
Marginal Consistency:
Unifying Constraint Propagation

on Commutative Semirings

Tomáš Werner

Center for Machine Perception
Czech Technical University
Prague, Czech Republic

1 / 34

Introduction

I Max-sum diffusion [Koval-Kovalevsky-1976] is a simple algorithm to decrease
upper bound on Weighted CSP due to [Schlesinger-1976].

I Originally formulated only for binary problems.

I Yields very good (sometimes exact) uppers bounds of WCSP instances.

We generalise max-sum diffusion in two ways:

I from binary networks to networks of any arity [Werner-2008]

I from Weighted CSP to Semiring CSP [Werner-2007]

This offers a unified view on crisp and soft constraint propagation.

2 / 34

Notation

V (finite) set of variables, totally ordered
v ∈ V a single variable
Xv (finite) domain of variable v ∈ V
xv ∈ Xv state of variable v ∈ V

A ⊆ V a subset of variables

XA =
∏
v∈A

Xv joint domain of variables A ⊆ V (ordered by the order on V)

xA ∈ XA joint state of variables A ⊆ V

Convention: “Implicit restriction”

For B ⊂ A, if symbols xA and xB appear in the same logical expression, xB denotes
the restriction of joint state xA onto variables B.

S set of weights
fA: XA → S constraint with scope A ⊆ V

2V the set of all subsets of V(
V
k

)
the set of all k-element subsets of V

3 / 34

Semiring-based CSP

Definition (Constraint network)

Let E ⊆ 2V be a hypergraph. Let each hyperedge A ∈ E be assigned a constraint
fA: XA → S . This collection of constraints is called a constraint network.

Denoting T (E) = { (A, xA) | A ∈ E , xA ∈ XA }, a constraint network is a mapping

f : T (E) → S
(A, xA) 7→ fA(xA)

Definition (Semiring-based CSP)

Given a commutative semiring (S ,⊕,�) and a constraint network f , calculate
expression ⊕

xV∈XV

⊙
A∈E

fA(xA)

4 / 34

Example: A ternary problem

Let V = (1, 2, 3, 4) and E = {(2, 3, 4), (1, 2), (3, 4), (3)}. Then⊕
xV

⊙
A∈E

fA(xA) =
⊕

x1,x2,x3,x4

[f234(x2, x3, x4)� f12(x1, x2)� f34(x3, x4)� f3(x3)]

1

2

4

3

5 / 34

Example: A binary Weighted CSP

Let E =
(
V
1

)
∪ E ′ where E ′ ⊆

(
V
2

)
. Let (S ,⊕,�) = (R ∪ {−∞}, max, +).⊕

xV

⊙
A∈E

fA(xA) = max
xV

∑
A∈E

fA(xA) = max
xV

[∑
v∈V

fv (xv) +
∑

vv ′∈E ′

fvv ′(xv , xv ′)
]

Microstructure for E a grid graph and Xv = {1, 2, 3}:

6 / 34

Example: A binary Weighted CSP

Let E =
(
V
1

)
∪ E ′ where E ′ ⊆

(
V
2

)
. Let (S ,⊕,�) = (R ∪ {−∞}, max, +).⊕

xV

⊙
A∈E

fA(xA) = max
xV

∑
A∈E

fA(xA) = max
xV

[∑
v∈V

fv (xv) +
∑

vv ′∈E ′

fvv ′(xv , xv ′)
]

Microstructure for E a grid graph and Xv = {1, 2, 3}:

6 / 34

Example: A binary Weighted CSP

Let E =
(
V
1

)
∪ E ′ where E ′ ⊆

(
V
2

)
. Let (S ,⊕,�) = (R ∪ {−∞}, max, +).⊕

xV

⊙
A∈E

fA(xA) = max
xV

∑
A∈E

fA(xA) = max
xV

[∑
v∈V

fv (xv) +
∑

vv ′∈E ′

fvv ′(xv , xv ′)
]

Microstructure for E a grid graph and Xv = {1, 2, 3}:

6 / 34

Equivalent transformations

Definition

Constraint networks f and f ′ are equivalent iff they have the same variables V ,
domains Xv and structure E , and

∀xV ∈ XV :
⊙
A∈E

fA(xA) =
⊙
A∈E

f ′A(xA)

A change of f to an equivalent network is an equivalent transformation.

Definition

An equivalent transformation is local iff it changes not more than two constraints,
fA and fB , and it does it such that fA(xA)� fB(xB) is preserved for all xA∪B .

Note: Equivalent transformations depend only on semigroup (S ,�) and not on ⊕.

7 / 34

Examples of local equivalent transformations

Let A = (v , v ′) and B = (v):

v0 v fB(xB)fA(xA)
(S ,�) = (R, min): 3

6

4

2
←→ 3

2

2

5

(S ,�) = (R, +): 3

6

4

2
←→

1
0

3 5

8 / 34

Covering equivalent transformations by local ones

An equivalent transformation may or may not be possible to compose of a
sequence of local equivalent transformations.

Example

Let (S ,⊗) = ({0, 1}, min). Let f represent an unsatisfiable crisp CSP.

Then f is equivalent to the zero network f ≡ 0 but the two networks cannot be
transformed to each other by local equivalent transformations.

Example

Let (S ,�) be a group, i.e., we have division. Then every equivalent transformation
can be composed of local ones.

9 / 34

Marginals

Definition

Given a function fA: XA → S and a set B ⊆ A, we define function fA|B : XB → S by

fA|B(xB) =
⊕
xA\B

fA(xA)

We call fA|B(xB) the marginal of fA associated with joint state xB of variables B.

Example

Let A = (1, 2, 3, 4) and B = (1, 3). The marginal of a function fA associated with
joint state xB of variables B is given by

f1234|13(x1, x3) =
⊕
x2,x4

f1234(x1, x2, x3, x4)

10 / 34

Marginal consistency

Definition

A pair of constraints (fA, fB) is marginal consistent iff fA|A∩B ≡ fB |A∩B .

Definition

A constraint network f is marginal consistent iff for every A ∈ E and B ∈ E ,
constraint pair (fA, fB) is marginal consistent.

Example

A network f with structure E = {(1), (1, 2), (2, 3)} is marginal consistent iff
f1 ≡ f12|1, f1|∅ ≡ f23|∅, and f12|2 ≡ f23|2.

Note: Marginal consistency depends only on (S ,⊕) and not on �.

11 / 34

Marginal consistency for binary networks

Let A = (v , v ′) and B = (v):

v0 v
MxAnB fA(xA) = fB(xB)

12 / 34

Examples: Marginal consistent binary networks

(S ,⊕) = ({0, 1}, max)

(S ,⊕) = (R, max)

13 / 34

Examples: Marginal consistent binary networks

(S ,⊕) = ({0, 1}, max) (S ,⊕) = (R, max)

13 / 34

Enforcing marginal consistency of a constraint pair

Definition

Enforcing marginal consistency of a constraint pair (fA, fB) is a local equivalent
transformation of the pair that makes the pair marginal consistent.

That means, replace the pair (fA, fB) with a new pair (f ′A, f ′B) satisfying the system

f ′A(xA)� f ′B(xB) = fA(xA)� fB(xB) ∀xA∪B

f ′A|A∩B(xA∩B) = f ′B |A∩B(xA∩B) ∀xA∩B

The system is...

I uniquely solvable in semirings (R+, +,×), (R∪ {−∞}, max, +), (R+, min, +),
a distributive lattice (S ,∨,∧) (e.g., ({0, 1}, max, min) and ([0, 1], max, min))

I solvable but not uniquely in semiring ([−1, 0], max, b+c) where b+c is the
truncated addition defined by a b+c b = max{−1, a + b}

I not solvable in semirings (N, max, +), (R, +,×), (Q+, +,×)

14 / 34

Enforcing marginal consistency of a network

Observation

Let the semiring (S ,⊕,�) be such that enforcing marginal consistency of a
constraint pair is possible and unique. Enforcing marginal consistency repetitively
for different constraint pairs converges to a state when the whole network is
marginal consistent. The pairs can be visited in any order such that each has a
non-zero probability to be visited.

Currently, we have neither a proof of the observation nor a counter-example.

Marginal consistency algorithm

repeat
for (A, B) ∈ E × E do

Enforce marginal consistency of constraint pair (fA, fB).
end for

until convergence

Fundamental property of soft constraint networks

By locally changing constraints, any constraint network can be transformed to an
equivalent form in which corresponding marginals of each constraint pair coincide.

15 / 34

Upper bound

Definition (Green’s preorder)

Let relation ≤ be defined on semigroup (S ,⊕) by

a ≤ b ⇐⇒ (a = b) or (∃c ∈ S : a⊕ c = b)

Relation ≤ is reflexive and transitive, hence a preorder. Often, it is also
antisymmetric, hence a (partial or total) order.

Theorem (Upper bounds on Semiring CSP)

For a constraint network f , we have⊕
xV

⊙
A∈E

fA(xA) ≤
⊙
A∈E

⊕
xA

fA(xA) ≤
[[⊕

A∈E

⊕
xA

fA(xA)
]⊕1/|E |]�|E |

If f is marginal consistent then the middle and right-hand expressions equal.

For proving this, we need semiring (S ,⊕,�) to satisfy the arithmetic-geometric
mean inequality

n⊙
i=1

ai ≤
[(n⊕

i=1

ai

)⊕1/n]�n

16 / 34

Enforcing marginal consistency does not worsen the bound

Theorem

Enforcing marginal consistency of any constraint pair does not increase the upper
bound.

In fact, marginal consistency is neither sufficient not necessary for minimum of the
upper bound in the equivalence class.

Theorem

If a network is marginal consistent then the upper bound cannot be improved by
any single local equivalent transformation.

17 / 34

Upper bound for Valued CSP

Definition (Valued CSP [Schiex-1995])

If ≤ is a total order and ⊕ is idempotent, then, ⊕ is necessarily the maximum with
respect to ≤. In that case, Semiring CSP on (S ,⊕,�) is called Valued CSP.

Definition

Joint state xA of hyperedge A ∈ E is called active if fA(xA) = max
yA

fA(yA).

Theorem

The upper bound is tight iff the (crisp) constraint satisfaction problem (CSP)
formed by the active joint states is satisfiable.

18 / 34

Upper bound for Valued CSP

Definition (Valued CSP [Schiex-1995])

If ≤ is a total order and ⊕ is idempotent, then, ⊕ is necessarily the maximum with
respect to ≤. In that case, Semiring CSP on (S ,⊕,�) is called Valued CSP.

Definition

Joint state xA of hyperedge A ∈ E is called active if fA(xA) = max
yA

fA(yA).

Theorem

The upper bound is tight iff the (crisp) constraint satisfaction problem (CSP)
formed by the active joint states is satisfiable.

18 / 34

Upper bound for Valued CSP

Definition (Valued CSP [Schiex-1995])

If ≤ is a total order and ⊕ is idempotent, then, ⊕ is necessarily the maximum with
respect to ≤. In that case, Semiring CSP on (S ,⊕,�) is called Valued CSP.

Definition

Joint state xA of hyperedge A ∈ E is called active if fA(xA) = max
yA

fA(yA).

Theorem

The upper bound is tight iff the (crisp) constraint satisfaction problem (CSP)
formed by the active joint states is satisfiable.

18 / 34

Enforcing marginal consistency for important semirings

Next, we will discuss the marginal consistency algorithm for generic semirings:

I Distributive lattice, including ([0, 1], max, min) and ({0, 1}, max, min)

I Max-sum semirings (R, max, +) and (R ∪ {−∞}, max, +)

I Sum-product semiring (R++, +,×) and (R+, +,×)

We will address the following questions:

I Does the marginal consistency algorithm converge in a finite or infinite
number of iterations?

I Is the marginal consistency closure unique?

I Does the marginal consistency algorithm finds the global minimum of the
upper bound in the class of equivalent networks?

I Is the upper bound evaluated at marginal consistency practically useful?

19 / 34

Distributive lattice (S ,∨,∧)

Distributive lattice (S ,∨,∧) is given by:

I (S ,≤) is a partially ordered set

I ∨ is the supremum (join) induced by ≤
I ∧ is the infimum (meet) induced by ≤
I ∧ distributes over ∨

Properties:

I Marginal consistency algorithm converges in a finite number of iterations.

I The marginal consistency closure is unique.

I The closure does not minimise the upper bound in the equivalence class. In
fact, minimising the upper bound is not tractable.

I Closures provide useful upper bounds.

Special cases:

I Fuzzy CSP semiring ([0, 1], max, min)

I Crisp CSP semiring ({0, 1}, max, min)

20 / 34

Crisp CSP semiring ({0, 1}, max, min)

For crisp CSP, marginal consistency is one of well-known local consistencies:

I For general structure E ⊆ 2V , making the network marginal consistent yields
pairwise consistency.

I For a binary structure E =
(
V
1

)
∪ E ′ with E ′ ⊆

(
V
2

)
, making the network

marginal consistent yields arc consistency.

I For E ⊆ 2V with
(
V
1

)
⊆ E , making pairs { (A, (v)) | A ∈ E , v ∈ A } marginal

consistent yields generalised arc consistency.

21 / 34

Crisp CSP semiring ({0, 1}, max, min)

For crisp CSP, marginal consistency is one of well-known local consistencies:

I For general structure E ⊆ 2V , making the network marginal consistent yields
pairwise consistency.

I For a binary structure E =
(
V
1

)
∪ E ′ with E ′ ⊆

(
V
2

)
, making the network

marginal consistent yields arc consistency.

I For E ⊆ 2V with
(
V
1

)
⊆ E , making pairs { (A, (v)) | A ∈ E , v ∈ A } marginal

consistent yields generalised arc consistency.

21 / 34

Crisp CSP semiring ({0, 1}, max, min)

For crisp CSP, marginal consistency is one of well-known local consistencies:

I For general structure E ⊆ 2V , making the network marginal consistent yields
pairwise consistency.

I For a binary structure E =
(
V
1

)
∪ E ′ with E ′ ⊆

(
V
2

)
, making the network

marginal consistent yields arc consistency.

I For E ⊆ 2V with
(
V
1

)
⊆ E , making pairs { (A, (v)) | A ∈ E , v ∈ A } marginal

consistent yields generalised arc consistency.

21 / 34

Crisp CSP semiring ({0, 1}, max, min)

For crisp CSP, marginal consistency is one of well-known local consistencies:

I For general structure E ⊆ 2V , making the network marginal consistent yields
pairwise consistency.

I For a binary structure E =
(
V
1

)
∪ E ′ with E ′ ⊆

(
V
2

)
, making the network

marginal consistent yields arc consistency.

I For E ⊆ 2V with
(
V
1

)
⊆ E , making pairs { (A, (v)) | A ∈ E , v ∈ A } marginal

consistent yields generalised arc consistency.

21 / 34

Crisp CSP semiring ({0, 1}, max, min)

For crisp CSP, marginal consistency is one of well-known local consistencies:

I For general structure E ⊆ 2V , making the network marginal consistent yields
pairwise consistency.

I For a binary structure E =
(
V
1

)
∪ E ′ with E ′ ⊆

(
V
2

)
, making the network

marginal consistent yields arc consistency.

I For E ⊆ 2V with
(
V
1

)
⊆ E , making pairs { (A, (v)) | A ∈ E , v ∈ A } marginal

consistent yields generalised arc consistency.

21 / 34

Crisp CSP semiring ({0, 1}, max, min)

For crisp CSP, marginal consistency is one of well-known local consistencies:

I For general structure E ⊆ 2V , making the network marginal consistent yields
pairwise consistency.

I For a binary structure E =
(
V
1

)
∪ E ′ with E ′ ⊆

(
V
2

)
, making the network

marginal consistent yields arc consistency.

I For E ⊆ 2V with
(
V
1

)
⊆ E , making pairs { (A, (v)) | A ∈ E , v ∈ A } marginal

consistent yields generalised arc consistency.

21 / 34

Max-sum semirings (R, max, +) and (R ∪ {−∞}, max, +)

I The algorithm converges in an infinite number of iterations.
(But convergence in parameter only conjectured.)

I Marginal consistency closure is not unique.

I In semiring (R, max, +), minimising the upper bound in the equivalence class
is polynomial: it leads to an unconstrained minimisation of a convex
piecewise-linear function, i.e., a linear program.

In general, the marginal consistency algorithm does not find the global
minimum of this linear program. It can converge to a point where the bound
can be improved by changing no single variable separately but only several
variables simultaneously.

I In semiring (R ∪ {−∞}, max, +), minimising the upper bound is no longer
polynomial. But up to the crisp component, it leads to the same linear
program.

I Marginal consistency closures provide very good upper bounds, often tight for
non-trivial instances (especially sparse).

I If constraints fA are supermodular for all A ∈ E , the closure solves the
problem exactly.

22 / 34

Sum-product semirings (R++, +,×) and (R+, +,×)

I The algorithm converges in an infinite number of iterations.

I Marginal consistency closure is unique.

I In semiring (R++, +,×), minimising the upper bound in the equivalence class
leads to an unconstrained minimisation of a smooth convex function, in fact a
geometric program. This function attains its global minimum at the marginal
consistency closure.

I In semiring (R+, +,×), minimising the upper bound has an additional crisp
component.

I The least upper bound is loose, yielding poor approximations of the partition
function.

23 / 34

A necessary condition for satisfiability of a CSP [Werner-2007]

Let f : T (E)→ {0, 1} represent a crisp CSP.

I Expression
∑
xV

∏
A∈E

fA(xA) counts the number of solutions of CSP f .

I The sum-product upper bound is an upper bound on this number.
I If this upper bound is less than 1 then CSP f is not satisfiable.

Compare two necessary conditions for satisfiability of CSP f :

1 (max,×) marginal consistency closure of f must be non-zero.
2 (+,×) marginal consistency closure of f must be non-zero.

Condition 2 is strictly stronger than condition 1!

Example

This CSP has non-zero (max,×) closure but zero (+,×) closure:

24 / 34

Adding neutral constraints

Let 1 denote the identity element of semiring (S ,⊕,�), i.e., a� 1 = a for a ∈ S .

Definition (Neutral constraint)

A constraint fA is neutral iff fA(xA) = 1 for all xA ∈ XA. In short, we write fA ≡ 1.

Let us add a neutral constraint to a network. Then:

I Objective function
⊙
A∈E

fA(xA) is preserved.

I If ⊕ is idempotent, then also upper bound
⊙
A∈E

⊕
xA

fA(xA) is preserved.

I Some previously impossible local equivalent transformations are allowed.
Thus, the new upper bound may be possible to decrease even if the old upper
bound was not.

25 / 34

Example: Adding zero 4-cycle constraints to binary problems

I Randomly draw instances of a binary problem from an instance type.

I Count instances solved exactly by enforcing max-sum marginal consistency.

I Two relaxations tested:

I Plain relaxation without zero constraints

I Relaxation augmented by 4-ary zero constraints on neighboring variables.

without zero constraints

type image side |Xv | rplain

r4cycle

random 15 5 0.01

1.00

random 25 3 0.00

0.98

random 100 3 0.00

0.72

Potts 15 5 0.79

0.99

Potts 25 5 0.48

0.98

Potts 100 5 0.00

0.81

lines 10 4 0.72

0.88

lines 25 4 0.00

0.00

curve 10 9 0.17

0.65

curve 15 9 0.00

0.24

curve 25 9 0.00

0.00

Pi 15 5 0.00

0.82

26 / 34

Example: Adding zero 4-cycle constraints to binary problems

I Randomly draw instances of a binary problem from an instance type.

I Count instances solved exactly by enforcing max-sum marginal consistency.

I Two relaxations tested:

I Plain relaxation without zero constraints
I Relaxation augmented by 4-ary zero constraints on neighboring variables.

with zero constraints

type image side |Xv | rplain r4cycle

random 15 5 0.01 1.00
random 25 3 0.00 0.98
random 100 3 0.00 0.72
Potts 15 5 0.79 0.99
Potts 25 5 0.48 0.98
Potts 100 5 0.00 0.81

lines 10 4 0.72 0.88
lines 25 4 0.00 0.00
curve 10 9 0.17 0.65
curve 15 9 0.00 0.24
curve 25 9 0.00 0.00
Pi 15 5 0.00 0.82

26 / 34

Adding neutral constraints dynamically

27 / 34

Adding neutral constraints dynamically

27 / 34

Adding neutral constraints dynamically

27 / 34

Adding neutral constraints dynamically

27 / 34

Adding neutral constraints dynamically

27 / 34

Adding neutral constraints
Difference between max-min and max-sum semiring

Suppose a constraint fA ≡ 1 with A /∈ E has been added to a network and then
marginal consistency has been enforced.

I In semiring ([0, 1], max, min), we can now remove fA from the network
because this leaves the network equivalent with the original network. Thus, fA
can be in fact added only temporarily, which results in changing some
constraints but does not increase the number of constraints in the network.

I In semiring (R, max, +), we cannot remove fA because this would yield an
non-equivalent network. Thus, adding a neutral constraint and enforcing
marginal consistency does increase the number of constraints in the network.

Example

Let us have a binary network, E =
(
V
1

)
∪ E ′ where E ′ ⊆

(
V
2

)
. Let |Xv | = 2. Add

neutral constraints so that
(
V
2

)
∪
(
V
3

)
⊆ E . Enforce marginal consistency.

I For semiring ({0, 1}, max, min), we can remove ternary constraints, obtaining
a path consistent binary CSP. Since the domains are Boolean, it is tractable.

I For semiring (R, max, +), we cannot remove ternary constraints. The active
joint states form a ternary 3-consistent CSP, which in general is not tractable.

28 / 34

Max-sum marginal consistency algorithm

Let A = (v , v ′) and B = (v):

29 / 34

Max-sum marginal consistency algorithm

Let A = (v , v ′) and B = (v):v v0�'A;B(xB)
fB(xB) = XxAnB fA(xA)

+'A;B(xB)

29 / 34

Max-sum marginal consistency algorithm

Let A = (v , v ′) and B = (v):v v0+'A;B(xB)�'A;B(xB)
fB(xB) = maxxAnB fA(xA)

29 / 34

Example WCSP: Syntactic image analysis

Find the image containing non-overlapping rectangles, nearest to input image!

I Variables V are pixels, hypergraph E is the image grid.

I Variable domains Xv = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic
parts of a rectangle.

I Unary constraint fv (xv) quantifies agreement of intensity of state xv and
intensity of input pixel v .

I Binary constraint fvv ′(xv , xv ′) equals 0 if syntactic parts xv and xv ′ are allowed
to neighbor and −∞ otherwise.

E E E E E E E

E E

E E

E E

E E

E E E E E E E

TL T T T

II

III

L

L

BL B B B BR

R

R

TR

I

hidden states = syntactic parts

input image output image

observed states = {black,white}

30 / 34

Example WCSP: Syntactic image analysis

Find the image containing non-overlapping rectangles, nearest to input image!

I Variables V are pixels, hypergraph E is the image grid.

I Variable domains Xv = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic
parts of a rectangle.

I Unary constraint fv (xv) quantifies agreement of intensity of state xv and
intensity of input pixel v .

I Binary constraint fvv ′(xv , xv ′) equals 0 if syntactic parts xv and xv ′ are allowed
to neighbor and −∞ otherwise.

E E E E E E E

E E

E E

E E

E E

E E E E E E E

TL T T T

II

III

L

L

BL B B B BR

R

R

TR

I

hidden states = syntactic parts

input image output image

observed states = {black,white}

30 / 34

Example WCSP: Syntactic image analysis

Find the image containing non-overlapping rectangles, nearest to input image!

I Variables V are pixels, hypergraph E is the image grid.

I Variable domains Xv = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic
parts of a rectangle.

I Unary constraint fv (xv) quantifies agreement of intensity of state xv and
intensity of input pixel v .

I Binary constraint fvv ′(xv , xv ′) equals 0 if syntactic parts xv and xv ′ are allowed
to neighbor and −∞ otherwise.

E E E E E E E

E E

E E

E E

E E

E E E E E E E

TL T T T

II

III

L

L

BL B B B BR

R

R

TR

I

hidden states = syntactic parts input image output image

observed states = {black,white}

30 / 34

Example WCSP: Syntactic image analysis

Find the image containing non-overlapping rectangles, nearest to input image!

I Variables V are pixels, hypergraph E is the image grid.

I Variable domains Xv = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic
parts of a rectangle.

I Unary constraint fv (xv) quantifies agreement of intensity of state xv and
intensity of input pixel v .

I Binary constraint fvv ′(xv , xv ′) equals 0 if syntactic parts xv and xv ′ are allowed
to neighbor and −∞ otherwise.

E E E E E E E

E E

E E

E E

E E

E E E E E E E

TL T T T

II

III

L

L

BL B B B BR

R

R

TR

I

hidden states = syntactic parts input image output image
observed states = {black,white}

30 / 34

Example WCSP: Syntactic image analysis

Find the image containing non-overlapping rectangles, nearest to input image!

I Variables V are pixels, hypergraph E is the image grid.

I Variable domains Xv = {E, I, L, R, T, B, TL, TR, BL, BR } are syntactic
parts of a rectangle.

I Unary constraint fv (xv) quantifies agreement of intensity of state xv and
intensity of input pixel v .

I Binary constraint fvv ′(xv , xv ′) equals 0 if syntactic parts xv and xv ′ are allowed
to neighbor and −∞ otherwise.

E E E E E E E

E E

E E

E E

E E

E E E E E E E

TL T T T

II

III

L

L

BL B B B BR

R

R

TR

I

hidden states = syntactic parts input image output image
observed states = {black,white}

30 / 34

Example: Binary WCSP with a global constraint [Werner-2008]

I E =
(
V
1

)
∪ E ′ ∪ {V } where E ′ ⊆

(
V
2

)
, Xv = {white, black}.

I (S ,⊕,�) = (R ∪ {−∞}, max, +)
I Unary constraint fv quantifies agreement with intensity of input pixel v .
I Binary constraints fvv ′ penalise transition between black and white pixels.
I Global constraint fV (xV) is: 0 if xV contains n black pixels and −∞ otherwise.

Interpretation: Minimum st-cut in a graph such that the number of pixels in the
first partition equals n (NP-hard).

I Max-sum diffusion enforced generalised arc consistency of active joint states.
I Marginal equalisation between fv and fV seen as a soft global propagator.

input n required: 2000 3000 4000 5000 5368 6000 7000 8000 9000
n achieved: 2008 3004 4011 5006 5368 6004 7024 7982 9032

31 / 34

Supermodular problems

Let each domain Xv be totally ordered. A function fA is supermodular if

fA(xA ∧ yA) + fA(xA ∨ yA) ≥ fA(xA) + fA(yA)

for any xA, yA ∈ XA, where ∧ (∨) denotes the elementwise minimum (maximum).

Theorem ([Schlesinger-Flach-00] for binary case, [Werner-2008] for non-binary case)

Let fA be supermodular for each A ∈ E . Finding an equivalent network whose
active joint states are generalised arc consistent solves the WCSP f exactly.

Proof

I Equivalent transformations preserve supermodularity.

I The maximisers of a supermodular function on a distributive lattice form a
sublattice of this lattice [Topkis78]. Hence, the active joint states of each
constraint form a lattice. Hence, all active joint states form a well-known
tractable CSP [Jeavons-Cooper-95] (lattice CSP).

I Generalised arc consistency suffices for a lattice CSP to be satisfiable.

Before, [Cooper-2008] showed that the LP relaxation is tight for non-binary
supermodular WCSPs. Our statement is stronger and the proof is simpler.

32 / 34

Supermodular problems
Example for binary networks

x

x
′

y
′y

v v
′

x ≤ x ′, y ≤ y ′ =⇒ fvv ′(x , x ′) + fvv ′(y , y ′) ≥ fvv ′(x , y ′) + fvv ′(y , x ′)

33 / 34

Supermodular problems
Example for binary networks

x

x
′

y
′y

v v
′

x ≤ x ′, y ≤ y ′ =⇒ fvv ′(x , x ′) + fvv ′(y , y ′) ≥ fvv ′(x , y ′) + fvv ′(y , x ′)

33 / 34

Supermodular problems
Example for binary networks

x

x
′

y
′y

v v
′

x ≤ x ′, y ≤ y ′ =⇒ fvv ′(x , x ′) + fvv ′(y , y ′) ≥ fvv ′(x , y ′) + fvv ′(y , x ′)

33 / 34

Supermodular problems
Example for binary networks

x

x
′

y
′y

v v
′

x ≤ x ′, y ≤ y ′ =⇒ fvv ′(x , x ′) + fvv ′(y , y ′) ≥ fvv ′(x , y ′) + fvv ′(y , x ′)

33 / 34

Summary

I A deep property of constraint networks on commutative semirings revealed:

By changing constraints locally, any constraint network can be transformed to an
equivalent form in which corresponding marginals of each constraint pair coincide.

I Marginal consistency can be enforced in a wide class of semirings, including
the max-min, max-sum, and sum-product semirings.

I It corresponds to finding a local minimum of an upper bound on the true
objective function.

I Enforcing marginal consistency is a simple concept, hinging only on local
equivalent transformations and marginal consistency.

34 / 34

