
J. Math. Phys. 49 (2008), 053505. DOI 10.1063/1.2912228

Atomistic and orthoatomistic effect algebras

Josef Tkadlec
Department of Mathematics, Faculty of Electrical Engineering, Czech Technical
University, 166 27 Praha, Czech Republic, tkadlec@fel.cvut.cz.

(Received 23 November 2007; accepted 28 March 2008; published online 6 May 2008)

We characterize atomistic effect algebras, prove that a weakly orthocomplete
Archimedean atomic effect algebra is orthoatomistic and present an example of
an orthoatomistic orthomodular poset that is not weakly orthocomplete.

1. Introduction

One of the basic concepts in the foundation of quantum physics is the quantum effect that
plays an important role in the theory of the so-called unsharp measurements [1, 2]. Quantum
effects are studied within a general algebraic framework called the effect algebra [2, 3, 5].

An important role in quantum structures play atoms (minimal nonzero elements) espe-
cially if every element of the structure can be built up from atoms, i.e., if the structure is
atomistic or orthoatomistic—hence these properties are of particular interest [3, 6, 7, 8, 9].

In this paper we generalize some results concerning atomistic and orthoatomistic quantum
structures and present a few illustrating examples.

2. Basic notions and properties

Definition 2.1: An effect algebra is an algebraic structure (E,⊕,0,1) such that E is a set,
0 and 1 are different elements of E, and ⊕ is a partial binary operation on E such that for
every a, b, c ∈ E the following conditions hold:

(1) a⊕ b = b⊕ a if a⊕ b exists,
(2) (a⊕ b)⊕ c = a⊕ (b⊕ c) if (a⊕ b)⊕ c exists,
(3) there is a unique a′ ∈ E such that a⊕ a′ = 1 (orthosupplement),
(4) a = 0 whenever a⊕ 1 is defined.

For simplicity, we use the notation E for an effect algebra. A partial ordering on an effect
algebra E is defined by a ≤ b if there is a c ∈ E such that b = a ⊕ c. Such an element c
is unique (if it exists) and is denoted by b 	 a. 0 (1, respectively) is the least (the greatest,
respectively) element of E with respect to this partial ordering. For every a, b ∈ E, a′′ = a and
b′ ≤ a′ whenever a ≤ b. It can be shown that a⊕0 = a for every a ∈ E and that a cancellation
law is valid: for every a, b, c ∈ E with a ⊕ b ≤ a ⊕ c we have b ≤ c. An orthogonality relation
on E is defined by a ⊥ b if a⊕ b exists (if a ≤ b′). See, e.g., [2, 3].

Obviously, if a ⊥ b and a ∨ b exist in an effect algebra, then a ∨ b ≤ a ⊕ b. The reverse
inequality need not be true (it holds in orthomodular posets).

Definition 2.2: Let E be an effect algebra. An element a ∈ E is principal if b⊕ c ≤ a for
every b, c ∈ E such that b, c ≤ a and b ⊥ c.

Definition 2.3: An orthoalgebra is an effect algebra E in which, for every a ∈ E, a = 0
whenever a⊕ a is defined.

An orthomodular poset is an effect algebra in which every element is principal.
An orthomodular lattice is an orthomodular poset that is a lattice.
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Every orthomodular poset is an orthoalgebra. Indeed, if a⊕ a is defined then a⊕ a ≤ a =
a⊕ 0 and, according to the cancellation law, a ≤ 0 and therefore a = 0.

Orthomodular posets are characterized as effect algebras such that a⊕ b = a∨ b for every
orthogonal pair a, b (see [3, 4]). Let us remark that an orthomodular poset is usually defined
as a bounded partially ordered set with an orthocomplementation in which the orthomodular
law is valid.

Definition 2.4: Let E be an effect algebra. The isotropic index of an element a ∈ E is
sup{n ∈ N : na is defined}, where na =

⊕n
i=1 a is the sum of n copies of a.

An effect algebra is Archimedean if every its nonzero element has a finite isotropic index.

The isotropic index of 0 is ∞. In an orthoalgebra, we have that a⊕ a is defined only for
a = 0, hence the isotropic index of every nonzero element is 1. Therefore we obtain:

Proposition 2.5: Every orthoalgebra is Archimedean.

Definition 2.6: Let E be an effect algebra. A system (ai)i∈I of (not necessarily distinct)
elements of E is called orthogonal, if

⊕
i∈F ai is defined for every finite set F ⊂ I. We define⊕

i∈I ai =
∨
{
⊕

i∈F ai : F ⊂ I is finite} if the supremum exists.
An effect algebra E is orthocomplete if

⊕
i∈I ai is defined for every orthogonal system

(ai)i∈I of elements of E.
An effect algebra E is weakly orthocomplete if for every orthogonal system (ai)i∈I of

elements of E either
⊕

i∈I ai exists or there is no minimal upper bound of the set {
⊕

i∈F ai :
F ⊂ I is finite} in E.

Every pair of elements of an orthogonal system is orthogonal. On the other hand, there are
mutually orthogonal elements that do not form an orthogonal system if the effect algebra is not
an orthomodular poset. Since only the zero element is orthogonal to itself in an orthoalgebra,
we may consider sets instead of systems in orthoalgebras.

Proposition 2.7: Every orthocomplete effect algebra is Archimedean.

Proof: Let E be an orthocomplete effect algebra and let a ∈ E has an infinite isotropic index.
There is an element b ∈ E such that b =

⊕
n∈N a =

∨
n∈N na. Since a ≤ b, there is an element

c ∈ E such that b = a ⊕ c. For every n ∈ N we have a ⊕ c = b ≥ (n + 1)a = a ⊕ na and
therefore, according to the cancellation law, c ≥ na. Hence, c⊕ 0 = c ≥

∨
n∈N na = b = c⊕ a

and, according to the cancellation law, 0 ≥ a and therefore a = 0.

Definition 2.8: An atom of an effect algebra E is a minimal element of E \ {0}.
An effect algebra is atomic if every nonzero element dominates an atom (i.e., there is an

atom less than or equal to it).
An effect algebra is atomistic if every nonzero element is a supremum of a set of atoms

(i.e., of the set of all atoms it dominates).
An effect algebra is orthoatomistic if every nonzero element is a sum of a set of atoms.

It is easy to see that every atomistic and every orthoatomistic effect algebra is atomic and
that every orthoatomistic orthomodular poset is atomistic. There are atomic orthomodular
posets that are not atomistic [6], atomistic orthomodular posets that are not orthoatomistic [7]
and orthoatomistic orthoalgebras that are not atomistic—e.g., the so-called Wright triangle [4,
Example 2.13].
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3. Results

First, let us present a characterization of atomistic effect algebras that generalizes the
result of [7] stated for orthomodular posets.

Definition 3.1: An effect algebra E is disjunctive if for every a, b ∈ E with a 6≤ b there is
a nonzero element c ∈ E such that c ≤ a and c ∧ b = 0.

Theorem 3.2: An effect algebra is atomistic if and only if it is atomic and disjunctive.

Proof: Let E be an effect algebra and let us for every x ∈ E denote by Ax the set of atoms
dominated by x.

⇒: Obviously, every atomistic effect algebra is atomic. Let a, b ∈ E such that a 6≤ b. Then
there is an atom c ∈ Aa \Ab, hence c ≤ a and c ∧ b = 0.

⇐: Let us prove that a ≤ b for every nonzero a ∈ E and for every upper bound b ∈ E of Aa

(hence, a =
∨

Aa). Let us suppose that a 6≤ b and seek a contradiction. Since E is disjunctive,
there is a nonzero element c ∈ E such that c ≤ a and c ∧ b = 0. Since E is atomic, there is
an atom d ∈ E such that d ≤ c. Hence, d ≤ a and d ∧ b = 0. Since d is an atom, d 6≤ b and
therefore d ∈ Aa \Ab—a contradiction.

Before stating the second main result of this paper, let us discuss relations of some prop-
erties.

Proposition 3.3: Let E be an effect algebra fulfilling at least one of the following condi-
tions:

(OC) E is orthocomplete.
(L) E is a lattice.

Then E is weakly orthocomplete.

Proof: (OC): Obvious.
(L): Let (ai)i∈I be an orthogonal system of elements of E. Let us show that if a minimal

upper bound a of the set A = {
⊕

i∈F ai : F ⊂ I is finite} exists then a =
∨

A. Let b be an
upper bound of A. Then b ∧ a ≤ a is an upper bound of A and, since a is minimal, b ∧ a = a.
Hence, a ≤ b.

Let us present examples showing that the scheme of implications in the previous proposi-
tion cannot be improved.

Example 3.4: Let X be a countable infinite set. Let E be a family of finite and cofinite
subsets of X with the ⊕ operation defined as the union of disjoint sets. Then (E,⊕, ∅, X) is
an orthomodular lattice (it forms a Boolean algebra) that is not orthocomplete.

Example 3.5: Let X be a 6-element set. Let E be the family of even-element subsets of X
with the ⊕ operation defined as the union of disjoint sets from E. Then (E,⊕, ∅, X) is a finite
(hence orthocomplete) orthomodular poset that is not a lattice.

Example 3.6: Let X1, X2, X3, X4 be mutually disjoint infinite sets, X =
⋃4

i=1 Xi,

E0 = {∅, X1 ∪X2, X2 ∪X3, X3 ∪X4, X4 ∪X1, X} ,

E = {(A \ F ) ∪ (F \A) : F ⊂ X is finite, A ∈ E0} ,

A⊕B = A∪B for disjoint A,B ∈ E. Then (E,⊕, ∅, X) is a weakly orthocomplete orthomodular
poset that is neither orthocomplete (e.g.,

∨{
{x} : x ∈ X1

}
does not exist) nor a lattice (e.g.,

(X1 ∪X2) ∧ (X2 ∪X3) does not exist).
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Theorem 3.7: Every weakly orthocomplete Archimedean atomic effect algebra is ortho-
atomistic.

Proof: Let E be a weakly orthocomplete Archimedean atomic effect algebra and let a ∈ E \
{0}. Let us consider a set M of orthogonal systems of atoms such that their finite sums are
dominated by a. Since E is atomic, M 6= ∅. Since E is Archimedean, the number of occurences
of every element of E at orthogonal systems is bounded by its finite isotropic index. Let us
define an equivalence relation on M by M1 ∼ M2 if every element of E occurs in M2 with the
same multiplicity as in M1, and a partial ordering � on M|∼ by M1 � M2 if every element of
E occurs in M2 with at least the same multiplicity as in M1. Every chain in M|∼ has an upper
bound in M∼ (we can take every element of E with the maximal multiplicity that appears
in the elements of the chain). According to Zorn’s lemma, there is a maximal element of M∼
and therefore an M ∈ M such that there is no atom c ∈ E with c ⊕

⊕
F defined for every

finite subsystem F of M . Let us show that a is a minimal upper bound of the set A = {
⊕

F :
F is a finite subsystem of M}. Indeed, if there is an upper bound b ∈ E of A such that b < a
then a 	 b 6= 0, there is an atom c ∈ E such that c ≤ a 	 b and therefore c ⊕

⊕
F ≤ a

for every finite subsystem F of M—this contradicts to the property of M . Since E is weakly
orthocomplete, a =

∨
A =

⊕
M .

The previous theorem generalizes the result of [7] stated for weakly orthocomplete atomic
orthomodular posets, the result of [3, Proposition 4.11] stated for chain finite effect algebras
and the result of [8, Theorem 3.1] stated for lattice Archimedean atomic effect algebras.

None of the assumptions in Theorem 3.7 can be omitted. Indeed, there are atomistic
orthomodular posets that are not orthoatomistic [7], Boolean algebras that are not atomic (e.g.,
exp N|F (N) where F (N) denotes the family of finite subsets of the set N of natural numbers),
and, as the following example shows, weakly orthocomplete atomic effect algebras that are not
orthoatomistic.

Example 3.8: Let E = {0, 1, 2, . . . , n, . . . , n′, . . . , 2′, 1′, 0′} with the ⊕ operation defined by
m⊕n = m+n for every m,n ∈ N and m⊕n′ = (n−m)′ for every m,n ∈ N with m ≤ n. Then
(E,⊕, 0, 0′) is an atomic effect algebra (it forms a chain) that is weakly orthocomplete. Indeed,
if an orthogonal system M of nonzero elements of E is finite then

⊕
M is defined; if M is

infinite then the set of finite sums of elements of M forms an unbounded set of natural numbers
and, therefore, does not have a minimal upper bound. The effect algebra is not orthoatomistic
because no element n′, n ∈ N, is a sum of atoms.

Let us present an example that an orthoatomistic orthomodular poset need not be weakly
orthocomplete.

Example 3.9: Let X, Y be disjoint infinite countable sets,

E0 = {A ⊂ (X ∪ Y ) : card(A ∩X) = card(A ∩ Y ) is finite} ,

E = E0 ∪ {(X ∪ Y ) \A : A ∈ E0} ,

A ⊕ B = A ∪ B for disjoint A,B ∈ E. Then (E,⊕, ∅, X ∪ Y ) is an orthomodular poset. It
is orthoatomistic because for every nonempty A ∈ E we have card(A ∩ X) = card(A ∩ Y ),
there is a bijection f : (A ∩ X) → (A ∩ Y ) and A =

⊕{
{x, f(x)} : x ∈ (A ∩ X)

}
. The

orthomodular poset is not weakly orthocomplete because for x0 ∈ X, y0 ∈ Y there is a
bijection f : X → (Y \ {y0}) and the orthogonal set

{
{x, f(x)} : x ∈ X \ {x0}

}
has different

minimal upper bounds (X ∪ Y ) \ {x0, f(x0)} and (X ∪ Y ) \ {x0, y0}.
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4. Foulis, D., Greechie, R., Rüttimann, G.: Filters and supports in orthoalgebras. Internat. J. Theoret.

Phys. 31 (1992), 789–807.
5. Giuntini, R., Greuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989),

931–945.
6. Greechie, R. J.: A particular non-atomistic orthomodular poset. Comm. Math. Phys. 14 (1969),

326–328.
7. Ovchinnikov, P. G.: On alternative orthomodular posets, Demonstratio Math. 27 (1994), 89–93.
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