off problem (DTCTP) where each activity has a fi-

67

68 5.1 Problem statement

nite set of modes given by the duration and processing cost.Shabtay and Steiner
(2007) published a survey dedicated to scheduling problems with discretely con-
trollable processing times of activities.Vanhoucke and Debels(2007) presented a
metaheuristic solution procedure for the DTCTP and based on the computational re-
sults, the authors concluded that, due to the efficient character of the exact algorithm
of Demeulemeester et al.(1999), the metaheuristic solutions for the DTCTP can not
compete with the truncated solutions found by the exact algorithm.

The first contribution of this chapter is the novel scheduling problem, where the
RCPSP problem with alternative process plans (RCPSP-APP) is enhanced by the re-
alistic criterion composed of two different parts, namely the total weighted tardiness
and the total processing costs. The combination of the alternative process plans with
the objective function reflecting two different sources of the production costs is a nat-
ural step towards the demands of the modern production. The approach to minimise
the makespan for whatever price used in Chapter3 can be applied only for special
cases with the hard temporal constraints where the main goal is to find any feasible
schedule. In this chapter, we consider the general case where the goalis to meet the
customer demands (due dates) and, in the same time, minimise the processing costs.
The inclusion of both demands in the objective function is supported by the presence
of the alternative process plans, which allow to reflect the cost of the actual selection
in a straightforward manner.

The IRSA algorithm proposed in Chapter3 cannot be directly applied to solve
the problem considered in this chapter since it does not include due dates and pro-
cessing costs of activities. Furthermore, the search method in the IRSA algorithm
is rather straightforward and strongly dependent on the temporal constraints that go
hand in hand with the makespan criterion. Therefore, we use two differentheuristic
algorithms to solve the considered problem. The second contribution of this chapter
is the adaptation and the detailed comparison of two algorithms, while each of them
uses unique model and search strategies. To prove the effectiveness of the algorithms,
the job shop instances presented inBülbül (2011) are used as well as the instances of
the integrated process planning and scheduling presented inShao et al.(2009).

The chapter is organised as follows: The problem statement, including the math-
ematical model, is given in Section5.1. Section5.2 is dedicated to the description of
two heuristic algorithms for the considered problem. The performance evaluation of
both algorithms is given in Section5.3and Section5.4concludes the work.

5.1 Problem statement

The definition of the problem studied in this chapter is based on the problem state-
ment in Section2.1. In addition to this, each activityi ∈ A has a due datedi ≥ 0,
tardiness costwi ≥ 0 and processing costci ≥ 0. All the new activity parame-
ters are reflected in the objective function. In this chapter we consider onlynon-

Chapter 5 Minimization of the total production cost for the RCPSP-APP 69

PAR

PAR

ALT

ALT

ALT

ALTALT

ALT

0

1

2

7

3

4 5

6

8

9

10

11

12

14

13

15

out =1
3

out =0
0

l =8

1

out =1
10

in =1
6

in =1
8

in =1
14

in =0
15

out =1

1 7

l =0
0 9

l =2
7 8

l =11
1 8

l =4
9 7

Fig. 5.1: Example of the NTNA instance

negative time-lagslij ≥ 0 for all (i, j) ∈ A; if there is no temporal constraint, then
lij = −∞. The goal of the scheduling is to minimize the total production cost equal
to the sum of the total processing costs and the total weighted tardinessTPC =∑
cj · vj +

∑
wj · Tj whereTj = max (sj + pj − dj , 0) is the tardiness of an ac-

tivity. The considered problem can be denoted asPS|nestedAlt, lij , STSD|TPC
or m1|min, ρj , δj , nestedAlt, sjk|TPC using the same classification schemes as in
Section2.7.

The instance of the problem considered in this chapter is depicted in Figure5.1.
Several time-lags are used to demonstrate how the temporal constraints are defined,
see e.g. time-lagl17 = 8 that forces activity7 to start at least 8 time units after the
start time of activity1. All the parameters related to the activities are also included.

5.1.1 Mathematical model

The mathematical model for the studied problem is based on the definition given in
Chapter2. In addition to this, formula (5.1) serves to determine the tardiness of each
activity. If the activity i is rejected (vi = 0) then the tardinessTi = 0. Note that
there is no particular rule for the start times of the rejected activities. A constraint to
force the start times of the rejected activities to be equal to zero could be added into
the model but it would be of no benefit for the solution. Therefore, the actual values

70 5.2 Heuristic algorithms

of the start times for the rejected activities are let to be decided by a particularsolver
search method. The goal is to minimise the total production cost given by the total
processing cost and the total weighted tardiness.

Min.
∑

∀i∈A

ci · vi +
∑

∀i∈A

wi · Ti

subject to:

(2.1)− (2.12)

Ti ≥ si + pi − di − UB · (1− vi) ∀i ∈ A (5.1)

5.2 Heuristic algorithms

To solve large scale instances of the problem considered in Section5.1, we have de-
veloped two heuristic algorithms, namely the discrete differential evolution (DDE)al-
gorithm and the scatter search (ScS) algorithm. Both algorithms are population-based
methods and they can search a large solution space while the local search procedures
are used to improve the quality of the solutions found. However, each algorithmuses
different solution representations and search strategies.

5.2.1 DDE algorithm

The DDE algorithm used for the solution of the problem considered in this chapter
is inspired by the work ofTasgetiren et al.(2009) who used DDE to minimise the
total weighted tardiness for the single machine problem. The basic principle ofthe
DDE algorithm is similar to a genetic algorithm - first, the initial population has to be
established and then, mutation and crossover operators are performed forthe selected
individuals and for a defined number of iterations. However, there are someimportant
differences. The emphasis is put on the quality of individual members of the solution
population. Therefore, a local search, using the knowledge of the problem, is used
to improve individuals. Furthermore, all operations (mutation, crossover and local
search) are performed as incremental modifications over an existing scheduleinstead
of generating the schedule from scratch after any change.

5.2.1.1 Individual representation

Each individual represents one schedule, i.e. it contains information about the se-
lection, start times and resource assignment of activities. We intend to utilize local
search procedures and the mutation and crossover operators will also employ some
routines from the local search procedures. Therefore, the representation of an individ-
ual should be designed such that these modifications of the schedule will be performed

Chapter 5 Minimization of the total production cost for the RCPSP-APP 71

PAR

PAR

ALT

ALT

ALT

ALT

0

1

7

8

9

10

12

14

13

15

(a) Process plan

R2 7

812

9

R3

R1

R4

1 10

13

14

(b) Solution

Fig. 5.2: Example of solution representation

in an effective way. Furthermore, since the considered problem includesprecedence
relations, the feasibility of each schedule modification has to be verified as well. For
this purpose, two representations of a schedule are used simultaneously.

First, anactivities orderof all selected activities is used. An activities order is
an ordered set of selected activities from which the schedule is obtained by the se-
rial schedule generation scheme (seeKolisch, 1996). A feasible activities order is an
order that results in a feasible schedule, with respect to both resource and temporal
constraints. In other words, a feasible activities order is an order suchthat if a serial
generation scheme is applied while scheduling activities as soon as possible, there-
sulting schedule is time and resource feasible. An activities order is assignedto each
individual.

Second, a set of resource sequences is assigned to each individual.A resource
sequenceψk =

(
i ∈ V : vi = 1 ∧ Rk

i > 0
)

is an ordered set of selected activities as-
signed to resource typek. If activity j is the next element inψk after activityi, then
j is called a direct resource successor ofi and, vice versa,i is called a direct resource
predecessor ofj. A resource sequence can be understood as a subset of the activities
order such that all activities in a resource sequence are assigned to thesame resource

72 5.2 Heuristic algorithms

type. The activities in the resource sequence are in the same order as in theactivi-
ties order representation. For each resource type, there is a corresponding resource
sequence for each individual.

The advantage of simultaneous utilization of both representations is that an ac-
tivities order serves for a fast and effective feasibility check while the resource
sequences are used to eliminate inefficient local modifications of the schedule in
mutation and crossover operators and local search methods. A set of activities
corresponding to one process plan is depicted in Figure5.2a and a schedule is
shown in Figure5.2b. The activities order representation of such a schedule is
(0, 1, 7, 9, 10, 12, 8, 13, 14, 15) and the representation by the resource sequences is
{ψ1 = (1, 10) , ψ2 = (7, 9) , ψ3 = (12, 8, 13) , ψ4 = (14)}. The dummy activities0
and15 are not included in any resource sequence since they have zero resource de-
mand.

5.2.1.2 Feasibility testing

A typical operation performed in the DDE algorithm described in this chapter is the
rescheduling of an activity in the existing schedule from one resource positionto
another. Representation of a solution only by an activities order would resultin many
computational operations that change the activities order but not the solution itself,
which is very inefficient. Therefore, a set of resource sequences isused to determine
a set of possible schedule modifications imposed by a given activity. Incremental
updates of an activities order, maintaining its feasibility, are used to check which
resource positions are feasible for an activity with respect to the existing schedule as
described in the following text.

Let VS ⊆ V be a set of all selected activities in some schedule. LetGtemp
S

be a directed graph with nodesV (Gtemp
S) = VS and edgesE

(
Gtemp

S

)
=

{
(i, j) ∈ VS × VS : lij ≥ 0

}
. Furthermore, letGres

S be a directed graph with nodes
V (Gres

S) = VS and edgesE (Gres
S) = {(i, j) ∈ VS × VS : i is a direct predeces-

sor of j in the resource sequence}. Finally, letGS be a directed graph with nodes

V (GS) = VS and edgesE (GS) =
{
E
(
Gtemp

S

)⋃
E (Gres

S)
}

. The nodes ofGS

correspond to all the selected activities and the edges ofGS represent all the temporal
constraints and the constraints imposed by the sequencing of activities on resources.
A feasible activities order, corresponding to a feasible schedule, is an assignment of
a unique numbertopi to each nodei ∈ V (GS) such thattopi < topj for each pair
of activities(i, j) ∈ E (GS). In other words, graphGS corresponding to a feasible
activities order has to be acyclic, since a feasible activities order is equivalent with a
topological order of nodesV (GS).

For fast detection of infeasible schedule modifications, an algorithm for maintain-
ing a topological order under edge insertions published bySpaccamela et al.(1996)
is used as follows: Two edges representing the old resource precedences for activity

Chapter 5 Minimization of the total production cost for the RCPSP-APP 73

i are removed and two edges representing the new resource precedences are added to
GS . The new solution results in a feasible schedule if and only ifGS is acyclic, i.e. a
feasible topological order can be found for verticesV (GS). Removal of an edge (see
Spaccamela et al., 1996) does not influence the topological order at all. Therefore,
only the addition of edges has to be checked with respect to the feasibility of thetopo-
logical order. To detect whether the addition of an edge will result in a cycleof the
graph, only a part of the topological order has to be explored (and possibly updated).

For the purpose of feasibility testing inside the DDE algorithm, we define the
methodreinsertActivity (i, old, new) which returns true if activityi can be rein-
serted from resource positionold to resource positionnew with respect to the current
solution. In case of a feasible reinsertion, the activities order is updated as well as
GS and the appropriate resource sequence. Otherwise, the function returns false. An
amortised running time ofreinsertActivity method isO (N) for each edge insertion
whereN is the number of activities inGS .

5.2.1.3 Main loop

The pseudo-code of the main loop of the DDE algorithm is depicted in Algorithm6.
First, an initial population is found (see Section5.2.1.4) and then the mutation (Sec-
tion 5.2.1.6) and the crossover (Section5.2.1.7) are performed for each individual for
a given number of iterations. Furthermore, a local search, described in Section 5.2.1.5,
is performed after each mutation and crossover to improve the quality of each individ-
ual. A reference individual for the crossover function is selected usingthe tournament
method, where a certain number of individuals are randomly selected from thepopu-
lation and the best one is given as the reference individual. In this chapter, ⌈n/4⌉ of
individuals are randomly selected from the population. To establish a new generation,
the best individual from the following triplet is chosen for each member of thecurrent
generation: currentindividual, mutantindividual (resulting from the mutation) and
trial individual (resulting from the crossover).

5.2.1.4 Initial population

A serial schedule generation scheme (seeKolisch, 1996) is used to establish an initial
population. There are two reasons to select the serial scheme: First, it hasbeen proven
that utilization of the parallel scheme may lead to non-optimal solution even if the
optimal order of the activities to be scheduled is used. The second reasonis that using
the parallel scheme, the initial solutions would be more similar to each other. On the
contrary, the serial scheme adds only one activity into the schedule in eachiteration,
which leads to more diverse solutions (with randomized selection). Since we need
to explore as much solution space as possible, the set of diverse solutions is always
more profitable. In the beginning, a set of ready activitiesV R is established and the
objective value is set toobj = 0. Then, one activity is randomly selected from the

74 5.2 Heuristic algorithms

Algorithm 6 DDE main loop

Establish initial population

bestindividual= best of initial population

for iteration = 1 . . . number of iterations

for each individual in the population

mutantindividual= mutate(individual)

mutantindividual= localSearch(mutantindividual)

referenceindividual= tournamentSelect(population)

trial individual= crossover(mutantindividual, referenceindividual)

trial individual= localSearch(trial individual)

Select best individual of{individual, mutantindividual, trial individual}

Add the best one to the next generation

end for

If the new global best solution is found, assign it tobestindividual

end for

Returnbestindividual

set of ready activities in each iteration of the generation scheme. Once activityi to
be scheduled is found, it is marked as selected and its start time is computed as the
maximum from two values - the start time with respect to the temporal constraints and
the start time with respect to the resource constraints. In order to calculate the start
time with respect to the resource constraints,Rk

i (for k ∈ R : Rk
i > 0) resource units

is assigned to activityi in the first place. To fasten the DDE algorithm, a variable
zivk ∈ {0, 1} is substituted by a variableδi ∈ Z

+ such thatzivk = 1 if and only if
vi = 1, Rk

i > 0 andδi ≤ v < δi + Rk
i ; zivk = 0 otherwise. Instead of assigning

particular units of a resource for each activity, only the first unitδi of a resource
used by activityi is defined and the rest of the activity’s resource demand is assigned
to the consequent units of a resource. In other words, an activity is assigned to a
consecutive set of resource units defined by the first assigned unitδi only. Once a set
of resource units is assigned to activityi, its start time is calculated as the minimum
start time that fulfills the constraint (including setup times) for each assigned resource
unit. After scheduling activityi, its tardiness can be immediately calculated asTi =
max (si + pi − di, 0). Consequently, the value of the objective function is updated
such thatobj = obj + wi · Ti + ci.

The set of ready activities is then updated. Activityi is removed fromV R and
if there is an alternative branching at the output of its direct predecessor in NTNA,
a depth first search procedure is performed to find all activities that cannot be set as
selected without the violation of rules for the selection of activities (see Constraints

Chapter 5 Minimization of the total production cost for the RCPSP-APP 75

(1)-(4)). Such activities are removed fromV R and marked as rejected. Finally, ac-
tivities that become ready after scheduling of activityi are added toV R. Activity i
becomes ready if it is not marked as rejected and all the activities{j ∈ V : lji ≥ 0}
are already scheduled or marked as rejected.

If V R is an empty set, the initial solution is completed and the schedule generation
ends. The solution is, so far, represented by the resource sequencesonly. Therefore,
graphGS is created as described in Section5.2.1.2and the initial topological order
for activities (vertices ofGS) is found (see e.g.Korte and Vygen(2000)).

5.2.1.5 Local search

The local search method used in this chapter is inspired by the iterated insertion
scheme, called RIS, published byTasgetiren et al.(2009). The basic principle is to
find the best resource position of an activity in the fixed order of all other activities.
For this purpose, an activity is put on each feasible position in such a sequence and
the position with the best value of the objective function of the whole solution is kept.
Such a search is performed for each activity in the schedule. The local search only
modifies the sequencing of the selected activities on the resources, the selection of the
activities itself is not changed at all. Therefore, it only optimizes the total weighted
tardiness part of the criterion.

Since we consider a set of non-unary resources, the RIS method is adapted so that
it searches for the best activity position in an appropriate resource sequence instead
of the whole sequence of the selected activities represented by the topological order.
Moreover, due to the presence of the precedence constraints, each activity reinsertion
has to be checked with respect to the feasibility of the schedule. Therefore, method
reinsertActivity (i, old, new) (see Section5.2.1.2) is used every time activityi is
moved from resource positionold to another resource positionnew in resource se-
quenceψk. If the reinsertion of an activity is feasible with respect to the current
schedule, the start times and the first assigned units of the activities are updated and
the total weighted tardiness of the schedule is simultaneously updated as well. Since
the re-generation of the whole schedule is time consuming, we update the start times
and the first assigned units only for activities that are actually influenced by reinserting
an activity while the start times and first assigned units of all other activities remain
unchanged.

5.2.1.6 Mutation

The local search method RIS, described in the previous section, is dedicatedto im-
prove the total weighted tardiness part of the objective function only without changing
the selection of activities. To explore the solution space with a different selectionof
activities as well, both the mutation and crossover are mainly focused on the selection
change.

76 5.2 Heuristic algorithms

To change a selection of activities, one alternative branching is randomly selected
in the mutation. A random selection of alternative branching is operated only overthe
set of the actual selected branchings, i.e. one of their branches is currently selected.
Then a selection of activities in the branching is randomly changed, i.e. all activities
in the selected branch are unscheduled and a different branch is randomly selected and
all activities in the new branch are being scheduled. If another alternative branching is
nested in the newly selected branch, a random branch is always selected. Each activity
is scheduled on the first feasible position into the current schedule. The feasibility of
scheduling activityi is tested by thereinsertActivity (i,−, new) method, where
the initial position of the activity is not given and the positionnew is iterated over
the resource sequence. Once a feasible position is found for all new activities in the
schedule, the schedule is updated in the same way as described in the previous section,
i.e. start times and assigned units are updated only for the actual influencedactivities.

5.2.1.7 Crossover

The crossover operator in our approach is mainly dedicated to change theselection
of the activities. Two given individuals - theoriginal individual and thereference
individual - are combined and the newtrial individual is generated. To generate the
offspring, there are two possibilities based on the selection of theoriginal andrefer-
enceindividuals.

If the activities selection of both parent individuals is the same, then the standard
one-point crossover can be applied (see e.g.Shao et al., 2009). If the selection of
activities differ between theoriginal and referenceindividual, the selection of the
offspringis established as follows: For each alternative branching where theoriginal
andreferenceindividuals differ, the branch with the lower contribution for the value
of the objective function is selected. This way, the solution is modified towards the
selection with the lower value of the objective function. Each of the activities, which
is added to the schedule by the crossover operator, is scheduled to the first feasible
position in the resource sequence demanded by an activity.

5.2.2 Scatter search algorithm

Scatter search (ScS) is a population-based meta-heuristic, proposed byGlover et al.
(2000), in which solutions are intelligently combined to yield better solutions. The
scatter search method involves deterministic procedures that can include problem spe-
cific knowledge and can, therefore, be implemented in a variety of ways anddegrees
of sophistication. In this chapter, the scatter search procedure for the problem under
study makes use of the biased random sampling in order to obtain a diverse initial
population of solution vectors. A solution vector is represented by two lists: an ac-
tivity list, which determines the sequence in which the activities are scheduled,and
an alternative list, which determines which alternative will be chosen. Solution vec-

Chapter 5 Minimization of the total production cost for the RCPSP-APP 77

tors are transformed in schedules using the serial generation scheme. To combine the
existing solution, a solution improvement method that calculates the possible theoret-
ical improvement is applied in order to obtain improvements in the objective function.
Two local search procedures, one focusing on the activity list and onefocusing on the
alternative list, are applied - with predefined probability - on the generated schedules
in order to decrease the total production cost.

The main difference with the DDE algorithm presented in Section5.2.1is three-
fold: a) the individual representation of the schedule. Where the DDE algorithm is
only representing the selected activities in its activity list, the ScS algorithm takes all
activities into account, even if these are not selected. Therefore, a second list (the
alternative list) is used and needed in order to indicate which alternatives willbe cho-
sen. b) the search process. While the DDE algorithm is mainly based on a random
combination of individuals, the ScS algorithm is known to intensify its solution by
only combining the solutions that are part of the reference set of the best ordiverse
solutions. c) the local search process. The process in the DDE algorithm makes use
of an iterated insertion scheme, which means that each individual will be evaluated
several times, while in the ScS algorithm the process to minimise the overall tardi-
ness cost is only applied once, namely the one that will make the largest theoretical
improvement in the objective function.

5.2.2.1 Individual representation

In the scatter search algorithm, a population is represented by two lists: an activity list
and an alternative list. The activity list determines the sequence in which the activities
will be scheduled and is represented by a list of priorities. The alternativelist indicates
which alternative mode will be chosen for each alternative branching. In Figure5.3,
an example of an individual representation is given. The length of the activitylist is
determined by the number of activities in the project (n), the length of the alternative
list by the total number of alternative branchings (|A|).

87 9 10654321 A1 A2 A3

2330 23 10281810132823 B A C} }

Alternative listActivity list

Fig. 5.3: Individual representation

The modes chosen in the alternative list determine the activities that are being
selected. Rather than changing the length of the individual vector depending on the
alternatives chosen, each activity in the activity list gets a priority value. The same is
true for the nested alternative branchings in the alternative list. Even though one (or
more) nested alternative branchings are not chosen, the alternative itselfis given an
alternative mode. This means that the total length of the representation is alwaysequal

78 5.2 Heuristic algorithms

to n+ |A|. Such a representation makes it easier to deal with than the representation
with varying lengths. Moreover, it enables the procedure to maintain historical data
that can be used in later generations, although it is not used in the current one.

5.2.2.2 Scatter search procedure

The scatter search has a generic structure as outlined in Algorithm7.

Algorithm 7 Scatter search main loop

Diversification Generation Method

bestindividual= best of initial population

While Stop Criterion not met

Subset Generation Method

Solution Combination Method

Improvement Method

Reference Set Update Method

End While

Returnbestindividual

5.2.2.2.1 Diversification Generation Method In this first step, a poolP of Psize
solution vectors is generated. In order to obtain a diversified initial populationof
solution vectors, a random priority is assigned to each activity. The priority value
varies between 0 and 100 and will determine the sequence in which the activities will
be scheduled, taking into account the precedence relations. It is assumed that activities
with a lower priority will be scheduled first. For the generation of the alternative
mode list, an alternative mode is chosen for each alternative in such a way that the
probability of assigning a mode to that alternative is inversely proportional to the
number of times the alternative mode is already chosen. In this way, a diversified
initial pool ofPsize solution vectors is generated.

5.2.2.2.2 Subset Generation Method Each solution vector is then evaluated by
using a serial schedule generation scheme (SGS), which translates the solution vector
into a scheduleS, taking into account the precedence and resource constraints. Based
on the fitness function of each solution, two diverse populations are conducted from
the poolP of solution vectors: a setB1, with the b1 best solutions of the solution
setP and a setB2, with b2 diverse solutions. For the subsetB1, a thresholdt1 on
the minimal distance between the elements is imposed in pursuit of diversity. The
subsetB2 contains theb2 best solutions fromP\B1 that are sufficiently distant from
the elements ofB1. The diversity inB2 is achieved by a thresholdt2 on the smallest

Chapter 5 Minimization of the total production cost for the RCPSP-APP 79

distance to any element inB1 with t2 > t1. The distance between two solutions is
measured as follows:

dp1,p2 =
n∑

i=1

{
0 if seqp1i = seqp2i
1 otherwise

Whereseqpi indicates the sequence number of activityi according to the priority
list of population elementp. If there are less solutions inB2 than the predefined
numberb2, the setB2 is filled up with randomly generated schedules, according to
the procedure explained in Section5.2.2.1.

5.2.2.2.3 Solution Combination Method Once the two reference subsets are gen-
erated, a new pool of solutions is created by combining pairs of reference solutions
in a systematic and controlled way. New solutions are created by combining two
elements from theB1 andB2 reference set. First, each pair inB1 is combined to
generate two children. In the solution combination phase, the two selected population
elements produce a new offspring which inherit parts of their parents characteristics.
A new child is generated by randomly selecting an activityr (r ∈ [0, n]), copying all
the activities[0, r] from the first solution vector and copying all the other priorities
from the second element.

The solution combination method for the alternative list is based on the Harmony
Search procedureGeem et al.(2001) and uses a frequency matrix of the alternative
lists in theB1 subset. To assign an alternative mode to an alternative, a random subset
element is chosen and the mode for the alternative of that element is assigned tothe
new element alternative. In order to maintain enough diversification, a probability is
used to randomly assign an alternative mode to an alternative.

Next to the combination of the pairs ofB1 elements, offsprings are constructed
using the same subset generation method from one element fromB1 and one fromB2.
Choosing the two reference solutions out of the same cluster stimulates intensification,
while choosing them from different clusters stimulates diversification.

5.2.2.2.4 The Improvement Method After the solution combination method,
each new solution vector consists of a newly generated activity list and a newly gen-
erated alternative list. Before the evaluation of this new vector is executed, asolution
improvement method is applied in order to obtain improvements in the objective func-
tion. The applied procedure can be described as follows:

• First, for every pair of activities in the project which are not interrelated by prece-
dence relations, the theoretical improvement in the objective function is calculated
if the activities are swapped. This theoretical improvement is calculated as follows:

IT = Ccurrent − Cswap (5.2)

80 5.3 Evaluation

with IT the theoretical improvement,Ccurrent the tardiness cost related to both
activities andCswap the tardiness cost if both activities where swapped and stand
alone (given the start date of the first activity and the known due dates).This
Cswap does not take the precedence relation into account, that is why we call it the
possible theoretical improvement. All positive theoretical improvement values, as
well as the swapped activities are stored.

• Second, one swap is chosen randomly using a weighted probability function.The
probability that a swap is chosen is proportional to the theoretical improvementof
the swap: the higher the theoretical improvement, the larger the chance that the
swap will be chosen.

• Finally, this swap is applied to the solution vector and the schedule generation
scheme is applied to calculate the improved solution vector.

The final improvement that will be found in the objective function after this im-
provement method will not always be as positive as the theoretical improvement has
predicted. This is due to the precedence relations of both of the swapped activities
with other activities in the schedule which are not taken into account during the cal-
culation ofIT .

Since this improvement method is CPU demanding, especially for an increasing
number of activities, a quick/accelerated improvement method is used in the proce-
dure. This method randomly chooses two activities until a positive theoreticalim-
provement value is obtained. If aftern consecutive attempts no positiveIT is found,
no further changes are applied.

5.2.2.2.5 Reference Set Update MethodEach new and improved solution vector
is then evaluated and added to the poolP of solution vectors. Out of this pool, the
two reference subsets are again generated according to the procedure described above.
The algorithm is applied as long as the stop criterion is not met.

5.3 Evaluation

To prove the effectiveness of the proposed solution methodology, we usethree data
sources for the evaluation of both algorithms. First, the job shop instances proposed
by Pinedo and Singer(1999) are used to prove that the algorithms perform well for
the total weighted tardiness (TWT) criterion. Second, the instances of the integrated
process planning and scheduling proposed byShao et al.(2009) are used to prove the
effectiveness for the problems with alternative process plans. Finally, we generate
random instances of the problem defined in Section5.1 to compare the performance
of both algorithms on instances with various structure. Furthermore, the proposed
metric for the instances characterisation is used to find the important propertieswith
respect to the solution quality of both algorithms. Both algorithms were implemented

Chapter 5 Minimization of the total production cost for the RCPSP-APP 81

in C# language and the experiments were performed on a PC with 2x Intel Core 2
Quad CPU at 2.83GHz with 8GB of RAM.

5.3.1 Mathematical model complexity

Exact solution of the mathematical model presented in Section5.1.1can be used only
for very small instances. In our previous research (see Chapter3), it has been shown
that the MILP solver is able to solve the instances with 30 activities within one minute.
For 50 activities, the number of instances solved to optimality decreased to 60%.The
proposed model comprised hard temporal constraints and straightforward objective
function - makespan. The absence of hard temporal constraints and the composite
objective function considered in this chapter make the exact solution methods far less
effective. We have conducted several experiments with IBM ILOG CPLEX MILP
solver and the results showed that the solver was able to optimally solve, within one
minute time limit, only 65% of instances with 20 activities. For 30 activities, there
was only 28% of optimal solutions.

Next to the experiments with the MILP solver, we have used the constraint pro-
gramming solver as well; the results were presented inČapek et al.(2013). Due to the
restarted search procedure in the ILOG CP solver, the number of instancesfor which
the optimal solution has been found and proved is rather low - 39% for instances with
20 activities and 11% for instances with 30 activities. On the contrary, the average
value of the objective function was about 20% better than for the MILP solver within
the same time.

To obtain the results of the same overall quality as the heuristic algorithms pro-
posed in this chapter, the exact solvers need10× more CPU time for instances with
20 activities. For the instances with 50 activities, the exact solvers are no longer able
to compete with heuristic approaches even if the time limit is increased to 10 minutes
per instance.

5.3.2 Job shop problem

The job shop problem with the TWT criterion represents a special sub-problem of the
problem considered in this chapter. Therefore, we can solve the instances presented in
Pinedo and Singer(1999) by both of our algorithms. There are three similar datasets,
each containing 22 instances with 10 jobs and 10 machines. All datasets consist of
the same instances, but with the different assignment of the due date values. The
results of our algorithms are compared with the results published inBülbül (2011)
who used a hybrid shifting bottleneck-tabu search heuristic. Table5.1 summarises
the results over each dataset for the DDE algorithm (DDE), the scatter search algo-
rithm (ScS) and the results published byBülbül (2011) for the G/MAI algorithm with
setting (2,2,2,1,1,1,1,1,1,1)-RF (Ref).

The same measurements as inBülbül (2011) are used for our algorithms. First,

82 5.3 Evaluation

DDE ScS G/MAI
best worst avg best worst avg

Set 1 Total gap [%] 2.69 13.24 7.92 26.94 31.95 28.94 12.49
Optimal 12 3 - 0 0 - 3
New best 6 1 - 0 0 - 3

Time [s] / NoS 33.41 / - 29.67 / 65 000 31.53 / -
Set 2 Total gap [%] 5.51 36.34 19.89 79.20 99.35 88.21 18.97

Optimal 18 5 - 0 0 - 11
New best 0 0 - 0 0 - 0

Time [s] / NoS 32.04 / - 29.82 / 65 000 30.11 / -
Set 3 Total gap [%] 10.48 55.99 31.07 118 158.69 145.35 37.20

Optimal 17 11 - 6 6 - 13
New best 1 0 - 0 0 - 0

Time [s] / NoS 18.51 / - 29.81 / 65 000 26.32 / -

Table 5.1: Comparison withBülbül (2011)

we measured the total gap, for each dataset, denoted asTotal gap that is the per-
centage difference between the total sum of the objective values of our results and
the objective values stated inPinedo and Singer(1999). Second, the number of solu-
tions with the value of the objective function equal or less (Optimal) and strictly less
(New best) than stated inPinedo and Singer(1999) is calculated. Finally, the average
running time of the algorithms in seconds denoted asTime is showed. The number
of generated schedules for the ScS algorithm is indicated asNoS. Both algorithms
presented in this chapter use some kind of randomization and therefore, eachinstance
is solved five times (using different random seeds) by each algorithm and the best
(best), the worst (worst) and the average (avg) value for each instance is observed.
The number of the optimal and new best solutions are not given for the average results
of both algorithms, since this information is identical to the worst results (if the value
is optimal in the worst case, it has to be the same for all algorithm runs).

The results show very good performance of the DDE algorithm, despite the fact
that the job shop scheduling is a very specific sub-problem of the problem considered
in this chapter. The average results of the DDE algorithm outperforms the results
of the reference algorithm presented inBülbül (2011) and the best values are very
close to the optimal ones. For the first set of instances, the average result of the DDE
algorithm is by4.57% closer to the optimum; for the second set, DDE is worse by
0.92%; for the third set, the DDE algorithm is closer to the optimum by6.13% than
the reference algorithm presented inBülbül (2011). Moreover, the algorithm was able
to find 7 new best solutions compared to the values presented inPinedo and Singer
(1999). Comparison of computational times is not fully representative, sinceBülbül
(2011) implemented the algorithm in Visual Basic. Nonetheless, we believe that the
results in Table5.1represent an adequate proof that the DDE and ScS algorithms are
more than competitive while the total weighted tardiness criterion is considered in the
area of the RCPSP problems.

Chapter 5 Minimization of the total production cost for the RCPSP-APP 83

5.3.3 Integrated process planning and scheduling

The integrated process planning and scheduling (IPPS) problem studied inShao et al.
(2009) is used to prove the effectiveness of our algorithms for the scheduling prob-
lems containing alternatives. IPPS is again a special case of the problem considered
in this chapter. The goal is to select and schedule a subset of all activitiesbased on
the precedence graph containing alternative routes and alternative machine assign-
ment such that the makespan is minimised. InShao et al.(2009) there are six small
instances (1-6) of IPPS and one bigger instance (7) obtained by joining all small in-
stances into one graph. The makespan minimisation can be easily transformed to
the minimisation of TWT value by assigning the due date equal to zero for the last
node (activity) of the graph and setting the rest of the due dates to a sufficiently large
value. The comparison of the reported objective values and the values obtained by
our algorithms for all seven instances is depicted in Table5.2. It should be pointed
out that the objective value for the first instance indicated inShao et al.(2009) is not
possible, since the optimal value is 117 instead of 116. It can be seen by constructing
the schedule according to the process plan selected in the paper, which leads to the
value 117. The average solution time reported inShao et al.(2009) is 1 second for
small instances, while for the bigger one there is no solution time at all. The average
running times for our algorithms is 120 ms for small instances and 17s for the bigger
one with the same settings. For small instances (1-6), the algorithms always converge
to the optimal value. For the bigger instance (7), the value denoted as7 avg is the
average value over ten runs of the algorithms and the value denoted as7 best is the
minimal obtained value of the objective function.

Instance 1 2 3 4 5 6 7 best 7 worst 7 avg
Shao et al.(2009) 116 116 95 93 116 116 - - 162
DDE algorithm 117 116 95 93 116 116 147 166 157
ScS algorithm 117 116 95 93 116 116 150 171 158

Table 5.2: Comparison withShao et al.(2009)

Using the algorithms proposed in this chapter, we are able to obtain equal or
better values of the objective values in a shorter time than is indicated inShao et al.
(2009). Therefore we can conclude that the solution methodology is eligible to solve
the problems with alternative process plans.

5.3.4 Computational Results

To the best of our knowledge, there are no benchmark instances for theproblem de-
fined in Section5.1. Therefore, new random instances were generated for the final
performance evaluation of both algorithms. The datasets with 10, 20, 50, 100 and 200
activities per instance were generated, each dataset containing 500 random instances.

84 5.3 Evaluation

DDE ScS
Dataset fmean best tcpu [ms] fmean best tcpu [ms] NoS

D10 484 39 28 487 3 25 100
484 39 52 487 3 51 200

D20 859 52 115 869 4 102 200
858 51 237 869 3 213 400

D50 1511 46 237 1519 27 244 500
1511 45 467 1519 19 483 1000

D100 2667 64 581 2677 67 559 1000
2665 62 972 2677 64 993 2000

D200 4555 50 2210 4559 181 2186 2000
4549 56 4219 4559 165 4175 4000

Table 5.3: Results for generated instances

For each instance, we run both the DDE algorithm and the ScS algorithm for 10
times and the average value of the objective function is considered for the evaluation.
The overall results for both algorithms over all datasets are summarised in Table5.3.
Two configurations of both algorithms are used to solve the instances. The maximum
number of schedule generation steps for the scatter search algorithm is set to 10 times
the number of activities in the first case and 20 times the number of activities in
the second case. The configuration of the DDE algorithm was adjusted to run for
a similar time resulting in the number of individuals equal to 10 and the number of
iterations between 30 and 80. The reason to use the running time as the main common
measure for both algorithms is that the number of generated schedules, which can be
used for the ScS algorithm, is not applicable for the DDE algorithm since there are
only few generated schedules that are further updated incrementally. The time saved
in the DDE algorithm thanks to the reduction of the repeated schedule generation is
dedicated to the incremental schedule updates.

Each labelDx in Table5.3 stands for the dataset withx activities per instance
while the first row corresponds to the first configuration of the algorithms andthe sec-
ond row to the second configuration with extended stopping criterion. Columnfmean

represents the average value of the objective function obtained by a corresponding al-
gorithm for a given dataset. Columnbest contains the number of instances for which
the corresponding algorithm found a strictly better solution (for the average value over
10 runs). Columntcpu contains the mean solution time in milliseconds. The number
of generated schedules for the ScS algorithm is denoted asNoS.

As can be observed from Table5.3, the results obtained by both algorithms are
very competitive. On one hand, the DDE algorithm was able to find better results
from the point of view of the objective function value. On the other hand, thenumber
of strictly better solutions is higher for the ScS algorithm, especially with a growing

Chapter 5 Minimization of the total production cost for the RCPSP-APP 85

number of activities per instance. Based on the results we can conclude thata further
increase of the solution time for the ScS algorithm will not lead to an improvement
in the results. On the contrary, the DDE algorithm showed an improvement of results
with a growing solution time. Therefore, we can conclude that the convergence in
the objective value is faster with the ScS algorithm while the solution time increase is
more rationale for the DDE algorithm when searching for a better solution.

The evaluation of both algorithms with respect to the measured properties of in-
stances is depicted in Table5.4, where datasetsD50, D100andD200are used again.
For each dataset and each measured property, thet-test is evaluated while the two
sets being compared are the sets of instances where the strictly best result was found
by the DDE algorithm (setDDE) and the ScS algorithm (setScS) respectively. The
second set (setScS) for datasetsD10andD20 is too small for a fully conclusivet-test
evaluation, those datasets are not considered in Table5.4. As in Table5.3, two con-
figurations of each algorithm are tested. The rows withDDE (ScS) label contain
an average value of a specific metric over all instances of a given dataset where the
DDE (ScS) algorithm found better results. Rowsp-value then contain the results of
thet-test, i.e. the significance level that the mean values of both sets are equal.

As mentioned before, a lowerp-value corresponds to the more important prop-
erty from the algorithm comparison point of view. Based on the results in Table5.4,
the most important properties with respect to solution algorithm are the number of
alternative branchings (#AB) and the number of alternative process plans (#APP).
For both properties, the ScS algorithm was better for higher values, i.e. forinstances
with more alternatives in the selection of the activities. The next property from the
importance point of view is the resource constrainedness (RC), where the DDE al-
gorithm was better for higher values corresponding to the instances with more scarce
resources. For the average activity slack (AAS), the ScS algorithm was better for
instances with tighter time windows of activities. The last properties where a solid
importance has been observed are the total and average order strength(TOS and
AOS), which are closely related both in the values and in the influence for the so-
lution algorithm effectiveness. For both properties, the DDE algorithm was slightly
better for less pre-ordered instances, i.e. those where more decisions related to or-
ders of activities on resources are needed. The rest of the propertiesdo not possess a
significant influence for the different solution methods or the results are ambiguous.

The reason for the ScS algorithm being clearly better for the instances with a
higher ratio of alternative parts is that more time of the algorithm is dedicated to travel
across the solution space based on the evolutionary operators. In the DDE algorithm,
a strong emphasis is put on the local search for the TWT part of the criterionand
therefore, it is better for instances with less alternative process plans. The proof can
also be found in the evaluation of the algorithms on the instances of the job shop
problem fromBülbül (2011) where no alternatives are present and the DDE algorithm
shows much better performance than ScS.

86 5.4 Conclusion

D50 TOS AOS #AB #APP PPAct NL #res RC AAS

DDE 0.44 0.49 1.85 8.85 36.83 1.26 1.87 0.72 17.48
ScS 0.45 0.53 2.09 11.80 40.37 1.22 1.93 0.61 6.93
p-value 0.66 0.23 0.48 0.47 0.18 0.83 0.80 0.02 0.17
DDE 0.45 0.47 2.00 6.89 38.05 1.22 1.89 0.72 14.24
ScS 0.46 0.52 2.00 11.78 40.47 1.32 1.95 0.64 10.58
p-value 0.60 0.21 1.00 0.27 0.38 0.62 0.82 0.17 0.57

D100 TOS AOS #AB #APP PPAct NL #res RC AAS

DDE 0.48 0.48 3.44 80.59 85.21 1.38 2.81 0.68 93.27
ScS 0.52 0.52 4.55 230.15 83.43 1.49 2.75 0.65 84.55
p-value 0.25 0.23 0.00 0.01 0.44 0.25 0.79 0.20 0.51
DDE 0.48 0.49 3.40 77.39 85.48 1.37 2.85 0.68 95.45
ScS 0.51 0.51 4.39 257.88 85.94 1.44 2.67 0.65 85.02
p-value 0.29 0.35 0.00 0.13 0.85 0.52 0.47 0.22 0.35

D200 TOS AOS #AB #APP PPAct NL #res RC AAS

DDE 0.46 0.46 6.47 1903.69 167.82 1.73 2.80 0.67 265.27
ScS 0.48 0.47 8.03 7496.32 170.00 1.65 2.99 0.65 234.24
8 p-value 0.43 0.53 0.00 0.05 0.50 0.41 0.44 0.46 0.23
DDE 0.46 0.45 6.67 2518.59 169.40 1.72 2.80 0.67 265.74
ScS 0.48 0.48 8.04 7848.33 170.84 1.62 2.84 0.65 251.89
p-value 0.44 0.37 0.00 0.06 0.63 0.31 0.84 0.41 0.32

Table 5.4: Results of metric for new datasets

5.4 Conclusion

In this chapter, we present a new scheduling problem that combines an alternative
process plans definition and a realistic objective function composed of two parts, re-
lated to both the processing costs and the meeting of the due dates. The scheduling
model is based on the resource constrained project scheduling problem withalterna-
tive process plans and formulated as the integer linear programming problem. For
the proposed model, two evolutionary algorithms with distinct search strategies are
developed. Both algorithms showed a good performance for the related problems, es-
pecially the discrete differential evolution algorithm which is fully competitive with
the existing methods for much more specialized problems.

The algorithms were evaluated using a novel metric for the characterisation of the
instances properties. To find the most important properties with respect to theeffec-
tiveness of the solution methods, the Two-samplet-test for equal means is used. Such
an evaluation strategy can be used for any metric or solution approach while therela-
tive importance of a specific property can be straightforwardly derivedfrom the result
of thet-test. Consequently, the proposed evaluation method can be easily adapted to
any scheduling problem where more solution approaches are to be compared.

The result of the comparison of two developed heuristic approaches is that incre-
mental updates with a local search used in the DDE algorithm is better for problems
with more parallel structure and scarce resources. On the contrary, problems contain-

Chapter 5 Minimization of the total production cost for the RCPSP-APP 87

ing more alternative parts (more alternative process plans) were solved better by the
scatter search algorithm where the main emphasis is put on the evolutionary operators
and wide travel across the solution space.

88

Chapter 6

Conclusion

This chapter concludes the work and summarizes the achievements with respect to the
Goals and Objectives Chapter .

6.1 Main Achievements and Contributions

The first achieved contribution of this thesis lies in the novel mathematical model for
the production scheduling with alternative process plans. Thanks to the utilization
of the Nested Temporal Networks with Alternatives (NTNA), the model respects the
natural structure of the production processes, where certain parts can be produced in
more alternative ways, yielding the same final product in the end. Moreover, it pre-
serves the assumptions and constraints of the Resource Constrained Projects Schedul-
ing Problem (RCPSP) that is the most commonly used scheduling framework for the
production scheduling problems. Consequently, the resulting RCPSP-APP (RCPSP
with alternative process plans) model offers very flexible definition of the production
scheduling problems while it supports the utilization of a broad variety of solution
approaches for the RCPSP problems. The power of the proposed mathematical model
is demonstrated on three specific problems. Although the problems differ in assump-
tions, constraints and objective function, the common mathematical formulas from
Chapter2 can be used for all the problems without any loss.

The second contribution is represented by the design and implementation of four
different heuristic algorithms for three considered problems. The solution approach
for each considered problem was selected considering the specific constraints and
objective function. The solution for the problems with hard constraints and rather
straightforward criterion is based on fast deterministic heuristics with limited budget
(number of iterations). On the contrary, the approach for the last problem (easy to
find a feasible solution but the objective is more complex) utilizes population based
methods in order to explore the search space is more directions simultaneously. Due
to the fact that the general problem considered in this thesis has not beenstudied in

89

90 6.2 Revision of Goals and Objectives

such an extent so far, there are no standard benchmarks available. Nonetheless, based
on the results in each chapter, we can conclude that the heuristic algorithms proposed
in this thesis are able to compete with the specialized algorithms for the specific sub-
problems. In some cases, the results were even better that the best knownsolutions
so far. In addition to the experiments for the heuristic algorithms, the performance of
two different exact methods, namely constraint programming and mixed integerlinear
programming, is evaluated as well.

The third contribution of the thesis is the novel evaluation metric for the instances
of the problems with alternative process plans. This metric is used together withstan-
dard statistic methods to find out the important properties of the instances that have
the main influence on the performance of different algorithms. The main focus is
naturally paid to the structural properties of the instances, especially to the proper-
ties bound to the definition of the alternative process plans. The evaluation metric
is used in Chapter3 and Chapter5 to distinguish the effectiveness of more solution
approaches with respect to the type of the instances.

6.2 Revision of Goals and Objectives

The fulfillment of the stated goals and objectives is summarized below.

1. The goal to propose a representation for the scheduling problems with alterna-
tive processes was satisfied in Chapter2, where the common model for the rest
of the work is established. The formulation reflects the state of the art in the
scheduling area and fills the gap in the existing approaches for the problems
with alternatives.

2. A mathematical formulation for three studied problems based on the proposed
representation is stated in Chapter3, Chapter4 and Chapter5, respectively.
Each chapter presents extensions and/or modifications of the common part from
Chapter2 that are specific for the current scheduling problem. In addition to
the formulation itself, Chapter3 contains the comparison of the exact solution
methods, namely the MILP and CP approaches. The results showed that the
effectiveness of both solvers is comparable; on the one hand MILP approach is
better in proving optimal solutions, on the other hand the value of the objective
function with the increasing solution time converges faster in case of CP solver.

3. The goal to develop the solution methods for large instances is fulfilled by the
design and implementation of four heuristic algorithms, all implemented in the
C# language. Chapter3 describes the constructive heuristic algorithm with an
un-scheduling step that is designed with intention to solve the instances with
hard temporal constraints (release times, deadline and positive-negative time-
lags). The algorithm is able to solve instances with 2000 activities in less than

Chapter 6 Conclusion 91

10 seconds and when compared to the constraint programming, it consumes
approximately 30x less time to achieve the solutions of the same overall quality.

The STOAL heuristic algorithm developed for the problem considered in Chap-
ter 4 is based on the fast search for any feasible solution in combination with
the local search for the time-disjunctive parts of the schedule. Thanks to the
fact that the negative time-lags are not present in the problem, the STOAL al-
gorithm is able to run even faster than the before mentioned IRSA algorithm. It
is able to solve the instances with up to 1000 activities in less than 3 seconds.

Finally, there are two different population based algorithms designed for the
problem presented in Chapter5. Both algorithms are comparable in both so-
lution time and objective function for the random generated instances and are
able to solve problems with a few hundreds of activities within 5 seconds. Note
that the exact solvers for the considered problem are able to effectivelyhandle
only instance with up to 40 activities; for larger instances the exact methods are
no longer applicable, mainly due to the composite criterion.

4. To satisfy the objective that lies in the comparison of proposed algorithms with
existing approaches from the literature, we have carefully selected at leaston
similar problem with available datasets for each implemented algorithm. The
performance of the IRSA algorithm is first evaluated on a small dataset for a
specific sub-problem fromShao et al.(2009). The results achieved by the IRSA
algorithm are slightly worse in criterion but much better in the computation
time. For the comparison with the second source of datasets fromKis (2003),
the IRSA algorithm was extended to handle additional constraints considered
in the paper. The results showed that IRSA needed only 1% of the CPU time
compared to the algorithm proposed in the paper. The average value of the
objective function was 15% worse in case of IRSA if compared to the best of
three algorihtms proposed inKis (2003).

The STOAL algorithm was compared with the work ofFocacci et al.(2000)
using four available datasets. The CPU time is not indicated in the paper and,
therefore, only values of the objective function were compared. The STOAL
algorithm were able to find the results with the total setup time (TST) lower by
more than 16%. It should be noted that there is almost the same deterioration
for the schedule length, which was a part of the criterion in the paper but itis
not in our approach. Therefore, we can conclude that on one hand theSTOAL
algorithm is very effective for TST criterion. On the other hand its nature does
not consider other parameters of the schedule (like makespan) to be important
for the scheduling process.

The last two algorithms, dedicated to deal with the total production cost crite-
rion, were first evaluated on the same dataset ofShao et al.(2009) as for the
IRSA algorithm. Even though the original criterion was the minimization of

92 6.3 Concluding Remarks

the schedule length, both the discrete differential evolution (DDE) and the scat-
ter search (ScS) algorithms outperformed the paper results in the criterion as
well as in the computational time. Finally, the datasets fromPinedo and Singer
(1999) were used and the results were compared with the approach presented in
Bülbül (2011). The problem considered in the papers forms only a very specific
sub-problem of the problem considered in this thesis, yet the DDE algorithm
was able to find the results that are more than 3.5% better when compared to
Bülbül (2011) .

5. The last goal of the thesis related to the evaluation methodology for the prob-
lems with alternative process plans is satisfied in Section3.3.7. We have ex-
plored many properties that are related to the structure, resource environment
and attributes of activities from which nine most important were extracted and
used as the metric for evaluation of the instances. The relative importance of
specific properties for the performance of different solution approaches (con-
straint programming versus heuristic algorithm) is then evaluated by the stan-
dard statistical methods. As a result, we can conclude that CP approach is
performing better for the instances with more constrained resources. On the
contrary, the IRSA algorithm is better if the number of alternative process plans
increases. The same methodology is used also for the comparison of the two
population based algorithms in Chapter5.

6.3 Concluding Remarks

As stated in the previous section, all the goals and objectives set for the thesis were
successfully achieved. The proposed model and solution approaches for three differ-
ent problems with alternative process plans extends the scheduling theory by the new
type of scheduling problems with a high flexibility. Based on the number of citations
referencing our first published paper within a short period, it is apparent that the re-
search in the area of alternative process plans will be dynamic in the future. There
are many challenging issues - developing new algorithms, considering additional con-
straints, generation of new public instances etc.

Bibliography

Abdolshah, M., 2014. A review of resource-constrained project scheduling problems (rcpsp)
approaches and solutions. nternational Transaction Journal of Engineering, Management,
& Applied Sciences & Technologies 5, 253–286.

Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y., 2008. A survey of scheduling problems
with setup times or costs. European Journal of Operational Research 187, 985–1032.

Ballest́ın, F., Valls, V., Quintanilla, S., 2006. Due Dates and RCPSP. Springer-Verlag New
York, Inc.. volume 92 ofInternational Series in Operations Research & Management Sci-
ence. chapter Justification Technique Generalizations. pp. 79–104.

Bart́ak, R., 2004. Integrating planning into production scheduling: A formal view, in: Work-
shop on Integrating Planning into Scheduling at ICAPS-O4, pp. 1–8.

Bart́ak, R.,Čepek, O., 2007. Temporal networks with alternatives: Complexity and model, in:
Proceedings of the Twentieth International Florida Artificial Intelligence Research Society
Conference (FLAIRS), Florida, USA, AAAI Press. pp. 641–646.

Bart́ak, R., Čepek, O., 2008. Nested temporal networks with alternatives: recognition and
tractability, in: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC),
Ceara, Brazil, ACM. pp. 156–157.

Beck, J.C., Fox, M.S., 2000. Constraint-directed techniques for scheduling alternative activi-
ties. Artificial Intelligence 121, 211–250.

Blazewicz, J., Dror, M., Weglarz, J., 1991. Mathematical programming formulations for
machine scheduling: A survey. European Journal of Operational Research 51, 283–300.

Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J., 1996. Scheduling Computer
and Manufacturing Processes. Springer-Verlag New York, Inc.

Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A., 1983. Scheduling subject to resource con-
straints: Classification and complexity. Discrete AppliedMathematics 5, 11–24.

Brucker, P., 2007. Scheduling Algorithms. Springer-Verlag New York, Inc.

Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.,1999a. Resource-constrained
project scheduling: Notation, classification, models, andmethods. European Journal of
Operational Research 112, 3–41.

93

94 Bibliography

Brucker, P., Hilbig, T., Hurnik, J., 1999b. A branch and bound algorithm for a single-machine
scheduling problem with positive and negative time-lags. Discrete Applied Mathematics
94, 77–79.

Brucker, P., Knust, S., Schoo, A., Thiele, O., 1998. A branchand bound algorithm for the
resource-constrained project scheduling problem. European Journal of Operational Re-
search 107, 272–288.

Brucker, P., Kunst, S., 2006. Complex Scheduling. Springer-Verlag New York, Inc.

Brucker, P., Thiele, O., 1996. A branch & bound method for thegeneral-shop problem with
sequence dependent setup-times. Operations Research Spectrum 18, 145–161.

Bülbül, K., 2011. A hybrid shifting bottleneck-tabu search heuristic for the job shop total
weighted tardiness problem. Computers & Industrial Engineering 38, 967–983.

Capacho, L., Pastor, R., 2006. The ASALB problem with processing alternatives involving
different tasks: Definition, formalization and resolution, in: International Conference Com-
putational Science and Its Applications (ICCSA), Glasgow,UK, Springer. pp. 554–563.

Capacho, L., Pastor, R., 2008. ASALBP: the alternative subgraphs assembly line balancing
problem. International Journal of Production Research 46,3503–3516.

Capacho, L., Pastor, R., Dolgui, A., Guschinskaya, O., 2009. An evaluation of constructive
heuristic methods for solving the alternative subgraphs assembly line balancing problem.
Journal of Heuristics 15, 109–132.

Čapek, R., Hanźalek, Z., Bǔzková, L., 2013. Constraint programming and evaluation meth-
ods for scheduling with alternative process plans, in: Proceedings of the 11th Workshop
on Models and Algorithms for Planning and Scheduling Problems, LORIA Campus Scien-
tifique. pp. 35–37.

Čapek, R.,Šůcha, P., Hanźalek, Z., 2012. Production scheduling with alternative process
plans. European Journal of Operational Research 217, 300–311.

Chryssolouris, G., Chan, S., Suh, N., 1985. An integrated approach to process planning and
scheduling.{CIRP} Annals - Manufacturing Technology 34, 413–417.

De Reyck, B., Herroelen, W., 1999. The multi-mode resource-constrained project scheduling
problem with generalized precedence relations. European Journal of Operational Research
119, 538–556.

Deblaere, F., Demeulemeester, E., Herroelen, W., 2011. Reactive scheduling in the multi-
mode rcpsp. Computers & Operations Research 38, 63–75.

Demeulemeester, E., Herroelen, W., 1992. A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Management Science 38, 1803–1818.

Demeulemeester, E., Herroelen, W.S., Elmaghraby, S.E., 1999. Optimal procedures for the
discrete time/cost trade-off problem in project networks.European Journal of Operational
Research 88, 50–68.

Bibliography 95

Demeulemeester, E., Vanhoucke, M., Herroelen, W., 2003. A random network generator for
activity-on-the-node networks. Journal of scheduling 6, 17–38.

Dorndorf, U., Pesch, E., Phan-Huy, T., 2000. A time-oriented branch-and-bound algorithm
for resource-constrained project scheduling with generalised precedence constraints. Man-
agement Science 46, 1365–1384.

Essafi, I., Mati, Y., Dauzere-Ṕeres, S., 2008. A genetic local search algorithm for minimiz-
ing total weighted tardiness in the job-shop scheduling problem. Computers & Industrial
Engineering 35, 2599–2616.

Focacci, F., Laborie, P., Nuijten, W., 2000. Solving scheduling problems with setup times
and alternative resources, in: Artificial Intelligence Planning Systems 2000 Proceedings
(AIPS), AIPS. pp. 1–10.

Franck, B., Schwindt, C., 1995. Different resource constrained project scheduling models
with minimal and maximal time-lags. Technical Report. Universitat Karlsruhe.

Geem, Z.W., Kim, J.H., Loganathan, G., 2001. A new heuristicoptimization algorithm:
Harmony search. Simulation 76, 60–68.

Glover, F., Laguna, M., Martı́, R., 2000. Fundamentals of scatter search and path relinking.
Control and Cybernetics 29, 653–684.

Hanźalek, Z.,Šůcha, P., 2009. Time symmetry of project scheduling with time windows and
take-give resources, in: 4th Multidisciplinary International Scheduling Conference: Theory
and Applications (MISTA), Dublin, Ireland, Springer. pp. 239–253.

Hartmann, S., Briskorn, D., 2010. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journalof Operational Research 207,
1–14.

Harvey, W.D., Ginsberg, M.L., 1995. Limited discrepancy search, in: Proceedings IJCAI 95,
pp. 607–613.

Herroelen, W., De Reyck, B., Demeulemeester, E., 1998. Resource-constrained project
scheduling: A survey of recent developments. Computers & Operations Research 25, 279–
302.

Herroelen, W., De Reyck, B., Demeulemeester, E., 1999. A classification scheme for project
scheduling, in: Weglarz, J. (Ed.), Handbook of Recent Advances in Project Scheduling.
Kluwer Academic Publishers, Dordrecht, pp. 1–26.

Icmeli, O., Erenguc, S.S., Zappe, C.J., 1993. Project scheduling problems: A survey. Interna-
tional Journal of Operations & Production Management 13, 80–91.

Kellenbrink, C., 2012. First Results on Resource-Constrained Project Scheduling with Model-
Endogenous Decision on the Project Structure. Springer International Publishing. chapter
Scheduling and Project Management. Operations Research Proceedings, pp. 429–434.

96 Bibliography

Kellenbrink, C., Helber, S., 2015. Scheduling resource-constrained projects with a flexible
project structure. European Journal of Operational Research 246, 379–391.

Kis, T., 2003. Job-shop scheduling with processing alternatives. European Journal of Opera-
tional Research 151, 307–322.

Kobayashi, M., Hirano, Y., Higashi, M., 2014. Optimizationof assembly processes of an
automobile wire harness. Computer-Aided Design and Applications 11, 305–311.

Kolisch, R., 1996. Serial and parallel resource-constrained project scheduling methods revis-
ited: Theory and computation. European Journal of Operational Research 90, 320–333.

Kolisch, R., Hartmann, S., 2006. Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Research
174, 23–37.

Kolisch, R., Padman, R., 2001. An integrated survey of deterministic project scheduling.
Omega The International Journal of Management Science 29, 249–272.

Korte, B., Vygen, J., 2000. Combinatorial Optimization: Theory and Algorithms (Algorithms
and Combinatorics 21). Springer-Verlag, Berlin Heidelberg New York Tokyo, First edition.

Kuster, J., Jannach, D., Friedrich, G., 2006. Handling alternative activities in resource-
constrained project scheduling problems, in: Proceedingsof Twentieth International Joint
Conference on Artificial Intelligence (IJCAI), Hyderabad,India, AAAI Press. pp. 1960–
1965.

Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P., 1977. Complexity of machine scheduling
problems. Annals of Discrete Mathematics 1, 343–362.

Leung, C.W., Wong, T.N., Maka, K.L., Fung, R.Y.K., 2010. Integrated process planning and
scheduling by an agent-based ant colony optimization. Computers & Industrial Engineering
59, 166–180.

Li, X., Zhang, C., Gao, L., Li, W., Shao, X., 2010. An agent-based approach for integrated
process planning and scheduling. Expert Systems with Applications 37, 1256–1264.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., 1998. An exact algorithm for the
resource constrained project scheduling problem based on anew mathematical formulation.
Management Science 44, 714–729.

Mirabi, M., 2010. A hybrid simulated annealing for the single-machine capacitated lot-sizing
and scheduling problem with sequence-dependent setup times and costs and dynamic re-
lease of jobs. The International Journal of Advanced Manufacturing Technology 54, 795–
808.

Moon, C., Kim, J., Hur, S., 2002. Integrated process planning and scheduling with minimizing
total tardiness in multi-plants supply chain. Computers & Operations Research 43, 331–
349.

Bibliography 97

Naderi, B., Zandieh, M., Shirazi, M., 2009. Modeling and scheduling a case of flexible
flowshops: Total weighted tardiness minimization. Computers & Industrial Engineering
57, 1258–1267.

Neumann, K., Schwindt, C., Zimmermann, J., 2003. Project scheduling with time windows
and scarce resources. Springer-Verlag Berlin Heidelberg.

Niu, B., Bi, Y., Chan, F., Wang, Z., 2015. Srbfo algorithm forproduction scheduling with mold
and machine maintenance consideration, in: Intelligent Computing Theories and Method-
ologies. Springer International Publishing. volume 9226 of Lecture Notes in Computer Sci-
ence, pp. 733–741.

Özdamar, L., Ulusoy, G., 1995. A survey on the resource-constrained project scheduling
problem. IIE Transactions 27, 574–586.

Ángeles Ṕerez, Quintanilla, S., Lino, P., Valls, V., 2014. A multi-objective approach for a
project scheduling problem with due dates and temporal constraints infeasibilities. Inter-
national Journal of Production Research 52, 3950–3965.

Pinedo, M., Singer, M., 1999. A shifting bottleneck heuristic for minimizing the total weighted
tardiness in a job shop. Naval Research Logistics 46, 1–17.

Rand, G.K., 1977. Machine scheduling problems: Classification, complexity and computa-
tions. European Journal of Operational Research 1, 206.

Rau, B.R., 1994. Iterative modulo scheduling: an algorithmfor software pipelining loops, in:
MICRO 27: Proceedings of the 27th annual international symposium on Microarchitecture,
ACM. pp. 63–74.

Salewski, F., Schirmer, A., Drexl, A., 1997. Project scheduling under resource and mode
identity constraints: Model, complexity, methods and application. European Journal of
Operational Research 102, 88–110.

Shabtay, D., Steiner, G., 2007. A survey of scheduling with controllable processing times.
Discrete Applied Mathematics 155, 1643–1666.

Shao, X., Li, X., Gao, L., Zhang, C., 2009. Integration of process planning and scheduling
- a modified genetic algorithm-based approach. Computers & Operations Research 36,
2082–2096.

Snedecor, G.W., Cochran, W.G., 1989. Statistical Methods.Iowa State University Press;
Eighth Edition.

Spaccamela, A.M., Nanni, U., Rohnert, H., 1996. Maintaining a topological order under edge
insertions. Information Processing Letters 59, 53–58.

Tasgetiren, M.F., Pan, Q.K., Liang, Y.C., 2009. A discrete differential evolution algorithm for
the single machine total weighted tardiness problem with sequence dependent setup times.
Computers and Operations Research 36, 1900–1915.

98 Bibliography

Usher, J.M., 2003. Evaluating the impact of alternative plans on manufacturing performance.
Computers and Industrial Engineering 45, 585–596.

Van Peteghem, V., Vanhoucke, M., 2011. Using resource scarceness characteristics to solve
the multi-mode resource-constrained project scheduling problem. Journal of Heuristics 17,
705–728.

Van Peteghem, V., Vanhoucke, M., 2014. An experimental investigation of metaheuristics for
the multi-mode resource-constrained project scheduling problem on new dataset instances.
European Journal of Operational Research 235, 6272.

Vanhoucke, M., Debels, D., 2007. The discrete time/cost trade-off problem: Extensions and
heuristic procedures. Journal of Scheduling 10, 311–326.

Vanhoucke, M., Demeulemeester, E., Herroelen, W., 2001. Anexact procedure for the
resource-constrained weighted earliness-tardiness project scheduling problem. Annals of
operations research 102, 179–196.

Wang, D., Goodchild, A., Li, X., Wang, Z., 2014. Double girder bridge crane with double
cycling: Scheduling strategy and performance evaluation.Journal of Applied Mathematics
2014, 1–12.

Wang, L., Wang, M., 1997. A hybrid algorithm for earliness-tardiness scheduling problem
with sequence dependent setup time, in: Proceedings of the 36th Conference on Decision
& Control, IEEE. pp. 1219–1223.

Yuan, X.M., Khoo, H.H., Spedding, T.A., Bainbridge, I., Taplin, D.M.R., 2004. Minimizing
total setup cost for a metal casting company. Winter Simulation Conference 2, 1189–1194.

Zhang, R., Wu, C., 2011. A simulated annealing algorithm based on block properties for
the job shop scheduling problem with total weighted tardinessobjective. Computers &
Industrial Engineering 38, 854–867.

Zhou, H., Cheung, W., Leung, L.C., 2009. Minimizing weighted tardiness of job-shop
scheduling using a hybrid genetic algorithm. European Journal of Operational Research
194, 637–649.

Curriculum Vitae

RomanČapek was born in Pardubice, Czech Republic, in 1983. He received his mas-
ter of science degree in Cybernetics and Control Engineering at Facultyof Electrical
Engineering, Czech Technical University in Prague (CTU) in 2008. The master thesis
with title Scheduling and Visualization of Manufacturing Processeswas focused on
the mathematical modeling of scheduling problems in manufacturing and visualiza-
tion of the schedules in virtual reality. In the same year, 2008, he started his Ph.D.
studies at the Department of Control Engineering at CTU Prague. Besidesthe research
in the main topic calledScheduling with Alternative Process Planshe participated on
the projects Elektro kontakt (project Eureka), Adaptive scheduling andOptimization
algorithms (Czech Science Foundation) and Centre for Applied Cybernetics I-III (re-
sponsible for work packages 10 and 21). His main area of interest is combinatorial
optimization applied for the scheduling of production processes.

His teaching activities in CTU involved courses of Logic Control and Optimiza-
tion in Intelligent Systems, where he participated also on the content of the lectures.
He has also supervised a lot of student projects and bachelor and diplomatheses.

RomanČapek presented his research results at several international conferences,
e.g. MISTA(top conference for the combinatorial optimization),PMS(Project Man-
agement and Scheduling) andEURO (European Conference on Operational Re-
search). The most important results were published in the international impacted
journalEuropean Journal of Operational Research(EJOR - IF 2.911), another one is
under review in andComputers & Operations Research. Moreover, the results pub-
lished in EJOR journal were included also inHandbook of Project Management and
Scheduling, published under Springer.

RomanČapek was the lead author of two software applications used by Styl Plzeň
and Procter&Gamble, where the results of the theoretical research were exploited for
the optimization of the manufacturing processes.

Czech Technical University in Prague
Prague, August 2015 RomanČapek

99

100

List of Author’s Publications
All of the author’s publications are directly related to the topic of the thesis.
They are separated into five groups as follows.

Publications in Journals with Impact Factor

Roman Čapek, P̌remysl Šůcha, and Zdeňek Hanźalek. Production scheduling
with alternative process plans.European Journal of Operational Research,
217(2):pages 300–311, 2012. ISSN 0377-2217. doi: doi:10.1016/j.ejor.2011.
09.018. URLhttp://www.sciencedirect.com/science/article/
pii/S0377221711008460. Accessed: 2015-08-18.Co-authorship 50 %,
cited by (Kellenbrink and Helber(2015); Ángeles Ṕerez et al.(2014); Wang et al.
(2014)) – indexed in Web of Science, cited by (Kobayashi et al.(2014);
Abdolshah(2014); Niu et al.(2015)).

RomanČapek, Zdeňek Hanźalek, and P̌remysl Šůcha. Scheduling with alternative
process plans under minimisation of the total setup time.Computers & Operations
Research, 2015. In major revision.Co-authorship 50 %.

Publications in Reviewed Journals

Roman Čapek, P̌remysl Šůcha, and Zdeňek Hanźalek. Production scheduling
with alternative process plans.European Journal of Operational Research,
217(2):pages 300–311, 2012. ISSN 0377-2217. doi: doi:10.1016/j.ejor.2011.
09.018. URLhttp://www.sciencedirect.com/science/article/
pii/S0377221711008460. Accessed: 2015-08-18.Co-authorship 50 %,
cited by (Kellenbrink and Helber(2015); Ángeles Ṕerez et al.(2014); Wang et al.
(2014)) – indexed in Web of Science, cited by (Kobayashi et al.(2014);
Abdolshah(2014); Niu et al.(2015)).

RomanČapek, Zdeňek Hanźalek, and P̌remysl Šůcha. Scheduling with alternative
process plans under minimisation of the total setup time.Computers & Operations
Research, 2015. In major revision.Co-authorship 50 %.

101

http://www.sciencedirect.com/science/article/pii/S0377221711008460
http://www.sciencedirect.com/science/article/pii/S0377221711008460
http://www.sciencedirect.com/science/article/pii/S0377221711008460
http://www.sciencedirect.com/science/article/pii/S0377221711008460

102 List of Author’s Publications

Patents

There are no patents related to the thesis.

Publications indexed in Web of Science

Roman Čapek, P̌remysl Šůcha, and Zdeňek Hanźalek. Production scheduling
with alternative process plans.European Journal of Operational Research,
217(2):pages 300–311, 2012. ISSN 0377-2217. doi: doi:10.1016/j.ejor.2011.
09.018. URLhttp://www.sciencedirect.com/science/article/
pii/S0377221711008460. Accessed: 2015-08-18.Co-authorship 50 %,
cited by (Kellenbrink and Helber(2015); Ángeles Ṕerez et al.(2014); Wang et al.
(2014)) – indexed in Web of Science, cited by (Kobayashi et al.(2014);
Abdolshah(2014); Niu et al.(2015)).

Other Publications

International Conference Papers

RomanČapek. Visualization and simulation in scheduling. InPoster 2008, pages
12–14. Czech Technical University in Prague, 2008. URLhttps://ojs.
cvut.cz/ojs/index.php/ap/article/view/977. Accessed: 2015-
08-18.Co-authorship 100 %.

RomanČapek, P̌remysl Šůcha, and Zdeňek Hanźalek. Production scheduling with
alternative process plans. InEURO XXIII Bonn - Book of Abstracts, page 278. The
Association of European Operational Research Societies, 2009. Accessed: 2015-
08-18.Co-authorship 33 %.

RomanČapek, P̌remyslŠůcha, and Zdeňek Hanźalek. Alternative process plans in
wire harnesses production. In15th IEEE International Conference on Emerg-
ing Technologies and Factory Automation, pages 1–8. IEEE, 2010. doi: 10.
1109/ETFA.2010.5641230. URLhttp://ieeexplore.ieee.org/xpl/
articleDetails.jsp?reload=true&arnumber=5641230. Accessed:
2015-08-18.Co-authorship 40 %.

Roman Čapek, P̌remysl Šůcha, and Zdeňek Hanźalek. Minimizing total
weighted tardiness and total processing costs for the scheduling with alter-
native process plans. InProceedings of the 5th Multidisciplinary Interna-
tional Conference on Scheduling: Theory and Applications (MISTA), pages
561–563. Nottingham: University of Nottingham, 2011. URLhttp://
www.schedulingconference.org/previous/publications/

http://www.sciencedirect.com/science/article/pii/S0377221711008460
http://www.sciencedirect.com/science/article/pii/S0377221711008460
https://ojs.cvut.cz/ojs/index.php/ap/article/view/977
https://ojs.cvut.cz/ojs/index.php/ap/article/view/977
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5641230
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5641230
http://www.schedulingconference.org/previous/publications/displaypub.php?key=2011-561-563-A&filename=mista.bib
http://www.schedulingconference.org/previous/publications/displaypub.php?key=2011-561-563-A&filename=mista.bib

List of Author’s Publications 103

displaypub.php?key=2011-561-563-A&filename=mista.bib.
Accessed: 2015-08-18.Co-authorship 50 %.

RomanČapek, P̌remysl Šůcha, and Zdeňek Hanźalek. Scheduling with alternative
process plans and the total weighted tardiness criterion. InProceedings of the 10th
Workshop on Models and Algorithms for Planning and Scheduling Problems, pages
180–182. Institute for Theoretical Computer Science in Prague, 2011. Accessed:
2015-08-18.Co-authorship 50 %.

RomanČapek. Resource constrained project scheduling problem with alternative
process plans and total changeover cost minimization. InProceedings of the 25th
European Conference on Operational Research (EURO 2012), pages 183–183. The
Association of European Operational Research Societies, 2012. Accessed: 2015-
08-18.Co-authorship 100 %.

RomanČapek, Vincent Van Peteghem, and Zdeněk Hanźalek. Minimization of the
total production cost for the RCPSP with alternative process plans. InProceed-
ings of the 13th International Conference on Project Management and Scheduling,
pages 110–113. Operations Management Research Group of the Facultyof Busi-
ness and Economics, 2012. ISBN 978-908-140-994-0. Accessed:2015-08-18.
Co-authorship 33 %.

RomanČapek, Zdeňek Hanźalek, and Lucie Bǔzková. Constraint programming and
evaluation methods for scheduling with alternative process plans. InProceedings of
the 11th Workshop on Models and Algorithms for Planning and Scheduling Prob-
lems, pages 35–37. LORIA Campus Scientifique, 2013. Accessed: 2015-08-18.
Co-authorship 33 %.

Oleh Sobeyko, RomaňCapek, Zdeňek Hanźalek, and Lars M̈onch. An instance gen-
erator for scheduling problems with alternative process plans. InProceedings of the
EURO—INFORMS 26th European Conference on Operational Research, page 9.
Sapienza University of Rome, 2013. Accessed: 2015-08-18.Co-authorship 25 %.

Remaining Publications

RomanČapek, P̌remyslŠůcha, and Zdeňek Hanźalek. Scheduling of Production with
Alternative Process Plans, pages 1187–1204. Handbook on Project Management
and Scheduling Vol.2. Springer International Publishing, 2015. ISBN 978-3-319-
05914-3. doi: 10.1007/978-3-319-05915-0. URLhttp://link.springer.
com/book/10.1007%2F978-3-319-05915-0. Accessed: 2015-08-18.
Co-authorship 50 %.

Michal Kutil, Přemysl Šůcha, RomanČapek, and Zdeňek Hanźalek. Optimiza-
tion and Scheduling Toolbox, pages 239–260. Matlab - Modelling, Program-
ming and Simulations. Sciyo, 2010. ISBN 978-953-307-125-1. URLhttp://

http://www.schedulingconference.org/previous/publications/displaypub.php?key=2011-561-563-A&filename=mista.bib
http://link.springer.com/book/10.1007%2F978-3-319-05915-0
http://link.springer.com/book/10.1007%2F978-3-319-05915-0
http://cdn.intechopen.com/pdfs/11619.pdf

104 List of Author’s Publications

cdn.intechopen.com/pdfs/11619.pdf. Accessed: 2015-08-18.Co-
authorship 25 %.

RomanČapek. Preliminary Doctoral Thesis: Scheduling with Alternatives. Faculty
of Electrical Engineering, Czech Technical University in Prague, Prague, Czech
Republic, 2010. Accessed: 2015-08-18.Co-authorship 100 %.

RomanČapek, Michal Kutil, P̌remyslŠůcha, and Zdeňek Hanźalek. Locusta - aplica-
tion for support of production planning and scheduling, 2010. Authorized software.
Accessed: 2015-08-18.Co-authorship 25 %.

Michal Kutil, PřemyslŠůcha, RomaňCapek, and Zdeňek Hanźalek. Torsche schedul-
ing toolbox for matlab (version 0.4.0), 2010. Authorized software. Accessed: 2015-
08-18.Co-authorship 25 %.

RomanČapek and Zdeňek Hanźalek. Project scheduling with alternative process
plans under different constraints and criteria. Prof. Dr. Lars Mönch, FernUniver-
sität in Hagen, 2010. Unpublished Lecture. Accessed: 2015-08-18.Co-authorship
75 %.

Czech Technical University in Prague
Prague, August 2015 RomanČapek

http://cdn.intechopen.com/pdfs/11619.pdf

This thesis is focused on the scheduling problems with

alterna�ve process plans. Its goals were set as follows:

1. To propose a common representa�on for the scheduling

problems that include alterna�ve processes.

2. To establish a mathema�cal formula�on using the proposed

representa�on for each studied problem.

3. To develop an algorithm to solve large instances for each of

the problems.

4. To compare the proposed solu�on methods with the similar

works from the literature.

5. To propose the methodology for evalua�on and comparison

of different solu�on approaches.

	Title
	Declaration
	Acknowledgments
	Abstract
	Abstrakt
	Nomenclature
	Abbreviations
	Goals and Objectives
	Introduction
	Contribution and Outline
	Related Work
	Resource Constrained Project Scheduling Problem
	Extensions of the RCPSP

	Scheduling Model
	Overall Problem Statement
	Goal of the Scheduling
	Problem Structure Representation
	Nested Temporal Networks with Alternatives

	Selection Constraints
	Temporal Constraints
	Resource Constraints
	Classification of the problem

	RCPSP-APP with positive and negative time-lags
	Problem Statement
	Mathematical Model
	Problem Complexity

	Heuristic Algorithm
	Initialization
	Main loop
	Inner loop
	Example of the IRSA Algorithm Progress

	Computational Experiments
	Generated Instances
	Mathematical Model Complexity
	Performance Evaluation of IRSA algorithm
	Integrated process planning and scheduling
	Evaluation on AJSP instances
	Evaluation Metric for Instances
	Evaluation Methodology
	Experiments for Evaluation Metric

	Conclusion

	RCPSP-APP under minimization of the total setup time
	Problem statement
	Mathematical formulation
	Heuristic algorithm
	Initial solution
	Schedule improvement

	Performance evaluation
	Comparison with IRSA algorithm on random instances
	Comparison with algorithm of Focacci2000
	Configuration of the STOAL algorithm

	Conclusion

	Minimization of the total production cost for the RCPSP-APP
	Problem statement
	Mathematical model

	Heuristic algorithms
	DDE algorithm
	Scatter search algorithm

	Evaluation
	Mathematical model complexity
	Job shop problem
	Integrated process planning and scheduling
	Computational Results

	Conclusion

	Conclusion
	Main Achievements and Contributions
	Revision of Goals and Objectives
	Concluding Remarks

	Bibliography
	Curriculum Vitae
	List of Author's Publications

