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Abstract

It is known that epipolar constraint can be augmented with orientation by for-
mulating it in the oriented projective geometry. This oriented epipolar con-
straint requires knowing the orientations (signs of overall scales) of epipoles
and fundamental matrix. The current belief is that these orientations cannot
be obtained from the fundamental matrix only and that additional informa-
tion is needed, typically, a single correct point correspondence. In contrary to
this, we show that fundamental matrix alone encodes orientation of epipoles
up to their common scale sign. We present two formulations of this fact. The
algebraic formulation gives a closed formula to compute the second epipole
from fundamental matrix and the first epipole. The geometric formulation is
in terms of the conic formed by intersections of corresponding epipolar lines
in the common image plane; we show that the epipoles always lie on different
antipodal components of the spherical interpretation of this conic. Further,
we show that, under mild assumptions, fundamental matrix can discriminate
between two classes of mutual position of a pair of directional cameras.

1 Introduction

Real1 cameras project points from space into images such that points on a singlehalf-
ray emanating from a projection center into infinity project into a single image point.
Most of real cameras used in photography and computer vision, however, posses a view
angle smaller than 180◦, and therefore they may never see points on both half-rays of one
camera ray. Thus, the images of points in space may be represented by complete lines
through the projection center instead of half-lines since there is maximally one visible
half-ray on each ray through the projection center. This representation allows to model
the image plane by theprojective planeat the cost of loosing the ability to represent the
‘front’ and the ‘back’ of a camera and consequently of loosing some of the constraints
that are useful in solving the image correspondence problem [9, 13, 6, 5].

To express that points are in front of a camera, Stolfi introducedoriented projec-
tive geometry[11] and used it in computer graphics. Paper [4] introduced the concept
of oriented projective geometry to computer vision and pointed out that it can be used
in solving the image correspondence problem. The oriented projective geometry is im-
plicitly expressed by the tensor algebra used in [12] to describe geometry of multiple
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images2. It has been shown [2] that the existence of the ‘front’ of a camera can be used to
upgrade the projective reconstruction [3] to thequasi-affine reconstructionthat preserves
convex hulls. Works [7] and [1] applied the above concepts to reconstruction and camera
calibration respectively. Ray orientation consistency provided a constraint on five point
correspondences in two images in [14].

In this work we show that the information about the ‘front’ of the camera, when com-
bined with the knowledge of the standard epipolar geometry, can be used to derive a
new useful constraint on the correspondence of epipolar half-lines that arise by projecting
camera half-rays into images. The contributions of this paper are (i) derivation of for-
mula for computation of jointly correctly oriented epipoles given unoriented fundamental
matrix only; (ii) we show that the joint orientation of epipoles also discriminates the mu-
tual position of directional cameras (see rows of figure 1) provided that image bases have
equal handedness; (iii) the concept of Steiner conic [3] is extended into oriented epipolar
geometry: it is shown that the epipoles lie on different components of the spherical inter-
pretation of this conic; (iv) results are applied in wide baseline guided matching context,
the verification of hypothesised region-to-region correspondence can be done without any
search in the image transformation space.

2 Notation and Concepts

{· · ·} denotes a set and(· · ·) an ordered tuple.Rn is the real vectorn-space. Its elements
are typeset in boldface, e.g.,x. |A| denotes the determinant of a square matrix. Determi-
nant of the matrix with vectors as its columns is abbreviated as|x1, . . . ,xn|. [x]× denotes
antisymmetric 3×3 matrix such thatx×y = [x]×y. For a(n−1)×n matrixA, the symbol
A∧ denotes the columnn-vector whosen-th entry is the minor of the firstn−1 columns
of A, and so on by cyclic permutation. E.g., forn = 4 and denotingA= [a1,a2,a3,a4] it is
A∧ = [|a2,a3,a4|, |a3,a4,a1|, |a4,a1,a2|, |a1,a2,a3|]>.

Symbol∼ denotes equivalence of two vectors up to scale,x ∼ λx for all λ 6= 0.
Similarly, +∼ denotes equivalence of two vectors up to a positive scale,x +∼ λx for all
λ > 0. For scalars,a +∼ b means eitherab> 0 ora = b = 0.

We extend the definition of these equivalences as follows. The symbolx∼ denotes the
set of all vectors equivalent withx under equivalence∼, i.e.,x∼ = {λx |λ 6= 0}. Similarly,
x+∼

= {λx |λ > 0}. For an orderedn-tuple(x1, . . . ,xn) of elements of (possibly different)
vector spaces, we define(x1, . . . ,xn)±∼ = {(λ1x1, . . . ,λnxn) |δλ1 > 0, . . . ,δλn > 0,δ 6= 0}.

The spherical (or oriented projective)d-space is the setSd = {x∈Rd+1\0}/ +∼, where
/ denotes factorization by equivalence. Theoriented projective geometryis a structure on
Sd [11], similar to the projective geometry being a structure on the projective space.

Scene, Image and Camera3. Thesceneis modelled by the affine 3-spaceA3 which in
turn is represented by a single open half ofS3. This half is denoted by the pair(S3,π∞)
and consists of scene points that are in front of theoriented plane at infinityπ∞, i.e., of
pointsX satisfyingπ∞X > 0.

2In particular, the second formula in table 1 in the full version of [12] gives the relation between fundamental
matrix and the epipoles. This observation is very close to our paper; however, the orientation consequences of
the formula are not discussed in [12].

3Note that the vectors and matrices in this subsection represent objects of oriented projective geometry,
therefore their signs matter.



The image is represented byS2. The whole ofS2 represents theomnidirectional
image4. Conventional (from, e.g., TV or photographic cameras) images aredirectional.
The directional image is modelled byA2 which is represented by a single open half ofS2.
This half is denoted by(S2, l∞) and consists of image points that are on the positive side
of theoriented image line at infinityl∞, i.e., of pointsx satisfyingl∞x > 0.

Camerais a linear mapping,x = PX, from the scene to the image. Thedirectional
camerais, besides that, characterized by its oriented line at infinity, therefore denoted by
(P, l∞). The linel∞ is a projection of the scene planeπP = l∞P (without the camera center)
passing through the camera center. SinceπPX = (l∞P)X = l∞(PX) = l∞x, the condition
l∞x > 0 is equivalent toπPX > 0, saying that visible scene pointsX lie in front of πP.

3 Oriented Epipolar Constraints
Consider a scene point represented byX and a pair of different cameras represented by
matrices(P,P′). It is well-known [3] that, in the (unoriented) projective geometry, a point
pair (x,x′) such thatx ∼ PX andx′ ∼ P′X satisfiesx′>Fx = 0. The fundamental matrixF
is obtained from the cameras asF = [e′]×P′P+, whereP+ = P(PP>)−1, e′ = P′C, andC is
an arbitrary non-zero vector satisfyingPC = 0.

Taking orientation into account provides a more restrictive constraint on point corre-
spondences. If(x,x′) are such thatx +∼ PX andx′ +∼ P′X, it follows that [15]

e′×x′ +∼ Fx , (1)

where againF = [e′]×P′P+ ande′ = P′C. Unlike in x′>Fx = 0, the scale signs ofx,x′,e′

andF matter in (1). Therefore,C cannot be defined byPC = 0 because it leaves ambiguity
in its scale sign. Instead, the ‘oriented camera center’ [2, 3, 15] is used,C = P∧.

In the oriented framework, it is also possible to formulate a constraint on apair of
point correspondences that does not involve fundamental matrix. If(x1,x

′
1) and(x2,x

′
2)

satisfyxi
+∼ PX i andx′i

+∼ P′X i for two scene pointsX1 andX2, it follows that

|x′1,x′2,e′| +∼−|x1,x2,e| (2)

wheree= PP′∧, e′ = P′P∧. This can be proved using equality|PX,PY,PZ|= |X,Y,Z,P∧|
relating any 4-vectorsX,Y,Z and 3×4 matrixP.

Equation (2) can be interpreted as a constraint onoriented image linesin two images
(there is no constraint on unoriented lines). Let(X1,X2) be a 3D line specified by its two
points. Then line pair(l, l′) such thatl> +∼ PX1×PX2 andl′> +∼ P′X1×P′X2 satisfy [15]

l′e′ +∼−le . (3)

The constraints (1) and (3) are useful for feature matching. However, unlike when
using the unoriented versionx′>Fx = 0, we have to choose scale signs of the representing
vectors and matrices. Scale signs of image points and lines are measured in images;
however,e,e′ and F are typically known only up tonon-zeroscales because they are
computed as null-vectors when solving homogeneous linear systems. There are three
following relevant situations how to determine consistent scale signs of (some of)e,e′

andF:
4Cameras able to capture omnidirectional images can be built, e.g., by combining a conventional camera and

a curved mirror [8].



• If F∼ and a single point correspondence(x,x′)±∼ are known,(e′,F)±∼, wheree′, F
and all correspondences satisfy (1), can be obtained.

• If F∼ and a single oriented line correspondence(l, l′)±∼ is known,(e,e′)±∼, where

e, e′ and all line correspondences satisfy (3), can be obtained. However,(e′,F)±∼
satisfying (1) remains unknown.

• If F∼ is known, it was believed that neither(e′,F)±∼ satisfying (1) nor(e,e′)±∼ satis-

fying (2) can be obtained. However, this is not true:this paper shows that(e,e′)±∼,

wheree, e′ and all correspondences satisfy (1), can be obtained from arbitrarily
scaled fundamental matrix only.

4 Invariance of Joint Orientation of Epipoles

It is natural to define epipoles as tensors associated with the camera pair(P,P′) [12],

e= PP′∧ , e′ = P′P∧ . (4)

In the (unoriented) projective geometry, the image points represented bye ande′ are
invariant to scene homographies (i.e., changing the scene coordinate basis) and overall
scales of the camera matrices. To see this, consider two camera pairs,(P̂, P̂′) and(P,P′),
related byP̂ = δPT−1 and P̂′ = δ ′P′T−1, whereT is a scene homography andδ ,δ ′ are
scales of camera matrices. Using the fact that

(HPT−1)∧ = |H||T|−1TP∧ , (5)

we obtain
ê = P̂P̂

′∧ = (δδ ′3|T|−1)e = σe ,

ê′ = P̂
′
P̂
∧ = (δ 3δ ′|T|−1)e′ = σ ′e′ .

(6)

Sinceσσ ′ 6= 0, it is ê∼ e, hencêeanderepresent the same image point. Similarly,ê′∼ e′.
In the oriented projective geometry, this is not true in general becauseσ and/orσ ′

might be negative. E.g., ifδ = δ ′ = 1 and|T| < 0, it is ê +∼ −e and ê′ +∼ −e′. Since
e and−e are different (mutually antipodal points) in the oriented projective geometry,
the epipoles are not invariant to a mirroring scene homography. However, the following
theorem says that the epipoles can swap sign onlysimultaneously. In other words, it is
σσ ′ > 0, which can be seen from (6).

Theorem 1 Let e= PP′∧ ande′ = P′P∧. The set(e,e′)±∼ is invariant to scene homogra-

phies and scalingP andP′.

5 Recovering Epipoles from Fundamental Matrix

The set(e,e′)±∼ mentioned in theorem 1 can be obtained from the fundamental matrix
associated with the camera pair by computing arbitrary camera matrices consistent withF
and then lettinge= PP′∧ ande′ = P′P∧. The following theorem gives another way to do
this: choose any vectore′ satisfyinge′>F = 0 and computee using one of the equivalent
formulas in (7).
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Figure 1: Four configuration classes of a pair of directional cameras in the affine scene.

Theorem 2 Let (P,P′) be a pair of camera matrices andF be an arbitrarily scaled fun-
damental matrix consistent with it. Then vectorse= PP′∧ ande′ = P′P∧ satisfy[

e
0

]
+∼ [F |e′]∧ , [e]×

+∼ F>[e′]×F . (7)

Proof. The family of pairs of camera matrices consistent withF is, up to their non-zero
scales and a scene homography, given [3] byP = [I |0] andP′ = [H |e′] wheree′ is any
vector satisfyinge′>F = 0 andH = [e′]×F.

Clearly, it isP′P∧ = e′. The first epipole is given bye= PP′∧ = [I |0][H |e′]∧. Defini-
tion of A∧ and using the identity|x,x×y,x×z|= (x>x) |x,y,z| yields

e=−

 |e′,h2,h3|
|h1,e

′,h3|
|h1,h2,e

′|

 =−(e′>e′)

 |e′, f2, f3|
|f1,e

′, f3|
|f1, f2,e

′|

 (8)

wherehi denote columns ofH andf i denote columns ofF. Using the facte′>e′ > 0 and
definitions ofA∧ and[x]×, (8) can be re-arranged to the left or right formula in (7).�

6 Mutual Position of Two Directional Cameras
Non-invariance of the epipoles to scene homographies is caused by non-covariance of
the camera center defined byP∧. By applying a homographyT to the scene, scene points
transform asX 7→ TX, whileP∧ transforms asP∧ 7→ |T|−1TP∧. If |T|< 0,P∧ is replaced by
its antipode. Also,P∧ becomes its antipode when transforming the image by a mirroring
homography.

This causes confusion when trying to define the concept of ‘camera center’ and, for di-
rectional cameras, relations ‘the second camera is in front/behind the first camera’. These
have clear meaning only in the affine scene, i.e., with respect to the plane at infinity.
P∧ represents the camera centeronly if π∞P∧ > 0, otherwise,P∧ does not belong to the
(affine) scene(S3,π∞). If π∞P′∧ > 0, then the sign ofl∞e= πPP

′∧ correctly determines
whether the second camera lies in front of (l∞e> 0) or behind (l∞e< 0) the first camera.

Let (P, l∞) and(P′, l′∞) be two directional cameras in the affine scene(S3,π∞). As-
sume that5 π∞P∧ > 0 andπ∞P′∧ > 0. Then the signs ofl∞eandl′∞e′ correctly discriminate

5E.g., we can chooseπ∞ = [0,0,0,1]>, P = KR[I | − t], P′ = K′R′[I | − t′] where|KR|> 0, |K′R′|> 0.



between four classes of camera pair configurations shown in figure 1. Assume that the
camera pair undergoes an unknown scene homography and scaling of the camera matrices
(e.g., this new camera pair is obtained by projective reconstruction from image correspon-
dences). We have seen that the signs ofl∞e and l′∞e′ are not invariant to these transfor-
mations, therefore we cannot distinguish between the four classes any more. However,
the sign of theproduct s= (l∞e)(l′∞e′) is invariant to these transformations, which fol-
lows from theorem 1. The sign ofs discriminates between two classes of camera pair
configurations, corresponding to the first (s> 0) and the second (s< 0) row of figure 1.

The following theorem, central to the paper, is a consequence of this fact.

Theorem 3 Let(P, l∞) and(P′, l′∞) be two directional cameras in the affine scene(S3,π∞)
such thatπ∞P∧ > 0 andπ∞P′∧ > 0. LetF be a fundamental matrix associated with them.
Let e ande′ satisfye′>F = 0 and (7). Then the camera configuration corresponds to the
first row of figure 1 if(l∞e)(l′∞e′) > 0 and to the second row if(l∞e)(l′∞e′) < 0.

7 Geometric Interpretation

If the two image planes are identified by a projective isomorphism, epipolar geometry
can be givengeometricinterpretation [3, p. 231]. It involves the epipoles, the conic
represented by the symmetric part of the fundamental matrix,Fs = (F+ F>)/2, and the
point xa represented by its antisymmetric part6, [xa]× = Fa = (F−F>)/2. In this section,
we re-formulate this interpretation in the oriented projective geometry.

The unoriented situation is shown in figure 8.10a in [3, p. 233]. The conic given
by x>Fsx = 0 passes through both epipoles,e>Fse = e′>Fse′ = 0, which follows from
Fe= F>e′ = 0. Recall Steiner’s theorem [10], saying that intersections of corresponding
lines of two projectively related line pencils form a conic. Epipolar lines are such pencils,
therefore this conic isFs. Pointxa has pole-polar relationship with linee×e′ joining the
epipoles,Fsxa∼ e×e′. In other words, linesxa×eandxa×e′ are tangent to the conic.

The following theorem augments this construction with orientation.

Theorem 4 Let (P,P′) be camera matrices andF fundamental matrix consistent with
them such that|F+ F>| 6= 0. Let e = PP′∧, e′ = P′P∧, Fs = (F+ F>)/2, and [xa]× =
(F−F>)/2. Then

1. The points represented bye and e′ lie on different antipodal components of the
spherical conic7 represented byFs (see figure 2a).

2. The pole-polar relation ofxa ande×e′ is oriented,Fsxa
+∼ e×e′.

Proof. Item 1will be proved by finding a line separating the antipodal components of
Fs and at the same time the epipoles. Clearly, any tangent toFs not incident with any
epipole separates the antipodal components ofFs. It remains to show that this tangent
also separates the epipoles.

6Note,Fs can be rank deficient or zero. It occurs, e.g., ife∼ e′. The case|Fs|= 0 can always be transformed
to |Fs| 6= 0 by proper image homographies. Thus, we consider only case|Fs| 6= 0 without loss of generality.

7In oriented projective geometry, a non-degenerate conic consists oftwo disconnected antipodal components,
as shown in figure 2a. The sign ofFs does not distinguish between these antipodes, it rather says whether
x>Fsx > 0 defines interior or exterior points. The sign ofFs can be thought of as an arrow on the conic aiming
either inside or outside.
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Figure 2: Epipoles are on the antipodal parts of spherical conicFs (a). 3 configurations
of epipoles on affine conicFs; signs of l∞e and l′∞e′ denoted by filled or empty circles
(b,c,d).

A line l separates pointse ande′ iff (le)(le′) < 0. We need to prove this inequality
for the tangentl> = Fsx at any pointx on the conic not identical to any epipole, i.e.,
(e>Fsx)(e′>Fsx) < 0. Since 2Fs = F+ F> andFe = F>e′ = 0, it is e>Fs = 1

2e>F and
e′>Fs = 1

2e′>F>. Substitution gives(e>Fx)(e′>F>x) < 0. We know thatFx = δe′×x and
F>x = δe×x for δ 6= 0. Substitution givesδ 2|e,e′,x||e′,e,x|< 0 which is true.

Item 2can be proved analytically. By algebraic manipulations, it can be shown that if
F = [e′]×P′P+, thenFsxa = 1

2e×e′. �

Note that the theorem holds forany cameras, omnidirectional or directional. For
directional cameras in particular, item 1 of the theorem, along with affine classification of
Fs and theorem 3, allows to discriminate between the two classes of camera configurations
corresponding to the rows in figure 1. It is(l∞e)(l′∞e′) > 0 if and only ifFs is a hyperbola
and the epipoles lie on its different branches, because branches of a hyperbola correspond
to the antipodal components of the spherical interpretation of the conic (figure 2bcd).

Disambiguating re-composition. It has been noticed [3, p. 233] that the objects rep-
resented by the symmetric and the antisymmetric parts of the fundamental matrix define
the epipolar geometry only up to swapping the images. This refers to the situation in pro-
jective geometry, i.e., we are givenFs andxa up tonon-zeroscales and want to get back
F. Indeed, the two tangents to a conic from a point have undefined order. Algebraically,
the unknown scales ofFa andxa are given by condition|αFs+ βFa| = 0. It can be eas-
ily shown that the three roots of this cubic equation correspond to combinationsFs+Fa,
−Fs+Fa andFa. The second one equals−F>, hence the reversed order of images.

In the oriented projective geometry, this re-composition ambiguity disappears, be-
cause we are givenFs andFa up to positivescales. Thus we are left with the first root.
This is given, quite independently, also by item 2 of theorem 4.

Horopter. ConicFs is the locus of corresponding points(x,x′) with the same coordinates,
x∼ x′. This is becausex>Fx = x>Fsx = 0. The conic is the image of thehoroptercurve in
the scene, formed by 3D pointsX projecting to the same point in both images,PX ∼ P′X.
The horopter is a twisted cubic, passing through the two camera centers.

In the oriented projective geometry, two identical points satisfyx +∼ x′ rather than just
x ∼ x′. The consequence is that only asegmentof the horopter projects to the identical
points. This segment is delimited by the camera centers and projects to the segment of



the conicFs delimited by the epipoles, as given by the following theorem.

Theorem 5 Let (P,P′) be camera matrices andF fundamental matrix consistent with
them such that|F+ F>| 6= 0. Then pointse= PP′∧, e′ = P′P∧ satisfyingFe= F>e′ = 0
divide conicF+ F> into two segments such that one segment is the image of pointsX
satisfyingPX +∼ P′X and the other segment is the image of points satisfyingPX +∼−P′X.

Proof. Pointsx on conicFs satisfyδe′×x = Fx for someδ 6= 0. It follows from (1) that
PX +∼ P′X for σ > 0 andPX +∼ −P′X for σ < 0. We have to show thatδ changes sign
when and only whenx crosses the line joininge ande′. Multiplying the equation bye>

from the left givesδ |e,e′,x| = e>Fx. Since 2Fs = F+ F> it is e>F = 2e>Fs, therefore
δ |e,e′,x|= 2e>Fsx. |e,e′,x| changes sign when and only whenx crosses the line joining
e ande′. But e>Fsx has the same sign for all pointsx 6∼ e on the conic becauseFsx is the
tangent atx ande lies on the conic. �

8 Application to Wide Baseline Guided Matching
Guided matching is a process used to find additional matches based on estimated epipo-
lar geometry. The current estimate ofF restricts the search from entire images to bands
around corresponding epipolar lines. Similarity measure is used to select between matches
that satisfy the epipolar constraint. In case of short baseline stereo, the correlation of in-
tensities in square neighbourhoods of the interest points is typically used as a similarity
measure [3]. In wide baseline stereo, such similarity measure cannot be used since the
local image to image mapping is not restricted to a translation as in the short baseline
case, but may be a general affine transformation.

Many wide baseline matching algorithms use region-to-region correspondences [13,
5, 6]. Consider now two regionsΩ andΩ′, each in different image, that are linked by
affine transformationA, |A| > 0. Let the centroids of the regions bēx = [x̄, ȳ,1]> and
x̄′ = [x̄′, ȳ′,1]> respectively. Let the covariance two-by-two matrices of the regions beΣ
andΣ′ respectively:

Σ =
1
|Ω|

∫
Ω

[
x− x̄
y− ȳ

]
[x− x̄, y− ȳ]dxdy. (9)

The representation of regions by their centroids and covariance matrices is useful, since
it can be derived from regions of any shape. Both centroids and covariance matrices are
transformed covariantly under any affine transformation. The affine transformationA that
links regionsΩ andΩ′ can be written in formA= T′−1RT. The matrixR represents image
rotation,

T =

 x̄√
Σ ȳ

0 0 1

−1

and T′ =

 x̄′√
Σ′ ȳ′

0 0 1

−1

, (10)

where
√

Σ>
√

Σ = Σ is obtained by the Cholesky decomposition. TransformationsT and
T′ transform the first (respectively the second) region so that the transformed regions have
their centroid in the origin and have the identity covariance matrix. Such transformation
is called normalisation, see figure 3, and can be obtained directly from the centroid and
covariance matrix of single region. Normalisation is defined up to unknown rotation,
i.e. transformationsT andT′ are ones of possible normalisations. The rotationR is not



R

T T’

A

Figure 3: Picture of the Little Mole (left) and his normalised picture (middle).The covari-
ance matrices are depicted as ellipses. The decomposition of affine transformation into
two normalisationsT, T′, and image rotationR (right).

defined by the covariance matrices. The decomposition ofA is depicted on figure 3. The
covariance matrices are depicted as ellipses.

The affine transformation linking two regions in wide baseline stereo matching prob-
lem is not known beforehand. Hence, to establish a tentative correspondence of regions an
affine invariant descriptors [13, 5, 6] and/or correlation over all possible rotationsR after
the normalisation [13, 5] may be used. The first approach is invariant to image rotationR
and the second findsR so that similarity (correlation) is maximised.

Once an estimate of the epipolar geometry is known (e.g. after robust estimation using
RANSAC), neither the affine transformationA nor the rotationR can be arbitrary. In fact,
the fundamental matrixF defines, under two reasonable assumptions, the rotationR, and
henceA, uniquely. The first assumption is that both image coordinate bases have the same
handedness and was already discussed in section 4. The second assumption is that the
observed surface is opaque and cannot be seen from behind. Both assumptions guarantee
the absence of ‘mirroring’ effect. The rotationR is uniquely defined by the following
equation

[Te]×[0,0,1]> +∼−R>[T′e′]×[0,0,1]>. (11)

Equation (11) chooses the image rotationR so that the affine transformationA maps the
epipolar line[e]×x to [e′]×x′ with proper orientation, i.e.A−>[e]×x +∼ −[e′]×x′. The es-
sential condition is, that the epipolese ande′ have correct joint orientation, i.e., were
obtained using (7).

The described method not only allows for the search for further matches, it also en-
ables the rejection of false inliers, i.e. region matches that both lie on the corresponding
epipolar lines and can be locally mapped to each other, but the mapping is not consistent
with the global epipolar geometry, as depicted on figure 4.

9 Conclusions
In this paper we showed thatfundamental matrix alone encodes joint orientation of
epipoles, i.e., an unoriented fundamental matrix and one oriented epipole uniquely de-
termines the orientation of the other epipole. The joint orientation of epipoles also deter-
mines the mutual position of cameras (figure 1). The unoriented concept of the Steiner
conic was extended to oriented epipolar geometry. The application of wide baseline stereo
guided matching was introduced, exploiting the correct joint orientation of epipoles.
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Figure 4: Which plane in the second image can correspond to the one in the first image?
The smallest plane is eliminated, as it does not lie on corresponding epipolar line. And
so is the biggest one because of its incorrect rotation w.r.t. the epipolar line.
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